8a3b7a25 |
1 | /* |
2 | * Xilinx Axi Ethernet device driver |
3 | * |
4 | * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi |
5 | * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net> |
6 | * Copyright (c) 2008-2009 Secret Lab Technologies Ltd. |
7 | * Copyright (c) 2010 Xilinx, Inc. All rights reserved. |
8 | * Copyright (c) 2012 Daniel Borkmann, <daniel.borkmann@tik.ee.ethz.ch> |
9 | * Copyright (c) 2012 Ariane Keller, <ariane.keller@tik.ee.ethz.ch> |
10 | * |
11 | * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6 |
12 | * and Spartan6. |
13 | * |
14 | * TODO: |
15 | * - Add Axi Fifo support. |
16 | * - Factor out Axi DMA code into separate driver. |
17 | * - Test and fix basic multicast filtering. |
18 | * - Add support for extended multicast filtering. |
19 | * - Test basic VLAN support. |
20 | * - Add support for extended VLAN support. |
21 | */ |
22 | |
23 | #include <linux/delay.h> |
24 | #include <linux/etherdevice.h> |
25 | #include <linux/init.h> |
26 | #include <linux/module.h> |
27 | #include <linux/netdevice.h> |
28 | #include <linux/of_mdio.h> |
29 | #include <linux/of_platform.h> |
30 | #include <linux/of_address.h> |
31 | #include <linux/skbuff.h> |
32 | #include <linux/spinlock.h> |
33 | #include <linux/phy.h> |
34 | #include <linux/mii.h> |
35 | #include <linux/ethtool.h> |
36 | |
37 | #include "xilinx_axienet.h" |
38 | |
39 | /* Descriptors defines for Tx and Rx DMA - 2^n for the best performance */ |
40 | #define TX_BD_NUM 64 |
41 | #define RX_BD_NUM 128 |
42 | |
43 | /* Must be shorter than length of ethtool_drvinfo.driver field to fit */ |
44 | #define DRIVER_NAME "xaxienet" |
45 | #define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver" |
46 | #define DRIVER_VERSION "1.00a" |
47 | |
48 | #define AXIENET_REGS_N 32 |
49 | |
50 | /* Match table for of_platform binding */ |
51 | static struct of_device_id axienet_of_match[] __devinitdata = { |
52 | { .compatible = "xlnx,axi-ethernet-1.00.a", }, |
53 | { .compatible = "xlnx,axi-ethernet-1.01.a", }, |
54 | { .compatible = "xlnx,axi-ethernet-2.01.a", }, |
55 | {}, |
56 | }; |
57 | |
58 | MODULE_DEVICE_TABLE(of, axienet_of_match); |
59 | |
60 | /* Option table for setting up Axi Ethernet hardware options */ |
61 | static struct axienet_option axienet_options[] = { |
62 | /* Turn on jumbo packet support for both Rx and Tx */ |
63 | { |
64 | .opt = XAE_OPTION_JUMBO, |
65 | .reg = XAE_TC_OFFSET, |
66 | .m_or = XAE_TC_JUM_MASK, |
67 | }, { |
68 | .opt = XAE_OPTION_JUMBO, |
69 | .reg = XAE_RCW1_OFFSET, |
70 | .m_or = XAE_RCW1_JUM_MASK, |
71 | }, { /* Turn on VLAN packet support for both Rx and Tx */ |
72 | .opt = XAE_OPTION_VLAN, |
73 | .reg = XAE_TC_OFFSET, |
74 | .m_or = XAE_TC_VLAN_MASK, |
75 | }, { |
76 | .opt = XAE_OPTION_VLAN, |
77 | .reg = XAE_RCW1_OFFSET, |
78 | .m_or = XAE_RCW1_VLAN_MASK, |
79 | }, { /* Turn on FCS stripping on receive packets */ |
80 | .opt = XAE_OPTION_FCS_STRIP, |
81 | .reg = XAE_RCW1_OFFSET, |
82 | .m_or = XAE_RCW1_FCS_MASK, |
83 | }, { /* Turn on FCS insertion on transmit packets */ |
84 | .opt = XAE_OPTION_FCS_INSERT, |
85 | .reg = XAE_TC_OFFSET, |
86 | .m_or = XAE_TC_FCS_MASK, |
87 | }, { /* Turn off length/type field checking on receive packets */ |
88 | .opt = XAE_OPTION_LENTYPE_ERR, |
89 | .reg = XAE_RCW1_OFFSET, |
90 | .m_or = XAE_RCW1_LT_DIS_MASK, |
91 | }, { /* Turn on Rx flow control */ |
92 | .opt = XAE_OPTION_FLOW_CONTROL, |
93 | .reg = XAE_FCC_OFFSET, |
94 | .m_or = XAE_FCC_FCRX_MASK, |
95 | }, { /* Turn on Tx flow control */ |
96 | .opt = XAE_OPTION_FLOW_CONTROL, |
97 | .reg = XAE_FCC_OFFSET, |
98 | .m_or = XAE_FCC_FCTX_MASK, |
99 | }, { /* Turn on promiscuous frame filtering */ |
100 | .opt = XAE_OPTION_PROMISC, |
101 | .reg = XAE_FMI_OFFSET, |
102 | .m_or = XAE_FMI_PM_MASK, |
103 | }, { /* Enable transmitter */ |
104 | .opt = XAE_OPTION_TXEN, |
105 | .reg = XAE_TC_OFFSET, |
106 | .m_or = XAE_TC_TX_MASK, |
107 | }, { /* Enable receiver */ |
108 | .opt = XAE_OPTION_RXEN, |
109 | .reg = XAE_RCW1_OFFSET, |
110 | .m_or = XAE_RCW1_RX_MASK, |
111 | }, |
112 | {} |
113 | }; |
114 | |
115 | /** |
116 | * axienet_dma_in32 - Memory mapped Axi DMA register read |
117 | * @lp: Pointer to axienet local structure |
118 | * @reg: Address offset from the base address of the Axi DMA core |
119 | * |
120 | * returns: The contents of the Axi DMA register |
121 | * |
122 | * This function returns the contents of the corresponding Axi DMA register. |
123 | */ |
124 | static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg) |
125 | { |
126 | return in_be32(lp->dma_regs + reg); |
127 | } |
128 | |
129 | /** |
130 | * axienet_dma_out32 - Memory mapped Axi DMA register write. |
131 | * @lp: Pointer to axienet local structure |
132 | * @reg: Address offset from the base address of the Axi DMA core |
133 | * @value: Value to be written into the Axi DMA register |
134 | * |
135 | * This function writes the desired value into the corresponding Axi DMA |
136 | * register. |
137 | */ |
138 | static inline void axienet_dma_out32(struct axienet_local *lp, |
139 | off_t reg, u32 value) |
140 | { |
141 | out_be32((lp->dma_regs + reg), value); |
142 | } |
143 | |
144 | /** |
145 | * axienet_dma_bd_release - Release buffer descriptor rings |
146 | * @ndev: Pointer to the net_device structure |
147 | * |
148 | * This function is used to release the descriptors allocated in |
149 | * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet |
150 | * driver stop api is called. |
151 | */ |
152 | static void axienet_dma_bd_release(struct net_device *ndev) |
153 | { |
154 | int i; |
155 | struct axienet_local *lp = netdev_priv(ndev); |
156 | |
157 | for (i = 0; i < RX_BD_NUM; i++) { |
158 | dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys, |
159 | lp->max_frm_size, DMA_FROM_DEVICE); |
160 | dev_kfree_skb((struct sk_buff *) |
161 | (lp->rx_bd_v[i].sw_id_offset)); |
162 | } |
163 | |
164 | if (lp->rx_bd_v) { |
165 | dma_free_coherent(ndev->dev.parent, |
166 | sizeof(*lp->rx_bd_v) * RX_BD_NUM, |
167 | lp->rx_bd_v, |
168 | lp->rx_bd_p); |
169 | } |
170 | if (lp->tx_bd_v) { |
171 | dma_free_coherent(ndev->dev.parent, |
172 | sizeof(*lp->tx_bd_v) * TX_BD_NUM, |
173 | lp->tx_bd_v, |
174 | lp->tx_bd_p); |
175 | } |
176 | } |
177 | |
178 | /** |
179 | * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA |
180 | * @ndev: Pointer to the net_device structure |
181 | * |
182 | * returns: 0, on success |
183 | * -ENOMEM, on failure |
184 | * |
185 | * This function is called to initialize the Rx and Tx DMA descriptor |
186 | * rings. This initializes the descriptors with required default values |
187 | * and is called when Axi Ethernet driver reset is called. |
188 | */ |
189 | static int axienet_dma_bd_init(struct net_device *ndev) |
190 | { |
191 | u32 cr; |
192 | int i; |
193 | struct sk_buff *skb; |
194 | struct axienet_local *lp = netdev_priv(ndev); |
195 | |
196 | /* Reset the indexes which are used for accessing the BDs */ |
197 | lp->tx_bd_ci = 0; |
198 | lp->tx_bd_tail = 0; |
199 | lp->rx_bd_ci = 0; |
200 | |
201 | /* |
202 | * Allocate the Tx and Rx buffer descriptors. |
203 | */ |
204 | lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent, |
205 | sizeof(*lp->tx_bd_v) * TX_BD_NUM, |
206 | &lp->tx_bd_p, |
207 | GFP_KERNEL); |
208 | if (!lp->tx_bd_v) { |
209 | dev_err(&ndev->dev, "unable to allocate DMA Tx buffer " |
210 | "descriptors"); |
211 | goto out; |
212 | } |
213 | |
214 | lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent, |
215 | sizeof(*lp->rx_bd_v) * RX_BD_NUM, |
216 | &lp->rx_bd_p, |
217 | GFP_KERNEL); |
218 | if (!lp->rx_bd_v) { |
219 | dev_err(&ndev->dev, "unable to allocate DMA Rx buffer " |
220 | "descriptors"); |
221 | goto out; |
222 | } |
223 | |
224 | memset(lp->tx_bd_v, 0, sizeof(*lp->tx_bd_v) * TX_BD_NUM); |
225 | for (i = 0; i < TX_BD_NUM; i++) { |
226 | lp->tx_bd_v[i].next = lp->tx_bd_p + |
227 | sizeof(*lp->tx_bd_v) * |
228 | ((i + 1) % TX_BD_NUM); |
229 | } |
230 | |
231 | memset(lp->rx_bd_v, 0, sizeof(*lp->rx_bd_v) * RX_BD_NUM); |
