Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[deliverable/linux.git] / drivers / net / natsemi.c
CommitLineData
1da177e4
LT
1/* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
2/*
3 Written/copyright 1999-2001 by Donald Becker.
4 Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
5 Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
b27a16b7 6 Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
1da177e4
LT
7
8 This software may be used and distributed according to the terms of
9 the GNU General Public License (GPL), incorporated herein by reference.
10 Drivers based on or derived from this code fall under the GPL and must
11 retain the authorship, copyright and license notice. This file is not
12 a complete program and may only be used when the entire operating
13 system is licensed under the GPL. License for under other terms may be
14 available. Contact the original author for details.
15
16 The original author may be reached as becker@scyld.com, or at
17 Scyld Computing Corporation
18 410 Severn Ave., Suite 210
19 Annapolis MD 21403
20
21 Support information and updates available at
22 http://www.scyld.com/network/netsemi.html
03a8c661 23 [link no longer provides useful info -jgarzik]
1da177e4
LT
24
25
1da177e4
LT
26 TODO:
27 * big endian support with CFG:BEM instead of cpu_to_le32
1da177e4
LT
28*/
29
1da177e4
LT
30#include <linux/module.h>
31#include <linux/kernel.h>
32#include <linux/string.h>
33#include <linux/timer.h>
34#include <linux/errno.h>
35#include <linux/ioport.h>
36#include <linux/slab.h>
37#include <linux/interrupt.h>
38#include <linux/pci.h>
39#include <linux/netdevice.h>
40#include <linux/etherdevice.h>
41#include <linux/skbuff.h>
42#include <linux/init.h>
43#include <linux/spinlock.h>
44#include <linux/ethtool.h>
45#include <linux/delay.h>
46#include <linux/rtnetlink.h>
47#include <linux/mii.h>
48#include <linux/crc32.h>
49#include <linux/bitops.h>
b27a16b7 50#include <linux/prefetch.h>
1da177e4
LT
51#include <asm/processor.h> /* Processor type for cache alignment. */
52#include <asm/io.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55
56#define DRV_NAME "natsemi"
d5b20697
AG
57#define DRV_VERSION "2.1"
58#define DRV_RELDATE "Sept 11, 2006"
1da177e4
LT
59
60#define RX_OFFSET 2
61
62/* Updated to recommendations in pci-skeleton v2.03. */
63
64/* The user-configurable values.
65 These may be modified when a driver module is loaded.*/
66
67#define NATSEMI_DEF_MSG (NETIF_MSG_DRV | \
68 NETIF_MSG_LINK | \
69 NETIF_MSG_WOL | \
70 NETIF_MSG_RX_ERR | \
71 NETIF_MSG_TX_ERR)
72static int debug = -1;
73
1da177e4
LT
74static int mtu;
75
76/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
77 This chip uses a 512 element hash table based on the Ethernet CRC. */
f71e1309 78static const int multicast_filter_limit = 100;
1da177e4
LT
79
80/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
81 Setting to > 1518 effectively disables this feature. */
82static int rx_copybreak;
83
1a147809
MB
84static int dspcfg_workaround = 1;
85
1da177e4
LT
86/* Used to pass the media type, etc.
87 Both 'options[]' and 'full_duplex[]' should exist for driver
88 interoperability.
89 The media type is usually passed in 'options[]'.
90*/
91#define MAX_UNITS 8 /* More are supported, limit only on options */
92static int options[MAX_UNITS];
93static int full_duplex[MAX_UNITS];
94
95/* Operational parameters that are set at compile time. */
96
97/* Keep the ring sizes a power of two for compile efficiency.
98 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
99 Making the Tx ring too large decreases the effectiveness of channel
100 bonding and packet priority.
101 There are no ill effects from too-large receive rings. */
102#define TX_RING_SIZE 16
103#define TX_QUEUE_LEN 10 /* Limit ring entries actually used, min 4. */
104#define RX_RING_SIZE 32
105
106/* Operational parameters that usually are not changed. */
107/* Time in jiffies before concluding the transmitter is hung. */
108#define TX_TIMEOUT (2*HZ)
109
110#define NATSEMI_HW_TIMEOUT 400
f2cade13 111#define NATSEMI_TIMER_FREQ 5*HZ
1da177e4
LT
112#define NATSEMI_PG0_NREGS 64
113#define NATSEMI_RFDR_NREGS 8
114#define NATSEMI_PG1_NREGS 4
115#define NATSEMI_NREGS (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
116 NATSEMI_PG1_NREGS)
117#define NATSEMI_REGS_VER 1 /* v1 added RFDR registers */
118#define NATSEMI_REGS_SIZE (NATSEMI_NREGS * sizeof(u32))
1da177e4
LT
119
120/* Buffer sizes:
121 * The nic writes 32-bit values, even if the upper bytes of
122 * a 32-bit value are beyond the end of the buffer.
123 */
124#define NATSEMI_HEADERS 22 /* 2*mac,type,vlan,crc */
125#define NATSEMI_PADDING 16 /* 2 bytes should be sufficient */
126#define NATSEMI_LONGPKT 1518 /* limit for normal packets */
127#define NATSEMI_RX_LIMIT 2046 /* maximum supported by hardware */
128
129/* These identify the driver base version and may not be removed. */
aa738adf 130static char version[] __devinitdata =
1da177e4
LT
131 KERN_INFO DRV_NAME " dp8381x driver, version "
132 DRV_VERSION ", " DRV_RELDATE "\n"
133 KERN_INFO " originally by Donald Becker <becker@scyld.com>\n"
1da177e4
LT
134 KERN_INFO " 2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
135
136MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
137MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
138MODULE_LICENSE("GPL");
139
1da177e4
LT
140module_param(mtu, int, 0);
141module_param(debug, int, 0);
142module_param(rx_copybreak, int, 0);
1a147809 143module_param(dspcfg_workaround, int, 1);
1da177e4
LT
144module_param_array(options, int, NULL, 0);
145module_param_array(full_duplex, int, NULL, 0);
1da177e4
LT
146MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
147MODULE_PARM_DESC(debug, "DP8381x default debug level");
6aa20a22 148MODULE_PARM_DESC(rx_copybreak,
1da177e4 149 "DP8381x copy breakpoint for copy-only-tiny-frames");
1a147809 150MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
6aa20a22 151MODULE_PARM_DESC(options,
1da177e4
LT
152 "DP8381x: Bits 0-3: media type, bit 17: full duplex");
153MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
154
155/*
156 Theory of Operation
157
158I. Board Compatibility
159
160This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
161It also works with other chips in in the DP83810 series.
162
163II. Board-specific settings
164
165This driver requires the PCI interrupt line to be valid.
166It honors the EEPROM-set values.
167
168III. Driver operation
169
170IIIa. Ring buffers
171
172This driver uses two statically allocated fixed-size descriptor lists
173formed into rings by a branch from the final descriptor to the beginning of
174the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
175The NatSemi design uses a 'next descriptor' pointer that the driver forms
176into a list.
177
178IIIb/c. Transmit/Receive Structure
179
180This driver uses a zero-copy receive and transmit scheme.
181The driver allocates full frame size skbuffs for the Rx ring buffers at
182open() time and passes the skb->data field to the chip as receive data
183buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
184a fresh skbuff is allocated and the frame is copied to the new skbuff.
185When the incoming frame is larger, the skbuff is passed directly up the
186protocol stack. Buffers consumed this way are replaced by newly allocated
187skbuffs in a later phase of receives.
188
189The RX_COPYBREAK value is chosen to trade-off the memory wasted by
190using a full-sized skbuff for small frames vs. the copying costs of larger
191frames. New boards are typically used in generously configured machines
192and the underfilled buffers have negligible impact compared to the benefit of
193a single allocation size, so the default value of zero results in never
194copying packets. When copying is done, the cost is usually mitigated by using
195a combined copy/checksum routine. Copying also preloads the cache, which is
196most useful with small frames.
197
198A subtle aspect of the operation is that unaligned buffers are not permitted
199by the hardware. Thus the IP header at offset 14 in an ethernet frame isn't
200longword aligned for further processing. On copies frames are put into the
201skbuff at an offset of "+2", 16-byte aligning the IP header.
202
203IIId. Synchronization
204
205Most operations are synchronized on the np->lock irq spinlock, except the
6344f052
MB
206recieve and transmit paths which are synchronised using a combination of
207hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
1da177e4
LT
208
209IVb. References
210
211http://www.scyld.com/expert/100mbps.html
212http://www.scyld.com/expert/NWay.html
213Datasheet is available from:
214http://www.national.com/pf/DP/DP83815.html
215
216IVc. Errata
217
218None characterised.
219*/
220
221
222
1da177e4
LT
223/*
224 * Support for fibre connections on Am79C874:
225 * This phy needs a special setup when connected to a fibre cable.
226 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
227 */
228#define PHYID_AM79C874 0x0022561b
229
a2b524b2
JG
230enum {
231 MII_MCTRL = 0x15, /* mode control register */
232 MII_FX_SEL = 0x0001, /* 100BASE-FX (fiber) */
233 MII_EN_SCRM = 0x0004, /* enable scrambler (tp) */
234};
1da177e4 235
6aab4447
MB
236enum {
237 NATSEMI_FLAG_IGNORE_PHY = 0x1,
238};
6aa20a22 239
1da177e4 240/* array of board data directly indexed by pci_tbl[x].driver_data */
aa738adf 241static struct {
1da177e4
LT
242 const char *name;
243 unsigned long flags;
a2b524b2 244 unsigned int eeprom_size;
1da177e4 245} natsemi_pci_info[] __devinitdata = {
6aab4447 246 { "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
a2b524b2 247 { "NatSemi DP8381[56]", 0, 24 },
1da177e4
LT
248};
249
aa738adf 250static struct pci_device_id natsemi_pci_tbl[] __devinitdata = {
6aab4447 251 { PCI_VENDOR_ID_NS, 0x0020, 0x12d9, 0x000c, 0, 0, 0 },
36c843d5 252 { PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
a2b524b2 253 { } /* terminate list */
1da177e4
LT
254};
255MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
256
257/* Offsets to the device registers.
258 Unlike software-only systems, device drivers interact with complex hardware.
259 It's not useful to define symbolic names for every register bit in the
260 device.
261*/
262enum register_offsets {
263 ChipCmd = 0x00,
264 ChipConfig = 0x04,
265 EECtrl = 0x08,
266 PCIBusCfg = 0x0C,
267 IntrStatus = 0x10,
268 IntrMask = 0x14,
269 IntrEnable = 0x18,
270 IntrHoldoff = 0x1C, /* DP83816 only */
271 TxRingPtr = 0x20,
272 TxConfig = 0x24,
273 RxRingPtr = 0x30,
274 RxConfig = 0x34,
275 ClkRun = 0x3C,
276 WOLCmd = 0x40,
277 PauseCmd = 0x44,
278 RxFilterAddr = 0x48,
279 RxFilterData = 0x4C,
280 BootRomAddr = 0x50,
281 BootRomData = 0x54,
282 SiliconRev = 0x58,
283 StatsCtrl = 0x5C,
284 StatsData = 0x60,
285 RxPktErrs = 0x60,
286 RxMissed = 0x68,
287 RxCRCErrs = 0x64,
288 BasicControl = 0x80,
289 BasicStatus = 0x84,
290 AnegAdv = 0x90,
291 AnegPeer = 0x94,
292 PhyStatus = 0xC0,
293 MIntrCtrl = 0xC4,
294 MIntrStatus = 0xC8,
295 PhyCtrl = 0xE4,
296
297 /* These are from the spec, around page 78... on a separate table.
298 * The meaning of these registers depend on the value of PGSEL. */
299 PGSEL = 0xCC,
300 PMDCSR = 0xE4,
301 TSTDAT = 0xFC,
302 DSPCFG = 0xF4,
303 SDCFG = 0xF8
304};
305/* the values for the 'magic' registers above (PGSEL=1) */
306#define PMDCSR_VAL 0x189c /* enable preferred adaptation circuitry */
307#define TSTDAT_VAL 0x0
308#define DSPCFG_VAL 0x5040
309#define SDCFG_VAL 0x008c /* set voltage thresholds for Signal Detect */
310#define DSPCFG_LOCK 0x20 /* coefficient lock bit in DSPCFG */
311#define DSPCFG_COEF 0x1000 /* see coefficient (in TSTDAT) bit in DSPCFG */
312#define TSTDAT_FIXED 0xe8 /* magic number for bad coefficients */
313
314/* misc PCI space registers */
315enum pci_register_offsets {
316 PCIPM = 0x44,
317};
318
319enum ChipCmd_bits {
320 ChipReset = 0x100,
321 RxReset = 0x20,
322 TxReset = 0x10,
323 RxOff = 0x08,
324 RxOn = 0x04,
325 TxOff = 0x02,
326 TxOn = 0x01,
327};
328
329enum ChipConfig_bits {
330 CfgPhyDis = 0x200,
331 CfgPhyRst = 0x400,
332 CfgExtPhy = 0x1000,
333 CfgAnegEnable = 0x2000,
334 CfgAneg100 = 0x4000,
335 CfgAnegFull = 0x8000,
336 CfgAnegDone = 0x8000000,
337 CfgFullDuplex = 0x20000000,
338 CfgSpeed100 = 0x40000000,
339 CfgLink = 0x80000000,
340};
341
342enum EECtrl_bits {
343 EE_ShiftClk = 0x04,
344 EE_DataIn = 0x01,
345 EE_ChipSelect = 0x08,
346 EE_DataOut = 0x02,
347 MII_Data = 0x10,
348 MII_Write = 0x20,
349 MII_ShiftClk = 0x40,
350};
351
352enum PCIBusCfg_bits {
353 EepromReload = 0x4,
354};
355
356/* Bits in the interrupt status/mask registers. */
357enum IntrStatus_bits {
358 IntrRxDone = 0x0001,
359 IntrRxIntr = 0x0002,
360 IntrRxErr = 0x0004,
361 IntrRxEarly = 0x0008,
362 IntrRxIdle = 0x0010,
363 IntrRxOverrun = 0x0020,
364 IntrTxDone = 0x0040,
365 IntrTxIntr = 0x0080,
366 IntrTxErr = 0x0100,
367 IntrTxIdle = 0x0200,
368 IntrTxUnderrun = 0x0400,
369 StatsMax = 0x0800,
370 SWInt = 0x1000,
371 WOLPkt = 0x2000,
372 LinkChange = 0x4000,
373 IntrHighBits = 0x8000,
374 RxStatusFIFOOver = 0x10000,
375 IntrPCIErr = 0xf00000,
376 RxResetDone = 0x1000000,
377 TxResetDone = 0x2000000,
378 IntrAbnormalSummary = 0xCD20,
379};
380
381/*
382 * Default Interrupts:
383 * Rx OK, Rx Packet Error, Rx Overrun,
384 * Tx OK, Tx Packet Error, Tx Underrun,
385 * MIB Service, Phy Interrupt, High Bits,
386 * Rx Status FIFO overrun,
387 * Received Target Abort, Received Master Abort,
388 * Signalled System Error, Received Parity Error
389 */
390#define DEFAULT_INTR 0x00f1cd65
391
392enum TxConfig_bits {
393 TxDrthMask = 0x3f,
394 TxFlthMask = 0x3f00,
395 TxMxdmaMask = 0x700000,
396 TxMxdma_512 = 0x0,
397 TxMxdma_4 = 0x100000,
398 TxMxdma_8 = 0x200000,
399 TxMxdma_16 = 0x300000,
400 TxMxdma_32 = 0x400000,
401 TxMxdma_64 = 0x500000,
402 TxMxdma_128 = 0x600000,
403 TxMxdma_256 = 0x700000,
404 TxCollRetry = 0x800000,
405 TxAutoPad = 0x10000000,
406 TxMacLoop = 0x20000000,
407 TxHeartIgn = 0x40000000,
408 TxCarrierIgn = 0x80000000
409};
410
6aa20a22 411/*
1da177e4
LT
412 * Tx Configuration:
413 * - 256 byte DMA burst length
414 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
415 * - 64 bytes initial drain threshold (i.e. begin actual transmission
416 * when 64 byte are in the fifo)
417 * - on tx underruns, increase drain threshold by 64.
