s2io: add missing block braces to multistatement if statement
[deliverable/linux.git] / drivers / net / s2io.c
CommitLineData
1da177e4 1/************************************************************************
776bd20f 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
0c61ed5f 3 * Copyright(c) 2002-2007 Neterion Inc.
1da177e4
LT
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
20346722 14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
1da177e4
LT
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
20346722 21 * Francois Romieu : For pointing out all code part that were
1da177e4 22 * deprecated and also styling related comments.
20346722 23 * Grant Grundler : For helping me get rid of some Architecture
1da177e4
LT
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
20346722 26 *
1da177e4
LT
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
9dc737a7 29 *
20346722 30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
9dc737a7
AR
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
da6971d8 34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
6d517a27 35 * values are 1, 2.
1da177e4 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
20346722 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
1da177e4 38 * Tx descriptors that can be associated with each corresponding FIFO.
9dc737a7 39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
8abc4d5b 40 * 2(MSI_X). Default value is '2(MSI_X)'
43b7c451 41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
9dc737a7
AR
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
926930b2
SS
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
3a3d5756
SH
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
1da177e4
LT
55 ************************************************************************/
56
1da177e4
LT
57#include <linux/module.h>
58#include <linux/types.h>
59#include <linux/errno.h>
60#include <linux/ioport.h>
61#include <linux/pci.h>
1e7f0bd8 62#include <linux/dma-mapping.h>
1da177e4
LT
63#include <linux/kernel.h>
64#include <linux/netdevice.h>
65#include <linux/etherdevice.h>
66#include <linux/skbuff.h>
67#include <linux/init.h>
68#include <linux/delay.h>
69#include <linux/stddef.h>
70#include <linux/ioctl.h>
71#include <linux/timex.h>
1da177e4 72#include <linux/ethtool.h>
1da177e4 73#include <linux/workqueue.h>
be3a6b02 74#include <linux/if_vlan.h>
7d3d0439
RA
75#include <linux/ip.h>
76#include <linux/tcp.h>
77#include <net/tcp.h>
1da177e4 78
1da177e4
LT
79#include <asm/system.h>
80#include <asm/uaccess.h>
20346722 81#include <asm/io.h>
fe931395 82#include <asm/div64.h>
330ce0de 83#include <asm/irq.h>
1da177e4
LT
84
85/* local include */
86#include "s2io.h"
87#include "s2io-regs.h"
88
23d9b387 89#define DRV_VERSION "2.0.26.23"
6c1792f4 90
1da177e4 91/* S2io Driver name & version. */
20346722 92static char s2io_driver_name[] = "Neterion";
6c1792f4 93static char s2io_driver_version[] = DRV_VERSION;
1da177e4 94
6d517a27
VP
95static int rxd_size[2] = {32,48};
96static int rxd_count[2] = {127,85};
da6971d8 97
1ee6dd77 98static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
5e25b9dd 99{
100 int ret;
101
102 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
103 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
104
105 return ret;
106}
107
20346722 108/*
1da177e4
LT
109 * Cards with following subsystem_id have a link state indication
110 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
111 * macro below identifies these cards given the subsystem_id.
112 */
541ae68f 113#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
114 (dev_type == XFRAME_I_DEVICE) ? \
115 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
116 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
1da177e4
LT
117
118#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
119 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
1da177e4 120
92b84437
SS
121static inline int is_s2io_card_up(const struct s2io_nic * sp)
122{
123 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
124}
125
1da177e4
LT
126/* Ethtool related variables and Macros. */
127static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128 "Register test\t(offline)",
129 "Eeprom test\t(offline)",
130 "Link test\t(online)",
131 "RLDRAM test\t(offline)",
132 "BIST Test\t(offline)"
133};
134
fa1f0cb3 135static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
1da177e4
LT
136 {"tmac_frms"},
137 {"tmac_data_octets"},
138 {"tmac_drop_frms"},
139 {"tmac_mcst_frms"},
140 {"tmac_bcst_frms"},
141 {"tmac_pause_ctrl_frms"},
bd1034f0
AR
142 {"tmac_ttl_octets"},
143 {"tmac_ucst_frms"},
144 {"tmac_nucst_frms"},
1da177e4 145 {"tmac_any_err_frms"},
bd1034f0 146 {"tmac_ttl_less_fb_octets"},
1da177e4
LT
147 {"tmac_vld_ip_octets"},
148 {"tmac_vld_ip"},
149 {"tmac_drop_ip"},
150 {"tmac_icmp"},
151 {"tmac_rst_tcp"},
152 {"tmac_tcp"},
153 {"tmac_udp"},
154 {"rmac_vld_frms"},
155 {"rmac_data_octets"},
156 {"rmac_fcs_err_frms"},
157 {"rmac_drop_frms"},
158 {"rmac_vld_mcst_frms"},
159 {"rmac_vld_bcst_frms"},
160 {"rmac_in_rng_len_err_frms"},
bd1034f0 161 {"rmac_out_rng_len_err_frms"},
1da177e4
LT
162 {"rmac_long_frms"},
163 {"rmac_pause_ctrl_frms"},
bd1034f0
AR
164 {"rmac_unsup_ctrl_frms"},
165 {"rmac_ttl_octets"},
166 {"rmac_accepted_ucst_frms"},
167 {"rmac_accepted_nucst_frms"},
1da177e4 168 {"rmac_discarded_frms"},
bd1034f0
AR
169 {"rmac_drop_events"},
170 {"rmac_ttl_less_fb_octets"},
171 {"rmac_ttl_frms"},
1da177e4
LT
172 {"rmac_usized_frms"},
173 {"rmac_osized_frms"},
174 {"rmac_frag_frms"},
175 {"rmac_jabber_frms"},
bd1034f0
AR
176 {"rmac_ttl_64_frms"},
177 {"rmac_ttl_65_127_frms"},
178 {"rmac_ttl_128_255_frms"},
179 {"rmac_ttl_256_511_frms"},
180 {"rmac_ttl_512_1023_frms"},
181 {"rmac_ttl_1024_1518_frms"},
1da177e4
LT
182 {"rmac_ip"},
183 {"rmac_ip_octets"},
184 {"rmac_hdr_err_ip"},
185 {"rmac_drop_ip"},
186 {"rmac_icmp"},
187 {"rmac_tcp"},
188 {"rmac_udp"},
189 {"rmac_err_drp_udp"},
bd1034f0
AR
190 {"rmac_xgmii_err_sym"},
191 {"rmac_frms_q0"},
192 {"rmac_frms_q1"},
193 {"rmac_frms_q2"},
194 {"rmac_frms_q3"},
195 {"rmac_frms_q4"},
196 {"rmac_frms_q5"},
197 {"rmac_frms_q6"},
198 {"rmac_frms_q7"},
199 {"rmac_full_q0"},
200 {"rmac_full_q1"},
201 {"rmac_full_q2"},
202 {"rmac_full_q3"},
203 {"rmac_full_q4"},
204 {"rmac_full_q5"},
205 {"rmac_full_q6"},
206 {"rmac_full_q7"},
1da177e4 207 {"rmac_pause_cnt"},
bd1034f0
AR
208 {"rmac_xgmii_data_err_cnt"},
209 {"rmac_xgmii_ctrl_err_cnt"},
1da177e4
LT
210 {"rmac_accepted_ip"},
211 {"rmac_err_tcp"},
bd1034f0
AR
212 {"rd_req_cnt"},
213 {"new_rd_req_cnt"},
214 {"new_rd_req_rtry_cnt"},
215 {"rd_rtry_cnt"},
216 {"wr_rtry_rd_ack_cnt"},
217 {"wr_req_cnt"},
218 {"new_wr_req_cnt"},
219 {"new_wr_req_rtry_cnt"},
220 {"wr_rtry_cnt"},
221 {"wr_disc_cnt"},
222 {"rd_rtry_wr_ack_cnt"},
223 {"txp_wr_cnt"},
224 {"txd_rd_cnt"},
225 {"txd_wr_cnt"},
226 {"rxd_rd_cnt"},
227 {"rxd_wr_cnt"},
228 {"txf_rd_cnt"},
fa1f0cb3
SS
229 {"rxf_wr_cnt"}
230};
231
232static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
bd1034f0
AR
233 {"rmac_ttl_1519_4095_frms"},
234 {"rmac_ttl_4096_8191_frms"},
235 {"rmac_ttl_8192_max_frms"},
236 {"rmac_ttl_gt_max_frms"},
237 {"rmac_osized_alt_frms"},
238 {"rmac_jabber_alt_frms"},
239 {"rmac_gt_max_alt_frms"},
240 {"rmac_vlan_frms"},
241 {"rmac_len_discard"},
242 {"rmac_fcs_discard"},
243 {"rmac_pf_discard"},
244 {"rmac_da_discard"},
245 {"rmac_red_discard"},
246 {"rmac_rts_discard"},
247 {"rmac_ingm_full_discard"},
fa1f0cb3
SS
248 {"link_fault_cnt"}
249};
250
251static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
7ba013ac 252 {"\n DRIVER STATISTICS"},
253 {"single_bit_ecc_errs"},
254 {"double_bit_ecc_errs"},
bd1034f0
AR
255 {"parity_err_cnt"},
256 {"serious_err_cnt"},
257 {"soft_reset_cnt"},
258 {"fifo_full_cnt"},
8116f3cf
SS
259 {"ring_0_full_cnt"},
260 {"ring_1_full_cnt"},
261 {"ring_2_full_cnt"},
262 {"ring_3_full_cnt"},
263 {"ring_4_full_cnt"},
264 {"ring_5_full_cnt"},
265 {"ring_6_full_cnt"},
266 {"ring_7_full_cnt"},
43b7c451
SH
267 {"alarm_transceiver_temp_high"},
268 {"alarm_transceiver_temp_low"},
269 {"alarm_laser_bias_current_high"},
270 {"alarm_laser_bias_current_low"},
271 {"alarm_laser_output_power_high"},
272 {"alarm_laser_output_power_low"},
273 {"warn_transceiver_temp_high"},
274 {"warn_transceiver_temp_low"},
275 {"warn_laser_bias_current_high"},
276 {"warn_laser_bias_current_low"},
277 {"warn_laser_output_power_high"},
278 {"warn_laser_output_power_low"},
279 {"lro_aggregated_pkts"},
280 {"lro_flush_both_count"},
281 {"lro_out_of_sequence_pkts"},
282 {"lro_flush_due_to_max_pkts"},
283 {"lro_avg_aggr_pkts"},
284 {"mem_alloc_fail_cnt"},
285 {"pci_map_fail_cnt"},
286 {"watchdog_timer_cnt"},
287 {"mem_allocated"},
288 {"mem_freed"},
289 {"link_up_cnt"},
290 {"link_down_cnt"},
291 {"link_up_time"},
292 {"link_down_time"},
293 {"tx_tcode_buf_abort_cnt"},
294 {"tx_tcode_desc_abort_cnt"},
295 {"tx_tcode_parity_err_cnt"},
296 {"tx_tcode_link_loss_cnt"},
297 {"tx_tcode_list_proc_err_cnt"},
298 {"rx_tcode_parity_err_cnt"},
299 {"rx_tcode_abort_cnt"},
300 {"rx_tcode_parity_abort_cnt"},
301 {"rx_tcode_rda_fail_cnt"},
302 {"rx_tcode_unkn_prot_cnt"},
303 {"rx_tcode_fcs_err_cnt"},
304 {"rx_tcode_buf_size_err_cnt"},
305 {"rx_tcode_rxd_corrupt_cnt"},
306 {"rx_tcode_unkn_err_cnt"},
8116f3cf
SS
307 {"tda_err_cnt"},
308 {"pfc_err_cnt"},
309 {"pcc_err_cnt"},
310 {"tti_err_cnt"},
311 {"tpa_err_cnt"},
312 {"sm_err_cnt"},
313 {"lso_err_cnt"},
314 {"mac_tmac_err_cnt"},
315 {"mac_rmac_err_cnt"},
316 {"xgxs_txgxs_err_cnt"},
317 {"xgxs_rxgxs_err_cnt"},
318 {"rc_err_cnt"},
319 {"prc_pcix_err_cnt"},
320 {"rpa_err_cnt"},
321 {"rda_err_cnt"},
322 {"rti_err_cnt"},
323 {"mc_err_cnt"}
1da177e4
LT
324};
325
4c3616cd
AMR
326#define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
327#define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
328#define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
fa1f0cb3
SS
329
330#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
331#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
332
333#define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
334#define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
1da177e4 335
4c3616cd 336#define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
1da177e4
LT
337#define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
338
25fff88e 339#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
340 init_timer(&timer); \
341 timer.function = handle; \
342 timer.data = (unsigned long) arg; \
343 mod_timer(&timer, (jiffies + exp)) \
344
2fd37688
SS
345/* copy mac addr to def_mac_addr array */
346static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
347{
348 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
349 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
350 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
351 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
352 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
353 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
354}
be3a6b02 355/* Add the vlan */
356static void s2io_vlan_rx_register(struct net_device *dev,
357 struct vlan_group *grp)
358{
2fda096d 359 int i;
1ee6dd77 360 struct s2io_nic *nic = dev->priv;
2fda096d
SR
361 unsigned long flags[MAX_TX_FIFOS];
362 struct mac_info *mac_control = &nic->mac_control;
363 struct config_param *config = &nic->config;
364
365 for (i = 0; i < config->tx_fifo_num; i++)
366 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
be3a6b02 367
be3a6b02 368 nic->vlgrp = grp;
2fda096d
SR
369 for (i = config->tx_fifo_num - 1; i >= 0; i--)
370 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
371 flags[i]);
be3a6b02 372}
373
926930b2 374/* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
7b490343 375static int vlan_strip_flag;
926930b2 376
cdb5bf02
SH
377/* Unregister the vlan */
378static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
379{
380 int i;
381 struct s2io_nic *nic = dev->priv;
382 unsigned long flags[MAX_TX_FIFOS];
383 struct mac_info *mac_control = &nic->mac_control;
384 struct config_param *config = &nic->config;
385
386 for (i = 0; i < config->tx_fifo_num; i++)
387 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
388
389 if (nic->vlgrp)
390 vlan_group_set_device(nic->vlgrp, vid, NULL);
391
392 for (i = config->tx_fifo_num - 1; i >= 0; i--)
393 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
394 flags[i]);
395}
396
20346722 397/*
1da177e4
LT
398 * Constants to be programmed into the Xena's registers, to configure
399 * the XAUI.
400 */
401
1da177e4 402#define END_SIGN 0x0
f71e1309 403static const u64 herc_act_dtx_cfg[] = {
541ae68f 404 /* Set address */
e960fc5c 405 0x8000051536750000ULL, 0x80000515367500E0ULL,
541ae68f 406 /* Write data */
e960fc5c 407 0x8000051536750004ULL, 0x80000515367500E4ULL,
541ae68f 408 /* Set address */
409 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
410 /* Write data */
411 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
412 /* Set address */
e960fc5c 413 0x801205150D440000ULL, 0x801205150D4400E0ULL,
414 /* Write data */
415 0x801205150D440004ULL, 0x801205150D4400E4ULL,
416 /* Set address */
541ae68f 417 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
418 /* Write data */
419 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
420 /* Done */
421 END_SIGN
422};
423
f71e1309 424static const u64 xena_dtx_cfg[] = {
c92ca04b 425 /* Set address */
1da177e4 426 0x8000051500000000ULL, 0x80000515000000E0ULL,
c92ca04b
AR
427 /* Write data */
428 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
429 /* Set address */
430 0x8001051500000000ULL, 0x80010515000000E0ULL,
431 /* Write data */
432 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
433 /* Set address */
1da177e4 434 0x8002051500000000ULL, 0x80020515000000E0ULL,
c92ca04b
AR
435 /* Write data */
436 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
1da177e4
LT
437 END_SIGN
438};
439
20346722 440/*
1da177e4
LT
441 * Constants for Fixing the MacAddress problem seen mostly on
442 * Alpha machines.
443 */
f71e1309 444static const u64 fix_mac[] = {
1da177e4
LT
445 0x0060000000000000ULL, 0x0060600000000000ULL,
446 0x0040600000000000ULL, 0x0000600000000000ULL,
447 0x0020600000000000ULL, 0x0060600000000000ULL,
448 0x0020600000000000ULL, 0x0060600000000000ULL,
449 0x0020600000000000ULL, 0x0060600000000000ULL,
450 0x0020600000000000ULL, 0x0060600000000000ULL,
451 0x0020600000000000ULL, 0x0060600000000000ULL,
452 0x0020600000000000ULL, 0x0060600000000000ULL,
453 0x0020600000000000ULL, 0x0060600000000000ULL,
454 0x0020600000000000ULL, 0x0060600000000000ULL,
455 0x0020600000000000ULL, 0x0060600000000000ULL,
456 0x0020600000000000ULL, 0x0060600000000000ULL,
457 0x0020600000000000ULL, 0x0000600000000000ULL,
458 0x0040600000000000ULL, 0x0060600000000000ULL,
459 END_SIGN
460};
461
b41477f3
AR
462MODULE_LICENSE("GPL");
463MODULE_VERSION(DRV_VERSION);
464
465
1da177e4 466/* Module Loadable parameters. */
6cfc482b 467S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
b41477f3 468S2IO_PARM_INT(rx_ring_num, 1);
3a3d5756 469S2IO_PARM_INT(multiq, 0);
b41477f3
AR
470S2IO_PARM_INT(rx_ring_mode, 1);
471S2IO_PARM_INT(use_continuous_tx_intrs, 1);
472S2IO_PARM_INT(rmac_pause_time, 0x100);
473S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
474S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
475S2IO_PARM_INT(shared_splits, 0);
476S2IO_PARM_INT(tmac_util_period, 5);
477S2IO_PARM_INT(rmac_util_period, 5);
b41477f3 478S2IO_PARM_INT(l3l4hdr_size, 128);
6cfc482b
SH
479/* 0 is no steering, 1 is Priority steering, 2 is Default steering */
480S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
303bcb4b 481/* Frequency of Rx desc syncs expressed as power of 2 */
b41477f3 482S2IO_PARM_INT(rxsync_frequency, 3);
eccb8628 483/* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
8abc4d5b 484S2IO_PARM_INT(intr_type, 2);
7d3d0439 485/* Large receive offload feature */
43b7c451
SH
486static unsigned int lro_enable;
487module_param_named(lro, lro_enable, uint, 0);
488
7d3d0439
RA
489/* Max pkts to be aggregated by LRO at one time. If not specified,
490 * aggregation happens until we hit max IP pkt size(64K)
491 */
b41477f3 492S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
b41477f3 493S2IO_PARM_INT(indicate_max_pkts, 0);
db874e65
SS
494
495S2IO_PARM_INT(napi, 1);
496S2IO_PARM_INT(ufo, 0);
926930b2 497S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
b41477f3
AR
498
499static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
500 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
501static unsigned int rx_ring_sz[MAX_RX_RINGS] =
502 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
503static unsigned int rts_frm_len[MAX_RX_RINGS] =
504 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
505
506module_param_array(tx_fifo_len, uint, NULL, 0);
507module_param_array(rx_ring_sz, uint, NULL, 0);
508module_param_array(rts_frm_len, uint, NULL, 0);
1da177e4 509
20346722 510/*
1da177e4 511 * S2IO device table.
20346722 512 * This table lists all the devices that this driver supports.
1da177e4
LT
513 */
514static struct pci_device_id s2io_tbl[] __devinitdata = {
515 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
516 PCI_ANY_ID, PCI_ANY_ID},
517 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
518 PCI_ANY_ID, PCI_ANY_ID},
519 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
20346722 520 PCI_ANY_ID, PCI_ANY_ID},
521 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
522 PCI_ANY_ID, PCI_ANY_ID},
1da177e4
LT
523 {0,}
524};
525
526MODULE_DEVICE_TABLE(pci, s2io_tbl);
527
d796fdb7
LV
528static struct pci_error_handlers s2io_err_handler = {
529 .error_detected = s2io_io_error_detected,
530 .slot_reset = s2io_io_slot_reset,
531 .resume = s2io_io_resume,
532};
533
1da177e4
LT
534static struct pci_driver s2io_driver = {
535 .name = "S2IO",
536 .id_table = s2io_tbl,
537 .probe = s2io_init_nic,
538 .remove = __devexit_p(s2io_rem_nic),
d796fdb7 539 .err_handler = &s2io_err_handler,
1da177e4
LT
540};
541
542/* A simplifier macro used both by init and free shared_mem Fns(). */
543#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
544
3a3d5756
SH
545/* netqueue manipulation helper functions */
546static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
547{
548 int i;
549#ifdef CONFIG_NETDEVICES_MULTIQUEUE
550 if (sp->config.multiq) {
551 for (i = 0; i < sp->config.tx_fifo_num; i++)
552 netif_stop_subqueue(sp->dev, i);
553 } else
554#endif
555 {
556 for (i = 0; i < sp->config.tx_fifo_num; i++)
557 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
558 netif_stop_queue(sp->dev);
559 }
560}
561
562static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
563{
564#ifdef CONFIG_NETDEVICES_MULTIQUEUE
565 if (sp->config.multiq)
566 netif_stop_subqueue(sp->dev, fifo_no);
567 else
568#endif
569 {
570 sp->mac_control.fifos[fifo_no].queue_state =
571 FIFO_QUEUE_STOP;
572 netif_stop_queue(sp->dev);
573 }
574}
575
576static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
577{
578 int i;
579#ifdef CONFIG_NETDEVICES_MULTIQUEUE
580 if (sp->config.multiq) {
581 for (i = 0; i < sp->config.tx_fifo_num; i++)
582 netif_start_subqueue(sp->dev, i);
583 } else
584#endif
585 {
586 for (i = 0; i < sp->config.tx_fifo_num; i++)
587 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
588 netif_start_queue(sp->dev);
589 }
590}
591
592static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
593{
594#ifdef CONFIG_NETDEVICES_MULTIQUEUE
595 if (sp->config.multiq)
596 netif_start_subqueue(sp->dev, fifo_no);
597 else
598#endif
599 {
600 sp->mac_control.fifos[fifo_no].queue_state =
601 FIFO_QUEUE_START;
602 netif_start_queue(sp->dev);
603 }
604}
605
606static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
607{
608 int i;
609#ifdef CONFIG_NETDEVICES_MULTIQUEUE
610 if (sp->config.multiq) {
611 for (i = 0; i < sp->config.tx_fifo_num; i++)
612 netif_wake_subqueue(sp->dev, i);
613 } else
614#endif
615 {
616 for (i = 0; i < sp->config.tx_fifo_num; i++)
617 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
618 netif_wake_queue(sp->dev);
619 }
620}
621
622static inline void s2io_wake_tx_queue(
623 struct fifo_info *fifo, int cnt, u8 multiq)
624{
625
626#ifdef CONFIG_NETDEVICES_MULTIQUEUE
627 if (multiq) {
628 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
629 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
630 } else
631#endif
632 if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
633 if (netif_queue_stopped(fifo->dev)) {
634 fifo->queue_state = FIFO_QUEUE_START;
635 netif_wake_queue(fifo->dev);
636 }
637 }
638}
639
1da177e4
LT
640/**
641 * init_shared_mem - Allocation and Initialization of Memory
642 * @nic: Device private variable.
20346722 643 * Description: The function allocates all the memory areas shared
644 * between the NIC and the driver. This includes Tx descriptors,
1da177e4
LT
645 * Rx descriptors and the statistics block.
646 */
647
648static int init_shared_mem(struct s2io_nic *nic)
649{
650 u32 size;
651 void *tmp_v_addr, *tmp_v_addr_next;
652 dma_addr_t tmp_p_addr, tmp_p_addr_next;
1ee6dd77 653 struct RxD_block *pre_rxd_blk = NULL;
372cc597 654 int i, j, blk_cnt;
1da177e4
LT
655 int lst_size, lst_per_page;
656 struct net_device *dev = nic->dev;
8ae418cf 657 unsigned long tmp;
1ee6dd77 658 struct buffAdd *ba;
1da177e4 659
1ee6dd77 660 struct mac_info *mac_control;
1da177e4 661 struct config_param *config;
491976b2 662 unsigned long long mem_allocated = 0;
1da177e4
LT
663
664 mac_control = &nic->mac_control;
665 config = &nic->config;
666
667
668 /* Allocation and initialization of TXDLs in FIOFs */
669 size = 0;
670 for (i = 0; i < config->tx_fifo_num; i++) {
671 size += config->tx_cfg[i].fifo_len;
672 }
673 if (size > MAX_AVAILABLE_TXDS) {
b41477f3 674 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
0b1f7ebe 675 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
b41477f3 676 return -EINVAL;
1da177e4
LT
677 }
678
2fda096d
SR
679 size = 0;
680 for (i = 0; i < config->tx_fifo_num; i++) {
681 size = config->tx_cfg[i].fifo_len;
682 /*
683 * Legal values are from 2 to 8192
684 */
685 if (size < 2) {
686 DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
687 DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
688 DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
689 "are 2 to 8192\n");
690 return -EINVAL;
691 }
692 }
693
1ee6dd77 694 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
695 lst_per_page = PAGE_SIZE / lst_size;
696
697 for (i = 0; i < config->tx_fifo_num; i++) {
698 int fifo_len = config->tx_cfg[i].fifo_len;
1ee6dd77 699 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
bd684e43 700 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
20346722 701 GFP_KERNEL);
702 if (!mac_control->fifos[i].list_info) {
0c61ed5f 703 DBG_PRINT(INFO_DBG,
1da177e4
LT
704 "Malloc failed for list_info\n");
705 return -ENOMEM;
706 }
491976b2 707 mem_allocated += list_holder_size;
1da177e4
LT
708 }
709 for (i = 0; i < config->tx_fifo_num; i++) {
710 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
711 lst_per_page);
20346722 712 mac_control->fifos[i].tx_curr_put_info.offset = 0;
713 mac_control->fifos[i].tx_curr_put_info.fifo_len =
1da177e4 714 config->tx_cfg[i].fifo_len - 1;
20346722 715 mac_control->fifos[i].tx_curr_get_info.offset = 0;
716 mac_control->fifos[i].tx_curr_get_info.fifo_len =
1da177e4 717 config->tx_cfg[i].fifo_len - 1;
20346722 718 mac_control->fifos[i].fifo_no = i;
719 mac_control->fifos[i].nic = nic;
fed5eccd 720 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
3a3d5756 721 mac_control->fifos[i].dev = dev;
20346722 722
1da177e4
LT
723 for (j = 0; j < page_num; j++) {
724 int k = 0;
725 dma_addr_t tmp_p;
726 void *tmp_v;
727 tmp_v = pci_alloc_consistent(nic->pdev,
728 PAGE_SIZE, &tmp_p);
729 if (!tmp_v) {
0c61ed5f 730 DBG_PRINT(INFO_DBG,
1da177e4 731 "pci_alloc_consistent ");
0c61ed5f 732 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
1da177e4
LT
733 return -ENOMEM;
734 }
776bd20f 735 /* If we got a zero DMA address(can happen on
736 * certain platforms like PPC), reallocate.
737 * Store virtual address of page we don't want,
738 * to be freed later.
739 */
740 if (!tmp_p) {
741 mac_control->zerodma_virt_addr = tmp_v;
6aa20a22 742 DBG_PRINT(INIT_DBG,
776bd20f 743 "%s: Zero DMA address for TxDL. ", dev->name);
6aa20a22 744 DBG_PRINT(INIT_DBG,
6b4d617d 745 "Virtual address %p\n", tmp_v);
776bd20f 746 tmp_v = pci_alloc_consistent(nic->pdev,
747 PAGE_SIZE, &tmp_p);
748 if (!tmp_v) {
0c61ed5f 749 DBG_PRINT(INFO_DBG,
776bd20f 750 "pci_alloc_consistent ");
0c61ed5f 751 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
776bd20f 752 return -ENOMEM;
753 }
491976b2 754 mem_allocated += PAGE_SIZE;
776bd20f 755 }
1da177e4
LT
756 while (k < lst_per_page) {
757 int l = (j * lst_per_page) + k;
758 if (l == config->tx_cfg[i].fifo_len)
20346722 759 break;
760 mac_control->fifos[i].list_info[l].list_virt_addr =
1da177e4 761 tmp_v + (k * lst_size);
20346722 762 mac_control->fifos[i].list_info[l].list_phy_addr =
1da177e4
LT
763 tmp_p + (k * lst_size);
764 k++;
765 }
766 }
767 }
1da177e4 768
2fda096d
SR
769 for (i = 0; i < config->tx_fifo_num; i++) {
770 size = config->tx_cfg[i].fifo_len;
771 mac_control->fifos[i].ufo_in_band_v
772 = kcalloc(size, sizeof(u64), GFP_KERNEL);
773 if (!mac_control->fifos[i].ufo_in_band_v)
774 return -ENOMEM;
775 mem_allocated += (size * sizeof(u64));
776 }
fed5eccd 777
1da177e4
LT
778 /* Allocation and initialization of RXDs in Rings */
779 size = 0;
780 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
781 if (config->rx_cfg[i].num_rxd %
782 (rxd_count[nic->rxd_mode] + 1)) {
1da177e4
LT
783 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
784 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
785 i);
786 DBG_PRINT(ERR_DBG, "RxDs per Block");
787 return FAILURE;
788 }
789 size += config->rx_cfg[i].num_rxd;
20346722 790 mac_control->rings[i].block_count =
da6971d8
AR
791 config->rx_cfg[i].num_rxd /
792 (rxd_count[nic->rxd_mode] + 1 );
793 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
794 mac_control->rings[i].block_count;
1da177e4 795 }
da6971d8 796 if (nic->rxd_mode == RXD_MODE_1)
1ee6dd77 797 size = (size * (sizeof(struct RxD1)));
da6971d8 798 else
1ee6dd77 799 size = (size * (sizeof(struct RxD3)));
1da177e4
LT
800
801 for (i = 0; i < config->rx_ring_num; i++) {
20346722 802 mac_control->rings[i].rx_curr_get_info.block_index = 0;
803 mac_control->rings[i].rx_curr_get_info.offset = 0;
804 mac_control->rings[i].rx_curr_get_info.ring_len =
1da177e4 805 config->rx_cfg[i].num_rxd - 1;
20346722 806 mac_control->rings[i].rx_curr_put_info.block_index = 0;
807 mac_control->rings[i].rx_curr_put_info.offset = 0;
808 mac_control->rings[i].rx_curr_put_info.ring_len =
1da177e4 809 config->rx_cfg[i].num_rxd - 1;
20346722 810 mac_control->rings[i].nic = nic;
811 mac_control->rings[i].ring_no = i;
0425b46a 812 mac_control->rings[i].lro = lro_enable;
20346722 813
da6971d8
AR
814 blk_cnt = config->rx_cfg[i].num_rxd /
815 (rxd_count[nic->rxd_mode] + 1);
1da177e4
LT
816 /* Allocating all the Rx blocks */
817 for (j = 0; j < blk_cnt; j++) {
1ee6dd77 818 struct rx_block_info *rx_blocks;
da6971d8
AR
819 int l;
820
821 rx_blocks = &mac_control->rings[i].rx_blocks[j];
822 size = SIZE_OF_BLOCK; //size is always page size
1da177e4
LT
823 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
824 &tmp_p_addr);
825 if (tmp_v_addr == NULL) {
826 /*
20346722 827 * In case of failure, free_shared_mem()
828 * is called, which should free any
829 * memory that was alloced till the
1da177e4
LT
830 * failure happened.