232 | for (i = 0; i < RX_BD_NUM; i++) { |
233 | lp->rx_bd_v[i].next = lp->rx_bd_p + |
234 | sizeof(*lp->rx_bd_v) * |
235 | ((i + 1) % RX_BD_NUM); |
236 | |
237 | skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size); |
238 | if (!skb) { |
239 | dev_err(&ndev->dev, "alloc_skb error %d\n", i); |
240 | goto out; |
241 | } |
242 | |
243 | lp->rx_bd_v[i].sw_id_offset = (u32) skb; |
244 | lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent, |
245 | skb->data, |
246 | lp->max_frm_size, |
247 | DMA_FROM_DEVICE); |
248 | lp->rx_bd_v[i].cntrl = lp->max_frm_size; |
249 | } |
250 | |
251 | /* Start updating the Rx channel control register */ |
252 | cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); |
253 | /* Update the interrupt coalesce count */ |
254 | cr = ((cr & ~XAXIDMA_COALESCE_MASK) | |
255 | ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT)); |
256 | /* Update the delay timer count */ |
257 | cr = ((cr & ~XAXIDMA_DELAY_MASK) | |
258 | (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT)); |
259 | /* Enable coalesce, delay timer and error interrupts */ |
260 | cr |= XAXIDMA_IRQ_ALL_MASK; |
261 | /* Write to the Rx channel control register */ |
262 | axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr); |
263 | |
264 | /* Start updating the Tx channel control register */ |
265 | cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); |
266 | /* Update the interrupt coalesce count */ |
267 | cr = (((cr & ~XAXIDMA_COALESCE_MASK)) | |
268 | ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT)); |
269 | /* Update the delay timer count */ |
270 | cr = (((cr & ~XAXIDMA_DELAY_MASK)) | |
271 | (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT)); |
272 | /* Enable coalesce, delay timer and error interrupts */ |
273 | cr |= XAXIDMA_IRQ_ALL_MASK; |
274 | /* Write to the Tx channel control register */ |
275 | axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr); |
276 | |
277 | /* Populate the tail pointer and bring the Rx Axi DMA engine out of |
278 | * halted state. This will make the Rx side ready for reception.*/ |
279 | axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p); |
280 | cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); |
281 | axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, |
282 | cr | XAXIDMA_CR_RUNSTOP_MASK); |
283 | axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p + |
284 | (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1))); |
285 | |
286 | /* Write to the RS (Run-stop) bit in the Tx channel control register. |
287 | * Tx channel is now ready to run. But only after we write to the |
288 | * tail pointer register that the Tx channel will start transmitting */ |
289 | axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p); |
290 | cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); |
291 | axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, |
292 | cr | XAXIDMA_CR_RUNSTOP_MASK); |
293 | |
294 | return 0; |
295 | out: |
296 | axienet_dma_bd_release(ndev); |
297 | return -ENOMEM; |
298 | } |
299 | |
300 | /** |
301 | * axienet_set_mac_address - Write the MAC address |
302 | * @ndev: Pointer to the net_device structure |
303 | * @address: 6 byte Address to be written as MAC address |
304 | * |
305 | * This function is called to initialize the MAC address of the Axi Ethernet |
306 | * core. It writes to the UAW0 and UAW1 registers of the core. |
307 | */ |
308 | static void axienet_set_mac_address(struct net_device *ndev, void *address) |
309 | { |
310 | struct axienet_local *lp = netdev_priv(ndev); |
311 | |
312 | if (address) |
313 | memcpy(ndev->dev_addr, address, ETH_ALEN); |
314 | if (!is_valid_ether_addr(ndev->dev_addr)) |
315 | random_ether_addr(ndev->dev_addr); |
316 | |
317 | /* Set up unicast MAC address filter set its mac address */ |
318 | axienet_iow(lp, XAE_UAW0_OFFSET, |
319 | (ndev->dev_addr[0]) | |
320 | (ndev->dev_addr[1] << 8) | |
321 | (ndev->dev_addr[2] << 16) | |
322 | (ndev->dev_addr[3] << 24)); |
323 | axienet_iow(lp, XAE_UAW1_OFFSET, |
324 | (((axienet_ior(lp, XAE_UAW1_OFFSET)) & |
325 | ~XAE_UAW1_UNICASTADDR_MASK) | |
326 | (ndev->dev_addr[4] | |
327 | (ndev->dev_addr[5] << 8)))); |
328 | } |
329 | |
330 | /** |
331 | * netdev_set_mac_address - Write the MAC address (from outside the driver) |
332 | * @ndev: Pointer to the net_device structure |
333 | * @p: 6 byte Address to be written as MAC address |
334 | * |
335 | * returns: 0 for all conditions. Presently, there is no failure case. |
336 | * |
337 | * This function is called to initialize the MAC address of the Axi Ethernet |
338 | * core. It calls the core specific axienet_set_mac_address. This is the |
339 | * function that goes into net_device_ops structure entry ndo_set_mac_address. |
340 | */ |
341 | static int netdev_set_mac_address(struct net_device *ndev, void *p) |
342 | { |
343 | struct sockaddr *addr = p; |
344 | axienet_set_mac_address(ndev, addr->sa_data); |
345 | return 0; |
346 | } |
347 | |
348 | /** |
349 | * axienet_set_multicast_list - Prepare the multicast table |
350 | * @ndev: Pointer to the net_device structure |
351 | * |
352 | * This function is called to initialize the multicast table during |
353 | * initialization. The Axi Ethernet basic multicast support has a four-entry |
354 | * multicast table which is initialized here. Additionally this function |
355 | * goes into the net_device_ops structure entry ndo_set_multicast_list. This |
356 | * means whenever the multicast table entries need to be updated this |
357 | * function gets called. |
358 | */ |
359 | static void axienet_set_multicast_list(struct net_device *ndev) |
360 | { |
361 | int i; |
362 | u32 reg, af0reg, af1reg; |
363 | struct axienet_local *lp = netdev_priv(ndev); |
364 | |
365 | if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) || |
366 | netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) { |
367 | /* We must make the kernel realize we had to move into |
368 | * promiscuous mode. If it was a promiscuous mode request |
369 | * the flag is already set. If not we set it. */ |
370 | ndev->flags |= IFF_PROMISC; |
371 | reg = axienet_ior(lp, XAE_FMI_OFFSET); |
372 | reg |= XAE_FMI_PM_MASK; |
373 | axienet_iow(lp, XAE_FMI_OFFSET, reg); |
374 | dev_info(&ndev->dev, "Promiscuous mode enabled.\n"); |
375 | } else if (!netdev_mc_empty(ndev)) { |
376 | struct netdev_hw_addr *ha; |
377 | |
378 | i = 0; |
379 | netdev_for_each_mc_addr(ha, ndev) { |
380 | if (i >= XAE_MULTICAST_CAM_TABLE_NUM) |
381 | break; |
382 | |
383 | af0reg = (ha->addr[0]); |
384 | af0reg |= (ha->addr[1] << 8); |
385 | af0reg |= (ha->addr[2] << 16); |
386 | af0reg |= (ha->addr[3] << 24); |
387 | |
388 | af1reg = (ha->addr[4]); |
389 | af1reg |= (ha->addr[5] << 8); |
390 | |
391 | reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00; |
392 | reg |= i; |
393 | |
394 | axienet_iow(lp, XAE_FMI_OFFSET, reg); |
395 | axienet_iow(lp, XAE_AF0_OFFSET, af0reg); |
396 | axienet_iow(lp, XAE_AF1_OFFSET, af1reg); |
397 | i++; |
398 | } |
399 | } else { |
400 | reg = axienet_ior(lp, XAE_FMI_OFFSET); |
401 | reg &= ~XAE_FMI_PM_MASK; |
402 | |
403 | axienet_iow(lp, XAE_FMI_OFFSET, reg); |
404 | |
405 | for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) { |
406 | reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00; |
407 | reg |= i; |
408 | |
409 | axienet_iow(lp, XAE_FMI_OFFSET, reg); |
410 | axienet_iow(lp, XAE_AF0_OFFSET, 0); |
411 | axienet_iow(lp, XAE_AF1_OFFSET, 0); |
412 | } |
413 | |
414 | dev_info(&ndev->dev, "Promiscuous mode disabled.\n"); |
415 | } |
416 | } |
417 | |
418 | /** |
419 | * axienet_setoptions - Set an Axi Ethernet option |
420 | * @ndev: Pointer to the net_device structure |
421 | * @options: Option to be enabled/disabled |
422 | * |
423 | * The Axi Ethernet core has multiple features which can be selectively turned |
424 | * on or off. The typical options could be jumbo frame option, basic VLAN |
425 | * option, promiscuous mode option etc. This function is used to set or clear |
