Merge commit 'c0053bd50af5' into omap-for-v4.8/soc
[deliverable/linux.git] / drivers / net / ethernet / via / via-rhine.c
CommitLineData
1da177e4
LT
1/* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2/*
3 Written 1998-2001 by Donald Becker.
4
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
6
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
13
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
03a8c661 28 [link no longer provides useful info -jgarzik]
1da177e4
LT
29
30*/
31
df4511fe
JP
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
1da177e4 34#define DRV_NAME "via-rhine"
207070f5 35#define DRV_VERSION "1.5.1"
38f49e88 36#define DRV_RELDATE "2010-10-09"
1da177e4 37
eb939922 38#include <linux/types.h>
1da177e4
LT
39
40/* A few user-configurable values.
41 These may be modified when a driver module is loaded. */
fc3e0f8a
FR
42static int debug = 0;
43#define RHINE_MSG_DEFAULT \
44 (0x0000)
1da177e4
LT
45
46/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
47 Setting to > 1518 effectively disables this feature. */
8e95a202
JP
48#if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
49 defined(CONFIG_SPARC) || defined(__ia64__) || \
50 defined(__sh__) || defined(__mips__)
b47157f0
DM
51static int rx_copybreak = 1518;
52#else
1da177e4 53static int rx_copybreak;
b47157f0 54#endif
1da177e4 55
b933b4d9
RL
56/* Work-around for broken BIOSes: they are unable to get the chip back out of
57 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
eb939922 58static bool avoid_D3;
b933b4d9 59
1da177e4
LT
60/*
61 * In case you are looking for 'options[]' or 'full_duplex[]', they
62 * are gone. Use ethtool(8) instead.
63 */
64
65/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
66 The Rhine has a 64 element 8390-like hash table. */
67static const int multicast_filter_limit = 32;
68
69
70/* Operational parameters that are set at compile time. */
71
72/* Keep the ring sizes a power of two for compile efficiency.
92bf2008
TR
73 * The compiler will convert <unsigned>'%'<2^N> into a bit mask.
74 * Making the Tx ring too large decreases the effectiveness of channel
75 * bonding and packet priority.
76 * With BQL support, we can increase TX ring safely.
77 * There are no ill effects from too-large receive rings.
78 */
79#define TX_RING_SIZE 64
80#define TX_QUEUE_LEN (TX_RING_SIZE - 6) /* Limit ring entries actually used. */
633949a1 81#define RX_RING_SIZE 64
1da177e4
LT
82
83/* Operational parameters that usually are not changed. */
84
85/* Time in jiffies before concluding the transmitter is hung. */
86#define TX_TIMEOUT (2*HZ)
87
88#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
89
90#include <linux/module.h>
91#include <linux/moduleparam.h>
92#include <linux/kernel.h>
93#include <linux/string.h>
94#include <linux/timer.h>
95#include <linux/errno.h>
96#include <linux/ioport.h>
1da177e4
LT
97#include <linux/interrupt.h>
98#include <linux/pci.h>
2d283862
AC
99#include <linux/of_device.h>
100#include <linux/of_irq.h>
101#include <linux/platform_device.h>
1e7f0bd8 102#include <linux/dma-mapping.h>
1da177e4
LT
103#include <linux/netdevice.h>
104#include <linux/etherdevice.h>
105#include <linux/skbuff.h>
106#include <linux/init.h>
107#include <linux/delay.h>
108#include <linux/mii.h>
109#include <linux/ethtool.h>
110#include <linux/crc32.h>
38f49e88 111#include <linux/if_vlan.h>
1da177e4 112#include <linux/bitops.h>
c0d7a021 113#include <linux/workqueue.h>
1da177e4
LT
114#include <asm/processor.h> /* Processor type for cache alignment. */
115#include <asm/io.h>
116#include <asm/irq.h>
117#include <asm/uaccess.h>
e84df485 118#include <linux/dmi.h>
1da177e4
LT
119
120/* These identify the driver base version and may not be removed. */
76e239e1 121static const char version[] =
df4511fe 122 "v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker";
1da177e4 123
1da177e4
LT
124MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
125MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
126MODULE_LICENSE("GPL");
127
1da177e4
LT
128module_param(debug, int, 0);
129module_param(rx_copybreak, int, 0);
b933b4d9 130module_param(avoid_D3, bool, 0);
fc3e0f8a 131MODULE_PARM_DESC(debug, "VIA Rhine debug message flags");
1da177e4 132MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
b933b4d9 133MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
1da177e4 134
38f49e88
RL
135#define MCAM_SIZE 32
136#define VCAM_SIZE 32
137
1da177e4
LT
138/*
139 Theory of Operation
140
141I. Board Compatibility
142
143This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
144controller.
145
146II. Board-specific settings
147
148Boards with this chip are functional only in a bus-master PCI slot.
149
150Many operational settings are loaded from the EEPROM to the Config word at
151offset 0x78. For most of these settings, this driver assumes that they are
152correct.
153If this driver is compiled to use PCI memory space operations the EEPROM
154must be configured to enable memory ops.
155
156III. Driver operation
157
158IIIa. Ring buffers
159
160This driver uses two statically allocated fixed-size descriptor lists
161formed into rings by a branch from the final descriptor to the beginning of
162the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
163
164IIIb/c. Transmit/Receive Structure
165
166This driver attempts to use a zero-copy receive and transmit scheme.
167
168Alas, all data buffers are required to start on a 32 bit boundary, so
169the driver must often copy transmit packets into bounce buffers.
170
171The driver allocates full frame size skbuffs for the Rx ring buffers at
172open() time and passes the skb->data field to the chip as receive data
173buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
174a fresh skbuff is allocated and the frame is copied to the new skbuff.
175When the incoming frame is larger, the skbuff is passed directly up the
176protocol stack. Buffers consumed this way are replaced by newly allocated
177skbuffs in the last phase of rhine_rx().
178
179The RX_COPYBREAK value is chosen to trade-off the memory wasted by
180using a full-sized skbuff for small frames vs. the copying costs of larger
181frames. New boards are typically used in generously configured machines
182and the underfilled buffers have negligible impact compared to the benefit of
183a single allocation size, so the default value of zero results in never
184copying packets. When copying is done, the cost is usually mitigated by using
185a combined copy/checksum routine. Copying also preloads the cache, which is
186most useful with small frames.
187
188Since the VIA chips are only able to transfer data to buffers on 32 bit
189boundaries, the IP header at offset 14 in an ethernet frame isn't
190longword aligned for further processing. Copying these unaligned buffers
191has the beneficial effect of 16-byte aligning the IP header.
192
193IIId. Synchronization
194
195The driver runs as two independent, single-threaded flows of control. One
196is the send-packet routine, which enforces single-threaded use by the
b74ca3a8
WC
197netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
198which is single threaded by the hardware and interrupt handling software.
1da177e4
LT
199
200The send packet thread has partial control over the Tx ring. It locks the
b74ca3a8
WC
201netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
202the ring is not available it stops the transmit queue by
203calling netif_stop_queue.
1da177e4
LT
204
205The interrupt handler has exclusive control over the Rx ring and records stats
206from the Tx ring. After reaping the stats, it marks the Tx queue entry as
207empty by incrementing the dirty_tx mark. If at least half of the entries in
208the Rx ring are available the transmit queue is woken up if it was stopped.
209
210IV. Notes
211
212IVb. References
213
214Preliminary VT86C100A manual from http://www.via.com.tw/
215http://www.scyld.com/expert/100mbps.html
216http://www.scyld.com/expert/NWay.html
217ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
218ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
219
220
221IVc. Errata
222
223The VT86C100A manual is not reliable information.
224The 3043 chip does not handle unaligned transmit or receive buffers, resulting
225in significant performance degradation for bounce buffer copies on transmit
226and unaligned IP headers on receive.
227The chip does not pad to minimum transmit length.
228
229*/
230
231
232/* This table drives the PCI probe routines. It's mostly boilerplate in all
233 of the drivers, and will likely be provided by some future kernel.
234 Note the matching code -- the first table entry matchs all 56** cards but
235 second only the 1234 card.
236*/
237
238enum rhine_revs {
239 VT86C100A = 0x00,
240 VTunknown0 = 0x20,
241 VT6102 = 0x40,
242 VT8231 = 0x50, /* Integrated MAC */
243 VT8233 = 0x60, /* Integrated MAC */
244 VT8235 = 0x74, /* Integrated MAC */
245 VT8237 = 0x78, /* Integrated MAC */
246 VTunknown1 = 0x7C,
247 VT6105 = 0x80,
248 VT6105_B0 = 0x83,
249 VT6105L = 0x8A,
250 VT6107 = 0x8C,
251 VTunknown2 = 0x8E,
252 VT6105M = 0x90, /* Management adapter */
253};
254
255enum rhine_quirks {
256 rqWOL = 0x0001, /* Wake-On-LAN support */
257 rqForceReset = 0x0002,
258 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
259 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
260 rqRhineI = 0x0100, /* See comment below */
ca8b6e04
AC
261 rqIntPHY = 0x0200, /* Integrated PHY */
262 rqMgmt = 0x0400, /* Management adapter */
5b579e21
AC
263 rqNeedEnMMIO = 0x0800, /* Whether the core needs to be
264 * switched from PIO mode to MMIO
265 * (only applies to PCI)
266 */
1da177e4
LT
267};
268/*
269 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
270 * MMIO as well as for the collision counter and the Tx FIFO underflow
271 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
272 */
273
274/* Beware of PCI posted writes */
275#define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
276
9baa3c34 277static const struct pci_device_id rhine_pci_tbl[] = {
46009c8b
JG
278 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
279 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
280 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
281 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
1da177e4
LT
282 { } /* terminate list */
283};
284MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
285
2d283862 286/* OpenFirmware identifiers for platform-bus devices
ca8b6e04 287 * The .data field is currently only used to store quirks
2d283862 288 */
ca8b6e04 289static u32 vt8500_quirks = rqWOL | rqForceReset | rq6patterns;
d2b75a3f 290static const struct of_device_id rhine_of_tbl[] = {
ca8b6e04 291 { .compatible = "via,vt8500-rhine", .data = &vt8500_quirks },
2d283862
AC
292 { } /* terminate list */
293};
294MODULE_DEVICE_TABLE(of, rhine_of_tbl);
1da177e4
LT
295
296/* Offsets to the device registers. */
297enum register_offsets {
298 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
38f49e88 299 ChipCmd1=0x09, TQWake=0x0A,
1da177e4
LT
300 IntrStatus=0x0C, IntrEnable=0x0E,
301 MulticastFilter0=0x10, MulticastFilter1=0x14,
302 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
38f49e88 303 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F,
1da177e4
LT
304 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
305 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
306 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
307 StickyHW=0x83, IntrStatus2=0x84,
38f49e88 308 CamMask=0x88, CamCon=0x92, CamAddr=0x93,
1da177e4
LT
309 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
310 WOLcrClr1=0xA6, WOLcgClr=0xA7,
311 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
312};
313
314/* Bits in ConfigD */
315enum backoff_bits {
316 BackOptional=0x01, BackModify=0x02,
317 BackCaptureEffect=0x04, BackRandom=0x08
318};
319
38f49e88
RL
320/* Bits in the TxConfig (TCR) register */
321enum tcr_bits {
322 TCR_PQEN=0x01,
323 TCR_LB0=0x02, /* loopback[0] */
324 TCR_LB1=0x04, /* loopback[1] */
325 TCR_OFSET=0x08,
326 TCR_RTGOPT=0x10,
327 TCR_RTFT0=0x20,
328 TCR_RTFT1=0x40,
329 TCR_RTSF=0x80,
330};
331
332/* Bits in the CamCon (CAMC) register */
333enum camcon_bits {
334 CAMC_CAMEN=0x01,
335 CAMC_VCAMSL=0x02,
336 CAMC_CAMWR=0x04,
337 CAMC_CAMRD=0x08,
338};
339
340/* Bits in the PCIBusConfig1 (BCR1) register */