418 * - at most use a drain threshold of 1472 bytes: The sum of the fill
419 * threshold and the drain threshold must be less than 2016 bytes.
420 *
421 */
422#define TX_FLTH_VAL ((512/32) << 8)
423#define TX_DRTH_VAL_START (64/32)
424#define TX_DRTH_VAL_INC 2
425#define TX_DRTH_VAL_LIMIT (1472/32)
426
427enum RxConfig_bits {
428 RxDrthMask = 0x3e,
429 RxMxdmaMask = 0x700000,
430 RxMxdma_512 = 0x0,
431 RxMxdma_4 = 0x100000,
432 RxMxdma_8 = 0x200000,
433 RxMxdma_16 = 0x300000,
434 RxMxdma_32 = 0x400000,
435 RxMxdma_64 = 0x500000,
436 RxMxdma_128 = 0x600000,
437 RxMxdma_256 = 0x700000,
438 RxAcceptLong = 0x8000000,
439 RxAcceptTx = 0x10000000,
440 RxAcceptRunt = 0x40000000,
441 RxAcceptErr = 0x80000000
442};
443#define RX_DRTH_VAL (128/8)
444
445enum ClkRun_bits {
446 PMEEnable = 0x100,
447 PMEStatus = 0x8000,
448};
449
450enum WolCmd_bits {
451 WakePhy = 0x1,
452 WakeUnicast = 0x2,
453 WakeMulticast = 0x4,
454 WakeBroadcast = 0x8,
455 WakeArp = 0x10,
456 WakePMatch0 = 0x20,
457 WakePMatch1 = 0x40,
458 WakePMatch2 = 0x80,
459 WakePMatch3 = 0x100,
460 WakeMagic = 0x200,
461 WakeMagicSecure = 0x400,
462 SecureHack = 0x100000,
463 WokePhy = 0x400000,
464 WokeUnicast = 0x800000,
465 WokeMulticast = 0x1000000,
466 WokeBroadcast = 0x2000000,
467 WokeArp = 0x4000000,
468 WokePMatch0 = 0x8000000,
469 WokePMatch1 = 0x10000000,
470 WokePMatch2 = 0x20000000,
471 WokePMatch3 = 0x40000000,
472 WokeMagic = 0x80000000,
473 WakeOptsSummary = 0x7ff
474};
475
476enum RxFilterAddr_bits {
477 RFCRAddressMask = 0x3ff,
478 AcceptMulticast = 0x00200000,
479 AcceptMyPhys = 0x08000000,
480 AcceptAllPhys = 0x10000000,
481 AcceptAllMulticast = 0x20000000,
482 AcceptBroadcast = 0x40000000,
483 RxFilterEnable = 0x80000000
484};
485
486enum StatsCtrl_bits {
487 StatsWarn = 0x1,
488 StatsFreeze = 0x2,
489 StatsClear = 0x4,
490 StatsStrobe = 0x8,
491};
492
493enum MIntrCtrl_bits {
494 MICRIntEn = 0x2,
495};
496
497enum PhyCtrl_bits {
498 PhyAddrMask = 0x1f,
499};
500
501#define PHY_ADDR_NONE 32
502#define PHY_ADDR_INTERNAL 1
503
504/* values we might find in the silicon revision register */
505#define SRR_DP83815_C 0x0302
506#define SRR_DP83815_D 0x0403
507#define SRR_DP83816_A4 0x0504
508#define SRR_DP83816_A5 0x0505
509
510/* The Rx and Tx buffer descriptors. */
511/* Note that using only 32 bit fields simplifies conversion to big-endian
512 architectures. */
513struct netdev_desc {
eca1ad82
AV
514 __le32 next_desc;
515 __le32 cmd_status;
516 __le32 addr;
517 __le32 software_use;
1da177e4
LT
518};
519
520/* Bits in network_desc.status */
521enum desc_status_bits {
522 DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
523 DescNoCRC=0x10000000, DescPktOK=0x08000000,
524 DescSizeMask=0xfff,
525
526 DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
527 DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
528 DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
529 DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
530
531 DescRxAbort=0x04000000, DescRxOver=0x02000000,
532 DescRxDest=0x01800000, DescRxLong=0x00400000,
533 DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
534 DescRxCRC=0x00080000, DescRxAlign=0x00040000,
535 DescRxLoop=0x00020000, DesRxColl=0x00010000,
536};
537
538struct netdev_private {
539 /* Descriptor rings first for alignment */
540 dma_addr_t ring_dma;
541 struct netdev_desc *rx_ring;
542 struct netdev_desc *tx_ring;
543 /* The addresses of receive-in-place skbuffs */
544 struct sk_buff *rx_skbuff[RX_RING_SIZE];
545 dma_addr_t rx_dma[RX_RING_SIZE];
546 /* address of a sent-in-place packet/buffer, for later free() */
547 struct sk_buff *tx_skbuff[TX_RING_SIZE];
548 dma_addr_t tx_dma[TX_RING_SIZE];
bea3348e
SH
549 struct net_device *dev;
550 struct napi_struct napi;
1da177e4
LT
551 struct net_device_stats stats;
552 /* Media monitoring timer */
553 struct timer_list timer;
554 /* Frequently used values: keep some adjacent for cache effect */
555 struct pci_dev *pci_dev;
556 struct netdev_desc *rx_head_desc;
557 /* Producer/consumer ring indices */
558 unsigned int cur_rx, dirty_rx;
559 unsigned int cur_tx, dirty_tx;
560 /* Based on MTU+slack. */
561 unsigned int rx_buf_sz;
562 int oom;
b27a16b7
MB
563 /* Interrupt status */
564 u32 intr_status;
1da177e4
LT
565 /* Do not touch the nic registers */
566 int hands_off;
68c90166
MB
567 /* Don't pay attention to the reported link state. */
568 int ignore_phy;
1da177e4
LT
569 /* external phy that is used: only valid if dev->if_port != PORT_TP */
570 int mii;
571 int phy_addr_external;
572 unsigned int full_duplex;
573 /* Rx filter */
574 u32 cur_rx_mode;
575 u32 rx_filter[16];
576 /* FIFO and PCI burst thresholds */
577 u32 tx_config, rx_config;
578 /* original contents of ClkRun register */
579 u32 SavedClkRun;
580 /* silicon revision */
581 u32 srr;
582 /* expected DSPCFG value */
583 u16 dspcfg;
1a147809 584 int dspcfg_workaround;
1da177e4
LT
585 /* parms saved in ethtool format */
586 u16 speed; /* The forced speed, 10Mb, 100Mb, gigabit */
587 u8 duplex; /* Duplex, half or full */
588 u8 autoneg; /* Autonegotiation enabled */
589 /* MII transceiver section */
590 u16 advertising;
591 unsigned int iosize;
592 spinlock_t lock;
593 u32 msg_enable;
a8b4cf42
MB
594 /* EEPROM data */
595 int eeprom_size;
1da177e4
LT
596};
597
598static void move_int_phy(struct net_device *dev, int addr);
599static int eeprom_read(void __iomem *ioaddr, int location);
600static int mdio_read(struct net_device *dev, int reg);
601static void mdio_write(struct net_device *dev, int reg, u16 data);
602static void init_phy_fixup(struct net_device *dev);
603static int miiport_read(struct net_device *dev, int phy_id, int reg);
604static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
605static int find_mii(struct net_device *dev);
606static void natsemi_reset(struct net_device *dev);
607static void natsemi_reload_eeprom(struct net_device *dev);
608static void natsemi_stop_rxtx(struct net_device *dev);
609static int netdev_open(struct net_device *dev);
610static void do_cable_magic(struct net_device *dev);
611static void undo_cable_magic(struct net_device *dev);
612static void check_link(struct net_device *dev);
613static void netdev_timer(unsigned long data);
614static void dump_ring(struct net_device *dev);
ed4cb133 615static void ns_tx_timeout(struct net_device *dev);
1da177e4
LT
616static int alloc_ring(struct net_device *dev);
617static void refill_rx(struct net_device *dev);
618static void init_ring(struct net_device *dev);
619static void drain_tx(struct net_device *dev);
620static void drain_ring(struct net_device *dev);
621static void free_ring(struct net_device *dev);
622static void reinit_ring(struct net_device *dev);
623static void init_registers(struct net_device *dev);
624static int start_tx(struct sk_buff *skb, struct net_device *dev);
7d12e780 625static irqreturn_t intr_handler(int irq, void *dev_instance);
1da177e4 626static void netdev_error(struct net_device *dev, int intr_status);
bea3348e 627static int natsemi_poll(struct napi_struct *napi, int budget);
b27a16b7 628static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
1da177e4
LT
629static void netdev_tx_done(struct net_device *dev);
630static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
631#ifdef CONFIG_NET_POLL_CONTROLLER
632static void natsemi_poll_controller(struct net_device *dev);
633#endif
634static void __set_rx_mode(struct net_device *dev);
635static void set_rx_mode(struct net_device *dev);
636static void __get_stats(struct net_device *dev);
637static struct net_device_stats *get_stats(struct net_device *dev);
638static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
639static int netdev_set_wol(struct net_device *dev, u32 newval);
640static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
641static int netdev_set_sopass(struct net_device *dev, u8 *newval);
642static int netdev_get_sopass(struct net_device *dev, u8 *data);
643static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
644static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
645static void enable_wol_mode(struct net_device *dev, int enable_intr);
646static int netdev_close(struct net_device *dev);
647static int netdev_get_regs(struct net_device *dev, u8 *buf);
648static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
7282d491 649static const struct ethtool_ops ethtool_ops;
1da177e4 650
1a147809
MB
651#define NATSEMI_ATTR(_name) \
652static ssize_t natsemi_show_##_name(struct device *dev, \
653 struct device_attribute *attr, char *buf); \
654 static ssize_t natsemi_set_##_name(struct device *dev, \
655 struct device_attribute *attr, \
656 const char *buf, size_t count); \
657 static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
658
659#define NATSEMI_CREATE_FILE(_dev, _name) \
660 device_create_file(&_dev->dev, &dev_attr_##_name)
661#define NATSEMI_REMOVE_FILE(_dev, _name) \
f6c42865 662 device_remove_file(&_dev->dev, &dev_attr_##_name)
1a147809
MB
663
664NATSEMI_ATTR(dspcfg_workaround);
665
666static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
7d2e3cb7 667 struct device_attribute *attr,
1a147809
MB
668 char *buf)
669{
670 struct netdev_private *np = netdev_priv(to_net_dev(dev));
671
672 return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
673}
674
675static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
676 struct device_attribute *attr,
677 const char *buf, size_t count)
678{
679 struct netdev_private *np = netdev_priv(to_net_dev(dev));
680 int new_setting;
d41f2d17 681 unsigned long flags;
1a147809
MB
682
683 /* Find out the new setting */
684 if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
685 new_setting = 1;
686 else if (!strncmp("off", buf, count - 1)
687 || !strncmp("0", buf, count - 1))
688 new_setting = 0;
689 else
7d2e3cb7 690 return count;
1a147809
MB
691
692 spin_lock_irqsave(&np->lock, flags);
693
694 np->dspcfg_workaround = new_setting;
695
696 spin_unlock_irqrestore(&np->lock, flags);
697
698 return count;
699}
700
1da177e4
LT
701static inline void __iomem *ns_ioaddr(struct net_device *dev)
702{
703 return (void __iomem *) dev->base_addr;
704}
705
b27a16b7
MB
706static inline void natsemi_irq_enable(struct net_device *dev)
707{
708 writel(1, ns_ioaddr(dev) + IntrEnable);
709 readl(ns_ioaddr(dev) + IntrEnable);
710}
711
712static inline void natsemi_irq_disable(struct net_device *dev)
713{
714 writel(0, ns_ioaddr(dev) + IntrEnable);
715 readl(ns_ioaddr(dev) + IntrEnable);
716}
717
1da177e4
LT
718static void move_int_phy(struct net_device *dev, int addr)
719{
720 struct netdev_private *np = netdev_priv(dev);
721 void __iomem *ioaddr = ns_ioaddr(dev);
722 int target = 31;
723
6aa20a22 724 /*
1da177e4
LT
725 * The internal phy is visible on the external mii bus. Therefore we must
726 * move it away before we can send commands to an external phy.
727 * There are two addresses we must avoid:
728 * - the address on the external phy that is used for transmission.
729 * - the address that we want to access. User space can access phys
730 * on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independant from the
731 * phy that is used for transmission.
732 */
733
734 if (target == addr)
735 target--;
736 if (target == np->phy_addr_external)
737 target--;
738 writew(target, ioaddr + PhyCtrl);
739 readw(ioaddr + PhyCtrl);
740 udelay(1);
741}
742
5a40f09b
JG
743static void __devinit natsemi_init_media (struct net_device *dev)
744{
745 struct netdev_private *np = netdev_priv(dev);
746 u32 tmp;
747
68c90166
MB
748 if (np->ignore_phy)
749 netif_carrier_on(dev);
750 else
751 netif_carrier_off(dev);
5a40f09b
JG
752
753 /* get the initial settings from hardware */
754 tmp = mdio_read(dev, MII_BMCR);
755 np->speed = (tmp & BMCR_SPEED100)? SPEED_100 : SPEED_10;
756 np->duplex = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL : DUPLEX_HALF;
757 np->autoneg = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
758 np->advertising= mdio_read(dev, MII_ADVERTISE);
759
760 if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL
761 && netif_msg_probe(np)) {
762 printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
763 "10%s %s duplex.\n",
764 pci_name(np->pci_dev),
765 (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
766 "enabled, advertise" : "disabled, force",
767 (np->advertising &
768 (ADVERTISE_100FULL|ADVERTISE_100HALF))?
769 "0" : "",
770 (np->advertising &
771 (ADVERTISE_100FULL|ADVERTISE_10FULL))?
772 "full" : "half");
773 }
774 if (netif_msg_probe(np))
775 printk(KERN_INFO
776 "natsemi %s: Transceiver status %#04x advertising %#04x.\n",
777 pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
778 np->advertising);
779
780}
781
1da177e4
LT
782static int __devinit natsemi_probe1 (struct pci_dev *pdev,
783 const struct pci_device_id *ent)
784{
785 struct net_device *dev;
786 struct netdev_private *np;
787 int i, option, irq, chip_idx = ent->driver_data;
788 static int find_cnt = -1;
703bb99c
SS
789 resource_size_t iostart;
790 unsigned long iosize;
1da177e4
LT
791 void __iomem *ioaddr;
792 const int pcibar = 1; /* PCI base address register */
793 int prev_eedata;
794 u32 tmp;
795
796/* when built into the kernel, we only print version if device is found */
797#ifndef MODULE
798 static int printed_version;
799 if (!printed_version++)
800 printk(version);
801#endif
802
803 i = pci_enable_device(pdev);
804 if (i) return i;
805
806 /* natsemi has a non-standard PM control register
807 * in PCI config space. Some boards apparently need
808 * to be brought to D0 in this manner.
