net: vlan: rename NETIF_F_HW_VLAN_* feature flags to NETIF_F_HW_VLAN_CTAG_*
[deliverable/linux.git] / drivers / net / ethernet / via / via-rhine.c
CommitLineData
1da177e4
LT
1/* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2/*
3 Written 1998-2001 by Donald Becker.
4
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
6
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
13
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
03a8c661 28 [link no longer provides useful info -jgarzik]
1da177e4
LT
29
30*/
31
df4511fe
JP
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
1da177e4 34#define DRV_NAME "via-rhine"
38f49e88
RL
35#define DRV_VERSION "1.5.0"
36#define DRV_RELDATE "2010-10-09"
1da177e4 37
eb939922 38#include <linux/types.h>
1da177e4
LT
39
40/* A few user-configurable values.
41 These may be modified when a driver module is loaded. */
fc3e0f8a
FR
42static int debug = 0;
43#define RHINE_MSG_DEFAULT \
44 (0x0000)
1da177e4
LT
45
46/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
47 Setting to > 1518 effectively disables this feature. */
8e95a202
JP
48#if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
49 defined(CONFIG_SPARC) || defined(__ia64__) || \
50 defined(__sh__) || defined(__mips__)
b47157f0
DM
51static int rx_copybreak = 1518;
52#else
1da177e4 53static int rx_copybreak;
b47157f0 54#endif
1da177e4 55
b933b4d9
RL
56/* Work-around for broken BIOSes: they are unable to get the chip back out of
57 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
eb939922 58static bool avoid_D3;
b933b4d9 59
1da177e4
LT
60/*
61 * In case you are looking for 'options[]' or 'full_duplex[]', they
62 * are gone. Use ethtool(8) instead.
63 */
64
65/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
66 The Rhine has a 64 element 8390-like hash table. */
67static const int multicast_filter_limit = 32;
68
69
70/* Operational parameters that are set at compile time. */
71
72/* Keep the ring sizes a power of two for compile efficiency.
73 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
74 Making the Tx ring too large decreases the effectiveness of channel
75 bonding and packet priority.
76 There are no ill effects from too-large receive rings. */
77#define TX_RING_SIZE 16
78#define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
633949a1 79#define RX_RING_SIZE 64
1da177e4
LT
80
81/* Operational parameters that usually are not changed. */
82
83/* Time in jiffies before concluding the transmitter is hung. */
84#define TX_TIMEOUT (2*HZ)
85
86#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
87
88#include <linux/module.h>
89#include <linux/moduleparam.h>
90#include <linux/kernel.h>
91#include <linux/string.h>
92#include <linux/timer.h>
93#include <linux/errno.h>
94#include <linux/ioport.h>
1da177e4
LT
95#include <linux/interrupt.h>
96#include <linux/pci.h>
1e7f0bd8 97#include <linux/dma-mapping.h>
1da177e4
LT
98#include <linux/netdevice.h>
99#include <linux/etherdevice.h>
100#include <linux/skbuff.h>
101#include <linux/init.h>
102#include <linux/delay.h>
103#include <linux/mii.h>
104#include <linux/ethtool.h>
105#include <linux/crc32.h>
38f49e88 106#include <linux/if_vlan.h>
1da177e4 107#include <linux/bitops.h>
c0d7a021 108#include <linux/workqueue.h>
1da177e4
LT
109#include <asm/processor.h> /* Processor type for cache alignment. */
110#include <asm/io.h>
111#include <asm/irq.h>
112#include <asm/uaccess.h>
e84df485 113#include <linux/dmi.h>
1da177e4
LT
114
115/* These identify the driver base version and may not be removed. */
76e239e1 116static const char version[] =
df4511fe 117 "v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker";
1da177e4
LT
118
119/* This driver was written to use PCI memory space. Some early versions
120 of the Rhine may only work correctly with I/O space accesses. */
121#ifdef CONFIG_VIA_RHINE_MMIO
122#define USE_MMIO
123#else
124#endif
125
126MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
127MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
128MODULE_LICENSE("GPL");
129
1da177e4
LT
130module_param(debug, int, 0);
131module_param(rx_copybreak, int, 0);
b933b4d9 132module_param(avoid_D3, bool, 0);
fc3e0f8a 133MODULE_PARM_DESC(debug, "VIA Rhine debug message flags");
1da177e4 134MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
b933b4d9 135MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
1da177e4 136
38f49e88
RL
137#define MCAM_SIZE 32
138#define VCAM_SIZE 32
139
1da177e4
LT
140/*
141 Theory of Operation
142
143I. Board Compatibility
144
145This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
146controller.
147
148II. Board-specific settings
149
150Boards with this chip are functional only in a bus-master PCI slot.
151
152Many operational settings are loaded from the EEPROM to the Config word at
153offset 0x78. For most of these settings, this driver assumes that they are
154correct.
155If this driver is compiled to use PCI memory space operations the EEPROM
156must be configured to enable memory ops.
157
158III. Driver operation
159
160IIIa. Ring buffers
161
162This driver uses two statically allocated fixed-size descriptor lists
163formed into rings by a branch from the final descriptor to the beginning of
164the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
165
166IIIb/c. Transmit/Receive Structure
167
168This driver attempts to use a zero-copy receive and transmit scheme.
169
170Alas, all data buffers are required to start on a 32 bit boundary, so
171the driver must often copy transmit packets into bounce buffers.
172
173The driver allocates full frame size skbuffs for the Rx ring buffers at
174open() time and passes the skb->data field to the chip as receive data
175buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
176a fresh skbuff is allocated and the frame is copied to the new skbuff.
177When the incoming frame is larger, the skbuff is passed directly up the
178protocol stack. Buffers consumed this way are replaced by newly allocated
179skbuffs in the last phase of rhine_rx().
180
181The RX_COPYBREAK value is chosen to trade-off the memory wasted by
182using a full-sized skbuff for small frames vs. the copying costs of larger
183frames. New boards are typically used in generously configured machines
184and the underfilled buffers have negligible impact compared to the benefit of
185a single allocation size, so the default value of zero results in never
186copying packets. When copying is done, the cost is usually mitigated by using
187a combined copy/checksum routine. Copying also preloads the cache, which is
188most useful with small frames.
189
190Since the VIA chips are only able to transfer data to buffers on 32 bit
191boundaries, the IP header at offset 14 in an ethernet frame isn't
192longword aligned for further processing. Copying these unaligned buffers
193has the beneficial effect of 16-byte aligning the IP header.
194
195IIId. Synchronization
196
197The driver runs as two independent, single-threaded flows of control. One
198is the send-packet routine, which enforces single-threaded use by the
b74ca3a8
WC
199netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
200which is single threaded by the hardware and interrupt handling software.
1da177e4
LT
201
202The send packet thread has partial control over the Tx ring. It locks the
b74ca3a8
WC
203netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
204the ring is not available it stops the transmit queue by
205calling netif_stop_queue.
1da177e4
LT
206
207The interrupt handler has exclusive control over the Rx ring and records stats
208from the Tx ring. After reaping the stats, it marks the Tx queue entry as
209empty by incrementing the dirty_tx mark. If at least half of the entries in
210the Rx ring are available the transmit queue is woken up if it was stopped.
211
212IV. Notes
213
214IVb. References
215
216Preliminary VT86C100A manual from http://www.via.com.tw/
217http://www.scyld.com/expert/100mbps.html
218http://www.scyld.com/expert/NWay.html
219ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
220ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
221
222
223IVc. Errata
224
225The VT86C100A manual is not reliable information.
226The 3043 chip does not handle unaligned transmit or receive buffers, resulting
227in significant performance degradation for bounce buffer copies on transmit
228and unaligned IP headers on receive.
229The chip does not pad to minimum transmit length.
230
231*/
232
233
234/* This table drives the PCI probe routines. It's mostly boilerplate in all
235 of the drivers, and will likely be provided by some future kernel.
236 Note the matching code -- the first table entry matchs all 56** cards but
237 second only the 1234 card.
238*/
239
240enum rhine_revs {
241 VT86C100A = 0x00,
242 VTunknown0 = 0x20,
243 VT6102 = 0x40,
244 VT8231 = 0x50, /* Integrated MAC */
245 VT8233 = 0x60, /* Integrated MAC */
246 VT8235 = 0x74, /* Integrated MAC */
247 VT8237 = 0x78, /* Integrated MAC */
248 VTunknown1 = 0x7C,
249 VT6105 = 0x80,
250 VT6105_B0 = 0x83,
251 VT6105L = 0x8A,
252 VT6107 = 0x8C,
253 VTunknown2 = 0x8E,
254 VT6105M = 0x90, /* Management adapter */
255};
256
257enum rhine_quirks {
258 rqWOL = 0x0001, /* Wake-On-LAN support */
259 rqForceReset = 0x0002,
260 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
261 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
262 rqRhineI = 0x0100, /* See comment below */
263};
264/*
265 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
266 * MMIO as well as for the collision counter and the Tx FIFO underflow
267 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
268 */
269
270/* Beware of PCI posted writes */
271#define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
272
a3aa1884 273static DEFINE_PCI_DEVICE_TABLE(rhine_pci_tbl) = {
46009c8b
JG
274 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
275 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
276 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
277 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
1da177e4
LT
278 { } /* terminate list */
279};
280MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
281
282
283/* Offsets to the device registers. */
284enum register_offsets {
285 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
38f49e88 286 ChipCmd1=0x09, TQWake=0x0A,
1da177e4
LT
287 IntrStatus=0x0C, IntrEnable=0x0E,
288 MulticastFilter0=0x10, MulticastFilter1=0x14,
289 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
38f49e88 290 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F,
1da177e4
LT
291 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
292 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
293 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
294 StickyHW=0x83, IntrStatus2=0x84,
38f49e88 295 CamMask=0x88, CamCon=0x92, CamAddr=0x93,
1da177e4
LT
296 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
297 WOLcrClr1=0xA6, WOLcgClr=0xA7,
298 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
299};
300
301/* Bits in ConfigD */
302enum backoff_bits {
303 BackOptional=0x01, BackModify=0x02,