341enum bcr1_bits {
342 BCR1_POT0=0x01,
343 BCR1_POT1=0x02,
344 BCR1_POT2=0x04,
345 BCR1_CTFT0=0x08,
346 BCR1_CTFT1=0x10,
347 BCR1_CTSF=0x20,
348 BCR1_TXQNOBK=0x40, /* for VT6105 */
349 BCR1_VIDFR=0x80, /* for VT6105 */
350 BCR1_MED0=0x40, /* for VT6102 */
351 BCR1_MED1=0x80, /* for VT6102 */
352};
353
1da177e4
LT
354/* Registers we check that mmio and reg are the same. */
355static const int mmio_verify_registers[] = {
356 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
357 0
358};
1da177e4
LT
359
360/* Bits in the interrupt status/mask registers. */
361enum intr_status_bits {
7ab87ff4
FR
362 IntrRxDone = 0x0001,
363 IntrTxDone = 0x0002,
364 IntrRxErr = 0x0004,
365 IntrTxError = 0x0008,
366 IntrRxEmpty = 0x0020,
367 IntrPCIErr = 0x0040,
368 IntrStatsMax = 0x0080,
369 IntrRxEarly = 0x0100,
370 IntrTxUnderrun = 0x0210,
371 IntrRxOverflow = 0x0400,
372 IntrRxDropped = 0x0800,
373 IntrRxNoBuf = 0x1000,
374 IntrTxAborted = 0x2000,
375 IntrLinkChange = 0x4000,
376 IntrRxWakeUp = 0x8000,
377 IntrTxDescRace = 0x080000, /* mapped from IntrStatus2 */
378 IntrNormalSummary = IntrRxDone | IntrTxDone,
379 IntrTxErrSummary = IntrTxDescRace | IntrTxAborted | IntrTxError |
380 IntrTxUnderrun,
1da177e4
LT
381};
382
383/* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
384enum wol_bits {
385 WOLucast = 0x10,
386 WOLmagic = 0x20,
387 WOLbmcast = 0x30,
388 WOLlnkon = 0x40,
389 WOLlnkoff = 0x80,
390};
391
392/* The Rx and Tx buffer descriptors. */
393struct rx_desc {
53c03f5c
AV
394 __le32 rx_status;
395 __le32 desc_length; /* Chain flag, Buffer/frame length */
396 __le32 addr;
397 __le32 next_desc;
1da177e4
LT
398};
399struct tx_desc {
53c03f5c
AV
400 __le32 tx_status;
401 __le32 desc_length; /* Chain flag, Tx Config, Frame length */
402 __le32 addr;
403 __le32 next_desc;
1da177e4
LT
404};
405
406/* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
407#define TXDESC 0x00e08000
408
409enum rx_status_bits {
410 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
411};
412
413/* Bits in *_desc.*_status */
414enum desc_status_bits {
415 DescOwn=0x80000000
416};
417
38f49e88
RL
418/* Bits in *_desc.*_length */
419enum desc_length_bits {
420 DescTag=0x00010000
421};
422
1da177e4
LT
423/* Bits in ChipCmd. */
424enum chip_cmd_bits {
425 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
426 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
427 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
428 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
429};
430
f7b5d1b9
JG
431struct rhine_stats {
432 u64 packets;
433 u64 bytes;
434 struct u64_stats_sync syncp;
435};
436
1da177e4 437struct rhine_private {
38f49e88
RL
438 /* Bit mask for configured VLAN ids */
439 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
440
1da177e4
LT
441 /* Descriptor rings */
442 struct rx_desc *rx_ring;
443 struct tx_desc *tx_ring;
444 dma_addr_t rx_ring_dma;
445 dma_addr_t tx_ring_dma;
446
447 /* The addresses of receive-in-place skbuffs. */
448 struct sk_buff *rx_skbuff[RX_RING_SIZE];
449 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
450
451 /* The saved address of a sent-in-place packet/buffer, for later free(). */
452 struct sk_buff *tx_skbuff[TX_RING_SIZE];
453 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
454
4be5de25 455 /* Tx bounce buffers (Rhine-I only) */
1da177e4
LT
456 unsigned char *tx_buf[TX_RING_SIZE];
457 unsigned char *tx_bufs;
458 dma_addr_t tx_bufs_dma;
459
f7630d18 460 int irq;
1da177e4 461 long pioaddr;
bea3348e
SH
462 struct net_device *dev;
463 struct napi_struct napi;
1da177e4 464 spinlock_t lock;
7ab87ff4
FR
465 struct mutex task_lock;
466 bool task_enable;
467 struct work_struct slow_event_task;
c0d7a021 468 struct work_struct reset_task;
1da177e4 469
fc3e0f8a
FR
470 u32 msg_enable;
471
1da177e4
LT
472 /* Frequently used values: keep some adjacent for cache effect. */
473 u32 quirks;
8709bb2c 474 unsigned int cur_rx;
1da177e4
LT
475 unsigned int cur_tx, dirty_tx;
476 unsigned int rx_buf_sz; /* Based on MTU+slack. */
f7b5d1b9
JG
477 struct rhine_stats rx_stats;
478 struct rhine_stats tx_stats;
1da177e4
LT
479 u8 wolopts;
480
481 u8 tx_thresh, rx_thresh;
482
483 struct mii_if_info mii_if;
484 void __iomem *base;
485};
486
38f49e88
RL
487#define BYTE_REG_BITS_ON(x, p) do { iowrite8((ioread8((p))|(x)), (p)); } while (0)
488#define WORD_REG_BITS_ON(x, p) do { iowrite16((ioread16((p))|(x)), (p)); } while (0)
489#define DWORD_REG_BITS_ON(x, p) do { iowrite32((ioread32((p))|(x)), (p)); } while (0)
490
491#define BYTE_REG_BITS_IS_ON(x, p) (ioread8((p)) & (x))
492#define WORD_REG_BITS_IS_ON(x, p) (ioread16((p)) & (x))
493#define DWORD_REG_BITS_IS_ON(x, p) (ioread32((p)) & (x))
494
495#define BYTE_REG_BITS_OFF(x, p) do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0)
496#define WORD_REG_BITS_OFF(x, p) do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0)
497#define DWORD_REG_BITS_OFF(x, p) do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0)
498
499#define BYTE_REG_BITS_SET(x, m, p) do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0)
500#define WORD_REG_BITS_SET(x, m, p) do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0)
501#define DWORD_REG_BITS_SET(x, m, p) do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0)
502
503
1da177e4
LT
504static int mdio_read(struct net_device *dev, int phy_id, int location);
505static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
506static int rhine_open(struct net_device *dev);
c0d7a021 507static void rhine_reset_task(struct work_struct *work);
7ab87ff4 508static void rhine_slow_event_task(struct work_struct *work);
1da177e4 509static void rhine_tx_timeout(struct net_device *dev);
61357325
SH
510static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
511 struct net_device *dev);
7d12e780 512static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
1da177e4 513static void rhine_tx(struct net_device *dev);
633949a1 514static int rhine_rx(struct net_device *dev, int limit);
1da177e4 515static void rhine_set_rx_mode(struct net_device *dev);
f7b5d1b9
JG
516static struct rtnl_link_stats64 *rhine_get_stats64(struct net_device *dev,
517 struct rtnl_link_stats64 *stats);
1da177e4 518static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
7282d491 519static const struct ethtool_ops netdev_ethtool_ops;
1da177e4 520static int rhine_close(struct net_device *dev);
80d5c368
PM
521static int rhine_vlan_rx_add_vid(struct net_device *dev,
522 __be16 proto, u16 vid);
523static int rhine_vlan_rx_kill_vid(struct net_device *dev,
524 __be16 proto, u16 vid);
7ab87ff4 525static void rhine_restart_tx(struct net_device *dev);
1da177e4 526
3f8c91a7 527static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool low)
a384a33b
FR
528{
529 void __iomem *ioaddr = rp->base;
530 int i;
531
532 for (i = 0; i < 1024; i++) {
3f8c91a7
AM
533 bool has_mask_bits = !!(ioread8(ioaddr + reg) & mask);
534
535 if (low ^ has_mask_bits)
a384a33b
FR
536 break;
537 udelay(10);
538 }
539 if (i > 64) {
fc3e0f8a 540 netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle "
3f8c91a7 541 "count: %04d\n", low ? "low" : "high", reg, mask, i);
a384a33b
FR
542 }
543}
544
545static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask)
546{
3f8c91a7 547 rhine_wait_bit(rp, reg, mask, false);
a384a33b
FR
548}
549
550static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask)
551{
3f8c91a7 552 rhine_wait_bit(rp, reg, mask, true);
a384a33b 553}
1da177e4 554
a20a28bc 555static u32 rhine_get_events(struct rhine_private *rp)
1da177e4 556{
1da177e4
LT
557 void __iomem *ioaddr = rp->base;
558 u32 intr_status;
559
560 intr_status = ioread16(ioaddr + IntrStatus);
561 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
562 if (rp->quirks & rqStatusWBRace)
563 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
564 return intr_status;
565}
566
a20a28bc
FR
567static void rhine_ack_events(struct rhine_private *rp, u32 mask)
568{
569 void __iomem *ioaddr = rp->base;
570
571 if (rp->quirks & rqStatusWBRace)
572 iowrite8(mask >> 16, ioaddr + IntrStatus2);
573 iowrite16(mask, ioaddr + IntrStatus);
7ab87ff4 574 mmiowb();
a20a28bc
FR
575}
576
1da177e4
LT
577/*
578 * Get power related registers into sane state.
579 * Notify user about past WOL event.
580 */
581static void rhine_power_init(struct net_device *dev)
582{
583 struct rhine_private *rp = netdev_priv(dev);
584 void __iomem *ioaddr = rp->base;
585 u16 wolstat;
586
587 if (rp->quirks & rqWOL) {
588 /* Make sure chip is in power state D0 */
589 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
590
591 /* Disable "force PME-enable" */
592 iowrite8(0x80, ioaddr + WOLcgClr);
593
594 /* Clear power-event config bits (WOL) */
595 iowrite8(0xFF, ioaddr + WOLcrClr);
596 /* More recent cards can manage two additional patterns */
597 if (rp->quirks & rq6patterns)
598 iowrite8(0x03, ioaddr + WOLcrClr1);
599
600 /* Save power-event status bits */
601 wolstat = ioread8(ioaddr + PwrcsrSet);
602 if (rp->quirks & rq6patterns)
603 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
604
605 /* Clear power-event status bits */
606 iowrite8(0xFF, ioaddr + PwrcsrClr);
607 if (rp->quirks & rq6patterns)
608 iowrite8(0x03, ioaddr + PwrcsrClr1);
609
610 if (wolstat) {
611 char *reason;
612 switch (wolstat) {
613 case WOLmagic:
614 reason = "Magic packet";
615 break;
616 case WOLlnkon:
617 reason = "Link went up";
618 break;
619 case WOLlnkoff:
620 reason = "Link went down";
621 break;
622 case WOLucast:
623 reason = "Unicast packet";
624 break;
625 case WOLbmcast:
626 reason = "Multicast/broadcast packet";
627 break;
628 default:
629 reason = "Unknown";
630 }
df4511fe
JP
631 netdev_info(dev, "Woke system up. Reason: %s\n",
632 reason);
1da177e4
LT
633 }
634 }
635}
636
637static void rhine_chip_reset(struct net_device *dev)
638{
639 struct rhine_private *rp = netdev_priv(dev);
640 void __iomem *ioaddr = rp->base;
fc3e0f8a 641 u8 cmd1;
1da177e4
LT
642
643 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
644 IOSYNC;
645
646 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
df4511fe 647 netdev_info(dev, "Reset not complete yet. Trying harder.\n");
1da177e4
LT
648
649 /* Force reset */
650 if (rp->quirks & rqForceReset)
651 iowrite8(0x40, ioaddr + MiscCmd);
652
653 /* Reset can take somewhat longer (rare) */
a384a33b 654 rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset);
1da177e4
LT
655 }
656
fc3e0f8a
FR
657 cmd1 = ioread8(ioaddr + ChipCmd1);
658 netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ?
659 "failed" : "succeeded");
1da177e4
LT
660}
661
1da177e4
LT
662static void enable_mmio(long pioaddr, u32 quirks)
663{
664 int n;
5b579e21
AC
665
666 if (quirks & rqNeedEnMMIO) {
667 if (quirks & rqRhineI) {
668 /* More recent docs say that this bit is reserved */
669 n = inb(pioaddr + ConfigA) | 0x20;
670 outb(n, pioaddr + ConfigA);
671 } else {
672 n = inb(pioaddr + ConfigD) | 0x80;
673 outb(n, pioaddr + ConfigD);
674 }
1da177e4
LT
675 }
676}
5b579e21
AC
677
678static inline int verify_mmio(struct device *hwdev,
679 long pioaddr,
680 void __iomem *ioaddr,
681 u32 quirks)
682{
683 if (quirks & rqNeedEnMMIO) {
684 int i = 0;
685
686 /* Check that selected MMIO registers match the PIO ones */
687 while (mmio_verify_registers[i]) {
688 int reg = mmio_verify_registers[i++];
689 unsigned char a = inb(pioaddr+reg);
690 unsigned char b = readb(ioaddr+reg);
691
692 if (a != b) {
693 dev_err(hwdev,
694 "MMIO do not match PIO [%02x] (%02x != %02x)\n",
695 reg, a, b);
696 return -EIO;
697 }
698 }
699 }
700 return 0;
701}
1da177e4
LT
702
703/*
704 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
705 * (plus 0x6C for Rhine-I/II)
706 */
76e239e1 707static void rhine_reload_eeprom(long pioaddr, struct net_device *dev)
1da177e4
LT
708{
709 struct rhine_private *rp = netdev_priv(dev);
710 void __iomem *ioaddr = rp->base;
a384a33b 711 int i;
1da177e4
LT
712
713 outb(0x20, pioaddr + MACRegEEcsr);
a384a33b
FR
714 for (i = 0; i < 1024; i++) {
715 if (!(inb(pioaddr + MACRegEEcsr) & 0x20))
716 break;
717 }
718 if (i > 512)
719 pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__);
1da177e4 720
1da177e4
LT
721 /*
722 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
723 * MMIO. If reloading EEPROM was done first this could be avoided, but
724 * it is not known if that still works with the "win98-reboot" problem.