426 | * these options in the Axi Ethernet hardware. This is done through |
427 | * axienet_option structure . |
428 | */ |
429 | static void axienet_setoptions(struct net_device *ndev, u32 options) |
430 | { |
431 | int reg; |
432 | struct axienet_local *lp = netdev_priv(ndev); |
433 | struct axienet_option *tp = &axienet_options[0]; |
434 | |
435 | while (tp->opt) { |
436 | reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or)); |
437 | if (options & tp->opt) |
438 | reg |= tp->m_or; |
439 | axienet_iow(lp, tp->reg, reg); |
440 | tp++; |
441 | } |
442 | |
443 | lp->options |= options; |
444 | } |
445 | |
446 | static void __axienet_device_reset(struct axienet_local *lp, |
447 | struct device *dev, off_t offset) |
448 | { |
449 | u32 timeout; |
450 | /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset |
451 | * process of Axi DMA takes a while to complete as all pending |
452 | * commands/transfers will be flushed or completed during this |
453 | * reset process. */ |
454 | axienet_dma_out32(lp, offset, XAXIDMA_CR_RESET_MASK); |
455 | timeout = DELAY_OF_ONE_MILLISEC; |
456 | while (axienet_dma_in32(lp, offset) & XAXIDMA_CR_RESET_MASK) { |
457 | udelay(1); |
458 | if (--timeout == 0) { |
459 | dev_err(dev, "axienet_device_reset DMA " |
460 | "reset timeout!\n"); |
461 | break; |
462 | } |
463 | } |
464 | } |
465 | |
466 | /** |
467 | * axienet_device_reset - Reset and initialize the Axi Ethernet hardware. |
468 | * @ndev: Pointer to the net_device structure |
469 | * |
470 | * This function is called to reset and initialize the Axi Ethernet core. This |
471 | * is typically called during initialization. It does a reset of the Axi DMA |
472 | * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines |
473 | * areconnected to Axi Ethernet reset lines, this in turn resets the Axi |
474 | * Ethernet core. No separate hardware reset is done for the Axi Ethernet |
475 | * core. |
476 | */ |
477 | static void axienet_device_reset(struct net_device *ndev) |
478 | { |
479 | u32 axienet_status; |
480 | struct axienet_local *lp = netdev_priv(ndev); |
481 | |
482 | __axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET); |
483 | __axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET); |
484 | |
485 | lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE; |
486 | lp->options &= (~XAE_OPTION_JUMBO); |
487 | |
488 | if ((ndev->mtu > XAE_MTU) && |
489 | (ndev->mtu <= XAE_JUMBO_MTU) && |
490 | (lp->jumbo_support)) { |
491 | lp->max_frm_size = ndev->mtu + XAE_HDR_VLAN_SIZE + |
492 | XAE_TRL_SIZE; |
493 | lp->options |= XAE_OPTION_JUMBO; |
494 | } |
495 | |
496 | if (axienet_dma_bd_init(ndev)) { |
497 | dev_err(&ndev->dev, "axienet_device_reset descriptor " |
498 | "allocation failed\n"); |
499 | } |
500 | |
501 | axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET); |
502 | axienet_status &= ~XAE_RCW1_RX_MASK; |
503 | axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status); |
504 | |
505 | axienet_status = axienet_ior(lp, XAE_IP_OFFSET); |
506 | if (axienet_status & XAE_INT_RXRJECT_MASK) |
507 | axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK); |
508 | |
509 | axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK); |
510 | |
511 | /* Sync default options with HW but leave receiver and |
512 | * transmitter disabled.*/ |
513 | axienet_setoptions(ndev, lp->options & |
514 | ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); |
515 | axienet_set_mac_address(ndev, NULL); |
516 | axienet_set_multicast_list(ndev); |
517 | axienet_setoptions(ndev, lp->options); |
518 | |
519 | ndev->trans_start = jiffies; |
520 | } |
521 | |
522 | /** |
523 | * axienet_adjust_link - Adjust the PHY link speed/duplex. |
524 | * @ndev: Pointer to the net_device structure |
525 | * |
526 | * This function is called to change the speed and duplex setting after |
527 | * auto negotiation is done by the PHY. This is the function that gets |
528 | * registered with the PHY interface through the "of_phy_connect" call. |
529 | */ |
530 | static void axienet_adjust_link(struct net_device *ndev) |
531 | { |
532 | u32 emmc_reg; |
533 | u32 link_state; |
534 | u32 setspeed = 1; |
535 | struct axienet_local *lp = netdev_priv(ndev); |
536 | struct phy_device *phy = lp->phy_dev; |
537 | |
538 | link_state = phy->speed | (phy->duplex << 1) | phy->link; |
539 | if (lp->last_link != link_state) { |
540 | if ((phy->speed == SPEED_10) || (phy->speed == SPEED_100)) { |
541 | if (lp->phy_type == XAE_PHY_TYPE_1000BASE_X) |
542 | setspeed = 0; |
543 | } else { |
544 | if ((phy->speed == SPEED_1000) && |
545 | (lp->phy_type == XAE_PHY_TYPE_MII)) |
546 | setspeed = 0; |
547 | } |
548 | |
549 | if (setspeed == 1) { |
550 | emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET); |
551 | emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK; |
552 | |
553 | switch (phy->speed) { |
554 | case SPEED_1000: |
555 | emmc_reg |= XAE_EMMC_LINKSPD_1000; |
556 | break; |
557 | case SPEED_100: |
558 | emmc_reg |= XAE_EMMC_LINKSPD_100; |
559 | break; |
560 | case SPEED_10: |
561 | emmc_reg |= XAE_EMMC_LINKSPD_10; |
562 | break; |
563 | default: |
564 | dev_err(&ndev->dev, "Speed other than 10, 100 " |
565 | "or 1Gbps is not supported\n"); |
566 | break; |
567 | } |
568 | |
569 | axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg); |
570 | lp->last_link = link_state; |
571 | phy_print_status(phy); |
572 | } else { |
573 | dev_err(&ndev->dev, "Error setting Axi Ethernet " |
574 | "mac speed\n"); |
575 | } |
576 | } |
577 | } |
578 | |
579 | /** |
580 | * axienet_start_xmit_done - Invoked once a transmit is completed by the |
581 | * Axi DMA Tx channel. |
582 | * @ndev: Pointer to the net_device structure |
583 | * |
584 | * This function is invoked from the Axi DMA Tx isr to notify the completion |
585 | * of transmit operation. It clears fields in the corresponding Tx BDs and |
586 | * unmaps the corresponding buffer so that CPU can regain ownership of the |
587 | * buffer. It finally invokes "netif_wake_queue" to restart transmission if |
588 | * required. |
589 | */ |
590 | static void axienet_start_xmit_done(struct net_device *ndev) |
591 | { |
592 | u32 size = 0; |
593 | u32 packets = 0; |
594 | struct axienet_local *lp = netdev_priv(ndev); |
595 | struct axidma_bd *cur_p; |
596 | unsigned int status = 0; |
597 | |
598 | cur_p = &lp->tx_bd_v[lp->tx_bd_ci]; |
599 | status = cur_p->status; |
600 | while (status & XAXIDMA_BD_STS_COMPLETE_MASK) { |
601 | dma_unmap_single(ndev->dev.parent, cur_p->phys, |
602 | (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK), |
603 | DMA_TO_DEVICE); |
604 | if (cur_p->app4) |
605 | dev_kfree_skb_irq((struct sk_buff *)cur_p->app4); |
606 | /*cur_p->phys = 0;*/ |
607 | cur_p->app0 = 0; |
608 | cur_p->app1 = 0; |
609 | cur_p->app2 = 0; |
610 | cur_p->app4 = 0; |
611 | cur_p->status = 0; |
612 | |
613 | size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK; |
614 | packets++; |
615 | |
616 | lp->tx_bd_ci = ++lp->tx_bd_ci % TX_BD_NUM; |
617 | cur_p = &lp->tx_bd_v[lp->tx_bd_ci]; |
618 | status = cur_p->status; |
619 | } |
620 | |
621 | ndev->stats.tx_packets += packets; |
622 | ndev->stats.tx_bytes += size; |
623 | netif_wake_queue(ndev); |
624 | } |
625 | |
626 | /** |
627 | * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy |
628 | * @lp: Pointer to the axienet_local structure |
629 | * @num_frag: The number of BDs to check for |
630 | * |
631 | * returns: 0, on success |
632 | * NETDEV_TX_BUSY, if any of the descriptors are not free |
633 | * |
634 | * This function is invoked before BDs are allocated and transmission starts. |
635 | * This function returns 0 if a BD or group of BDs can be allocated for |
636 | * transmission. If the BD or any of the BDs are not free the function |
637 | * returns a busy status. This is invoked from axienet_start_xmit. |
638 | */ |
639 | static inline int axienet_check_tx_bd_space(struct axienet_local *lp, |
640 | int num_frag) |
641 | { |