831 */
da6971d8 832 rx_blocks->block_virt_addr = tmp_v_addr;
1da177e4
LT
833 return -ENOMEM;
834 }
491976b2 835 mem_allocated += size;
1da177e4 836 memset(tmp_v_addr, 0, size);
da6971d8
AR
837 rx_blocks->block_virt_addr = tmp_v_addr;
838 rx_blocks->block_dma_addr = tmp_p_addr;
1ee6dd77 839 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
da6971d8
AR
840 rxd_count[nic->rxd_mode],
841 GFP_KERNEL);
372cc597
SS
842 if (!rx_blocks->rxds)
843 return -ENOMEM;
8a4bdbaa 844 mem_allocated +=
491976b2 845 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
da6971d8
AR
846 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
847 rx_blocks->rxds[l].virt_addr =
848 rx_blocks->block_virt_addr +
849 (rxd_size[nic->rxd_mode] * l);
850 rx_blocks->rxds[l].dma_addr =
851 rx_blocks->block_dma_addr +
852 (rxd_size[nic->rxd_mode] * l);
853 }
1da177e4
LT
854 }
855 /* Interlinking all Rx Blocks */
856 for (j = 0; j < blk_cnt; j++) {
20346722 857 tmp_v_addr =
858 mac_control->rings[i].rx_blocks[j].block_virt_addr;
1da177e4 859 tmp_v_addr_next =
20346722 860 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4 861 blk_cnt].block_virt_addr;
20346722 862 tmp_p_addr =
863 mac_control->rings[i].rx_blocks[j].block_dma_addr;
1da177e4 864 tmp_p_addr_next =
20346722 865 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4
LT
866 blk_cnt].block_dma_addr;
867
1ee6dd77 868 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
1da177e4
LT
869 pre_rxd_blk->reserved_2_pNext_RxD_block =
870 (unsigned long) tmp_v_addr_next;
1da177e4
LT
871 pre_rxd_blk->pNext_RxD_Blk_physical =
872 (u64) tmp_p_addr_next;
873 }
874 }
6d517a27 875 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
876 /*
877 * Allocation of Storages for buffer addresses in 2BUFF mode
878 * and the buffers as well.
879 */
880 for (i = 0; i < config->rx_ring_num; i++) {
881 blk_cnt = config->rx_cfg[i].num_rxd /
882 (rxd_count[nic->rxd_mode]+ 1);
883 mac_control->rings[i].ba =
1ee6dd77 884 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
1da177e4 885 GFP_KERNEL);
da6971d8 886 if (!mac_control->rings[i].ba)
1da177e4 887 return -ENOMEM;
491976b2 888 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
da6971d8
AR
889 for (j = 0; j < blk_cnt; j++) {
890 int k = 0;
891 mac_control->rings[i].ba[j] =
1ee6dd77 892 kmalloc((sizeof(struct buffAdd) *
da6971d8
AR
893 (rxd_count[nic->rxd_mode] + 1)),
894 GFP_KERNEL);
895 if (!mac_control->rings[i].ba[j])
1da177e4 896 return -ENOMEM;
491976b2
SH
897 mem_allocated += (sizeof(struct buffAdd) * \
898 (rxd_count[nic->rxd_mode] + 1));
da6971d8
AR
899 while (k != rxd_count[nic->rxd_mode]) {
900 ba = &mac_control->rings[i].ba[j][k];
901
902 ba->ba_0_org = (void *) kmalloc
903 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
904 if (!ba->ba_0_org)
905 return -ENOMEM;
8a4bdbaa 906 mem_allocated +=
491976b2 907 (BUF0_LEN + ALIGN_SIZE);
da6971d8
AR
908 tmp = (unsigned long)ba->ba_0_org;
909 tmp += ALIGN_SIZE;
910 tmp &= ~((unsigned long) ALIGN_SIZE);
911 ba->ba_0 = (void *) tmp;
912
913 ba->ba_1_org = (void *) kmalloc
914 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
915 if (!ba->ba_1_org)
916 return -ENOMEM;
8a4bdbaa 917 mem_allocated
491976b2 918 += (BUF1_LEN + ALIGN_SIZE);
da6971d8
AR
919 tmp = (unsigned long) ba->ba_1_org;
920 tmp += ALIGN_SIZE;
921 tmp &= ~((unsigned long) ALIGN_SIZE);
922 ba->ba_1 = (void *) tmp;
923 k++;
924 }
1da177e4
LT
925 }
926 }
927 }
1da177e4
LT
928
929 /* Allocation and initialization of Statistics block */
1ee6dd77 930 size = sizeof(struct stat_block);
1da177e4
LT
931 mac_control->stats_mem = pci_alloc_consistent
932 (nic->pdev, size, &mac_control->stats_mem_phy);
933
934 if (!mac_control->stats_mem) {
20346722 935 /*
936 * In case of failure, free_shared_mem() is called, which
937 * should free any memory that was alloced till the
1da177e4
LT
938 * failure happened.
939 */
940 return -ENOMEM;
941 }
491976b2 942 mem_allocated += size;
1da177e4
LT
943 mac_control->stats_mem_sz = size;
944
945 tmp_v_addr = mac_control->stats_mem;
1ee6dd77 946 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
1da177e4 947 memset(tmp_v_addr, 0, size);
1da177e4
LT
948 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
949 (unsigned long long) tmp_p_addr);
491976b2 950 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
1da177e4
LT
951 return SUCCESS;
952}
953
20346722 954/**
955 * free_shared_mem - Free the allocated Memory
1da177e4
LT
956 * @nic: Device private variable.
957 * Description: This function is to free all memory locations allocated by
958 * the init_shared_mem() function and return it to the kernel.
959 */
960
961static void free_shared_mem(struct s2io_nic *nic)
962{
963 int i, j, blk_cnt, size;
964 void *tmp_v_addr;
965 dma_addr_t tmp_p_addr;
1ee6dd77 966 struct mac_info *mac_control;
1da177e4
LT
967 struct config_param *config;
968 int lst_size, lst_per_page;
8910b49f 969 struct net_device *dev;
491976b2 970 int page_num = 0;
1da177e4
LT
971
972 if (!nic)
973 return;
974
8910b49f
MG
975 dev = nic->dev;
976
1da177e4
LT
977 mac_control = &nic->mac_control;
978 config = &nic->config;
979
1ee6dd77 980 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
981 lst_per_page = PAGE_SIZE / lst_size;
982
983 for (i = 0; i < config->tx_fifo_num; i++) {
491976b2
SH
984 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
985 lst_per_page);
1da177e4
LT
986 for (j = 0; j < page_num; j++) {
987 int mem_blks = (j * lst_per_page);
776bd20f 988 if (!mac_control->fifos[i].list_info)
6aa20a22 989 return;
776bd20f 990 if (!mac_control->fifos[i].list_info[mem_blks].
991 list_virt_addr)
1da177e4
LT
992 break;
993 pci_free_consistent(nic->pdev, PAGE_SIZE,
20346722 994 mac_control->fifos[i].
995 list_info[mem_blks].
1da177e4 996 list_virt_addr,
20346722 997 mac_control->fifos[i].
998 list_info[mem_blks].
1da177e4 999 list_phy_addr);
8a4bdbaa 1000 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 1001 += PAGE_SIZE;
1da177e4 1002 }
776bd20f 1003 /* If we got a zero DMA address during allocation,
1004 * free the page now
1005 */
1006 if (mac_control->zerodma_virt_addr) {
1007 pci_free_consistent(nic->pdev, PAGE_SIZE,
1008 mac_control->zerodma_virt_addr,
1009 (dma_addr_t)0);
6aa20a22 1010 DBG_PRINT(INIT_DBG,
6b4d617d
AM
1011 "%s: Freeing TxDL with zero DMA addr. ",
1012 dev->name);
1013 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
1014 mac_control->zerodma_virt_addr);
8a4bdbaa 1015 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 1016 += PAGE_SIZE;
776bd20f 1017 }
20346722 1018 kfree(mac_control->fifos[i].list_info);
8a4bdbaa 1019 nic->mac_control.stats_info->sw_stat.mem_freed +=
491976b2 1020 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
1da177e4
LT
1021 }
1022
1da177e4 1023 size = SIZE_OF_BLOCK;
1da177e4 1024 for (i = 0; i < config->rx_ring_num; i++) {
20346722 1025 blk_cnt = mac_control->rings[i].block_count;
1da177e4 1026 for (j = 0; j < blk_cnt; j++) {
20346722 1027 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
1028 block_virt_addr;
1029 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
1030 block_dma_addr;
1da177e4
LT
1031 if (tmp_v_addr == NULL)
1032 break;
1033 pci_free_consistent(nic->pdev, size,
1034 tmp_v_addr, tmp_p_addr);
491976b2 1035 nic->mac_control.stats_info->sw_stat.mem_freed += size;
da6971d8 1036 kfree(mac_control->rings[i].rx_blocks[j].rxds);
8a4bdbaa 1037 nic->mac_control.stats_info->sw_stat.mem_freed +=
491976b2 1038 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1da177e4
LT
1039 }
1040 }
1041
6d517a27 1042 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
1043 /* Freeing buffer storage addresses in 2BUFF mode. */
1044 for (i = 0; i < config->rx_ring_num; i++) {
1045 blk_cnt = config->rx_cfg[i].num_rxd /
1046 (rxd_count[nic->rxd_mode] + 1);
1047 for (j = 0; j < blk_cnt; j++) {
1048 int k = 0;
1049 if (!mac_control->rings[i].ba[j])
1050 continue;
1051 while (k != rxd_count[nic->rxd_mode]) {
1ee6dd77 1052 struct buffAdd *ba =
da6971d8
AR
1053 &mac_control->rings[i].ba[j][k];
1054 kfree(ba->ba_0_org);
491976b2
SH
1055 nic->mac_control.stats_info->sw_stat.\
1056 mem_freed += (BUF0_LEN + ALIGN_SIZE);
da6971d8 1057 kfree(ba->ba_1_org);
491976b2
SH
1058 nic->mac_control.stats_info->sw_stat.\
1059 mem_freed += (BUF1_LEN + ALIGN_SIZE);
da6971d8
AR
1060 k++;
1061 }
1062 kfree(mac_control->rings[i].ba[j]);
9caab458
SS
1063 nic->mac_control.stats_info->sw_stat.mem_freed +=
1064 (sizeof(struct buffAdd) *
1065 (rxd_count[nic->rxd_mode] + 1));
1da177e4 1066 }
da6971d8 1067 kfree(mac_control->rings[i].ba);
8a4bdbaa 1068 nic->mac_control.stats_info->sw_stat.mem_freed +=
491976b2 1069 (sizeof(struct buffAdd *) * blk_cnt);
1da177e4 1070 }
1da177e4 1071 }
1da177e4 1072
2fda096d
SR
1073 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1074 if (mac_control->fifos[i].ufo_in_band_v) {
1075 nic->mac_control.stats_info->sw_stat.mem_freed
1076 += (config->tx_cfg[i].fifo_len * sizeof(u64));
1077 kfree(mac_control->fifos[i].ufo_in_band_v);
1078 }
1079 }
1080
1da177e4 1081 if (mac_control->stats_mem) {
2fda096d
SR
1082 nic->mac_control.stats_info->sw_stat.mem_freed +=
1083 mac_control->stats_mem_sz;
1da177e4
LT
1084 pci_free_consistent(nic->pdev,
1085 mac_control->stats_mem_sz,
1086 mac_control->stats_mem,
1087 mac_control->stats_mem_phy);
491976b2 1088 }
1da177e4
LT
1089}
1090
541ae68f 1091/**
1092 * s2io_verify_pci_mode -
1093 */
1094
1ee6dd77 1095static int s2io_verify_pci_mode(struct s2io_nic *nic)
541ae68f 1096{
1ee6dd77 1097 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f 1098 register u64 val64 = 0;
1099 int mode;
1100
1101 val64 = readq(&bar0->pci_mode);
1102 mode = (u8)GET_PCI_MODE(val64);
1103
1104 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1105 return -1; /* Unknown PCI mode */
1106 return mode;
1107}
1108
c92ca04b
AR
1109#define NEC_VENID 0x1033
1110#define NEC_DEVID 0x0125
1111static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1112{
1113 struct pci_dev *tdev = NULL;
26d36b64
AC
1114 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1115 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
7ad62dbc 1116 if (tdev->bus == s2io_pdev->bus->parent) {
26d36b64 1117 pci_dev_put(tdev);
c92ca04b 1118 return 1;
7ad62dbc 1119 }
c92ca04b
AR
1120 }
1121 }
1122 return 0;
1123}
541ae68f 1124
7b32a312 1125static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
541ae68f 1126/**
1127 * s2io_print_pci_mode -
1128 */
1ee6dd77 1129static int s2io_print_pci_mode(struct s2io_nic *nic)
541ae68f 1130{
1ee6dd77 1131 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f 1132 register u64 val64 = 0;
1133 int mode;
1134 struct config_param *config = &nic->config;
1135
1136 val64 = readq(&bar0->pci_mode);
1137 mode = (u8)GET_PCI_MODE(val64);
1138
1139 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1140 return -1; /* Unknown PCI mode */
1141
c92ca04b
AR
1142 config->bus_speed = bus_speed[mode];
1143
1144 if (s2io_on_nec_bridge(nic->pdev)) {
1145 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1146 nic->dev->name);
1147 return mode;
1148 }
1149
541ae68f 1150 if (val64 & PCI_MODE_32_BITS) {
1151 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1152 } else {
1153 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1154 }
1155
1156 switch(mode) {
1157 case PCI_MODE_PCI_33:
1158 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
541ae68f 1159 break;
1160 case PCI_MODE_PCI_66:
1161 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
541ae68f 1162 break;
1163 case PCI_MODE_PCIX_M1_66:
1164 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
541ae68f 1165 break;
1166 case PCI_MODE_PCIX_M1_100:
1167 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
541ae68f 1168 break;
1169 case PCI_MODE_PCIX_M1_133:
1170 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
541ae68f 1171 break;
1172 case PCI_MODE_PCIX_M2_66:
1173 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
541ae68f 1174 break;
1175 case PCI_MODE_PCIX_M2_100:
1176 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
541ae68f 1177 break;
1178 case PCI_MODE_PCIX_M2_133:
1179 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
541ae68f 1180 break;
1181 default:
1182 return -1; /* Unsupported bus speed */
1183 }
1184
1185 return mode;
1186}
1187
b7c5678f
RV
1188/**
1189 * init_tti - Initialization transmit traffic interrupt scheme
1190 * @nic: device private variable
1191 * @link: link status (UP/DOWN) used to enable/disable continuous
1192 * transmit interrupts
1193 * Description: The function configures transmit traffic interrupts
1194 * Return Value: SUCCESS on success and
1195 * '-1' on failure
1196 */
1197
0d66afe7 1198static int init_tti(struct s2io_nic *nic, int link)
b7c5678f
RV
1199{
1200 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1201 register u64 val64 = 0;
1202 int i;
1203 struct config_param *config;
1204
1205 config = &nic->config;
1206
1207 for (i = 0; i < config->tx_fifo_num; i++) {
1208 /*
1209 * TTI Initialization. Default Tx timer gets us about
1210 * 250 interrupts per sec. Continuous interrupts are enabled
1211 * by default.
1212 */
1213 if (nic->device_type == XFRAME_II_DEVICE) {
1214 int count = (nic->config.bus_speed * 125)/2;
1215 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1216 } else
1217 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1218
1219 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1220 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1221 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1222 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1223
1224 if (use_continuous_tx_intrs && (link == LINK_UP))
1225 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1226 writeq(val64, &bar0->tti_data1_mem);
1227
1228 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1229 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1230 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1231 TTI_DATA2_MEM_TX_UFC_D(0x80);
1232
1233 writeq(val64, &bar0->tti_data2_mem);
1234
1235 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
1236 TTI_CMD_MEM_OFFSET(i);
1237 writeq(val64, &bar0->tti_command_mem);
1238
1239 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1240 TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
1241 return FAILURE;
1242 }
1243
1244 return SUCCESS;
1245}
1246
20346722 1247/**
1248 * init_nic - Initialization of hardware
b7c5678f 1249 * @nic: device private variable
20346722 1250 * Description: The function sequentially configures every block
1251 * of the H/W from their reset values.
1252 * Return Value: SUCCESS on success and
1da177e4
LT
1253 * '-1' on failure (endian settings incorrect).
1254 */
1255
1256static int init_nic(struct s2io_nic *nic)
1257{
1ee6dd77 1258 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
1259 struct net_device *dev = nic->dev;
1260 register u64 val64 = 0;
1261 void __iomem *add;
1262 u32 time;
1263 int i, j;
1ee6dd77 1264 struct mac_info *mac_control;
1da177e4 1265 struct config_param *config;
c92ca04b 1266 int dtx_cnt = 0;
1da177e4 1267 unsigned long long mem_share;
20346722 1268 int mem_size;
1da177e4
LT
1269
1270 mac_control = &nic->mac_control;
1271 config = &nic->config;
1272
5e25b9dd 1273 /* to set the swapper controle on the card */
20346722 1274 if(s2io_set_swapper(nic)) {
1da177e4 1275 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
9f74ffde 1276 return -EIO;
1da177e4
LT
1277 }
1278
541ae68f 1279 /*
1280 * Herc requires EOI to be removed from reset before XGXS, so..
1281 */
1282 if (nic->device_type & XFRAME_II_DEVICE) {
1283 val64 = 0xA500000000ULL;
1284 writeq(val64, &bar0->sw_reset);
1285 msleep(500);
1286 val64 = readq(&bar0->sw_reset);
1287 }
1288
1da177e4
LT
1289 /* Remove XGXS from reset state */
1290 val64 = 0;
1291 writeq(val64, &bar0->sw_reset);
1da177e4 1292 msleep(500);
20346722 1293 val64 = readq(&bar0->sw_reset);
1da177e4 1294
7962024e
SH
1295 /* Ensure that it's safe to access registers by checking
1296 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1297 */
1298 if (nic->device_type == XFRAME_II_DEVICE) {
1299 for (i = 0; i < 50; i++) {
1300 val64 = readq(&bar0->adapter_status);
1301 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1302 break;
1303 msleep(10);
1304 }
1305 if (i == 50)
1306 return -ENODEV;
1307 }
1308
1da177e4
LT
1309 /* Enable Receiving broadcasts */
1310 add = &bar0->mac_cfg;
1311 val64 = readq(&bar0->mac_cfg);
1312 val64 |= MAC_RMAC_BCAST_ENABLE;
1313 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1314 writel((u32) val64, add);
1315 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1316 writel((u32) (val64 >> 32), (add + 4));
1317
1318 /* Read registers in all blocks */
1319 val64 = readq(&bar0->mac_int_mask);
1320 val64 = readq(&bar0->mc_int_mask);
1321 val64 = readq(&bar0->xgxs_int_mask);
1322
1323 /* Set MTU */
1324 val64 = dev->mtu;
1325 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1326
541ae68f 1327 if (nic->device_type & XFRAME_II_DEVICE) {
1328 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
303bcb4b 1329 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1da177e4 1330 &bar0->dtx_control, UF);
541ae68f 1331 if (dtx_cnt & 0x1)
1332 msleep(1); /* Necessary!! */
1da177e4
LT
1333 dtx_cnt++;
1334 }
541ae68f 1335 } else {
c92ca04b
AR
1336 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1337 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1338 &bar0->dtx_control, UF);
1339 val64 = readq(&bar0->dtx_control);
1340 dtx_cnt++;
1da177e4
LT
1341 }
1342 }
1343
1344 /* Tx DMA Initialization */
1345 val64 = 0;
1346 writeq(val64, &bar0->tx_fifo_partition_0);
1347 writeq(val64, &bar0->tx_fifo_partition_1);
1348 writeq(val64, &bar0->tx_fifo_partition_2);
1349 writeq(val64, &bar0->tx_fifo_partition_3);
1350
1351
1352 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1353 val64 |=
b7c5678f 1354 vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
1da177e4 1355 13) | vBIT(config->tx_cfg[i].fifo_priority,
b7c5678f 1356 ((j * 32) + 5), 3);
1da177e4
LT
1357
1358 if (i == (config->tx_fifo_num - 1)) {
1359 if (i % 2 == 0)
1360 i++;
1361 }
1362
1363 switch (i) {
1364 case 1:
1365 writeq(val64, &bar0->tx_fifo_partition_0);
1366 val64 = 0;
b7c5678f 1367 j = 0;
1da177e4
LT
1368 break;
1369 case 3:
1370 writeq(val64, &bar0->tx_fifo_partition_1);
1371 val64 = 0;
b7c5678f 1372 j = 0;
1da177e4
LT
1373 break;
1374 case 5:
1375 writeq(val64, &bar0->tx_fifo_partition_2);
1376 val64 = 0;
b7c5678f 1377 j = 0;
1da177e4
LT
1378 break;
1379 case 7:
1380 writeq(val64, &bar0->tx_fifo_partition_3);
b7c5678f
RV
1381 val64 = 0;
1382 j = 0;
1383 break;
1384 default:
1385 j++;
1da177e4
LT
1386 break;
1387 }
1388 }
1389
5e25b9dd 1390 /*
1391 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1392 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1393 */
541ae68f 1394 if ((nic->device_type == XFRAME_I_DEVICE) &&
44c10138 1395 (nic->pdev->revision < 4))
5e25b9dd 1396 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1397
1da177e4
LT
1398 val64 = readq(&bar0->tx_fifo_partition_0);
1399 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1400 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1401
20346722 1402 /*
1403 * Initialization of Tx_PA_CONFIG register to ignore packet
1da177e4
LT
1404 * integrity checking.
1405 */
1406 val64 = readq(&bar0->tx_pa_cfg);
1407 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1408 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1409 writeq(val64, &bar0->tx_pa_cfg);
1410
1411 /* Rx DMA intialization. */
1412 val64 = 0;
1413 for (i = 0; i < config->rx_ring_num; i++) {
1414 val64 |=
1415 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1416 3);
1417 }
1418 writeq(val64, &bar0->rx_queue_priority);
1419
20346722 1420 /*
1421 * Allocating equal share of memory to all the
1da177e4
LT
1422 * configured Rings.
1423 */
1424 val64 = 0;
541ae68f 1425 if (nic->device_type & XFRAME_II_DEVICE)
1426 mem_size = 32;
1427 else
1428 mem_size = 64;
1429
1da177e4
LT
1430 for (i = 0; i < config->rx_ring_num; i++) {
1431 switch (i) {
1432 case 0:
20346722 1433 mem_share = (mem_size / config->rx_ring_num +
1434 mem_size % config->rx_ring_num);
1da177e4
LT
1435 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1436 continue;
1437 case 1:
20346722 1438 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1439 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1440 continue;
1441 case 2:
20346722 1442 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1443 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1444 continue;
1445 case 3:
20346722 1446 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1447 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1448 continue;
1449 case 4:
20346722 1450 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1451 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1452 continue;
1453 case 5:
20346722 1454 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1455 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1456 continue;
1457 case 6:
20346722 1458 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1459 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1460 continue;
1461 case 7:
20346722 1462 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1463 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1464 continue;
1465 }
1466 }
1467 writeq(val64, &bar0->rx_queue_cfg);
1468
20346722 1469 /*
5e25b9dd 1470 * Filling Tx round robin registers
b7c5678f 1471 * as per the number of FIFOs for equal scheduling priority
1da177e4 1472 */
5e25b9dd 1473 switch (config->tx_fifo_num) {
1474 case 1:
b7c5678f 1475 val64 = 0x0;
5e25b9dd 1476 writeq(val64, &bar0->tx_w_round_robin_0);
1477 writeq(val64, &bar0->tx_w_round_robin_1);
1478 writeq(val64, &bar0->tx_w_round_robin_2);
1479 writeq(val64, &bar0->tx_w_round_robin_3);
1480 writeq(val64, &bar0->tx_w_round_robin_4);
1481 break;
1482 case 2:
b7c5678f 1483 val64 = 0x0001000100010001ULL;
5e25b9dd 1484 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1485 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1486 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1487 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1488 val64 = 0x0001000100000000ULL;
5e25b9dd 1489 writeq(val64, &bar0->tx_w_round_robin_4);
1490 break;
1491 case 3:
b7c5678f 1492 val64 = 0x0001020001020001ULL;
5e25b9dd 1493 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1494 val64 = 0x0200010200010200ULL;
5e25b9dd 1495 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1496 val64 = 0x0102000102000102ULL;
5e25b9dd 1497 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1498 val64 = 0x0001020001020001ULL;
5e25b9dd 1499 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1500 val64 = 0x0200010200000000ULL;
5e25b9dd 1501 writeq(val64, &bar0->tx_w_round_robin_4);
1502 break;
1503 case 4:
b7c5678f 1504 val64 = 0x0001020300010203ULL;
5e25b9dd 1505 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1506 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1507 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1508 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1509 val64 = 0x0001020300000000ULL;
5e25b9dd 1510 writeq(val64, &bar0->tx_w_round_robin_4);
1511 break;
1512 case 5:
b7c5678f 1513 val64 = 0x0001020304000102ULL;
5e25b9dd 1514 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1515 val64 = 0x0304000102030400ULL;
5e25b9dd 1516 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1517 val64 = 0x0102030400010203ULL;
5e25b9dd 1518 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1519 val64 = 0x0400010203040001ULL;
5e25b9dd 1520 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1521 val64 = 0x0203040000000000ULL;
5e25b9dd 1522 writeq(val64, &bar0->tx_w_round_robin_4);
1523 break;
1524 case 6:
b7c5678f 1525 val64 = 0x0001020304050001ULL;
5e25b9dd 1526 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1527 val64 = 0x0203040500010203ULL;
5e25b9dd 1528 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1529 val64 = 0x0405000102030405ULL;
5e25b9dd 1530 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1531 val64 = 0x0001020304050001ULL;
5e25b9dd 1532 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1533 val64 = 0x0203040500000000ULL;
5e25b9dd 1534 writeq(val64, &bar0->tx_w_round_robin_4);
1535 break;
1536 case 7:
b7c5678f 1537 val64 = 0x0001020304050600ULL;
5e25b9dd 1538 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1539 val64 = 0x0102030405060001ULL;
5e25b9dd 1540 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1541 val64 = 0x0203040506000102ULL;
5e25b9dd 1542 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1543 val64 = 0x0304050600010203ULL;
5e25b9dd 1544 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1545 val64 = 0x0405060000000000ULL;
5e25b9dd 1546 writeq(val64, &bar0->tx_w_round_robin_4);
1547 break;
1548 case 8:
b7c5678f 1549 val64 = 0x0001020304050607ULL;
5e25b9dd 1550 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1551 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1552 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1553 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1554 val64 = 0x0001020300000000ULL;
5e25b9dd 1555 writeq(val64, &bar0->tx_w_round_robin_4);
1556 break;
1557 }
1558
b41477f3 1559 /* Enable all configured Tx FIFO partitions */
5d3213cc
AR
1560 val64 = readq(&bar0->tx_fifo_partition_0);
1561 val64 |= (TX_FIFO_PARTITION_EN);
1562 writeq(val64, &bar0->tx_fifo_partition_0);
1563
5e25b9dd 1564 /* Filling the Rx round robin registers as per the
0425b46a
SH
1565 * number of Rings and steering based on QoS with
1566 * equal priority.