725 */
726 enable_mmio(pioaddr, rp->quirks);
1da177e4
LT
727
728 /* Turn off EEPROM-controlled wake-up (magic packet) */
729 if (rp->quirks & rqWOL)
730 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
731
732}
733
734#ifdef CONFIG_NET_POLL_CONTROLLER
735static void rhine_poll(struct net_device *dev)
736{
05d334ec 737 struct rhine_private *rp = netdev_priv(dev);
f7630d18 738 const int irq = rp->irq;
05d334ec
FR
739
740 disable_irq(irq);
741 rhine_interrupt(irq, dev);
742 enable_irq(irq);
1da177e4
LT
743}
744#endif
745
269f3114
FR
746static void rhine_kick_tx_threshold(struct rhine_private *rp)
747{
748 if (rp->tx_thresh < 0xe0) {
749 void __iomem *ioaddr = rp->base;
750
751 rp->tx_thresh += 0x20;
752 BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig);
753 }
754}
755
7ab87ff4
FR
756static void rhine_tx_err(struct rhine_private *rp, u32 status)
757{
758 struct net_device *dev = rp->dev;
759
760 if (status & IntrTxAborted) {
fc3e0f8a
FR
761 netif_info(rp, tx_err, dev,
762 "Abort %08x, frame dropped\n", status);
7ab87ff4
FR
763 }
764
765 if (status & IntrTxUnderrun) {
766 rhine_kick_tx_threshold(rp);
fc3e0f8a
FR
767 netif_info(rp, tx_err ,dev, "Transmitter underrun, "
768 "Tx threshold now %02x\n", rp->tx_thresh);
7ab87ff4
FR
769 }
770
fc3e0f8a
FR
771 if (status & IntrTxDescRace)
772 netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n");
7ab87ff4
FR
773
774 if ((status & IntrTxError) &&
775 (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) {
776 rhine_kick_tx_threshold(rp);
fc3e0f8a
FR
777 netif_info(rp, tx_err, dev, "Unspecified error. "
778 "Tx threshold now %02x\n", rp->tx_thresh);
7ab87ff4
FR
779 }
780
781 rhine_restart_tx(dev);
782}
783
784static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp)
785{
786 void __iomem *ioaddr = rp->base;
787 struct net_device_stats *stats = &rp->dev->stats;
788
789 stats->rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
790 stats->rx_missed_errors += ioread16(ioaddr + RxMissed);
791
792 /*
793 * Clears the "tally counters" for CRC errors and missed frames(?).
794 * It has been reported that some chips need a write of 0 to clear
795 * these, for others the counters are set to 1 when written to and
796 * instead cleared when read. So we clear them both ways ...
797 */
798 iowrite32(0, ioaddr + RxMissed);
799 ioread16(ioaddr + RxCRCErrs);
800 ioread16(ioaddr + RxMissed);
801}
802
803#define RHINE_EVENT_NAPI_RX (IntrRxDone | \
804 IntrRxErr | \
805 IntrRxEmpty | \
806 IntrRxOverflow | \
807 IntrRxDropped | \
808 IntrRxNoBuf | \
809 IntrRxWakeUp)
810
811#define RHINE_EVENT_NAPI_TX_ERR (IntrTxError | \
812 IntrTxAborted | \
813 IntrTxUnderrun | \
814 IntrTxDescRace)
815#define RHINE_EVENT_NAPI_TX (IntrTxDone | RHINE_EVENT_NAPI_TX_ERR)
816
817#define RHINE_EVENT_NAPI (RHINE_EVENT_NAPI_RX | \
818 RHINE_EVENT_NAPI_TX | \
819 IntrStatsMax)
820#define RHINE_EVENT_SLOW (IntrPCIErr | IntrLinkChange)
821#define RHINE_EVENT (RHINE_EVENT_NAPI | RHINE_EVENT_SLOW)
822
bea3348e 823static int rhine_napipoll(struct napi_struct *napi, int budget)
633949a1 824{
bea3348e
SH
825 struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
826 struct net_device *dev = rp->dev;
633949a1 827 void __iomem *ioaddr = rp->base;
7ab87ff4
FR
828 u16 enable_mask = RHINE_EVENT & 0xffff;
829 int work_done = 0;
830 u32 status;
831
832 status = rhine_get_events(rp);
833 rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW);
834
835 if (status & RHINE_EVENT_NAPI_RX)
836 work_done += rhine_rx(dev, budget);
837
838 if (status & RHINE_EVENT_NAPI_TX) {
839 if (status & RHINE_EVENT_NAPI_TX_ERR) {
7ab87ff4 840 /* Avoid scavenging before Tx engine turned off */
a384a33b 841 rhine_wait_bit_low(rp, ChipCmd, CmdTxOn);
fc3e0f8a
FR
842 if (ioread8(ioaddr + ChipCmd) & CmdTxOn)
843 netif_warn(rp, tx_err, dev, "Tx still on\n");
7ab87ff4 844 }
fc3e0f8a 845
7ab87ff4
FR
846 rhine_tx(dev);
847
848 if (status & RHINE_EVENT_NAPI_TX_ERR)
849 rhine_tx_err(rp, status);
850 }
851
852 if (status & IntrStatsMax) {
853 spin_lock(&rp->lock);
854 rhine_update_rx_crc_and_missed_errord(rp);
855 spin_unlock(&rp->lock);
856 }
633949a1 857
7ab87ff4
FR
858 if (status & RHINE_EVENT_SLOW) {
859 enable_mask &= ~RHINE_EVENT_SLOW;
860 schedule_work(&rp->slow_event_task);
861 }
633949a1 862
bea3348e 863 if (work_done < budget) {
288379f0 864 napi_complete(napi);
7ab87ff4
FR
865 iowrite16(enable_mask, ioaddr + IntrEnable);
866 mmiowb();
633949a1 867 }
bea3348e 868 return work_done;
633949a1 869}
633949a1 870
76e239e1 871static void rhine_hw_init(struct net_device *dev, long pioaddr)
1da177e4
LT
872{
873 struct rhine_private *rp = netdev_priv(dev);
874
875 /* Reset the chip to erase previous misconfiguration. */
876 rhine_chip_reset(dev);
877
878 /* Rhine-I needs extra time to recuperate before EEPROM reload */
879 if (rp->quirks & rqRhineI)
880 msleep(5);
881
882 /* Reload EEPROM controlled bytes cleared by soft reset */
2d283862
AC
883 if (dev_is_pci(dev->dev.parent))
884 rhine_reload_eeprom(pioaddr, dev);
1da177e4
LT
885}
886
5d1d07d8
SH
887static const struct net_device_ops rhine_netdev_ops = {
888 .ndo_open = rhine_open,
889 .ndo_stop = rhine_close,
890 .ndo_start_xmit = rhine_start_tx,
f7b5d1b9 891 .ndo_get_stats64 = rhine_get_stats64,
afc4b13d 892 .ndo_set_rx_mode = rhine_set_rx_mode,
635ecaa7 893 .ndo_change_mtu = eth_change_mtu,
5d1d07d8 894 .ndo_validate_addr = eth_validate_addr,
fe96aaa1 895 .ndo_set_mac_address = eth_mac_addr,
5d1d07d8
SH
896 .ndo_do_ioctl = netdev_ioctl,
897 .ndo_tx_timeout = rhine_tx_timeout,
38f49e88
RL
898 .ndo_vlan_rx_add_vid = rhine_vlan_rx_add_vid,
899 .ndo_vlan_rx_kill_vid = rhine_vlan_rx_kill_vid,
5d1d07d8
SH
900#ifdef CONFIG_NET_POLL_CONTROLLER
901 .ndo_poll_controller = rhine_poll,
902#endif
903};
904
ca8b6e04 905static int rhine_init_one_common(struct device *hwdev, u32 quirks,
2d283862 906 long pioaddr, void __iomem *ioaddr, int irq)
1da177e4
LT
907{
908 struct net_device *dev;
909 struct rhine_private *rp;
2d283862 910 int i, rc, phy_id;
1da177e4 911 const char *name;
1da177e4
LT
912
913 /* this should always be supported */
f7630d18 914 rc = dma_set_mask(hwdev, DMA_BIT_MASK(32));
1da177e4 915 if (rc) {
f7630d18 916 dev_err(hwdev, "32-bit DMA addresses not supported by the card!?\n");
2d283862 917 goto err_out;
1da177e4
LT
918 }
919
1da177e4
LT
920 dev = alloc_etherdev(sizeof(struct rhine_private));
921 if (!dev) {
922 rc = -ENOMEM;
2d283862 923 goto err_out;
1da177e4 924 }
f7630d18 925 SET_NETDEV_DEV(dev, hwdev);
1da177e4
LT
926
927 rp = netdev_priv(dev);
bea3348e 928 rp->dev = dev;
ca8b6e04 929 rp->quirks = quirks;
1da177e4 930 rp->pioaddr = pioaddr;
2d283862
AC
931 rp->base = ioaddr;
932 rp->irq = irq;
fc3e0f8a 933 rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT);
1da177e4 934
ca8b6e04 935 phy_id = rp->quirks & rqIntPHY ? 1 : 0;
1da177e4 936
827da44c
JS
937 u64_stats_init(&rp->tx_stats.syncp);
938 u64_stats_init(&rp->rx_stats.syncp);
939
1da177e4
LT
940 /* Get chip registers into a sane state */
941 rhine_power_init(dev);
942 rhine_hw_init(dev, pioaddr);
943
944 for (i = 0; i < 6; i++)
945 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
946
482e3feb
JP
947 if (!is_valid_ether_addr(dev->dev_addr)) {
948 /* Report it and use a random ethernet address instead */
949 netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr);
f2cedb63 950 eth_hw_addr_random(dev);
482e3feb
JP
951 netdev_info(dev, "Using random MAC address: %pM\n",
952 dev->dev_addr);
1da177e4
LT
953 }
954
955 /* For Rhine-I/II, phy_id is loaded from EEPROM */
956 if (!phy_id)
957 phy_id = ioread8(ioaddr + 0x6C);
958
1da177e4 959 spin_lock_init(&rp->lock);
7ab87ff4 960 mutex_init(&rp->task_lock);
c0d7a021 961 INIT_WORK(&rp->reset_task, rhine_reset_task);
7ab87ff4 962 INIT_WORK(&rp->slow_event_task, rhine_slow_event_task);
c0d7a021 963
1da177e4
LT
964 rp->mii_if.dev = dev;
965 rp->mii_if.mdio_read = mdio_read;
966 rp->mii_if.mdio_write = mdio_write;
967 rp->mii_if.phy_id_mask = 0x1f;
968 rp->mii_if.reg_num_mask = 0x1f;
969
970 /* The chip-specific entries in the device structure. */
5d1d07d8 971 dev->netdev_ops = &rhine_netdev_ops;
e76070f2 972 dev->ethtool_ops = &netdev_ethtool_ops;
1da177e4 973 dev->watchdog_timeo = TX_TIMEOUT;
5d1d07d8 974
bea3348e 975 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
32b0f53e 976
1da177e4
LT
977 if (rp->quirks & rqRhineI)
978 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
979
ca8b6e04 980 if (rp->quirks & rqMgmt)
f646968f
PM
981 dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
982 NETIF_F_HW_VLAN_CTAG_RX |
983 NETIF_F_HW_VLAN_CTAG_FILTER;
38f49e88 984
1da177e4
LT
985 /* dev->name not defined before register_netdev()! */
986 rc = register_netdev(dev);
987 if (rc)
2d283862 988 goto err_out_free_netdev;
1da177e4 989
ca8b6e04
AC
990 if (rp->quirks & rqRhineI)
991 name = "Rhine";
992 else if (rp->quirks & rqStatusWBRace)
993 name = "Rhine II";
994 else if (rp->quirks & rqMgmt)
995 name = "Rhine III (Management Adapter)";
996 else
997 name = "Rhine III";
998
df4511fe 999 netdev_info(dev, "VIA %s at 0x%lx, %pM, IRQ %d\n",
2d283862 1000 name, (long)ioaddr, dev->dev_addr, rp->irq);
1da177e4 1001
f7630d18 1002 dev_set_drvdata(hwdev, dev);
1da177e4
LT
1003
1004 {
1005 u16 mii_cmd;
1006 int mii_status = mdio_read(dev, phy_id, 1);
1007 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
1008 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
1009 if (mii_status != 0xffff && mii_status != 0x0000) {
1010 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
df4511fe
JP
1011 netdev_info(dev,
1012 "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n",
1013 phy_id,
1014 mii_status, rp->mii_if.advertising,
1015 mdio_read(dev, phy_id, 5));
1da177e4
LT
1016
1017 /* set IFF_RUNNING */
1018 if (mii_status & BMSR_LSTATUS)
1019 netif_carrier_on(dev);
1020 else
1021 netif_carrier_off(dev);
1022
1023 }
1024 }
1025 rp->mii_if.phy_id = phy_id;
fc3e0f8a
FR
1026 if (avoid_D3)
1027 netif_info(rp, probe, dev, "No D3 power state at shutdown\n");
1da177e4
LT
1028
1029 return 0;
1030
2d283862
AC
1031err_out_free_netdev:
1032 free_netdev(dev);
1033err_out:
1034 return rc;
1035}
1036
1037static int rhine_init_one_pci(struct pci_dev *pdev,
1038 const struct pci_device_id *ent)
1039{
1040 struct device *hwdev = &pdev->dev;
5b579e21 1041 int rc;
2d283862
AC
1042 long pioaddr, memaddr;
1043 void __iomem *ioaddr;
1044 int io_size = pdev->revision < VTunknown0 ? 128 : 256;
5b579e21
AC
1045
1046/* This driver was written to use PCI memory space. Some early versions
1047 * of the Rhine may only work correctly with I/O space accesses.