642 | struct axidma_bd *cur_p; |
643 | cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % TX_BD_NUM]; |
644 | if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK) |
645 | return NETDEV_TX_BUSY; |
646 | return 0; |
647 | } |
648 | |
649 | /** |
650 | * axienet_start_xmit - Starts the transmission. |
651 | * @skb: sk_buff pointer that contains data to be Txed. |
652 | * @ndev: Pointer to net_device structure. |
653 | * |
654 | * returns: NETDEV_TX_OK, on success |
655 | * NETDEV_TX_BUSY, if any of the descriptors are not free |
656 | * |
657 | * This function is invoked from upper layers to initiate transmission. The |
658 | * function uses the next available free BDs and populates their fields to |
659 | * start the transmission. Additionally if checksum offloading is supported, |
660 | * it populates AXI Stream Control fields with appropriate values. |
661 | */ |
662 | static int axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev) |
663 | { |
664 | u32 ii; |
665 | u32 num_frag; |
666 | u32 csum_start_off; |
667 | u32 csum_index_off; |
668 | skb_frag_t *frag; |
669 | dma_addr_t tail_p; |
670 | struct axienet_local *lp = netdev_priv(ndev); |
671 | struct axidma_bd *cur_p; |
672 | |
673 | num_frag = skb_shinfo(skb)->nr_frags; |
674 | cur_p = &lp->tx_bd_v[lp->tx_bd_tail]; |
675 | |
676 | if (axienet_check_tx_bd_space(lp, num_frag)) { |
677 | if (!netif_queue_stopped(ndev)) |
678 | netif_stop_queue(ndev); |
679 | return NETDEV_TX_BUSY; |
680 | } |
681 | |
682 | if (skb->ip_summed == CHECKSUM_PARTIAL) { |
683 | if (lp->features & XAE_FEATURE_FULL_TX_CSUM) { |
684 | /* Tx Full Checksum Offload Enabled */ |
685 | cur_p->app0 |= 2; |
686 | } else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) { |
687 | csum_start_off = skb_transport_offset(skb); |
688 | csum_index_off = csum_start_off + skb->csum_offset; |
689 | /* Tx Partial Checksum Offload Enabled */ |
690 | cur_p->app0 |= 1; |
691 | cur_p->app1 = (csum_start_off << 16) | csum_index_off; |
692 | } |
693 | } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) { |
694 | cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */ |
695 | } |
696 | |
697 | cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK; |
698 | cur_p->phys = dma_map_single(ndev->dev.parent, skb->data, |
699 | skb_headlen(skb), DMA_TO_DEVICE); |
700 | |
701 | for (ii = 0; ii < num_frag; ii++) { |
702 | lp->tx_bd_tail = ++lp->tx_bd_tail % TX_BD_NUM; |
703 | cur_p = &lp->tx_bd_v[lp->tx_bd_tail]; |
704 | frag = &skb_shinfo(skb)->frags[ii]; |
705 | cur_p->phys = dma_map_single(ndev->dev.parent, |
706 | skb_frag_address(frag), |
707 | skb_frag_size(frag), |
708 | DMA_TO_DEVICE); |
709 | cur_p->cntrl = skb_frag_size(frag); |
710 | } |
711 | |
712 | cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK; |
713 | cur_p->app4 = (unsigned long)skb; |
714 | |
715 | tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail; |
716 | /* Start the transfer */ |
717 | axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p); |
718 | lp->tx_bd_tail = ++lp->tx_bd_tail % TX_BD_NUM; |
719 | |
720 | return NETDEV_TX_OK; |
721 | } |
722 | |
723 | /** |
724 | * axienet_recv - Is called from Axi DMA Rx Isr to complete the received |
725 | * BD processing. |
726 | * @ndev: Pointer to net_device structure. |
727 | * |
728 | * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It |
729 | * does minimal processing and invokes "netif_rx" to complete further |
730 | * processing. |
731 | */ |
732 | static void axienet_recv(struct net_device *ndev) |
733 | { |
734 | u32 length; |
735 | u32 csumstatus; |
736 | u32 size = 0; |
737 | u32 packets = 0; |
738 | dma_addr_t tail_p; |
739 | struct axienet_local *lp = netdev_priv(ndev); |
740 | struct sk_buff *skb, *new_skb; |
741 | struct axidma_bd *cur_p; |
742 | |
743 | tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci; |
744 | cur_p = &lp->rx_bd_v[lp->rx_bd_ci]; |
745 | |
746 | while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) { |
747 | skb = (struct sk_buff *) (cur_p->sw_id_offset); |
748 | length = cur_p->app4 & 0x0000FFFF; |
749 | |
750 | dma_unmap_single(ndev->dev.parent, cur_p->phys, |
751 | lp->max_frm_size, |
752 | DMA_FROM_DEVICE); |
753 | |
754 | skb_put(skb, length); |
755 | skb->protocol = eth_type_trans(skb, ndev); |
756 | /*skb_checksum_none_assert(skb);*/ |
757 | skb->ip_summed = CHECKSUM_NONE; |
758 | |
759 | /* if we're doing Rx csum offload, set it up */ |
760 | if (lp->features & XAE_FEATURE_FULL_RX_CSUM) { |
761 | csumstatus = (cur_p->app2 & |
762 | XAE_FULL_CSUM_STATUS_MASK) >> 3; |
763 | if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) || |
764 | (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) { |
765 | skb->ip_summed = CHECKSUM_UNNECESSARY; |
766 | } |
767 | } else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 && |
768 | skb->protocol == __constant_htons(ETH_P_IP) && |
769 | skb->len > 64) { |
770 | skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF); |
771 | skb->ip_summed = CHECKSUM_COMPLETE; |
772 | } |
773 | |
774 | netif_rx(skb); |
775 | |
776 | size += length; |
777 | packets++; |
778 | |
779 | new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size); |
780 | if (!new_skb) { |
781 | dev_err(&ndev->dev, "no memory for new sk_buff\n"); |
782 | return; |
783 | } |
784 | cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data, |
785 | lp->max_frm_size, |
786 | DMA_FROM_DEVICE); |
787 | cur_p->cntrl = lp->max_frm_size; |
788 | cur_p->status = 0; |
789 | cur_p->sw_id_offset = (u32) new_skb; |
790 | |
791 | lp->rx_bd_ci = ++lp->rx_bd_ci % RX_BD_NUM; |
792 | cur_p = &lp->rx_bd_v[lp->rx_bd_ci]; |
793 | } |
794 | |
795 | ndev->stats.rx_packets += packets; |
796 | ndev->stats.rx_bytes += size; |
797 | |
798 | axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p); |
799 | } |
800 | |
801 | /** |
802 | * axienet_tx_irq - Tx Done Isr. |
803 | * @irq: irq number |
804 | * @_ndev: net_device pointer |
805 | * |
806 | * returns: IRQ_HANDLED for all cases. |
807 | * |
808 | * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done" |
809 | * to complete the BD processing. |
810 | */ |
811 | static irqreturn_t axienet_tx_irq(int irq, void *_ndev) |
812 | { |
813 | u32 cr; |
814 | unsigned int status; |
815 | struct net_device *ndev = _ndev; |
816 | struct axienet_local *lp = netdev_priv(ndev); |
817 | |
818 | status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); |
819 | if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) { |
820 | axienet_start_xmit_done(lp->ndev); |
821 | goto out; |
822 | } |
823 | if (!(status & XAXIDMA_IRQ_ALL_MASK)) |
824 | dev_err(&ndev->dev, "No interrupts asserted in Tx path"); |
825 | if (status & XAXIDMA_IRQ_ERROR_MASK) { |
826 | dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status); |
827 | dev_err(&ndev->dev, "Current BD is at: 0x%x\n", |
828 | (lp->tx_bd_v[lp->tx_bd_ci]).phys); |
829 | |
830 | cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); |
831 | /* Disable coalesce, delay timer and error interrupts */ |
832 | cr &= (~XAXIDMA_IRQ_ALL_MASK); |
833 | /* Write to the Tx channel control register */ |
834 | axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr); |
835 | |
836 | cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); |
837 | /* Disable coalesce, delay timer and error interrupts */ |
838 | cr &= (~XAXIDMA_IRQ_ALL_MASK); |
839 | /* Write to the Rx channel control register */ |
840 | axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr); |
841 | |
842 | tasklet_schedule(&lp->dma_err_tasklet); |
843 | } |
844 | out: |
845 | axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status); |
846 | return IRQ_HANDLED; |
847 | } |
848 | |
849 | /** |
850 | * axienet_rx_irq - Rx Isr. |
851 | * @irq: irq number |
852 | * @_ndev: net_device pointer |
853 | * |
854 | * returns: IRQ_HANDLED for all cases. |
855 | * |
856 | * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD |
857 | * processing. |
858 | */ |
859 | static irqreturn_t axienet_rx_irq(int irq, void *_ndev) |