1567 */
5e25b9dd 1568 switch (config->rx_ring_num) {
1569 case 1:
0425b46a
SH
1570 val64 = 0x0;
1571 writeq(val64, &bar0->rx_w_round_robin_0);
1572 writeq(val64, &bar0->rx_w_round_robin_1);
1573 writeq(val64, &bar0->rx_w_round_robin_2);
1574 writeq(val64, &bar0->rx_w_round_robin_3);
1575 writeq(val64, &bar0->rx_w_round_robin_4);
1576
5e25b9dd 1577 val64 = 0x8080808080808080ULL;
1578 writeq(val64, &bar0->rts_qos_steering);
1579 break;
1580 case 2:
0425b46a 1581 val64 = 0x0001000100010001ULL;
5e25b9dd 1582 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1583 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1584 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1585 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1586 val64 = 0x0001000100000000ULL;
5e25b9dd 1587 writeq(val64, &bar0->rx_w_round_robin_4);
1588
1589 val64 = 0x8080808040404040ULL;
1590 writeq(val64, &bar0->rts_qos_steering);
1591 break;
1592 case 3:
0425b46a 1593 val64 = 0x0001020001020001ULL;
5e25b9dd 1594 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1595 val64 = 0x0200010200010200ULL;
5e25b9dd 1596 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1597 val64 = 0x0102000102000102ULL;
5e25b9dd 1598 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1599 val64 = 0x0001020001020001ULL;
5e25b9dd 1600 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1601 val64 = 0x0200010200000000ULL;
5e25b9dd 1602 writeq(val64, &bar0->rx_w_round_robin_4);
1603
1604 val64 = 0x8080804040402020ULL;
1605 writeq(val64, &bar0->rts_qos_steering);
1606 break;
1607 case 4:
0425b46a 1608 val64 = 0x0001020300010203ULL;
5e25b9dd 1609 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1610 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1611 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1612 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1613 val64 = 0x0001020300000000ULL;
5e25b9dd 1614 writeq(val64, &bar0->rx_w_round_robin_4);
1615
1616 val64 = 0x8080404020201010ULL;
1617 writeq(val64, &bar0->rts_qos_steering);
1618 break;
1619 case 5:
0425b46a 1620 val64 = 0x0001020304000102ULL;
5e25b9dd 1621 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1622 val64 = 0x0304000102030400ULL;
5e25b9dd 1623 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1624 val64 = 0x0102030400010203ULL;
5e25b9dd 1625 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1626 val64 = 0x0400010203040001ULL;
5e25b9dd 1627 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1628 val64 = 0x0203040000000000ULL;
5e25b9dd 1629 writeq(val64, &bar0->rx_w_round_robin_4);
1630
1631 val64 = 0x8080404020201008ULL;
1632 writeq(val64, &bar0->rts_qos_steering);
1633 break;
1634 case 6:
0425b46a 1635 val64 = 0x0001020304050001ULL;
5e25b9dd 1636 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1637 val64 = 0x0203040500010203ULL;
5e25b9dd 1638 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1639 val64 = 0x0405000102030405ULL;
5e25b9dd 1640 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1641 val64 = 0x0001020304050001ULL;
5e25b9dd 1642 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1643 val64 = 0x0203040500000000ULL;
5e25b9dd 1644 writeq(val64, &bar0->rx_w_round_robin_4);
1645
1646 val64 = 0x8080404020100804ULL;
1647 writeq(val64, &bar0->rts_qos_steering);
1648 break;
1649 case 7:
0425b46a 1650 val64 = 0x0001020304050600ULL;
5e25b9dd 1651 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1652 val64 = 0x0102030405060001ULL;
5e25b9dd 1653 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1654 val64 = 0x0203040506000102ULL;
5e25b9dd 1655 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1656 val64 = 0x0304050600010203ULL;
5e25b9dd 1657 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1658 val64 = 0x0405060000000000ULL;
5e25b9dd 1659 writeq(val64, &bar0->rx_w_round_robin_4);
1660
1661 val64 = 0x8080402010080402ULL;
1662 writeq(val64, &bar0->rts_qos_steering);
1663 break;
1664 case 8:
0425b46a 1665 val64 = 0x0001020304050607ULL;
5e25b9dd 1666 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1667 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1668 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1669 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1670 val64 = 0x0001020300000000ULL;
5e25b9dd 1671 writeq(val64, &bar0->rx_w_round_robin_4);
1672
1673 val64 = 0x8040201008040201ULL;
1674 writeq(val64, &bar0->rts_qos_steering);
1675 break;
1676 }
1da177e4
LT
1677
1678 /* UDP Fix */
1679 val64 = 0;
20346722 1680 for (i = 0; i < 8; i++)
1da177e4
LT
1681 writeq(val64, &bar0->rts_frm_len_n[i]);
1682
5e25b9dd 1683 /* Set the default rts frame length for the rings configured */
1684 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1685 for (i = 0 ; i < config->rx_ring_num ; i++)
1686 writeq(val64, &bar0->rts_frm_len_n[i]);
1687
1688 /* Set the frame length for the configured rings
1689 * desired by the user
1690 */
1691 for (i = 0; i < config->rx_ring_num; i++) {
1692 /* If rts_frm_len[i] == 0 then it is assumed that user not
1693 * specified frame length steering.
1694 * If the user provides the frame length then program
1695 * the rts_frm_len register for those values or else
1696 * leave it as it is.
1697 */
1698 if (rts_frm_len[i] != 0) {
1699 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1700 &bar0->rts_frm_len_n[i]);
1701 }
1702 }
8a4bdbaa 1703
9fc93a41
SS
1704 /* Disable differentiated services steering logic */
1705 for (i = 0; i < 64; i++) {
1706 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1707 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1708 dev->name);
1709 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
9f74ffde 1710 return -ENODEV;
9fc93a41
SS
1711 }
1712 }
1713
20346722 1714 /* Program statistics memory */
1da177e4 1715 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1da177e4 1716
541ae68f 1717 if (nic->device_type == XFRAME_II_DEVICE) {
1718 val64 = STAT_BC(0x320);
1719 writeq(val64, &bar0->stat_byte_cnt);
1720 }
1721
20346722 1722 /*
1da177e4
LT
1723 * Initializing the sampling rate for the device to calculate the
1724 * bandwidth utilization.
1725 */
1726 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1727 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1728 writeq(val64, &bar0->mac_link_util);
1729
20346722 1730 /*
1731 * Initializing the Transmit and Receive Traffic Interrupt
1da177e4
LT
1732 * Scheme.
1733 */
1da177e4 1734
b7c5678f
RV
1735 /* Initialize TTI */
1736 if (SUCCESS != init_tti(nic, nic->last_link_state))
1737 return -ENODEV;
1da177e4 1738
8a4bdbaa
SS
1739 /* RTI Initialization */
1740 if (nic->device_type == XFRAME_II_DEVICE) {
541ae68f 1741 /*
8a4bdbaa
SS
1742 * Programmed to generate Apprx 500 Intrs per
1743 * second
1744 */
1745 int count = (nic->config.bus_speed * 125)/4;
1746 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1747 } else
1748 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1749 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1750 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1751 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1752
1753 writeq(val64, &bar0->rti_data1_mem);
1754
1755 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1756 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1757 if (nic->config.intr_type == MSI_X)
1758 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1759 RTI_DATA2_MEM_RX_UFC_D(0x40));
1760 else
1761 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1762 RTI_DATA2_MEM_RX_UFC_D(0x80));
1763 writeq(val64, &bar0->rti_data2_mem);
1da177e4 1764
8a4bdbaa
SS
1765 for (i = 0; i < config->rx_ring_num; i++) {
1766 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1767 | RTI_CMD_MEM_OFFSET(i);
1768 writeq(val64, &bar0->rti_command_mem);
1da177e4 1769
8a4bdbaa
SS
1770 /*
1771 * Once the operation completes, the Strobe bit of the
1772 * command register will be reset. We poll for this
1773 * particular condition. We wait for a maximum of 500ms
1774 * for the operation to complete, if it's not complete
1775 * by then we return error.
1776 */
1777 time = 0;
1778 while (TRUE) {
1779 val64 = readq(&bar0->rti_command_mem);
1780 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1781 break;
b6e3f982 1782
8a4bdbaa
SS
1783 if (time > 10) {
1784 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1785 dev->name);
9f74ffde 1786 return -ENODEV;
b6e3f982 1787 }
8a4bdbaa
SS
1788 time++;
1789 msleep(50);
1da177e4 1790 }
1da177e4
LT
1791 }
1792
20346722 1793 /*
1794 * Initializing proper values as Pause threshold into all
1da177e4
LT
1795 * the 8 Queues on Rx side.
1796 */
1797 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1798 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1799
1800 /* Disable RMAC PAD STRIPPING */
509a2671 1801 add = &bar0->mac_cfg;
1da177e4
LT
1802 val64 = readq(&bar0->mac_cfg);
1803 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1804 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1805 writel((u32) (val64), add);
1806 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1807 writel((u32) (val64 >> 32), (add + 4));
1808 val64 = readq(&bar0->mac_cfg);
1809
7d3d0439
RA
1810 /* Enable FCS stripping by adapter */
1811 add = &bar0->mac_cfg;
1812 val64 = readq(&bar0->mac_cfg);
1813 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1814 if (nic->device_type == XFRAME_II_DEVICE)
1815 writeq(val64, &bar0->mac_cfg);
1816 else {
1817 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1818 writel((u32) (val64), add);
1819 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1820 writel((u32) (val64 >> 32), (add + 4));
1821 }
1822
20346722 1823 /*
1824 * Set the time value to be inserted in the pause frame
1da177e4
LT
1825 * generated by xena.
1826 */
1827 val64 = readq(&bar0->rmac_pause_cfg);
1828 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1829 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1830 writeq(val64, &bar0->rmac_pause_cfg);
1831
20346722 1832 /*
1da177e4
LT
1833 * Set the Threshold Limit for Generating the pause frame
1834 * If the amount of data in any Queue exceeds ratio of
1835 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1836 * pause frame is generated
1837 */
1838 val64 = 0;
1839 for (i = 0; i < 4; i++) {
1840 val64 |=
1841 (((u64) 0xFF00 | nic->mac_control.
1842 mc_pause_threshold_q0q3)
1843 << (i * 2 * 8));
1844 }
1845 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1846
1847 val64 = 0;
1848 for (i = 0; i < 4; i++) {
1849 val64 |=
1850 (((u64) 0xFF00 | nic->mac_control.
1851 mc_pause_threshold_q4q7)
1852 << (i * 2 * 8));
1853 }
1854 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1855
20346722 1856 /*
1857 * TxDMA will stop Read request if the number of read split has
1da177e4
LT
1858 * exceeded the limit pointed by shared_splits
1859 */
1860 val64 = readq(&bar0->pic_control);
1861 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1862 writeq(val64, &bar0->pic_control);
1863
863c11a9
AR
1864 if (nic->config.bus_speed == 266) {
1865 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1866 writeq(0x0, &bar0->read_retry_delay);
1867 writeq(0x0, &bar0->write_retry_delay);
1868 }
1869
541ae68f 1870 /*
1871 * Programming the Herc to split every write transaction
1872 * that does not start on an ADB to reduce disconnects.
1873 */
1874 if (nic->device_type == XFRAME_II_DEVICE) {
19a60522
SS
1875 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1876 MISC_LINK_STABILITY_PRD(3);
863c11a9
AR
1877 writeq(val64, &bar0->misc_control);
1878 val64 = readq(&bar0->pic_control2);
b7b5a128 1879 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
863c11a9 1880 writeq(val64, &bar0->pic_control2);
541ae68f 1881 }
c92ca04b
AR
1882 if (strstr(nic->product_name, "CX4")) {
1883 val64 = TMAC_AVG_IPG(0x17);
1884 writeq(val64, &bar0->tmac_avg_ipg);
a371a07d 1885 }
1886
1da177e4
LT
1887 return SUCCESS;
1888}
a371a07d 1889#define LINK_UP_DOWN_INTERRUPT 1
1890#define MAC_RMAC_ERR_TIMER 2
1891
1ee6dd77 1892static int s2io_link_fault_indication(struct s2io_nic *nic)
a371a07d 1893{
eaae7f72 1894 if (nic->config.intr_type != INTA)
cc6e7c44 1895 return MAC_RMAC_ERR_TIMER;
a371a07d 1896 if (nic->device_type == XFRAME_II_DEVICE)
1897 return LINK_UP_DOWN_INTERRUPT;
1898 else
1899 return MAC_RMAC_ERR_TIMER;
1900}
8116f3cf 1901
9caab458
SS
1902/**
1903 * do_s2io_write_bits - update alarm bits in alarm register
1904 * @value: alarm bits
1905 * @flag: interrupt status
1906 * @addr: address value
1907 * Description: update alarm bits in alarm register
1908 * Return Value:
1909 * NONE.
1910 */
1911static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1912{
1913 u64 temp64;
1914
1915 temp64 = readq(addr);
1916
1917 if(flag == ENABLE_INTRS)
1918 temp64 &= ~((u64) value);
1919 else
1920 temp64 |= ((u64) value);
1921 writeq(temp64, addr);
1922}
1da177e4 1923
43b7c451 1924static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
9caab458
SS
1925{
1926 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1927 register u64 gen_int_mask = 0;
1928
1929 if (mask & TX_DMA_INTR) {
1930
1931 gen_int_mask |= TXDMA_INT_M;
1932
1933 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1934 TXDMA_PCC_INT | TXDMA_TTI_INT |
1935 TXDMA_LSO_INT | TXDMA_TPA_INT |
1936 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1937
1938 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1939 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1940 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1941 &bar0->pfc_err_mask);
1942
1943 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1944 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1945 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1946
1947 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1948 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1949 PCC_N_SERR | PCC_6_COF_OV_ERR |
1950 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1951 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1952 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1953
1954 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1955 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1956
1957 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1958 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1959 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1960 flag, &bar0->lso_err_mask);
1961
1962 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1963 flag, &bar0->tpa_err_mask);
1964
1965 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1966
1967 }
1968
1969 if (mask & TX_MAC_INTR) {
1970 gen_int_mask |= TXMAC_INT_M;
1971 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1972 &bar0->mac_int_mask);
1973 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1974 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1975 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1976 flag, &bar0->mac_tmac_err_mask);
1977 }
1978
1979 if (mask & TX_XGXS_INTR) {
1980 gen_int_mask |= TXXGXS_INT_M;
1981 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1982 &bar0->xgxs_int_mask);
1983 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1984 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1985 flag, &bar0->xgxs_txgxs_err_mask);
1986 }
1987
1988 if (mask & RX_DMA_INTR) {
1989 gen_int_mask |= RXDMA_INT_M;
1990 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1991 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1992 flag, &bar0->rxdma_int_mask);
1993 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1994 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1995 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1996 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1997 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1998 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1999 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
2000 &bar0->prc_pcix_err_mask);
2001 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
2002 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
2003 &bar0->rpa_err_mask);
2004 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
2005 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
2006 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
2007 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
2008 flag, &bar0->rda_err_mask);
2009 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2010 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2011 flag, &bar0->rti_err_mask);
2012 }
2013
2014 if (mask & RX_MAC_INTR) {
2015 gen_int_mask |= RXMAC_INT_M;
2016 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2017 &bar0->mac_int_mask);
2018 do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2019 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2020 RMAC_DOUBLE_ECC_ERR |
2021 RMAC_LINK_STATE_CHANGE_INT,
2022 flag, &bar0->mac_rmac_err_mask);
2023 }
2024
2025 if (mask & RX_XGXS_INTR)
2026 {
2027 gen_int_mask |= RXXGXS_INT_M;
2028 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2029 &bar0->xgxs_int_mask);
2030 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2031 &bar0->xgxs_rxgxs_err_mask);
2032 }
2033
2034 if (mask & MC_INTR) {
2035 gen_int_mask |= MC_INT_M;
2036 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
2037 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2038 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2039 &bar0->mc_err_mask);
2040 }
2041 nic->general_int_mask = gen_int_mask;
2042
2043 /* Remove this line when alarm interrupts are enabled */
2044 nic->general_int_mask = 0;
2045}
20346722 2046/**
2047 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1da177e4
LT
2048 * @nic: device private variable,
2049 * @mask: A mask indicating which Intr block must be modified and,
2050 * @flag: A flag indicating whether to enable or disable the Intrs.
2051 * Description: This function will either disable or enable the interrupts
20346722 2052 * depending on the flag argument. The mask argument can be used to
2053 * enable/disable any Intr block.
1da177e4
LT
2054 * Return Value: NONE.
2055 */
2056
2057static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2058{
1ee6dd77 2059 struct XENA_dev_config __iomem *bar0 = nic->bar0;
9caab458
SS
2060 register u64 temp64 = 0, intr_mask = 0;
2061
2062 intr_mask = nic->general_int_mask;
1da177e4
LT
2063
2064 /* Top level interrupt classification */
2065 /* PIC Interrupts */
9caab458 2066 if (mask & TX_PIC_INTR) {
1da177e4 2067 /* Enable PIC Intrs in the general intr mask register */
9caab458 2068 intr_mask |= TXPIC_INT_M;
1da177e4 2069 if (flag == ENABLE_INTRS) {
20346722 2070 /*
a371a07d 2071 * If Hercules adapter enable GPIO otherwise
b41477f3 2072 * disable all PCIX, Flash, MDIO, IIC and GPIO
20346722 2073 * interrupts for now.
2074 * TODO
1da177e4 2075 */
a371a07d 2076 if (s2io_link_fault_indication(nic) ==
2077 LINK_UP_DOWN_INTERRUPT ) {
9caab458
SS
2078 do_s2io_write_bits(PIC_INT_GPIO, flag,
2079 &bar0->pic_int_mask);
2080 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2081 &bar0->gpio_int_mask);
2082 } else
a371a07d 2083 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4 2084 } else if (flag == DISABLE_INTRS) {
20346722 2085 /*
2086 * Disable PIC Intrs in the general
2087 * intr mask register
1da177e4
LT
2088 */
2089 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4
LT
2090 }
2091 }
2092
1da177e4
LT
2093 /* Tx traffic interrupts */
2094 if (mask & TX_TRAFFIC_INTR) {
9caab458 2095 intr_mask |= TXTRAFFIC_INT_M;
1da177e4 2096 if (flag == ENABLE_INTRS) {
20346722 2097 /*
1da177e4 2098 * Enable all the Tx side interrupts
20346722 2099 * writing 0 Enables all 64 TX interrupt levels
1da177e4
LT
2100 */
2101 writeq(0x0, &bar0->tx_traffic_mask);
2102 } else if (flag == DISABLE_INTRS) {
20346722 2103 /*
2104 * Disable Tx Traffic Intrs in the general intr mask
1da177e4
LT
2105 * register.
2106 */
2107 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1da177e4
LT
2108 }
2109 }
2110
2111 /* Rx traffic interrupts */
2112 if (mask & RX_TRAFFIC_INTR) {
9caab458 2113 intr_mask |= RXTRAFFIC_INT_M;
1da177e4 2114 if (flag == ENABLE_INTRS) {
1da177e4
LT
2115 /* writing 0 Enables all 8 RX interrupt levels */
2116 writeq(0x0, &bar0->rx_traffic_mask);
2117 } else if (flag == DISABLE_INTRS) {
20346722 2118 /*
2119 * Disable Rx Traffic Intrs in the general intr mask
1da177e4
LT
2120 * register.
2121 */
2122 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1da177e4
LT
2123 }
2124 }
9caab458
SS
2125
2126 temp64 = readq(&bar0->general_int_mask);
2127 if (flag == ENABLE_INTRS)
2128 temp64 &= ~((u64) intr_mask);
2129 else
2130 temp64 = DISABLE_ALL_INTRS;
2131 writeq(temp64, &bar0->general_int_mask);
2132
2133 nic->general_int_mask = readq(&bar0->general_int_mask);
1da177e4
LT
2134}
2135
19a60522
SS
2136/**
2137 * verify_pcc_quiescent- Checks for PCC quiescent state
2138 * Return: 1 If PCC is quiescence
2139 * 0 If PCC is not quiescence
2140 */
1ee6dd77 2141static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
20346722 2142{
19a60522 2143 int ret = 0, herc;
1ee6dd77 2144 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522 2145 u64 val64 = readq(&bar0->adapter_status);
8a4bdbaa 2146
19a60522 2147 herc = (sp->device_type == XFRAME_II_DEVICE);
20346722 2148
2149 if (flag == FALSE) {
44c10138 2150 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
19a60522 2151 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2152 ret = 1;
19a60522
SS
2153 } else {
2154 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2155 ret = 1;
20346722 2156 }
2157 } else {
44c10138 2158 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
5e25b9dd 2159 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
19a60522 2160 ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2161 ret = 1;
5e25b9dd 2162 } else {
2163 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
19a60522 2164 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2165 ret = 1;
20346722 2166 }
2167 }
2168
2169 return ret;
2170}
2171/**
2172 * verify_xena_quiescence - Checks whether the H/W is ready
1da177e4 2173 * Description: Returns whether the H/W is ready to go or not. Depending
20346722 2174 * on whether adapter enable bit was written or not the comparison
1da177e4
LT
2175 * differs and the calling function passes the input argument flag to
2176 * indicate this.
20346722 2177 * Return: 1 If xena is quiescence
1da177e4
LT
2178 * 0 If Xena is not quiescence
2179 */
2180
1ee6dd77 2181static int verify_xena_quiescence(struct s2io_nic *sp)
1da177e4 2182{
19a60522 2183 int mode;
1ee6dd77 2184 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522
SS
2185 u64 val64 = readq(&bar0->adapter_status);
2186 mode = s2io_verify_pci_mode(sp);
1da177e4 2187
19a60522
SS
2188 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2189 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2190 return 0;
2191 }
2192 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2193 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2194 return 0;
2195 }
2196 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2197 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2198 return 0;
2199 }
2200 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2201 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2202 return 0;
2203 }
2204 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2205 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2206 return 0;
2207 }
2208 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2209 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2210 return 0;
2211 }
2212 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2213 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2214 return 0;
2215 }
2216 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2217 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2218 return 0;
1da177e4
LT
2219 }
2220
19a60522
SS
2221 /*
2222 * In PCI 33 mode, the P_PLL is not used, and therefore,
2223 * the the P_PLL_LOCK bit in the adapter_status register will
2224 * not be asserted.
2225 */
2226 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2227 sp->device_type == XFRAME_II_DEVICE && mode !=
2228 PCI_MODE_PCI_33) {
2229 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2230 return 0;
2231 }
2232 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2233 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2234 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2235 return 0;
2236 }
2237 return 1;
1da177e4
LT
2238}
2239
2240/**
2241 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2242 * @sp: Pointer to device specifc structure
20346722 2243 * Description :
1da177e4
LT
2244 * New procedure to clear mac address reading problems on Alpha platforms
2245 *
2246 */
2247
1ee6dd77 2248static void fix_mac_address(struct s2io_nic * sp)
1da177e4 2249{
1ee6dd77 2250 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
2251 u64 val64;
2252 int i = 0;
2253
2254 while (fix_mac[i] != END_SIGN) {
2255 writeq(fix_mac[i++], &bar0->gpio_control);
20346722 2256 udelay(10);
1da177e4
LT
2257 val64 = readq(&bar0->gpio_control);
2258 }
2259}
2260
2261/**
20346722 2262 * start_nic - Turns the device on
1da177e4 2263 * @nic : device private variable.
20346722 2264 * Description:
2265 * This function actually turns the device on. Before this function is
2266 * called,all Registers are configured from their reset states
2267 * and shared memory is allocated but the NIC is still quiescent. On
1da177e4
LT
2268 * calling this function, the device interrupts are cleared and the NIC is
2269 * literally switched on by writing into the adapter control register.
20346722 2270 * Return Value:
1da177e4
LT
2271 * SUCCESS on success and -1 on failure.
2272 */
2273
2274static int start_nic(struct s2io_nic *nic)
2275{
1ee6dd77 2276 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
2277 struct net_device *dev = nic->dev;
2278 register u64 val64 = 0;
20346722 2279 u16 subid, i;
1ee6dd77 2280 struct mac_info *mac_control;
1da177e4
LT
2281 struct config_param *config;
2282
2283 mac_control = &nic->mac_control;
2284 config = &nic->config;
2285
2286 /* PRC Initialization and configuration */
2287 for (i = 0; i < config->rx_ring_num; i++) {
20346722 2288 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1da177e4
LT
2289 &bar0->prc_rxd0_n[i]);
2290
2291 val64 = readq(&bar0->prc_ctrl_n[i]);
da6971d8
AR
2292 if (nic->rxd_mode == RXD_MODE_1)
2293 val64 |= PRC_CTRL_RC_ENABLED;
2294 else
2295 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
863c11a9
AR
2296 if (nic->device_type == XFRAME_II_DEVICE)
2297 val64 |= PRC_CTRL_GROUP_READS;
2298 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2299 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1da177e4
LT
2300 writeq(val64, &bar0->prc_ctrl_n[i]);
2301 }
2302
da6971d8
AR
2303 if (nic->rxd_mode == RXD_MODE_3B) {
2304 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2305 val64 = readq(&bar0->rx_pa_cfg);
2306 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2307 writeq(val64, &bar0->rx_pa_cfg);
2308 }
1da177e4 2309
926930b2
SS
2310 if (vlan_tag_strip == 0) {
2311 val64 = readq(&bar0->rx_pa_cfg);
2312 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2313 writeq(val64, &bar0->rx_pa_cfg);
2314 vlan_strip_flag = 0;
2315 }
2316
20346722 2317 /*
1da177e4
LT
2318 * Enabling MC-RLDRAM. After enabling the device, we timeout
2319 * for around 100ms, which is approximately the time required
2320 * for the device to be ready for operation.
2321 */
2322 val64 = readq(&bar0->mc_rldram_mrs);
2323 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2324 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2325 val64 = readq(&bar0->mc_rldram_mrs);
2326
20346722 2327 msleep(100); /* Delay by around 100 ms. */
1da177e4
LT
2328
2329 /* Enabling ECC Protection. */
2330 val64 = readq(&bar0->adapter_control);
2331 val64 &= ~ADAPTER_ECC_EN;
2332 writeq(val64, &bar0->adapter_control);
2333
20346722 2334 /*
2335 * Verify if the device is ready to be enabled, if so enable
1da177e4
LT
2336 * it.
2337 */
2338 val64 = readq(&bar0->adapter_status);
19a60522 2339 if (!verify_xena_quiescence(nic)) {
1da177e4
LT
2340 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2341 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2342 (unsigned long long) val64);
2343 return FAILURE;
2344 }
2345
20346722 2346 /*
1da177e4 2347 * With some switches, link might be already up at this point.
20346722 2348 * Because of this weird behavior, when we enable laser,
2349 * we may not get link. We need to handle this. We cannot
2350 * figure out which switch is misbehaving. So we are forced to
2351 * make a global change.
1da177e4
LT
2352 */
2353
2354 /* Enabling Laser. */
2355 val64 = readq(&bar0->adapter_control);
2356 val64 |= ADAPTER_EOI_TX_ON;
2357 writeq(val64, &bar0->adapter_control);
2358
c92ca04b
AR
2359 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2360 /*
2361 * Dont see link state interrupts initally on some switches,
2362 * so directly scheduling the link state task here.
2363 */
2364 schedule_work(&nic->set_link_task);
2365 }
1da177e4
LT
2366 /* SXE-002: Initialize link and activity LED */
2367 subid = nic->pdev->subsystem_device;
541ae68f 2368 if (((subid & 0xFF) >= 0x07) &&
2369 (nic->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
2370 val64 = readq(&bar0->gpio_control);
2371 val64 |= 0x0000800000000000ULL;
2372 writeq(val64, &bar0->gpio_control);
2373 val64 = 0x0411040400000000ULL;
509a2671 2374 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
2375 }
2376
1da177e4
LT
2377 return SUCCESS;
2378}
fed5eccd
AR
2379/**
2380 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2381 */
1ee6dd77
RB
2382static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2383 TxD *txdlp, int get_off)
fed5eccd 2384{
1ee6dd77 2385 struct s2io_nic *nic = fifo_data->nic;
fed5eccd 2386 struct sk_buff *skb;
1ee6dd77 2387 struct TxD *txds;
fed5eccd
AR
2388 u16 j, frg_cnt;
2389
2390 txds = txdlp;
2fda096d 2391 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
fed5eccd
AR
2392 pci_unmap_single(nic->pdev, (dma_addr_t)
2393 txds->Buffer_Pointer, sizeof(u64),
2394 PCI_DMA_TODEVICE);
2395 txds++;
2396 }
2397
2398 skb = (struct sk_buff *) ((unsigned long)
2399 txds->Host_Control);
2400 if (!skb) {
1ee6dd77 2401 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2402 return NULL;
2403 }
2404 pci_unmap_single(nic->pdev, (dma_addr_t)
2405 txds->Buffer_Pointer,
2406 skb->len - skb->data_len,
2407 PCI_DMA_TODEVICE);
2408 frg_cnt = skb_shinfo(skb)->nr_frags;
2409 if (frg_cnt) {
2410 txds++;
2411 for (j = 0; j < frg_cnt; j++, txds++) {
2412 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2413 if (!txds->Buffer_Pointer)
2414 break;
6aa20a22 2415 pci_unmap_page(nic->pdev, (dma_addr_t)
fed5eccd
AR
2416 txds->Buffer_Pointer,
2417 frag->size, PCI_DMA_TODEVICE);
2418 }
2419 }
1ee6dd77 2420 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2421 return(skb);
2422}
1da177e4 2423
20346722 2424/**
2425 * free_tx_buffers - Free all queued Tx buffers
1da177e4 2426 * @nic : device private variable.
20346722 2427 * Description:
1da177e4 2428 * Free all queued Tx buffers.
20346722 2429 * Return Value: void
1da177e4
LT
2430*/
2431
2432static void free_tx_buffers(struct s2io_nic *nic)
2433{
2434 struct net_device *dev = nic->dev;
2435 struct sk_buff *skb;
1ee6dd77 2436 struct TxD *txdp;
1da177e4 2437 int i, j;
1ee6dd77 2438 struct mac_info *mac_control;
1da177e4 2439 struct config_param *config;
fed5eccd 2440 int cnt = 0;
1da177e4
LT
2441
2442 mac_control = &nic->mac_control;
2443 config = &nic->config;
2444
2445 for (i = 0; i < config->tx_fifo_num; i++) {
2fda096d
SR
2446 unsigned long flags;
2447 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
b35b3b49 2448 for (j = 0; j < config->tx_cfg[i].fifo_len; j++) {
491976b2
SH
2449 txdp = (struct TxD *) \
2450 mac_control->fifos[i].list_info[j].list_virt_addr;
fed5eccd
AR
2451 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2452 if (skb) {
8a4bdbaa 2453 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 2454 += skb->truesize;
fed5eccd
AR
2455 dev_kfree_skb(skb);
2456 cnt++;
1da177e4 2457 }
1da177e4
LT
2458 }
2459 DBG_PRINT(INTR_DBG,
2460 "%s:forcibly freeing %d skbs on FIFO%d\n",
2461 dev->name, cnt, i);
20346722 2462 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2463 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2fda096d 2464 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
1da177e4
LT
2465 }
2466}
2467
20346722 2468/**
2469 * stop_nic - To stop the nic
1da177e4 2470 * @nic ; device private variable.