304 BackCaptureEffect=0x04, BackRandom=0x08
305};
306
38f49e88
RL
307/* Bits in the TxConfig (TCR) register */
308enum tcr_bits {
309 TCR_PQEN=0x01,
310 TCR_LB0=0x02, /* loopback[0] */
311 TCR_LB1=0x04, /* loopback[1] */
312 TCR_OFSET=0x08,
313 TCR_RTGOPT=0x10,
314 TCR_RTFT0=0x20,
315 TCR_RTFT1=0x40,
316 TCR_RTSF=0x80,
317};
318
319/* Bits in the CamCon (CAMC) register */
320enum camcon_bits {
321 CAMC_CAMEN=0x01,
322 CAMC_VCAMSL=0x02,
323 CAMC_CAMWR=0x04,
324 CAMC_CAMRD=0x08,
325};
326
327/* Bits in the PCIBusConfig1 (BCR1) register */
328enum bcr1_bits {
329 BCR1_POT0=0x01,
330 BCR1_POT1=0x02,
331 BCR1_POT2=0x04,
332 BCR1_CTFT0=0x08,
333 BCR1_CTFT1=0x10,
334 BCR1_CTSF=0x20,
335 BCR1_TXQNOBK=0x40, /* for VT6105 */
336 BCR1_VIDFR=0x80, /* for VT6105 */
337 BCR1_MED0=0x40, /* for VT6102 */
338 BCR1_MED1=0x80, /* for VT6102 */
339};
340
1da177e4
LT
341#ifdef USE_MMIO
342/* Registers we check that mmio and reg are the same. */
343static const int mmio_verify_registers[] = {
344 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
345 0
346};
347#endif
348
349/* Bits in the interrupt status/mask registers. */
350enum intr_status_bits {
7ab87ff4
FR
351 IntrRxDone = 0x0001,
352 IntrTxDone = 0x0002,
353 IntrRxErr = 0x0004,
354 IntrTxError = 0x0008,
355 IntrRxEmpty = 0x0020,
356 IntrPCIErr = 0x0040,
357 IntrStatsMax = 0x0080,
358 IntrRxEarly = 0x0100,
359 IntrTxUnderrun = 0x0210,
360 IntrRxOverflow = 0x0400,
361 IntrRxDropped = 0x0800,
362 IntrRxNoBuf = 0x1000,
363 IntrTxAborted = 0x2000,
364 IntrLinkChange = 0x4000,
365 IntrRxWakeUp = 0x8000,
366 IntrTxDescRace = 0x080000, /* mapped from IntrStatus2 */
367 IntrNormalSummary = IntrRxDone | IntrTxDone,
368 IntrTxErrSummary = IntrTxDescRace | IntrTxAborted | IntrTxError |
369 IntrTxUnderrun,
1da177e4
LT
370};
371
372/* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
373enum wol_bits {
374 WOLucast = 0x10,
375 WOLmagic = 0x20,
376 WOLbmcast = 0x30,
377 WOLlnkon = 0x40,
378 WOLlnkoff = 0x80,
379};
380
381/* The Rx and Tx buffer descriptors. */
382struct rx_desc {
53c03f5c
AV
383 __le32 rx_status;
384 __le32 desc_length; /* Chain flag, Buffer/frame length */
385 __le32 addr;
386 __le32 next_desc;
1da177e4
LT
387};
388struct tx_desc {
53c03f5c
AV
389 __le32 tx_status;
390 __le32 desc_length; /* Chain flag, Tx Config, Frame length */
391 __le32 addr;
392 __le32 next_desc;
1da177e4
LT
393};
394
395/* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
396#define TXDESC 0x00e08000
397
398enum rx_status_bits {
399 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
400};
401
402/* Bits in *_desc.*_status */
403enum desc_status_bits {
404 DescOwn=0x80000000
405};
406
38f49e88
RL
407/* Bits in *_desc.*_length */
408enum desc_length_bits {
409 DescTag=0x00010000
410};
411
1da177e4
LT
412/* Bits in ChipCmd. */
413enum chip_cmd_bits {
414 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
415 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
416 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
417 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
418};
419
f7b5d1b9
JG
420struct rhine_stats {
421 u64 packets;
422 u64 bytes;
423 struct u64_stats_sync syncp;
424};
425
1da177e4 426struct rhine_private {
38f49e88
RL
427 /* Bit mask for configured VLAN ids */
428 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
429
1da177e4
LT
430 /* Descriptor rings */
431 struct rx_desc *rx_ring;
432 struct tx_desc *tx_ring;
433 dma_addr_t rx_ring_dma;
434 dma_addr_t tx_ring_dma;
435
436 /* The addresses of receive-in-place skbuffs. */
437 struct sk_buff *rx_skbuff[RX_RING_SIZE];
438 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
439
440 /* The saved address of a sent-in-place packet/buffer, for later free(). */
441 struct sk_buff *tx_skbuff[TX_RING_SIZE];
442 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
443
4be5de25 444 /* Tx bounce buffers (Rhine-I only) */
1da177e4
LT
445 unsigned char *tx_buf[TX_RING_SIZE];
446 unsigned char *tx_bufs;
447 dma_addr_t tx_bufs_dma;
448
449 struct pci_dev *pdev;
450 long pioaddr;
bea3348e
SH
451 struct net_device *dev;
452 struct napi_struct napi;
1da177e4 453 spinlock_t lock;
7ab87ff4
FR
454 struct mutex task_lock;
455 bool task_enable;
456 struct work_struct slow_event_task;
c0d7a021 457 struct work_struct reset_task;
1da177e4 458
fc3e0f8a
FR
459 u32 msg_enable;
460
1da177e4
LT
461 /* Frequently used values: keep some adjacent for cache effect. */
462 u32 quirks;
463 struct rx_desc *rx_head_desc;
464 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
465 unsigned int cur_tx, dirty_tx;
466 unsigned int rx_buf_sz; /* Based on MTU+slack. */
f7b5d1b9
JG
467 struct rhine_stats rx_stats;
468 struct rhine_stats tx_stats;
1da177e4
LT
469 u8 wolopts;
470
471 u8 tx_thresh, rx_thresh;
472
473 struct mii_if_info mii_if;
474 void __iomem *base;
475};
476
38f49e88
RL
477#define BYTE_REG_BITS_ON(x, p) do { iowrite8((ioread8((p))|(x)), (p)); } while (0)
478#define WORD_REG_BITS_ON(x, p) do { iowrite16((ioread16((p))|(x)), (p)); } while (0)
479#define DWORD_REG_BITS_ON(x, p) do { iowrite32((ioread32((p))|(x)), (p)); } while (0)
480
481#define BYTE_REG_BITS_IS_ON(x, p) (ioread8((p)) & (x))
482#define WORD_REG_BITS_IS_ON(x, p) (ioread16((p)) & (x))
483#define DWORD_REG_BITS_IS_ON(x, p) (ioread32((p)) & (x))
484
485#define BYTE_REG_BITS_OFF(x, p) do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0)
486#define WORD_REG_BITS_OFF(x, p) do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0)
487#define DWORD_REG_BITS_OFF(x, p) do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0)
488
489#define BYTE_REG_BITS_SET(x, m, p) do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0)
490#define WORD_REG_BITS_SET(x, m, p) do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0)
491#define DWORD_REG_BITS_SET(x, m, p) do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0)
492
493
1da177e4
LT
494static int mdio_read(struct net_device *dev, int phy_id, int location);
495static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
496static int rhine_open(struct net_device *dev);
c0d7a021 497static void rhine_reset_task(struct work_struct *work);
7ab87ff4 498static void rhine_slow_event_task(struct work_struct *work);
1da177e4 499static void rhine_tx_timeout(struct net_device *dev);
61357325
SH
500static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
501 struct net_device *dev);
7d12e780 502static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
1da177e4 503static void rhine_tx(struct net_device *dev);
633949a1 504static int rhine_rx(struct net_device *dev, int limit);
1da177e4 505static void rhine_set_rx_mode(struct net_device *dev);
f7b5d1b9
JG
506static struct rtnl_link_stats64 *rhine_get_stats64(struct net_device *dev,
507 struct rtnl_link_stats64 *stats);
1da177e4 508static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
7282d491 509static const struct ethtool_ops netdev_ethtool_ops;
1da177e4 510static int rhine_close(struct net_device *dev);
8e586137
JP
511static int rhine_vlan_rx_add_vid(struct net_device *dev, unsigned short vid);
512static int rhine_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid);
7ab87ff4 513static void rhine_restart_tx(struct net_device *dev);
1da177e4 514
3f8c91a7 515static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool low)
a384a33b
FR
516{
517 void __iomem *ioaddr = rp->base;
518 int i;
519
520 for (i = 0; i < 1024; i++) {
3f8c91a7
AM
521 bool has_mask_bits = !!(ioread8(ioaddr + reg) & mask);
522
523 if (low ^ has_mask_bits)
a384a33b
FR
524 break;
525 udelay(10);
526 }
527 if (i > 64) {
fc3e0f8a 528 netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle "
3f8c91a7 529 "count: %04d\n", low ? "low" : "high", reg, mask, i);
a384a33b
FR
530 }
531}
532
533static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask)
534{
3f8c91a7 535 rhine_wait_bit(rp, reg, mask, false);
a384a33b
FR
536}
537
538static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask)
539{
3f8c91a7 540 rhine_wait_bit(rp, reg, mask, true);
a384a33b 541}
1da177e4 542
a20a28bc 543static u32 rhine_get_events(struct rhine_private *rp)
1da177e4 544{
1da177e4
LT
545 void __iomem *ioaddr = rp->base;
546 u32 intr_status;
547
548 intr_status = ioread16(ioaddr + IntrStatus);
549 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
550 if (rp->quirks & rqStatusWBRace)
551 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
552 return intr_status;
553}
554
a20a28bc
FR
555static void rhine_ack_events(struct rhine_private *rp, u32 mask)
556{
557 void __iomem *ioaddr = rp->base;
558
559 if (rp->quirks & rqStatusWBRace)
560 iowrite8(mask >> 16, ioaddr + IntrStatus2);
561 iowrite16(mask, ioaddr + IntrStatus);
7ab87ff4 562 mmiowb();
a20a28bc
FR
563}
564
1da177e4
LT
565/*
566 * Get power related registers into sane state.
567 * Notify user about past WOL event.
568 */
569static void rhine_power_init(struct net_device *dev)
570{
571 struct rhine_private *rp = netdev_priv(dev);
572 void __iomem *ioaddr = rp->base;
573 u16 wolstat;
574
575 if (rp->quirks & rqWOL) {
576 /* Make sure chip is in power state D0 */
577 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
578
579 /* Disable "force PME-enable" */
580 iowrite8(0x80, ioaddr + WOLcgClr);
581
582 /* Clear power-event config bits (WOL) */
583 iowrite8(0xFF, ioaddr + WOLcrClr);
584 /* More recent cards can manage two additional patterns */
585 if (rp->quirks & rq6patterns)
586 iowrite8(0x03, ioaddr + WOLcrClr1);
587
588 /* Save power-event status bits */
589 wolstat = ioread8(ioaddr + PwrcsrSet);
590 if (rp->quirks & rq6patterns)
591 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
592
593 /* Clear power-event status bits */
594 iowrite8(0xFF, ioaddr + PwrcsrClr);
595 if (rp->quirks & rq6patterns)
596 iowrite8(0x03, ioaddr + PwrcsrClr1);
597
598 if (wolstat) {
599 char *reason;
600 switch (wolstat) {
601 case WOLmagic:
602 reason = "Magic packet";
603 break;
604 case WOLlnkon:
605 reason = "Link went up";
606 break;
607 case WOLlnkoff:
608 reason = "Link went down";
609 break;
610 case WOLucast:
611 reason = "Unicast packet";
612 break;
613 case WOLbmcast:
614 reason = "Multicast/broadcast packet";
615 break;
616 default:
617 reason = "Unknown";
618 }
df4511fe
JP
619 netdev_info(dev, "Woke system up. Reason: %s\n",
620 reason);
1da177e4
LT
621 }
622 }
623}
624
625static void rhine_chip_reset(struct net_device *dev)
626{
627 struct rhine_private *rp = netdev_priv(dev);
628 void __iomem *ioaddr = rp->base;
fc3e0f8a 629 u8 cmd1;
1da177e4
LT
630
631 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
632 IOSYNC;
633
634 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
df4511fe 635 netdev_info(dev, "Reset not complete yet. Trying harder.\n");
1da177e4
LT
636
637 /* Force reset */
638 if (rp->quirks & rqForceReset)
639 iowrite8(0x40, ioaddr + MiscCmd);
640
641 /* Reset can take somewhat longer (rare) */
a384a33b 642 rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset);
1da177e4
LT
643 }
644
fc3e0f8a
FR
645 cmd1 = ioread8(ioaddr + ChipCmd1);
646 netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ?