809 */
810 pci_read_config_dword(pdev, PCIPM, &tmp);
811 if (tmp & PCI_PM_CTRL_STATE_MASK) {
812 /* D0 state, disable PME assertion */
813 u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
814 pci_write_config_dword(pdev, PCIPM, newtmp);
815 }
816
817 find_cnt++;
818 iostart = pci_resource_start(pdev, pcibar);
819 iosize = pci_resource_len(pdev, pcibar);
820 irq = pdev->irq;
821
a2b524b2 822 pci_set_master(pdev);
1da177e4
LT
823
824 dev = alloc_etherdev(sizeof (struct netdev_private));
825 if (!dev)
826 return -ENOMEM;
1da177e4
LT
827 SET_NETDEV_DEV(dev, &pdev->dev);
828
829 i = pci_request_regions(pdev, DRV_NAME);
830 if (i)
831 goto err_pci_request_regions;
832
833 ioaddr = ioremap(iostart, iosize);
834 if (!ioaddr) {
835 i = -ENOMEM;
836 goto err_ioremap;
837 }
838
839 /* Work around the dropped serial bit. */
840 prev_eedata = eeprom_read(ioaddr, 6);
841 for (i = 0; i < 3; i++) {
842 int eedata = eeprom_read(ioaddr, i + 7);
843 dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
844 dev->dev_addr[i*2+1] = eedata >> 7;
845 prev_eedata = eedata;
846 }
847
848 dev->base_addr = (unsigned long __force) ioaddr;
849 dev->irq = irq;
850
851 np = netdev_priv(dev);
bea3348e 852 netif_napi_add(dev, &np->napi, natsemi_poll, 64);
bbbab5ca 853 np->dev = dev;
1da177e4
LT
854
855 np->pci_dev = pdev;
856 pci_set_drvdata(pdev, dev);
857 np->iosize = iosize;
858 spin_lock_init(&np->lock);
859 np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
860 np->hands_off = 0;
b27a16b7 861 np->intr_status = 0;
a2b524b2 862 np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
6aab4447
MB
863 if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
864 np->ignore_phy = 1;
865 else
866 np->ignore_phy = 0;
1a147809 867 np->dspcfg_workaround = dspcfg_workaround;
1da177e4
LT
868
869 /* Initial port:
68c90166 870 * - If configured to ignore the PHY set up for external.
1da177e4
LT
871 * - If the nic was configured to use an external phy and if find_mii
872 * finds a phy: use external port, first phy that replies.
873 * - Otherwise: internal port.
874 * Note that the phy address for the internal phy doesn't matter:
875 * The address would be used to access a phy over the mii bus, but
876 * the internal phy is accessed through mapped registers.
877 */
68c90166 878 if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
1da177e4
LT
879 dev->if_port = PORT_MII;
880 else
881 dev->if_port = PORT_TP;
882 /* Reset the chip to erase previous misconfiguration. */
883 natsemi_reload_eeprom(dev);
884 natsemi_reset(dev);
885
886 if (dev->if_port != PORT_TP) {
887 np->phy_addr_external = find_mii(dev);
68c90166
MB
888 /* If we're ignoring the PHY it doesn't matter if we can't
889 * find one. */
890 if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
1da177e4
LT
891 dev->if_port = PORT_TP;
892 np->phy_addr_external = PHY_ADDR_INTERNAL;
893 }
894 } else {
895 np->phy_addr_external = PHY_ADDR_INTERNAL;
896 }
897
898 option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
899 if (dev->mem_start)
900 option = dev->mem_start;
901
902 /* The lower four bits are the media type. */
903 if (option) {
904 if (option & 0x200)
905 np->full_duplex = 1;
906 if (option & 15)
907 printk(KERN_INFO
908 "natsemi %s: ignoring user supplied media type %d",
909 pci_name(np->pci_dev), option & 15);
910 }
911 if (find_cnt < MAX_UNITS && full_duplex[find_cnt])
912 np->full_duplex = 1;
913
914 /* The chip-specific entries in the device structure. */
915 dev->open = &netdev_open;
916 dev->hard_start_xmit = &start_tx;
917 dev->stop = &netdev_close;
918 dev->get_stats = &get_stats;
919 dev->set_multicast_list = &set_rx_mode;
920 dev->change_mtu = &natsemi_change_mtu;
921 dev->do_ioctl = &netdev_ioctl;
ed4cb133 922 dev->tx_timeout = &ns_tx_timeout;
1da177e4 923 dev->watchdog_timeo = TX_TIMEOUT;
b27a16b7 924
1da177e4
LT
925#ifdef CONFIG_NET_POLL_CONTROLLER
926 dev->poll_controller = &natsemi_poll_controller;
927#endif
928 SET_ETHTOOL_OPS(dev, &ethtool_ops);
929
930 if (mtu)
931 dev->mtu = mtu;
932
5a40f09b 933 natsemi_init_media(dev);
1da177e4
LT
934
935 /* save the silicon revision for later querying */
936 np->srr = readl(ioaddr + SiliconRev);
937 if (netif_msg_hw(np))
938 printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
939 pci_name(np->pci_dev), np->srr);
940
941 i = register_netdev(dev);
942 if (i)
943 goto err_register_netdev;
944
1a147809
MB
945 if (NATSEMI_CREATE_FILE(pdev, dspcfg_workaround))
946 goto err_create_file;
947
1da177e4 948 if (netif_msg_drv(np)) {
703bb99c 949 printk(KERN_INFO "natsemi %s: %s at %#08llx "
e174961c 950 "(%s), %pM, IRQ %d",
703bb99c
SS
951 dev->name, natsemi_pci_info[chip_idx].name,
952 (unsigned long long)iostart, pci_name(np->pci_dev),
e174961c 953 dev->dev_addr, irq);
1da177e4
LT
954 if (dev->if_port == PORT_TP)
955 printk(", port TP.\n");
68c90166
MB
956 else if (np->ignore_phy)
957 printk(", port MII, ignoring PHY\n");
1da177e4
LT
958 else
959 printk(", port MII, phy ad %d.\n", np->phy_addr_external);
960 }
961 return 0;
962
1a147809
MB
963 err_create_file:
964 unregister_netdev(dev);
965
1da177e4
LT
966 err_register_netdev:
967 iounmap(ioaddr);
968
969 err_ioremap:
970 pci_release_regions(pdev);
971 pci_set_drvdata(pdev, NULL);
972
973 err_pci_request_regions:
974 free_netdev(dev);
975 return i;
976}
977
978
979/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
980 The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
981
982/* Delay between EEPROM clock transitions.
983 No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
984 a delay. Note that pre-2.0.34 kernels had a cache-alignment bug that
985 made udelay() unreliable.
986 The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
405bbe9f 987 deprecated.
1da177e4
LT
988*/
989#define eeprom_delay(ee_addr) readl(ee_addr)
990
991#define EE_Write0 (EE_ChipSelect)
992#define EE_Write1 (EE_ChipSelect | EE_DataIn)
993
994/* The EEPROM commands include the alway-set leading bit. */
995enum EEPROM_Cmds {
996 EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
997};
998
999static int eeprom_read(void __iomem *addr, int location)
1000{
1001 int i;
1002 int retval = 0;
1003 void __iomem *ee_addr = addr + EECtrl;
1004 int read_cmd = location | EE_ReadCmd;
1005
1006 writel(EE_Write0, ee_addr);
1007
1008 /* Shift the read command bits out. */
1009 for (i = 10; i >= 0; i--) {
1010 short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1011 writel(dataval, ee_addr);
1012 eeprom_delay(ee_addr);
1013 writel(dataval | EE_ShiftClk, ee_addr);
1014 eeprom_delay(ee_addr);
1015 }
1016 writel(EE_ChipSelect, ee_addr);
1017 eeprom_delay(ee_addr);
1018
1019 for (i = 0; i < 16; i++) {
1020 writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1021 eeprom_delay(ee_addr);
1022 retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1023 writel(EE_ChipSelect, ee_addr);
1024 eeprom_delay(ee_addr);
1025 }
1026
1027 /* Terminate the EEPROM access. */
1028 writel(EE_Write0, ee_addr);
1029 writel(0, ee_addr);
1030 return retval;
1031}
1032
1033/* MII transceiver control section.
1034 * The 83815 series has an internal transceiver, and we present the
1035 * internal management registers as if they were MII connected.
1036 * External Phy registers are referenced through the MII interface.
1037 */
1038
1039/* clock transitions >= 20ns (25MHz)
1040 * One readl should be good to PCI @ 100MHz
1041 */
1042#define mii_delay(ioaddr) readl(ioaddr + EECtrl)
1043
1044static int mii_getbit (struct net_device *dev)
1045{
1046 int data;
1047 void __iomem *ioaddr = ns_ioaddr(dev);
1048
1049 writel(MII_ShiftClk, ioaddr + EECtrl);
1050 data = readl(ioaddr + EECtrl);
1051 writel(0, ioaddr + EECtrl);
1052 mii_delay(ioaddr);
1053 return (data & MII_Data)? 1 : 0;
1054}
1055
1056static void mii_send_bits (struct net_device *dev, u32 data, int len)
1057{
1058 u32 i;
1059 void __iomem *ioaddr = ns_ioaddr(dev);
1060
1061 for (i = (1 << (len-1)); i; i >>= 1)
1062 {
1063 u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1064 writel(mdio_val, ioaddr + EECtrl);
1065 mii_delay(ioaddr);
1066 writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1067 mii_delay(ioaddr);
1068 }
1069 writel(0, ioaddr + EECtrl);
1070 mii_delay(ioaddr);
1071}
1072
1073static int miiport_read(struct net_device *dev, int phy_id, int reg)
1074{
1075 u32 cmd;
1076 int i;
1077 u32 retval = 0;
1078
1079 /* Ensure sync */
1080 mii_send_bits (dev, 0xffffffff, 32);
1081 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1082 /* ST,OP = 0110'b for read operation */
1083 cmd = (0x06 << 10) | (phy_id << 5) | reg;
1084 mii_send_bits (dev, cmd, 14);
1085 /* Turnaround */
1086 if (mii_getbit (dev))
1087 return 0;
1088 /* Read data */
1089 for (i = 0; i < 16; i++) {
1090 retval <<= 1;
1091 retval |= mii_getbit (dev);
1092 }
1093 /* End cycle */
1094 mii_getbit (dev);
1095 return retval;
1096}
1097
1098static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1099{
1100 u32 cmd;
1101
1102 /* Ensure sync */
1103 mii_send_bits (dev, 0xffffffff, 32);
1104 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1105 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1106 cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1107 mii_send_bits (dev, cmd, 32);
1108 /* End cycle */
1109 mii_getbit (dev);
1110}
1111
1112static int mdio_read(struct net_device *dev, int reg)
1113{
1114 struct netdev_private *np = netdev_priv(dev);
1115 void __iomem *ioaddr = ns_ioaddr(dev);
1116
1117 /* The 83815 series has two ports:
1118 * - an internal transceiver
1119 * - an external mii bus
1120 */
1121 if (dev->if_port == PORT_TP)
1122 return readw(ioaddr+BasicControl+(reg<<2));
1123 else
1124 return miiport_read(dev, np->phy_addr_external, reg);
1125}
1126
1127static void mdio_write(struct net_device *dev, int reg, u16 data)
1128{
1129 struct netdev_private *np = netdev_priv(dev);
1130 void __iomem *ioaddr = ns_ioaddr(dev);
1131
1132 /* The 83815 series has an internal transceiver; handle separately */
1133 if (dev->if_port == PORT_TP)
1134 writew(data, ioaddr+BasicControl+(reg<<2));
1135 else
1136 miiport_write(dev, np->phy_addr_external, reg, data);
1137}
1138
1139static void init_phy_fixup(struct net_device *dev)
1140{
1141 struct netdev_private *np = netdev_priv(dev);
1142 void __iomem *ioaddr = ns_ioaddr(dev);
1143 int i;
1144 u32 cfg;
1145 u16 tmp;
1146
1147 /* restore stuff lost when power was out */
1148 tmp = mdio_read(dev, MII_BMCR);
1149 if (np->autoneg == AUTONEG_ENABLE) {
1150 /* renegotiate if something changed */
1151 if ((tmp & BMCR_ANENABLE) == 0
1152 || np->advertising != mdio_read(dev, MII_ADVERTISE))
1153 {
1154 /* turn on autonegotiation and force negotiation */
1155 tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1156 mdio_write(dev, MII_ADVERTISE, np->advertising);
1157 }
1158 } else {
1159 /* turn off auto negotiation, set speed and duplexity */
1160 tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1161 if (np->speed == SPEED_100)
1162 tmp |= BMCR_SPEED100;
1163 if (np->duplex == DUPLEX_FULL)
1164 tmp |= BMCR_FULLDPLX;
6aa20a22 1165 /*
1da177e4
LT
1166 * Note: there is no good way to inform the link partner
1167 * that our capabilities changed. The user has to unplug
1168 * and replug the network cable after some changes, e.g.
1169 * after switching from 10HD, autoneg off to 100 HD,
1170 * autoneg off.
1171 */
1172 }
1173 mdio_write(dev, MII_BMCR, tmp);
1174 readl(ioaddr + ChipConfig);
1175 udelay(1);
1176
1177 /* find out what phy this is */
1178 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1179 + mdio_read(dev, MII_PHYSID2);
1180
1181 /* handle external phys here */
1182 switch (np->mii) {
1183 case PHYID_AM79C874:
1184 /* phy specific configuration for fibre/tp operation */
1185 tmp = mdio_read(dev, MII_MCTRL);
1186 tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1187 if (dev->if_port == PORT_FIBRE)
1188 tmp |= MII_FX_SEL;
1189 else
1190 tmp |= MII_EN_SCRM;
1191 mdio_write(dev, MII_MCTRL, tmp);
1192 break;
1193 default:
1194 break;
1195 }
1196 cfg = readl(ioaddr + ChipConfig);
1197 if (cfg & CfgExtPhy)
1198 return;
1199
1200 /* On page 78 of the spec, they recommend some settings for "optimum
1201 performance" to be done in sequence. These settings optimize some
1202 of the 100Mbit autodetection circuitry. They say we only want to
1203 do this for rev C of the chip, but engineers at NSC (Bradley
1204 Kennedy) recommends always setting them. If you don't, you get
1205 errors on some autonegotiations that make the device unusable.
1206
1207 It seems that the DSP needs a few usec to reinitialize after
1208 the start of the phy. Just retry writing these values until they
1209 stick.
1210 */
1211 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1212
1213 int dspcfg;
1214 writew(1, ioaddr + PGSEL);
1215 writew(PMDCSR_VAL, ioaddr + PMDCSR);
1216 writew(TSTDAT_VAL, ioaddr + TSTDAT);
1217 np->dspcfg = (np->srr <= SRR_DP83815_C)?
1218 DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1219 writew(np->dspcfg, ioaddr + DSPCFG);
1220 writew(SDCFG_VAL, ioaddr + SDCFG);
1221 writew(0, ioaddr + PGSEL);
1222 readl(ioaddr + ChipConfig);
1223 udelay(10);
1224
1225 writew(1, ioaddr + PGSEL);
1226 dspcfg = readw(ioaddr + DSPCFG);
1227 writew(0, ioaddr + PGSEL);
1228 if (np->dspcfg == dspcfg)
1229 break;
1230 }
1231
1232 if (netif_msg_link(np)) {
1233 if (i==NATSEMI_HW_TIMEOUT) {
1234 printk(KERN_INFO
1235 "%s: DSPCFG mismatch after retrying for %d usec.\n",
1236 dev->name, i*10);
1237 } else {
1238 printk(KERN_INFO
1239 "%s: DSPCFG accepted after %d usec.\n",
1240 dev->name, i*10);
1241 }
1242 }
1243 /*
1244 * Enable PHY Specific event based interrupts. Link state change
1245 * and Auto-Negotiation Completion are among the affected.