1048 * TODO: determine for which revisions this is true and assign the flag
1049 * in code as opposed to this Kconfig option (???)
1050 */
1051#ifdef CONFIG_VIA_RHINE_MMIO
1052 u32 quirks = rqNeedEnMMIO;
2d283862 1053#else
5b579e21 1054 u32 quirks = 0;
2d283862
AC
1055#endif
1056
1057/* when built into the kernel, we only print version if device is found */
1058#ifndef MODULE
1059 pr_info_once("%s\n", version);
1060#endif
1061
1062 rc = pci_enable_device(pdev);
1063 if (rc)
1064 goto err_out;
1065
ca8b6e04 1066 if (pdev->revision < VTunknown0) {
5b579e21 1067 quirks |= rqRhineI;
ca8b6e04 1068 } else if (pdev->revision >= VT6102) {
5b579e21 1069 quirks |= rqWOL | rqForceReset;
ca8b6e04
AC
1070 if (pdev->revision < VT6105) {
1071 quirks |= rqStatusWBRace;
1072 } else {
1073 quirks |= rqIntPHY;
1074 if (pdev->revision >= VT6105_B0)
1075 quirks |= rq6patterns;
1076 if (pdev->revision >= VT6105M)
1077 quirks |= rqMgmt;
1078 }
1079 }
1080
2d283862
AC
1081 /* sanity check */
1082 if ((pci_resource_len(pdev, 0) < io_size) ||
1083 (pci_resource_len(pdev, 1) < io_size)) {
1084 rc = -EIO;
1085 dev_err(hwdev, "Insufficient PCI resources, aborting\n");
1086 goto err_out_pci_disable;
1087 }
1088
1089 pioaddr = pci_resource_start(pdev, 0);
1090 memaddr = pci_resource_start(pdev, 1);
1091
1092 pci_set_master(pdev);
1093
1094 rc = pci_request_regions(pdev, DRV_NAME);
1095 if (rc)
1096 goto err_out_pci_disable;
1097
5b579e21 1098 ioaddr = pci_iomap(pdev, (quirks & rqNeedEnMMIO ? 1 : 0), io_size);
2d283862
AC
1099 if (!ioaddr) {
1100 rc = -EIO;
1101 dev_err(hwdev,
1102 "ioremap failed for device %s, region 0x%X @ 0x%lX\n",
1103 dev_name(hwdev), io_size, memaddr);
1104 goto err_out_free_res;
1105 }
1106
2d283862
AC
1107 enable_mmio(pioaddr, quirks);
1108
5b579e21
AC
1109 rc = verify_mmio(hwdev, pioaddr, ioaddr, quirks);
1110 if (rc)
1111 goto err_out_unmap;
2d283862 1112
ca8b6e04 1113 rc = rhine_init_one_common(&pdev->dev, quirks,
2d283862
AC
1114 pioaddr, ioaddr, pdev->irq);
1115 if (!rc)
1116 return 0;
1117
1da177e4
LT
1118err_out_unmap:
1119 pci_iounmap(pdev, ioaddr);
1120err_out_free_res:
1121 pci_release_regions(pdev);
ae996154
RL
1122err_out_pci_disable:
1123 pci_disable_device(pdev);
1da177e4
LT
1124err_out:
1125 return rc;
1126}
1127
2d283862
AC
1128static int rhine_init_one_platform(struct platform_device *pdev)
1129{
1130 const struct of_device_id *match;
ca8b6e04 1131 const u32 *quirks;
2d283862
AC
1132 int irq;
1133 struct resource *res;
1134 void __iomem *ioaddr;
1135
1136 match = of_match_device(rhine_of_tbl, &pdev->dev);
1137 if (!match)
1138 return -EINVAL;
1139
1140 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1141 ioaddr = devm_ioremap_resource(&pdev->dev, res);
1142 if (IS_ERR(ioaddr))
1143 return PTR_ERR(ioaddr);
1144
1145 irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
1146 if (!irq)
1147 return -EINVAL;
1148
ca8b6e04
AC
1149 quirks = match->data;
1150 if (!quirks)
2d283862
AC
1151 return -EINVAL;
1152
ca8b6e04 1153 return rhine_init_one_common(&pdev->dev, *quirks,
2d283862
AC
1154 (long)ioaddr, ioaddr, irq);
1155}
1156
1da177e4
LT
1157static int alloc_ring(struct net_device* dev)
1158{
1159 struct rhine_private *rp = netdev_priv(dev);
f7630d18 1160 struct device *hwdev = dev->dev.parent;
1da177e4
LT
1161 void *ring;
1162 dma_addr_t ring_dma;
1163
f7630d18 1164 ring = dma_alloc_coherent(hwdev,
4087c4dc
AC
1165 RX_RING_SIZE * sizeof(struct rx_desc) +
1166 TX_RING_SIZE * sizeof(struct tx_desc),
1167 &ring_dma,
1168 GFP_ATOMIC);
1da177e4 1169 if (!ring) {
df4511fe 1170 netdev_err(dev, "Could not allocate DMA memory\n");
1da177e4
LT
1171 return -ENOMEM;
1172 }
1173 if (rp->quirks & rqRhineI) {
f7630d18 1174 rp->tx_bufs = dma_alloc_coherent(hwdev,
4087c4dc
AC
1175 PKT_BUF_SZ * TX_RING_SIZE,
1176 &rp->tx_bufs_dma,
1177 GFP_ATOMIC);
1da177e4 1178 if (rp->tx_bufs == NULL) {
f7630d18 1179 dma_free_coherent(hwdev,
4087c4dc
AC
1180 RX_RING_SIZE * sizeof(struct rx_desc) +
1181 TX_RING_SIZE * sizeof(struct tx_desc),
1182 ring, ring_dma);
1da177e4
LT
1183 return -ENOMEM;
1184 }
1185 }
1186
1187 rp->rx_ring = ring;
1188 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
1189 rp->rx_ring_dma = ring_dma;
1190 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
1191
1192 return 0;
1193}
1194
1195static void free_ring(struct net_device* dev)
1196{
1197 struct rhine_private *rp = netdev_priv(dev);
f7630d18 1198 struct device *hwdev = dev->dev.parent;
1da177e4 1199
f7630d18 1200 dma_free_coherent(hwdev,
4087c4dc
AC
1201 RX_RING_SIZE * sizeof(struct rx_desc) +
1202 TX_RING_SIZE * sizeof(struct tx_desc),
1203 rp->rx_ring, rp->rx_ring_dma);
1da177e4
LT
1204 rp->tx_ring = NULL;
1205
1206 if (rp->tx_bufs)
f7630d18 1207 dma_free_coherent(hwdev, PKT_BUF_SZ * TX_RING_SIZE,
4087c4dc 1208 rp->tx_bufs, rp->tx_bufs_dma);
1da177e4
LT
1209
1210 rp->tx_bufs = NULL;
1211
1212}
1213
a21bb8ba 1214struct rhine_skb_dma {
1215 struct sk_buff *skb;
1216 dma_addr_t dma;
1217};
1218
1219static inline int rhine_skb_dma_init(struct net_device *dev,
1220 struct rhine_skb_dma *sd)
1da177e4
LT
1221{
1222 struct rhine_private *rp = netdev_priv(dev);
f7630d18 1223 struct device *hwdev = dev->dev.parent;
a21bb8ba 1224 const int size = rp->rx_buf_sz;
1225
1226 sd->skb = netdev_alloc_skb(dev, size);
1227 if (!sd->skb)
1228 return -ENOMEM;
1229
1230 sd->dma = dma_map_single(hwdev, sd->skb->data, size, DMA_FROM_DEVICE);
1231 if (unlikely(dma_mapping_error(hwdev, sd->dma))) {
1232 netif_err(rp, drv, dev, "Rx DMA mapping failure\n");
1233 dev_kfree_skb_any(sd->skb);
1234 return -EIO;
1235 }
1236
1237 return 0;
1238}
1239
8709bb2c 1240static void rhine_reset_rbufs(struct rhine_private *rp)
1241{
1242 int i;
1243
1244 rp->cur_rx = 0;
8709bb2c 1245
1246 for (i = 0; i < RX_RING_SIZE; i++)
1247 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
1248}
1249
a21bb8ba 1250static inline void rhine_skb_dma_nic_store(struct rhine_private *rp,
1251 struct rhine_skb_dma *sd, int entry)
1252{
1253 rp->rx_skbuff_dma[entry] = sd->dma;
1254 rp->rx_skbuff[entry] = sd->skb;
1255
1256 rp->rx_ring[entry].addr = cpu_to_le32(sd->dma);
1257 dma_wmb();
1258}
1259
8709bb2c 1260static void free_rbufs(struct net_device* dev);
1261
1262static int alloc_rbufs(struct net_device *dev)
a21bb8ba 1263{
1264 struct rhine_private *rp = netdev_priv(dev);
1da177e4 1265 dma_addr_t next;
a21bb8ba 1266 int rc, i;
1da177e4 1267
1da177e4 1268 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1da177e4
LT
1269 next = rp->rx_ring_dma;
1270
1271 /* Init the ring entries */
1272 for (i = 0; i < RX_RING_SIZE; i++) {
1273 rp->rx_ring[i].rx_status = 0;
1274 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
1275 next += sizeof(struct rx_desc);
1276 rp->rx_ring[i].next_desc = cpu_to_le32(next);
1277 rp->rx_skbuff[i] = NULL;
1278 }
1279 /* Mark the last entry as wrapping the ring. */
1280 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
1281
1282 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1283 for (i = 0; i < RX_RING_SIZE; i++) {
a21bb8ba 1284 struct rhine_skb_dma sd;
1da177e4 1285
a21bb8ba 1286 rc = rhine_skb_dma_init(dev, &sd);
8709bb2c 1287 if (rc < 0) {
1288 free_rbufs(dev);
1289 goto out;
1290 }
a21bb8ba 1291
1292 rhine_skb_dma_nic_store(rp, &sd, i);
1da177e4 1293 }
8709bb2c 1294
1295 rhine_reset_rbufs(rp);
1296out:
1297 return rc;
1da177e4
LT
1298}
1299
1300static void free_rbufs(struct net_device* dev)
1301{
1302 struct rhine_private *rp = netdev_priv(dev);
f7630d18 1303 struct device *hwdev = dev->dev.parent;
1da177e4
LT
1304 int i;
1305
1306 /* Free all the skbuffs in the Rx queue. */
1307 for (i = 0; i < RX_RING_SIZE; i++) {
1308 rp->rx_ring[i].rx_status = 0;
1309 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1310 if (rp->rx_skbuff[i]) {
f7630d18 1311 dma_unmap_single(hwdev,
1da177e4 1312 rp->rx_skbuff_dma[i],
4087c4dc 1313 rp->rx_buf_sz, DMA_FROM_DEVICE);
1da177e4
LT
1314 dev_kfree_skb(rp->rx_skbuff[i]);
1315 }
1316 rp->rx_skbuff[i] = NULL;
1317 }
1318}
1319
1320static void alloc_tbufs(struct net_device* dev)
1321{
1322 struct rhine_private *rp = netdev_priv(dev);
1323 dma_addr_t next;
1324 int i;
1325
1326 rp->dirty_tx = rp->cur_tx = 0;
1327 next = rp->tx_ring_dma;
1328 for (i = 0; i < TX_RING_SIZE; i++) {
1329 rp->tx_skbuff[i] = NULL;
1330 rp->tx_ring[i].tx_status = 0;
1331 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1332 next += sizeof(struct tx_desc);
1333 rp->tx_ring[i].next_desc = cpu_to_le32(next);
4be5de25
RL
1334 if (rp->quirks & rqRhineI)
1335 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1da177e4
LT
1336 }
1337 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
1338
92bf2008 1339 netdev_reset_queue(dev);
1da177e4
LT
1340}
1341
1342static void free_tbufs(struct net_device* dev)
1343{
1344 struct rhine_private *rp = netdev_priv(dev);
f7630d18 1345 struct device *hwdev = dev->dev.parent;
1da177e4
LT
1346 int i;
1347
1348 for (i = 0; i < TX_RING_SIZE; i++) {
1349 rp->tx_ring[i].tx_status = 0;
1350 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1351 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1352 if (rp->tx_skbuff[i]) {
1353 if (rp->tx_skbuff_dma[i]) {
f7630d18 1354 dma_unmap_single(hwdev,
1da177e4
LT
1355 rp->tx_skbuff_dma[i],
1356 rp->tx_skbuff[i]->len,
4087c4dc 1357 DMA_TO_DEVICE);
1da177e4
LT
1358 }
1359 dev_kfree_skb(rp->tx_skbuff[i]);
1360 }
1361 rp->tx_skbuff[i] = NULL;
1362 rp->tx_buf[i] = NULL;
1363 }
1364}
1365
1366static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1367{
1368 struct rhine_private *rp = netdev_priv(dev);
1369 void __iomem *ioaddr = rp->base;
1370
5bdc7380
BH
1371 if (!rp->mii_if.force_media)
1372 mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media);
1da177e4
LT
1373
1374 if (rp->mii_if.full_duplex)
1375 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1376 ioaddr + ChipCmd1);
1377 else
1378 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1379 ioaddr + ChipCmd1);
fc3e0f8a
FR
1380
1381 netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1382 rp->mii_if.force_media, netif_carrier_ok(dev));
00b428c2
RL
1383}
1384
1385/* Called after status of force_media possibly changed */
0761be4f 1386static void rhine_set_carrier(struct mii_if_info *mii)
00b428c2 1387{
fc3e0f8a
FR
1388 struct net_device *dev = mii->dev;
1389 struct rhine_private *rp = netdev_priv(dev);
1390
00b428c2
RL
1391 if (mii->force_media) {
1392 /* autoneg is off: Link is always assumed to be up */
fc3e0f8a
FR
1393 if (!netif_carrier_ok(dev))
1394 netif_carrier_on(dev);
17958438
FC
1395 }
1396
1397 rhine_check_media(dev, 0);
fc3e0f8a
FR
1398
1399 netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1400 mii->force_media, netif_carrier_ok(dev));
1da177e4
LT
1401}
1402
38f49e88
RL
1403/**
1404 * rhine_set_cam - set CAM multicast filters
1405 * @ioaddr: register block of this Rhine
1406 * @idx: multicast CAM index [0..MCAM_SIZE-1]
1407 * @addr: multicast address (6 bytes)
1408 *
1409 * Load addresses into multicast filters.