647 "failed" : "succeeded");
1da177e4
LT
648}
649
650#ifdef USE_MMIO
651static void enable_mmio(long pioaddr, u32 quirks)
652{
653 int n;
654 if (quirks & rqRhineI) {
655 /* More recent docs say that this bit is reserved ... */
656 n = inb(pioaddr + ConfigA) | 0x20;
657 outb(n, pioaddr + ConfigA);
658 } else {
659 n = inb(pioaddr + ConfigD) | 0x80;
660 outb(n, pioaddr + ConfigD);
661 }
662}
663#endif
664
665/*
666 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
667 * (plus 0x6C for Rhine-I/II)
668 */
76e239e1 669static void rhine_reload_eeprom(long pioaddr, struct net_device *dev)
1da177e4
LT
670{
671 struct rhine_private *rp = netdev_priv(dev);
672 void __iomem *ioaddr = rp->base;
a384a33b 673 int i;
1da177e4
LT
674
675 outb(0x20, pioaddr + MACRegEEcsr);
a384a33b
FR
676 for (i = 0; i < 1024; i++) {
677 if (!(inb(pioaddr + MACRegEEcsr) & 0x20))
678 break;
679 }
680 if (i > 512)
681 pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__);
1da177e4
LT
682
683#ifdef USE_MMIO
684 /*
685 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
686 * MMIO. If reloading EEPROM was done first this could be avoided, but
687 * it is not known if that still works with the "win98-reboot" problem.
688 */
689 enable_mmio(pioaddr, rp->quirks);
690#endif
691
692 /* Turn off EEPROM-controlled wake-up (magic packet) */
693 if (rp->quirks & rqWOL)
694 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
695
696}
697
698#ifdef CONFIG_NET_POLL_CONTROLLER
699static void rhine_poll(struct net_device *dev)
700{
05d334ec
FR
701 struct rhine_private *rp = netdev_priv(dev);
702 const int irq = rp->pdev->irq;
703
704 disable_irq(irq);
705 rhine_interrupt(irq, dev);
706 enable_irq(irq);
1da177e4
LT
707}
708#endif
709
269f3114
FR
710static void rhine_kick_tx_threshold(struct rhine_private *rp)
711{
712 if (rp->tx_thresh < 0xe0) {
713 void __iomem *ioaddr = rp->base;
714
715 rp->tx_thresh += 0x20;
716 BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig);
717 }
718}
719
7ab87ff4
FR
720static void rhine_tx_err(struct rhine_private *rp, u32 status)
721{
722 struct net_device *dev = rp->dev;
723
724 if (status & IntrTxAborted) {
fc3e0f8a
FR
725 netif_info(rp, tx_err, dev,
726 "Abort %08x, frame dropped\n", status);
7ab87ff4
FR
727 }
728
729 if (status & IntrTxUnderrun) {
730 rhine_kick_tx_threshold(rp);
fc3e0f8a
FR
731 netif_info(rp, tx_err ,dev, "Transmitter underrun, "
732 "Tx threshold now %02x\n", rp->tx_thresh);
7ab87ff4
FR
733 }
734
fc3e0f8a
FR
735 if (status & IntrTxDescRace)
736 netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n");
7ab87ff4
FR
737
738 if ((status & IntrTxError) &&
739 (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) {
740 rhine_kick_tx_threshold(rp);
fc3e0f8a
FR
741 netif_info(rp, tx_err, dev, "Unspecified error. "
742 "Tx threshold now %02x\n", rp->tx_thresh);
7ab87ff4
FR
743 }
744
745 rhine_restart_tx(dev);
746}
747
748static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp)
749{
750 void __iomem *ioaddr = rp->base;
751 struct net_device_stats *stats = &rp->dev->stats;
752
753 stats->rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
754 stats->rx_missed_errors += ioread16(ioaddr + RxMissed);
755
756 /*
757 * Clears the "tally counters" for CRC errors and missed frames(?).
758 * It has been reported that some chips need a write of 0 to clear
759 * these, for others the counters are set to 1 when written to and
760 * instead cleared when read. So we clear them both ways ...
761 */
762 iowrite32(0, ioaddr + RxMissed);
763 ioread16(ioaddr + RxCRCErrs);
764 ioread16(ioaddr + RxMissed);
765}
766
767#define RHINE_EVENT_NAPI_RX (IntrRxDone | \
768 IntrRxErr | \
769 IntrRxEmpty | \
770 IntrRxOverflow | \
771 IntrRxDropped | \
772 IntrRxNoBuf | \
773 IntrRxWakeUp)
774
775#define RHINE_EVENT_NAPI_TX_ERR (IntrTxError | \
776 IntrTxAborted | \
777 IntrTxUnderrun | \
778 IntrTxDescRace)
779#define RHINE_EVENT_NAPI_TX (IntrTxDone | RHINE_EVENT_NAPI_TX_ERR)
780
781#define RHINE_EVENT_NAPI (RHINE_EVENT_NAPI_RX | \
782 RHINE_EVENT_NAPI_TX | \
783 IntrStatsMax)
784#define RHINE_EVENT_SLOW (IntrPCIErr | IntrLinkChange)
785#define RHINE_EVENT (RHINE_EVENT_NAPI | RHINE_EVENT_SLOW)
786
bea3348e 787static int rhine_napipoll(struct napi_struct *napi, int budget)
633949a1 788{
bea3348e
SH
789 struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
790 struct net_device *dev = rp->dev;
633949a1 791 void __iomem *ioaddr = rp->base;
7ab87ff4
FR
792 u16 enable_mask = RHINE_EVENT & 0xffff;
793 int work_done = 0;
794 u32 status;
795
796 status = rhine_get_events(rp);
797 rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW);
798
799 if (status & RHINE_EVENT_NAPI_RX)
800 work_done += rhine_rx(dev, budget);
801
802 if (status & RHINE_EVENT_NAPI_TX) {
803 if (status & RHINE_EVENT_NAPI_TX_ERR) {
7ab87ff4 804 /* Avoid scavenging before Tx engine turned off */
a384a33b 805 rhine_wait_bit_low(rp, ChipCmd, CmdTxOn);
fc3e0f8a
FR
806 if (ioread8(ioaddr + ChipCmd) & CmdTxOn)
807 netif_warn(rp, tx_err, dev, "Tx still on\n");
7ab87ff4 808 }
fc3e0f8a 809
7ab87ff4
FR
810 rhine_tx(dev);
811
812 if (status & RHINE_EVENT_NAPI_TX_ERR)
813 rhine_tx_err(rp, status);
814 }
815
816 if (status & IntrStatsMax) {
817 spin_lock(&rp->lock);
818 rhine_update_rx_crc_and_missed_errord(rp);
819 spin_unlock(&rp->lock);
820 }
633949a1 821
7ab87ff4
FR
822 if (status & RHINE_EVENT_SLOW) {
823 enable_mask &= ~RHINE_EVENT_SLOW;
824 schedule_work(&rp->slow_event_task);
825 }
633949a1 826
bea3348e 827 if (work_done < budget) {
288379f0 828 napi_complete(napi);
7ab87ff4
FR
829 iowrite16(enable_mask, ioaddr + IntrEnable);
830 mmiowb();
633949a1 831 }
bea3348e 832 return work_done;
633949a1 833}
633949a1 834
76e239e1 835static void rhine_hw_init(struct net_device *dev, long pioaddr)
1da177e4
LT
836{
837 struct rhine_private *rp = netdev_priv(dev);
838
839 /* Reset the chip to erase previous misconfiguration. */
840 rhine_chip_reset(dev);
841
842 /* Rhine-I needs extra time to recuperate before EEPROM reload */
843 if (rp->quirks & rqRhineI)
844 msleep(5);
845
846 /* Reload EEPROM controlled bytes cleared by soft reset */
847 rhine_reload_eeprom(pioaddr, dev);
848}
849
5d1d07d8
SH
850static const struct net_device_ops rhine_netdev_ops = {
851 .ndo_open = rhine_open,
852 .ndo_stop = rhine_close,
853 .ndo_start_xmit = rhine_start_tx,
f7b5d1b9 854 .ndo_get_stats64 = rhine_get_stats64,
afc4b13d 855 .ndo_set_rx_mode = rhine_set_rx_mode,
635ecaa7 856 .ndo_change_mtu = eth_change_mtu,
5d1d07d8 857 .ndo_validate_addr = eth_validate_addr,
fe96aaa1 858 .ndo_set_mac_address = eth_mac_addr,
5d1d07d8
SH
859 .ndo_do_ioctl = netdev_ioctl,
860 .ndo_tx_timeout = rhine_tx_timeout,
38f49e88
RL
861 .ndo_vlan_rx_add_vid = rhine_vlan_rx_add_vid,
862 .ndo_vlan_rx_kill_vid = rhine_vlan_rx_kill_vid,
5d1d07d8
SH
863#ifdef CONFIG_NET_POLL_CONTROLLER
864 .ndo_poll_controller = rhine_poll,
865#endif
866};
867
1dd06ae8 868static int rhine_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1da177e4
LT
869{
870 struct net_device *dev;
871 struct rhine_private *rp;
872 int i, rc;
1da177e4
LT
873 u32 quirks;
874 long pioaddr;
875 long memaddr;
876 void __iomem *ioaddr;
877 int io_size, phy_id;
878 const char *name;
879#ifdef USE_MMIO
880 int bar = 1;
881#else
882 int bar = 0;
883#endif
884
885/* when built into the kernel, we only print version if device is found */
886#ifndef MODULE
df4511fe 887 pr_info_once("%s\n", version);
1da177e4
LT
888#endif
889
1da177e4
LT
890 io_size = 256;
891 phy_id = 0;
892 quirks = 0;
893 name = "Rhine";
44c10138 894 if (pdev->revision < VTunknown0) {
1da177e4
LT
895 quirks = rqRhineI;
896 io_size = 128;
897 }
44c10138 898 else if (pdev->revision >= VT6102) {
1da177e4 899 quirks = rqWOL | rqForceReset;
44c10138 900 if (pdev->revision < VT6105) {
1da177e4
LT
901 name = "Rhine II";
902 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
903 }
904 else {
905 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
44c10138 906 if (pdev->revision >= VT6105_B0)
1da177e4 907 quirks |= rq6patterns;
44c10138 908 if (pdev->revision < VT6105M)
1da177e4
LT
909 name = "Rhine III";
910 else
911 name = "Rhine III (Management Adapter)";
912 }
913 }
914
915 rc = pci_enable_device(pdev);
916 if (rc)
917 goto err_out;
918
919 /* this should always be supported */
284901a9 920 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1da177e4 921 if (rc) {
df4511fe
JP
922 dev_err(&pdev->dev,
923 "32-bit PCI DMA addresses not supported by the card!?\n");
1da177e4
LT
924 goto err_out;
925 }
926
927 /* sanity check */
928 if ((pci_resource_len(pdev, 0) < io_size) ||
929 (pci_resource_len(pdev, 1) < io_size)) {
930 rc = -EIO;
df4511fe 931 dev_err(&pdev->dev, "Insufficient PCI resources, aborting\n");
1da177e4
LT
932 goto err_out;
933 }
934
935 pioaddr = pci_resource_start(pdev, 0);
936 memaddr = pci_resource_start(pdev, 1);
937
938 pci_set_master(pdev);
939
940 dev = alloc_etherdev(sizeof(struct rhine_private));
941 if (!dev) {
942 rc = -ENOMEM;
1da177e4
LT
943 goto err_out;
944 }
1da177e4
LT
945 SET_NETDEV_DEV(dev, &pdev->dev);
946
947 rp = netdev_priv(dev);
bea3348e 948 rp->dev = dev;
1da177e4
LT
949 rp->quirks = quirks;
950 rp->pioaddr = pioaddr;
951 rp->pdev = pdev;
fc3e0f8a 952 rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT);
1da177e4
LT
953
954 rc = pci_request_regions(pdev, DRV_NAME);
955 if (rc)
956 goto err_out_free_netdev;
957
958 ioaddr = pci_iomap(pdev, bar, io_size);
959 if (!ioaddr) {
960 rc = -EIO;
df4511fe
JP
961 dev_err(&pdev->dev,
962 "ioremap failed for device %s, region 0x%X @ 0x%lX\n",
963 pci_name(pdev), io_size, memaddr);
1da177e4
LT
964 goto err_out_free_res;
965 }
966
967#ifdef USE_MMIO
968 enable_mmio(pioaddr, quirks);
969
970 /* Check that selected MMIO registers match the PIO ones */