1246 * Read the intr status to clear it (needed for wake events).
1247 */
1248 readw(ioaddr + MIntrStatus);
1249 writew(MICRIntEn, ioaddr + MIntrCtrl);
1250}
1251
1252static int switch_port_external(struct net_device *dev)
1253{
1254 struct netdev_private *np = netdev_priv(dev);
1255 void __iomem *ioaddr = ns_ioaddr(dev);
1256 u32 cfg;
1257
1258 cfg = readl(ioaddr + ChipConfig);
1259 if (cfg & CfgExtPhy)
1260 return 0;
1261
1262 if (netif_msg_link(np)) {
1263 printk(KERN_INFO "%s: switching to external transceiver.\n",
1264 dev->name);
1265 }
1266
1267 /* 1) switch back to external phy */
1268 writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1269 readl(ioaddr + ChipConfig);
1270 udelay(1);
1271
1272 /* 2) reset the external phy: */
1273 /* resetting the external PHY has been known to cause a hub supplying
1274 * power over Ethernet to kill the power. We don't want to kill
1275 * power to this computer, so we avoid resetting the phy.
1276 */
1277
1278 /* 3) reinit the phy fixup, it got lost during power down. */
1279 move_int_phy(dev, np->phy_addr_external);
1280 init_phy_fixup(dev);
1281
1282 return 1;
1283}
1284
1285static int switch_port_internal(struct net_device *dev)
1286{
1287 struct netdev_private *np = netdev_priv(dev);
1288 void __iomem *ioaddr = ns_ioaddr(dev);
1289 int i;
1290 u32 cfg;
1291 u16 bmcr;
1292
1293 cfg = readl(ioaddr + ChipConfig);
1294 if (!(cfg &CfgExtPhy))
1295 return 0;
1296
1297 if (netif_msg_link(np)) {
1298 printk(KERN_INFO "%s: switching to internal transceiver.\n",
1299 dev->name);
1300 }
1301 /* 1) switch back to internal phy: */
1302 cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1303 writel(cfg, ioaddr + ChipConfig);
1304 readl(ioaddr + ChipConfig);
1305 udelay(1);
6aa20a22 1306
1da177e4
LT
1307 /* 2) reset the internal phy: */
1308 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1309 writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1310 readl(ioaddr + ChipConfig);
1311 udelay(10);
1312 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1313 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1314 if (!(bmcr & BMCR_RESET))
1315 break;
1316 udelay(10);
1317 }
1318 if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1319 printk(KERN_INFO
1320 "%s: phy reset did not complete in %d usec.\n",
1321 dev->name, i*10);
1322 }
1323 /* 3) reinit the phy fixup, it got lost during power down. */
1324 init_phy_fixup(dev);
1325
1326 return 1;
1327}
1328
1329/* Scan for a PHY on the external mii bus.
1330 * There are two tricky points:
1331 * - Do not scan while the internal phy is enabled. The internal phy will
1332 * crash: e.g. reads from the DSPCFG register will return odd values and
1333 * the nasty random phy reset code will reset the nic every few seconds.
1334 * - The internal phy must be moved around, an external phy could
1335 * have the same address as the internal phy.
1336 */
1337static int find_mii(struct net_device *dev)
1338{
1339 struct netdev_private *np = netdev_priv(dev);
1340 int tmp;
1341 int i;
1342 int did_switch;
1343
1344 /* Switch to external phy */
1345 did_switch = switch_port_external(dev);
6aa20a22 1346
1da177e4
LT
1347 /* Scan the possible phy addresses:
1348 *
1349 * PHY address 0 means that the phy is in isolate mode. Not yet
1350 * supported due to lack of test hardware. User space should
1351 * handle it through ethtool.
1352 */
1353 for (i = 1; i <= 31; i++) {
1354 move_int_phy(dev, i);
1355 tmp = miiport_read(dev, i, MII_BMSR);
1356 if (tmp != 0xffff && tmp != 0x0000) {
1357 /* found something! */
1358 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1359 + mdio_read(dev, MII_PHYSID2);
1360 if (netif_msg_probe(np)) {
1361 printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1362 pci_name(np->pci_dev), np->mii, i);
1363 }
1364 break;
1365 }
1366 }
1367 /* And switch back to internal phy: */
1368 if (did_switch)
1369 switch_port_internal(dev);
1370 return i;
1371}
1372
1373/* CFG bits [13:16] [18:23] */
1374#define CFG_RESET_SAVE 0xfde000
1375/* WCSR bits [0:4] [9:10] */
1376#define WCSR_RESET_SAVE 0x61f
1377/* RFCR bits [20] [22] [27:31] */
1378#define RFCR_RESET_SAVE 0xf8500000;
1379
1380static void natsemi_reset(struct net_device *dev)
1381{
1382 int i;
1383 u32 cfg;
1384 u32 wcsr;
1385 u32 rfcr;
1386 u16 pmatch[3];
1387 u16 sopass[3];
1388 struct netdev_private *np = netdev_priv(dev);
1389 void __iomem *ioaddr = ns_ioaddr(dev);
1390
1391 /*
1392 * Resetting the chip causes some registers to be lost.
1393 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1394 * we save the state that would have been loaded from EEPROM
1395 * on a normal power-up (see the spec EEPROM map). This assumes
1396 * whoever calls this will follow up with init_registers() eventually.
1397 */
1398
1399 /* CFG */
1400 cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1401 /* WCSR */
1402 wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1403 /* RFCR */
1404 rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1405 /* PMATCH */
1406 for (i = 0; i < 3; i++) {
1407 writel(i*2, ioaddr + RxFilterAddr);
1408 pmatch[i] = readw(ioaddr + RxFilterData);
1409 }
1410 /* SOPAS */
1411 for (i = 0; i < 3; i++) {
1412 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1413 sopass[i] = readw(ioaddr + RxFilterData);
1414 }
1415
1416 /* now whack the chip */
1417 writel(ChipReset, ioaddr + ChipCmd);
1418 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1419 if (!(readl(ioaddr + ChipCmd) & ChipReset))
1420 break;
1421 udelay(5);
1422 }
1423 if (i==NATSEMI_HW_TIMEOUT) {
1424 printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1425 dev->name, i*5);
1426 } else if (netif_msg_hw(np)) {
1427 printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1428 dev->name, i*5);
1429 }
1430
1431 /* restore CFG */
1432 cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1433 /* turn on external phy if it was selected */
1434 if (dev->if_port == PORT_TP)
1435 cfg &= ~(CfgExtPhy | CfgPhyDis);
1436 else
1437 cfg |= (CfgExtPhy | CfgPhyDis);
1438 writel(cfg, ioaddr + ChipConfig);
1439 /* restore WCSR */
1440 wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1441 writel(wcsr, ioaddr + WOLCmd);
1442 /* read RFCR */
1443 rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1444 /* restore PMATCH */
1445 for (i = 0; i < 3; i++) {
1446 writel(i*2, ioaddr + RxFilterAddr);
1447 writew(pmatch[i], ioaddr + RxFilterData);
1448 }
1449 for (i = 0; i < 3; i++) {
1450 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1451 writew(sopass[i], ioaddr + RxFilterData);
1452 }
1453 /* restore RFCR */
1454 writel(rfcr, ioaddr + RxFilterAddr);
1455}
1456
e72fd96e
MB
1457static void reset_rx(struct net_device *dev)
1458{
1459 int i;
1460 struct netdev_private *np = netdev_priv(dev);
1461 void __iomem *ioaddr = ns_ioaddr(dev);
1462
1463 np->intr_status &= ~RxResetDone;
1464
1465 writel(RxReset, ioaddr + ChipCmd);
1466
1467 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1468 np->intr_status |= readl(ioaddr + IntrStatus);
1469 if (np->intr_status & RxResetDone)
1470 break;
1471 udelay(15);
1472 }
1473 if (i==NATSEMI_HW_TIMEOUT) {
1474 printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1475 dev->name, i*15);
1476 } else if (netif_msg_hw(np)) {
1477 printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1478 dev->name, i*15);
1479 }
1480}
1481
1da177e4
LT
1482static void natsemi_reload_eeprom(struct net_device *dev)
1483{
1484 struct netdev_private *np = netdev_priv(dev);
1485 void __iomem *ioaddr = ns_ioaddr(dev);
1486 int i;
1487
1488 writel(EepromReload, ioaddr + PCIBusCfg);
1489 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1490 udelay(50);
1491 if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1492 break;
1493 }
1494 if (i==NATSEMI_HW_TIMEOUT) {
1495 printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1496 pci_name(np->pci_dev), i*50);
1497 } else if (netif_msg_hw(np)) {
1498 printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1499 pci_name(np->pci_dev), i*50);
1500 }
1501}
1502
1503static void natsemi_stop_rxtx(struct net_device *dev)
1504{
1505 void __iomem * ioaddr = ns_ioaddr(dev);
1506 struct netdev_private *np = netdev_priv(dev);
1507 int i;
1508
1509 writel(RxOff | TxOff, ioaddr + ChipCmd);
1510 for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1511 if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1512 break;
1513 udelay(5);
1514 }
1515 if (i==NATSEMI_HW_TIMEOUT) {
1516 printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1517 dev->name, i*5);
1518 } else if (netif_msg_hw(np)) {
1519 printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1520 dev->name, i*5);
1521 }
1522}
1523
1524static int netdev_open(struct net_device *dev)
1525{
1526 struct netdev_private *np = netdev_priv(dev);
1527 void __iomem * ioaddr = ns_ioaddr(dev);
1528 int i;
1529
1530 /* Reset the chip, just in case. */
1531 natsemi_reset(dev);
1532
1fb9df5d 1533 i = request_irq(dev->irq, &intr_handler, IRQF_SHARED, dev->name, dev);
1da177e4
LT
1534 if (i) return i;
1535
1536 if (netif_msg_ifup(np))
1537 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1538 dev->name, dev->irq);
1539 i = alloc_ring(dev);
1540 if (i < 0) {
1541 free_irq(dev->irq, dev);
1542 return i;
1543 }
bea3348e
SH
1544 napi_enable(&np->napi);
1545
1da177e4
LT
1546 init_ring(dev);
1547 spin_lock_irq(&np->lock);
1548 init_registers(dev);
1549 /* now set the MAC address according to dev->dev_addr */
1550 for (i = 0; i < 3; i++) {
1551 u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1552
1553 writel(i*2, ioaddr + RxFilterAddr);
1554 writew(mac, ioaddr + RxFilterData);
1555 }
1556 writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1557 spin_unlock_irq(&np->lock);
1558
1559 netif_start_queue(dev);
1560
1561 if (netif_msg_ifup(np))
1562 printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1563 dev->name, (int)readl(ioaddr + ChipCmd));
1564
1565 /* Set the timer to check for link beat. */
1566 init_timer(&np->timer);
0e5d5442 1567 np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
1da177e4
LT
1568 np->timer.data = (unsigned long)dev;
1569 np->timer.function = &netdev_timer; /* timer handler */
1570 add_timer(&np->timer);
1571
1572 return 0;
1573}
1574
1575static void do_cable_magic(struct net_device *dev)
1576{
1577 struct netdev_private *np = netdev_priv(dev);
1578 void __iomem *ioaddr = ns_ioaddr(dev);
1579
1580 if (dev->if_port != PORT_TP)
1581 return;
1582
1583 if (np->srr >= SRR_DP83816_A5)
1584 return;
1585
1586 /*
1587 * 100 MBit links with short cables can trip an issue with the chip.
1588 * The problem manifests as lots of CRC errors and/or flickering
1589 * activity LED while idle. This process is based on instructions
1590 * from engineers at National.
1591 */
1592 if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1593 u16 data;
1594
1595 writew(1, ioaddr + PGSEL);
1596 /*
1597 * coefficient visibility should already be enabled via
1598 * DSPCFG | 0x1000
1599 */
1600 data = readw(ioaddr + TSTDAT) & 0xff;
1601 /*
1602 * the value must be negative, and within certain values
1603 * (these values all come from National)
1604 */
1605 if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
ddfce6bb 1606 np = netdev_priv(dev);
1da177e4
LT
1607
1608 /* the bug has been triggered - fix the coefficient */
1609 writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1610 /* lock the value */
1611 data = readw(ioaddr + DSPCFG);
1612 np->dspcfg = data | DSPCFG_LOCK;
1613 writew(np->dspcfg, ioaddr + DSPCFG);
1614 }
1615 writew(0, ioaddr + PGSEL);
1616 }
1617}
1618
1619static void undo_cable_magic(struct net_device *dev)
1620{
1621 u16 data;
1622 struct netdev_private *np = netdev_priv(dev);
1623 void __iomem * ioaddr = ns_ioaddr(dev);
1624
1625 if (dev->if_port != PORT_TP)
1626 return;
1627
1628 if (np->srr >= SRR_DP83816_A5)
1629 return;
1630
1631 writew(1, ioaddr + PGSEL);
1632 /* make sure the lock bit is clear */
1633 data = readw(ioaddr + DSPCFG);
1634 np->dspcfg = data & ~DSPCFG_LOCK;
1635 writew(np->dspcfg, ioaddr + DSPCFG);
1636 writew(0, ioaddr + PGSEL);
1637}
1638
1639static void check_link(struct net_device *dev)
1640{
1641 struct netdev_private *np = netdev_priv(dev);
1642 void __iomem * ioaddr = ns_ioaddr(dev);
68c90166 1643 int duplex = np->duplex;
1da177e4 1644 u16 bmsr;
6aa20a22 1645
68c90166
MB
1646 /* If we are ignoring the PHY then don't try reading it. */
1647 if (np->ignore_phy)
1648 goto propagate_state;
1649
1da177e4
LT
1650 /* The link status field is latched: it remains low after a temporary
1651 * link failure until it's read. We need the current link status,
1652 * thus read twice.
1653 */
1654 mdio_read(dev, MII_BMSR);
1655 bmsr = mdio_read(dev, MII_BMSR);
1656
1657 if (!(bmsr & BMSR_LSTATUS)) {
1658 if (netif_carrier_ok(dev)) {
1659 if (netif_msg_link(np))
1660 printk(KERN_NOTICE "%s: link down.\n",
68c90166 1661 dev->name);
1da177e4
LT
1662 netif_carrier_off(dev);
1663 undo_cable_magic(dev);
1664 }
1665 return;
1666 }
1667 if (!netif_carrier_ok(dev)) {
1668 if (netif_msg_link(np))
1669 printk(KERN_NOTICE "%s: link up.\n", dev->name);
1670 netif_carrier_on(dev);
1671 do_cable_magic(dev);
1672 }
1673
1674 duplex = np->full_duplex;
1675 if (!duplex) {
1676 if (bmsr & BMSR_ANEGCOMPLETE) {
1677 int tmp = mii_nway_result(
1678 np->advertising & mdio_read(dev, MII_LPA));
1679 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1680 duplex = 1;
1681 } else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1682 duplex = 1;
1683 }
1684
68c90166 1685propagate_state:
1da177e4
LT
1686 /* if duplex is set then bit 28 must be set, too */
1687 if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1688 if (netif_msg_link(np))
1689 printk(KERN_INFO
1690 "%s: Setting %s-duplex based on negotiated "
1691 "link capability.\n", dev->name,
1692 duplex ? "full" : "half");
1693 if (duplex) {
1694 np->rx_config |= RxAcceptTx;
1695 np->tx_config |= TxCarrierIgn | TxHeartIgn;
1696 } else {
1697 np->rx_config &= ~RxAcceptTx;
1698 np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1699 }
1700 writel(np->tx_config, ioaddr + TxConfig);
1701 writel(np->rx_config, ioaddr + RxConfig);
1702 }
1703}
1704
1705static void init_registers(struct net_device *dev)
1706{
1707 struct netdev_private *np = netdev_priv(dev);
1708 void __iomem * ioaddr = ns_ioaddr(dev);
1709
1710 init_phy_fixup(dev);
1711
1712 /* clear any interrupts that are pending, such as wake events */
1713 readl(ioaddr + IntrStatus);
1714
1715 writel(np->ring_dma, ioaddr + RxRingPtr);
1716 writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1717 ioaddr + TxRingPtr);
1718
1719 /* Initialize other registers.