860 | { |
861 | u32 cr; |
862 | unsigned int status; |
863 | struct net_device *ndev = _ndev; |
864 | struct axienet_local *lp = netdev_priv(ndev); |
865 | |
866 | status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); |
867 | if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) { |
868 | axienet_recv(lp->ndev); |
869 | goto out; |
870 | } |
871 | if (!(status & XAXIDMA_IRQ_ALL_MASK)) |
872 | dev_err(&ndev->dev, "No interrupts asserted in Rx path"); |
873 | if (status & XAXIDMA_IRQ_ERROR_MASK) { |
874 | dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status); |
875 | dev_err(&ndev->dev, "Current BD is at: 0x%x\n", |
876 | (lp->rx_bd_v[lp->rx_bd_ci]).phys); |
877 | |
878 | cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); |
879 | /* Disable coalesce, delay timer and error interrupts */ |
880 | cr &= (~XAXIDMA_IRQ_ALL_MASK); |
881 | /* Finally write to the Tx channel control register */ |
882 | axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr); |
883 | |
884 | cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); |
885 | /* Disable coalesce, delay timer and error interrupts */ |
886 | cr &= (~XAXIDMA_IRQ_ALL_MASK); |
887 | /* write to the Rx channel control register */ |
888 | axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr); |
889 | |
890 | tasklet_schedule(&lp->dma_err_tasklet); |
891 | } |
892 | out: |
893 | axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status); |
894 | return IRQ_HANDLED; |
895 | } |
896 | |
897 | /** |
898 | * axienet_open - Driver open routine. |
899 | * @ndev: Pointer to net_device structure |
900 | * |
901 | * returns: 0, on success. |
902 | * -ENODEV, if PHY cannot be connected to |
903 | * non-zero error value on failure |
904 | * |
905 | * This is the driver open routine. It calls phy_start to start the PHY device. |
906 | * It also allocates interrupt service routines, enables the interrupt lines |
907 | * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer |
908 | * descriptors are initialized. |
909 | */ |
910 | static int axienet_open(struct net_device *ndev) |
911 | { |
912 | int ret, mdio_mcreg; |
913 | struct axienet_local *lp = netdev_priv(ndev); |
914 | |
915 | dev_dbg(&ndev->dev, "axienet_open()\n"); |
916 | |
917 | mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET); |
918 | ret = axienet_mdio_wait_until_ready(lp); |
919 | if (ret < 0) |
920 | return ret; |
921 | /* Disable the MDIO interface till Axi Ethernet Reset is completed. |
922 | * When we do an Axi Ethernet reset, it resets the complete core |
923 | * including the MDIO. If MDIO is not disabled when the reset |
924 | * process is started, MDIO will be broken afterwards. */ |
925 | axienet_iow(lp, XAE_MDIO_MC_OFFSET, |
926 | (mdio_mcreg & (~XAE_MDIO_MC_MDIOEN_MASK))); |
927 | axienet_device_reset(ndev); |
928 | /* Enable the MDIO */ |
929 | axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg); |
930 | ret = axienet_mdio_wait_until_ready(lp); |
931 | if (ret < 0) |
932 | return ret; |
933 | |
934 | if (lp->phy_node) { |
935 | lp->phy_dev = of_phy_connect(lp->ndev, lp->phy_node, |
936 | axienet_adjust_link, 0, |
937 | PHY_INTERFACE_MODE_GMII); |
938 | if (!lp->phy_dev) { |
939 | dev_err(lp->dev, "of_phy_connect() failed\n"); |
940 | return -ENODEV; |
941 | } |
942 | phy_start(lp->phy_dev); |
943 | } |
944 | |
945 | /* Enable interrupts for Axi DMA Tx */ |
946 | ret = request_irq(lp->tx_irq, axienet_tx_irq, 0, ndev->name, ndev); |
947 | if (ret) |
948 | goto err_tx_irq; |
949 | /* Enable interrupts for Axi DMA Rx */ |
950 | ret = request_irq(lp->rx_irq, axienet_rx_irq, 0, ndev->name, ndev); |
951 | if (ret) |
952 | goto err_rx_irq; |
953 | /* Enable tasklets for Axi DMA error handling */ |
954 | tasklet_enable(&lp->dma_err_tasklet); |
955 | return 0; |
956 | |
957 | err_rx_irq: |
958 | free_irq(lp->tx_irq, ndev); |
959 | err_tx_irq: |
960 | if (lp->phy_dev) |
961 | phy_disconnect(lp->phy_dev); |
962 | lp->phy_dev = NULL; |
963 | dev_err(lp->dev, "request_irq() failed\n"); |
964 | return ret; |
965 | } |
966 | |
967 | /** |
968 | * axienet_stop - Driver stop routine. |
969 | * @ndev: Pointer to net_device structure |
970 | * |
971 | * returns: 0, on success. |
972 | * |
973 | * This is the driver stop routine. It calls phy_disconnect to stop the PHY |
974 | * device. It also removes the interrupt handlers and disables the interrupts. |
975 | * The Axi DMA Tx/Rx BDs are released. |
976 | */ |
977 | static int axienet_stop(struct net_device *ndev) |
978 | { |
979 | u32 cr; |
980 | struct axienet_local *lp = netdev_priv(ndev); |
981 | |
982 | dev_dbg(&ndev->dev, "axienet_close()\n"); |
983 | |
984 | cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); |
985 | axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, |
986 | cr & (~XAXIDMA_CR_RUNSTOP_MASK)); |
987 | cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); |
988 | axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, |
989 | cr & (~XAXIDMA_CR_RUNSTOP_MASK)); |
990 | axienet_setoptions(ndev, lp->options & |
991 | ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); |
992 | |
993 | tasklet_disable(&lp->dma_err_tasklet); |
994 | |
995 | free_irq(lp->tx_irq, ndev); |
996 | free_irq(lp->rx_irq, ndev); |
997 | |
998 | if (lp->phy_dev) |
999 | phy_disconnect(lp->phy_dev); |
1000 | lp->phy_dev = NULL; |
1001 | |
1002 | axienet_dma_bd_release(ndev); |
1003 | return 0; |
1004 | } |
1005 | |
1006 | /** |
1007 | * axienet_change_mtu - Driver change mtu routine. |
1008 | * @ndev: Pointer to net_device structure |
1009 | * @new_mtu: New mtu value to be applied |
1010 | * |
1011 | * returns: Always returns 0 (success). |
1012 | * |
1013 | * This is the change mtu driver routine. It checks if the Axi Ethernet |
1014 | * hardware supports jumbo frames before changing the mtu. This can be |
1015 | * called only when the device is not up. |
1016 | */ |
1017 | static int axienet_change_mtu(struct net_device *ndev, int new_mtu) |
1018 | { |
1019 | struct axienet_local *lp = netdev_priv(ndev); |
1020 | |
1021 | if (netif_running(ndev)) |
1022 | return -EBUSY; |
1023 | if (lp->jumbo_support) { |
1024 | if ((new_mtu > XAE_JUMBO_MTU) || (new_mtu < 64)) |
1025 | return -EINVAL; |
1026 | ndev->mtu = new_mtu; |
1027 | } else { |
1028 | if ((new_mtu > XAE_MTU) || (new_mtu < 64)) |
1029 | return -EINVAL; |
1030 | ndev->mtu = new_mtu; |
1031 | } |
1032 | |
1033 | return 0; |
1034 | } |
1035 | |
1036 | #ifdef CONFIG_NET_POLL_CONTROLLER |
1037 | /** |
1038 | * axienet_poll_controller - Axi Ethernet poll mechanism. |
1039 | * @ndev: Pointer to net_device structure |
1040 | * |
1041 | * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior |
1042 | * to polling the ISRs and are enabled back after the polling is done. |
1043 | */ |
1044 | static void axienet_poll_controller(struct net_device *ndev) |
1045 | { |
1046 | struct axienet_local *lp = netdev_priv(ndev); |
1047 | disable_irq(lp->tx_irq); |
1048 | disable_irq(lp->rx_irq); |
1049 | axienet_rx_irq(lp->tx_irq, ndev); |
1050 | axienet_tx_irq(lp->rx_irq, ndev); |
1051 | enable_irq(lp->tx_irq); |
1052 | enable_irq(lp->rx_irq); |
1053 | } |
1054 | #endif |
1055 | |
1056 | static const struct net_device_ops axienet_netdev_ops = { |
1057 | .ndo_open = axienet_open, |
1058 | .ndo_stop = axienet_stop, |
1059 | .ndo_start_xmit = axienet_start_xmit, |
1060 | .ndo_change_mtu = axienet_change_mtu, |
1061 | .ndo_set_mac_address = netdev_set_mac_address, |
1062 | .ndo_validate_addr = eth_validate_addr, |
1063 | .ndo_set_rx_mode = axienet_set_multicast_list, |
1064 | #ifdef CONFIG_NET_POLL_CONTROLLER |
1065 | .ndo_poll_controller = axienet_poll_controller, |
1066 | #endif |
1067 | }; |
1068 | |
1069 | /** |
1070 | * axienet_ethtools_get_settings - Get Axi Ethernet settings related to PHY. |
1071 | * @ndev: Pointer to net_device structure |
1072 | * @ecmd: Pointer to ethtool_cmd structure |
1073 | * |
1074 | * This implements ethtool command for getting PHY settings. If PHY could |