971 i = 0;
972 while (mmio_verify_registers[i]) {
973 int reg = mmio_verify_registers[i++];
974 unsigned char a = inb(pioaddr+reg);
975 unsigned char b = readb(ioaddr+reg);
976 if (a != b) {
977 rc = -EIO;
df4511fe
JP
978 dev_err(&pdev->dev,
979 "MMIO do not match PIO [%02x] (%02x != %02x)\n",
980 reg, a, b);
1da177e4
LT
981 goto err_out_unmap;
982 }
983 }
984#endif /* USE_MMIO */
985
1da177e4
LT
986 rp->base = ioaddr;
987
988 /* Get chip registers into a sane state */
989 rhine_power_init(dev);
990 rhine_hw_init(dev, pioaddr);
991
992 for (i = 0; i < 6; i++)
993 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
994
482e3feb
JP
995 if (!is_valid_ether_addr(dev->dev_addr)) {
996 /* Report it and use a random ethernet address instead */
997 netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr);
f2cedb63 998 eth_hw_addr_random(dev);
482e3feb
JP
999 netdev_info(dev, "Using random MAC address: %pM\n",
1000 dev->dev_addr);
1da177e4
LT
1001 }
1002
1003 /* For Rhine-I/II, phy_id is loaded from EEPROM */
1004 if (!phy_id)
1005 phy_id = ioread8(ioaddr + 0x6C);
1006
1da177e4 1007 spin_lock_init(&rp->lock);
7ab87ff4 1008 mutex_init(&rp->task_lock);
c0d7a021 1009 INIT_WORK(&rp->reset_task, rhine_reset_task);
7ab87ff4 1010 INIT_WORK(&rp->slow_event_task, rhine_slow_event_task);
c0d7a021 1011
1da177e4
LT
1012 rp->mii_if.dev = dev;
1013 rp->mii_if.mdio_read = mdio_read;
1014 rp->mii_if.mdio_write = mdio_write;
1015 rp->mii_if.phy_id_mask = 0x1f;
1016 rp->mii_if.reg_num_mask = 0x1f;
1017
1018 /* The chip-specific entries in the device structure. */
5d1d07d8
SH
1019 dev->netdev_ops = &rhine_netdev_ops;
1020 dev->ethtool_ops = &netdev_ethtool_ops,
1da177e4 1021 dev->watchdog_timeo = TX_TIMEOUT;
5d1d07d8 1022
bea3348e 1023 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
32b0f53e 1024
1da177e4
LT
1025 if (rp->quirks & rqRhineI)
1026 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
1027
38f49e88 1028 if (pdev->revision >= VT6105M)
f646968f
PM
1029 dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
1030 NETIF_F_HW_VLAN_CTAG_RX |
1031 NETIF_F_HW_VLAN_CTAG_FILTER;
38f49e88 1032
1da177e4
LT
1033 /* dev->name not defined before register_netdev()! */
1034 rc = register_netdev(dev);
1035 if (rc)
1036 goto err_out_unmap;
1037
df4511fe
JP
1038 netdev_info(dev, "VIA %s at 0x%lx, %pM, IRQ %d\n",
1039 name,
1da177e4 1040#ifdef USE_MMIO
df4511fe 1041 memaddr,
1da177e4 1042#else
df4511fe 1043 (long)ioaddr,
1da177e4 1044#endif
df4511fe 1045 dev->dev_addr, pdev->irq);
1da177e4
LT
1046
1047 pci_set_drvdata(pdev, dev);
1048
1049 {
1050 u16 mii_cmd;
1051 int mii_status = mdio_read(dev, phy_id, 1);
1052 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
1053 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
1054 if (mii_status != 0xffff && mii_status != 0x0000) {
1055 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
df4511fe
JP
1056 netdev_info(dev,
1057 "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n",
1058 phy_id,
1059 mii_status, rp->mii_if.advertising,
1060 mdio_read(dev, phy_id, 5));
1da177e4
LT
1061
1062 /* set IFF_RUNNING */
1063 if (mii_status & BMSR_LSTATUS)
1064 netif_carrier_on(dev);
1065 else
1066 netif_carrier_off(dev);
1067
1068 }
1069 }
1070 rp->mii_if.phy_id = phy_id;
fc3e0f8a
FR
1071 if (avoid_D3)
1072 netif_info(rp, probe, dev, "No D3 power state at shutdown\n");
1da177e4
LT
1073
1074 return 0;
1075
1076err_out_unmap:
1077 pci_iounmap(pdev, ioaddr);
1078err_out_free_res:
1079 pci_release_regions(pdev);
1080err_out_free_netdev:
1081 free_netdev(dev);
1082err_out:
1083 return rc;
1084}
1085
1086static int alloc_ring(struct net_device* dev)
1087{
1088 struct rhine_private *rp = netdev_priv(dev);
1089 void *ring;
1090 dma_addr_t ring_dma;
1091
1092 ring = pci_alloc_consistent(rp->pdev,
1093 RX_RING_SIZE * sizeof(struct rx_desc) +
1094 TX_RING_SIZE * sizeof(struct tx_desc),
1095 &ring_dma);
1096 if (!ring) {
df4511fe 1097 netdev_err(dev, "Could not allocate DMA memory\n");
1da177e4
LT
1098 return -ENOMEM;
1099 }
1100 if (rp->quirks & rqRhineI) {
1101 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
1102 PKT_BUF_SZ * TX_RING_SIZE,
1103 &rp->tx_bufs_dma);
1104 if (rp->tx_bufs == NULL) {
1105 pci_free_consistent(rp->pdev,
1106 RX_RING_SIZE * sizeof(struct rx_desc) +
1107 TX_RING_SIZE * sizeof(struct tx_desc),
1108 ring, ring_dma);
1109 return -ENOMEM;
1110 }
1111 }
1112
1113 rp->rx_ring = ring;
1114 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
1115 rp->rx_ring_dma = ring_dma;
1116 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
1117
1118 return 0;
1119}
1120
1121static void free_ring(struct net_device* dev)
1122{
1123 struct rhine_private *rp = netdev_priv(dev);
1124
1125 pci_free_consistent(rp->pdev,
1126 RX_RING_SIZE * sizeof(struct rx_desc) +
1127 TX_RING_SIZE * sizeof(struct tx_desc),
1128 rp->rx_ring, rp->rx_ring_dma);
1129 rp->tx_ring = NULL;
1130
1131 if (rp->tx_bufs)
1132 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
1133 rp->tx_bufs, rp->tx_bufs_dma);
1134
1135 rp->tx_bufs = NULL;
1136
1137}
1138
1139static void alloc_rbufs(struct net_device *dev)
1140{
1141 struct rhine_private *rp = netdev_priv(dev);
1142 dma_addr_t next;
1143 int i;
1144
1145 rp->dirty_rx = rp->cur_rx = 0;
1146
1147 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1148 rp->rx_head_desc = &rp->rx_ring[0];
1149 next = rp->rx_ring_dma;
1150
1151 /* Init the ring entries */
1152 for (i = 0; i < RX_RING_SIZE; i++) {
1153 rp->rx_ring[i].rx_status = 0;
1154 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
1155 next += sizeof(struct rx_desc);
1156 rp->rx_ring[i].next_desc = cpu_to_le32(next);
1157 rp->rx_skbuff[i] = NULL;
1158 }
1159 /* Mark the last entry as wrapping the ring. */
1160 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
1161
1162 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1163 for (i = 0; i < RX_RING_SIZE; i++) {
b26b555a 1164 struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1da177e4
LT
1165 rp->rx_skbuff[i] = skb;
1166 if (skb == NULL)
1167 break;
1da177e4
LT
1168
1169 rp->rx_skbuff_dma[i] =
689be439 1170 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
1da177e4
LT
1171 PCI_DMA_FROMDEVICE);
1172
1173 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
1174 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
1175 }
1176 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1177}
1178
1179static void free_rbufs(struct net_device* dev)
1180{
1181 struct rhine_private *rp = netdev_priv(dev);
1182 int i;
1183
1184 /* Free all the skbuffs in the Rx queue. */
1185 for (i = 0; i < RX_RING_SIZE; i++) {
1186 rp->rx_ring[i].rx_status = 0;
1187 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1188 if (rp->rx_skbuff[i]) {
1189 pci_unmap_single(rp->pdev,
1190 rp->rx_skbuff_dma[i],
1191 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1192 dev_kfree_skb(rp->rx_skbuff[i]);
1193 }
1194 rp->rx_skbuff[i] = NULL;
1195 }
1196}
1197
1198static void alloc_tbufs(struct net_device* dev)
1199{
1200 struct rhine_private *rp = netdev_priv(dev);
1201 dma_addr_t next;
1202 int i;
1203
1204 rp->dirty_tx = rp->cur_tx = 0;
1205 next = rp->tx_ring_dma;
1206 for (i = 0; i < TX_RING_SIZE; i++) {
1207 rp->tx_skbuff[i] = NULL;
1208 rp->tx_ring[i].tx_status = 0;
1209 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1210 next += sizeof(struct tx_desc);
1211 rp->tx_ring[i].next_desc = cpu_to_le32(next);
4be5de25
RL
1212 if (rp->quirks & rqRhineI)
1213 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1da177e4
LT
1214 }
1215 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
1216
1217}
1218
1219static void free_tbufs(struct net_device* dev)
1220{
1221 struct rhine_private *rp = netdev_priv(dev);
1222 int i;
1223
1224 for (i = 0; i < TX_RING_SIZE; i++) {
1225 rp->tx_ring[i].tx_status = 0;
1226 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1227 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1228 if (rp->tx_skbuff[i]) {
1229 if (rp->tx_skbuff_dma[i]) {
1230 pci_unmap_single(rp->pdev,
1231 rp->tx_skbuff_dma[i],
1232 rp->tx_skbuff[i]->len,
1233 PCI_DMA_TODEVICE);
1234 }
1235 dev_kfree_skb(rp->tx_skbuff[i]);
1236 }
1237 rp->tx_skbuff[i] = NULL;
1238 rp->tx_buf[i] = NULL;
1239 }
1240}
1241
1242static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1243{
1244 struct rhine_private *rp = netdev_priv(dev);
1245 void __iomem *ioaddr = rp->base;
1246
fc3e0f8a 1247 mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media);
1da177e4
LT
1248
1249 if (rp->mii_if.full_duplex)
1250 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1251 ioaddr + ChipCmd1);
1252 else
1253 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1254 ioaddr + ChipCmd1);
fc3e0f8a
FR
1255
1256 netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1257 rp->mii_if.force_media, netif_carrier_ok(dev));
00b428c2
RL
1258}
1259
1260/* Called after status of force_media possibly changed */
0761be4f 1261static void rhine_set_carrier(struct mii_if_info *mii)
00b428c2 1262{
fc3e0f8a
FR
1263 struct net_device *dev = mii->dev;
1264 struct rhine_private *rp = netdev_priv(dev);
1265
00b428c2
RL
1266 if (mii->force_media) {
1267 /* autoneg is off: Link is always assumed to be up */
fc3e0f8a
FR
1268 if (!netif_carrier_ok(dev))
1269 netif_carrier_on(dev);
1270 } else /* Let MMI library update carrier status */
1271 rhine_check_media(dev, 0);
1272
1273 netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1274 mii->force_media, netif_carrier_ok(dev));
1da177e4
LT
1275}
1276
38f49e88
RL
1277/**
1278 * rhine_set_cam - set CAM multicast filters
1279 * @ioaddr: register block of this Rhine
1280 * @idx: multicast CAM index [0..MCAM_SIZE-1]
1281 * @addr: multicast address (6 bytes)
1282 *
1283 * Load addresses into multicast filters.