20346722 2471 * Description:
2472 * This function does exactly the opposite of what the start_nic()
1da177e4
LT
2473 * function does. This function is called to stop the device.
2474 * Return Value:
2475 * void.
2476 */
2477
2478static void stop_nic(struct s2io_nic *nic)
2479{
1ee6dd77 2480 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4 2481 register u64 val64 = 0;
5d3213cc 2482 u16 interruptible;
1ee6dd77 2483 struct mac_info *mac_control;
1da177e4
LT
2484 struct config_param *config;
2485
2486 mac_control = &nic->mac_control;
2487 config = &nic->config;
2488
2489 /* Disable all interrupts */
9caab458 2490 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
e960fc5c 2491 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 2492 interruptible |= TX_PIC_INTR;
1da177e4
LT
2493 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2494
5d3213cc
AR
2495 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2496 val64 = readq(&bar0->adapter_control);
2497 val64 &= ~(ADAPTER_CNTL_EN);
2498 writeq(val64, &bar0->adapter_control);
1da177e4
LT
2499}
2500
20346722 2501/**
2502 * fill_rx_buffers - Allocates the Rx side skbs
0425b46a 2503 * @ring_info: per ring structure
20346722 2504 * Description:
1da177e4
LT
2505 * The function allocates Rx side skbs and puts the physical
2506 * address of these buffers into the RxD buffer pointers, so that the NIC
2507 * can DMA the received frame into these locations.
2508 * The NIC supports 3 receive modes, viz
2509 * 1. single buffer,
2510 * 2. three buffer and
2511 * 3. Five buffer modes.
20346722 2512 * Each mode defines how many fragments the received frame will be split
2513 * up into by the NIC. The frame is split into L3 header, L4 Header,
1da177e4
LT
2514 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2515 * is split into 3 fragments. As of now only single buffer mode is
2516 * supported.
2517 * Return Value:
2518 * SUCCESS on success or an appropriate -ve value on failure.
2519 */
2520
0425b46a 2521static int fill_rx_buffers(struct ring_info *ring)
1da177e4 2522{
1da177e4 2523 struct sk_buff *skb;
1ee6dd77 2524 struct RxD_t *rxdp;
0425b46a 2525 int off, size, block_no, block_no1;
1da177e4 2526 u32 alloc_tab = 0;
20346722 2527 u32 alloc_cnt;
20346722 2528 u64 tmp;
1ee6dd77 2529 struct buffAdd *ba;
1ee6dd77 2530 struct RxD_t *first_rxdp = NULL;
363dc367 2531 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
0425b46a 2532 int rxd_index = 0;
6d517a27
VP
2533 struct RxD1 *rxdp1;
2534 struct RxD3 *rxdp3;
0425b46a 2535 struct swStat *stats = &ring->nic->mac_control.stats_info->sw_stat;
1da177e4 2536
0425b46a 2537 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
1da177e4 2538
0425b46a 2539 block_no1 = ring->rx_curr_get_info.block_index;
1da177e4 2540 while (alloc_tab < alloc_cnt) {
0425b46a 2541 block_no = ring->rx_curr_put_info.block_index;
1da177e4 2542
0425b46a
SH
2543 off = ring->rx_curr_put_info.offset;
2544
2545 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2546
2547 rxd_index = off + 1;
2548 if (block_no)
2549 rxd_index += (block_no * ring->rxd_count);
da6971d8 2550
0425b46a
SH
2551 if ((block_no == block_no1) &&
2552 (off == ring->rx_curr_get_info.offset) &&
2553 (rxdp->Host_Control)) {
da6971d8 2554 DBG_PRINT(INTR_DBG, "%s: Get and Put",
0425b46a 2555 ring->dev->name);
1da177e4
LT
2556 DBG_PRINT(INTR_DBG, " info equated\n");
2557 goto end;
2558 }
0425b46a
SH
2559 if (off && (off == ring->rxd_count)) {
2560 ring->rx_curr_put_info.block_index++;
2561 if (ring->rx_curr_put_info.block_index ==
2562 ring->block_count)
2563 ring->rx_curr_put_info.block_index = 0;
2564 block_no = ring->rx_curr_put_info.block_index;
2565 off = 0;
2566 ring->rx_curr_put_info.offset = off;
2567 rxdp = ring->rx_blocks[block_no].block_virt_addr;
1da177e4 2568 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
0425b46a
SH
2569 ring->dev->name, rxdp);
2570
1da177e4 2571 }
c9fcbf47 2572
da6971d8 2573 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
0425b46a 2574 ((ring->rxd_mode == RXD_MODE_3B) &&
b7b5a128 2575 (rxdp->Control_2 & s2BIT(0)))) {
0425b46a 2576 ring->rx_curr_put_info.offset = off;
1da177e4
LT
2577 goto end;
2578 }
da6971d8 2579 /* calculate size of skb based on ring mode */
0425b46a 2580 size = ring->mtu + HEADER_ETHERNET_II_802_3_SIZE +
da6971d8 2581 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
0425b46a 2582 if (ring->rxd_mode == RXD_MODE_1)
da6971d8 2583 size += NET_IP_ALIGN;
da6971d8 2584 else
0425b46a 2585 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
1da177e4 2586
da6971d8
AR
2587 /* allocate skb */
2588 skb = dev_alloc_skb(size);
2589 if(!skb) {
0425b46a 2590 DBG_PRINT(INFO_DBG, "%s: Out of ", ring->dev->name);
0c61ed5f 2591 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
303bcb4b 2592 if (first_rxdp) {
2593 wmb();
2594 first_rxdp->Control_1 |= RXD_OWN_XENA;
2595 }
0425b46a
SH
2596 stats->mem_alloc_fail_cnt++;
2597
da6971d8
AR
2598 return -ENOMEM ;
2599 }
0425b46a
SH
2600 stats->mem_allocated += skb->truesize;
2601
2602 if (ring->rxd_mode == RXD_MODE_1) {
da6971d8 2603 /* 1 buffer mode - normal operation mode */
6d517a27 2604 rxdp1 = (struct RxD1*)rxdp;
1ee6dd77 2605 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2606 skb_reserve(skb, NET_IP_ALIGN);
6d517a27 2607 rxdp1->Buffer0_ptr = pci_map_single
0425b46a 2608 (ring->pdev, skb->data, size - NET_IP_ALIGN,
863c11a9 2609 PCI_DMA_FROMDEVICE);
491abf25
VP
2610 if( (rxdp1->Buffer0_ptr == 0) ||
2611 (rxdp1->Buffer0_ptr ==
2612 DMA_ERROR_CODE))
2613 goto pci_map_failed;
2614
8a4bdbaa 2615 rxdp->Control_2 =
491976b2 2616 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
0425b46a
SH
2617 rxdp->Host_Control = (unsigned long) (skb);
2618 } else if (ring->rxd_mode == RXD_MODE_3B) {
da6971d8 2619 /*
6d517a27
VP
2620 * 2 buffer mode -
2621 * 2 buffer mode provides 128
da6971d8 2622 * byte aligned receive buffers.
da6971d8
AR
2623 */
2624
6d517a27 2625 rxdp3 = (struct RxD3*)rxdp;
491976b2 2626 /* save buffer pointers to avoid frequent dma mapping */
6d517a27
VP
2627 Buffer0_ptr = rxdp3->Buffer0_ptr;
2628 Buffer1_ptr = rxdp3->Buffer1_ptr;
1ee6dd77 2629 memset(rxdp, 0, sizeof(struct RxD3));
363dc367 2630 /* restore the buffer pointers for dma sync*/
6d517a27
VP
2631 rxdp3->Buffer0_ptr = Buffer0_ptr;
2632 rxdp3->Buffer1_ptr = Buffer1_ptr;
363dc367 2633
0425b46a 2634 ba = &ring->ba[block_no][off];
da6971d8
AR
2635 skb_reserve(skb, BUF0_LEN);
2636 tmp = (u64)(unsigned long) skb->data;
2637 tmp += ALIGN_SIZE;
2638 tmp &= ~ALIGN_SIZE;
2639 skb->data = (void *) (unsigned long)tmp;
27a884dc 2640 skb_reset_tail_pointer(skb);
da6971d8 2641
6d517a27
VP
2642 if (!(rxdp3->Buffer0_ptr))
2643 rxdp3->Buffer0_ptr =
0425b46a
SH
2644 pci_map_single(ring->pdev, ba->ba_0,
2645 BUF0_LEN, PCI_DMA_FROMDEVICE);
75c30b13 2646 else
0425b46a 2647 pci_dma_sync_single_for_device(ring->pdev,
6d517a27 2648 (dma_addr_t) rxdp3->Buffer0_ptr,
75c30b13 2649 BUF0_LEN, PCI_DMA_FROMDEVICE);
491abf25
VP
2650 if( (rxdp3->Buffer0_ptr == 0) ||
2651 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2652 goto pci_map_failed;
2653
da6971d8 2654 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
0425b46a 2655 if (ring->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
2656 /* Two buffer mode */
2657
2658 /*
6aa20a22 2659 * Buffer2 will have L3/L4 header plus
da6971d8
AR
2660 * L4 payload
2661 */
6d517a27 2662 rxdp3->Buffer2_ptr = pci_map_single
0425b46a 2663 (ring->pdev, skb->data, ring->mtu + 4,
da6971d8
AR
2664 PCI_DMA_FROMDEVICE);
2665
491abf25
VP
2666 if( (rxdp3->Buffer2_ptr == 0) ||
2667 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2668 goto pci_map_failed;
2669
0425b46a
SH
2670 if (!rxdp3->Buffer1_ptr)
2671 rxdp3->Buffer1_ptr =
2672 pci_map_single(ring->pdev,
75c30b13
AR
2673 ba->ba_1, BUF1_LEN,
2674 PCI_DMA_FROMDEVICE);
0425b46a 2675
491abf25
VP
2676 if( (rxdp3->Buffer1_ptr == 0) ||
2677 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2678 pci_unmap_single
0425b46a
SH
2679 (ring->pdev,
2680 (dma_addr_t)(unsigned long)
2681 skb->data,
2682 ring->mtu + 4,
491abf25
VP
2683 PCI_DMA_FROMDEVICE);
2684 goto pci_map_failed;
75c30b13 2685 }
da6971d8
AR
2686 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2687 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
0425b46a 2688 (ring->mtu + 4);
da6971d8 2689 }
b7b5a128 2690 rxdp->Control_2 |= s2BIT(0);
0425b46a 2691 rxdp->Host_Control = (unsigned long) (skb);
1da177e4 2692 }
303bcb4b 2693 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2694 rxdp->Control_1 |= RXD_OWN_XENA;
1da177e4 2695 off++;
0425b46a 2696 if (off == (ring->rxd_count + 1))
da6971d8 2697 off = 0;
0425b46a 2698 ring->rx_curr_put_info.offset = off;
20346722 2699
da6971d8 2700 rxdp->Control_2 |= SET_RXD_MARKER;
303bcb4b 2701 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2702 if (first_rxdp) {
2703 wmb();
2704 first_rxdp->Control_1 |= RXD_OWN_XENA;
2705 }
2706 first_rxdp = rxdp;
2707 }
0425b46a 2708 ring->rx_bufs_left += 1;
1da177e4
LT
2709 alloc_tab++;
2710 }
2711
2712 end:
303bcb4b 2713 /* Transfer ownership of first descriptor to adapter just before
2714 * exiting. Before that, use memory barrier so that ownership
2715 * and other fields are seen by adapter correctly.
2716 */
2717 if (first_rxdp) {
2718 wmb();
2719 first_rxdp->Control_1 |= RXD_OWN_XENA;
2720 }
2721
1da177e4 2722 return SUCCESS;
491abf25
VP
2723pci_map_failed:
2724 stats->pci_map_fail_cnt++;
2725 stats->mem_freed += skb->truesize;
2726 dev_kfree_skb_irq(skb);
2727 return -ENOMEM;
1da177e4
LT
2728}
2729
da6971d8
AR
2730static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2731{
2732 struct net_device *dev = sp->dev;
2733 int j;
2734 struct sk_buff *skb;
1ee6dd77
RB
2735 struct RxD_t *rxdp;
2736 struct mac_info *mac_control;
2737 struct buffAdd *ba;
6d517a27
VP
2738 struct RxD1 *rxdp1;
2739 struct RxD3 *rxdp3;
da6971d8
AR
2740
2741 mac_control = &sp->mac_control;
2742 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2743 rxdp = mac_control->rings[ring_no].
2744 rx_blocks[blk].rxds[j].virt_addr;
2745 skb = (struct sk_buff *)
2746 ((unsigned long) rxdp->Host_Control);
2747 if (!skb) {
2748 continue;
2749 }
2750 if (sp->rxd_mode == RXD_MODE_1) {
6d517a27 2751 rxdp1 = (struct RxD1*)rxdp;
da6971d8 2752 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2753 rxdp1->Buffer0_ptr,
2754 dev->mtu +
2755 HEADER_ETHERNET_II_802_3_SIZE
2756 + HEADER_802_2_SIZE +
2757 HEADER_SNAP_SIZE,
2758 PCI_DMA_FROMDEVICE);
1ee6dd77 2759 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2760 } else if(sp->rxd_mode == RXD_MODE_3B) {
6d517a27 2761 rxdp3 = (struct RxD3*)rxdp;
da6971d8
AR
2762 ba = &mac_control->rings[ring_no].
2763 ba[blk][j];
2764 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2765 rxdp3->Buffer0_ptr,
2766 BUF0_LEN,
da6971d8
AR
2767 PCI_DMA_FROMDEVICE);
2768 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2769 rxdp3->Buffer1_ptr,
2770 BUF1_LEN,
da6971d8
AR
2771 PCI_DMA_FROMDEVICE);
2772 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2773 rxdp3->Buffer2_ptr,
2774 dev->mtu + 4,
da6971d8 2775 PCI_DMA_FROMDEVICE);
1ee6dd77 2776 memset(rxdp, 0, sizeof(struct RxD3));
da6971d8 2777 }
491976b2 2778 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
da6971d8 2779 dev_kfree_skb(skb);
0425b46a 2780 mac_control->rings[ring_no].rx_bufs_left -= 1;
da6971d8
AR
2781 }
2782}
2783
1da177e4 2784/**
20346722 2785 * free_rx_buffers - Frees all Rx buffers
1da177e4 2786 * @sp: device private variable.
20346722 2787 * Description:
1da177e4
LT
2788 * This function will free all Rx buffers allocated by host.
2789 * Return Value:
2790 * NONE.
2791 */
2792
2793static void free_rx_buffers(struct s2io_nic *sp)
2794{
2795 struct net_device *dev = sp->dev;
da6971d8 2796 int i, blk = 0, buf_cnt = 0;
1ee6dd77 2797 struct mac_info *mac_control;
1da177e4 2798 struct config_param *config;
1da177e4
LT
2799
2800 mac_control = &sp->mac_control;
2801 config = &sp->config;
2802
2803 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
2804 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2805 free_rxd_blk(sp,i,blk);
1da177e4 2806
20346722 2807 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2808 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2809 mac_control->rings[i].rx_curr_put_info.offset = 0;
2810 mac_control->rings[i].rx_curr_get_info.offset = 0;
0425b46a 2811 mac_control->rings[i].rx_bufs_left = 0;
1da177e4
LT
2812 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2813 dev->name, buf_cnt, i);
2814 }
2815}
2816
2817/**
2818 * s2io_poll - Rx interrupt handler for NAPI support
bea3348e 2819 * @napi : pointer to the napi structure.
20346722 2820 * @budget : The number of packets that were budgeted to be processed
1da177e4
LT
2821 * during one pass through the 'Poll" function.
2822 * Description:
2823 * Comes into picture only if NAPI support has been incorporated. It does
2824 * the same thing that rx_intr_handler does, but not in a interrupt context
2825 * also It will process only a given number of packets.
2826 * Return value:
2827 * 0 on success and 1 if there are No Rx packets to be processed.
2828 */
2829
bea3348e 2830static int s2io_poll(struct napi_struct *napi, int budget)
1da177e4 2831{
bea3348e
SH
2832 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2833 struct net_device *dev = nic->dev;
20346722 2834 int pkt_cnt = 0, org_pkts_to_process;
1ee6dd77 2835 struct mac_info *mac_control;
1da177e4 2836 struct config_param *config;
1ee6dd77 2837 struct XENA_dev_config __iomem *bar0 = nic->bar0;
20346722 2838 int i;
1da177e4
LT
2839
2840 mac_control = &nic->mac_control;
2841 config = &nic->config;
2842
bea3348e 2843 nic->pkts_to_process = budget;
20346722 2844 org_pkts_to_process = nic->pkts_to_process;
1da177e4 2845
19a60522
SS
2846 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2847 readl(&bar0->rx_traffic_int);
1da177e4
LT
2848
2849 for (i = 0; i < config->rx_ring_num; i++) {
20346722 2850 rx_intr_handler(&mac_control->rings[i]);
2851 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2852 if (!nic->pkts_to_process) {
2853 /* Quota for the current iteration has been met */
2854 goto no_rx;
1da177e4 2855 }
1da177e4 2856 }
1da177e4 2857
bea3348e 2858 netif_rx_complete(dev, napi);
1da177e4
LT
2859
2860 for (i = 0; i < config->rx_ring_num; i++) {
0425b46a 2861 if (fill_rx_buffers(&mac_control->rings[i]) == -ENOMEM) {
0c61ed5f
RV
2862 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2863 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
1da177e4
LT
2864 break;
2865 }
2866 }
2867 /* Re enable the Rx interrupts. */
c92ca04b 2868 writeq(0x0, &bar0->rx_traffic_mask);
19a60522 2869 readl(&bar0->rx_traffic_mask);
bea3348e 2870 return pkt_cnt;
1da177e4 2871
20346722 2872no_rx:
1da177e4 2873 for (i = 0; i < config->rx_ring_num; i++) {
0425b46a 2874 if (fill_rx_buffers(&mac_control->rings[i]) == -ENOMEM) {
0c61ed5f
RV
2875 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2876 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
1da177e4
LT
2877 break;
2878 }
2879 }
bea3348e 2880 return pkt_cnt;
1da177e4 2881}
20346722 2882
b41477f3 2883#ifdef CONFIG_NET_POLL_CONTROLLER
612eff0e 2884/**
b41477f3 2885 * s2io_netpoll - netpoll event handler entry point
612eff0e
BH
2886 * @dev : pointer to the device structure.
2887 * Description:
b41477f3
AR
2888 * This function will be called by upper layer to check for events on the
2889 * interface in situations where interrupts are disabled. It is used for
2890 * specific in-kernel networking tasks, such as remote consoles and kernel
2891 * debugging over the network (example netdump in RedHat).
612eff0e 2892 */
612eff0e
BH
2893static void s2io_netpoll(struct net_device *dev)
2894{
1ee6dd77
RB
2895 struct s2io_nic *nic = dev->priv;
2896 struct mac_info *mac_control;
612eff0e 2897 struct config_param *config;
1ee6dd77 2898 struct XENA_dev_config __iomem *bar0 = nic->bar0;
b41477f3 2899 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
612eff0e
BH
2900 int i;
2901
d796fdb7
LV
2902 if (pci_channel_offline(nic->pdev))
2903 return;
2904
612eff0e
BH
2905 disable_irq(dev->irq);
2906
612eff0e
BH
2907 mac_control = &nic->mac_control;
2908 config = &nic->config;
2909
612eff0e 2910 writeq(val64, &bar0->rx_traffic_int);
b41477f3
AR
2911 writeq(val64, &bar0->tx_traffic_int);
2912
6aa20a22 2913 /* we need to free up the transmitted skbufs or else netpoll will
b41477f3
AR
2914 * run out of skbs and will fail and eventually netpoll application such
2915 * as netdump will fail.
2916 */
2917 for (i = 0; i < config->tx_fifo_num; i++)
2918 tx_intr_handler(&mac_control->fifos[i]);
612eff0e 2919
b41477f3 2920 /* check for received packet and indicate up to network */
612eff0e
BH
2921 for (i = 0; i < config->rx_ring_num; i++)
2922 rx_intr_handler(&mac_control->rings[i]);
2923
2924 for (i = 0; i < config->rx_ring_num; i++) {
0425b46a 2925 if (fill_rx_buffers(&mac_control->rings[i]) == -ENOMEM) {
0c61ed5f
RV
2926 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2927 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
612eff0e
BH
2928 break;
2929 }
2930 }
612eff0e
BH
2931 enable_irq(dev->irq);
2932 return;
2933}
2934#endif
2935
20346722 2936/**
1da177e4
LT
2937 * rx_intr_handler - Rx interrupt handler
2938 * @nic: device private variable.
20346722 2939 * Description:
2940 * If the interrupt is because of a received frame or if the
1da177e4 2941 * receive ring contains fresh as yet un-processed frames,this function is
20346722 2942 * called. It picks out the RxD at which place the last Rx processing had
2943 * stopped and sends the skb to the OSM's Rx handler and then increments
1da177e4
LT
2944 * the offset.
2945 * Return Value:
2946 * NONE.
2947 */
1ee6dd77 2948static void rx_intr_handler(struct ring_info *ring_data)
1da177e4 2949{
c9fcbf47 2950 int get_block, put_block;
1ee6dd77
RB
2951 struct rx_curr_get_info get_info, put_info;
2952 struct RxD_t *rxdp;
1da177e4 2953 struct sk_buff *skb;
20346722 2954 int pkt_cnt = 0;
7d3d0439 2955 int i;
6d517a27
VP
2956 struct RxD1* rxdp1;
2957 struct RxD3* rxdp3;
7d3d0439 2958
20346722 2959 get_info = ring_data->rx_curr_get_info;
2960 get_block = get_info.block_index;
1ee6dd77 2961 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
20346722 2962 put_block = put_info.block_index;
da6971d8 2963 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
db874e65 2964
da6971d8 2965 while (RXD_IS_UP2DT(rxdp)) {
db874e65
SS
2966 /*
2967 * If your are next to put index then it's
2968 * FIFO full condition
2969 */
da6971d8
AR
2970 if ((get_block == put_block) &&
2971 (get_info.offset + 1) == put_info.offset) {
0425b46a
SH
2972 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2973 ring_data->dev->name);
da6971d8
AR
2974 break;
2975 }
20346722 2976 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2977 if (skb == NULL) {
2978 DBG_PRINT(ERR_DBG, "%s: The skb is ",
0425b46a 2979 ring_data->dev->name);
20346722 2980 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2981 return;
1da177e4 2982 }
0425b46a 2983 if (ring_data->rxd_mode == RXD_MODE_1) {
6d517a27 2984 rxdp1 = (struct RxD1*)rxdp;
0425b46a 2985 pci_unmap_single(ring_data->pdev, (dma_addr_t)
6d517a27 2986 rxdp1->Buffer0_ptr,
0425b46a 2987 ring_data->mtu +
6d517a27
VP
2988 HEADER_ETHERNET_II_802_3_SIZE +
2989 HEADER_802_2_SIZE +
2990 HEADER_SNAP_SIZE,
2991 PCI_DMA_FROMDEVICE);
0425b46a 2992 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
6d517a27 2993 rxdp3 = (struct RxD3*)rxdp;
0425b46a 2994 pci_dma_sync_single_for_cpu(ring_data->pdev, (dma_addr_t)
6d517a27
VP
2995 rxdp3->Buffer0_ptr,
2996 BUF0_LEN, PCI_DMA_FROMDEVICE);
0425b46a 2997 pci_unmap_single(ring_data->pdev, (dma_addr_t)
6d517a27 2998 rxdp3->Buffer2_ptr,
0425b46a 2999 ring_data->mtu + 4,
6d517a27 3000 PCI_DMA_FROMDEVICE);
da6971d8 3001 }
863c11a9 3002 prefetch(skb->data);
20346722 3003 rx_osm_handler(ring_data, rxdp);
3004 get_info.offset++;
da6971d8
AR
3005 ring_data->rx_curr_get_info.offset = get_info.offset;
3006 rxdp = ring_data->rx_blocks[get_block].
3007 rxds[get_info.offset].virt_addr;
0425b46a 3008 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
20346722 3009 get_info.offset = 0;
da6971d8 3010 ring_data->rx_curr_get_info.offset = get_info.offset;
20346722 3011 get_block++;
da6971d8
AR
3012 if (get_block == ring_data->block_count)
3013 get_block = 0;
3014 ring_data->rx_curr_get_info.block_index = get_block;
20346722 3015 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3016 }
1da177e4 3017
0425b46a
SH
3018 if(ring_data->nic->config.napi){
3019 ring_data->nic->pkts_to_process -= 1;
3020 if (!ring_data->nic->pkts_to_process)
3021 break;
3022 }
20346722 3023 pkt_cnt++;
1da177e4
LT
3024 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3025 break;
3026 }
0425b46a 3027 if (ring_data->lro) {
7d3d0439
RA
3028 /* Clear all LRO sessions before exiting */
3029 for (i=0; i<MAX_LRO_SESSIONS; i++) {
0425b46a 3030 struct lro *lro = &ring_data->lro0_n[i];
7d3d0439 3031 if (lro->in_use) {
0425b46a 3032 update_L3L4_header(ring_data->nic, lro);
cdb5bf02 3033 queue_rx_frame(lro->parent, lro->vlan_tag);
7d3d0439
RA
3034 clear_lro_session(lro);
3035 }
3036 }
3037 }
1da177e4 3038}
20346722 3039
3040/**
1da177e4
LT
3041 * tx_intr_handler - Transmit interrupt handler
3042 * @nic : device private variable
20346722 3043 * Description:
3044 * If an interrupt was raised to indicate DMA complete of the
3045 * Tx packet, this function is called. It identifies the last TxD
3046 * whose buffer was freed and frees all skbs whose data have already
1da177e4
LT
3047 * DMA'ed into the NICs internal memory.
3048 * Return Value:
3049 * NONE
3050 */
3051
1ee6dd77 3052static void tx_intr_handler(struct fifo_info *fifo_data)
1da177e4 3053{
1ee6dd77 3054 struct s2io_nic *nic = fifo_data->nic;
1ee6dd77 3055 struct tx_curr_get_info get_info, put_info;
3a3d5756 3056 struct sk_buff *skb = NULL;
1ee6dd77 3057 struct TxD *txdlp;
3a3d5756 3058 int pkt_cnt = 0;
2fda096d 3059 unsigned long flags = 0;
f9046eb3 3060 u8 err_mask;
1da177e4 3061
2fda096d
SR
3062 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3063 return;
3064
20346722 3065 get_info = fifo_data->tx_curr_get_info;
1ee6dd77
RB
3066 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3067 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
20346722 3068 list_virt_addr;
3069 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3070 (get_info.offset != put_info.offset) &&
3071 (txdlp->Host_Control)) {
3072 /* Check for TxD errors */
3073 if (txdlp->Control_1 & TXD_T_CODE) {
3074 unsigned long long err;
3075 err = txdlp->Control_1 & TXD_T_CODE;
bd1034f0
AR
3076 if (err & 0x1) {
3077 nic->mac_control.stats_info->sw_stat.
3078 parity_err_cnt++;
3079 }
491976b2
SH
3080
3081 /* update t_code statistics */
f9046eb3
OH
3082 err_mask = err >> 48;
3083 switch(err_mask) {
491976b2
SH
3084 case 2:
3085 nic->mac_control.stats_info->sw_stat.
3086 tx_buf_abort_cnt++;
3087 break;
3088
3089 case 3:
3090 nic->mac_control.stats_info->sw_stat.
3091 tx_desc_abort_cnt++;
3092 break;
3093
3094 case 7:
3095 nic->mac_control.stats_info->sw_stat.
3096 tx_parity_err_cnt++;
3097 break;
3098
3099 case 10:
3100 nic->mac_control.stats_info->sw_stat.
3101 tx_link_loss_cnt++;
3102 break;
3103
3104 case 15:
3105 nic->mac_control.stats_info->sw_stat.