1720 * Configure the PCI bus bursts and FIFO thresholds.
1721 * Configure for standard, in-spec Ethernet.
1722 * Start with half-duplex. check_link will update
1723 * to the correct settings.
1724 */
1725
1726 /* DRTH: 2: start tx if 64 bytes are in the fifo
1727 * FLTH: 0x10: refill with next packet if 512 bytes are free
1728 * MXDMA: 0: up to 256 byte bursts.
1729 * MXDMA must be <= FLTH
1730 * ECRETRY=1
1731 * ATP=1
1732 */
1733 np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1734 TX_FLTH_VAL | TX_DRTH_VAL_START;
1735 writel(np->tx_config, ioaddr + TxConfig);
1736
1737 /* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1738 * MXDMA 0: up to 256 byte bursts
1739 */
1740 np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1741 /* if receive ring now has bigger buffers than normal, enable jumbo */
1742 if (np->rx_buf_sz > NATSEMI_LONGPKT)
1743 np->rx_config |= RxAcceptLong;
1744
1745 writel(np->rx_config, ioaddr + RxConfig);
1746
1747 /* Disable PME:
1748 * The PME bit is initialized from the EEPROM contents.
1749 * PCI cards probably have PME disabled, but motherboard
1750 * implementations may have PME set to enable WakeOnLan.
1751 * With PME set the chip will scan incoming packets but
1752 * nothing will be written to memory. */
1753 np->SavedClkRun = readl(ioaddr + ClkRun);
1754 writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1755 if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1756 printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1757 dev->name, readl(ioaddr + WOLCmd));
1758 }
1759
1760 check_link(dev);
1761 __set_rx_mode(dev);
1762
1763 /* Enable interrupts by setting the interrupt mask. */
1764 writel(DEFAULT_INTR, ioaddr + IntrMask);
14fdd90e 1765 natsemi_irq_enable(dev);
1da177e4
LT
1766
1767 writel(RxOn | TxOn, ioaddr + ChipCmd);
1768 writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1769}
1770
1771/*
1772 * netdev_timer:
1773 * Purpose:
1774 * 1) check for link changes. Usually they are handled by the MII interrupt
1775 * but it doesn't hurt to check twice.
1776 * 2) check for sudden death of the NIC:
1777 * It seems that a reference set for this chip went out with incorrect info,
1778 * and there exist boards that aren't quite right. An unexpected voltage
1779 * drop can cause the PHY to get itself in a weird state (basically reset).
1a147809
MB
1780 * NOTE: this only seems to affect revC chips. The user can disable
1781 * this check via dspcfg_workaround sysfs option.
1da177e4
LT
1782 * 3) check of death of the RX path due to OOM
1783 */
1784static void netdev_timer(unsigned long data)
1785{
1786 struct net_device *dev = (struct net_device *)data;
1787 struct netdev_private *np = netdev_priv(dev);
1788 void __iomem * ioaddr = ns_ioaddr(dev);
f2cade13 1789 int next_tick = NATSEMI_TIMER_FREQ;
1da177e4
LT
1790
1791 if (netif_msg_timer(np)) {
1792 /* DO NOT read the IntrStatus register,
1793 * a read clears any pending interrupts.
1794 */
1795 printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1796 dev->name);
1797 }
1798
1799 if (dev->if_port == PORT_TP) {
1800 u16 dspcfg;
1801
1802 spin_lock_irq(&np->lock);
1803 /* check for a nasty random phy-reset - use dspcfg as a flag */
1804 writew(1, ioaddr+PGSEL);
1805 dspcfg = readw(ioaddr+DSPCFG);
1806 writew(0, ioaddr+PGSEL);
1a147809 1807 if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1da177e4
LT
1808 if (!netif_queue_stopped(dev)) {
1809 spin_unlock_irq(&np->lock);
d0ed4864 1810 if (netif_msg_drv(np))
1da177e4
LT
1811 printk(KERN_NOTICE "%s: possible phy reset: "
1812 "re-initializing\n", dev->name);
1813 disable_irq(dev->irq);
1814 spin_lock_irq(&np->lock);
1815 natsemi_stop_rxtx(dev);
1816 dump_ring(dev);
1817 reinit_ring(dev);
1818 init_registers(dev);
1819 spin_unlock_irq(&np->lock);
1820 enable_irq(dev->irq);
1821 } else {
1822 /* hurry back */
1823 next_tick = HZ;
1824 spin_unlock_irq(&np->lock);
1825 }
1826 } else {
1827 /* init_registers() calls check_link() for the above case */
1828 check_link(dev);
1829 spin_unlock_irq(&np->lock);
1830 }
1831 } else {
1832 spin_lock_irq(&np->lock);
1833 check_link(dev);
1834 spin_unlock_irq(&np->lock);
1835 }
1836 if (np->oom) {
1837 disable_irq(dev->irq);
1838 np->oom = 0;
1839 refill_rx(dev);
1840 enable_irq(dev->irq);
1841 if (!np->oom) {
1842 writel(RxOn, ioaddr + ChipCmd);
1843 } else {
1844 next_tick = 1;
1845 }
1846 }
0e5d5442
MB
1847
1848 if (next_tick > 1)
1849 mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
1850 else
1851 mod_timer(&np->timer, jiffies + next_tick);
1da177e4
LT
1852}
1853
1854static void dump_ring(struct net_device *dev)
1855{
1856 struct netdev_private *np = netdev_priv(dev);
1857
1858 if (netif_msg_pktdata(np)) {
1859 int i;
1860 printk(KERN_DEBUG " Tx ring at %p:\n", np->tx_ring);
1861 for (i = 0; i < TX_RING_SIZE; i++) {
1862 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1863 i, np->tx_ring[i].next_desc,
1864 np->tx_ring[i].cmd_status,
1865 np->tx_ring[i].addr);
1866 }
1867 printk(KERN_DEBUG " Rx ring %p:\n", np->rx_ring);
1868 for (i = 0; i < RX_RING_SIZE; i++) {
1869 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1870 i, np->rx_ring[i].next_desc,
1871 np->rx_ring[i].cmd_status,
1872 np->rx_ring[i].addr);
1873 }
1874 }
1875}
1876
ed4cb133 1877static void ns_tx_timeout(struct net_device *dev)
1da177e4
LT
1878{
1879 struct netdev_private *np = netdev_priv(dev);
1880 void __iomem * ioaddr = ns_ioaddr(dev);
1881
1882 disable_irq(dev->irq);
1883 spin_lock_irq(&np->lock);
1884 if (!np->hands_off) {
1885 if (netif_msg_tx_err(np))
1886 printk(KERN_WARNING
1887 "%s: Transmit timed out, status %#08x,"
1888 " resetting...\n",
1889 dev->name, readl(ioaddr + IntrStatus));
1890 dump_ring(dev);
1891
1892 natsemi_reset(dev);
1893 reinit_ring(dev);
1894 init_registers(dev);
1895 } else {
1896 printk(KERN_WARNING
1897 "%s: tx_timeout while in hands_off state?\n",
1898 dev->name);
1899 }
1900 spin_unlock_irq(&np->lock);
1901 enable_irq(dev->irq);
1902
1903 dev->trans_start = jiffies;
1904 np->stats.tx_errors++;
1905 netif_wake_queue(dev);
1906}
1907
1908static int alloc_ring(struct net_device *dev)
1909{
1910 struct netdev_private *np = netdev_priv(dev);
1911 np->rx_ring = pci_alloc_consistent(np->pci_dev,
1912 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1913 &np->ring_dma);
1914 if (!np->rx_ring)
1915 return -ENOMEM;
1916 np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1917 return 0;
1918}
1919
1920static void refill_rx(struct net_device *dev)
1921{
1922 struct netdev_private *np = netdev_priv(dev);
1923
1924 /* Refill the Rx ring buffers. */
1925 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1926 struct sk_buff *skb;
1927 int entry = np->dirty_rx % RX_RING_SIZE;
1928 if (np->rx_skbuff[entry] == NULL) {
1929 unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1930 skb = dev_alloc_skb(buflen);
1931 np->rx_skbuff[entry] = skb;
1932 if (skb == NULL)
1933 break; /* Better luck next round. */
1934 skb->dev = dev; /* Mark as being used by this device. */
1935 np->rx_dma[entry] = pci_map_single(np->pci_dev,
689be439 1936 skb->data, buflen, PCI_DMA_FROMDEVICE);
1da177e4
LT
1937 np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1938 }
1939 np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1940 }
1941 if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1942 if (netif_msg_rx_err(np))
1943 printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1944 np->oom = 1;
1945 }
1946}
1947
1948static void set_bufsize(struct net_device *dev)
1949{
1950 struct netdev_private *np = netdev_priv(dev);
1951 if (dev->mtu <= ETH_DATA_LEN)
1952 np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1953 else
1954 np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1955}
1956
1957/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1958static void init_ring(struct net_device *dev)
1959{
1960 struct netdev_private *np = netdev_priv(dev);
1961 int i;
1962
1963 /* 1) TX ring */
1964 np->dirty_tx = np->cur_tx = 0;
1965 for (i = 0; i < TX_RING_SIZE; i++) {
1966 np->tx_skbuff[i] = NULL;
1967 np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1968 +sizeof(struct netdev_desc)
1969 *((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1970 np->tx_ring[i].cmd_status = 0;
1971 }
1972
1973 /* 2) RX ring */
1974 np->dirty_rx = 0;
1975 np->cur_rx = RX_RING_SIZE;
1976 np->oom = 0;
1977 set_bufsize(dev);
1978
1979 np->rx_head_desc = &np->rx_ring[0];
1980
1981 /* Please be carefull before changing this loop - at least gcc-2.95.1
1982 * miscompiles it otherwise.
1983 */
1984 /* Initialize all Rx descriptors. */
1985 for (i = 0; i < RX_RING_SIZE; i++) {
1986 np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1987 +sizeof(struct netdev_desc)
1988 *((i+1)%RX_RING_SIZE));
1989 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
1990 np->rx_skbuff[i] = NULL;
1991 }
1992 refill_rx(dev);
1993 dump_ring(dev);
1994}
1995
1996static void drain_tx(struct net_device *dev)
1997{
1998 struct netdev_private *np = netdev_priv(dev);
1999 int i;
2000
2001 for (i = 0; i < TX_RING_SIZE; i++) {
2002 if (np->tx_skbuff[i]) {
2003 pci_unmap_single(np->pci_dev,
2004 np->tx_dma[i], np->tx_skbuff[i]->len,
2005 PCI_DMA_TODEVICE);
2006 dev_kfree_skb(np->tx_skbuff[i]);
2007 np->stats.tx_dropped++;
2008 }
2009 np->tx_skbuff[i] = NULL;
2010 }
2011}
2012
2013static void drain_rx(struct net_device *dev)
2014{
2015 struct netdev_private *np = netdev_priv(dev);
2016 unsigned int buflen = np->rx_buf_sz;
2017 int i;
2018
2019 /* Free all the skbuffs in the Rx queue. */
2020 for (i = 0; i < RX_RING_SIZE; i++) {
2021 np->rx_ring[i].cmd_status = 0;
eca1ad82 2022 np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1da177e4
LT
2023 if (np->rx_skbuff[i]) {
2024 pci_unmap_single(np->pci_dev,
2025 np->rx_dma[i], buflen,
2026 PCI_DMA_FROMDEVICE);
2027 dev_kfree_skb(np->rx_skbuff[i]);
2028 }
2029 np->rx_skbuff[i] = NULL;
2030 }
2031}
2032
2033static void drain_ring(struct net_device *dev)
2034{
2035 drain_rx(dev);
2036 drain_tx(dev);
2037}
2038
2039static void free_ring(struct net_device *dev)
2040{
2041 struct netdev_private *np = netdev_priv(dev);
2042 pci_free_consistent(np->pci_dev,
2043 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
2044 np->rx_ring, np->ring_dma);
2045}
2046
2047static void reinit_rx(struct net_device *dev)
2048{
2049 struct netdev_private *np = netdev_priv(dev);
2050 int i;
2051
2052 /* RX Ring */
2053 np->dirty_rx = 0;
2054 np->cur_rx = RX_RING_SIZE;
2055 np->rx_head_desc = &np->rx_ring[0];
2056 /* Initialize all Rx descriptors. */
2057 for (i = 0; i < RX_RING_SIZE; i++)
2058 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2059
2060 refill_rx(dev);
2061}
2062
2063static void reinit_ring(struct net_device *dev)
2064{
2065 struct netdev_private *np = netdev_priv(dev);
2066 int i;
2067
2068 /* drain TX ring */
2069 drain_tx(dev);
2070 np->dirty_tx = np->cur_tx = 0;
2071 for (i=0;i<TX_RING_SIZE;i++)
2072 np->tx_ring[i].cmd_status = 0;
2073
2074 reinit_rx(dev);
2075}
2076
2077static int start_tx(struct sk_buff *skb, struct net_device *dev)
2078{
2079 struct netdev_private *np = netdev_priv(dev);
2080 void __iomem * ioaddr = ns_ioaddr(dev);
2081 unsigned entry;
6006f7f5 2082 unsigned long flags;
1da177e4
LT
2083
2084 /* Note: Ordering is important here, set the field with the
2085 "ownership" bit last, and only then increment cur_tx. */
2086
2087 /* Calculate the next Tx descriptor entry. */
2088 entry = np->cur_tx % TX_RING_SIZE;
2089
2090 np->tx_skbuff[entry] = skb;
2091 np->tx_dma[entry] = pci_map_single(np->pci_dev,
2092 skb->data,skb->len, PCI_DMA_TODEVICE);
2093
2094 np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2095
6006f7f5 2096 spin_lock_irqsave(&np->lock, flags);
1da177e4
LT
2097
2098 if (!np->hands_off) {
2099 np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2100 /* StrongARM: Explicitly cache flush np->tx_ring and
2101 * skb->data,skb->len. */
2102 wmb();
2103 np->cur_tx++;
2104 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2105 netdev_tx_done(dev);
2106 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2107 netif_stop_queue(dev);
2108 }
2109 /* Wake the potentially-idle transmit channel. */
2110 writel(TxOn, ioaddr + ChipCmd);
2111 } else {
2112 dev_kfree_skb_irq(skb);
2113 np->stats.tx_dropped++;
2114 }
6006f7f5 2115 spin_unlock_irqrestore(&np->lock, flags);
1da177e4
LT
2116
2117 dev->trans_start = jiffies;
2118
2119 if (netif_msg_tx_queued(np)) {
2120 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2121 dev->name, np->cur_tx, entry);
2122 }
2123 return 0;
2124}
2125
2126static void netdev_tx_done(struct net_device *dev)
2127{
2128 struct netdev_private *np = netdev_priv(dev);
2129
2130 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2131 int entry = np->dirty_tx % TX_RING_SIZE;
2132 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2133 break;
2134 if (netif_msg_tx_done(np))
2135 printk(KERN_DEBUG
2136 "%s: tx frame #%d finished, status %#08x.\n",
2137 dev->name, np->dirty_tx,
2138 le32_to_cpu(np->tx_ring[entry].cmd_status));
2139 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2140 np->stats.tx_packets++;
2141 np->stats.tx_bytes += np->tx_skbuff[entry]->len;
2142 } else { /* Various Tx errors */
2143 int tx_status =
2144 le32_to_cpu(np->tx_ring[entry].cmd_status);
2145 if (tx_status & (DescTxAbort|DescTxExcColl))
2146 np->stats.tx_aborted_errors++;
2147 if (tx_status & DescTxFIFO)
2148 np->stats.tx_fifo_errors++;
2149 if (tx_status & DescTxCarrier)
2150 np->stats.tx_carrier_errors++;
2151 if (tx_status & DescTxOOWCol)
2152 np->stats.tx_window_errors++;
2153 np->stats.tx_errors++;
2154 }
2155 pci_unmap_single(np->pci_dev,np->tx_dma[entry],
2156 np->tx_skbuff[entry]->len,
2157 PCI_DMA_TODEVICE);
2158 /* Free the original skb. */
2159 dev_kfree_skb_irq(np->tx_skbuff[entry]);
2160 np->tx_skbuff[entry] = NULL;
2161 }
2162 if (netif_queue_stopped(dev)
2163 && np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2164 /* The ring is no longer full, wake queue. */
2165 netif_wake_queue(dev);
2166 }
2167}
2168
b27a16b7
MB
2169/* The interrupt handler doesn't actually handle interrupts itself, it
2170 * schedules a NAPI poll if there is anything to do. */
7d12e780 2171static irqreturn_t intr_handler(int irq, void *dev_instance)
1da177e4
LT
2172{
2173 struct net_device *dev = dev_instance;
2174 struct netdev_private *np = netdev_priv(dev);
2175 void __iomem * ioaddr = ns_ioaddr(dev);
1da177e4 2176
069f8256 2177 /* Reading IntrStatus automatically acknowledges so don't do
2178 * that while interrupts are disabled, (for example, while a
2179 * poll is scheduled). */
2180 if (np->hands_off || !readl(ioaddr + IntrEnable))
1da177e4 2181 return IRQ_NONE;
6aa20a22 2182
b27a16b7 2183 np->intr_status = readl(ioaddr + IntrStatus);
1da177e4 2184
069f8256 2185 if (!np->intr_status)
2186 return IRQ_NONE;
2187
b27a16b7
MB
2188 if (netif_msg_intr(np))
2189 printk(KERN_DEBUG
2190 "%s: Interrupt, status %#08x, mask %#08x.\n",
2191 dev->name, np->intr_status,
2192 readl(ioaddr + IntrMask));
1da177e4 2193
b27a16b7
MB
2194 prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2195
bea3348e 2196 if (netif_rx_schedule_prep(dev, &np->napi)) {
b27a16b7
MB
2197 /* Disable interrupts and register for poll */
2198 natsemi_irq_disable(dev);
bea3348e 2199 __netif_rx_schedule(dev, &np->napi);
069f8256 2200 } else
2201 printk(KERN_WARNING
2202 "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2203 dev->name, np->intr_status,
2204 readl(ioaddr + IntrMask));
2205
b27a16b7
MB
2206 return IRQ_HANDLED;
2207}
2208
2209/* This is the NAPI poll routine. As well as the standard RX handling
2210 * it also handles all other interrupts that the chip might raise.