1284 */
1285static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr)
1286{
1287 int i;
1288
1289 iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1290 wmb();
1291
1292 /* Paranoid -- idx out of range should never happen */
1293 idx &= (MCAM_SIZE - 1);
1294
1295 iowrite8((u8) idx, ioaddr + CamAddr);
1296
1297 for (i = 0; i < 6; i++, addr++)
1298 iowrite8(*addr, ioaddr + MulticastFilter0 + i);
1299 udelay(10);
1300 wmb();
1301
1302 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1303 udelay(10);
1304
1305 iowrite8(0, ioaddr + CamCon);
1306}
1307
1308/**
1309 * rhine_set_vlan_cam - set CAM VLAN filters
1310 * @ioaddr: register block of this Rhine
1311 * @idx: VLAN CAM index [0..VCAM_SIZE-1]
1312 * @addr: VLAN ID (2 bytes)
1313 *
1314 * Load addresses into VLAN filters.
1315 */
1316static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr)
1317{
1318 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1319 wmb();
1320
1321 /* Paranoid -- idx out of range should never happen */
1322 idx &= (VCAM_SIZE - 1);
1323
1324 iowrite8((u8) idx, ioaddr + CamAddr);
1325
1326 iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6);
1327 udelay(10);
1328 wmb();
1329
1330 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1331 udelay(10);
1332
1333 iowrite8(0, ioaddr + CamCon);
1334}
1335
1336/**
1337 * rhine_set_cam_mask - set multicast CAM mask
1338 * @ioaddr: register block of this Rhine
1339 * @mask: multicast CAM mask
1340 *
1341 * Mask sets multicast filters active/inactive.
1342 */
1343static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask)
1344{
1345 iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1346 wmb();
1347
1348 /* write mask */
1349 iowrite32(mask, ioaddr + CamMask);
1350
1351 /* disable CAMEN */
1352 iowrite8(0, ioaddr + CamCon);
1353}
1354
1355/**
1356 * rhine_set_vlan_cam_mask - set VLAN CAM mask
1357 * @ioaddr: register block of this Rhine
1358 * @mask: VLAN CAM mask
1359 *
1360 * Mask sets VLAN filters active/inactive.
1361 */
1362static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask)
1363{
1364 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1365 wmb();
1366
1367 /* write mask */
1368 iowrite32(mask, ioaddr + CamMask);
1369
1370 /* disable CAMEN */
1371 iowrite8(0, ioaddr + CamCon);
1372}
1373
1374/**
1375 * rhine_init_cam_filter - initialize CAM filters
1376 * @dev: network device
1377 *
1378 * Initialize (disable) hardware VLAN and multicast support on this
1379 * Rhine.
1380 */
1381static void rhine_init_cam_filter(struct net_device *dev)
1382{
1383 struct rhine_private *rp = netdev_priv(dev);
1384 void __iomem *ioaddr = rp->base;
1385
1386 /* Disable all CAMs */
1387 rhine_set_vlan_cam_mask(ioaddr, 0);
1388 rhine_set_cam_mask(ioaddr, 0);
1389
1390 /* disable hardware VLAN support */
1391 BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig);
1392 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
1393}
1394
1395/**
1396 * rhine_update_vcam - update VLAN CAM filters
1397 * @rp: rhine_private data of this Rhine
1398 *
1399 * Update VLAN CAM filters to match configuration change.
1400 */
1401static void rhine_update_vcam(struct net_device *dev)
1402{
1403 struct rhine_private *rp = netdev_priv(dev);
1404 void __iomem *ioaddr = rp->base;
1405 u16 vid;
1406 u32 vCAMmask = 0; /* 32 vCAMs (6105M and better) */
1407 unsigned int i = 0;
1408
1409 for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) {
1410 rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid);
1411 vCAMmask |= 1 << i;
1412 if (++i >= VCAM_SIZE)
1413 break;
1414 }
1415 rhine_set_vlan_cam_mask(ioaddr, vCAMmask);
1416}
1417
8e586137 1418static int rhine_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
38f49e88
RL
1419{
1420 struct rhine_private *rp = netdev_priv(dev);
1421
7ab87ff4 1422 spin_lock_bh(&rp->lock);
38f49e88
RL
1423 set_bit(vid, rp->active_vlans);
1424 rhine_update_vcam(dev);
7ab87ff4 1425 spin_unlock_bh(&rp->lock);
8e586137 1426 return 0;
38f49e88
RL
1427}
1428
8e586137 1429static int rhine_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
38f49e88
RL
1430{
1431 struct rhine_private *rp = netdev_priv(dev);
1432
7ab87ff4 1433 spin_lock_bh(&rp->lock);
38f49e88
RL
1434 clear_bit(vid, rp->active_vlans);
1435 rhine_update_vcam(dev);
7ab87ff4 1436 spin_unlock_bh(&rp->lock);
8e586137 1437 return 0;
38f49e88
RL
1438}
1439
1da177e4
LT
1440static void init_registers(struct net_device *dev)
1441{
1442 struct rhine_private *rp = netdev_priv(dev);
1443 void __iomem *ioaddr = rp->base;
1444 int i;
1445
1446 for (i = 0; i < 6; i++)
1447 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1448
1449 /* Initialize other registers. */
1450 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1451 /* Configure initial FIFO thresholds. */
1452 iowrite8(0x20, ioaddr + TxConfig);
1453 rp->tx_thresh = 0x20;
1454 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1455
1456 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1457 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1458
1459 rhine_set_rx_mode(dev);
1460
38f49e88
RL
1461 if (rp->pdev->revision >= VT6105M)
1462 rhine_init_cam_filter(dev);
1463
bea3348e 1464 napi_enable(&rp->napi);
ab197668 1465
7ab87ff4 1466 iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable);
1da177e4
LT
1467
1468 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1469 ioaddr + ChipCmd);
1470 rhine_check_media(dev, 1);
1471}
1472
1473/* Enable MII link status auto-polling (required for IntrLinkChange) */
a384a33b 1474static void rhine_enable_linkmon(struct rhine_private *rp)
1da177e4 1475{
a384a33b
FR
1476 void __iomem *ioaddr = rp->base;
1477
1da177e4
LT
1478 iowrite8(0, ioaddr + MIICmd);
1479 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1480 iowrite8(0x80, ioaddr + MIICmd);
1481
a384a33b 1482 rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1da177e4
LT
1483
1484 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1485}
1486
1487/* Disable MII link status auto-polling (required for MDIO access) */
a384a33b 1488static void rhine_disable_linkmon(struct rhine_private *rp)
1da177e4 1489{
a384a33b
FR
1490 void __iomem *ioaddr = rp->base;
1491
1da177e4
LT
1492 iowrite8(0, ioaddr + MIICmd);
1493
a384a33b 1494 if (rp->quirks & rqRhineI) {
1da177e4
LT
1495 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1496
38bb6b28
JL
1497 /* Can be called from ISR. Evil. */
1498 mdelay(1);
1da177e4
LT
1499
1500 /* 0x80 must be set immediately before turning it off */
1501 iowrite8(0x80, ioaddr + MIICmd);
1502
a384a33b 1503 rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1da177e4
LT
1504
1505 /* Heh. Now clear 0x80 again. */
1506 iowrite8(0, ioaddr + MIICmd);
1507 }
1508 else
a384a33b 1509 rhine_wait_bit_high(rp, MIIRegAddr, 0x80);
1da177e4
LT
1510}
1511
1512/* Read and write over the MII Management Data I/O (MDIO) interface. */
1513
1514static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1515{
1516 struct rhine_private *rp = netdev_priv(dev);
1517 void __iomem *ioaddr = rp->base;
1518 int result;
1519
a384a33b 1520 rhine_disable_linkmon(rp);
1da177e4
LT
1521
1522 /* rhine_disable_linkmon already cleared MIICmd */
1523 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1524 iowrite8(regnum, ioaddr + MIIRegAddr);
1525 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
a384a33b 1526 rhine_wait_bit_low(rp, MIICmd, 0x40);
1da177e4
LT
1527 result = ioread16(ioaddr + MIIData);
1528
a384a33b 1529 rhine_enable_linkmon(rp);
1da177e4
LT
1530 return result;
1531}
1532
1533static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1534{
1535 struct rhine_private *rp = netdev_priv(dev);
1536 void __iomem *ioaddr = rp->base;
1537
a384a33b 1538 rhine_disable_linkmon(rp);
1da177e4
LT
1539
1540 /* rhine_disable_linkmon already cleared MIICmd */
1541 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1542 iowrite8(regnum, ioaddr + MIIRegAddr);
1543 iowrite16(value, ioaddr + MIIData);
1544 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
a384a33b 1545 rhine_wait_bit_low(rp, MIICmd, 0x20);
1da177e4 1546
a384a33b 1547 rhine_enable_linkmon(rp);
1da177e4
LT
1548}
1549
7ab87ff4
FR
1550static void rhine_task_disable(struct rhine_private *rp)
1551{
1552 mutex_lock(&rp->task_lock);
1553 rp->task_enable = false;
1554 mutex_unlock(&rp->task_lock);
1555
1556 cancel_work_sync(&rp->slow_event_task);
1557 cancel_work_sync(&rp->reset_task);
1558}
1559
1560static void rhine_task_enable(struct rhine_private *rp)
1561{
1562 mutex_lock(&rp->task_lock);
1563 rp->task_enable = true;
1564 mutex_unlock(&rp->task_lock);
1565}
1566
1da177e4
LT
1567static int rhine_open(struct net_device *dev)
1568{
1569 struct rhine_private *rp = netdev_priv(dev);
1570 void __iomem *ioaddr = rp->base;