3106 tx_list_proc_err_cnt++;
3107 break;
3108 }
20346722 3109 }
1da177e4 3110
fed5eccd 3111 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
20346722 3112 if (skb == NULL) {
2fda096d 3113 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
20346722 3114 DBG_PRINT(ERR_DBG, "%s: Null skb ",
3115 __FUNCTION__);
3116 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3117 return;
3118 }
3a3d5756 3119 pkt_cnt++;
20346722 3120
20346722 3121 /* Updating the statistics block */
20346722 3122 nic->stats.tx_bytes += skb->len;
491976b2 3123 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
20346722 3124 dev_kfree_skb_irq(skb);
3125
3126 get_info.offset++;
863c11a9
AR
3127 if (get_info.offset == get_info.fifo_len + 1)
3128 get_info.offset = 0;
1ee6dd77 3129 txdlp = (struct TxD *) fifo_data->list_info
20346722 3130 [get_info.offset].list_virt_addr;
3131 fifo_data->tx_curr_get_info.offset =
3132 get_info.offset;
1da177e4
LT
3133 }
3134
3a3d5756 3135 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
2fda096d
SR
3136
3137 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
1da177e4
LT
3138}
3139
bd1034f0
AR
3140/**
3141 * s2io_mdio_write - Function to write in to MDIO registers
3142 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3143 * @addr : address value
3144 * @value : data value
3145 * @dev : pointer to net_device structure
3146 * Description:
3147 * This function is used to write values to the MDIO registers
3148 * NONE
3149 */
3150static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3151{
3152 u64 val64 = 0x0;
1ee6dd77
RB
3153 struct s2io_nic *sp = dev->priv;
3154 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
3155
3156 //address transaction
3157 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3158 | MDIO_MMD_DEV_ADDR(mmd_type)
3159 | MDIO_MMS_PRT_ADDR(0x0);
3160 writeq(val64, &bar0->mdio_control);
3161 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3162 writeq(val64, &bar0->mdio_control);
3163 udelay(100);
3164
3165 //Data transaction
3166 val64 = 0x0;
3167 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3168 | MDIO_MMD_DEV_ADDR(mmd_type)
3169 | MDIO_MMS_PRT_ADDR(0x0)
3170 | MDIO_MDIO_DATA(value)
3171 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3172 writeq(val64, &bar0->mdio_control);
3173 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3174 writeq(val64, &bar0->mdio_control);
3175 udelay(100);
3176
3177 val64 = 0x0;
3178 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3179 | MDIO_MMD_DEV_ADDR(mmd_type)
3180 | MDIO_MMS_PRT_ADDR(0x0)
3181 | MDIO_OP(MDIO_OP_READ_TRANS);
3182 writeq(val64, &bar0->mdio_control);
3183 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3184 writeq(val64, &bar0->mdio_control);
3185 udelay(100);
3186
3187}
3188
3189/**
3190 * s2io_mdio_read - Function to write in to MDIO registers
3191 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3192 * @addr : address value
3193 * @dev : pointer to net_device structure
3194 * Description:
3195 * This function is used to read values to the MDIO registers
3196 * NONE
3197 */
3198static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3199{
3200 u64 val64 = 0x0;
3201 u64 rval64 = 0x0;
1ee6dd77
RB
3202 struct s2io_nic *sp = dev->priv;
3203 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
3204
3205 /* address transaction */
3206 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3207 | MDIO_MMD_DEV_ADDR(mmd_type)
3208 | MDIO_MMS_PRT_ADDR(0x0);
3209 writeq(val64, &bar0->mdio_control);
3210 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3211 writeq(val64, &bar0->mdio_control);
3212 udelay(100);
3213
3214 /* Data transaction */
3215 val64 = 0x0;
3216 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3217 | MDIO_MMD_DEV_ADDR(mmd_type)
3218 | MDIO_MMS_PRT_ADDR(0x0)
3219 | MDIO_OP(MDIO_OP_READ_TRANS);
3220 writeq(val64, &bar0->mdio_control);
3221 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3222 writeq(val64, &bar0->mdio_control);
3223 udelay(100);
3224
3225 /* Read the value from regs */
3226 rval64 = readq(&bar0->mdio_control);
3227 rval64 = rval64 & 0xFFFF0000;
3228 rval64 = rval64 >> 16;
3229 return rval64;
3230}
3231/**
3232 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3233 * @counter : couter value to be updated
3234 * @flag : flag to indicate the status
3235 * @type : counter type
3236 * Description:
3237 * This function is to check the status of the xpak counters value
3238 * NONE
3239 */
3240
3241static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3242{
3243 u64 mask = 0x3;
3244 u64 val64;
3245 int i;
3246 for(i = 0; i <index; i++)
3247 mask = mask << 0x2;
3248
3249 if(flag > 0)
3250 {
3251 *counter = *counter + 1;
3252 val64 = *regs_stat & mask;
3253 val64 = val64 >> (index * 0x2);
3254 val64 = val64 + 1;
3255 if(val64 == 3)
3256 {
3257 switch(type)
3258 {
3259 case 1:
3260 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3261 "service. Excessive temperatures may "
3262 "result in premature transceiver "
3263 "failure \n");
3264 break;
3265 case 2:
3266 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3267 "service Excessive bias currents may "
3268 "indicate imminent laser diode "
3269 "failure \n");
3270 break;
3271 case 3:
3272 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3273 "service Excessive laser output "
3274 "power may saturate far-end "
3275 "receiver\n");
3276 break;
3277 default:
3278 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3279 "type \n");
3280 }
3281 val64 = 0x0;
3282 }
3283 val64 = val64 << (index * 0x2);
3284 *regs_stat = (*regs_stat & (~mask)) | (val64);
3285
3286 } else {
3287 *regs_stat = *regs_stat & (~mask);
3288 }
3289}
3290
3291/**
3292 * s2io_updt_xpak_counter - Function to update the xpak counters
3293 * @dev : pointer to net_device struct
3294 * Description:
3295 * This function is to upate the status of the xpak counters value
3296 * NONE
3297 */
3298static void s2io_updt_xpak_counter(struct net_device *dev)
3299{
3300 u16 flag = 0x0;
3301 u16 type = 0x0;
3302 u16 val16 = 0x0;
3303 u64 val64 = 0x0;
3304 u64 addr = 0x0;
3305
1ee6dd77
RB
3306 struct s2io_nic *sp = dev->priv;
3307 struct stat_block *stat_info = sp->mac_control.stats_info;
bd1034f0
AR
3308
3309 /* Check the communication with the MDIO slave */
3310 addr = 0x0000;
3311 val64 = 0x0;
3312 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3313 if((val64 == 0xFFFF) || (val64 == 0x0000))
3314 {
3315 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3316 "Returned %llx\n", (unsigned long long)val64);
3317 return;
3318 }
3319
3320 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3321 if(val64 != 0x2040)
3322 {
3323 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3324 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3325 (unsigned long long)val64);
3326 return;
3327 }
3328
3329 /* Loading the DOM register to MDIO register */
3330 addr = 0xA100;
3331 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3332 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3333
3334 /* Reading the Alarm flags */
3335 addr = 0xA070;
3336 val64 = 0x0;
3337 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3338
3339 flag = CHECKBIT(val64, 0x7);
3340 type = 1;
3341 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3342 &stat_info->xpak_stat.xpak_regs_stat,
3343 0x0, flag, type);
3344
3345 if(CHECKBIT(val64, 0x6))
3346 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3347
3348 flag = CHECKBIT(val64, 0x3);
3349 type = 2;
3350 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3351 &stat_info->xpak_stat.xpak_regs_stat,
3352 0x2, flag, type);
3353
3354 if(CHECKBIT(val64, 0x2))
3355 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3356
3357 flag = CHECKBIT(val64, 0x1);
3358 type = 3;
3359 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3360 &stat_info->xpak_stat.xpak_regs_stat,
3361 0x4, flag, type);
3362
3363 if(CHECKBIT(val64, 0x0))
3364 stat_info->xpak_stat.alarm_laser_output_power_low++;
3365
3366 /* Reading the Warning flags */
3367 addr = 0xA074;
3368 val64 = 0x0;
3369 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3370
3371 if(CHECKBIT(val64, 0x7))
3372 stat_info->xpak_stat.warn_transceiver_temp_high++;
3373
3374 if(CHECKBIT(val64, 0x6))
3375 stat_info->xpak_stat.warn_transceiver_temp_low++;
3376
3377 if(CHECKBIT(val64, 0x3))
3378 stat_info->xpak_stat.warn_laser_bias_current_high++;
3379
3380 if(CHECKBIT(val64, 0x2))
3381 stat_info->xpak_stat.warn_laser_bias_current_low++;
3382
3383 if(CHECKBIT(val64, 0x1))
3384 stat_info->xpak_stat.warn_laser_output_power_high++;
3385
3386 if(CHECKBIT(val64, 0x0))
3387 stat_info->xpak_stat.warn_laser_output_power_low++;
3388}
3389
20346722 3390/**
1da177e4 3391 * wait_for_cmd_complete - waits for a command to complete.
20346722 3392 * @sp : private member of the device structure, which is a pointer to the
1da177e4 3393 * s2io_nic structure.
20346722 3394 * Description: Function that waits for a command to Write into RMAC
3395 * ADDR DATA registers to be completed and returns either success or
3396 * error depending on whether the command was complete or not.
1da177e4
LT
3397 * Return value:
3398 * SUCCESS on success and FAILURE on failure.
3399 */
3400
9fc93a41
SS
3401static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3402 int bit_state)
1da177e4 3403{
9fc93a41 3404 int ret = FAILURE, cnt = 0, delay = 1;
1da177e4
LT
3405 u64 val64;
3406
9fc93a41
SS
3407 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3408 return FAILURE;
3409
3410 do {
c92ca04b 3411 val64 = readq(addr);
9fc93a41
SS
3412 if (bit_state == S2IO_BIT_RESET) {
3413 if (!(val64 & busy_bit)) {
3414 ret = SUCCESS;
3415 break;
3416 }
3417 } else {
3418 if (!(val64 & busy_bit)) {
3419 ret = SUCCESS;
3420 break;
3421 }
1da177e4 3422 }
c92ca04b
AR
3423
3424 if(in_interrupt())
9fc93a41 3425 mdelay(delay);
c92ca04b 3426 else
9fc93a41 3427 msleep(delay);
c92ca04b 3428
9fc93a41
SS
3429 if (++cnt >= 10)
3430 delay = 50;
3431 } while (cnt < 20);
1da177e4
LT
3432 return ret;
3433}
19a60522
SS
3434/*
3435 * check_pci_device_id - Checks if the device id is supported
3436 * @id : device id
3437 * Description: Function to check if the pci device id is supported by driver.
3438 * Return value: Actual device id if supported else PCI_ANY_ID
3439 */
3440static u16 check_pci_device_id(u16 id)
3441{
3442 switch (id) {
3443 case PCI_DEVICE_ID_HERC_WIN:
3444 case PCI_DEVICE_ID_HERC_UNI:
3445 return XFRAME_II_DEVICE;
3446 case PCI_DEVICE_ID_S2IO_UNI:
3447 case PCI_DEVICE_ID_S2IO_WIN:
3448 return XFRAME_I_DEVICE;
3449 default:
3450 return PCI_ANY_ID;
3451 }
3452}
1da177e4 3453
20346722 3454/**
3455 * s2io_reset - Resets the card.
1da177e4
LT
3456 * @sp : private member of the device structure.
3457 * Description: Function to Reset the card. This function then also
20346722 3458 * restores the previously saved PCI configuration space registers as
1da177e4
LT
3459 * the card reset also resets the configuration space.
3460 * Return value:
3461 * void.
3462 */
3463
1ee6dd77 3464static void s2io_reset(struct s2io_nic * sp)
1da177e4 3465{
1ee6dd77 3466 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 3467 u64 val64;
5e25b9dd 3468 u16 subid, pci_cmd;
19a60522
SS
3469 int i;
3470 u16 val16;
491976b2
SH
3471 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3472 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3473
19a60522
SS
3474 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3475 __FUNCTION__, sp->dev->name);
1da177e4 3476
0b1f7ebe 3477 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
e960fc5c 3478 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
0b1f7ebe 3479
1da177e4
LT
3480 val64 = SW_RESET_ALL;
3481 writeq(val64, &bar0->sw_reset);
c92ca04b
AR
3482 if (strstr(sp->product_name, "CX4")) {
3483 msleep(750);
3484 }
19a60522
SS
3485 msleep(250);
3486 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
1da177e4 3487
19a60522
SS
3488 /* Restore the PCI state saved during initialization. */
3489 pci_restore_state(sp->pdev);
3490 pci_read_config_word(sp->pdev, 0x2, &val16);
3491 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3492 break;
3493 msleep(200);
3494 }
1da177e4 3495
19a60522
SS
3496 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3497 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3498 }
3499
3500 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3501
3502 s2io_init_pci(sp);
1da177e4 3503
20346722 3504 /* Set swapper to enable I/O register access */
3505 s2io_set_swapper(sp);
3506
faa4f796
SH
3507 /* restore mac_addr entries */
3508 do_s2io_restore_unicast_mc(sp);
3509
cc6e7c44
RA
3510 /* Restore the MSIX table entries from local variables */
3511 restore_xmsi_data(sp);
3512
5e25b9dd 3513 /* Clear certain PCI/PCI-X fields after reset */
303bcb4b 3514 if (sp->device_type == XFRAME_II_DEVICE) {
b41477f3 3515 /* Clear "detected parity error" bit */
303bcb4b 3516 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
5e25b9dd 3517
303bcb4b 3518 /* Clearing PCIX Ecc status register */
3519 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
5e25b9dd 3520
303bcb4b 3521 /* Clearing PCI_STATUS error reflected here */
b7b5a128 3522 writeq(s2BIT(62), &bar0->txpic_int_reg);
303bcb4b 3523 }
5e25b9dd 3524
20346722 3525 /* Reset device statistics maintained by OS */
3526 memset(&sp->stats, 0, sizeof (struct net_device_stats));
8a4bdbaa 3527
491976b2
SH
3528 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3529 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3530 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3531 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
363dc367 3532 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
491976b2
SH
3533 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3534 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3535 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3536 /* save link up/down time/cnt, reset/memory/watchdog cnt */
363dc367 3537 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
491976b2
SH
3538 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3539 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3540 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3541 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3542 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
363dc367 3543 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
491976b2
SH
3544 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3545 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3546 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
20346722 3547
1da177e4
LT
3548 /* SXE-002: Configure link and activity LED to turn it off */
3549 subid = sp->pdev->subsystem_device;
541ae68f 3550 if (((subid & 0xFF) >= 0x07) &&
3551 (sp->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
3552 val64 = readq(&bar0->gpio_control);
3553 val64 |= 0x0000800000000000ULL;
3554 writeq(val64, &bar0->gpio_control);
3555 val64 = 0x0411040400000000ULL;
509a2671 3556 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
3557 }
3558
541ae68f 3559 /*
3560 * Clear spurious ECC interrupts that would have occured on
3561 * XFRAME II cards after reset.
3562 */
3563 if (sp->device_type == XFRAME_II_DEVICE) {
3564 val64 = readq(&bar0->pcc_err_reg);
3565 writeq(val64, &bar0->pcc_err_reg);
3566 }
3567
1da177e4
LT
3568 sp->device_enabled_once = FALSE;
3569}
3570
3571/**
20346722 3572 * s2io_set_swapper - to set the swapper controle on the card
3573 * @sp : private member of the device structure,
1da177e4 3574 * pointer to the s2io_nic structure.
20346722 3575 * Description: Function to set the swapper control on the card
1da177e4
LT
3576 * correctly depending on the 'endianness' of the system.
3577 * Return value:
3578 * SUCCESS on success and FAILURE on failure.
3579 */
3580
1ee6dd77 3581static int s2io_set_swapper(struct s2io_nic * sp)
1da177e4
LT
3582{
3583 struct net_device *dev = sp->dev;
1ee6dd77 3584 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
3585 u64 val64, valt, valr;
3586
20346722 3587 /*
1da177e4
LT
3588 * Set proper endian settings and verify the same by reading
3589 * the PIF Feed-back register.
3590 */
3591
3592 val64 = readq(&bar0->pif_rd_swapper_fb);
3593 if (val64 != 0x0123456789ABCDEFULL) {
3594 int i = 0;
3595 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3596 0x8100008181000081ULL, /* FE=1, SE=0 */
3597 0x4200004242000042ULL, /* FE=0, SE=1 */
3598 0}; /* FE=0, SE=0 */
3599
3600 while(i<4) {
3601 writeq(value[i], &bar0->swapper_ctrl);
3602 val64 = readq(&bar0->pif_rd_swapper_fb);
3603 if (val64 == 0x0123456789ABCDEFULL)
3604 break;
3605 i++;
3606 }
3607 if (i == 4) {
3608 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3609 dev->name);
3610 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3611 (unsigned long long) val64);
3612 return FAILURE;
3613 }
3614 valr = value[i];
3615 } else {
3616 valr = readq(&bar0->swapper_ctrl);
3617 }
3618
3619 valt = 0x0123456789ABCDEFULL;
3620 writeq(valt, &bar0->xmsi_address);
3621 val64 = readq(&bar0->xmsi_address);
3622
3623 if(val64 != valt) {
3624 int i = 0;
3625 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3626 0x0081810000818100ULL, /* FE=1, SE=0 */
3627 0x0042420000424200ULL, /* FE=0, SE=1 */
3628 0}; /* FE=0, SE=0 */
3629
3630 while(i<4) {
3631 writeq((value[i] | valr), &bar0->swapper_ctrl);
3632 writeq(valt, &bar0->xmsi_address);
3633 val64 = readq(&bar0->xmsi_address);
3634 if(val64 == valt)
3635 break;
3636 i++;
3637 }
3638 if(i == 4) {
20346722 3639 unsigned long long x = val64;
1da177e4 3640 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
20346722 3641 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
1da177e4
LT
3642 return FAILURE;
3643 }
3644 }
3645 val64 = readq(&bar0->swapper_ctrl);
3646 val64 &= 0xFFFF000000000000ULL;
3647
3648#ifdef __BIG_ENDIAN
20346722 3649 /*
3650 * The device by default set to a big endian format, so a
1da177e4
LT
3651 * big endian driver need not set anything.
3652 */
3653 val64 |= (SWAPPER_CTRL_TXP_FE |
3654 SWAPPER_CTRL_TXP_SE |
3655 SWAPPER_CTRL_TXD_R_FE |
3656 SWAPPER_CTRL_TXD_W_FE |
3657 SWAPPER_CTRL_TXF_R_FE |
3658 SWAPPER_CTRL_RXD_R_FE |
3659 SWAPPER_CTRL_RXD_W_FE |
3660 SWAPPER_CTRL_RXF_W_FE |
3661 SWAPPER_CTRL_XMSI_FE |
1da177e4 3662 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
eaae7f72 3663 if (sp->config.intr_type == INTA)
cc6e7c44 3664 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3665 writeq(val64, &bar0->swapper_ctrl);
3666#else
20346722 3667 /*
1da177e4 3668 * Initially we enable all bits to make it accessible by the
20346722 3669 * driver, then we selectively enable only those bits that
1da177e4
LT
3670 * we want to set.
3671 */
3672 val64 |= (SWAPPER_CTRL_TXP_FE |
3673 SWAPPER_CTRL_TXP_SE |
3674 SWAPPER_CTRL_TXD_R_FE |
3675 SWAPPER_CTRL_TXD_R_SE |
3676 SWAPPER_CTRL_TXD_W_FE |
3677 SWAPPER_CTRL_TXD_W_SE |
3678 SWAPPER_CTRL_TXF_R_FE |
3679 SWAPPER_CTRL_RXD_R_FE |
3680 SWAPPER_CTRL_RXD_R_SE |
3681 SWAPPER_CTRL_RXD_W_FE |
3682 SWAPPER_CTRL_RXD_W_SE |
3683 SWAPPER_CTRL_RXF_W_FE |
3684 SWAPPER_CTRL_XMSI_FE |
1da177e4 3685 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
eaae7f72 3686 if (sp->config.intr_type == INTA)
cc6e7c44 3687 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3688 writeq(val64, &bar0->swapper_ctrl);
3689#endif
3690 val64 = readq(&bar0->swapper_ctrl);
3691
20346722 3692 /*
3693 * Verifying if endian settings are accurate by reading a
1da177e4
LT
3694 * feedback register.
3695 */
3696 val64 = readq(&bar0->pif_rd_swapper_fb);
3697 if (val64 != 0x0123456789ABCDEFULL) {
3698 /* Endian settings are incorrect, calls for another dekko. */
3699 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3700 dev->name);
3701 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3702 (unsigned long long) val64);
3703 return FAILURE;
3704 }
3705
3706 return SUCCESS;
3707}
3708
1ee6dd77 3709static int wait_for_msix_trans(struct s2io_nic *nic, int i)
cc6e7c44 3710{
1ee6dd77 3711 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3712 u64 val64;
3713 int ret = 0, cnt = 0;
3714
3715 do {
3716 val64 = readq(&bar0->xmsi_access);
b7b5a128 3717 if (!(val64 & s2BIT(15)))
cc6e7c44
RA
3718 break;
3719 mdelay(1);
3720 cnt++;
3721 } while(cnt < 5);
3722 if (cnt == 5) {
3723 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3724 ret = 1;
3725 }
3726
3727 return ret;
3728}
3729
1ee6dd77 3730static void restore_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3731{
1ee6dd77 3732 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3733 u64 val64;
3734 int i;
3735
75c30b13 3736 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
cc6e7c44
RA
3737 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3738 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
b7b5a128 3739 val64 = (s2BIT(7) | s2BIT(15) | vBIT(i, 26, 6));
cc6e7c44
RA
3740 writeq(val64, &bar0->xmsi_access);
3741 if (wait_for_msix_trans(nic, i)) {
3742 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3743 continue;
3744 }
3745 }
3746}
3747
1ee6dd77 3748static void store_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3749{
1ee6dd77 3750 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3751 u64 val64, addr, data;
3752 int i;
3753
3754 /* Store and display */
75c30b13 3755 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
b7b5a128 3756 val64 = (s2BIT(15) | vBIT(i, 26, 6));
cc6e7c44
RA
3757 writeq(val64, &bar0->xmsi_access);
3758 if (wait_for_msix_trans(nic, i)) {
3759 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3760 continue;
3761 }
3762 addr = readq(&bar0->xmsi_address);
3763 data = readq(&bar0->xmsi_data);
3764 if (addr && data) {
3765 nic->msix_info[i].addr = addr;
3766 nic->msix_info[i].data = data;
3767 }
3768 }
3769}
3770
1ee6dd77 3771static int s2io_enable_msi_x(struct s2io_nic *nic)
cc6e7c44 3772{
1ee6dd77 3773 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3774 u64 tx_mat, rx_mat;
3775 u16 msi_control; /* Temp variable */
3776 int ret, i, j, msix_indx = 1;
3777
bd684e43 3778 nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
cc6e7c44 3779 GFP_KERNEL);
bd684e43 3780 if (!nic->entries) {
491976b2
SH
3781 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3782 __FUNCTION__);
c53d4945 3783 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
cc6e7c44
RA
3784 return -ENOMEM;
3785 }
8a4bdbaa 3786 nic->mac_control.stats_info->sw_stat.mem_allocated
491976b2 3787 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
cc6e7c44
RA
3788
3789 nic->s2io_entries =
bd684e43 3790 kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
cc6e7c44 3791 GFP_KERNEL);
bd684e43 3792 if (!nic->s2io_entries) {
8a4bdbaa 3793 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
491976b2 3794 __FUNCTION__);
c53d4945 3795 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
cc6e7c44 3796 kfree(nic->entries);
8a4bdbaa 3797 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 3798 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
cc6e7c44
RA
3799 return -ENOMEM;
3800 }
8a4bdbaa 3801 nic->mac_control.stats_info->sw_stat.mem_allocated
491976b2 3802 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
cc6e7c44
RA
3803
3804 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3805 nic->entries[i].entry = i;
3806 nic->s2io_entries[i].entry = i;
3807 nic->s2io_entries[i].arg = NULL;
3808 nic->s2io_entries[i].in_use = 0;
3809 }
3810
3811 tx_mat = readq(&bar0->tx_mat0_n[0]);
3812 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3813 tx_mat |= TX_MAT_SET(i, msix_indx);
3814 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3815 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3816 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3817 }
3818 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3819
8a4bdbaa
SS
3820 rx_mat = readq(&bar0->rx_mat);
3821 for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) {
3822 rx_mat |= RX_MAT_SET(j, msix_indx);
3823 nic->s2io_entries[msix_indx].arg
3824 = &nic->mac_control.rings[j];
3825 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3826 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
cc6e7c44 3827 }
8a4bdbaa 3828 writeq(rx_mat, &bar0->rx_mat);
cc6e7c44 3829
c92ca04b 3830 nic->avail_msix_vectors = 0;
cc6e7c44 3831 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
c92ca04b
AR
3832 /* We fail init if error or we get less vectors than min required */
3833 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3834 nic->avail_msix_vectors = ret;
3835 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3836 }
cc6e7c44
RA
3837 if (ret) {
3838 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3839 kfree(nic->entries);
8a4bdbaa 3840 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 3841 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
cc6e7c44 3842 kfree(nic->s2io_entries);
8a4bdbaa 3843 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 3844 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
cc6e7c44
RA
3845 nic->entries = NULL;
3846 nic->s2io_entries = NULL;
c92ca04b 3847 nic->avail_msix_vectors = 0;
cc6e7c44
RA
3848 return -ENOMEM;
3849 }
c92ca04b
AR
3850 if (!nic->avail_msix_vectors)
3851 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
cc6e7c44
RA
3852
3853 /*
3854 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3855 * in the herc NIC. (Temp change, needs to be removed later)
3856 */
3857 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3858 msi_control |= 0x1; /* Enable MSI */
3859 pci_write_config_word(nic->pdev, 0x42, msi_control);
3860
3861 return 0;
3862}
3863
8abc4d5b 3864/* Handle software interrupt used during MSI(X) test */
33390a70 3865static irqreturn_t s2io_test_intr(int irq, void *dev_id)
8abc4d5b
SS
3866{
3867 struct s2io_nic *sp = dev_id;
3868
3869 sp->msi_detected = 1;
3870 wake_up(&sp->msi_wait);
3871
3872 return IRQ_HANDLED;
3873}
3874
3875/* Test interrupt path by forcing a a software IRQ */
33390a70 3876static int s2io_test_msi(struct s2io_nic *sp)
8abc4d5b
SS
3877{
3878 struct pci_dev *pdev = sp->pdev;
3879 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3880 int err;
3881 u64 val64, saved64;
3882
3883 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3884 sp->name, sp);
3885 if (err) {
3886 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3887 sp->dev->name, pci_name(pdev), pdev->irq);
3888 return err;
3889 }
3890
3891 init_waitqueue_head (&sp->msi_wait);
3892 sp->msi_detected = 0;
3893
3894 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3895 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3896 val64 |= SCHED_INT_CTRL_TIMER_EN;
3897 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3898 writeq(val64, &bar0->scheduled_int_ctrl);
3899
3900 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3901
3902 if (!sp->msi_detected) {
3903 /* MSI(X) test failed, go back to INTx mode */
2450022a 3904 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
8abc4d5b
SS
3905 "using MSI(X) during test\n", sp->dev->name,
3906 pci_name(pdev));
3907
3908 err = -EOPNOTSUPP;
3909 }
3910
3911 free_irq(sp->entries[1].vector, sp);
3912
3913 writeq(saved64, &bar0->scheduled_int_ctrl);
3914
3915 return err;
3916}
18b2b7bd
SH
3917
3918static void remove_msix_isr(struct s2io_nic *sp)
3919{
3920 int i;
3921 u16 msi_control;
3922
3923 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3924 if (sp->s2io_entries[i].in_use ==
3925 MSIX_REGISTERED_SUCCESS) {
3926 int vector = sp->entries[i].vector;
3927 void *arg = sp->s2io_entries[i].arg;
3928 free_irq(vector, arg);
3929 }
3930 }
3931
3932 kfree(sp->entries);
3933 kfree(sp->s2io_entries);
3934 sp->entries = NULL;
3935 sp->s2io_entries = NULL;
3936
3937 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3938 msi_control &= 0xFFFE; /* Disable MSI */
3939 pci_write_config_word(sp->pdev, 0x42, msi_control);
3940
3941 pci_disable_msix(sp->pdev);
3942}
3943
3944static void remove_inta_isr(struct s2io_nic *sp)
3945{
3946 struct net_device *dev = sp->dev;
3947
3948 free_irq(sp->pdev->irq, dev);
3949}
3950
1da177e4
LT
3951/* ********************************************************* *
3952 * Functions defined below concern the OS part of the driver *
3953 * ********************************************************* */
3954
20346722 3955/**
1da177e4
LT
3956 * s2io_open - open entry point of the driver
3957 * @dev : pointer to the device structure.
3958 * Description:
3959 * This function is the open entry point of the driver. It mainly calls a
3960 * function to allocate Rx buffers and inserts them into the buffer
20346722 3961 * descriptors and then enables the Rx part of the NIC.
1da177e4
LT
3962 * Return value:
3963 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3964 * file on failure.
3965 */
3966
ac1f60db 3967static int s2io_open(struct net_device *dev)
1da177e4 3968{
1ee6dd77 3969 struct s2io_nic *sp = dev->priv;
1da177e4
LT
3970 int err = 0;
3971
20346722 3972 /*
3973 * Make sure you have link off by default every time
1da177e4
LT
3974 * Nic is initialized
3975 */
3976 netif_carrier_off(dev);
0b1f7ebe 3977 sp->last_link_state = 0;
1da177e4 3978
eaae7f72 3979 if (sp->config.intr_type == MSI_X) {
8abc4d5b
SS
3980 int ret = s2io_enable_msi_x(sp);
3981
3982 if (!ret) {
8abc4d5b 3983 ret = s2io_test_msi(sp);
8abc4d5b 3984 /* rollback MSI-X, will re-enable during add_isr() */
18b2b7bd 3985 remove_msix_isr(sp);
8abc4d5b
SS
3986 }
3987 if (ret) {
3988
3989 DBG_PRINT(ERR_DBG,
3990 "%s: MSI-X requested but failed to enable\n",
3991 dev->name);
eaae7f72 3992 sp->config.intr_type = INTA;
8abc4d5b
SS
3993 }
3994 }
3995
c77dd43e 3996 /* NAPI doesn't work well with MSI(X) */
eaae7f72 3997 if (sp->config.intr_type != INTA) {
c77dd43e
SS
3998 if(sp->config.napi)
3999 sp->config.napi = 0;
4000 }
4001
1da177e4 4002 /* Initialize H/W and enable interrupts */
c92ca04b
AR
4003 err = s2io_card_up(sp);
4004 if (err) {
1da177e4
LT
4005 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
4006 dev->name);
e6a8fee2 4007 goto hw_init_failed;
1da177e4
LT
4008 }
4009
2fd37688 4010 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
1da177e4 4011 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
e6a8fee2 4012 s2io_card_down(sp);
20346722 4013 err = -ENODEV;
e6a8fee2 4014 goto hw_init_failed;
1da177e4 4015 }
3a3d5756 4016 s2io_start_all_tx_queue(sp);
1da177e4 4017 return 0;
20346722 4018
20346722 4019hw_init_failed:
eaae7f72 4020 if (sp->config.intr_type == MSI_X) {
491976b2 4021 if (sp->entries) {
cc6e7c44 4022 kfree(sp->entries);
8a4bdbaa 4023 sp->mac_control.stats_info->sw_stat.mem_freed
491976b2
SH
4024 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
4025 }
4026 if (sp->s2io_entries) {
cc6e7c44 4027 kfree(sp->s2io_entries);
8a4bdbaa 4028 sp->mac_control.stats_info->sw_stat.mem_freed
491976b2
SH
4029 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
4030 }
cc6e7c44 4031 }
20346722 4032 return err;
1da177e4
LT
4033}
4034
4035/**
4036 * s2io_close -close entry point of the driver
4037 * @dev : device pointer.