1410 */
1411static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr)
1412{
1413 int i;
1414
1415 iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1416 wmb();
1417
1418 /* Paranoid -- idx out of range should never happen */
1419 idx &= (MCAM_SIZE - 1);
1420
1421 iowrite8((u8) idx, ioaddr + CamAddr);
1422
1423 for (i = 0; i < 6; i++, addr++)
1424 iowrite8(*addr, ioaddr + MulticastFilter0 + i);
1425 udelay(10);
1426 wmb();
1427
1428 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1429 udelay(10);
1430
1431 iowrite8(0, ioaddr + CamCon);
1432}
1433
1434/**
1435 * rhine_set_vlan_cam - set CAM VLAN filters
1436 * @ioaddr: register block of this Rhine
1437 * @idx: VLAN CAM index [0..VCAM_SIZE-1]
1438 * @addr: VLAN ID (2 bytes)
1439 *
1440 * Load addresses into VLAN filters.
1441 */
1442static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr)
1443{
1444 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1445 wmb();
1446
1447 /* Paranoid -- idx out of range should never happen */
1448 idx &= (VCAM_SIZE - 1);
1449
1450 iowrite8((u8) idx, ioaddr + CamAddr);
1451
1452 iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6);
1453 udelay(10);
1454 wmb();
1455
1456 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1457 udelay(10);
1458
1459 iowrite8(0, ioaddr + CamCon);
1460}
1461
1462/**
1463 * rhine_set_cam_mask - set multicast CAM mask
1464 * @ioaddr: register block of this Rhine
1465 * @mask: multicast CAM mask
1466 *
1467 * Mask sets multicast filters active/inactive.
1468 */
1469static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask)
1470{
1471 iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1472 wmb();
1473
1474 /* write mask */
1475 iowrite32(mask, ioaddr + CamMask);
1476
1477 /* disable CAMEN */
1478 iowrite8(0, ioaddr + CamCon);
1479}
1480
1481/**
1482 * rhine_set_vlan_cam_mask - set VLAN CAM mask
1483 * @ioaddr: register block of this Rhine
1484 * @mask: VLAN CAM mask
1485 *
1486 * Mask sets VLAN filters active/inactive.
1487 */
1488static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask)
1489{
1490 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1491 wmb();
1492
1493 /* write mask */
1494 iowrite32(mask, ioaddr + CamMask);
1495
1496 /* disable CAMEN */
1497 iowrite8(0, ioaddr + CamCon);
1498}
1499
1500/**
1501 * rhine_init_cam_filter - initialize CAM filters
1502 * @dev: network device
1503 *
1504 * Initialize (disable) hardware VLAN and multicast support on this
1505 * Rhine.
1506 */
1507static void rhine_init_cam_filter(struct net_device *dev)
1508{
1509 struct rhine_private *rp = netdev_priv(dev);
1510 void __iomem *ioaddr = rp->base;
1511
1512 /* Disable all CAMs */
1513 rhine_set_vlan_cam_mask(ioaddr, 0);
1514 rhine_set_cam_mask(ioaddr, 0);
1515
1516 /* disable hardware VLAN support */
1517 BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig);
1518 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
1519}
1520
1521/**
1522 * rhine_update_vcam - update VLAN CAM filters
1523 * @rp: rhine_private data of this Rhine
1524 *
1525 * Update VLAN CAM filters to match configuration change.
1526 */
1527static void rhine_update_vcam(struct net_device *dev)
1528{
1529 struct rhine_private *rp = netdev_priv(dev);
1530 void __iomem *ioaddr = rp->base;
1531 u16 vid;
1532 u32 vCAMmask = 0; /* 32 vCAMs (6105M and better) */
1533 unsigned int i = 0;
1534
1535 for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) {
1536 rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid);
1537 vCAMmask |= 1 << i;
1538 if (++i >= VCAM_SIZE)
1539 break;
1540 }
1541 rhine_set_vlan_cam_mask(ioaddr, vCAMmask);
1542}
1543
80d5c368 1544static int rhine_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
38f49e88
RL
1545{
1546 struct rhine_private *rp = netdev_priv(dev);
1547
7ab87ff4 1548 spin_lock_bh(&rp->lock);
38f49e88
RL
1549 set_bit(vid, rp->active_vlans);
1550 rhine_update_vcam(dev);
7ab87ff4 1551 spin_unlock_bh(&rp->lock);
8e586137 1552 return 0;
38f49e88
RL
1553}
1554
80d5c368 1555static int rhine_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
38f49e88
RL
1556{
1557 struct rhine_private *rp = netdev_priv(dev);
1558
7ab87ff4 1559 spin_lock_bh(&rp->lock);
38f49e88
RL
1560 clear_bit(vid, rp->active_vlans);
1561 rhine_update_vcam(dev);
7ab87ff4 1562 spin_unlock_bh(&rp->lock);
8e586137 1563 return 0;
38f49e88
RL
1564}
1565
1da177e4
LT
1566static void init_registers(struct net_device *dev)
1567{
1568 struct rhine_private *rp = netdev_priv(dev);
1569 void __iomem *ioaddr = rp->base;
1570 int i;
1571
1572 for (i = 0; i < 6; i++)
1573 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1574
1575 /* Initialize other registers. */
1576 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1577 /* Configure initial FIFO thresholds. */
1578 iowrite8(0x20, ioaddr + TxConfig);
1579 rp->tx_thresh = 0x20;
1580 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1581
1582 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1583 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1584
1585 rhine_set_rx_mode(dev);
1586
ca8b6e04 1587 if (rp->quirks & rqMgmt)
38f49e88
RL
1588 rhine_init_cam_filter(dev);
1589
bea3348e 1590 napi_enable(&rp->napi);
ab197668 1591
7ab87ff4 1592 iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable);
1da177e4
LT
1593
1594 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1595 ioaddr + ChipCmd);
1596 rhine_check_media(dev, 1);
1597}
1598
1599/* Enable MII link status auto-polling (required for IntrLinkChange) */
a384a33b 1600static void rhine_enable_linkmon(struct rhine_private *rp)
1da177e4 1601{
a384a33b
FR
1602 void __iomem *ioaddr = rp->base;
1603
1da177e4
LT
1604 iowrite8(0, ioaddr + MIICmd);
1605 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1606 iowrite8(0x80, ioaddr + MIICmd);
1607
a384a33b 1608 rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1da177e4
LT
1609
1610 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1611}
1612
1613/* Disable MII link status auto-polling (required for MDIO access) */
a384a33b 1614static void rhine_disable_linkmon(struct rhine_private *rp)
1da177e4 1615{
a384a33b
FR
1616 void __iomem *ioaddr = rp->base;
1617
1da177e4
LT
1618 iowrite8(0, ioaddr + MIICmd);
1619
a384a33b 1620 if (rp->quirks & rqRhineI) {
1da177e4
LT
1621 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1622
38bb6b28
JL
1623 /* Can be called from ISR. Evil. */
1624 mdelay(1);
1da177e4
LT
1625
1626 /* 0x80 must be set immediately before turning it off */
1627 iowrite8(0x80, ioaddr + MIICmd);
1628
a384a33b 1629 rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1da177e4
LT
1630
1631 /* Heh. Now clear 0x80 again. */
1632 iowrite8(0, ioaddr + MIICmd);
1633 }
1634 else
a384a33b 1635 rhine_wait_bit_high(rp, MIIRegAddr, 0x80);
1da177e4
LT
1636}
1637
1638/* Read and write over the MII Management Data I/O (MDIO) interface. */
1639
1640static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1641{
1642 struct rhine_private *rp = netdev_priv(dev);
1643 void __iomem *ioaddr = rp->base;
1644 int result;
1645
a384a33b 1646 rhine_disable_linkmon(rp);
1da177e4
LT
1647
1648 /* rhine_disable_linkmon already cleared MIICmd */
1649 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1650 iowrite8(regnum, ioaddr + MIIRegAddr);
1651 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
a384a33b 1652 rhine_wait_bit_low(rp, MIICmd, 0x40);
1da177e4
LT
1653 result = ioread16(ioaddr + MIIData);
1654
a384a33b 1655 rhine_enable_linkmon(rp);
1da177e4
LT
1656 return result;
1657}
1658
1659static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1660{
1661 struct rhine_private *rp = netdev_priv(dev);
1662 void __iomem *ioaddr = rp->base;
1663
a384a33b 1664 rhine_disable_linkmon(rp);
1da177e4
LT
1665
1666 /* rhine_disable_linkmon already cleared MIICmd */
1667 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1668 iowrite8(regnum, ioaddr + MIIRegAddr);
1669 iowrite16(value, ioaddr + MIIData);
1670 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
a384a33b 1671 rhine_wait_bit_low(rp, MIICmd, 0x20);
1da177e4 1672
a384a33b 1673 rhine_enable_linkmon(rp);
1da177e4
LT
1674}
1675
7ab87ff4
FR
1676static void rhine_task_disable(struct rhine_private *rp)
1677{
1678 mutex_lock(&rp->task_lock);
1679 rp->task_enable = false;
1680 mutex_unlock(&rp->task_lock);
1681
1682 cancel_work_sync(&rp->slow_event_task);
1683 cancel_work_sync(&rp->reset_task);
1684}
1685
1686static void rhine_task_enable(struct rhine_private *rp)
1687{
1688 mutex_lock(&rp->task_lock);
1689 rp->task_enable = true;
1690 mutex_unlock(&rp->task_lock);
1691}
1692
1da177e4
LT
1693static int rhine_open(struct net_device *dev)
1694{
1695 struct rhine_private *rp = netdev_priv(dev);
1696 void __iomem *ioaddr = rp->base;
1697 int rc;
1698
f7630d18 1699 rc = request_irq(rp->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev);
1da177e4 1700 if (rc)
4d1fd9c1 1701 goto out;
1da177e4 1702
f7630d18 1703 netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->irq);
1da177e4
LT
1704
1705 rc = alloc_ring(dev);
4d1fd9c1 1706 if (rc < 0)
1707 goto out_free_irq;
1708
8709bb2c 1709 rc = alloc_rbufs(dev);
1710 if (rc < 0)
1711 goto out_free_ring;
1712
1da177e4
LT
1713 alloc_tbufs(dev);
1714 rhine_chip_reset(dev);
7ab87ff4 1715 rhine_task_enable(rp);
1da177e4 1716 init_registers(dev);
fc3e0f8a
FR
1717
1718 netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n",
1719 __func__, ioread16(ioaddr + ChipCmd),
1720 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1da177e4
LT
1721
1722 netif_start_queue(dev);
1723
4d1fd9c1 1724out:
1725 return rc;
1726
8709bb2c 1727out_free_ring:
1728 free_ring(dev);
4d1fd9c1 1729out_free_irq:
1730 free_irq(rp->irq, dev);
1731 goto out;
1da177e4
LT
1732}
1733
c0d7a021 1734static void rhine_reset_task(struct work_struct *work)
1da177e4 1735{
c0d7a021
JP
1736 struct rhine_private *rp = container_of(work, struct rhine_private,
1737 reset_task);
1738 struct net_device *dev = rp->dev;
1da177e4 1739
7ab87ff4 1740 mutex_lock(&rp->task_lock);