1571 int rc;
1572
76781382 1573 rc = request_irq(rp->pdev->irq, rhine_interrupt, IRQF_SHARED, dev->name,
1da177e4
LT
1574 dev);
1575 if (rc)
1576 return rc;
1577
fc3e0f8a 1578 netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->pdev->irq);
1da177e4
LT
1579
1580 rc = alloc_ring(dev);
1581 if (rc) {
1582 free_irq(rp->pdev->irq, dev);
1583 return rc;
1584 }
1585 alloc_rbufs(dev);
1586 alloc_tbufs(dev);
1587 rhine_chip_reset(dev);
7ab87ff4 1588 rhine_task_enable(rp);
1da177e4 1589 init_registers(dev);
fc3e0f8a
FR
1590
1591 netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n",
1592 __func__, ioread16(ioaddr + ChipCmd),
1593 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1da177e4
LT
1594
1595 netif_start_queue(dev);
1596
1597 return 0;
1598}
1599
c0d7a021 1600static void rhine_reset_task(struct work_struct *work)
1da177e4 1601{
c0d7a021
JP
1602 struct rhine_private *rp = container_of(work, struct rhine_private,
1603 reset_task);
1604 struct net_device *dev = rp->dev;
1da177e4 1605
7ab87ff4 1606 mutex_lock(&rp->task_lock);
1da177e4 1607
7ab87ff4
FR
1608 if (!rp->task_enable)
1609 goto out_unlock;
bea3348e 1610
7ab87ff4 1611 napi_disable(&rp->napi);
c0d7a021 1612 spin_lock_bh(&rp->lock);
1da177e4
LT
1613
1614 /* clear all descriptors */
1615 free_tbufs(dev);
1616 free_rbufs(dev);
1617 alloc_tbufs(dev);
1618 alloc_rbufs(dev);
1619
1620 /* Reinitialize the hardware. */
1621 rhine_chip_reset(dev);
1622 init_registers(dev);
1623
c0d7a021 1624 spin_unlock_bh(&rp->lock);
1da177e4 1625
1ae5dc34 1626 dev->trans_start = jiffies; /* prevent tx timeout */
553e2335 1627 dev->stats.tx_errors++;
1da177e4 1628 netif_wake_queue(dev);
7ab87ff4
FR
1629
1630out_unlock:
1631 mutex_unlock(&rp->task_lock);
1da177e4
LT
1632}
1633
c0d7a021
JP
1634static void rhine_tx_timeout(struct net_device *dev)
1635{
1636 struct rhine_private *rp = netdev_priv(dev);
1637 void __iomem *ioaddr = rp->base;
1638
df4511fe
JP
1639 netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n",
1640 ioread16(ioaddr + IntrStatus),
1641 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
c0d7a021
JP
1642
1643 schedule_work(&rp->reset_task);
1644}
1645
61357325
SH
1646static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
1647 struct net_device *dev)
1da177e4
LT
1648{
1649 struct rhine_private *rp = netdev_priv(dev);
1650 void __iomem *ioaddr = rp->base;
1651 unsigned entry;
1652
1653 /* Caution: the write order is important here, set the field
1654 with the "ownership" bits last. */
1655
1656 /* Calculate the next Tx descriptor entry. */
1657 entry = rp->cur_tx % TX_RING_SIZE;
1658
5b057c6b 1659 if (skb_padto(skb, ETH_ZLEN))
6ed10654 1660 return NETDEV_TX_OK;
1da177e4
LT
1661
1662 rp->tx_skbuff[entry] = skb;
1663
1664 if ((rp->quirks & rqRhineI) &&
84fa7933 1665 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1da177e4
LT
1666 /* Must use alignment buffer. */
1667 if (skb->len > PKT_BUF_SZ) {
1668 /* packet too long, drop it */
1669 dev_kfree_skb(skb);
1670 rp->tx_skbuff[entry] = NULL;
553e2335 1671 dev->stats.tx_dropped++;
6ed10654 1672 return NETDEV_TX_OK;
1da177e4 1673 }
3e0d167a
CB
1674
1675 /* Padding is not copied and so must be redone. */
1da177e4 1676 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
3e0d167a
CB
1677 if (skb->len < ETH_ZLEN)
1678 memset(rp->tx_buf[entry] + skb->len, 0,
1679 ETH_ZLEN - skb->len);
1da177e4
LT
1680 rp->tx_skbuff_dma[entry] = 0;
1681 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1682 (rp->tx_buf[entry] -
1683 rp->tx_bufs));
1684 } else {
1685 rp->tx_skbuff_dma[entry] =
1686 pci_map_single(rp->pdev, skb->data, skb->len,
1687 PCI_DMA_TODEVICE);
1688 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1689 }
1690
1691 rp->tx_ring[entry].desc_length =
1692 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1693
38f49e88
RL
1694 if (unlikely(vlan_tx_tag_present(skb))) {
1695 rp->tx_ring[entry].tx_status = cpu_to_le32((vlan_tx_tag_get(skb)) << 16);
1696 /* request tagging */
1697 rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000);
1698 }
1699 else
1700 rp->tx_ring[entry].tx_status = 0;
1701
1da177e4 1702 /* lock eth irq */
1da177e4 1703 wmb();
38f49e88 1704 rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn);
1da177e4
LT
1705 wmb();
1706
1707 rp->cur_tx++;
1708
1709 /* Non-x86 Todo: explicitly flush cache lines here. */
1710
38f49e88
RL
1711 if (vlan_tx_tag_present(skb))
1712 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1713 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1714
1da177e4
LT
1715 /* Wake the potentially-idle transmit channel */
1716 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1717 ioaddr + ChipCmd1);
1718 IOSYNC;
1719
1720 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1721 netif_stop_queue(dev);
1722
fc3e0f8a
FR
1723 netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n",
1724 rp->cur_tx - 1, entry);
1725
6ed10654 1726 return NETDEV_TX_OK;
1da177e4
LT
1727}
1728
7ab87ff4
FR
1729static void rhine_irq_disable(struct rhine_private *rp)
1730{
1731 iowrite16(0x0000, rp->base + IntrEnable);
1732 mmiowb();
1733}
1734
1da177e4
LT
1735/* The interrupt handler does all of the Rx thread work and cleans up
1736 after the Tx thread. */
7d12e780 1737static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1da177e4
LT
1738{
1739 struct net_device *dev = dev_instance;
1740 struct rhine_private *rp = netdev_priv(dev);
7ab87ff4 1741 u32 status;
1da177e4
LT
1742 int handled = 0;
1743
7ab87ff4 1744 status = rhine_get_events(rp);
1da177e4 1745
fc3e0f8a 1746 netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status);
633949a1 1747
7ab87ff4
FR
1748 if (status & RHINE_EVENT) {
1749 handled = 1;
1da177e4 1750
7ab87ff4
FR
1751 rhine_irq_disable(rp);
1752 napi_schedule(&rp->napi);
1753 }
1da177e4 1754
7ab87ff4 1755 if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) {
fc3e0f8a
FR
1756 netif_err(rp, intr, dev, "Something Wicked happened! %08x\n",
1757 status);
1da177e4
LT
1758 }
1759
1da177e4
LT
1760 return IRQ_RETVAL(handled);
1761}
1762
1763/* This routine is logically part of the interrupt handler, but isolated
1764 for clarity. */
1765static void rhine_tx(struct net_device *dev)
1766{
1767 struct rhine_private *rp = netdev_priv(dev);
1768 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1769
1da177e4
LT
1770 /* find and cleanup dirty tx descriptors */
1771 while (rp->dirty_tx != rp->cur_tx) {
1772 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
fc3e0f8a
FR
1773 netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n",
1774 entry, txstatus);
1da177e4
LT
1775 if (txstatus & DescOwn)
1776 break;
1777 if (txstatus & 0x8000) {
fc3e0f8a
FR
1778 netif_dbg(rp, tx_done, dev,
1779 "Transmit error, Tx status %08x\n", txstatus);
553e2335
ED
1780 dev->stats.tx_errors++;
1781 if (txstatus & 0x0400)
1782 dev->stats.tx_carrier_errors++;
1783 if (txstatus & 0x0200)
1784 dev->stats.tx_window_errors++;
1785 if (txstatus & 0x0100)
1786 dev->stats.tx_aborted_errors++;
1787 if (txstatus & 0x0080)
1788 dev->stats.tx_heartbeat_errors++;
1da177e4
LT
1789 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1790 (txstatus & 0x0800) || (txstatus & 0x1000)) {
553e2335 1791 dev->stats.tx_fifo_errors++;
1da177e4
LT
1792 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1793 break; /* Keep the skb - we try again */
1794 }
1795 /* Transmitter restarted in 'abnormal' handler. */
1796 } else {
1797 if (rp->quirks & rqRhineI)
553e2335 1798 dev->stats.collisions += (txstatus >> 3) & 0x0F;
1da177e4 1799 else
553e2335 1800 dev->stats.collisions += txstatus & 0x0F;
fc3e0f8a
FR
1801 netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n",
1802 (txstatus >> 3) & 0xF, txstatus & 0xF);
f7b5d1b9
JG
1803
1804 u64_stats_update_begin(&rp->tx_stats.syncp);
1805 rp->tx_stats.bytes += rp->tx_skbuff[entry]->len;
1806 rp->tx_stats.packets++;
1807 u64_stats_update_end(&rp->tx_stats.syncp);
1da177e4
LT
1808 }
1809 /* Free the original skb. */
1810 if (rp->tx_skbuff_dma[entry]) {
1811 pci_unmap_single(rp->pdev,
1812 rp->tx_skbuff_dma[entry],
1813 rp->tx_skbuff[entry]->len,
1814 PCI_DMA_TODEVICE);
1815 }
559bcac3 1816 dev_kfree_skb(rp->tx_skbuff[entry]);
1da177e4
LT
1817 rp->tx_skbuff[entry] = NULL;
1818 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1819 }
1820 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1821 netif_wake_queue(dev);
1da177e4
LT
1822}
1823
38f49e88
RL
1824/**
1825 * rhine_get_vlan_tci - extract TCI from Rx data buffer
1826 * @skb: pointer to sk_buff
1827 * @data_size: used data area of the buffer including CRC
1828 *
1829 * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q
1830 * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte
1831 * aligned following the CRC.