4038 * Description:
4039 * This is the stop entry point of the driver. It needs to undo exactly
4040 * whatever was done by the open entry point,thus it's usually referred to
4041 * as the close function.Among other things this function mainly stops the
4042 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4043 * Return value:
4044 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4045 * file on failure.
4046 */
4047
ac1f60db 4048static int s2io_close(struct net_device *dev)
1da177e4 4049{
1ee6dd77 4050 struct s2io_nic *sp = dev->priv;
faa4f796
SH
4051 struct config_param *config = &sp->config;
4052 u64 tmp64;
4053 int offset;
cc6e7c44 4054
9f74ffde
SH
4055 /* Return if the device is already closed *
4056 * Can happen when s2io_card_up failed in change_mtu *
4057 */
4058 if (!is_s2io_card_up(sp))
4059 return 0;
4060
3a3d5756 4061 s2io_stop_all_tx_queue(sp);
faa4f796
SH
4062 /* delete all populated mac entries */
4063 for (offset = 1; offset < config->max_mc_addr; offset++) {
4064 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4065 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4066 do_s2io_delete_unicast_mc(sp, tmp64);
4067 }
4068
e6a8fee2 4069 s2io_card_down(sp);
cc6e7c44 4070
1da177e4
LT
4071 return 0;
4072}
4073
4074/**
4075 * s2io_xmit - Tx entry point of te driver
4076 * @skb : the socket buffer containing the Tx data.
4077 * @dev : device pointer.
4078 * Description :
4079 * This function is the Tx entry point of the driver. S2IO NIC supports
4080 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4081 * NOTE: when device cant queue the pkt,just the trans_start variable will
4082 * not be upadted.
4083 * Return value:
4084 * 0 on success & 1 on failure.
4085 */
4086
ac1f60db 4087static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
1da177e4 4088{
1ee6dd77 4089 struct s2io_nic *sp = dev->priv;
1da177e4
LT
4090 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4091 register u64 val64;
1ee6dd77
RB
4092 struct TxD *txdp;
4093 struct TxFIFO_element __iomem *tx_fifo;
2fda096d 4094 unsigned long flags = 0;
be3a6b02 4095 u16 vlan_tag = 0;
2fda096d 4096 struct fifo_info *fifo = NULL;
1ee6dd77 4097 struct mac_info *mac_control;
1da177e4 4098 struct config_param *config;
6cfc482b 4099 int do_spin_lock = 1;
75c30b13 4100 int offload_type;
6cfc482b 4101 int enable_per_list_interrupt = 0;
491abf25 4102 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
4103
4104 mac_control = &sp->mac_control;
4105 config = &sp->config;
4106
20346722 4107 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
491976b2
SH
4108
4109 if (unlikely(skb->len <= 0)) {
4110 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4111 dev_kfree_skb_any(skb);
4112 return 0;
2fda096d 4113 }
491976b2 4114
92b84437 4115 if (!is_s2io_card_up(sp)) {
20346722 4116 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
1da177e4 4117 dev->name);
20346722 4118 dev_kfree_skb(skb);
4119 return 0;
1da177e4
LT
4120 }
4121
4122 queue = 0;
3a3d5756 4123 if (sp->vlgrp && vlan_tx_tag_present(skb))
be3a6b02 4124 vlan_tag = vlan_tx_tag_get(skb);
6cfc482b
SH
4125 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4126 if (skb->protocol == htons(ETH_P_IP)) {
4127 struct iphdr *ip;
4128 struct tcphdr *th;
4129 ip = ip_hdr(skb);
4130
4131 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4132 th = (struct tcphdr *)(((unsigned char *)ip) +
4133 ip->ihl*4);
4134
4135 if (ip->protocol == IPPROTO_TCP) {
4136 queue_len = sp->total_tcp_fifos;
4137 queue = (ntohs(th->source) +
4138 ntohs(th->dest)) &
4139 sp->fifo_selector[queue_len - 1];
4140 if (queue >= queue_len)
4141 queue = queue_len - 1;
4142 } else if (ip->protocol == IPPROTO_UDP) {
4143 queue_len = sp->total_udp_fifos;
4144 queue = (ntohs(th->source) +
4145 ntohs(th->dest)) &
4146 sp->fifo_selector[queue_len - 1];
4147 if (queue >= queue_len)
4148 queue = queue_len - 1;
4149 queue += sp->udp_fifo_idx;
4150 if (skb->len > 1024)
4151 enable_per_list_interrupt = 1;
4152 do_spin_lock = 0;
4153 }
4154 }
4155 }
4156 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4157 /* get fifo number based on skb->priority value */
4158 queue = config->fifo_mapping
4159 [skb->priority & (MAX_TX_FIFOS - 1)];
4160 fifo = &mac_control->fifos[queue];
3a3d5756 4161
6cfc482b
SH
4162 if (do_spin_lock)
4163 spin_lock_irqsave(&fifo->tx_lock, flags);
4164 else {
4165 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4166 return NETDEV_TX_LOCKED;
4167 }
be3a6b02 4168
3a3d5756
SH
4169#ifdef CONFIG_NETDEVICES_MULTIQUEUE
4170 if (sp->config.multiq) {
4171 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4172 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4173 return NETDEV_TX_BUSY;
4174 }
4175 } else
4176#endif
4177 if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4178 if (netif_queue_stopped(dev)) {
4179 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4180 return NETDEV_TX_BUSY;
4181 }
4182 }
4183
2fda096d
SR
4184 put_off = (u16) fifo->tx_curr_put_info.offset;
4185 get_off = (u16) fifo->tx_curr_get_info.offset;
4186 txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
20346722 4187
2fda096d 4188 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
1da177e4 4189 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9
AR
4190 if (txdp->Host_Control ||
4191 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
776bd20f 4192 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3a3d5756 4193 s2io_stop_tx_queue(sp, fifo->fifo_no);
1da177e4 4194 dev_kfree_skb(skb);
2fda096d 4195 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4
LT
4196 return 0;
4197 }
0b1f7ebe 4198
75c30b13 4199 offload_type = s2io_offload_type(skb);
75c30b13 4200 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
1da177e4 4201 txdp->Control_1 |= TXD_TCP_LSO_EN;
75c30b13 4202 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
1da177e4 4203 }
84fa7933 4204 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1da177e4
LT
4205 txdp->Control_2 |=
4206 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4207 TXD_TX_CKO_UDP_EN);
4208 }
fed5eccd
AR
4209 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4210 txdp->Control_1 |= TXD_LIST_OWN_XENA;
2fda096d 4211 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
6cfc482b
SH
4212 if (enable_per_list_interrupt)
4213 if (put_off & (queue_len >> 5))
4214 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
3a3d5756 4215 if (vlan_tag) {
be3a6b02 4216 txdp->Control_2 |= TXD_VLAN_ENABLE;
4217 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4218 }
4219
fed5eccd 4220 frg_len = skb->len - skb->data_len;
75c30b13 4221 if (offload_type == SKB_GSO_UDP) {
fed5eccd
AR
4222 int ufo_size;
4223
75c30b13 4224 ufo_size = s2io_udp_mss(skb);
fed5eccd
AR
4225 ufo_size &= ~7;
4226 txdp->Control_1 |= TXD_UFO_EN;
4227 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4228 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4229#ifdef __BIG_ENDIAN
3459feb8 4230 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
2fda096d 4231 fifo->ufo_in_band_v[put_off] =
3459feb8 4232 (__force u64)skb_shinfo(skb)->ip6_frag_id;
fed5eccd 4233#else
2fda096d 4234 fifo->ufo_in_band_v[put_off] =
3459feb8 4235 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
fed5eccd 4236#endif
2fda096d 4237 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
fed5eccd 4238 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
2fda096d 4239 fifo->ufo_in_band_v,
fed5eccd 4240 sizeof(u64), PCI_DMA_TODEVICE);
491abf25
VP
4241 if((txdp->Buffer_Pointer == 0) ||
4242 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4243 goto pci_map_failed;
fed5eccd 4244 txdp++;
fed5eccd 4245 }
1da177e4 4246
fed5eccd
AR
4247 txdp->Buffer_Pointer = pci_map_single
4248 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
491abf25
VP
4249 if((txdp->Buffer_Pointer == 0) ||
4250 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4251 goto pci_map_failed;
4252
fed5eccd
AR
4253 txdp->Host_Control = (unsigned long) skb;
4254 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
75c30b13 4255 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4256 txdp->Control_1 |= TXD_UFO_EN;
4257
4258 frg_cnt = skb_shinfo(skb)->nr_frags;
1da177e4
LT
4259 /* For fragmented SKB. */
4260 for (i = 0; i < frg_cnt; i++) {
4261 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
0b1f7ebe 4262 /* A '0' length fragment will be ignored */
4263 if (!frag->size)
4264 continue;
1da177e4
LT
4265 txdp++;
4266 txdp->Buffer_Pointer = (u64) pci_map_page
4267 (sp->pdev, frag->page, frag->page_offset,
4268 frag->size, PCI_DMA_TODEVICE);
efd51b5c 4269 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
75c30b13 4270 if (offload_type == SKB_GSO_UDP)
fed5eccd 4271 txdp->Control_1 |= TXD_UFO_EN;
1da177e4
LT
4272 }
4273 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4274
75c30b13 4275 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4276 frg_cnt++; /* as Txd0 was used for inband header */
4277
1da177e4 4278 tx_fifo = mac_control->tx_FIFO_start[queue];
2fda096d 4279 val64 = fifo->list_info[put_off].list_phy_addr;
1da177e4
LT
4280 writeq(val64, &tx_fifo->TxDL_Pointer);
4281
4282 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4283 TX_FIFO_LAST_LIST);
75c30b13 4284 if (offload_type)
fed5eccd 4285 val64 |= TX_FIFO_SPECIAL_FUNC;
75c30b13 4286
1da177e4
LT
4287 writeq(val64, &tx_fifo->List_Control);
4288
303bcb4b 4289 mmiowb();
4290
1da177e4 4291 put_off++;
2fda096d 4292 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
863c11a9 4293 put_off = 0;
2fda096d 4294 fifo->tx_curr_put_info.offset = put_off;
1da177e4
LT
4295
4296 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4297 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
bd1034f0 4298 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
1da177e4
LT
4299 DBG_PRINT(TX_DBG,
4300 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4301 put_off, get_off);
3a3d5756 4302 s2io_stop_tx_queue(sp, fifo->fifo_no);
1da177e4 4303 }
491976b2 4304 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
1da177e4 4305 dev->trans_start = jiffies;
2fda096d 4306 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4 4307
f6f4bfa3
SH
4308 if (sp->config.intr_type == MSI_X)
4309 tx_intr_handler(fifo);
4310
491abf25
VP
4311 return 0;
4312pci_map_failed:
4313 stats->pci_map_fail_cnt++;
3a3d5756 4314 s2io_stop_tx_queue(sp, fifo->fifo_no);
491abf25
VP
4315 stats->mem_freed += skb->truesize;
4316 dev_kfree_skb(skb);
2fda096d 4317 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4
LT
4318 return 0;
4319}
4320
25fff88e 4321static void
4322s2io_alarm_handle(unsigned long data)
4323{
1ee6dd77 4324 struct s2io_nic *sp = (struct s2io_nic *)data;
8116f3cf 4325 struct net_device *dev = sp->dev;
25fff88e 4326
8116f3cf 4327 s2io_handle_errors(dev);
25fff88e 4328 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4329}
4330
0425b46a 4331static int s2io_chk_rx_buffers(struct ring_info *ring)
75c30b13 4332{
0425b46a
SH
4333 if (fill_rx_buffers(ring) == -ENOMEM) {
4334 DBG_PRINT(INFO_DBG, "%s:Out of memory", ring->dev->name);
99993af6 4335 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
75c30b13
AR
4336 }
4337 return 0;
4338}
4339
7d12e780 4340static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
cc6e7c44 4341{
1ee6dd77
RB
4342 struct ring_info *ring = (struct ring_info *)dev_id;
4343 struct s2io_nic *sp = ring->nic;
cc6e7c44 4344
596c5c97 4345 if (!is_s2io_card_up(sp))
92b84437 4346 return IRQ_HANDLED;
92b84437 4347
75c30b13 4348 rx_intr_handler(ring);
0425b46a 4349 s2io_chk_rx_buffers(ring);
7d3d0439 4350
cc6e7c44
RA
4351 return IRQ_HANDLED;
4352}
4353
7d12e780 4354static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
cc6e7c44 4355{
1ee6dd77
RB
4356 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4357 struct s2io_nic *sp = fifo->nic;
cc6e7c44 4358
596c5c97 4359 if (!is_s2io_card_up(sp))
92b84437 4360 return IRQ_HANDLED;
92b84437 4361
cc6e7c44 4362 tx_intr_handler(fifo);
cc6e7c44
RA
4363 return IRQ_HANDLED;
4364}
1ee6dd77 4365static void s2io_txpic_intr_handle(struct s2io_nic *sp)
a371a07d 4366{
1ee6dd77 4367 struct XENA_dev_config __iomem *bar0 = sp->bar0;
a371a07d 4368 u64 val64;
4369
4370 val64 = readq(&bar0->pic_int_status);
4371 if (val64 & PIC_INT_GPIO) {
4372 val64 = readq(&bar0->gpio_int_reg);
4373 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4374 (val64 & GPIO_INT_REG_LINK_UP)) {
c92ca04b
AR
4375 /*
4376 * This is unstable state so clear both up/down
4377 * interrupt and adapter to re-evaluate the link state.
4378 */
a371a07d 4379 val64 |= GPIO_INT_REG_LINK_DOWN;
4380 val64 |= GPIO_INT_REG_LINK_UP;
4381 writeq(val64, &bar0->gpio_int_reg);
a371a07d 4382 val64 = readq(&bar0->gpio_int_mask);
c92ca04b
AR
4383 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4384 GPIO_INT_MASK_LINK_DOWN);
a371a07d 4385 writeq(val64, &bar0->gpio_int_mask);
a371a07d 4386 }
c92ca04b
AR
4387 else if (val64 & GPIO_INT_REG_LINK_UP) {
4388 val64 = readq(&bar0->adapter_status);
c92ca04b 4389 /* Enable Adapter */
19a60522
SS
4390 val64 = readq(&bar0->adapter_control);
4391 val64 |= ADAPTER_CNTL_EN;
4392 writeq(val64, &bar0->adapter_control);
4393 val64 |= ADAPTER_LED_ON;
4394 writeq(val64, &bar0->adapter_control);
4395 if (!sp->device_enabled_once)
4396 sp->device_enabled_once = 1;
c92ca04b 4397
19a60522
SS
4398 s2io_link(sp, LINK_UP);
4399 /*
4400 * unmask link down interrupt and mask link-up
4401 * intr
4402 */
4403 val64 = readq(&bar0->gpio_int_mask);
4404 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4405 val64 |= GPIO_INT_MASK_LINK_UP;
4406 writeq(val64, &bar0->gpio_int_mask);
c92ca04b 4407
c92ca04b
AR
4408 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4409 val64 = readq(&bar0->adapter_status);
19a60522
SS
4410 s2io_link(sp, LINK_DOWN);
4411 /* Link is down so unmaks link up interrupt */
4412 val64 = readq(&bar0->gpio_int_mask);
4413 val64 &= ~GPIO_INT_MASK_LINK_UP;
4414 val64 |= GPIO_INT_MASK_LINK_DOWN;
4415 writeq(val64, &bar0->gpio_int_mask);
ac1f90d6
SS
4416
4417 /* turn off LED */
4418 val64 = readq(&bar0->adapter_control);
4419 val64 = val64 &(~ADAPTER_LED_ON);
4420 writeq(val64, &bar0->adapter_control);
a371a07d 4421 }
4422 }
c92ca04b 4423 val64 = readq(&bar0->gpio_int_mask);
a371a07d 4424}
4425
8116f3cf
SS
4426/**
4427 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4428 * @value: alarm bits
4429 * @addr: address value
4430 * @cnt: counter variable
4431 * Description: Check for alarm and increment the counter
4432 * Return Value:
4433 * 1 - if alarm bit set
4434 * 0 - if alarm bit is not set
4435 */
43b7c451 4436static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
8116f3cf
SS
4437 unsigned long long *cnt)
4438{
4439 u64 val64;
4440 val64 = readq(addr);
4441 if ( val64 & value ) {
4442 writeq(val64, addr);
4443 (*cnt)++;
4444 return 1;
4445 }
4446 return 0;
4447
4448}
4449
4450/**
4451 * s2io_handle_errors - Xframe error indication handler
4452 * @nic: device private variable
4453 * Description: Handle alarms such as loss of link, single or
4454 * double ECC errors, critical and serious errors.
4455 * Return Value:
4456 * NONE
4457 */
4458static void s2io_handle_errors(void * dev_id)
4459{
4460 struct net_device *dev = (struct net_device *) dev_id;
4461 struct s2io_nic *sp = dev->priv;
4462 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4463 u64 temp64 = 0,val64=0;
4464 int i = 0;
4465
4466 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4467 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4468
92b84437 4469 if (!is_s2io_card_up(sp))
8116f3cf
SS
4470 return;
4471
4472 if (pci_channel_offline(sp->pdev))
4473 return;
4474
4475 memset(&sw_stat->ring_full_cnt, 0,
4476 sizeof(sw_stat->ring_full_cnt));
4477
4478 /* Handling the XPAK counters update */
4479 if(stats->xpak_timer_count < 72000) {
4480 /* waiting for an hour */
4481 stats->xpak_timer_count++;
4482 } else {
4483 s2io_updt_xpak_counter(dev);
4484 /* reset the count to zero */
4485 stats->xpak_timer_count = 0;
4486 }
4487
4488 /* Handling link status change error Intr */
4489 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4490 val64 = readq(&bar0->mac_rmac_err_reg);
4491 writeq(val64, &bar0->mac_rmac_err_reg);
4492 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4493 schedule_work(&sp->set_link_task);
4494 }
4495
4496 /* In case of a serious error, the device will be Reset. */
4497 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4498 &sw_stat->serious_err_cnt))
4499 goto reset;
4500
4501 /* Check for data parity error */
4502 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4503 &sw_stat->parity_err_cnt))
4504 goto reset;
4505
4506 /* Check for ring full counter */
4507 if (sp->device_type == XFRAME_II_DEVICE) {
4508 val64 = readq(&bar0->ring_bump_counter1);
4509 for (i=0; i<4; i++) {
4510 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4511 temp64 >>= 64 - ((i+1)*16);
4512 sw_stat->ring_full_cnt[i] += temp64;
4513 }
4514
4515 val64 = readq(&bar0->ring_bump_counter2);
4516 for (i=0; i<4; i++) {
4517 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4518 temp64 >>= 64 - ((i+1)*16);
4519 sw_stat->ring_full_cnt[i+4] += temp64;
4520 }
4521 }
4522
4523 val64 = readq(&bar0->txdma_int_status);
4524 /*check for pfc_err*/
4525 if (val64 & TXDMA_PFC_INT) {
4526 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4527 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4528 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4529 &sw_stat->pfc_err_cnt))
4530 goto reset;
4531 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4532 &sw_stat->pfc_err_cnt);
4533 }
4534
4535 /*check for tda_err*/
4536 if (val64 & TXDMA_TDA_INT) {
4537 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4538 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4539 &sw_stat->tda_err_cnt))
4540 goto reset;
4541 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4542 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4543 }
4544 /*check for pcc_err*/
4545 if (val64 & TXDMA_PCC_INT) {
4546 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4547 | PCC_N_SERR | PCC_6_COF_OV_ERR
4548 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4549 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4550 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4551 &sw_stat->pcc_err_cnt))
4552 goto reset;
4553 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4554 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4555 }
4556
4557 /*check for tti_err*/
4558 if (val64 & TXDMA_TTI_INT) {
4559 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4560 &sw_stat->tti_err_cnt))
4561 goto reset;
4562 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4563 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4564 }
4565
4566 /*check for lso_err*/
4567 if (val64 & TXDMA_LSO_INT) {
4568 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4569 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4570 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4571 goto reset;
4572 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4573 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4574 }
4575
4576 /*check for tpa_err*/
4577 if (val64 & TXDMA_TPA_INT) {
4578 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4579 &sw_stat->tpa_err_cnt))
4580 goto reset;
4581 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4582 &sw_stat->tpa_err_cnt);
4583 }
4584
4585 /*check for sm_err*/
4586 if (val64 & TXDMA_SM_INT) {
4587 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4588 &sw_stat->sm_err_cnt))
4589 goto reset;
4590 }
4591
4592 val64 = readq(&bar0->mac_int_status);
4593 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4594 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4595 &bar0->mac_tmac_err_reg,
4596 &sw_stat->mac_tmac_err_cnt))
4597 goto reset;
4598 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4599 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4600 &bar0->mac_tmac_err_reg,
4601 &sw_stat->mac_tmac_err_cnt);
4602 }
4603
4604 val64 = readq(&bar0->xgxs_int_status);
4605 if (val64 & XGXS_INT_STATUS_TXGXS) {
4606 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4607 &bar0->xgxs_txgxs_err_reg,
4608 &sw_stat->xgxs_txgxs_err_cnt))
4609 goto reset;
4610 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4611 &bar0->xgxs_txgxs_err_reg,
4612 &sw_stat->xgxs_txgxs_err_cnt);
4613 }
4614
4615 val64 = readq(&bar0->rxdma_int_status);
4616 if (val64 & RXDMA_INT_RC_INT_M) {
4617 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4618 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4619 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4620 goto reset;
4621 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4622 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4623 &sw_stat->rc_err_cnt);
4624 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4625 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4626 &sw_stat->prc_pcix_err_cnt))
4627 goto reset;
4628 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4629 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4630 &sw_stat->prc_pcix_err_cnt);
4631 }
4632
4633 if (val64 & RXDMA_INT_RPA_INT_M) {
4634 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4635 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4636 goto reset;
4637 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4638 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4639 }
4640
4641 if (val64 & RXDMA_INT_RDA_INT_M) {
4642 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4643 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4644 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4645 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4646 goto reset;
4647 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4648 | RDA_MISC_ERR | RDA_PCIX_ERR,
4649 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4650 }
4651
4652 if (val64 & RXDMA_INT_RTI_INT_M) {
4653 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4654 &sw_stat->rti_err_cnt))
4655 goto reset;
4656 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4657 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4658 }
4659
4660 val64 = readq(&bar0->mac_int_status);
4661 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4662 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4663 &bar0->mac_rmac_err_reg,
4664 &sw_stat->mac_rmac_err_cnt))
4665 goto reset;
4666 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4667 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4668 &sw_stat->mac_rmac_err_cnt);
4669 }
4670
4671 val64 = readq(&bar0->xgxs_int_status);
4672 if (val64 & XGXS_INT_STATUS_RXGXS) {
4673 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4674 &bar0->xgxs_rxgxs_err_reg,
4675 &sw_stat->xgxs_rxgxs_err_cnt))
4676 goto reset;
4677 }
4678
4679 val64 = readq(&bar0->mc_int_status);
4680 if(val64 & MC_INT_STATUS_MC_INT) {
4681 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4682 &sw_stat->mc_err_cnt))
4683 goto reset;
4684
4685 /* Handling Ecc errors */
4686 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4687 writeq(val64, &bar0->mc_err_reg);
4688 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4689 sw_stat->double_ecc_errs++;
4690 if (sp->device_type != XFRAME_II_DEVICE) {
4691 /*
4692 * Reset XframeI only if critical error
4693 */
4694 if (val64 &
4695 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4696 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4697 goto reset;
4698 }
4699 } else
4700 sw_stat->single_ecc_errs++;
4701 }
4702 }
4703 return;
4704
4705reset:
3a3d5756 4706 s2io_stop_all_tx_queue(sp);
8116f3cf
SS
4707 schedule_work(&sp->rst_timer_task);
4708 sw_stat->soft_reset_cnt++;
4709 return;
4710}
4711
1da177e4
LT
4712/**
4713 * s2io_isr - ISR handler of the device .
4714 * @irq: the irq of the device.
4715 * @dev_id: a void pointer to the dev structure of the NIC.
20346722 4716 * Description: This function is the ISR handler of the device. It
4717 * identifies the reason for the interrupt and calls the relevant
4718 * service routines. As a contongency measure, this ISR allocates the
1da177e4
LT
4719 * recv buffers, if their numbers are below the panic value which is
4720 * presently set to 25% of the original number of rcv buffers allocated.
4721 * Return value:
20346722 4722 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
1da177e4
LT
4723 * IRQ_NONE: will be returned if interrupt is not from our device
4724 */
7d12e780 4725static irqreturn_t s2io_isr(int irq, void *dev_id)
1da177e4
LT
4726{
4727 struct net_device *dev = (struct net_device *) dev_id;
1ee6dd77
RB
4728 struct s2io_nic *sp = dev->priv;
4729 struct XENA_dev_config __iomem *bar0 = sp->bar0;
20346722 4730 int i;
19a60522 4731 u64 reason = 0;
1ee6dd77 4732 struct mac_info *mac_control;
1da177e4
LT
4733 struct config_param *config;
4734
d796fdb7
LV
4735 /* Pretend we handled any irq's from a disconnected card */
4736 if (pci_channel_offline(sp->pdev))
4737 return IRQ_NONE;
4738
596c5c97 4739 if (!is_s2io_card_up(sp))
92b84437 4740 return IRQ_NONE;
92b84437 4741
1da177e4
LT
4742 mac_control = &sp->mac_control;
4743 config = &sp->config;
4744
20346722 4745 /*
1da177e4
LT
4746 * Identify the cause for interrupt and call the appropriate
4747 * interrupt handler. Causes for the interrupt could be;
4748 * 1. Rx of packet.
4749 * 2. Tx complete.
4750 * 3. Link down.
1da177e4
LT
4751 */
4752 reason = readq(&bar0->general_int_status);
4753
596c5c97
SS
4754 if (unlikely(reason == S2IO_MINUS_ONE) ) {
4755 /* Nothing much can be done. Get out */
4756 return IRQ_HANDLED;
1da177e4 4757 }
5d3213cc 4758
596c5c97
SS
4759 if (reason & (GEN_INTR_RXTRAFFIC |
4760 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4761 {
4762 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4763
4764 if (config->napi) {
4765 if (reason & GEN_INTR_RXTRAFFIC) {
4766 if (likely(netif_rx_schedule_prep(dev,
4767 &sp->napi))) {
4768 __netif_rx_schedule(dev, &sp->napi);
4769 writeq(S2IO_MINUS_ONE,
4770 &bar0->rx_traffic_mask);
4771 } else
4772 writeq(S2IO_MINUS_ONE,
4773 &bar0->rx_traffic_int);
db874e65 4774 }
596c5c97
SS
4775 } else {
4776 /*
4777 * rx_traffic_int reg is an R1 register, writing all 1's
4778 * will ensure that the actual interrupt causing bit
4779 * get's cleared and hence a read can be avoided.
4780 */
4781 if (reason & GEN_INTR_RXTRAFFIC)
19a60522 4782 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
596c5c97
SS
4783
4784 for (i = 0; i < config->rx_ring_num; i++)
4785 rx_intr_handler(&mac_control->rings[i]);
db874e65 4786 }
596c5c97 4787
db874e65 4788 /*
596c5c97 4789 * tx_traffic_int reg is an R1 register, writing all 1's
db874e65
SS
4790 * will ensure that the actual interrupt causing bit get's
4791 * cleared and hence a read can be avoided.
4792 */
596c5c97
SS
4793 if (reason & GEN_INTR_TXTRAFFIC)
4794 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
19a60522 4795
596c5c97
SS
4796 for (i = 0; i < config->tx_fifo_num; i++)
4797 tx_intr_handler(&mac_control->fifos[i]);
1da177e4 4798
596c5c97
SS
4799 if (reason & GEN_INTR_TXPIC)
4800 s2io_txpic_intr_handle(sp);
fe113638 4801
596c5c97
SS
4802 /*
4803 * Reallocate the buffers from the interrupt handler itself.
4804 */
4805 if (!config->napi) {
4806 for (i = 0; i < config->rx_ring_num; i++)
0425b46a 4807 s2io_chk_rx_buffers(&mac_control->rings[i]);
596c5c97
SS
4808 }
4809 writeq(sp->general_int_mask, &bar0->general_int_mask);
4810 readl(&bar0->general_int_status);
20346722 4811
596c5c97 4812 return IRQ_HANDLED;
db874e65 4813
596c5c97
SS
4814 }
4815 else if (!reason) {
4816 /* The interrupt was not raised by us */
4817 return IRQ_NONE;
4818 }
db874e65 4819
1da177e4
LT
4820 return IRQ_HANDLED;
4821}
4822
7ba013ac 4823/**
4824 * s2io_updt_stats -
4825 */
1ee6dd77 4826static void s2io_updt_stats(struct s2io_nic *sp)
7ba013ac 4827{
1ee6dd77 4828 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7ba013ac 4829 u64 val64;
4830 int cnt = 0;
4831
92b84437 4832 if (is_s2io_card_up(sp)) {
7ba013ac 4833 /* Apprx 30us on a 133 MHz bus */
4834 val64 = SET_UPDT_CLICKS(10) |
4835 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4836 writeq(val64, &bar0->stat_cfg);
4837 do {
4838 udelay(100);
4839 val64 = readq(&bar0->stat_cfg);
b7b5a128 4840 if (!(val64 & s2BIT(0)))
7ba013ac 4841 break;
4842 cnt++;
4843 if (cnt == 5)
4844 break; /* Updt failed */
4845 } while(1);
8a4bdbaa 4846 }
7ba013ac 4847}
4848
1da177e4 4849/**
20346722 4850 * s2io_get_stats - Updates the device statistics structure.