1da177e4 1741
7ab87ff4
FR
1742 if (!rp->task_enable)
1743 goto out_unlock;
bea3348e 1744
7ab87ff4 1745 napi_disable(&rp->napi);
a926592f 1746 netif_tx_disable(dev);
c0d7a021 1747 spin_lock_bh(&rp->lock);
1da177e4
LT
1748
1749 /* clear all descriptors */
1750 free_tbufs(dev);
1da177e4 1751 alloc_tbufs(dev);
8709bb2c 1752
1753 rhine_reset_rbufs(rp);
1da177e4
LT
1754
1755 /* Reinitialize the hardware. */
1756 rhine_chip_reset(dev);
1757 init_registers(dev);
1758
c0d7a021 1759 spin_unlock_bh(&rp->lock);
1da177e4 1760
860e9538 1761 netif_trans_update(dev); /* prevent tx timeout */
553e2335 1762 dev->stats.tx_errors++;
1da177e4 1763 netif_wake_queue(dev);
7ab87ff4
FR
1764
1765out_unlock:
1766 mutex_unlock(&rp->task_lock);
1da177e4
LT
1767}
1768
c0d7a021
JP
1769static void rhine_tx_timeout(struct net_device *dev)
1770{
1771 struct rhine_private *rp = netdev_priv(dev);
1772 void __iomem *ioaddr = rp->base;
1773
df4511fe
JP
1774 netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n",
1775 ioread16(ioaddr + IntrStatus),
1776 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
c0d7a021
JP
1777
1778 schedule_work(&rp->reset_task);
1779}
1780
3a5a883a 1781static inline bool rhine_tx_queue_full(struct rhine_private *rp)
1782{
1783 return (rp->cur_tx - rp->dirty_tx) >= TX_QUEUE_LEN;
1784}
1785
61357325
SH
1786static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
1787 struct net_device *dev)
1da177e4
LT
1788{
1789 struct rhine_private *rp = netdev_priv(dev);
f7630d18 1790 struct device *hwdev = dev->dev.parent;
1da177e4
LT
1791 void __iomem *ioaddr = rp->base;
1792 unsigned entry;
1793
1794 /* Caution: the write order is important here, set the field
1795 with the "ownership" bits last. */
1796
1797 /* Calculate the next Tx descriptor entry. */
1798 entry = rp->cur_tx % TX_RING_SIZE;
1799
5b057c6b 1800 if (skb_padto(skb, ETH_ZLEN))
6ed10654 1801 return NETDEV_TX_OK;
1da177e4
LT
1802
1803 rp->tx_skbuff[entry] = skb;
1804
1805 if ((rp->quirks & rqRhineI) &&
84fa7933 1806 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1da177e4
LT
1807 /* Must use alignment buffer. */
1808 if (skb->len > PKT_BUF_SZ) {
1809 /* packet too long, drop it */
4b3afc6e 1810 dev_kfree_skb_any(skb);
1da177e4 1811 rp->tx_skbuff[entry] = NULL;
553e2335 1812 dev->stats.tx_dropped++;
6ed10654 1813 return NETDEV_TX_OK;
1da177e4 1814 }
3e0d167a
CB
1815
1816 /* Padding is not copied and so must be redone. */
1da177e4 1817 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
3e0d167a
CB
1818 if (skb->len < ETH_ZLEN)
1819 memset(rp->tx_buf[entry] + skb->len, 0,
1820 ETH_ZLEN - skb->len);
1da177e4
LT
1821 rp->tx_skbuff_dma[entry] = 0;
1822 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1823 (rp->tx_buf[entry] -
1824 rp->tx_bufs));
1825 } else {
1826 rp->tx_skbuff_dma[entry] =
f7630d18 1827 dma_map_single(hwdev, skb->data, skb->len,
4087c4dc 1828 DMA_TO_DEVICE);
f7630d18 1829 if (dma_mapping_error(hwdev, rp->tx_skbuff_dma[entry])) {
4b3afc6e 1830 dev_kfree_skb_any(skb);
9b4fe5fb
NH
1831 rp->tx_skbuff_dma[entry] = 0;
1832 dev->stats.tx_dropped++;
1833 return NETDEV_TX_OK;
1834 }
1da177e4
LT
1835 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1836 }
1837
1838 rp->tx_ring[entry].desc_length =
1839 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1840
df8a39de
JP
1841 if (unlikely(skb_vlan_tag_present(skb))) {
1842 u16 vid_pcp = skb_vlan_tag_get(skb);
207070f5
RL
1843
1844 /* drop CFI/DEI bit, register needs VID and PCP */
1845 vid_pcp = (vid_pcp & VLAN_VID_MASK) |
1846 ((vid_pcp & VLAN_PRIO_MASK) >> 1);
1847 rp->tx_ring[entry].tx_status = cpu_to_le32((vid_pcp) << 16);
38f49e88
RL
1848 /* request tagging */
1849 rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000);
1850 }
1851 else
1852 rp->tx_ring[entry].tx_status = 0;
1853
92bf2008 1854 netdev_sent_queue(dev, skb->len);
1da177e4 1855 /* lock eth irq */
e1efa872 1856 dma_wmb();
38f49e88 1857 rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn);
1da177e4
LT
1858 wmb();
1859
1860 rp->cur_tx++;
3a5a883a 1861 /*
1862 * Nobody wants cur_tx write to rot for ages after the NIC will have
1863 * seen the transmit request, especially as the transmit completion
1864 * handler could miss it.
1865 */
1866 smp_wmb();
1da177e4
LT
1867
1868 /* Non-x86 Todo: explicitly flush cache lines here. */
1869
df8a39de 1870 if (skb_vlan_tag_present(skb))
38f49e88
RL
1871 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1872 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1873
1da177e4
LT
1874 /* Wake the potentially-idle transmit channel */
1875 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1876 ioaddr + ChipCmd1);
1877 IOSYNC;
1878
3a5a883a 1879 /* dirty_tx may be pessimistically out-of-sync. See rhine_tx. */
1880 if (rhine_tx_queue_full(rp)) {
1da177e4 1881 netif_stop_queue(dev);
3a5a883a 1882 smp_rmb();
1883 /* Rejuvenate. */
1884 if (!rhine_tx_queue_full(rp))
1885 netif_wake_queue(dev);
1886 }
1da177e4 1887
fc3e0f8a
FR
1888 netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n",
1889 rp->cur_tx - 1, entry);
1890
6ed10654 1891 return NETDEV_TX_OK;
1da177e4
LT
1892}
1893
7ab87ff4
FR
1894static void rhine_irq_disable(struct rhine_private *rp)
1895{
1896 iowrite16(0x0000, rp->base + IntrEnable);
1897 mmiowb();
1898}
1899
1da177e4
LT
1900/* The interrupt handler does all of the Rx thread work and cleans up
1901 after the Tx thread. */
7d12e780 1902static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1da177e4
LT
1903{
1904 struct net_device *dev = dev_instance;
1905 struct rhine_private *rp = netdev_priv(dev);
7ab87ff4 1906 u32 status;
1da177e4
LT
1907 int handled = 0;
1908
7ab87ff4 1909 status = rhine_get_events(rp);
1da177e4 1910
fc3e0f8a 1911 netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status);
633949a1 1912
7ab87ff4
FR
1913 if (status & RHINE_EVENT) {
1914 handled = 1;
1da177e4 1915
7ab87ff4
FR
1916 rhine_irq_disable(rp);
1917 napi_schedule(&rp->napi);
1918 }
1da177e4 1919
7ab87ff4 1920 if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) {
fc3e0f8a
FR
1921 netif_err(rp, intr, dev, "Something Wicked happened! %08x\n",
1922 status);
1da177e4
LT
1923 }
1924
1da177e4
LT
1925 return IRQ_RETVAL(handled);
1926}
1927
1928/* This routine is logically part of the interrupt handler, but isolated
1929 for clarity. */
1930static void rhine_tx(struct net_device *dev)
1931{
1932 struct rhine_private *rp = netdev_priv(dev);
f7630d18 1933 struct device *hwdev = dev->dev.parent;
92bf2008 1934 unsigned int pkts_compl = 0, bytes_compl = 0;
3a5a883a 1935 unsigned int dirty_tx = rp->dirty_tx;
1936 unsigned int cur_tx;
92bf2008 1937 struct sk_buff *skb;
1da177e4 1938
3a5a883a 1939 /*
1940 * The race with rhine_start_tx does not matter here as long as the
1941 * driver enforces a value of cur_tx that was relevant when the
1942 * packet was scheduled to the network chipset.
1943 * Executive summary: smp_rmb() balances smp_wmb() in rhine_start_tx.
1944 */
1945 smp_rmb();
1946 cur_tx = rp->cur_tx;
1da177e4 1947 /* find and cleanup dirty tx descriptors */
3a5a883a 1948 while (dirty_tx != cur_tx) {
1949 unsigned int entry = dirty_tx % TX_RING_SIZE;
1950 u32 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1951
fc3e0f8a
FR
1952 netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n",
1953 entry, txstatus);
1da177e4
LT
1954 if (txstatus & DescOwn)
1955 break;
92bf2008 1956 skb = rp->tx_skbuff[entry];
1da177e4 1957 if (txstatus & 0x8000) {
fc3e0f8a
FR
1958 netif_dbg(rp, tx_done, dev,
1959 "Transmit error, Tx status %08x\n", txstatus);
553e2335
ED
1960 dev->stats.tx_errors++;
1961 if (txstatus & 0x0400)
1962 dev->stats.tx_carrier_errors++;
1963 if (txstatus & 0x0200)
1964 dev->stats.tx_window_errors++;
1965 if (txstatus & 0x0100)
1966 dev->stats.tx_aborted_errors++;
1967 if (txstatus & 0x0080)
1968 dev->stats.tx_heartbeat_errors++;
1da177e4
LT
1969 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1970 (txstatus & 0x0800) || (txstatus & 0x1000)) {
553e2335 1971 dev->stats.tx_fifo_errors++;
1da177e4
LT
1972 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1973 break; /* Keep the skb - we try again */
1974 }
1975 /* Transmitter restarted in 'abnormal' handler. */
1976 } else {
1977 if (rp->quirks & rqRhineI)
553e2335 1978 dev->stats.collisions += (txstatus >> 3) & 0x0F;
1da177e4 1979 else
553e2335 1980 dev->stats.collisions += txstatus & 0x0F;
fc3e0f8a
FR
1981 netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n",
1982 (txstatus >> 3) & 0xF, txstatus & 0xF);
f7b5d1b9
JG
1983
1984 u64_stats_update_begin(&rp->tx_stats.syncp);
92bf2008 1985 rp->tx_stats.bytes += skb->len;
f7b5d1b9
JG
1986 rp->tx_stats.packets++;
1987 u64_stats_update_end(&rp->tx_stats.syncp);
1da177e4
LT
1988 }
1989 /* Free the original skb. */
1990 if (rp->tx_skbuff_dma[entry]) {
f7630d18 1991 dma_unmap_single(hwdev,
1da177e4 1992 rp->tx_skbuff_dma[entry],
92bf2008 1993 skb->len,
4087c4dc 1994 DMA_TO_DEVICE);
1da177e4 1995 }
92bf2008
TR
1996 bytes_compl += skb->len;
1997 pkts_compl++;
1998 dev_consume_skb_any(skb);
1da177e4 1999 rp->tx_skbuff[entry] = NULL;
3a5a883a 2000 dirty_tx++;
1da177e4 2001 }
92bf2008 2002
3a5a883a 2003 rp->dirty_tx = dirty_tx;
2004 /* Pity we can't rely on the nearby BQL completion implicit barrier. */
2005 smp_wmb();
2006
92bf2008 2007 netdev_completed_queue(dev, pkts_compl, bytes_compl);
3a5a883a 2008
2009 /* cur_tx may be optimistically out-of-sync. See rhine_start_tx. */
2010 if (!rhine_tx_queue_full(rp) && netif_queue_stopped(dev)) {
1da177e4 2011 netif_wake_queue(dev);
3a5a883a 2012 smp_rmb();
2013 /* Rejuvenate. */
2014 if (rhine_tx_queue_full(rp))
2015 netif_stop_queue(dev);
2016 }
1da177e4
LT
2017}
2018
38f49e88
RL
2019/**
2020 * rhine_get_vlan_tci - extract TCI from Rx data buffer
2021 * @skb: pointer to sk_buff
2022 * @data_size: used data area of the buffer including CRC
2023 *
2024 * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q
2025 * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte
2026 * aligned following the CRC.