1832 */
1833static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size)
1834{
1835 u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2;
4562b2fe 1836 return be16_to_cpup((__be16 *)trailer);
38f49e88
RL
1837}
1838
633949a1
RL
1839/* Process up to limit frames from receive ring */
1840static int rhine_rx(struct net_device *dev, int limit)
1da177e4
LT
1841{
1842 struct rhine_private *rp = netdev_priv(dev);
633949a1 1843 int count;
1da177e4 1844 int entry = rp->cur_rx % RX_RING_SIZE;
1da177e4 1845
fc3e0f8a
FR
1846 netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__,
1847 entry, le32_to_cpu(rp->rx_head_desc->rx_status));
1da177e4
LT
1848
1849 /* If EOP is set on the next entry, it's a new packet. Send it up. */
633949a1 1850 for (count = 0; count < limit; ++count) {
1da177e4
LT
1851 struct rx_desc *desc = rp->rx_head_desc;
1852 u32 desc_status = le32_to_cpu(desc->rx_status);
38f49e88 1853 u32 desc_length = le32_to_cpu(desc->desc_length);
1da177e4
LT
1854 int data_size = desc_status >> 16;
1855
633949a1
RL
1856 if (desc_status & DescOwn)
1857 break;
1858
fc3e0f8a
FR
1859 netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__,
1860 desc_status);
633949a1 1861
1da177e4
LT
1862 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1863 if ((desc_status & RxWholePkt) != RxWholePkt) {
df4511fe
JP
1864 netdev_warn(dev,
1865 "Oversized Ethernet frame spanned multiple buffers, "
1866 "entry %#x length %d status %08x!\n",
1867 entry, data_size,
1868 desc_status);
1869 netdev_warn(dev,
1870 "Oversized Ethernet frame %p vs %p\n",
1871 rp->rx_head_desc,
1872 &rp->rx_ring[entry]);
553e2335 1873 dev->stats.rx_length_errors++;
1da177e4
LT
1874 } else if (desc_status & RxErr) {
1875 /* There was a error. */
fc3e0f8a
FR
1876 netif_dbg(rp, rx_err, dev,
1877 "%s() Rx error %08x\n", __func__,
1878 desc_status);
553e2335
ED
1879 dev->stats.rx_errors++;
1880 if (desc_status & 0x0030)
1881 dev->stats.rx_length_errors++;
1882 if (desc_status & 0x0048)
1883 dev->stats.rx_fifo_errors++;
1884 if (desc_status & 0x0004)
1885 dev->stats.rx_frame_errors++;
1da177e4
LT
1886 if (desc_status & 0x0002) {
1887 /* this can also be updated outside the interrupt handler */
1888 spin_lock(&rp->lock);
553e2335 1889 dev->stats.rx_crc_errors++;
1da177e4
LT
1890 spin_unlock(&rp->lock);
1891 }
1892 }
1893 } else {
89d71a66 1894 struct sk_buff *skb = NULL;
1da177e4
LT
1895 /* Length should omit the CRC */
1896 int pkt_len = data_size - 4;
38f49e88 1897 u16 vlan_tci = 0;
1da177e4
LT
1898
1899 /* Check if the packet is long enough to accept without
1900 copying to a minimally-sized skbuff. */
89d71a66
ED
1901 if (pkt_len < rx_copybreak)
1902 skb = netdev_alloc_skb_ip_align(dev, pkt_len);
1903 if (skb) {
1da177e4
LT
1904 pci_dma_sync_single_for_cpu(rp->pdev,
1905 rp->rx_skbuff_dma[entry],
1906 rp->rx_buf_sz,
1907 PCI_DMA_FROMDEVICE);
1908
8c7b7faa 1909 skb_copy_to_linear_data(skb,
689be439 1910 rp->rx_skbuff[entry]->data,
8c7b7faa 1911 pkt_len);
1da177e4
LT
1912 skb_put(skb, pkt_len);
1913 pci_dma_sync_single_for_device(rp->pdev,
1914 rp->rx_skbuff_dma[entry],
1915 rp->rx_buf_sz,
1916 PCI_DMA_FROMDEVICE);
1917 } else {
1918 skb = rp->rx_skbuff[entry];
1919 if (skb == NULL) {
df4511fe 1920 netdev_err(dev, "Inconsistent Rx descriptor chain\n");
1da177e4
LT
1921 break;
1922 }
1923 rp->rx_skbuff[entry] = NULL;
1924 skb_put(skb, pkt_len);
1925 pci_unmap_single(rp->pdev,
1926 rp->rx_skbuff_dma[entry],
1927 rp->rx_buf_sz,
1928 PCI_DMA_FROMDEVICE);
1929 }
38f49e88
RL
1930
1931 if (unlikely(desc_length & DescTag))
1932 vlan_tci = rhine_get_vlan_tci(skb, data_size);
1933
1da177e4 1934 skb->protocol = eth_type_trans(skb, dev);
38f49e88
RL
1935
1936 if (unlikely(desc_length & DescTag))
1937 __vlan_hwaccel_put_tag(skb, vlan_tci);
633949a1 1938 netif_receive_skb(skb);
f7b5d1b9
JG
1939
1940 u64_stats_update_begin(&rp->rx_stats.syncp);
1941 rp->rx_stats.bytes += pkt_len;
1942 rp->rx_stats.packets++;
1943 u64_stats_update_end(&rp->rx_stats.syncp);
1da177e4
LT
1944 }
1945 entry = (++rp->cur_rx) % RX_RING_SIZE;
1946 rp->rx_head_desc = &rp->rx_ring[entry];
1947 }
1948
1949 /* Refill the Rx ring buffers. */
1950 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1951 struct sk_buff *skb;
1952 entry = rp->dirty_rx % RX_RING_SIZE;
1953 if (rp->rx_skbuff[entry] == NULL) {
b26b555a 1954 skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1da177e4
LT
1955 rp->rx_skbuff[entry] = skb;
1956 if (skb == NULL)
1957 break; /* Better luck next round. */
1da177e4 1958 rp->rx_skbuff_dma[entry] =
689be439 1959 pci_map_single(rp->pdev, skb->data,
1da177e4
LT
1960 rp->rx_buf_sz,
1961 PCI_DMA_FROMDEVICE);
1962 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1963 }
1964 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1965 }
633949a1
RL
1966
1967 return count;
1da177e4
LT
1968}
1969
1da177e4
LT
1970static void rhine_restart_tx(struct net_device *dev) {
1971 struct rhine_private *rp = netdev_priv(dev);
1972 void __iomem *ioaddr = rp->base;
1973 int entry = rp->dirty_tx % TX_RING_SIZE;
1974 u32 intr_status;
1975
1976 /*
25985edc 1977 * If new errors occurred, we need to sort them out before doing Tx.
1da177e4
LT
1978 * In that case the ISR will be back here RSN anyway.
1979 */
a20a28bc 1980 intr_status = rhine_get_events(rp);
1da177e4
LT
1981
1982 if ((intr_status & IntrTxErrSummary) == 0) {
1983
1984 /* We know better than the chip where it should continue. */
1985 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
1986 ioaddr + TxRingPtr);
1987
1988 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
1989 ioaddr + ChipCmd);
38f49e88
RL
1990
1991 if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000))
1992 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1993 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1994
1da177e4
LT
1995 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1996 ioaddr + ChipCmd1);
1997 IOSYNC;
1998 }
1999 else {
2000 /* This should never happen */
fc3e0f8a
FR
2001 netif_warn(rp, tx_err, dev, "another error occurred %08x\n",
2002 intr_status);
1da177e4
LT
2003 }
2004
2005}
2006
7ab87ff4 2007static void rhine_slow_event_task(struct work_struct *work)
1da177e4 2008{
7ab87ff4
FR
2009 struct rhine_private *rp =
2010 container_of(work, struct rhine_private, slow_event_task);
2011 struct net_device *dev = rp->dev;
2012 u32 intr_status;
1da177e4 2013
7ab87ff4
FR
2014 mutex_lock(&rp->task_lock);
2015
2016 if (!rp->task_enable)
2017 goto out_unlock;
2018
2019 intr_status = rhine_get_events(rp);
2020 rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW);
1da177e4
LT
2021
2022 if (intr_status & IntrLinkChange)
38bb6b28 2023 rhine_check_media(dev, 0);
1da177e4 2024
fc3e0f8a
FR
2025 if (intr_status & IntrPCIErr)
2026 netif_warn(rp, hw, dev, "PCI error\n");
2027
559bcac3 2028 iowrite16(RHINE_EVENT & 0xffff, rp->base + IntrEnable);
1da177e4 2029
7ab87ff4
FR
2030out_unlock:
2031 mutex_unlock(&rp->task_lock);
1da177e4
LT
2032}
2033
f7b5d1b9
JG
2034static struct rtnl_link_stats64 *
2035rhine_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
1da177e4
LT
2036{
2037 struct rhine_private *rp = netdev_priv(dev);
f7b5d1b9 2038 unsigned int start;
1da177e4 2039
7ab87ff4
FR
2040 spin_lock_bh(&rp->lock);
2041 rhine_update_rx_crc_and_missed_errord(rp);
2042 spin_unlock_bh(&rp->lock);
1da177e4 2043
f7b5d1b9
JG
2044 netdev_stats_to_stats64(stats, &dev->stats);
2045
2046 do {
2047 start = u64_stats_fetch_begin_bh(&rp->rx_stats.syncp);
2048 stats->rx_packets = rp->rx_stats.packets;
2049 stats->rx_bytes = rp->rx_stats.bytes;
2050 } while (u64_stats_fetch_retry_bh(&rp->rx_stats.syncp, start));
2051
2052 do {
2053 start = u64_stats_fetch_begin_bh(&rp->tx_stats.syncp);
2054 stats->tx_packets = rp->tx_stats.packets;
2055 stats->tx_bytes = rp->tx_stats.bytes;
2056 } while (u64_stats_fetch_retry_bh(&rp->tx_stats.syncp, start));
2057
2058 return stats;
1da177e4
LT
2059}
2060
2061static void rhine_set_rx_mode(struct net_device *dev)
2062{
2063 struct rhine_private *rp = netdev_priv(dev);
2064 void __iomem *ioaddr = rp->base;
2065 u32 mc_filter[2]; /* Multicast hash filter */
38f49e88
RL
2066 u8 rx_mode = 0x0C; /* Note: 0x02=accept runt, 0x01=accept errs */
2067 struct netdev_hw_addr *ha;
1da177e4
LT
2068
2069 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1da177e4
LT
2070 rx_mode = 0x1C;
2071 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2072 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
4cd24eaf 2073 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
8e95a202 2074 (dev->flags & IFF_ALLMULTI)) {
1da177e4
LT
2075 /* Too many to match, or accept all multicasts. */
2076 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2077 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
38f49e88
RL
2078 } else if (rp->pdev->revision >= VT6105M) {
2079 int i = 0;
2080 u32 mCAMmask = 0; /* 32 mCAMs (6105M and better) */
2081 netdev_for_each_mc_addr(ha, dev) {
2082 if (i == MCAM_SIZE)
2083 break;
2084 rhine_set_cam(ioaddr, i, ha->addr);
2085 mCAMmask |= 1 << i;
2086 i++;
2087 }
2088 rhine_set_cam_mask(ioaddr, mCAMmask);
1da177e4 2089 } else {
1da177e4 2090 memset(mc_filter, 0, sizeof(mc_filter));
22bedad3
JP
2091 netdev_for_each_mc_addr(ha, dev) {
2092 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
1da177e4
LT
2093
2094 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
2095 }
2096 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
2097 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1da177e4 2098 }
38f49e88
RL
2099 /* enable/disable VLAN receive filtering */
2100 if (rp->pdev->revision >= VT6105M) {
2101 if (dev->flags & IFF_PROMISC)
2102 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2103 else