1075 | * not be found, the function returns -ENODEV. This function calls the |
1076 | * relevant PHY ethtool API to get the PHY settings. |
1077 | * Issue "ethtool ethX" under linux prompt to execute this function. |
1078 | */ |
1079 | static int axienet_ethtools_get_settings(struct net_device *ndev, |
1080 | struct ethtool_cmd *ecmd) |
1081 | { |
1082 | struct axienet_local *lp = netdev_priv(ndev); |
1083 | struct phy_device *phydev = lp->phy_dev; |
1084 | if (!phydev) |
1085 | return -ENODEV; |
1086 | return phy_ethtool_gset(phydev, ecmd); |
1087 | } |
1088 | |
1089 | /** |
1090 | * axienet_ethtools_set_settings - Set PHY settings as passed in the argument. |
1091 | * @ndev: Pointer to net_device structure |
1092 | * @ecmd: Pointer to ethtool_cmd structure |
1093 | * |
1094 | * This implements ethtool command for setting various PHY settings. If PHY |
1095 | * could not be found, the function returns -ENODEV. This function calls the |
1096 | * relevant PHY ethtool API to set the PHY. |
1097 | * Issue e.g. "ethtool -s ethX speed 1000" under linux prompt to execute this |
1098 | * function. |
1099 | */ |
1100 | static int axienet_ethtools_set_settings(struct net_device *ndev, |
1101 | struct ethtool_cmd *ecmd) |
1102 | { |
1103 | struct axienet_local *lp = netdev_priv(ndev); |
1104 | struct phy_device *phydev = lp->phy_dev; |
1105 | if (!phydev) |
1106 | return -ENODEV; |
1107 | return phy_ethtool_sset(phydev, ecmd); |
1108 | } |
1109 | |
1110 | /** |
1111 | * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information. |
1112 | * @ndev: Pointer to net_device structure |
1113 | * @ed: Pointer to ethtool_drvinfo structure |
1114 | * |
1115 | * This implements ethtool command for getting the driver information. |
1116 | * Issue "ethtool -i ethX" under linux prompt to execute this function. |
1117 | */ |
1118 | static void axienet_ethtools_get_drvinfo(struct net_device *ndev, |
1119 | struct ethtool_drvinfo *ed) |
1120 | { |
1121 | memset(ed, 0, sizeof(struct ethtool_drvinfo)); |
1122 | strcpy(ed->driver, DRIVER_NAME); |
1123 | strcpy(ed->version, DRIVER_VERSION); |
1124 | ed->regdump_len = sizeof(u32) * AXIENET_REGS_N; |
1125 | } |
1126 | |
1127 | /** |
1128 | * axienet_ethtools_get_regs_len - Get the total regs length present in the |
1129 | * AxiEthernet core. |
1130 | * @ndev: Pointer to net_device structure |
1131 | * |
1132 | * This implements ethtool command for getting the total register length |
1133 | * information. |
1134 | */ |
1135 | static int axienet_ethtools_get_regs_len(struct net_device *ndev) |
1136 | { |
1137 | return sizeof(u32) * AXIENET_REGS_N; |
1138 | } |
1139 | |
1140 | /** |
1141 | * axienet_ethtools_get_regs - Dump the contents of all registers present |
1142 | * in AxiEthernet core. |
1143 | * @ndev: Pointer to net_device structure |
1144 | * @regs: Pointer to ethtool_regs structure |
1145 | * @ret: Void pointer used to return the contents of the registers. |
1146 | * |
1147 | * This implements ethtool command for getting the Axi Ethernet register dump. |
1148 | * Issue "ethtool -d ethX" to execute this function. |
1149 | */ |
1150 | static void axienet_ethtools_get_regs(struct net_device *ndev, |
1151 | struct ethtool_regs *regs, void *ret) |
1152 | { |
1153 | u32 *data = (u32 *) ret; |
1154 | size_t len = sizeof(u32) * AXIENET_REGS_N; |
1155 | struct axienet_local *lp = netdev_priv(ndev); |
1156 | |
1157 | regs->version = 0; |
1158 | regs->len = len; |
1159 | |
1160 | memset(data, 0, len); |
1161 | data[0] = axienet_ior(lp, XAE_RAF_OFFSET); |
1162 | data[1] = axienet_ior(lp, XAE_TPF_OFFSET); |
1163 | data[2] = axienet_ior(lp, XAE_IFGP_OFFSET); |
1164 | data[3] = axienet_ior(lp, XAE_IS_OFFSET); |
1165 | data[4] = axienet_ior(lp, XAE_IP_OFFSET); |
1166 | data[5] = axienet_ior(lp, XAE_IE_OFFSET); |
1167 | data[6] = axienet_ior(lp, XAE_TTAG_OFFSET); |
1168 | data[7] = axienet_ior(lp, XAE_RTAG_OFFSET); |
1169 | data[8] = axienet_ior(lp, XAE_UAWL_OFFSET); |
1170 | data[9] = axienet_ior(lp, XAE_UAWU_OFFSET); |
1171 | data[10] = axienet_ior(lp, XAE_TPID0_OFFSET); |
1172 | data[11] = axienet_ior(lp, XAE_TPID1_OFFSET); |
1173 | data[12] = axienet_ior(lp, XAE_PPST_OFFSET); |
1174 | data[13] = axienet_ior(lp, XAE_RCW0_OFFSET); |
1175 | data[14] = axienet_ior(lp, XAE_RCW1_OFFSET); |
1176 | data[15] = axienet_ior(lp, XAE_TC_OFFSET); |
1177 | data[16] = axienet_ior(lp, XAE_FCC_OFFSET); |
1178 | data[17] = axienet_ior(lp, XAE_EMMC_OFFSET); |
1179 | data[18] = axienet_ior(lp, XAE_PHYC_OFFSET); |
1180 | data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET); |
1181 | data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET); |
1182 | data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET); |
1183 | data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET); |
1184 | data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET); |
1185 | data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET); |
1186 | data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET); |
1187 | data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET); |
1188 | data[27] = axienet_ior(lp, XAE_UAW0_OFFSET); |
1189 | data[28] = axienet_ior(lp, XAE_UAW1_OFFSET); |
1190 | data[29] = axienet_ior(lp, XAE_FMI_OFFSET); |
1191 | data[30] = axienet_ior(lp, XAE_AF0_OFFSET); |
1192 | data[31] = axienet_ior(lp, XAE_AF1_OFFSET); |
1193 | } |
1194 | |
1195 | /** |
1196 | * axienet_ethtools_get_pauseparam - Get the pause parameter setting for |
1197 | * Tx and Rx paths. |
1198 | * @ndev: Pointer to net_device structure |
1199 | * @epauseparm: Pointer to ethtool_pauseparam structure. |
1200 | * |
1201 | * This implements ethtool command for getting axi ethernet pause frame |
1202 | * setting. Issue "ethtool -a ethX" to execute this function. |
1203 | */ |
1204 | static void |
1205 | axienet_ethtools_get_pauseparam(struct net_device *ndev, |
1206 | struct ethtool_pauseparam *epauseparm) |
1207 | { |
1208 | u32 regval; |
1209 | struct axienet_local *lp = netdev_priv(ndev); |
1210 | epauseparm->autoneg = 0; |
1211 | regval = axienet_ior(lp, XAE_FCC_OFFSET); |
1212 | epauseparm->tx_pause = regval & XAE_FCC_FCTX_MASK; |
1213 | epauseparm->rx_pause = regval & XAE_FCC_FCRX_MASK; |
1214 | } |
1215 | |
1216 | /** |
1217 | * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control) |
1218 | * settings. |
1219 | * @ndev: Pointer to net_device structure |
1220 | * @epauseparam:Pointer to ethtool_pauseparam structure |
1221 | * |
1222 | * This implements ethtool command for enabling flow control on Rx and Tx |
1223 | * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this |
1224 | * function. |
1225 | */ |
1226 | static int |
1227 | axienet_ethtools_set_pauseparam(struct net_device *ndev, |
1228 | struct ethtool_pauseparam *epauseparm) |
1229 | { |
1230 | u32 regval = 0; |
1231 | struct axienet_local *lp = netdev_priv(ndev); |
1232 | |
1233 | if (netif_running(ndev)) { |
1234 | printk(KERN_ERR "%s: Please stop netif before applying " |
1235 | "configruation\n", ndev->name); |
1236 | return -EFAULT; |
1237 | } |
1238 | |
1239 | regval = axienet_ior(lp, XAE_FCC_OFFSET); |
1240 | if (epauseparm->tx_pause) |
1241 | regval |= XAE_FCC_FCTX_MASK; |
1242 | else |
1243 | regval &= ~XAE_FCC_FCTX_MASK; |
1244 | if (epauseparm->rx_pause) |
1245 | regval |= XAE_FCC_FCRX_MASK; |
1246 | else |
1247 | regval &= ~XAE_FCC_FCRX_MASK; |
1248 | axienet_iow(lp, XAE_FCC_OFFSET, regval); |
1249 | |
1250 | return 0; |
1251 | } |
1252 | |
1253 | /** |
1254 | * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count. |
1255 | * @ndev: Pointer to net_device structure |
1256 | * @ecoalesce: Pointer to ethtool_coalesce structure |
1257 | * |
1258 | * This implements ethtool command for getting the DMA interrupt coalescing |
1259 | * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to |
1260 | * execute this function. |
1261 | */ |
1262 | static int axienet_ethtools_get_coalesce(struct net_device *ndev, |
1263 | struct ethtool_coalesce *ecoalesce) |
1264 | { |
1265 | u32 regval = 0; |