2211 */
bea3348e 2212static int natsemi_poll(struct napi_struct *napi, int budget)
b27a16b7 2213{
bea3348e
SH
2214 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2215 struct net_device *dev = np->dev;
b27a16b7 2216 void __iomem * ioaddr = ns_ioaddr(dev);
b27a16b7
MB
2217 int work_done = 0;
2218
2219 do {
069f8256 2220 if (netif_msg_intr(np))
2221 printk(KERN_DEBUG
2222 "%s: Poll, status %#08x, mask %#08x.\n",
2223 dev->name, np->intr_status,
2224 readl(ioaddr + IntrMask));
2225
d2a90036 2226 /* netdev_rx() may read IntrStatus again if the RX state
2227 * machine falls over so do it first. */
2228 if (np->intr_status &
2229 (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2230 IntrRxErr | IntrRxOverrun)) {
bea3348e 2231 netdev_rx(dev, &work_done, budget);
d2a90036 2232 }
2233
b27a16b7
MB
2234 if (np->intr_status &
2235 (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
1da177e4
LT
2236 spin_lock(&np->lock);
2237 netdev_tx_done(dev);
2238 spin_unlock(&np->lock);
2239 }
2240
2241 /* Abnormal error summary/uncommon events handlers. */
b27a16b7
MB
2242 if (np->intr_status & IntrAbnormalSummary)
2243 netdev_error(dev, np->intr_status);
6aa20a22 2244
bea3348e
SH
2245 if (work_done >= budget)
2246 return work_done;
b27a16b7
MB
2247
2248 np->intr_status = readl(ioaddr + IntrStatus);
2249 } while (np->intr_status);
1da177e4 2250
bea3348e 2251 netif_rx_complete(dev, napi);
b27a16b7
MB
2252
2253 /* Reenable interrupts providing nothing is trying to shut
2254 * the chip down. */
2255 spin_lock(&np->lock);
4ec24119 2256 if (!np->hands_off)
b27a16b7
MB
2257 natsemi_irq_enable(dev);
2258 spin_unlock(&np->lock);
2259
bea3348e 2260 return work_done;
1da177e4
LT
2261}
2262
2263/* This routine is logically part of the interrupt handler, but separated
2264 for clarity and better register allocation. */
b27a16b7 2265static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
1da177e4
LT
2266{
2267 struct netdev_private *np = netdev_priv(dev);
2268 int entry = np->cur_rx % RX_RING_SIZE;
2269 int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2270 s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2271 unsigned int buflen = np->rx_buf_sz;
2272 void __iomem * ioaddr = ns_ioaddr(dev);
2273
2274 /* If the driver owns the next entry it's a new packet. Send it up. */
2275 while (desc_status < 0) { /* e.g. & DescOwn */
2276 int pkt_len;
2277 if (netif_msg_rx_status(np))
2278 printk(KERN_DEBUG
2279 " netdev_rx() entry %d status was %#08x.\n",
2280 entry, desc_status);
2281 if (--boguscnt < 0)
2282 break;
b27a16b7
MB
2283
2284 if (*work_done >= work_to_do)
2285 break;
2286
2287 (*work_done)++;
2288
1da177e4
LT
2289 pkt_len = (desc_status & DescSizeMask) - 4;
2290 if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2291 if (desc_status & DescMore) {
6006f7f5
SS
2292 unsigned long flags;
2293
1da177e4
LT
2294 if (netif_msg_rx_err(np))
2295 printk(KERN_WARNING
2296 "%s: Oversized(?) Ethernet "
2297 "frame spanned multiple "
2298 "buffers, entry %#08x "
2299 "status %#08x.\n", dev->name,
2300 np->cur_rx, desc_status);
2301 np->stats.rx_length_errors++;
e72fd96e
MB
2302
2303 /* The RX state machine has probably
2304 * locked up beneath us. Follow the
2305 * reset procedure documented in
2306 * AN-1287. */
2307
6006f7f5 2308 spin_lock_irqsave(&np->lock, flags);
e72fd96e
MB
2309 reset_rx(dev);
2310 reinit_rx(dev);
2311 writel(np->ring_dma, ioaddr + RxRingPtr);
2312 check_link(dev);
6006f7f5 2313 spin_unlock_irqrestore(&np->lock, flags);
e72fd96e
MB
2314
2315 /* We'll enable RX on exit from this
2316 * function. */
2317 break;
2318
1da177e4
LT
2319 } else {
2320 /* There was an error. */
2321 np->stats.rx_errors++;
2322 if (desc_status & (DescRxAbort|DescRxOver))
2323 np->stats.rx_over_errors++;
2324 if (desc_status & (DescRxLong|DescRxRunt))
2325 np->stats.rx_length_errors++;
2326 if (desc_status & (DescRxInvalid|DescRxAlign))
2327 np->stats.rx_frame_errors++;
2328 if (desc_status & DescRxCRC)
2329 np->stats.rx_crc_errors++;
2330 }
2331 } else if (pkt_len > np->rx_buf_sz) {
2332 /* if this is the tail of a double buffer
2333 * packet, we've already counted the error
2334 * on the first part. Ignore the second half.
2335 */
2336 } else {
2337 struct sk_buff *skb;
2338 /* Omit CRC size. */
2339 /* Check if the packet is long enough to accept
2340 * without copying to a minimally-sized skbuff. */
2341 if (pkt_len < rx_copybreak
2342 && (skb = dev_alloc_skb(pkt_len + RX_OFFSET)) != NULL) {
1da177e4
LT
2343 /* 16 byte align the IP header */
2344 skb_reserve(skb, RX_OFFSET);
2345 pci_dma_sync_single_for_cpu(np->pci_dev,
2346 np->rx_dma[entry],
2347 buflen,
2348 PCI_DMA_FROMDEVICE);
8c7b7faa
DM
2349 skb_copy_to_linear_data(skb,
2350 np->rx_skbuff[entry]->data, pkt_len);
1da177e4
LT
2351 skb_put(skb, pkt_len);
2352 pci_dma_sync_single_for_device(np->pci_dev,
2353 np->rx_dma[entry],
2354 buflen,
2355 PCI_DMA_FROMDEVICE);
2356 } else {
2357 pci_unmap_single(np->pci_dev, np->rx_dma[entry],
2358 buflen, PCI_DMA_FROMDEVICE);
2359 skb_put(skb = np->rx_skbuff[entry], pkt_len);
2360 np->rx_skbuff[entry] = NULL;
2361 }
2362 skb->protocol = eth_type_trans(skb, dev);
b27a16b7 2363 netif_receive_skb(skb);
1da177e4
LT
2364 np->stats.rx_packets++;
2365 np->stats.rx_bytes += pkt_len;
2366 }
2367 entry = (++np->cur_rx) % RX_RING_SIZE;
2368 np->rx_head_desc = &np->rx_ring[entry];
2369 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2370 }
2371 refill_rx(dev);
2372
2373 /* Restart Rx engine if stopped. */
2374 if (np->oom)
2375 mod_timer(&np->timer, jiffies + 1);
2376 else
2377 writel(RxOn, ioaddr + ChipCmd);
2378}
2379
2380static void netdev_error(struct net_device *dev, int intr_status)
2381{
2382 struct netdev_private *np = netdev_priv(dev);
2383 void __iomem * ioaddr = ns_ioaddr(dev);
2384
2385 spin_lock(&np->lock);
2386 if (intr_status & LinkChange) {
2387 u16 lpa = mdio_read(dev, MII_LPA);
2388 if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE
2389 && netif_msg_link(np)) {
2390 printk(KERN_INFO
2391 "%s: Autonegotiation advertising"
2392 " %#04x partner %#04x.\n", dev->name,
2393 np->advertising, lpa);
2394 }
2395
2396 /* read MII int status to clear the flag */
2397 readw(ioaddr + MIntrStatus);
2398 check_link(dev);
2399 }
2400 if (intr_status & StatsMax) {
2401 __get_stats(dev);
2402 }
2403 if (intr_status & IntrTxUnderrun) {
2404 if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2405 np->tx_config += TX_DRTH_VAL_INC;
2406 if (netif_msg_tx_err(np))
2407 printk(KERN_NOTICE
2408 "%s: increased tx threshold, txcfg %#08x.\n",
2409 dev->name, np->tx_config);
2410 } else {
2411 if (netif_msg_tx_err(np))
2412 printk(KERN_NOTICE
2413 "%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2414 dev->name, np->tx_config);
2415 }
2416 writel(np->tx_config, ioaddr + TxConfig);
2417 }
2418 if (intr_status & WOLPkt && netif_msg_wol(np)) {
2419 int wol_status = readl(ioaddr + WOLCmd);
2420 printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2421 dev->name, wol_status);
2422 }
2423 if (intr_status & RxStatusFIFOOver) {
2424 if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2425 printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2426 dev->name);
2427 }
2428 np->stats.rx_fifo_errors++;
c76720cf 2429 np->stats.rx_errors++;
1da177e4
LT
2430 }
2431 /* Hmmmmm, it's not clear how to recover from PCI faults. */
2432 if (intr_status & IntrPCIErr) {
2433 printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2434 intr_status & IntrPCIErr);
2435 np->stats.tx_fifo_errors++;
c76720cf 2436 np->stats.tx_errors++;
1da177e4 2437 np->stats.rx_fifo_errors++;
c76720cf 2438 np->stats.rx_errors++;
1da177e4
LT
2439 }
2440 spin_unlock(&np->lock);
2441}
2442
2443static void __get_stats(struct net_device *dev)
2444{
2445 void __iomem * ioaddr = ns_ioaddr(dev);
2446 struct netdev_private *np = netdev_priv(dev);
2447
2448 /* The chip only need report frame silently dropped. */
2449 np->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2450 np->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2451}
2452
2453static struct net_device_stats *get_stats(struct net_device *dev)
2454{
2455 struct netdev_private *np = netdev_priv(dev);
2456
2457 /* The chip only need report frame silently dropped. */
2458 spin_lock_irq(&np->lock);
2459 if (netif_running(dev) && !np->hands_off)
2460 __get_stats(dev);
2461 spin_unlock_irq(&np->lock);
2462
2463 return &np->stats;
2464}
2465
2466#ifdef CONFIG_NET_POLL_CONTROLLER
2467static void natsemi_poll_controller(struct net_device *dev)
2468{
2469 disable_irq(dev->irq);
069f8256 2470 intr_handler(dev->irq, dev);
1da177e4
LT
2471 enable_irq(dev->irq);
2472}
2473#endif
2474
2475#define HASH_TABLE 0x200
2476static void __set_rx_mode(struct net_device *dev)
2477{
2478 void __iomem * ioaddr = ns_ioaddr(dev);
2479 struct netdev_private *np = netdev_priv(dev);
2480 u8 mc_filter[64]; /* Multicast hash filter */
2481 u32 rx_mode;
2482
2483 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1da177e4
LT
2484 rx_mode = RxFilterEnable | AcceptBroadcast
2485 | AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2486 } else if ((dev->mc_count > multicast_filter_limit)
2487 || (dev->flags & IFF_ALLMULTI)) {
2488 rx_mode = RxFilterEnable | AcceptBroadcast
2489 | AcceptAllMulticast | AcceptMyPhys;
2490 } else {
2491 struct dev_mc_list *mclist;
2492 int i;
2493 memset(mc_filter, 0, sizeof(mc_filter));
2494 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
2495 i++, mclist = mclist->next) {
ddfce6bb
SH
2496 int b = (ether_crc(ETH_ALEN, mclist->dmi_addr) >> 23) & 0x1ff;
2497 mc_filter[b/8] |= (1 << (b & 0x07));
1da177e4
LT
2498 }
2499 rx_mode = RxFilterEnable | AcceptBroadcast
2500 | AcceptMulticast | AcceptMyPhys;
2501 for (i = 0; i < 64; i += 2) {
760f86d7
HX
2502 writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2503 writel((mc_filter[i + 1] << 8) + mc_filter[i],
2504 ioaddr + RxFilterData);
1da177e4
LT
2505 }
2506 }
2507 writel(rx_mode, ioaddr + RxFilterAddr);
2508 np->cur_rx_mode = rx_mode;
2509}
2510
2511static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2512{
2513 if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS)
2514 return -EINVAL;
2515
2516 dev->mtu = new_mtu;
2517
2518 /* synchronized against open : rtnl_lock() held by caller */
2519 if (netif_running(dev)) {
2520 struct netdev_private *np = netdev_priv(dev);
2521 void __iomem * ioaddr = ns_ioaddr(dev);
2522
2523 disable_irq(dev->irq);
2524 spin_lock(&np->lock);
2525 /* stop engines */
2526 natsemi_stop_rxtx(dev);
2527 /* drain rx queue */
2528 drain_rx(dev);
2529 /* change buffers */
2530 set_bufsize(dev);
2531 reinit_rx(dev);
2532 writel(np->ring_dma, ioaddr + RxRingPtr);
2533 /* restart engines */
2534 writel(RxOn | TxOn, ioaddr + ChipCmd);
2535 spin_unlock(&np->lock);
2536 enable_irq(dev->irq);
2537 }
2538 return 0;
2539}
2540
2541static void set_rx_mode(struct net_device *dev)
2542{
2543 struct netdev_private *np = netdev_priv(dev);
2544 spin_lock_irq(&np->lock);
2545 if (!np->hands_off)
2546 __set_rx_mode(dev);
2547 spin_unlock_irq(&np->lock);
2548}
2549
2550static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2551{
2552 struct netdev_private *np = netdev_priv(dev);
2553 strncpy(info->driver, DRV_NAME, ETHTOOL_BUSINFO_LEN);
2554 strncpy(info->version, DRV_VERSION, ETHTOOL_BUSINFO_LEN);
2555 strncpy(info->bus_info, pci_name(np->pci_dev), ETHTOOL_BUSINFO_LEN);
2556}
2557