2104 BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2105 }
2106 BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig);
1da177e4
LT
2107}
2108
2109static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2110{
2111 struct rhine_private *rp = netdev_priv(dev);
2112
23020ab3
RJ
2113 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2114 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2115 strlcpy(info->bus_info, pci_name(rp->pdev), sizeof(info->bus_info));
1da177e4
LT
2116}
2117
2118static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2119{
2120 struct rhine_private *rp = netdev_priv(dev);
2121 int rc;
2122
7ab87ff4 2123 mutex_lock(&rp->task_lock);
1da177e4 2124 rc = mii_ethtool_gset(&rp->mii_if, cmd);
7ab87ff4 2125 mutex_unlock(&rp->task_lock);
1da177e4
LT
2126
2127 return rc;
2128}
2129
2130static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2131{
2132 struct rhine_private *rp = netdev_priv(dev);
2133 int rc;
2134
7ab87ff4 2135 mutex_lock(&rp->task_lock);
1da177e4 2136 rc = mii_ethtool_sset(&rp->mii_if, cmd);
00b428c2 2137 rhine_set_carrier(&rp->mii_if);
7ab87ff4 2138 mutex_unlock(&rp->task_lock);
1da177e4
LT
2139
2140 return rc;
2141}
2142
2143static int netdev_nway_reset(struct net_device *dev)
2144{
2145 struct rhine_private *rp = netdev_priv(dev);
2146
2147 return mii_nway_restart(&rp->mii_if);
2148}
2149
2150static u32 netdev_get_link(struct net_device *dev)
2151{
2152 struct rhine_private *rp = netdev_priv(dev);
2153
2154 return mii_link_ok(&rp->mii_if);
2155}
2156
2157static u32 netdev_get_msglevel(struct net_device *dev)
2158{
fc3e0f8a
FR
2159 struct rhine_private *rp = netdev_priv(dev);
2160
2161 return rp->msg_enable;
1da177e4
LT
2162}
2163
2164static void netdev_set_msglevel(struct net_device *dev, u32 value)
2165{
fc3e0f8a
FR
2166 struct rhine_private *rp = netdev_priv(dev);
2167
2168 rp->msg_enable = value;
1da177e4
LT
2169}
2170
2171static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2172{
2173 struct rhine_private *rp = netdev_priv(dev);
2174
2175 if (!(rp->quirks & rqWOL))
2176 return;
2177
2178 spin_lock_irq(&rp->lock);
2179 wol->supported = WAKE_PHY | WAKE_MAGIC |
2180 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
2181 wol->wolopts = rp->wolopts;
2182 spin_unlock_irq(&rp->lock);
2183}
2184
2185static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2186{
2187 struct rhine_private *rp = netdev_priv(dev);
2188 u32 support = WAKE_PHY | WAKE_MAGIC |
2189 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
2190
2191 if (!(rp->quirks & rqWOL))
2192 return -EINVAL;
2193
2194 if (wol->wolopts & ~support)
2195 return -EINVAL;
2196
2197 spin_lock_irq(&rp->lock);
2198 rp->wolopts = wol->wolopts;
2199 spin_unlock_irq(&rp->lock);
2200
2201 return 0;
2202}
2203
7282d491 2204static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
2205 .get_drvinfo = netdev_get_drvinfo,
2206 .get_settings = netdev_get_settings,
2207 .set_settings = netdev_set_settings,
2208 .nway_reset = netdev_nway_reset,
2209 .get_link = netdev_get_link,
2210 .get_msglevel = netdev_get_msglevel,
2211 .set_msglevel = netdev_set_msglevel,
2212 .get_wol = rhine_get_wol,
2213 .set_wol = rhine_set_wol,
1da177e4
LT
2214};
2215
2216static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2217{
2218 struct rhine_private *rp = netdev_priv(dev);
2219 int rc;
2220
2221 if (!netif_running(dev))
2222 return -EINVAL;
2223
7ab87ff4 2224 mutex_lock(&rp->task_lock);
1da177e4 2225 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
00b428c2 2226 rhine_set_carrier(&rp->mii_if);
7ab87ff4 2227 mutex_unlock(&rp->task_lock);
1da177e4
LT
2228
2229 return rc;
2230}
2231
2232static int rhine_close(struct net_device *dev)
2233{
2234 struct rhine_private *rp = netdev_priv(dev);
2235 void __iomem *ioaddr = rp->base;
2236
7ab87ff4 2237 rhine_task_disable(rp);
bea3348e 2238 napi_disable(&rp->napi);
c0d7a021
JP
2239 netif_stop_queue(dev);
2240
fc3e0f8a
FR
2241 netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n",
2242 ioread16(ioaddr + ChipCmd));
1da177e4
LT
2243
2244 /* Switch to loopback mode to avoid hardware races. */
2245 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
2246
7ab87ff4 2247 rhine_irq_disable(rp);
1da177e4
LT
2248
2249 /* Stop the chip's Tx and Rx processes. */
2250 iowrite16(CmdStop, ioaddr + ChipCmd);
2251
1da177e4
LT
2252 free_irq(rp->pdev->irq, dev);
2253 free_rbufs(dev);
2254 free_tbufs(dev);
2255 free_ring(dev);
2256
2257 return 0;
2258}
2259
2260
76e239e1 2261static void rhine_remove_one(struct pci_dev *pdev)
1da177e4
LT
2262{
2263 struct net_device *dev = pci_get_drvdata(pdev);
2264 struct rhine_private *rp = netdev_priv(dev);
2265
2266 unregister_netdev(dev);
2267
2268 pci_iounmap(pdev, rp->base);
2269 pci_release_regions(pdev);
2270
2271 free_netdev(dev);
2272 pci_disable_device(pdev);
2273 pci_set_drvdata(pdev, NULL);
2274}
2275
d18c3db5 2276static void rhine_shutdown (struct pci_dev *pdev)
1da177e4 2277{
1da177e4
LT
2278 struct net_device *dev = pci_get_drvdata(pdev);
2279 struct rhine_private *rp = netdev_priv(dev);
2280 void __iomem *ioaddr = rp->base;
2281
2282 if (!(rp->quirks & rqWOL))
2283 return; /* Nothing to do for non-WOL adapters */
2284
2285 rhine_power_init(dev);
2286
2287 /* Make sure we use pattern 0, 1 and not 4, 5 */
2288 if (rp->quirks & rq6patterns)
f11cf25e 2289 iowrite8(0x04, ioaddr + WOLcgClr);
1da177e4 2290
7ab87ff4
FR
2291 spin_lock(&rp->lock);
2292
1da177e4
LT
2293 if (rp->wolopts & WAKE_MAGIC) {
2294 iowrite8(WOLmagic, ioaddr + WOLcrSet);
2295 /*
2296 * Turn EEPROM-controlled wake-up back on -- some hardware may
2297 * not cooperate otherwise.
2298 */
2299 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
2300 }
2301
2302 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
2303 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
2304
2305 if (rp->wolopts & WAKE_PHY)
2306 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
2307
2308 if (rp->wolopts & WAKE_UCAST)
2309 iowrite8(WOLucast, ioaddr + WOLcrSet);
2310
2311 if (rp->wolopts) {
2312 /* Enable legacy WOL (for old motherboards) */
2313 iowrite8(0x01, ioaddr + PwcfgSet);
2314 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
2315 }
2316
7ab87ff4
FR
2317 spin_unlock(&rp->lock);
2318
e92b9b3b 2319 if (system_state == SYSTEM_POWER_OFF && !avoid_D3) {
b933b4d9 2320 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
1da177e4 2321
e92b9b3b
FR
2322 pci_wake_from_d3(pdev, true);
2323 pci_set_power_state(pdev, PCI_D3hot);
2324 }
1da177e4
LT
2325}
2326
e92b9b3b
FR
2327#ifdef CONFIG_PM_SLEEP
2328static int rhine_suspend(struct device *device)
1da177e4 2329{
e92b9b3b 2330 struct pci_dev *pdev = to_pci_dev(device);
1da177e4
LT
2331 struct net_device *dev = pci_get_drvdata(pdev);
2332 struct rhine_private *rp = netdev_priv(dev);
1da177e4
LT
2333
2334 if (!netif_running(dev))
2335 return 0;
2336
7ab87ff4
FR
2337 rhine_task_disable(rp);
2338 rhine_irq_disable(rp);
bea3348e 2339 napi_disable(&rp->napi);
32b0f53e 2340
1da177e4 2341 netif_device_detach(dev);
1da177e4 2342
d18c3db5 2343 rhine_shutdown(pdev);
1da177e4 2344
1da177e4
LT
2345 return 0;
2346}
2347
e92b9b3b 2348static int rhine_resume(struct device *device)
1da177e4 2349{
e92b9b3b 2350 struct pci_dev *pdev = to_pci_dev(device);
1da177e4
LT
2351 struct net_device *dev = pci_get_drvdata(pdev);
2352 struct rhine_private *rp = netdev_priv(dev);
1da177e4
LT
2353
2354 if (!netif_running(dev))
2355 return 0;
2356
1da177e4
LT
2357#ifdef USE_MMIO
2358 enable_mmio(rp->pioaddr, rp->quirks);
2359#endif
2360 rhine_power_init(dev);
2361 free_tbufs(dev);
2362 free_rbufs(dev);
2363 alloc_tbufs(dev);
2364 alloc_rbufs(dev);
7ab87ff4
FR
2365 rhine_task_enable(rp);
2366 spin_lock_bh(&rp->lock);
1da177e4 2367 init_registers(dev);
7ab87ff4 2368 spin_unlock_bh(&rp->lock);
1da177e4
LT
2369
2370 netif_device_attach(dev);
2371
2372 return 0;
2373}
e92b9b3b
FR
2374
2375static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume);
2376#define RHINE_PM_OPS (&rhine_pm_ops)
2377
2378#else
2379
2380#define RHINE_PM_OPS NULL
2381
2382#endif /* !CONFIG_PM_SLEEP */
1da177e4
LT
2383
2384static struct pci_driver rhine_driver = {
2385 .name = DRV_NAME,
2386 .id_table = rhine_pci_tbl,
2387 .probe = rhine_init_one,
76e239e1 2388 .remove = rhine_remove_one,
e92b9b3b
FR
2389 .shutdown = rhine_shutdown,
2390 .driver.pm = RHINE_PM_OPS,
1da177e4
LT
2391};
2392
e84df485
RL
2393static struct dmi_system_id __initdata rhine_dmi_table[] = {
2394 {
2395 .ident = "EPIA-M",
2396 .matches = {
2397 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2398 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2399 },
2400 },
2401 {
2402 .ident = "KV7",
2403 .matches = {
2404 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2405 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2406 },
2407 },
2408 { NULL }
2409};
1da177e4
LT
2410
2411static int __init rhine_init(void)
2412{
2413/* when a module, this is printed whether or not devices are found in probe */
2414#ifdef MODULE
df4511fe 2415 pr_info("%s\n", version);
1da177e4 2416#endif
e84df485
RL
2417 if (dmi_check_system(rhine_dmi_table)) {
2418 /* these BIOSes fail at PXE boot if chip is in D3 */
eb939922 2419 avoid_D3 = true;
df4511fe 2420 pr_warn("Broken BIOS detected, avoid_D3 enabled\n");
e84df485
RL
2421 }
2422 else if (avoid_D3)
df4511fe 2423 pr_info("avoid_D3 set\n");
e84df485 2424
29917620 2425 return pci_register_driver(&rhine_driver);
1da177e4
LT
2426}
2427
2428
2429static void __exit rhine_cleanup(void)
2430{
2431 pci_unregister_driver(&rhine_driver);
2432}
2433
2434
2435module_init(rhine_init);
2436module_exit(rhine_cleanup);
This page took 1.364176 seconds and 5 git commands to generate.