1266 | struct axienet_local *lp = netdev_priv(ndev); |
1267 | regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); |
1268 | ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK) |
1269 | >> XAXIDMA_COALESCE_SHIFT; |
1270 | regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); |
1271 | ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK) |
1272 | >> XAXIDMA_COALESCE_SHIFT; |
1273 | return 0; |
1274 | } |
1275 | |
1276 | /** |
1277 | * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count. |
1278 | * @ndev: Pointer to net_device structure |
1279 | * @ecoalesce: Pointer to ethtool_coalesce structure |
1280 | * |
1281 | * This implements ethtool command for setting the DMA interrupt coalescing |
1282 | * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux |
1283 | * prompt to execute this function. |
1284 | */ |
1285 | static int axienet_ethtools_set_coalesce(struct net_device *ndev, |
1286 | struct ethtool_coalesce *ecoalesce) |
1287 | { |
1288 | struct axienet_local *lp = netdev_priv(ndev); |
1289 | |
1290 | if (netif_running(ndev)) { |
1291 | printk(KERN_ERR "%s: Please stop netif before applying " |
1292 | "configruation\n", ndev->name); |
1293 | return -EFAULT; |
1294 | } |
1295 | |
1296 | if ((ecoalesce->rx_coalesce_usecs) || |
1297 | (ecoalesce->rx_coalesce_usecs_irq) || |
1298 | (ecoalesce->rx_max_coalesced_frames_irq) || |
1299 | (ecoalesce->tx_coalesce_usecs) || |
1300 | (ecoalesce->tx_coalesce_usecs_irq) || |
1301 | (ecoalesce->tx_max_coalesced_frames_irq) || |
1302 | (ecoalesce->stats_block_coalesce_usecs) || |
1303 | (ecoalesce->use_adaptive_rx_coalesce) || |
1304 | (ecoalesce->use_adaptive_tx_coalesce) || |
1305 | (ecoalesce->pkt_rate_low) || |
1306 | (ecoalesce->rx_coalesce_usecs_low) || |
1307 | (ecoalesce->rx_max_coalesced_frames_low) || |
1308 | (ecoalesce->tx_coalesce_usecs_low) || |
1309 | (ecoalesce->tx_max_coalesced_frames_low) || |
1310 | (ecoalesce->pkt_rate_high) || |
1311 | (ecoalesce->rx_coalesce_usecs_high) || |
1312 | (ecoalesce->rx_max_coalesced_frames_high) || |
1313 | (ecoalesce->tx_coalesce_usecs_high) || |
1314 | (ecoalesce->tx_max_coalesced_frames_high) || |
1315 | (ecoalesce->rate_sample_interval)) |
1316 | return -EOPNOTSUPP; |
1317 | if (ecoalesce->rx_max_coalesced_frames) |
1318 | lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames; |
1319 | if (ecoalesce->tx_max_coalesced_frames) |
1320 | lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames; |
1321 | |
1322 | return 0; |
1323 | } |
1324 | |
1325 | static struct ethtool_ops axienet_ethtool_ops = { |
1326 | .get_settings = axienet_ethtools_get_settings, |
1327 | .set_settings = axienet_ethtools_set_settings, |
1328 | .get_drvinfo = axienet_ethtools_get_drvinfo, |
1329 | .get_regs_len = axienet_ethtools_get_regs_len, |
1330 | .get_regs = axienet_ethtools_get_regs, |
1331 | .get_link = ethtool_op_get_link, |
1332 | .get_pauseparam = axienet_ethtools_get_pauseparam, |
1333 | .set_pauseparam = axienet_ethtools_set_pauseparam, |
1334 | .get_coalesce = axienet_ethtools_get_coalesce, |
1335 | .set_coalesce = axienet_ethtools_set_coalesce, |
1336 | }; |
1337 | |
1338 | /** |
1339 | * axienet_dma_err_handler - Tasklet handler for Axi DMA Error |
1340 | * @data: Data passed |
1341 | * |
1342 | * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the |
1343 | * Tx/Rx BDs. |
1344 | */ |
1345 | static void axienet_dma_err_handler(unsigned long data) |
1346 | { |
1347 | u32 axienet_status; |
1348 | u32 cr, i; |
1349 | int mdio_mcreg; |
1350 | struct axienet_local *lp = (struct axienet_local *) data; |
1351 | struct net_device *ndev = lp->ndev; |
1352 | struct axidma_bd *cur_p; |
1353 | |
1354 | axienet_setoptions(ndev, lp->options & |
1355 | ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); |
1356 | mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET); |
1357 | axienet_mdio_wait_until_ready(lp); |
1358 | /* Disable the MDIO interface till Axi Ethernet Reset is completed. |
1359 | * When we do an Axi Ethernet reset, it resets the complete core |
1360 | * including the MDIO. So if MDIO is not disabled when the reset |
1361 | * process is started, MDIO will be broken afterwards. */ |
1362 | axienet_iow(lp, XAE_MDIO_MC_OFFSET, (mdio_mcreg & |
1363 | ~XAE_MDIO_MC_MDIOEN_MASK)); |
1364 | |
1365 | __axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET); |
1366 | __axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET); |
1367 | |
1368 | axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg); |
1369 | axienet_mdio_wait_until_ready(lp); |
1370 | |
1371 | for (i = 0; i < TX_BD_NUM; i++) { |
1372 | cur_p = &lp->tx_bd_v[i]; |
1373 | if (cur_p->phys) |
1374 | dma_unmap_single(ndev->dev.parent, cur_p->phys, |
1375 | (cur_p->cntrl & |
1376 | XAXIDMA_BD_CTRL_LENGTH_MASK), |
1377 | DMA_TO_DEVICE); |
1378 | if (cur_p->app4) |
1379 | dev_kfree_skb_irq((struct sk_buff *) cur_p->app4); |
1380 | cur_p->phys = 0; |
1381 | cur_p->cntrl = 0; |
1382 | cur_p->status = 0; |
1383 | cur_p->app0 = 0; |
1384 | cur_p->app1 = 0; |
1385 | cur_p->app2 = 0; |
1386 | cur_p->app3 = 0; |
1387 | cur_p->app4 = 0; |
1388 | cur_p->sw_id_offset = 0; |
1389 | } |
1390 | |
1391 | for (i = 0; i < RX_BD_NUM; i++) { |
1392 | cur_p = &lp->rx_bd_v[i]; |
1393 | cur_p->status = 0; |
1394 | cur_p->app0 = 0; |
1395 | cur_p->app1 = 0; |
1396 | cur_p->app2 = 0; |
1397 | cur_p->app3 = 0; |
1398 | cur_p->app4 = 0; |
1399 | } |
1400 | |
1401 | lp->tx_bd_ci = 0; |
1402 | lp->tx_bd_tail = 0; |
1403 | lp->rx_bd_ci = 0; |
1404 | |
1405 | /* Start updating the Rx channel control register */ |
1406 | cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); |
1407 | /* Update the interrupt coalesce count */ |
1408 | cr = ((cr & ~XAXIDMA_COALESCE_MASK) | |
1409 | (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT)); |
1410 | /* Update the delay timer count */ |
1411 | cr = ((cr & ~XAXIDMA_DELAY_MASK) | |
1412 | (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT)); |
1413 | /* Enable coalesce, delay timer and error interrupts */ |
1414 | cr |= XAXIDMA_IRQ_ALL_MASK; |
1415 | /* Finally write to the Rx channel control register */ |
1416 | axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr); |
1417 | |
1418 | /* Start updating the Tx channel control register */ |
1419 | cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); |
1420 | /* Update the interrupt coalesce count */ |
1421 | cr = (((cr & ~XAXIDMA_COALESCE_MASK)) | |
1422 | (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT)); |
1423 | /* Update the delay timer count */ |
1424 | cr = (((cr & ~XAXIDMA_DELAY_MASK)) | |
1425 | (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT)); |
1426 | /* Enable coalesce, delay timer and error interrupts */ |
1427 | cr |= XAXIDMA_IRQ_ALL_MASK; |
1428 | /* Finally write to the Tx channel control register */ |
1429 | axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr); |
1430 | |
1431 | /* Populate the tail pointer and bring the Rx Axi DMA engine out of |
1432 | * halted state. This will make the Rx side ready for reception.*/ |
1433 | axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p); |
1434 | cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); |
1435 | axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, |
1436 | cr | XAXIDMA_CR_RUNSTOP_MASK); |
1437 | axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p + |
1438 | (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1))); |
1439 | |
1440 | /* Write to the RS (Run-stop) bit in the Tx channel control register. |
1441 | * Tx channel is now ready to run. But only after we write to the |
1442 | * tail pointer register that the Tx channel will start transmitting */ |
1443 | axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p); |
1444 | cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); |
1445 | axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, |
1446 | cr | XAXIDMA_CR_RUNSTOP_MASK); |
1447 | |
1448 | axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET); |
1449 | axienet_status &= ~XAE_RCW1_RX_MASK; |