2558static int get_regs_len(struct net_device *dev)
2559{
2560 return NATSEMI_REGS_SIZE;
2561}
2562
2563static int get_eeprom_len(struct net_device *dev)
2564{
a8b4cf42
MB
2565 struct netdev_private *np = netdev_priv(dev);
2566 return np->eeprom_size;
1da177e4
LT
2567}
2568
2569static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2570{
2571 struct netdev_private *np = netdev_priv(dev);
2572 spin_lock_irq(&np->lock);
2573 netdev_get_ecmd(dev, ecmd);
2574 spin_unlock_irq(&np->lock);
2575 return 0;
2576}
2577
2578static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2579{
2580 struct netdev_private *np = netdev_priv(dev);
2581 int res;
2582 spin_lock_irq(&np->lock);
2583 res = netdev_set_ecmd(dev, ecmd);
2584 spin_unlock_irq(&np->lock);
2585 return res;
2586}
2587
2588static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2589{
2590 struct netdev_private *np = netdev_priv(dev);
2591 spin_lock_irq(&np->lock);
2592 netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2593 netdev_get_sopass(dev, wol->sopass);
2594 spin_unlock_irq(&np->lock);
2595}
2596
2597static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2598{
2599 struct netdev_private *np = netdev_priv(dev);
2600 int res;
2601 spin_lock_irq(&np->lock);
2602 netdev_set_wol(dev, wol->wolopts);
2603 res = netdev_set_sopass(dev, wol->sopass);
2604 spin_unlock_irq(&np->lock);
2605 return res;
2606}
2607
2608static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2609{
2610 struct netdev_private *np = netdev_priv(dev);
2611 regs->version = NATSEMI_REGS_VER;
2612 spin_lock_irq(&np->lock);
2613 netdev_get_regs(dev, buf);
2614 spin_unlock_irq(&np->lock);
2615}
2616
2617static u32 get_msglevel(struct net_device *dev)
2618{
2619 struct netdev_private *np = netdev_priv(dev);
2620 return np->msg_enable;
2621}
2622
2623static void set_msglevel(struct net_device *dev, u32 val)
2624{
2625 struct netdev_private *np = netdev_priv(dev);
2626 np->msg_enable = val;
2627}
2628
2629static int nway_reset(struct net_device *dev)
2630{
2631 int tmp;
2632 int r = -EINVAL;
2633 /* if autoneg is off, it's an error */
2634 tmp = mdio_read(dev, MII_BMCR);
2635 if (tmp & BMCR_ANENABLE) {
2636 tmp |= (BMCR_ANRESTART);
2637 mdio_write(dev, MII_BMCR, tmp);
2638 r = 0;
2639 }
2640 return r;
2641}
2642
2643static u32 get_link(struct net_device *dev)
2644{
2645 /* LSTATUS is latched low until a read - so read twice */
2646 mdio_read(dev, MII_BMSR);
2647 return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2648}
2649
2650static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2651{
2652 struct netdev_private *np = netdev_priv(dev);
a8b4cf42 2653 u8 *eebuf;
1da177e4
LT
2654 int res;
2655
a8b4cf42
MB
2656 eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2657 if (!eebuf)
2658 return -ENOMEM;
2659
1da177e4
LT
2660 eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2661 spin_lock_irq(&np->lock);
2662 res = netdev_get_eeprom(dev, eebuf);
2663 spin_unlock_irq(&np->lock);
2664 if (!res)
2665 memcpy(data, eebuf+eeprom->offset, eeprom->len);
a8b4cf42 2666 kfree(eebuf);
1da177e4
LT
2667 return res;
2668}
2669
7282d491 2670static const struct ethtool_ops ethtool_ops = {
1da177e4
LT
2671 .get_drvinfo = get_drvinfo,
2672 .get_regs_len = get_regs_len,
2673 .get_eeprom_len = get_eeprom_len,
2674 .get_settings = get_settings,
2675 .set_settings = set_settings,
2676 .get_wol = get_wol,
2677 .set_wol = set_wol,
2678 .get_regs = get_regs,
2679 .get_msglevel = get_msglevel,
2680 .set_msglevel = set_msglevel,
2681 .nway_reset = nway_reset,
2682 .get_link = get_link,
2683 .get_eeprom = get_eeprom,
2684};
2685
2686static int netdev_set_wol(struct net_device *dev, u32 newval)
2687{
2688 struct netdev_private *np = netdev_priv(dev);
2689 void __iomem * ioaddr = ns_ioaddr(dev);
2690 u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2691
2692 /* translate to bitmasks this chip understands */
2693 if (newval & WAKE_PHY)
2694 data |= WakePhy;
2695 if (newval & WAKE_UCAST)
2696 data |= WakeUnicast;
2697 if (newval & WAKE_MCAST)
2698 data |= WakeMulticast;
2699 if (newval & WAKE_BCAST)
2700 data |= WakeBroadcast;
2701 if (newval & WAKE_ARP)
2702 data |= WakeArp;
2703 if (newval & WAKE_MAGIC)
2704 data |= WakeMagic;
2705 if (np->srr >= SRR_DP83815_D) {
2706 if (newval & WAKE_MAGICSECURE) {
2707 data |= WakeMagicSecure;
2708 }
2709 }
2710
2711 writel(data, ioaddr + WOLCmd);
2712
2713 return 0;
2714}
2715
2716static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2717{
2718 struct netdev_private *np = netdev_priv(dev);
2719 void __iomem * ioaddr = ns_ioaddr(dev);
2720 u32 regval = readl(ioaddr + WOLCmd);
2721
2722 *supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2723 | WAKE_ARP | WAKE_MAGIC);
2724
2725 if (np->srr >= SRR_DP83815_D) {
2726 /* SOPASS works on revD and higher */
2727 *supported |= WAKE_MAGICSECURE;
2728 }
2729 *cur = 0;
2730
2731 /* translate from chip bitmasks */
2732 if (regval & WakePhy)
2733 *cur |= WAKE_PHY;
2734 if (regval & WakeUnicast)
2735 *cur |= WAKE_UCAST;
2736 if (regval & WakeMulticast)
2737 *cur |= WAKE_MCAST;
2738 if (regval & WakeBroadcast)
2739 *cur |= WAKE_BCAST;
2740 if (regval & WakeArp)
2741 *cur |= WAKE_ARP;
2742 if (regval & WakeMagic)
2743 *cur |= WAKE_MAGIC;
2744 if (regval & WakeMagicSecure) {
2745 /* this can be on in revC, but it's broken */
2746 *cur |= WAKE_MAGICSECURE;
2747 }
2748
2749 return 0;
2750}
2751
2752static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2753{
2754 struct netdev_private *np = netdev_priv(dev);
2755 void __iomem * ioaddr = ns_ioaddr(dev);
2756 u16 *sval = (u16 *)newval;
2757 u32 addr;
2758
2759 if (np->srr < SRR_DP83815_D) {
2760 return 0;
2761 }
2762
2763 /* enable writing to these registers by disabling the RX filter */
2764 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2765 addr &= ~RxFilterEnable;
2766 writel(addr, ioaddr + RxFilterAddr);
2767
2768 /* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2769 writel(addr | 0xa, ioaddr + RxFilterAddr);
2770 writew(sval[0], ioaddr + RxFilterData);
2771
2772 writel(addr | 0xc, ioaddr + RxFilterAddr);
2773 writew(sval[1], ioaddr + RxFilterData);
2774
2775 writel(addr | 0xe, ioaddr + RxFilterAddr);
2776 writew(sval[2], ioaddr + RxFilterData);
2777
2778 /* re-enable the RX filter */
2779 writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2780
2781 return 0;
2782}
2783
2784static int netdev_get_sopass(struct net_device *dev, u8 *data)
2785{
2786 struct netdev_private *np = netdev_priv(dev);
2787 void __iomem * ioaddr = ns_ioaddr(dev);
2788 u16 *sval = (u16 *)data;
2789 u32 addr;
2790
2791 if (np->srr < SRR_DP83815_D) {
2792 sval[0] = sval[1] = sval[2] = 0;
2793 return 0;
2794 }
2795
2796 /* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2797 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2798
2799 writel(addr | 0xa, ioaddr + RxFilterAddr);
2800 sval[0] = readw(ioaddr + RxFilterData);
2801
2802 writel(addr | 0xc, ioaddr + RxFilterAddr);
2803 sval[1] = readw(ioaddr + RxFilterData);
2804
2805 writel(addr | 0xe, ioaddr + RxFilterAddr);
2806 sval[2] = readw(ioaddr + RxFilterData);
2807
2808 writel(addr, ioaddr + RxFilterAddr);
2809
2810 return 0;
2811}
2812
2813static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2814{
2815 struct netdev_private *np = netdev_priv(dev);
2816 u32 tmp;
2817
2818 ecmd->port = dev->if_port;
2819 ecmd->speed = np->speed;
2820 ecmd->duplex = np->duplex;
2821 ecmd->autoneg = np->autoneg;
2822 ecmd->advertising = 0;
2823 if (np->advertising & ADVERTISE_10HALF)
2824 ecmd->advertising |= ADVERTISED_10baseT_Half;
2825 if (np->advertising & ADVERTISE_10FULL)
2826 ecmd->advertising |= ADVERTISED_10baseT_Full;
2827 if (np->advertising & ADVERTISE_100HALF)
2828 ecmd->advertising |= ADVERTISED_100baseT_Half;
2829 if (np->advertising & ADVERTISE_100FULL)
2830 ecmd->advertising |= ADVERTISED_100baseT_Full;
2831 ecmd->supported = (SUPPORTED_Autoneg |
2832 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2833 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2834 SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2835 ecmd->phy_address = np->phy_addr_external;
2836 /*
2837 * We intentionally report the phy address of the external
2838 * phy, even if the internal phy is used. This is necessary
2839 * to work around a deficiency of the ethtool interface:
2840 * It's only possible to query the settings of the active
6aa20a22 2841 * port. Therefore
1da177e4
LT
2842 * # ethtool -s ethX port mii
2843 * actually sends an ioctl to switch to port mii with the
2844 * settings that are used for the current active port.
2845 * If we would report a different phy address in this
2846 * command, then
2847 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2848 * would unintentionally change the phy address.
2849 *
2850 * Fortunately the phy address doesn't matter with the
2851 * internal phy...
2852 */
2853
2854 /* set information based on active port type */
2855 switch (ecmd->port) {
2856 default:
2857 case PORT_TP:
2858 ecmd->advertising |= ADVERTISED_TP;
2859 ecmd->transceiver = XCVR_INTERNAL;
2860 break;
2861 case PORT_MII:
2862 ecmd->advertising |= ADVERTISED_MII;
2863 ecmd->transceiver = XCVR_EXTERNAL;
2864 break;
2865 case PORT_FIBRE:
2866 ecmd->advertising |= ADVERTISED_FIBRE;
2867 ecmd->transceiver = XCVR_EXTERNAL;
2868 break;
2869 }
2870
2871 /* if autonegotiation is on, try to return the active speed/duplex */
2872 if (ecmd->autoneg == AUTONEG_ENABLE) {
2873 ecmd->advertising |= ADVERTISED_Autoneg;
2874 tmp = mii_nway_result(
2875 np->advertising & mdio_read(dev, MII_LPA));
2876 if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2877 ecmd->speed = SPEED_100;
2878 else
2879 ecmd->speed = SPEED_10;
2880 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2881 ecmd->duplex = DUPLEX_FULL;
2882 else
2883 ecmd->duplex = DUPLEX_HALF;
2884 }
2885
2886 /* ignore maxtxpkt, maxrxpkt for now */
2887
2888 return 0;
2889}
2890
2891static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2892{
2893 struct netdev_private *np = netdev_priv(dev);
2894
2895 if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE)
2896 return -EINVAL;
2897 if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL)
2898 return -EINVAL;
2899 if (ecmd->autoneg == AUTONEG_ENABLE) {
2900 if ((ecmd->advertising & (ADVERTISED_10baseT_Half |
2901 ADVERTISED_10baseT_Full |
2902 ADVERTISED_100baseT_Half |
2903 ADVERTISED_100baseT_Full)) == 0) {
2904 return -EINVAL;
2905 }
2906 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2907 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2908 return -EINVAL;
2909 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2910 return -EINVAL;
2911 } else {
2912 return -EINVAL;
2913 }
2914
68c90166
MB
2915 /*
2916 * If we're ignoring the PHY then autoneg and the internal
2917 * transciever are really not going to work so don't let the
2918 * user select them.
2919 */
2920 if (np->ignore_phy && (ecmd->autoneg == AUTONEG_ENABLE ||
2921 ecmd->port == PORT_TP))
2922 return -EINVAL;
2923
1da177e4
LT
2924 /*
2925 * maxtxpkt, maxrxpkt: ignored for now.
2926 *
2927 * transceiver:
2928 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2929 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2930 * selects based on ecmd->port.
2931 *
2932 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2933 * phys that are connected to the mii bus. It's used to apply fibre
2934 * specific updates.