2027 */
2028static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size)
2029{
2030 u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2;
4562b2fe 2031 return be16_to_cpup((__be16 *)trailer);
38f49e88
RL
2032}
2033
810f19bc 2034static inline void rhine_rx_vlan_tag(struct sk_buff *skb, struct rx_desc *desc,
2035 int data_size)
2036{
2037 dma_rmb();
2038 if (unlikely(desc->desc_length & cpu_to_le32(DescTag))) {
2039 u16 vlan_tci;
2040
2041 vlan_tci = rhine_get_vlan_tci(skb, data_size);
2042 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
2043 }
2044}
2045
633949a1
RL
2046/* Process up to limit frames from receive ring */
2047static int rhine_rx(struct net_device *dev, int limit)
1da177e4
LT
2048{
2049 struct rhine_private *rp = netdev_priv(dev);
f7630d18 2050 struct device *hwdev = dev->dev.parent;
1da177e4 2051 int entry = rp->cur_rx % RX_RING_SIZE;
62ca1ba0 2052 int count;
1da177e4 2053
fc3e0f8a 2054 netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__,
62ca1ba0 2055 entry, le32_to_cpu(rp->rx_ring[entry].rx_status));
1da177e4
LT
2056
2057 /* If EOP is set on the next entry, it's a new packet. Send it up. */
633949a1 2058 for (count = 0; count < limit; ++count) {
62ca1ba0 2059 struct rx_desc *desc = rp->rx_ring + entry;
1da177e4
LT
2060 u32 desc_status = le32_to_cpu(desc->rx_status);
2061 int data_size = desc_status >> 16;
2062
633949a1
RL
2063 if (desc_status & DescOwn)
2064 break;
2065
fc3e0f8a
FR
2066 netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__,
2067 desc_status);
633949a1 2068
1da177e4
LT
2069 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
2070 if ((desc_status & RxWholePkt) != RxWholePkt) {
df4511fe
JP
2071 netdev_warn(dev,
2072 "Oversized Ethernet frame spanned multiple buffers, "
2073 "entry %#x length %d status %08x!\n",
2074 entry, data_size,
2075 desc_status);
553e2335 2076 dev->stats.rx_length_errors++;
1da177e4
LT
2077 } else if (desc_status & RxErr) {
2078 /* There was a error. */
fc3e0f8a
FR
2079 netif_dbg(rp, rx_err, dev,
2080 "%s() Rx error %08x\n", __func__,
2081 desc_status);
553e2335
ED
2082 dev->stats.rx_errors++;
2083 if (desc_status & 0x0030)
2084 dev->stats.rx_length_errors++;
2085 if (desc_status & 0x0048)
2086 dev->stats.rx_fifo_errors++;
2087 if (desc_status & 0x0004)
2088 dev->stats.rx_frame_errors++;
1da177e4
LT
2089 if (desc_status & 0x0002) {
2090 /* this can also be updated outside the interrupt handler */
2091 spin_lock(&rp->lock);
553e2335 2092 dev->stats.rx_crc_errors++;
1da177e4
LT
2093 spin_unlock(&rp->lock);
2094 }
2095 }
2096 } else {
1da177e4
LT
2097 /* Length should omit the CRC */
2098 int pkt_len = data_size - 4;
8709bb2c 2099 struct sk_buff *skb;
1da177e4
LT
2100
2101 /* Check if the packet is long enough to accept without
2102 copying to a minimally-sized skbuff. */
8709bb2c 2103 if (pkt_len < rx_copybreak) {
89d71a66 2104 skb = netdev_alloc_skb_ip_align(dev, pkt_len);
8709bb2c 2105 if (unlikely(!skb))
2106 goto drop;
2107
f7630d18 2108 dma_sync_single_for_cpu(hwdev,
4087c4dc
AC
2109 rp->rx_skbuff_dma[entry],
2110 rp->rx_buf_sz,
2111 DMA_FROM_DEVICE);
1da177e4 2112
8c7b7faa 2113 skb_copy_to_linear_data(skb,
689be439 2114 rp->rx_skbuff[entry]->data,
8c7b7faa 2115 pkt_len);
8709bb2c 2116
f7630d18 2117 dma_sync_single_for_device(hwdev,
4087c4dc
AC
2118 rp->rx_skbuff_dma[entry],
2119 rp->rx_buf_sz,
2120 DMA_FROM_DEVICE);
1da177e4 2121 } else {
8709bb2c 2122 struct rhine_skb_dma sd;
2123
2124 if (unlikely(rhine_skb_dma_init(dev, &sd) < 0))
2125 goto drop;
2126
1da177e4 2127 skb = rp->rx_skbuff[entry];
8709bb2c 2128
f7630d18 2129 dma_unmap_single(hwdev,
1da177e4
LT
2130 rp->rx_skbuff_dma[entry],
2131 rp->rx_buf_sz,
4087c4dc 2132 DMA_FROM_DEVICE);
8709bb2c 2133 rhine_skb_dma_nic_store(rp, &sd, entry);
1da177e4 2134 }
38f49e88 2135
8709bb2c 2136 skb_put(skb, pkt_len);
38f49e88 2137
810f19bc 2138 rhine_rx_vlan_tag(skb, desc, data_size);
2139
5f715c09
AO
2140 skb->protocol = eth_type_trans(skb, dev);
2141
633949a1 2142 netif_receive_skb(skb);
f7b5d1b9
JG
2143
2144 u64_stats_update_begin(&rp->rx_stats.syncp);
2145 rp->rx_stats.bytes += pkt_len;
2146 rp->rx_stats.packets++;
2147 u64_stats_update_end(&rp->rx_stats.syncp);
1da177e4 2148 }
8709bb2c 2149give_descriptor_to_nic:
2150 desc->rx_status = cpu_to_le32(DescOwn);
1da177e4 2151 entry = (++rp->cur_rx) % RX_RING_SIZE;
1da177e4
LT
2152 }
2153
633949a1 2154 return count;
8709bb2c 2155
2156drop:
2157 dev->stats.rx_dropped++;
2158 goto give_descriptor_to_nic;
1da177e4
LT
2159}
2160
1da177e4
LT
2161static void rhine_restart_tx(struct net_device *dev) {
2162 struct rhine_private *rp = netdev_priv(dev);
2163 void __iomem *ioaddr = rp->base;
2164 int entry = rp->dirty_tx % TX_RING_SIZE;
2165 u32 intr_status;
2166
2167 /*
25985edc 2168 * If new errors occurred, we need to sort them out before doing Tx.
1da177e4
LT
2169 * In that case the ISR will be back here RSN anyway.
2170 */
a20a28bc 2171 intr_status = rhine_get_events(rp);
1da177e4
LT
2172
2173 if ((intr_status & IntrTxErrSummary) == 0) {
2174
2175 /* We know better than the chip where it should continue. */
2176 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
2177 ioaddr + TxRingPtr);
2178
2179 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
2180 ioaddr + ChipCmd);
38f49e88
RL
2181
2182 if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000))
2183 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */
2184 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
2185
1da177e4
LT
2186 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
2187 ioaddr + ChipCmd1);
2188 IOSYNC;
2189 }
2190 else {
2191 /* This should never happen */
fc3e0f8a
FR
2192 netif_warn(rp, tx_err, dev, "another error occurred %08x\n",
2193 intr_status);
1da177e4
LT
2194 }
2195
2196}
2197
7ab87ff4 2198static void rhine_slow_event_task(struct work_struct *work)
1da177e4 2199{
7ab87ff4
FR
2200 struct rhine_private *rp =
2201 container_of(work, struct rhine_private, slow_event_task);
2202 struct net_device *dev = rp->dev;
2203 u32 intr_status;
1da177e4 2204
7ab87ff4
FR
2205 mutex_lock(&rp->task_lock);
2206
2207 if (!rp->task_enable)
2208 goto out_unlock;
2209
2210 intr_status = rhine_get_events(rp);
2211 rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW);
1da177e4
LT
2212
2213 if (intr_status & IntrLinkChange)
38bb6b28 2214 rhine_check_media(dev, 0);
1da177e4 2215
fc3e0f8a
FR
2216 if (intr_status & IntrPCIErr)
2217 netif_warn(rp, hw, dev, "PCI error\n");
2218
559bcac3 2219 iowrite16(RHINE_EVENT & 0xffff, rp->base + IntrEnable);
1da177e4 2220
7ab87ff4
FR
2221out_unlock:
2222 mutex_unlock(&rp->task_lock);
1da177e4
LT
2223}
2224
f7b5d1b9
JG
2225static struct rtnl_link_stats64 *
2226rhine_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
1da177e4
LT
2227{
2228 struct rhine_private *rp = netdev_priv(dev);
f7b5d1b9 2229 unsigned int start;
1da177e4 2230
7ab87ff4
FR
2231 spin_lock_bh(&rp->lock);
2232 rhine_update_rx_crc_and_missed_errord(rp);
2233 spin_unlock_bh(&rp->lock);
1da177e4 2234
f7b5d1b9
JG
2235 netdev_stats_to_stats64(stats, &dev->stats);
2236
2237 do {
57a7744e 2238 start = u64_stats_fetch_begin_irq(&rp->rx_stats.syncp);
f7b5d1b9
JG
2239 stats->rx_packets = rp->rx_stats.packets;
2240 stats->rx_bytes = rp->rx_stats.bytes;
57a7744e 2241 } while (u64_stats_fetch_retry_irq(&rp->rx_stats.syncp, start));
f7b5d1b9
JG
2242
2243 do {
57a7744e 2244 start = u64_stats_fetch_begin_irq(&rp->tx_stats.syncp);
f7b5d1b9
JG
2245 stats->tx_packets = rp->tx_stats.packets;
2246 stats->tx_bytes = rp->tx_stats.bytes;
57a7744e 2247 } while (u64_stats_fetch_retry_irq(&rp->tx_stats.syncp, start));
f7b5d1b9
JG
2248
2249 return stats;
1da177e4
LT
2250}
2251
2252static void rhine_set_rx_mode(struct net_device *dev)
2253{
2254 struct rhine_private *rp = netdev_priv(dev);
2255 void __iomem *ioaddr = rp->base;
2256 u32 mc_filter[2]; /* Multicast hash filter */
38f49e88
RL
2257 u8 rx_mode = 0x0C; /* Note: 0x02=accept runt, 0x01=accept errs */
2258 struct netdev_hw_addr *ha;
1da177e4
LT
2259
2260 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1da177e4
LT
2261 rx_mode = 0x1C;
2262 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2263 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
4cd24eaf 2264 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
8e95a202 2265 (dev->flags & IFF_ALLMULTI)) {
1da177e4
LT
2266 /* Too many to match, or accept all multicasts. */
2267 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2268 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
ca8b6e04 2269 } else if (rp->quirks & rqMgmt) {
38f49e88
RL
2270 int i = 0;
2271 u32 mCAMmask = 0; /* 32 mCAMs (6105M and better) */
2272 netdev_for_each_mc_addr(ha, dev) {
2273 if (i == MCAM_SIZE)
2274 break;
2275 rhine_set_cam(ioaddr, i, ha->addr);
2276 mCAMmask |= 1 << i;
2277 i++;
2278 }
2279 rhine_set_cam_mask(ioaddr, mCAMmask);
1da177e4 2280 } else {
1da177e4 2281 memset(mc_filter, 0, sizeof(mc_filter));
22bedad3
JP
2282 netdev_for_each_mc_addr(ha, dev) {
2283 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
1da177e4
LT
2284
2285 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
2286 }
2287 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
2288 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1da177e4 2289 }
38f49e88 2290 /* enable/disable VLAN receive filtering */
ca8b6e04 2291 if (rp->quirks & rqMgmt) {
38f49e88
RL
2292 if (dev->flags & IFF_PROMISC)
2293 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2294 else
2295 BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2296 }
2297 BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig);
1da177e4
LT
2298}
2299
2300static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2301{
f7630d18 2302 struct device *hwdev = dev->dev.parent;
1da177e4 2303
23020ab3
RJ
2304 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2305 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
f7630d18 2306 strlcpy(info->bus_info, dev_name(hwdev), sizeof(info->bus_info));
1da177e4
LT
2307}
2308
2309static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2310{