1da177e4
LT
4851 * @dev : pointer to the device structure.
4852 * Description:
20346722 4853 * This function updates the device statistics structure in the s2io_nic
1da177e4
LT
4854 * structure and returns a pointer to the same.
4855 * Return value:
4856 * pointer to the updated net_device_stats structure.
4857 */
4858
ac1f60db 4859static struct net_device_stats *s2io_get_stats(struct net_device *dev)
1da177e4 4860{
1ee6dd77
RB
4861 struct s2io_nic *sp = dev->priv;
4862 struct mac_info *mac_control;
1da177e4 4863 struct config_param *config;
0425b46a 4864 int i;
1da177e4 4865
20346722 4866
1da177e4
LT
4867 mac_control = &sp->mac_control;
4868 config = &sp->config;
4869
7ba013ac 4870 /* Configure Stats for immediate updt */
4871 s2io_updt_stats(sp);
4872
4873 sp->stats.tx_packets =
4874 le32_to_cpu(mac_control->stats_info->tmac_frms);
20346722 4875 sp->stats.tx_errors =
4876 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4877 sp->stats.rx_errors =
ee705dba 4878 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
20346722 4879 sp->stats.multicast =
4880 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
1da177e4 4881 sp->stats.rx_length_errors =
ee705dba 4882 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
1da177e4 4883
0425b46a
SH
4884 /* collect per-ring rx_packets and rx_bytes */
4885 sp->stats.rx_packets = sp->stats.rx_bytes = 0;
4886 for (i = 0; i < config->rx_ring_num; i++) {
4887 sp->stats.rx_packets += mac_control->rings[i].rx_packets;
4888 sp->stats.rx_bytes += mac_control->rings[i].rx_bytes;
4889 }
4890
1da177e4
LT
4891 return (&sp->stats);
4892}
4893
4894/**
4895 * s2io_set_multicast - entry point for multicast address enable/disable.
4896 * @dev : pointer to the device structure
4897 * Description:
20346722 4898 * This function is a driver entry point which gets called by the kernel
4899 * whenever multicast addresses must be enabled/disabled. This also gets
1da177e4
LT
4900 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4901 * determine, if multicast address must be enabled or if promiscuous mode
4902 * is to be disabled etc.
4903 * Return value:
4904 * void.
4905 */
4906
4907static void s2io_set_multicast(struct net_device *dev)
4908{
4909 int i, j, prev_cnt;
4910 struct dev_mc_list *mclist;
1ee6dd77
RB
4911 struct s2io_nic *sp = dev->priv;
4912 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4913 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4914 0xfeffffffffffULL;
faa4f796 4915 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
1da177e4 4916 void __iomem *add;
faa4f796 4917 struct config_param *config = &sp->config;
1da177e4
LT
4918
4919 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4920 /* Enable all Multicast addresses */
4921 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4922 &bar0->rmac_addr_data0_mem);
4923 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4924 &bar0->rmac_addr_data1_mem);
4925 val64 = RMAC_ADDR_CMD_MEM_WE |
4926 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
faa4f796 4927 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
1da177e4
LT
4928 writeq(val64, &bar0->rmac_addr_cmd_mem);
4929 /* Wait till command completes */
c92ca04b 4930 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4931 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4932 S2IO_BIT_RESET);
1da177e4
LT
4933
4934 sp->m_cast_flg = 1;
faa4f796 4935 sp->all_multi_pos = config->max_mc_addr - 1;
1da177e4
LT
4936 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4937 /* Disable all Multicast addresses */
4938 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4939 &bar0->rmac_addr_data0_mem);
5e25b9dd 4940 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4941 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4942 val64 = RMAC_ADDR_CMD_MEM_WE |
4943 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4944 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4945 writeq(val64, &bar0->rmac_addr_cmd_mem);
4946 /* Wait till command completes */
c92ca04b 4947 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4948 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4949 S2IO_BIT_RESET);
1da177e4
LT
4950
4951 sp->m_cast_flg = 0;
4952 sp->all_multi_pos = 0;
4953 }
4954
4955 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4956 /* Put the NIC into promiscuous mode */
4957 add = &bar0->mac_cfg;
4958 val64 = readq(&bar0->mac_cfg);
4959 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4960
4961 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4962 writel((u32) val64, add);
4963 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4964 writel((u32) (val64 >> 32), (add + 4));
4965
926930b2
SS
4966 if (vlan_tag_strip != 1) {
4967 val64 = readq(&bar0->rx_pa_cfg);
4968 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4969 writeq(val64, &bar0->rx_pa_cfg);
4970 vlan_strip_flag = 0;
4971 }
4972
1da177e4
LT
4973 val64 = readq(&bar0->mac_cfg);
4974 sp->promisc_flg = 1;
776bd20f 4975 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
1da177e4
LT
4976 dev->name);
4977 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4978 /* Remove the NIC from promiscuous mode */
4979 add = &bar0->mac_cfg;
4980 val64 = readq(&bar0->mac_cfg);
4981 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4982
4983 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4984 writel((u32) val64, add);
4985 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4986 writel((u32) (val64 >> 32), (add + 4));
4987
926930b2
SS
4988 if (vlan_tag_strip != 0) {
4989 val64 = readq(&bar0->rx_pa_cfg);
4990 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4991 writeq(val64, &bar0->rx_pa_cfg);
4992 vlan_strip_flag = 1;
4993 }
4994
1da177e4
LT
4995 val64 = readq(&bar0->mac_cfg);
4996 sp->promisc_flg = 0;
776bd20f 4997 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
1da177e4
LT
4998 dev->name);
4999 }
5000
5001 /* Update individual M_CAST address list */
5002 if ((!sp->m_cast_flg) && dev->mc_count) {
5003 if (dev->mc_count >
faa4f796 5004 (config->max_mc_addr - config->max_mac_addr)) {
1da177e4
LT
5005 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
5006 dev->name);
5007 DBG_PRINT(ERR_DBG, "can be added, please enable ");
5008 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
5009 return;
5010 }
5011
5012 prev_cnt = sp->mc_addr_count;
5013 sp->mc_addr_count = dev->mc_count;
5014
5015 /* Clear out the previous list of Mc in the H/W. */
5016 for (i = 0; i < prev_cnt; i++) {
5017 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5018 &bar0->rmac_addr_data0_mem);
5019 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 5020 &bar0->rmac_addr_data1_mem);
1da177e4
LT
5021 val64 = RMAC_ADDR_CMD_MEM_WE |
5022 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5023 RMAC_ADDR_CMD_MEM_OFFSET
faa4f796 5024 (config->mc_start_offset + i);
1da177e4
LT
5025 writeq(val64, &bar0->rmac_addr_cmd_mem);
5026
5027 /* Wait for command completes */
c92ca04b 5028 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
5029 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5030 S2IO_BIT_RESET)) {
1da177e4
LT
5031 DBG_PRINT(ERR_DBG, "%s: Adding ",
5032 dev->name);
5033 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5034 return;
5035 }
5036 }
5037
5038 /* Create the new Rx filter list and update the same in H/W. */
5039 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
5040 i++, mclist = mclist->next) {
5041 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5042 ETH_ALEN);
a7a80d5a 5043 mac_addr = 0;
1da177e4
LT
5044 for (j = 0; j < ETH_ALEN; j++) {
5045 mac_addr |= mclist->dmi_addr[j];
5046 mac_addr <<= 8;
5047 }
5048 mac_addr >>= 8;
5049 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5050 &bar0->rmac_addr_data0_mem);
5051 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 5052 &bar0->rmac_addr_data1_mem);
1da177e4
LT
5053 val64 = RMAC_ADDR_CMD_MEM_WE |
5054 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5055 RMAC_ADDR_CMD_MEM_OFFSET
faa4f796 5056 (i + config->mc_start_offset);
1da177e4
LT
5057 writeq(val64, &bar0->rmac_addr_cmd_mem);
5058
5059 /* Wait for command completes */
c92ca04b 5060 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
5061 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5062 S2IO_BIT_RESET)) {
1da177e4
LT
5063 DBG_PRINT(ERR_DBG, "%s: Adding ",
5064 dev->name);
5065 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5066 return;
5067 }
5068 }
5069 }
5070}
5071
faa4f796
SH
5072/* read from CAM unicast & multicast addresses and store it in
5073 * def_mac_addr structure
5074 */
5075void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5076{
5077 int offset;
5078 u64 mac_addr = 0x0;
5079 struct config_param *config = &sp->config;
5080
5081 /* store unicast & multicast mac addresses */
5082 for (offset = 0; offset < config->max_mc_addr; offset++) {
5083 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5084 /* if read fails disable the entry */
5085 if (mac_addr == FAILURE)
5086 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5087 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5088 }
5089}
5090
5091/* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5092static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5093{
5094 int offset;
5095 struct config_param *config = &sp->config;
5096 /* restore unicast mac address */
5097 for (offset = 0; offset < config->max_mac_addr; offset++)
5098 do_s2io_prog_unicast(sp->dev,
5099 sp->def_mac_addr[offset].mac_addr);
5100
5101 /* restore multicast mac address */
5102 for (offset = config->mc_start_offset;
5103 offset < config->max_mc_addr; offset++)
5104 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5105}
5106
5107/* add a multicast MAC address to CAM */
5108static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5109{
5110 int i;
5111 u64 mac_addr = 0;
5112 struct config_param *config = &sp->config;
5113
5114 for (i = 0; i < ETH_ALEN; i++) {
5115 mac_addr <<= 8;
5116 mac_addr |= addr[i];
5117 }
5118 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5119 return SUCCESS;
5120
5121 /* check if the multicast mac already preset in CAM */
5122 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5123 u64 tmp64;
5124 tmp64 = do_s2io_read_unicast_mc(sp, i);
5125 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5126 break;
5127
5128 if (tmp64 == mac_addr)
5129 return SUCCESS;
5130 }
5131 if (i == config->max_mc_addr) {
5132 DBG_PRINT(ERR_DBG,
5133 "CAM full no space left for multicast MAC\n");
5134 return FAILURE;
5135 }
5136 /* Update the internal structure with this new mac address */
5137 do_s2io_copy_mac_addr(sp, i, mac_addr);
5138
5139 return (do_s2io_add_mac(sp, mac_addr, i));
5140}
5141
5142/* add MAC address to CAM */
5143static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
2fd37688
SS
5144{
5145 u64 val64;
5146 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5147
5148 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5149 &bar0->rmac_addr_data0_mem);
5150
5151 val64 =
5152 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5153 RMAC_ADDR_CMD_MEM_OFFSET(off);
5154 writeq(val64, &bar0->rmac_addr_cmd_mem);
5155
5156 /* Wait till command completes */
5157 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5158 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5159 S2IO_BIT_RESET)) {
faa4f796 5160 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
2fd37688
SS
5161 return FAILURE;
5162 }
5163 return SUCCESS;
5164}
faa4f796
SH
5165/* deletes a specified unicast/multicast mac entry from CAM */
5166static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5167{
5168 int offset;
5169 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5170 struct config_param *config = &sp->config;
5171
5172 for (offset = 1;
5173 offset < config->max_mc_addr; offset++) {
5174 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5175 if (tmp64 == addr) {
5176 /* disable the entry by writing 0xffffffffffffULL */
5177 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5178 return FAILURE;
5179 /* store the new mac list from CAM */
5180 do_s2io_store_unicast_mc(sp);
5181 return SUCCESS;
5182 }
5183 }
5184 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5185 (unsigned long long)addr);
5186 return FAILURE;
5187}
5188
5189/* read mac entries from CAM */
5190static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5191{
5192 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5193 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5194
5195 /* read mac addr */
5196 val64 =
5197 RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5198 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5199 writeq(val64, &bar0->rmac_addr_cmd_mem);
5200
5201 /* Wait till command completes */
5202 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5203 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5204 S2IO_BIT_RESET)) {
5205 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5206 return FAILURE;
5207 }
5208 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5209 return (tmp64 >> 16);
5210}
2fd37688
SS
5211
5212/**
5213 * s2io_set_mac_addr driver entry point
5214 */
faa4f796 5215
2fd37688
SS
5216static int s2io_set_mac_addr(struct net_device *dev, void *p)
5217{
5218 struct sockaddr *addr = p;
5219
5220 if (!is_valid_ether_addr(addr->sa_data))
5221 return -EINVAL;
5222
5223 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5224
5225 /* store the MAC address in CAM */
5226 return (do_s2io_prog_unicast(dev, dev->dev_addr));
5227}
1da177e4 5228/**
2fd37688 5229 * do_s2io_prog_unicast - Programs the Xframe mac address
1da177e4
LT
5230 * @dev : pointer to the device structure.
5231 * @addr: a uchar pointer to the new mac address which is to be set.
20346722 5232 * Description : This procedure will program the Xframe to receive
1da177e4 5233 * frames with new Mac Address
20346722 5234 * Return value: SUCCESS on success and an appropriate (-)ve integer
1da177e4
LT
5235 * as defined in errno.h file on failure.
5236 */
faa4f796 5237
2fd37688 5238static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
1da177e4 5239{
1ee6dd77 5240 struct s2io_nic *sp = dev->priv;
2fd37688 5241 register u64 mac_addr = 0, perm_addr = 0;
1da177e4 5242 int i;
faa4f796
SH
5243 u64 tmp64;
5244 struct config_param *config = &sp->config;
1da177e4 5245
20346722 5246 /*
2fd37688
SS
5247 * Set the new MAC address as the new unicast filter and reflect this
5248 * change on the device address registered with the OS. It will be
5249 * at offset 0.
5250 */
1da177e4
LT
5251 for (i = 0; i < ETH_ALEN; i++) {
5252 mac_addr <<= 8;
5253 mac_addr |= addr[i];
2fd37688
SS
5254 perm_addr <<= 8;
5255 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
d8d70caf
SS
5256 }
5257
2fd37688
SS
5258 /* check if the dev_addr is different than perm_addr */
5259 if (mac_addr == perm_addr)
d8d70caf
SS
5260 return SUCCESS;
5261
faa4f796
SH
5262 /* check if the mac already preset in CAM */
5263 for (i = 1; i < config->max_mac_addr; i++) {
5264 tmp64 = do_s2io_read_unicast_mc(sp, i);
5265 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5266 break;
5267
5268 if (tmp64 == mac_addr) {
5269 DBG_PRINT(INFO_DBG,
5270 "MAC addr:0x%llx already present in CAM\n",
5271 (unsigned long long)mac_addr);
5272 return SUCCESS;
5273 }
5274 }
5275 if (i == config->max_mac_addr) {
5276 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5277 return FAILURE;
5278 }
d8d70caf 5279 /* Update the internal structure with this new mac address */
faa4f796
SH
5280 do_s2io_copy_mac_addr(sp, i, mac_addr);
5281 return (do_s2io_add_mac(sp, mac_addr, i));
1da177e4
LT
5282}
5283
5284/**
20346722 5285 * s2io_ethtool_sset - Sets different link parameters.
1da177e4
LT
5286 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5287 * @info: pointer to the structure with parameters given by ethtool to set
5288 * link information.
5289 * Description:
20346722 5290 * The function sets different link parameters provided by the user onto
1da177e4
LT
5291 * the NIC.
5292 * Return value:
5293 * 0 on success.
5294*/
5295
5296static int s2io_ethtool_sset(struct net_device *dev,
5297 struct ethtool_cmd *info)
5298{
1ee6dd77 5299 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5300 if ((info->autoneg == AUTONEG_ENABLE) ||
5301 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
5302 return -EINVAL;
5303 else {
5304 s2io_close(sp->dev);
5305 s2io_open(sp->dev);
5306 }
5307
5308 return 0;
5309}
5310
5311/**
20346722 5312 * s2io_ethtol_gset - Return link specific information.
1da177e4
LT
5313 * @sp : private member of the device structure, pointer to the
5314 * s2io_nic structure.
5315 * @info : pointer to the structure with parameters given by ethtool
5316 * to return link information.
5317 * Description:
5318 * Returns link specific information like speed, duplex etc.. to ethtool.
5319 * Return value :
5320 * return 0 on success.
5321 */
5322
5323static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5324{
1ee6dd77 5325 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5326 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5327 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5328 info->port = PORT_FIBRE;
1a7eb72b
SS
5329
5330 /* info->transceiver */
5331 info->transceiver = XCVR_EXTERNAL;
1da177e4
LT
5332
5333 if (netif_carrier_ok(sp->dev)) {
5334 info->speed = 10000;
5335 info->duplex = DUPLEX_FULL;
5336 } else {
5337 info->speed = -1;
5338 info->duplex = -1;
5339 }
5340
5341 info->autoneg = AUTONEG_DISABLE;
5342 return 0;
5343}
5344
5345/**
20346722 5346 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5347 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5348 * s2io_nic structure.
5349 * @info : pointer to the structure with parameters given by ethtool to
5350 * return driver information.
5351 * Description:
5352 * Returns driver specefic information like name, version etc.. to ethtool.
5353 * Return value:
5354 * void
5355 */
5356
5357static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5358 struct ethtool_drvinfo *info)
5359{
1ee6dd77 5360 struct s2io_nic *sp = dev->priv;
1da177e4 5361
dbc2309d
JL
5362 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5363 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5364 strncpy(info->fw_version, "", sizeof(info->fw_version));
5365 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
1da177e4
LT
5366 info->regdump_len = XENA_REG_SPACE;
5367 info->eedump_len = XENA_EEPROM_SPACE;
1da177e4
LT
5368}
5369
5370/**
5371 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
20346722 5372 * @sp: private member of the device structure, which is a pointer to the
1da177e4 5373 * s2io_nic structure.
20346722 5374 * @regs : pointer to the structure with parameters given by ethtool for
1da177e4
LT
5375 * dumping the registers.
5376 * @reg_space: The input argumnet into which all the registers are dumped.
5377 * Description:
5378 * Dumps the entire register space of xFrame NIC into the user given
5379 * buffer area.
5380 * Return value :
5381 * void .
5382*/
5383
5384static void s2io_ethtool_gregs(struct net_device *dev,
5385 struct ethtool_regs *regs, void *space)
5386{
5387 int i;
5388 u64 reg;
5389 u8 *reg_space = (u8 *) space;
1ee6dd77 5390 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5391
5392 regs->len = XENA_REG_SPACE;
5393 regs->version = sp->pdev->subsystem_device;
5394
5395 for (i = 0; i < regs->len; i += 8) {
5396 reg = readq(sp->bar0 + i);
5397 memcpy((reg_space + i), &reg, 8);
5398 }
5399}
5400
5401/**
5402 * s2io_phy_id - timer function that alternates adapter LED.
20346722 5403 * @data : address of the private member of the device structure, which
1da177e4 5404 * is a pointer to the s2io_nic structure, provided as an u32.
20346722 5405 * Description: This is actually the timer function that alternates the
5406 * adapter LED bit of the adapter control bit to set/reset every time on
5407 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
1da177e4
LT
5408 * once every second.
5409*/
5410static void s2io_phy_id(unsigned long data)
5411{
1ee6dd77
RB
5412 struct s2io_nic *sp = (struct s2io_nic *) data;
5413 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5414 u64 val64 = 0;
5415 u16 subid;
5416
5417 subid = sp->pdev->subsystem_device;
541ae68f 5418 if ((sp->device_type == XFRAME_II_DEVICE) ||
5419 ((subid & 0xFF) >= 0x07)) {
1da177e4
LT
5420 val64 = readq(&bar0->gpio_control);
5421 val64 ^= GPIO_CTRL_GPIO_0;
5422 writeq(val64, &bar0->gpio_control);
5423 } else {
5424 val64 = readq(&bar0->adapter_control);
5425 val64 ^= ADAPTER_LED_ON;
5426 writeq(val64, &bar0->adapter_control);
5427 }
5428
5429 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5430}
5431
5432/**
5433 * s2io_ethtool_idnic - To physically identify the nic on the system.
5434 * @sp : private member of the device structure, which is a pointer to the
5435 * s2io_nic structure.
20346722 5436 * @id : pointer to the structure with identification parameters given by
1da177e4
LT
5437 * ethtool.
5438 * Description: Used to physically identify the NIC on the system.
20346722 5439 * The Link LED will blink for a time specified by the user for
1da177e4 5440 * identification.
20346722 5441 * NOTE: The Link has to be Up to be able to blink the LED. Hence
1da177e4
LT
5442 * identification is possible only if it's link is up.
5443 * Return value:
5444 * int , returns 0 on success
5445 */
5446
5447static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5448{
5449 u64 val64 = 0, last_gpio_ctrl_val;
1ee6dd77
RB
5450 struct s2io_nic *sp = dev->priv;
5451 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5452 u16 subid;
5453
5454 subid = sp->pdev->subsystem_device;
5455 last_gpio_ctrl_val = readq(&bar0->gpio_control);
541ae68f 5456 if ((sp->device_type == XFRAME_I_DEVICE) &&
5457 ((subid & 0xFF) < 0x07)) {
1da177e4
LT
5458 val64 = readq(&bar0->adapter_control);
5459 if (!(val64 & ADAPTER_CNTL_EN)) {
5460 printk(KERN_ERR
5461 "Adapter Link down, cannot blink LED\n");
5462 return -EFAULT;
5463 }
5464 }
5465 if (sp->id_timer.function == NULL) {
5466 init_timer(&sp->id_timer);
5467 sp->id_timer.function = s2io_phy_id;
5468 sp->id_timer.data = (unsigned long) sp;
5469 }
5470 mod_timer(&sp->id_timer, jiffies);
5471 if (data)
20346722 5472 msleep_interruptible(data * HZ);
1da177e4 5473 else
20346722 5474 msleep_interruptible(MAX_FLICKER_TIME);
1da177e4
LT
5475 del_timer_sync(&sp->id_timer);
5476
541ae68f 5477 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
1da177e4
LT
5478 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5479 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5480 }
5481
5482 return 0;
5483}
5484
0cec35eb
SH
5485static void s2io_ethtool_gringparam(struct net_device *dev,
5486 struct ethtool_ringparam *ering)
5487{
5488 struct s2io_nic *sp = dev->priv;
5489 int i,tx_desc_count=0,rx_desc_count=0;
5490
5491 if (sp->rxd_mode == RXD_MODE_1)
5492 ering->rx_max_pending = MAX_RX_DESC_1;
5493 else if (sp->rxd_mode == RXD_MODE_3B)
5494 ering->rx_max_pending = MAX_RX_DESC_2;
0cec35eb
SH
5495
5496 ering->tx_max_pending = MAX_TX_DESC;
8a4bdbaa 5497 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
0cec35eb 5498 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
8a4bdbaa 5499
0cec35eb
SH
5500 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5501 ering->tx_pending = tx_desc_count;
5502 rx_desc_count = 0;
8a4bdbaa 5503 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
0cec35eb 5504 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
b6627672 5505
0cec35eb
SH
5506 ering->rx_pending = rx_desc_count;
5507
5508 ering->rx_mini_max_pending = 0;
5509 ering->rx_mini_pending = 0;
5510 if(sp->rxd_mode == RXD_MODE_1)
5511 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5512 else if (sp->rxd_mode == RXD_MODE_3B)
5513 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5514 ering->rx_jumbo_pending = rx_desc_count;
5515}
5516
1da177e4
LT
5517/**
5518 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
20346722 5519 * @sp : private member of the device structure, which is a pointer to the
5520 * s2io_nic structure.
1da177e4
LT
5521 * @ep : pointer to the structure with pause parameters given by ethtool.
5522 * Description:
5523 * Returns the Pause frame generation and reception capability of the NIC.
5524 * Return value:
5525 * void
5526 */
5527static void s2io_ethtool_getpause_data(struct net_device *dev,
5528 struct ethtool_pauseparam *ep)
5529{
5530 u64 val64;
1ee6dd77
RB
5531 struct s2io_nic *sp = dev->priv;
5532 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5533
5534 val64 = readq(&bar0->rmac_pause_cfg);
5535 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5536 ep->tx_pause = TRUE;
5537 if (val64 & RMAC_PAUSE_RX_ENABLE)
5538 ep->rx_pause = TRUE;
5539 ep->autoneg = FALSE;
5540}
5541
5542/**
5543 * s2io_ethtool_setpause_data - set/reset pause frame generation.
20346722 5544 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5545 * s2io_nic structure.
5546 * @ep : pointer to the structure with pause parameters given by ethtool.
5547 * Description:
5548 * It can be used to set or reset Pause frame generation or reception
5549 * support of the NIC.
5550 * Return value:
5551 * int, returns 0 on Success
5552 */
5553
5554static int s2io_ethtool_setpause_data(struct net_device *dev,
20346722 5555 struct ethtool_pauseparam *ep)
1da177e4
LT
5556{
5557 u64 val64;
1ee6dd77
RB
5558 struct s2io_nic *sp = dev->priv;
5559 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5560
5561 val64 = readq(&bar0->rmac_pause_cfg);
5562 if (ep->tx_pause)
5563 val64 |= RMAC_PAUSE_GEN_ENABLE;
5564 else
5565 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5566 if (ep->rx_pause)
5567 val64 |= RMAC_PAUSE_RX_ENABLE;
5568 else
5569 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5570 writeq(val64, &bar0->rmac_pause_cfg);
5571 return 0;
5572}
5573
5574/**
5575 * read_eeprom - reads 4 bytes of data from user given offset.
20346722 5576 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5577 * s2io_nic structure.
5578 * @off : offset at which the data must be written
5579 * @data : Its an output parameter where the data read at the given
20346722 5580 * offset is stored.
1da177e4 5581 * Description:
20346722 5582 * Will read 4 bytes of data from the user given offset and return the
1da177e4
LT
5583 * read data.
5584 * NOTE: Will allow to read only part of the EEPROM visible through the
5585 * I2C bus.
5586 * Return value:
5587 * -1 on failure and 0 on success.
5588 */
5589
5590#define S2IO_DEV_ID 5
1ee6dd77 5591static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
1da177e4
LT
5592{
5593 int ret = -1;
5594 u32 exit_cnt = 0;
5595 u64 val64;
1ee6dd77 5596 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5597
ad4ebed0 5598 if (sp->device_type == XFRAME_I_DEVICE) {
5599 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5600 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5601 I2C_CONTROL_CNTL_START;
5602 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
1da177e4 5603
ad4ebed0 5604 while (exit_cnt < 5) {
5605 val64 = readq(&bar0->i2c_control);
5606 if (I2C_CONTROL_CNTL_END(val64)) {
5607 *data = I2C_CONTROL_GET_DATA(val64);
5608 ret = 0;
5609 break;
5610 }
5611 msleep(50);
5612 exit_cnt++;
1da177e4 5613 }
1da177e4
LT
5614 }
5615
ad4ebed0 5616 if (sp->device_type == XFRAME_II_DEVICE) {
5617 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5618 SPI_CONTROL_BYTECNT(0x3) |
ad4ebed0 5619 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5620 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5621 val64 |= SPI_CONTROL_REQ;
5622 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5623 while (exit_cnt < 5) {
5624 val64 = readq(&bar0->spi_control);
5625 if (val64 & SPI_CONTROL_NACK) {
5626 ret = 1;
5627 break;
5628 } else if (val64 & SPI_CONTROL_DONE) {
5629 *data = readq(&bar0->spi_data);
5630 *data &= 0xffffff;
5631 ret = 0;
5632 break;
5633 }
5634 msleep(50);
5635 exit_cnt++;
5636 }
5637 }
1da177e4
LT
5638 return ret;
5639}
5640
5641/**
5642 * write_eeprom - actually writes the relevant part of the data value.
5643 * @sp : private member of the device structure, which is a pointer to the
5644 * s2io_nic structure.
5645 * @off : offset at which the data must be written
5646 * @data : The data that is to be written
20346722 5647 * @cnt : Number of bytes of the data that are actually to be written into
1da177e4
LT
5648 * the Eeprom. (max of 3)
5649 * Description:
5650 * Actually writes the relevant part of the data value into the Eeprom
5651 * through the I2C bus.
5652 * Return value:
5653 * 0 on success, -1 on failure.