1450 | axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status); |
1451 | |
1452 | axienet_status = axienet_ior(lp, XAE_IP_OFFSET); |
1453 | if (axienet_status & XAE_INT_RXRJECT_MASK) |
1454 | axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK); |
1455 | axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK); |
1456 | |
1457 | /* Sync default options with HW but leave receiver and |
1458 | * transmitter disabled.*/ |
1459 | axienet_setoptions(ndev, lp->options & |
1460 | ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); |
1461 | axienet_set_mac_address(ndev, NULL); |
1462 | axienet_set_multicast_list(ndev); |
1463 | axienet_setoptions(ndev, lp->options); |
1464 | } |
1465 | |
1466 | /** |
1467 | * axienet_of_probe - Axi Ethernet probe function. |
1468 | * @op: Pointer to platform device structure. |
1469 | * @match: Pointer to device id structure |
1470 | * |
1471 | * returns: 0, on success |
1472 | * Non-zero error value on failure. |
1473 | * |
1474 | * This is the probe routine for Axi Ethernet driver. This is called before |
1475 | * any other driver routines are invoked. It allocates and sets up the Ethernet |
1476 | * device. Parses through device tree and populates fields of |
1477 | * axienet_local. It registers the Ethernet device. |
1478 | */ |
1479 | static int __devinit axienet_of_probe(struct platform_device *op) |
1480 | { |
1481 | __be32 *p; |
1482 | int size, ret = 0; |
1483 | struct device_node *np; |
1484 | struct axienet_local *lp; |
1485 | struct net_device *ndev; |
1486 | const void *addr; |
1487 | |
1488 | ndev = alloc_etherdev(sizeof(*lp)); |
41de8d4c |
1489 | if (!ndev) |
8a3b7a25 |
1490 | return -ENOMEM; |
8a3b7a25 |
1491 | |
1492 | ether_setup(ndev); |
1493 | dev_set_drvdata(&op->dev, ndev); |
1494 | |
1495 | SET_NETDEV_DEV(ndev, &op->dev); |
1496 | ndev->flags &= ~IFF_MULTICAST; /* clear multicast */ |
1497 | ndev->features = NETIF_F_SG | NETIF_F_FRAGLIST; |
1498 | ndev->netdev_ops = &axienet_netdev_ops; |
1499 | ndev->ethtool_ops = &axienet_ethtool_ops; |
1500 | |
1501 | lp = netdev_priv(ndev); |
1502 | lp->ndev = ndev; |
1503 | lp->dev = &op->dev; |
1504 | lp->options = XAE_OPTION_DEFAULTS; |
1505 | /* Map device registers */ |
1506 | lp->regs = of_iomap(op->dev.of_node, 0); |
1507 | if (!lp->regs) { |
1508 | dev_err(&op->dev, "could not map Axi Ethernet regs.\n"); |
1509 | goto nodev; |
1510 | } |
1511 | /* Setup checksum offload, but default to off if not specified */ |
1512 | lp->features = 0; |
1513 | |
1514 | p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,txcsum", NULL); |
1515 | if (p) { |
1516 | switch (be32_to_cpup(p)) { |
1517 | case 1: |
1518 | lp->csum_offload_on_tx_path = |
1519 | XAE_FEATURE_PARTIAL_TX_CSUM; |
1520 | lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM; |
1521 | /* Can checksum TCP/UDP over IPv4. */ |
1522 | ndev->features |= NETIF_F_IP_CSUM; |
1523 | break; |
1524 | case 2: |
1525 | lp->csum_offload_on_tx_path = |
1526 | XAE_FEATURE_FULL_TX_CSUM; |
1527 | lp->features |= XAE_FEATURE_FULL_TX_CSUM; |
1528 | /* Can checksum TCP/UDP over IPv4. */ |
1529 | ndev->features |= NETIF_F_IP_CSUM; |
1530 | break; |
1531 | default: |
1532 | lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD; |
1533 | } |
1534 | } |
1535 | p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,rxcsum", NULL); |
1536 | if (p) { |
1537 | switch (be32_to_cpup(p)) { |
1538 | case 1: |
1539 | lp->csum_offload_on_rx_path = |
1540 | XAE_FEATURE_PARTIAL_RX_CSUM; |
1541 | lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM; |
1542 | break; |
1543 | case 2: |
1544 | lp->csum_offload_on_rx_path = |
1545 | XAE_FEATURE_FULL_RX_CSUM; |
1546 | lp->features |= XAE_FEATURE_FULL_RX_CSUM; |
1547 | break; |
1548 | default: |
1549 | lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD; |
1550 | } |
1551 | } |
1552 | /* For supporting jumbo frames, the Axi Ethernet hardware must have |
1553 | * a larger Rx/Tx Memory. Typically, the size must be more than or |
1554 | * equal to 16384 bytes, so that we can enable jumbo option and start |
1555 | * supporting jumbo frames. Here we check for memory allocated for |
1556 | * Rx/Tx in the hardware from the device-tree and accordingly set |
1557 | * flags. */ |
1558 | p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,rxmem", NULL); |
1559 | if (p) { |
1560 | if ((be32_to_cpup(p)) >= 0x4000) |
1561 | lp->jumbo_support = 1; |
1562 | } |
1563 | p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,temac-type", |
1564 | NULL); |
1565 | if (p) |
1566 | lp->temac_type = be32_to_cpup(p); |
1567 | p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,phy-type", NULL); |
1568 | if (p) |
1569 | lp->phy_type = be32_to_cpup(p); |
1570 | |
1571 | /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */ |
1572 | np = of_parse_phandle(op->dev.of_node, "axistream-connected", 0); |
1573 | if (!np) { |
1574 | dev_err(&op->dev, "could not find DMA node\n"); |
1575 | goto err_iounmap; |
1576 | } |
1577 | lp->dma_regs = of_iomap(np, 0); |
1578 | if (lp->dma_regs) { |
1579 | dev_dbg(&op->dev, "MEM base: %p\n", lp->dma_regs); |
1580 | } else { |
1581 | dev_err(&op->dev, "unable to map DMA registers\n"); |
1582 | of_node_put(np); |
1583 | } |
1584 | lp->rx_irq = irq_of_parse_and_map(np, 1); |
1585 | lp->tx_irq = irq_of_parse_and_map(np, 0); |
1586 | of_node_put(np); |
1587 | if ((lp->rx_irq == NO_IRQ) || (lp->tx_irq == NO_IRQ)) { |
1588 | dev_err(&op->dev, "could not determine irqs\n"); |
1589 | ret = -ENOMEM; |
1590 | goto err_iounmap_2; |
1591 | } |
1592 | |
1593 | /* Retrieve the MAC address */ |
1594 | addr = of_get_property(op->dev.of_node, "local-mac-address", &size); |
1595 | if ((!addr) || (size != 6)) { |
1596 | dev_err(&op->dev, "could not find MAC address\n"); |
1597 | ret = -ENODEV; |
1598 | goto err_iounmap_2; |
1599 | } |
1600 | axienet_set_mac_address(ndev, (void *) addr); |
1601 | |
1602 | lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD; |
1603 | lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD; |
1604 | |
1605 | lp->phy_node = of_parse_phandle(op->dev.of_node, "phy-handle", 0); |
1606 | ret = axienet_mdio_setup(lp, op->dev.of_node); |
1607 | if (ret) |
1608 | dev_warn(&op->dev, "error registering MDIO bus\n"); |
1609 | |
1610 | ret = register_netdev(lp->ndev); |
1611 | if (ret) { |
1612 | dev_err(lp->dev, "register_netdev() error (%i)\n", ret); |
1613 | goto err_iounmap_2; |
1614 | } |
1615 | |
1616 | tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler, |
1617 | (unsigned long) lp); |
1618 | tasklet_disable(&lp->dma_err_tasklet); |
1619 | |
1620 | return 0; |
1621 | |
1622 | err_iounmap_2: |
1623 | if (lp->dma_regs) |
1624 | iounmap(lp->dma_regs); |
1625 | err_iounmap: |
1626 | iounmap(lp->regs); |
1627 | nodev: |
1628 | free_netdev(ndev); |
1629 | ndev = NULL; |
1630 | return ret; |
1631 | } |
1632 | |
1633 | static int __devexit axienet_of_remove(struct platform_device *op) |
1634 | { |
1635 | struct net_device *ndev = dev_get_drvdata(&op->dev); |
1636 | struct axienet_local *lp = netdev_priv(ndev); |
1637 | |
1638 | axienet_mdio_teardown(lp); |
1639 | unregister_netdev(ndev); |
1640 | |
1641 | if (lp->phy_node) |
1642 | of_node_put(lp->phy_node); |
1643 | lp->phy_node = NULL; |
1644 | |
1645 | dev_set_drvdata(&op->dev, NULL); |
1646 | |
1647 | iounmap(lp->regs); |
1648 | if (lp->dma_regs) |
1649 | iounmap(lp->dma_regs); |
1650 | free_netdev(ndev); |
1651 | |
1652 | return 0; |
1653 | } |
1654 | |
1655 | static struct platform_driver axienet_of_driver = { |
1656 | .probe = axienet_of_probe, |
1657 | .remove = __devexit_p(axienet_of_remove), |
1658 | .driver = { |
1659 | .owner = THIS_MODULE, |
1660 | .name = "xilinx_axienet", |
1661 | .of_match_table = axienet_of_match, |
1662 | }, |
1663 | }; |
1664 | |
b4a46676 |
1665 | module_platform_driver(axienet_of_driver); |
8a3b7a25 |
1666 | |
1667 | MODULE_DESCRIPTION("Xilinx Axi Ethernet driver"); |
1668 | MODULE_AUTHOR("Xilinx"); |
1669 | MODULE_LICENSE("GPL"); |