2311 struct rhine_private *rp = netdev_priv(dev);
2312 int rc;
2313
7ab87ff4 2314 mutex_lock(&rp->task_lock);
1da177e4 2315 rc = mii_ethtool_gset(&rp->mii_if, cmd);
7ab87ff4 2316 mutex_unlock(&rp->task_lock);
1da177e4
LT
2317
2318 return rc;
2319}
2320
2321static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2322{
2323 struct rhine_private *rp = netdev_priv(dev);
2324 int rc;
2325
7ab87ff4 2326 mutex_lock(&rp->task_lock);
1da177e4 2327 rc = mii_ethtool_sset(&rp->mii_if, cmd);
00b428c2 2328 rhine_set_carrier(&rp->mii_if);
7ab87ff4 2329 mutex_unlock(&rp->task_lock);
1da177e4
LT
2330
2331 return rc;
2332}
2333
2334static int netdev_nway_reset(struct net_device *dev)
2335{
2336 struct rhine_private *rp = netdev_priv(dev);
2337
2338 return mii_nway_restart(&rp->mii_if);
2339}
2340
2341static u32 netdev_get_link(struct net_device *dev)
2342{
2343 struct rhine_private *rp = netdev_priv(dev);
2344
2345 return mii_link_ok(&rp->mii_if);
2346}
2347
2348static u32 netdev_get_msglevel(struct net_device *dev)
2349{
fc3e0f8a
FR
2350 struct rhine_private *rp = netdev_priv(dev);
2351
2352 return rp->msg_enable;
1da177e4
LT
2353}
2354
2355static void netdev_set_msglevel(struct net_device *dev, u32 value)
2356{
fc3e0f8a
FR
2357 struct rhine_private *rp = netdev_priv(dev);
2358
2359 rp->msg_enable = value;
1da177e4
LT
2360}
2361
2362static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2363{
2364 struct rhine_private *rp = netdev_priv(dev);
2365
2366 if (!(rp->quirks & rqWOL))
2367 return;
2368
2369 spin_lock_irq(&rp->lock);
2370 wol->supported = WAKE_PHY | WAKE_MAGIC |
2371 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
2372 wol->wolopts = rp->wolopts;
2373 spin_unlock_irq(&rp->lock);
2374}
2375
2376static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2377{
2378 struct rhine_private *rp = netdev_priv(dev);
2379 u32 support = WAKE_PHY | WAKE_MAGIC |
2380 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
2381
2382 if (!(rp->quirks & rqWOL))
2383 return -EINVAL;
2384
2385 if (wol->wolopts & ~support)
2386 return -EINVAL;
2387
2388 spin_lock_irq(&rp->lock);
2389 rp->wolopts = wol->wolopts;
2390 spin_unlock_irq(&rp->lock);
2391
2392 return 0;
2393}
2394
7282d491 2395static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
2396 .get_drvinfo = netdev_get_drvinfo,
2397 .get_settings = netdev_get_settings,
2398 .set_settings = netdev_set_settings,
2399 .nway_reset = netdev_nway_reset,
2400 .get_link = netdev_get_link,
2401 .get_msglevel = netdev_get_msglevel,
2402 .set_msglevel = netdev_set_msglevel,
2403 .get_wol = rhine_get_wol,
2404 .set_wol = rhine_set_wol,
1da177e4
LT
2405};
2406
2407static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2408{
2409 struct rhine_private *rp = netdev_priv(dev);
2410 int rc;
2411
2412 if (!netif_running(dev))
2413 return -EINVAL;
2414
7ab87ff4 2415 mutex_lock(&rp->task_lock);
1da177e4 2416 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
00b428c2 2417 rhine_set_carrier(&rp->mii_if);
7ab87ff4 2418 mutex_unlock(&rp->task_lock);
1da177e4
LT
2419
2420 return rc;
2421}
2422
2423static int rhine_close(struct net_device *dev)
2424{
2425 struct rhine_private *rp = netdev_priv(dev);
2426 void __iomem *ioaddr = rp->base;
2427
7ab87ff4 2428 rhine_task_disable(rp);
bea3348e 2429 napi_disable(&rp->napi);
c0d7a021
JP
2430 netif_stop_queue(dev);
2431
fc3e0f8a
FR
2432 netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n",
2433 ioread16(ioaddr + ChipCmd));
1da177e4
LT
2434
2435 /* Switch to loopback mode to avoid hardware races. */
2436 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
2437
7ab87ff4 2438 rhine_irq_disable(rp);
1da177e4
LT
2439
2440 /* Stop the chip's Tx and Rx processes. */
2441 iowrite16(CmdStop, ioaddr + ChipCmd);
2442
f7630d18 2443 free_irq(rp->irq, dev);
1da177e4
LT
2444 free_rbufs(dev);
2445 free_tbufs(dev);
2446 free_ring(dev);
2447
2448 return 0;
2449}
2450
2451
2d283862 2452static void rhine_remove_one_pci(struct pci_dev *pdev)
1da177e4
LT
2453{
2454 struct net_device *dev = pci_get_drvdata(pdev);
2455 struct rhine_private *rp = netdev_priv(dev);
2456
2457 unregister_netdev(dev);
2458
2459 pci_iounmap(pdev, rp->base);
2460 pci_release_regions(pdev);
2461
2462 free_netdev(dev);
2463 pci_disable_device(pdev);
1da177e4
LT
2464}
2465
2d283862
AC
2466static int rhine_remove_one_platform(struct platform_device *pdev)
2467{
2468 struct net_device *dev = platform_get_drvdata(pdev);
2469 struct rhine_private *rp = netdev_priv(dev);
2470
2471 unregister_netdev(dev);
2472
2473 iounmap(rp->base);
2474
2475 free_netdev(dev);
2476
2477 return 0;
2478}
2479
2480static void rhine_shutdown_pci(struct pci_dev *pdev)
1da177e4 2481{
1da177e4
LT
2482 struct net_device *dev = pci_get_drvdata(pdev);
2483 struct rhine_private *rp = netdev_priv(dev);
2484 void __iomem *ioaddr = rp->base;
2485
2486 if (!(rp->quirks & rqWOL))
2487 return; /* Nothing to do for non-WOL adapters */
2488
2489 rhine_power_init(dev);
2490
2491 /* Make sure we use pattern 0, 1 and not 4, 5 */
2492 if (rp->quirks & rq6patterns)
f11cf25e 2493 iowrite8(0x04, ioaddr + WOLcgClr);
1da177e4 2494
7ab87ff4
FR
2495 spin_lock(&rp->lock);
2496
1da177e4
LT
2497 if (rp->wolopts & WAKE_MAGIC) {
2498 iowrite8(WOLmagic, ioaddr + WOLcrSet);
2499 /*
2500 * Turn EEPROM-controlled wake-up back on -- some hardware may
2501 * not cooperate otherwise.
2502 */
2503 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
2504 }
2505
2506 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
2507 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
2508
2509 if (rp->wolopts & WAKE_PHY)
2510 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
2511
2512 if (rp->wolopts & WAKE_UCAST)
2513 iowrite8(WOLucast, ioaddr + WOLcrSet);
2514
2515 if (rp->wolopts) {
2516 /* Enable legacy WOL (for old motherboards) */
2517 iowrite8(0x01, ioaddr + PwcfgSet);
2518 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
2519 }
2520
7ab87ff4
FR
2521 spin_unlock(&rp->lock);
2522
e92b9b3b 2523 if (system_state == SYSTEM_POWER_OFF && !avoid_D3) {
b933b4d9 2524 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
1da177e4 2525
e92b9b3b
FR
2526 pci_wake_from_d3(pdev, true);
2527 pci_set_power_state(pdev, PCI_D3hot);
2528 }
1da177e4
LT
2529}
2530
e92b9b3b
FR
2531#ifdef CONFIG_PM_SLEEP
2532static int rhine_suspend(struct device *device)
1da177e4 2533{
f7630d18 2534 struct net_device *dev = dev_get_drvdata(device);
1da177e4 2535 struct rhine_private *rp = netdev_priv(dev);
1da177e4
LT
2536
2537 if (!netif_running(dev))
2538 return 0;
2539
7ab87ff4
FR
2540 rhine_task_disable(rp);
2541 rhine_irq_disable(rp);
bea3348e 2542 napi_disable(&rp->napi);
32b0f53e 2543
1da177e4 2544 netif_device_detach(dev);
1da177e4 2545
f7630d18 2546 if (dev_is_pci(device))
2d283862 2547 rhine_shutdown_pci(to_pci_dev(device));
1da177e4 2548
1da177e4
LT
2549 return 0;
2550}
2551
e92b9b3b 2552static int rhine_resume(struct device *device)
1da177e4 2553{
f7630d18 2554 struct net_device *dev = dev_get_drvdata(device);
1da177e4 2555 struct rhine_private *rp = netdev_priv(dev);
1da177e4
LT
2556
2557 if (!netif_running(dev))
2558 return 0;
2559
1da177e4 2560 enable_mmio(rp->pioaddr, rp->quirks);
1da177e4
LT
2561 rhine_power_init(dev);
2562 free_tbufs(dev);
1da177e4 2563 alloc_tbufs(dev);
8709bb2c 2564 rhine_reset_rbufs(rp);
7ab87ff4
FR
2565 rhine_task_enable(rp);
2566 spin_lock_bh(&rp->lock);
1da177e4 2567 init_registers(dev);
7ab87ff4 2568 spin_unlock_bh(&rp->lock);
1da177e4
LT
2569
2570 netif_device_attach(dev);
2571
2572 return 0;
2573}
e92b9b3b
FR
2574
2575static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume);
2576#define RHINE_PM_OPS (&rhine_pm_ops)
2577
2578#else
2579
2580#define RHINE_PM_OPS NULL
2581
2582#endif /* !CONFIG_PM_SLEEP */
1da177e4 2583
2d283862 2584static struct pci_driver rhine_driver_pci = {
1da177e4
LT
2585 .name = DRV_NAME,
2586 .id_table = rhine_pci_tbl,
2d283862
AC
2587 .probe = rhine_init_one_pci,
2588 .remove = rhine_remove_one_pci,
2589 .shutdown = rhine_shutdown_pci,
e92b9b3b 2590 .driver.pm = RHINE_PM_OPS,
1da177e4
LT
2591};
2592
2d283862
AC
2593static struct platform_driver rhine_driver_platform = {
2594 .probe = rhine_init_one_platform,
2595 .remove = rhine_remove_one_platform,
2596 .driver = {
2597 .name = DRV_NAME,
2d283862
AC
2598 .of_match_table = rhine_of_tbl,
2599 .pm = RHINE_PM_OPS,
2600 }
2601};
2602
77273eaa 2603static struct dmi_system_id rhine_dmi_table[] __initdata = {
e84df485
RL
2604 {
2605 .ident = "EPIA-M",
2606 .matches = {
2607 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2608 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2609 },
2610 },
2611 {
2612 .ident = "KV7",
2613 .matches = {
2614 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2615 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2616 },
2617 },
2618 { NULL }
2619};
1da177e4
LT
2620
2621static int __init rhine_init(void)
2622{
2d283862
AC
2623 int ret_pci, ret_platform;
2624
1da177e4
LT
2625/* when a module, this is printed whether or not devices are found in probe */
2626#ifdef MODULE
df4511fe 2627 pr_info("%s\n", version);
1da177e4 2628#endif
e84df485
RL
2629 if (dmi_check_system(rhine_dmi_table)) {
2630 /* these BIOSes fail at PXE boot if chip is in D3 */
eb939922 2631 avoid_D3 = true;
df4511fe 2632 pr_warn("Broken BIOS detected, avoid_D3 enabled\n");
e84df485
RL
2633 }
2634 else if (avoid_D3)
df4511fe 2635 pr_info("avoid_D3 set\n");
e84df485 2636
2d283862
AC
2637 ret_pci = pci_register_driver(&rhine_driver_pci);
2638 ret_platform = platform_driver_register(&rhine_driver_platform);
2639 if ((ret_pci < 0) && (ret_platform < 0))
2640 return ret_pci;
2641
2642 return 0;
1da177e4
LT
2643}
2644
2645
2646static void __exit rhine_cleanup(void)
2647{
2d283862
AC
2648 platform_driver_unregister(&rhine_driver_platform);
2649 pci_unregister_driver(&rhine_driver_pci);
1da177e4
LT
2650}
2651
2652
2653module_init(rhine_init);
2654module_exit(rhine_cleanup);
This page took 1.360953 seconds and 5 git commands to generate.