2935 */
2936
2937 /* WHEW! now lets bang some bits */
2938
2939 /* save the parms */
2940 dev->if_port = ecmd->port;
2941 np->autoneg = ecmd->autoneg;
2942 np->phy_addr_external = ecmd->phy_address & PhyAddrMask;
2943 if (np->autoneg == AUTONEG_ENABLE) {
2944 /* advertise only what has been requested */
2945 np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2946 if (ecmd->advertising & ADVERTISED_10baseT_Half)
2947 np->advertising |= ADVERTISE_10HALF;
2948 if (ecmd->advertising & ADVERTISED_10baseT_Full)
2949 np->advertising |= ADVERTISE_10FULL;
2950 if (ecmd->advertising & ADVERTISED_100baseT_Half)
2951 np->advertising |= ADVERTISE_100HALF;
2952 if (ecmd->advertising & ADVERTISED_100baseT_Full)
2953 np->advertising |= ADVERTISE_100FULL;
2954 } else {
2955 np->speed = ecmd->speed;
2956 np->duplex = ecmd->duplex;
2957 /* user overriding the initial full duplex parm? */
2958 if (np->duplex == DUPLEX_HALF)
2959 np->full_duplex = 0;
2960 }
2961
2962 /* get the right phy enabled */
2963 if (ecmd->port == PORT_TP)
2964 switch_port_internal(dev);
2965 else
2966 switch_port_external(dev);
2967
2968 /* set parms and see how this affected our link status */
2969 init_phy_fixup(dev);
2970 check_link(dev);
2971 return 0;
2972}
2973
2974static int netdev_get_regs(struct net_device *dev, u8 *buf)
2975{
2976 int i;
2977 int j;
2978 u32 rfcr;
2979 u32 *rbuf = (u32 *)buf;
2980 void __iomem * ioaddr = ns_ioaddr(dev);
2981
2982 /* read non-mii page 0 of registers */
2983 for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
2984 rbuf[i] = readl(ioaddr + i*4);
2985 }
2986
2987 /* read current mii registers */
2988 for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
2989 rbuf[i] = mdio_read(dev, i & 0x1f);
2990
2991 /* read only the 'magic' registers from page 1 */
2992 writew(1, ioaddr + PGSEL);
2993 rbuf[i++] = readw(ioaddr + PMDCSR);
2994 rbuf[i++] = readw(ioaddr + TSTDAT);
2995 rbuf[i++] = readw(ioaddr + DSPCFG);
2996 rbuf[i++] = readw(ioaddr + SDCFG);
2997 writew(0, ioaddr + PGSEL);
2998
2999 /* read RFCR indexed registers */
3000 rfcr = readl(ioaddr + RxFilterAddr);
3001 for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3002 writel(j*2, ioaddr + RxFilterAddr);
3003 rbuf[i++] = readw(ioaddr + RxFilterData);
3004 }
3005 writel(rfcr, ioaddr + RxFilterAddr);
3006
3007 /* the interrupt status is clear-on-read - see if we missed any */
3008 if (rbuf[4] & rbuf[5]) {
3009 printk(KERN_WARNING
3010 "%s: shoot, we dropped an interrupt (%#08x)\n",
3011 dev->name, rbuf[4] & rbuf[5]);
3012 }
3013
3014 return 0;
3015}
3016
3017#define SWAP_BITS(x) ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3018 | (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9) \
3019 | (((x) & 0x0010) << 7) | (((x) & 0x0020) << 5) \
3020 | (((x) & 0x0040) << 3) | (((x) & 0x0080) << 1) \
3021 | (((x) & 0x0100) >> 1) | (((x) & 0x0200) >> 3) \
3022 | (((x) & 0x0400) >> 5) | (((x) & 0x0800) >> 7) \
3023 | (((x) & 0x1000) >> 9) | (((x) & 0x2000) >> 11) \
3024 | (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3025
3026static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3027{
3028 int i;
3029 u16 *ebuf = (u16 *)buf;
3030 void __iomem * ioaddr = ns_ioaddr(dev);
a8b4cf42 3031 struct netdev_private *np = netdev_priv(dev);
1da177e4
LT
3032
3033 /* eeprom_read reads 16 bits, and indexes by 16 bits */
a8b4cf42 3034 for (i = 0; i < np->eeprom_size/2; i++) {
1da177e4
LT
3035 ebuf[i] = eeprom_read(ioaddr, i);
3036 /* The EEPROM itself stores data bit-swapped, but eeprom_read
3037 * reads it back "sanely". So we swap it back here in order to
3038 * present it to userland as it is stored. */
3039 ebuf[i] = SWAP_BITS(ebuf[i]);
3040 }
3041 return 0;
3042}
3043
3044static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3045{
3046 struct mii_ioctl_data *data = if_mii(rq);
3047 struct netdev_private *np = netdev_priv(dev);
3048
3049 switch(cmd) {
3050 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
3051 case SIOCDEVPRIVATE: /* for binary compat, remove in 2.5 */
3052 data->phy_id = np->phy_addr_external;
3053 /* Fall Through */
3054
3055 case SIOCGMIIREG: /* Read MII PHY register. */
3056 case SIOCDEVPRIVATE+1: /* for binary compat, remove in 2.5 */
3057 /* The phy_id is not enough to uniquely identify
3058 * the intended target. Therefore the command is sent to
3059 * the given mii on the current port.
3060 */
3061 if (dev->if_port == PORT_TP) {
3062 if ((data->phy_id & 0x1f) == np->phy_addr_external)
3063 data->val_out = mdio_read(dev,
3064 data->reg_num & 0x1f);
3065 else
3066 data->val_out = 0;
3067 } else {
3068 move_int_phy(dev, data->phy_id & 0x1f);
3069 data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3070 data->reg_num & 0x1f);
3071 }
3072 return 0;
3073
3074 case SIOCSMIIREG: /* Write MII PHY register. */
3075 case SIOCDEVPRIVATE+2: /* for binary compat, remove in 2.5 */
3076 if (!capable(CAP_NET_ADMIN))
3077 return -EPERM;
3078 if (dev->if_port == PORT_TP) {
3079 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3080 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3081 np->advertising = data->val_in;
3082 mdio_write(dev, data->reg_num & 0x1f,
3083 data->val_in);
3084 }
3085 } else {
3086 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3087 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3088 np->advertising = data->val_in;
3089 }
3090 move_int_phy(dev, data->phy_id & 0x1f);
3091 miiport_write(dev, data->phy_id & 0x1f,
3092 data->reg_num & 0x1f,
3093 data->val_in);
3094 }
3095 return 0;
3096 default:
3097 return -EOPNOTSUPP;
3098 }
3099}
3100
3101static void enable_wol_mode(struct net_device *dev, int enable_intr)
3102{
3103 void __iomem * ioaddr = ns_ioaddr(dev);
3104 struct netdev_private *np = netdev_priv(dev);
3105
3106 if (netif_msg_wol(np))
3107 printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3108 dev->name);
3109
3110 /* For WOL we must restart the rx process in silent mode.
3111 * Write NULL to the RxRingPtr. Only possible if
3112 * rx process is stopped
3113 */
3114 writel(0, ioaddr + RxRingPtr);
3115
3116 /* read WoL status to clear */
3117 readl(ioaddr + WOLCmd);
3118
3119 /* PME on, clear status */
3120 writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3121
3122 /* and restart the rx process */
3123 writel(RxOn, ioaddr + ChipCmd);
3124
3125 if (enable_intr) {
3126 /* enable the WOL interrupt.
3127 * Could be used to send a netlink message.
3128 */
3129 writel(WOLPkt | LinkChange, ioaddr + IntrMask);
14fdd90e 3130 natsemi_irq_enable(dev);
1da177e4
LT
3131 }
3132}
3133
3134static int netdev_close(struct net_device *dev)
3135{
3136 void __iomem * ioaddr = ns_ioaddr(dev);
3137 struct netdev_private *np = netdev_priv(dev);
3138
3139 if (netif_msg_ifdown(np))
3140 printk(KERN_DEBUG
3141 "%s: Shutting down ethercard, status was %#04x.\n",
3142 dev->name, (int)readl(ioaddr + ChipCmd));
3143 if (netif_msg_pktdata(np))
3144 printk(KERN_DEBUG
3145 "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
3146 dev->name, np->cur_tx, np->dirty_tx,
3147 np->cur_rx, np->dirty_rx);
3148
bea3348e
SH
3149 napi_disable(&np->napi);
3150
1da177e4
LT
3151 /*
3152 * FIXME: what if someone tries to close a device
3153 * that is suspended?
3154 * Should we reenable the nic to switch to
3155 * the final WOL settings?
3156 */
3157
3158 del_timer_sync(&np->timer);
3159 disable_irq(dev->irq);
3160 spin_lock_irq(&np->lock);
b27a16b7 3161 natsemi_irq_disable(dev);
1da177e4
LT
3162 np->hands_off = 1;
3163 spin_unlock_irq(&np->lock);
3164 enable_irq(dev->irq);
3165
3166 free_irq(dev->irq, dev);
3167
3168 /* Interrupt disabled, interrupt handler released,
3169 * queue stopped, timer deleted, rtnl_lock held
3170 * All async codepaths that access the driver are disabled.
3171 */
3172 spin_lock_irq(&np->lock);
3173 np->hands_off = 0;
3174 readl(ioaddr + IntrMask);
3175 readw(ioaddr + MIntrStatus);
3176
3177 /* Freeze Stats */
3178 writel(StatsFreeze, ioaddr + StatsCtrl);
3179
3180 /* Stop the chip's Tx and Rx processes. */
3181 natsemi_stop_rxtx(dev);
3182
3183 __get_stats(dev);
3184 spin_unlock_irq(&np->lock);
3185
3186 /* clear the carrier last - an interrupt could reenable it otherwise */
3187 netif_carrier_off(dev);
3188 netif_stop_queue(dev);
3189
3190 dump_ring(dev);
3191 drain_ring(dev);
3192 free_ring(dev);
3193
3194 {
3195 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3196 if (wol) {
3197 /* restart the NIC in WOL mode.
3198 * The nic must be stopped for this.
3199 */
3200 enable_wol_mode(dev, 0);
3201 } else {
3202 /* Restore PME enable bit unmolested */
3203 writel(np->SavedClkRun, ioaddr + ClkRun);
3204 }
3205 }
3206 return 0;
3207}
3208
3209
3210static void __devexit natsemi_remove1 (struct pci_dev *pdev)
3211{
3212 struct net_device *dev = pci_get_drvdata(pdev);
3213 void __iomem * ioaddr = ns_ioaddr(dev);
3214
1a147809 3215 NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
1da177e4
LT
3216 unregister_netdev (dev);
3217 pci_release_regions (pdev);
3218 iounmap(ioaddr);
3219 free_netdev (dev);
3220 pci_set_drvdata(pdev, NULL);
3221}
3222
3223#ifdef CONFIG_PM
3224
3225/*
3226 * The ns83815 chip doesn't have explicit RxStop bits.
3227 * Kicking the Rx or Tx process for a new packet reenables the Rx process
3228 * of the nic, thus this function must be very careful:
3229 *
3230 * suspend/resume synchronization:
3231 * entry points:
3232 * netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
ed4cb133 3233 * start_tx, ns_tx_timeout
1da177e4
LT
3234 *
3235 * No function accesses the hardware without checking np->hands_off.
3236 * the check occurs under spin_lock_irq(&np->lock);
3237 * exceptions:
3238 * * netdev_ioctl: noncritical access.
3239 * * netdev_open: cannot happen due to the device_detach
3240 * * netdev_close: doesn't hurt.
3241 * * netdev_timer: timer stopped by natsemi_suspend.
3242 * * intr_handler: doesn't acquire the spinlock. suspend calls
3243 * disable_irq() to enforce synchronization.
b27a16b7
MB
3244 * * natsemi_poll: checks before reenabling interrupts. suspend
3245 * sets hands_off, disables interrupts and then waits with
bea3348e 3246 * napi_disable().
1da177e4
LT
3247 *
3248 * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3249 */
3250
3251static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
3252{
3253 struct net_device *dev = pci_get_drvdata (pdev);
3254 struct netdev_private *np = netdev_priv(dev);
3255 void __iomem * ioaddr = ns_ioaddr(dev);
3256
3257 rtnl_lock();
3258 if (netif_running (dev)) {
3259 del_timer_sync(&np->timer);
3260
3261 disable_irq(dev->irq);
3262 spin_lock_irq(&np->lock);
3263
14fdd90e 3264 natsemi_irq_disable(dev);
1da177e4
LT
3265 np->hands_off = 1;
3266 natsemi_stop_rxtx(dev);
3267 netif_stop_queue(dev);
3268
3269 spin_unlock_irq(&np->lock);
3270 enable_irq(dev->irq);
3271
bea3348e 3272 napi_disable(&np->napi);
b27a16b7 3273
1da177e4
LT
3274 /* Update the error counts. */
3275 __get_stats(dev);
3276
3277 /* pci_power_off(pdev, -1); */
3278 drain_ring(dev);
3279 {
3280 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3281 /* Restore PME enable bit */
3282 if (wol) {
3283 /* restart the NIC in WOL mode.
3284 * The nic must be stopped for this.
3285 * FIXME: use the WOL interrupt
3286 */
3287 enable_wol_mode(dev, 0);
3288 } else {
3289 /* Restore PME enable bit unmolested */
3290 writel(np->SavedClkRun, ioaddr + ClkRun);
3291 }
3292 }
3293 }
3294 netif_device_detach(dev);
3295 rtnl_unlock();
3296 return 0;
3297}
3298
3299
3300static int natsemi_resume (struct pci_dev *pdev)
3301{
3302 struct net_device *dev = pci_get_drvdata (pdev);
3303 struct netdev_private *np = netdev_priv(dev);
a8a935da 3304 int ret = 0;
1da177e4
LT
3305
3306 rtnl_lock();
3307 if (netif_device_present(dev))
3308 goto out;
3309 if (netif_running(dev)) {
3310 BUG_ON(!np->hands_off);
a8a935da
MB
3311 ret = pci_enable_device(pdev);
3312 if (ret < 0) {
3313 dev_err(&pdev->dev,
3314 "pci_enable_device() failed: %d\n", ret);
3315 goto out;
3316 }
1da177e4
LT
3317 /* pci_power_on(pdev); */
3318
bea3348e
SH
3319 napi_enable(&np->napi);
3320
1da177e4
LT
3321 natsemi_reset(dev);
3322 init_ring(dev);
3323 disable_irq(dev->irq);
3324 spin_lock_irq(&np->lock);
3325 np->hands_off = 0;
3326 init_registers(dev);
3327 netif_device_attach(dev);
3328 spin_unlock_irq(&np->lock);
3329 enable_irq(dev->irq);
3330
0e5d5442 3331 mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
1da177e4
LT
3332 }
3333 netif_device_attach(dev);
3334out:
3335 rtnl_unlock();
a8a935da 3336 return ret;
1da177e4
LT
3337}
3338
3339#endif /* CONFIG_PM */
3340
3341static struct pci_driver natsemi_driver = {
3342 .name = DRV_NAME,
3343 .id_table = natsemi_pci_tbl,
3344 .probe = natsemi_probe1,
3345 .remove = __devexit_p(natsemi_remove1),
3346#ifdef CONFIG_PM
3347 .suspend = natsemi_suspend,
3348 .resume = natsemi_resume,
3349#endif
3350};
3351
3352static int __init natsemi_init_mod (void)
3353{
3354/* when a module, this is printed whether or not devices are found in probe */
3355#ifdef MODULE
3356 printk(version);
3357#endif
3358
29917620 3359 return pci_register_driver(&natsemi_driver);
1da177e4
LT
3360}
3361
3362static void __exit natsemi_exit_mod (void)
3363{
3364 pci_unregister_driver (&natsemi_driver);
3365}
3366
3367module_init(natsemi_init_mod);
3368module_exit(natsemi_exit_mod);
3369
This page took 0.571225 seconds and 5 git commands to generate.