5654 */
5655
1ee6dd77 5656static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
1da177e4
LT
5657{
5658 int exit_cnt = 0, ret = -1;
5659 u64 val64;
1ee6dd77 5660 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5661
ad4ebed0 5662 if (sp->device_type == XFRAME_I_DEVICE) {
5663 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5664 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5665 I2C_CONTROL_CNTL_START;
5666 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5667
5668 while (exit_cnt < 5) {
5669 val64 = readq(&bar0->i2c_control);
5670 if (I2C_CONTROL_CNTL_END(val64)) {
5671 if (!(val64 & I2C_CONTROL_NACK))
5672 ret = 0;
5673 break;
5674 }
5675 msleep(50);
5676 exit_cnt++;
5677 }
5678 }
1da177e4 5679
ad4ebed0 5680 if (sp->device_type == XFRAME_II_DEVICE) {
5681 int write_cnt = (cnt == 8) ? 0 : cnt;
5682 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5683
5684 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5685 SPI_CONTROL_BYTECNT(write_cnt) |
ad4ebed0 5686 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5687 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5688 val64 |= SPI_CONTROL_REQ;
5689 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5690 while (exit_cnt < 5) {
5691 val64 = readq(&bar0->spi_control);
5692 if (val64 & SPI_CONTROL_NACK) {
5693 ret = 1;
5694 break;
5695 } else if (val64 & SPI_CONTROL_DONE) {
1da177e4 5696 ret = 0;
ad4ebed0 5697 break;
5698 }
5699 msleep(50);
5700 exit_cnt++;
1da177e4 5701 }
1da177e4 5702 }
1da177e4
LT
5703 return ret;
5704}
1ee6dd77 5705static void s2io_vpd_read(struct s2io_nic *nic)
9dc737a7 5706{
b41477f3
AR
5707 u8 *vpd_data;
5708 u8 data;
9dc737a7
AR
5709 int i=0, cnt, fail = 0;
5710 int vpd_addr = 0x80;
5711
5712 if (nic->device_type == XFRAME_II_DEVICE) {
5713 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5714 vpd_addr = 0x80;
5715 }
5716 else {
5717 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5718 vpd_addr = 0x50;
5719 }
19a60522 5720 strcpy(nic->serial_num, "NOT AVAILABLE");
9dc737a7 5721
b41477f3 5722 vpd_data = kmalloc(256, GFP_KERNEL);
c53d4945
SH
5723 if (!vpd_data) {
5724 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
b41477f3 5725 return;
c53d4945 5726 }
491976b2 5727 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
b41477f3 5728
9dc737a7
AR
5729 for (i = 0; i < 256; i +=4 ) {
5730 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5731 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5732 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5733 for (cnt = 0; cnt <5; cnt++) {
5734 msleep(2);
5735 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5736 if (data == 0x80)
5737 break;
5738 }
5739 if (cnt >= 5) {
5740 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5741 fail = 1;
5742 break;
5743 }
5744 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5745 (u32 *)&vpd_data[i]);
5746 }
19a60522
SS
5747
5748 if(!fail) {
5749 /* read serial number of adapter */
5750 for (cnt = 0; cnt < 256; cnt++) {
5751 if ((vpd_data[cnt] == 'S') &&
5752 (vpd_data[cnt+1] == 'N') &&
5753 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5754 memset(nic->serial_num, 0, VPD_STRING_LEN);
5755 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5756 vpd_data[cnt+2]);
5757 break;
5758 }
5759 }
5760 }
5761
5762 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
9dc737a7
AR
5763 memset(nic->product_name, 0, vpd_data[1]);
5764 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5765 }
b41477f3 5766 kfree(vpd_data);
491976b2 5767 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
9dc737a7
AR
5768}
5769
1da177e4
LT
5770/**
5771 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5772 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
20346722 5773 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5774 * containing all relevant information.
5775 * @data_buf : user defined value to be written into Eeprom.
5776 * Description: Reads the values stored in the Eeprom at given offset
5777 * for a given length. Stores these values int the input argument data
5778 * buffer 'data_buf' and returns these to the caller (ethtool.)
5779 * Return value:
5780 * int 0 on success
5781 */
5782
5783static int s2io_ethtool_geeprom(struct net_device *dev,
20346722 5784 struct ethtool_eeprom *eeprom, u8 * data_buf)
1da177e4 5785{
ad4ebed0 5786 u32 i, valid;
5787 u64 data;
1ee6dd77 5788 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5789
5790 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5791
5792 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5793 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5794
5795 for (i = 0; i < eeprom->len; i += 4) {
5796 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5797 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5798 return -EFAULT;
5799 }
5800 valid = INV(data);
5801 memcpy((data_buf + i), &valid, 4);
5802 }
5803 return 0;
5804}
5805
5806/**
5807 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5808 * @sp : private member of the device structure, which is a pointer to the
5809 * s2io_nic structure.
20346722 5810 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5811 * containing all relevant information.
5812 * @data_buf ; user defined value to be written into Eeprom.
5813 * Description:
5814 * Tries to write the user provided value in the Eeprom, at the offset
5815 * given by the user.
5816 * Return value:
5817 * 0 on success, -EFAULT on failure.
5818 */
5819
5820static int s2io_ethtool_seeprom(struct net_device *dev,
5821 struct ethtool_eeprom *eeprom,
5822 u8 * data_buf)
5823{
5824 int len = eeprom->len, cnt = 0;
ad4ebed0 5825 u64 valid = 0, data;
1ee6dd77 5826 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5827
5828 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5829 DBG_PRINT(ERR_DBG,
5830 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5831 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5832 eeprom->magic);
5833 return -EFAULT;
5834 }
5835
5836 while (len) {
5837 data = (u32) data_buf[cnt] & 0x000000FF;
5838 if (data) {
5839 valid = (u32) (data << 24);
5840 } else
5841 valid = data;
5842
5843 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5844 DBG_PRINT(ERR_DBG,
5845 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5846 DBG_PRINT(ERR_DBG,
5847 "write into the specified offset\n");
5848 return -EFAULT;
5849 }
5850 cnt++;
5851 len--;
5852 }
5853
5854 return 0;
5855}
5856
5857/**
20346722 5858 * s2io_register_test - reads and writes into all clock domains.
5859 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5860 * s2io_nic structure.
5861 * @data : variable that returns the result of each of the test conducted b
5862 * by the driver.
5863 * Description:
5864 * Read and write into all clock domains. The NIC has 3 clock domains,
5865 * see that registers in all the three regions are accessible.
5866 * Return value:
5867 * 0 on success.
5868 */
5869
1ee6dd77 5870static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 5871{
1ee6dd77 5872 struct XENA_dev_config __iomem *bar0 = sp->bar0;
ad4ebed0 5873 u64 val64 = 0, exp_val;
1da177e4
LT
5874 int fail = 0;
5875
20346722 5876 val64 = readq(&bar0->pif_rd_swapper_fb);
5877 if (val64 != 0x123456789abcdefULL) {
1da177e4
LT
5878 fail = 1;
5879 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5880 }
5881
5882 val64 = readq(&bar0->rmac_pause_cfg);
5883 if (val64 != 0xc000ffff00000000ULL) {
5884 fail = 1;
5885 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5886 }
5887
5888 val64 = readq(&bar0->rx_queue_cfg);
ad4ebed0 5889 if (sp->device_type == XFRAME_II_DEVICE)
5890 exp_val = 0x0404040404040404ULL;
5891 else
5892 exp_val = 0x0808080808080808ULL;
5893 if (val64 != exp_val) {
1da177e4
LT
5894 fail = 1;
5895 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5896 }
5897
5898 val64 = readq(&bar0->xgxs_efifo_cfg);
5899 if (val64 != 0x000000001923141EULL) {
5900 fail = 1;
5901 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5902 }
5903
5904 val64 = 0x5A5A5A5A5A5A5A5AULL;
5905 writeq(val64, &bar0->xmsi_data);
5906 val64 = readq(&bar0->xmsi_data);
5907 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5908 fail = 1;
5909 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5910 }
5911
5912 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5913 writeq(val64, &bar0->xmsi_data);
5914 val64 = readq(&bar0->xmsi_data);
5915 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5916 fail = 1;
5917 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5918 }
5919
5920 *data = fail;
ad4ebed0 5921 return fail;
1da177e4
LT
5922}
5923
5924/**
20346722 5925 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
1da177e4
LT
5926 * @sp : private member of the device structure, which is a pointer to the
5927 * s2io_nic structure.
5928 * @data:variable that returns the result of each of the test conducted by
5929 * the driver.
5930 * Description:
20346722 5931 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
1da177e4
LT
5932 * register.
5933 * Return value:
5934 * 0 on success.
5935 */
5936
1ee6dd77 5937static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
1da177e4
LT
5938{
5939 int fail = 0;
ad4ebed0 5940 u64 ret_data, org_4F0, org_7F0;
5941 u8 saved_4F0 = 0, saved_7F0 = 0;
5942 struct net_device *dev = sp->dev;
1da177e4
LT
5943
5944 /* Test Write Error at offset 0 */
ad4ebed0 5945 /* Note that SPI interface allows write access to all areas
5946 * of EEPROM. Hence doing all negative testing only for Xframe I.
5947 */
5948 if (sp->device_type == XFRAME_I_DEVICE)
5949 if (!write_eeprom(sp, 0, 0, 3))
5950 fail = 1;
5951
5952 /* Save current values at offsets 0x4F0 and 0x7F0 */
5953 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5954 saved_4F0 = 1;
5955 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5956 saved_7F0 = 1;
1da177e4
LT
5957
5958 /* Test Write at offset 4f0 */
ad4ebed0 5959 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
1da177e4
LT
5960 fail = 1;
5961 if (read_eeprom(sp, 0x4F0, &ret_data))
5962 fail = 1;
5963
ad4ebed0 5964 if (ret_data != 0x012345) {
26b7625c
AM
5965 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5966 "Data written %llx Data read %llx\n",
5967 dev->name, (unsigned long long)0x12345,
5968 (unsigned long long)ret_data);
1da177e4 5969 fail = 1;
ad4ebed0 5970 }
1da177e4
LT
5971
5972 /* Reset the EEPROM data go FFFF */
ad4ebed0 5973 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
1da177e4
LT
5974
5975 /* Test Write Request Error at offset 0x7c */
ad4ebed0 5976 if (sp->device_type == XFRAME_I_DEVICE)
5977 if (!write_eeprom(sp, 0x07C, 0, 3))
5978 fail = 1;
1da177e4 5979
ad4ebed0 5980 /* Test Write Request at offset 0x7f0 */
5981 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
1da177e4 5982 fail = 1;
ad4ebed0 5983 if (read_eeprom(sp, 0x7F0, &ret_data))
1da177e4
LT
5984 fail = 1;
5985
ad4ebed0 5986 if (ret_data != 0x012345) {
26b7625c
AM
5987 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5988 "Data written %llx Data read %llx\n",
5989 dev->name, (unsigned long long)0x12345,
5990 (unsigned long long)ret_data);
1da177e4 5991 fail = 1;
ad4ebed0 5992 }
1da177e4
LT
5993
5994 /* Reset the EEPROM data go FFFF */
ad4ebed0 5995 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
1da177e4 5996
ad4ebed0 5997 if (sp->device_type == XFRAME_I_DEVICE) {
5998 /* Test Write Error at offset 0x80 */
5999 if (!write_eeprom(sp, 0x080, 0, 3))
6000 fail = 1;
1da177e4 6001
ad4ebed0 6002 /* Test Write Error at offset 0xfc */
6003 if (!write_eeprom(sp, 0x0FC, 0, 3))
6004 fail = 1;
1da177e4 6005
ad4ebed0 6006 /* Test Write Error at offset 0x100 */
6007 if (!write_eeprom(sp, 0x100, 0, 3))
6008 fail = 1;
1da177e4 6009
ad4ebed0 6010 /* Test Write Error at offset 4ec */
6011 if (!write_eeprom(sp, 0x4EC, 0, 3))
6012 fail = 1;
6013 }
6014
6015 /* Restore values at offsets 0x4F0 and 0x7F0 */
6016 if (saved_4F0)
6017 write_eeprom(sp, 0x4F0, org_4F0, 3);
6018 if (saved_7F0)
6019 write_eeprom(sp, 0x7F0, org_7F0, 3);
1da177e4
LT
6020
6021 *data = fail;
ad4ebed0 6022 return fail;
1da177e4
LT
6023}
6024
6025/**
6026 * s2io_bist_test - invokes the MemBist test of the card .
20346722 6027 * @sp : private member of the device structure, which is a pointer to the
1da177e4 6028 * s2io_nic structure.
20346722 6029 * @data:variable that returns the result of each of the test conducted by
1da177e4
LT
6030 * the driver.
6031 * Description:
6032 * This invokes the MemBist test of the card. We give around
6033 * 2 secs time for the Test to complete. If it's still not complete
20346722 6034 * within this peiod, we consider that the test failed.
1da177e4
LT
6035 * Return value:
6036 * 0 on success and -1 on failure.
6037 */
6038
1ee6dd77 6039static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
1da177e4
LT
6040{
6041 u8 bist = 0;
6042 int cnt = 0, ret = -1;
6043
6044 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6045 bist |= PCI_BIST_START;
6046 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6047
6048 while (cnt < 20) {
6049 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6050 if (!(bist & PCI_BIST_START)) {
6051 *data = (bist & PCI_BIST_CODE_MASK);
6052 ret = 0;
6053 break;
6054 }
6055 msleep(100);
6056 cnt++;
6057 }
6058
6059 return ret;
6060}
6061
6062/**
20346722 6063 * s2io-link_test - verifies the link state of the nic
6064 * @sp ; private member of the device structure, which is a pointer to the
1da177e4
LT
6065 * s2io_nic structure.
6066 * @data: variable that returns the result of each of the test conducted by
6067 * the driver.
6068 * Description:
20346722 6069 * The function verifies the link state of the NIC and updates the input
1da177e4
LT
6070 * argument 'data' appropriately.
6071 * Return value:
6072 * 0 on success.
6073 */
6074
1ee6dd77 6075static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 6076{
1ee6dd77 6077 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
6078 u64 val64;
6079
6080 val64 = readq(&bar0->adapter_status);
c92ca04b 6081 if(!(LINK_IS_UP(val64)))
1da177e4 6082 *data = 1;
c92ca04b
AR
6083 else
6084 *data = 0;
1da177e4 6085
b41477f3 6086 return *data;
1da177e4
LT
6087}
6088
6089/**
20346722 6090 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6091 * @sp - private member of the device structure, which is a pointer to the
1da177e4 6092 * s2io_nic structure.
20346722 6093 * @data - variable that returns the result of each of the test
1da177e4
LT
6094 * conducted by the driver.
6095 * Description:
20346722 6096 * This is one of the offline test that tests the read and write
1da177e4
LT
6097 * access to the RldRam chip on the NIC.
6098 * Return value:
6099 * 0 on success.
6100 */
6101
1ee6dd77 6102static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 6103{
1ee6dd77 6104 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 6105 u64 val64;
ad4ebed0 6106 int cnt, iteration = 0, test_fail = 0;
1da177e4
LT
6107
6108 val64 = readq(&bar0->adapter_control);
6109 val64 &= ~ADAPTER_ECC_EN;
6110 writeq(val64, &bar0->adapter_control);
6111
6112 val64 = readq(&bar0->mc_rldram_test_ctrl);
6113 val64 |= MC_RLDRAM_TEST_MODE;
ad4ebed0 6114 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6115
6116 val64 = readq(&bar0->mc_rldram_mrs);
6117 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6118 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6119
6120 val64 |= MC_RLDRAM_MRS_ENABLE;
6121 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6122
6123 while (iteration < 2) {
6124 val64 = 0x55555555aaaa0000ULL;
6125 if (iteration == 1) {
6126 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6127 }
6128 writeq(val64, &bar0->mc_rldram_test_d0);
6129
6130 val64 = 0xaaaa5a5555550000ULL;
6131 if (iteration == 1) {
6132 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6133 }
6134 writeq(val64, &bar0->mc_rldram_test_d1);
6135
6136 val64 = 0x55aaaaaaaa5a0000ULL;
6137 if (iteration == 1) {
6138 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6139 }
6140 writeq(val64, &bar0->mc_rldram_test_d2);
6141
ad4ebed0 6142 val64 = (u64) (0x0000003ffffe0100ULL);
1da177e4
LT
6143 writeq(val64, &bar0->mc_rldram_test_add);
6144
ad4ebed0 6145 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
6146 MC_RLDRAM_TEST_GO;
6147 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6148
6149 for (cnt = 0; cnt < 5; cnt++) {
6150 val64 = readq(&bar0->mc_rldram_test_ctrl);
6151 if (val64 & MC_RLDRAM_TEST_DONE)
6152 break;
6153 msleep(200);
6154 }
6155
6156 if (cnt == 5)
6157 break;
6158
ad4ebed0 6159 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6160 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6161
6162 for (cnt = 0; cnt < 5; cnt++) {
6163 val64 = readq(&bar0->mc_rldram_test_ctrl);
6164 if (val64 & MC_RLDRAM_TEST_DONE)
6165 break;
6166 msleep(500);
6167 }
6168
6169 if (cnt == 5)
6170 break;
6171
6172 val64 = readq(&bar0->mc_rldram_test_ctrl);
ad4ebed0 6173 if (!(val64 & MC_RLDRAM_TEST_PASS))
6174 test_fail = 1;
1da177e4
LT
6175
6176 iteration++;
6177 }
6178
ad4ebed0 6179 *data = test_fail;
1da177e4 6180
ad4ebed0 6181 /* Bring the adapter out of test mode */
6182 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6183
6184 return test_fail;
1da177e4
LT
6185}
6186
6187/**
6188 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6189 * @sp : private member of the device structure, which is a pointer to the
6190 * s2io_nic structure.
6191 * @ethtest : pointer to a ethtool command specific structure that will be
6192 * returned to the user.
20346722 6193 * @data : variable that returns the result of each of the test
1da177e4
LT
6194 * conducted by the driver.
6195 * Description:
6196 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6197 * the health of the card.
6198 * Return value:
6199 * void
6200 */
6201
6202static void s2io_ethtool_test(struct net_device *dev,
6203 struct ethtool_test *ethtest,
6204 uint64_t * data)
6205{
1ee6dd77 6206 struct s2io_nic *sp = dev->priv;
1da177e4
LT
6207 int orig_state = netif_running(sp->dev);
6208
6209 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6210 /* Offline Tests. */
20346722 6211 if (orig_state)
1da177e4 6212 s2io_close(sp->dev);
1da177e4
LT
6213
6214 if (s2io_register_test(sp, &data[0]))
6215 ethtest->flags |= ETH_TEST_FL_FAILED;
6216
6217 s2io_reset(sp);
1da177e4
LT
6218
6219 if (s2io_rldram_test(sp, &data[3]))
6220 ethtest->flags |= ETH_TEST_FL_FAILED;
6221
6222 s2io_reset(sp);
1da177e4
LT
6223
6224 if (s2io_eeprom_test(sp, &data[1]))
6225 ethtest->flags |= ETH_TEST_FL_FAILED;
6226
6227 if (s2io_bist_test(sp, &data[4]))
6228 ethtest->flags |= ETH_TEST_FL_FAILED;
6229
6230 if (orig_state)
6231 s2io_open(sp->dev);
6232
6233 data[2] = 0;
6234 } else {
6235 /* Online Tests. */
6236 if (!orig_state) {
6237 DBG_PRINT(ERR_DBG,
6238 "%s: is not up, cannot run test\n",
6239 dev->name);
6240 data[0] = -1;
6241 data[1] = -1;
6242 data[2] = -1;
6243 data[3] = -1;
6244 data[4] = -1;
6245 }
6246
6247 if (s2io_link_test(sp, &data[2]))
6248 ethtest->flags |= ETH_TEST_FL_FAILED;
6249
6250 data[0] = 0;
6251 data[1] = 0;
6252 data[3] = 0;
6253 data[4] = 0;
6254 }
6255}
6256
6257static void s2io_get_ethtool_stats(struct net_device *dev,
6258 struct ethtool_stats *estats,
6259 u64 * tmp_stats)
6260{
8116f3cf 6261 int i = 0, k;
1ee6dd77
RB
6262 struct s2io_nic *sp = dev->priv;
6263 struct stat_block *stat_info = sp->mac_control.stats_info;
1da177e4 6264
7ba013ac 6265 s2io_updt_stats(sp);
541ae68f 6266 tmp_stats[i++] =
6267 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
6268 le32_to_cpu(stat_info->tmac_frms);
6269 tmp_stats[i++] =
6270 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6271 le32_to_cpu(stat_info->tmac_data_octets);
1da177e4 6272 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
541ae68f 6273 tmp_stats[i++] =
6274 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6275 le32_to_cpu(stat_info->tmac_mcst_frms);
6276 tmp_stats[i++] =
6277 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6278 le32_to_cpu(stat_info->tmac_bcst_frms);
1da177e4 6279 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
bd1034f0
AR
6280 tmp_stats[i++] =
6281 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6282 le32_to_cpu(stat_info->tmac_ttl_octets);
6283 tmp_stats[i++] =
6284 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6285 le32_to_cpu(stat_info->tmac_ucst_frms);
6286 tmp_stats[i++] =
6287 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6288 le32_to_cpu(stat_info->tmac_nucst_frms);
541ae68f 6289 tmp_stats[i++] =
6290 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6291 le32_to_cpu(stat_info->tmac_any_err_frms);
bd1034f0 6292 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
1da177e4 6293 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
541ae68f 6294 tmp_stats[i++] =
6295 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6296 le32_to_cpu(stat_info->tmac_vld_ip);
6297 tmp_stats[i++] =
6298 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6299 le32_to_cpu(stat_info->tmac_drop_ip);
6300 tmp_stats[i++] =
6301 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6302 le32_to_cpu(stat_info->tmac_icmp);
6303 tmp_stats[i++] =
6304 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6305 le32_to_cpu(stat_info->tmac_rst_tcp);
1da177e4 6306 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
541ae68f 6307 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6308 le32_to_cpu(stat_info->tmac_udp);
6309 tmp_stats[i++] =
6310 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6311 le32_to_cpu(stat_info->rmac_vld_frms);
6312 tmp_stats[i++] =
6313 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6314 le32_to_cpu(stat_info->rmac_data_octets);
1da177e4
LT
6315 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6316 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
541ae68f 6317 tmp_stats[i++] =
6318 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6319 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6320 tmp_stats[i++] =
6321 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6322 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
1da177e4 6323 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
bd1034f0 6324 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
1da177e4
LT
6325 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6326 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
bd1034f0
AR
6327 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6328 tmp_stats[i++] =
6329 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6330 le32_to_cpu(stat_info->rmac_ttl_octets);
6331 tmp_stats[i++] =
6332 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6333 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6334 tmp_stats[i++] =
6335 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6336 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
541ae68f 6337 tmp_stats[i++] =
6338 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6339 le32_to_cpu(stat_info->rmac_discarded_frms);
bd1034f0
AR
6340 tmp_stats[i++] =
6341 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6342 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6343 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6344 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
541ae68f 6345 tmp_stats[i++] =
6346 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6347 le32_to_cpu(stat_info->rmac_usized_frms);
6348 tmp_stats[i++] =
6349 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6350 le32_to_cpu(stat_info->rmac_osized_frms);
6351 tmp_stats[i++] =
6352 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6353 le32_to_cpu(stat_info->rmac_frag_frms);
6354 tmp_stats[i++] =
6355 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6356 le32_to_cpu(stat_info->rmac_jabber_frms);
bd1034f0
AR
6357 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6358 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6359 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6360 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6361 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6362 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6363 tmp_stats[i++] =
6364 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
541ae68f 6365 le32_to_cpu(stat_info->rmac_ip);
1da177e4
LT
6366 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6367 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
bd1034f0
AR
6368 tmp_stats[i++] =
6369 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
541ae68f 6370 le32_to_cpu(stat_info->rmac_drop_ip);
bd1034f0
AR
6371 tmp_stats[i++] =
6372 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
541ae68f 6373 le32_to_cpu(stat_info->rmac_icmp);
1da177e4 6374 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
bd1034f0
AR
6375 tmp_stats[i++] =
6376 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
541ae68f 6377 le32_to_cpu(stat_info->rmac_udp);
6378 tmp_stats[i++] =
6379 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6380 le32_to_cpu(stat_info->rmac_err_drp_udp);
bd1034f0
AR
6381 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6382 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6383 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6384 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6385 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6386 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6387 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6388 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6389 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6390 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6391 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6392 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6393 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6394 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6395 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6396 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6397 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
541ae68f 6398 tmp_stats[i++] =
6399 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6400 le32_to_cpu(stat_info->rmac_pause_cnt);
bd1034f0
AR
6401 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6402 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
541ae68f 6403 tmp_stats[i++] =
6404 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6405 le32_to_cpu(stat_info->rmac_accepted_ip);
1da177e4 6406 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
bd1034f0
AR
6407 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6408 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6409 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6410 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6411 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6412 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6413 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6414 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6415 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6416 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6417 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6418 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6419 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6420 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6421 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6422 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6423 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6424 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
fa1f0cb3
SS
6425
6426 /* Enhanced statistics exist only for Hercules */
6427 if(sp->device_type == XFRAME_II_DEVICE) {
6428 tmp_stats[i++] =
6429 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6430 tmp_stats[i++] =
6431 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6432 tmp_stats[i++] =
6433 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6434 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6435 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6436 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6437 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6438 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6439 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6440 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6441 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6442 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6443 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6444 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6445 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6446 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6447 }
6448
7ba013ac 6449 tmp_stats[i++] = 0;
6450 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6451 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
bd1034f0
AR
6452 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6453 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6454 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6455 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
8116f3cf
SS
6456 for (k = 0; k < MAX_RX_RINGS; k++)
6457 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
bd1034f0
AR
6458 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6459 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6460 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6461 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6462 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6463 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6464 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6465 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6466 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6467 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6468 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6469 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
7d3d0439
RA
6470 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6471 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6472 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6473 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
fe931395 6474 if (stat_info->sw_stat.num_aggregations) {
bd1034f0
AR
6475 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6476 int count = 0;
6aa20a22 6477 /*
bd1034f0
AR
6478 * Since 64-bit divide does not work on all platforms,
6479 * do repeated subtraction.
6480 */
6481 while (tmp >= stat_info->sw_stat.num_aggregations) {
6482 tmp -= stat_info->sw_stat.num_aggregations;
6483 count++;
6484 }
6485 tmp_stats[i++] = count;
fe931395 6486 }
bd1034f0
AR
6487 else
6488 tmp_stats[i++] = 0;
c53d4945 6489 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
491abf25 6490 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
c53d4945 6491 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
491976b2
SH
6492 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6493 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6494 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6495 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6496 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6497 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6498
6499 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6500 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6501 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6502 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6503 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6504
6505 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6506 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6507 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6508 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6509 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6510 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6511 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6512 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6513 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
8116f3cf
SS
6514 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6515 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6516 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6517 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6518 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6519 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6520 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6521 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6522 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6523 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6524 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6525 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6526 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6527 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6528 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6529 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6530 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
1da177e4
LT
6531}
6532
ac1f60db 6533static int s2io_ethtool_get_regs_len(struct net_device *dev)
1da177e4
LT
6534{
6535 return (XENA_REG_SPACE);
6536}
6537
6538
ac1f60db 6539static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
1da177e4 6540{
1ee6dd77 6541 struct s2io_nic *sp = dev->priv;
1da177e4
LT
6542
6543 return (sp->rx_csum);
6544}
ac1f60db
AB
6545
6546static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
1da177e4 6547{
1ee6dd77 6548 struct s2io_nic *sp = dev->priv;
1da177e4
LT
6549
6550 if (data)
6551 sp->rx_csum = 1;
6552 else
6553 sp->rx_csum = 0;
6554
6555 return 0;
6556}
ac1f60db
AB
6557
6558static int s2io_get_eeprom_len(struct net_device *dev)
1da177e4
LT
6559{
6560 return (XENA_EEPROM_SPACE);
6561}
6562
b9f2c044 6563static int s2io_get_sset_count(struct net_device *dev, int sset)
1da177e4 6564{
b9f2c044
JG
6565 struct s2io_nic *sp = dev->priv;
6566
6567 switch (sset) {
6568 case ETH_SS_TEST:
6569 return S2IO_TEST_LEN;
6570 case ETH_SS_STATS:
6571 switch(sp->device_type) {
6572 case XFRAME_I_DEVICE:
6573 return XFRAME_I_STAT_LEN;
6574 case XFRAME_II_DEVICE:
6575 return XFRAME_II_STAT_LEN;
6576 default:
6577 return 0;
6578 }
6579 default:
6580 return -EOPNOTSUPP;
6581 }
1da177e4 6582}
ac1f60db
AB
6583
6584static void s2io_ethtool_get_strings(struct net_device *dev,
6585 u32 stringset, u8 * data)
1da177e4 6586{
fa1f0cb3
SS
6587 int stat_size = 0;
6588 struct s2io_nic *sp = dev->priv;
6589
1da177e4
LT
6590 switch (stringset) {
6591 case ETH_SS_TEST:
6592 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6593 break;
6594 case ETH_SS_STATS:
fa1f0cb3
SS
6595 stat_size = sizeof(ethtool_xena_stats_keys);
6596 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6597 if(sp->device_type == XFRAME_II_DEVICE) {
6598 memcpy(data + stat_size,
6599 &ethtool_enhanced_stats_keys,
6600 sizeof(ethtool_enhanced_stats_keys));
6601 stat_size += sizeof(ethtool_enhanced_stats_keys);
6602 }
6603
6604 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6605 sizeof(ethtool_driver_stats_keys));
1da177e4
LT
6606 }
6607}
1da177e4 6608
ac1f60db 6609static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
1da177e4
LT
6610{
6611 if (data)
6612 dev->features |= NETIF_F_IP_CSUM;
6613 else
6614 dev->features &= ~NETIF_F_IP_CSUM;
6615
6616 return 0;
6617}
6618
75c30b13
AR
6619static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6620{
6621 return (dev->features & NETIF_F_TSO) != 0;
6622}
6623static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6624{
6625 if (data)
6626 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6627 else
6628 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6629
6630 return 0;
6631}
1da177e4 6632
7282d491 6633static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
6634 .get_settings = s2io_ethtool_gset,
6635 .set_settings = s2io_ethtool_sset,
6636 .get_drvinfo = s2io_ethtool_gdrvinfo,
6637 .get_regs_len = s2io_ethtool_get_regs_len,
6638 .get_regs = s2io_ethtool_gregs,
6639 .get_link = ethtool_op_get_link,
6640 .get_eeprom_len = s2io_get_eeprom_len,
6641 .get_eeprom = s2io_ethtool_geeprom,
6642 .set_eeprom = s2io_ethtool_seeprom,
0cec35eb 6643 .get_ringparam = s2io_ethtool_gringparam,
1da177e4
LT
6644 .get_pauseparam = s2io_ethtool_getpause_data,
6645 .set_pauseparam = s2io_ethtool_setpause_data,
6646 .get_rx_csum = s2io_ethtool_get_rx_csum,
6647 .set_rx_csum = s2io_ethtool_set_rx_csum,
1da177e4 6648 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
1da177e4 6649 .set_sg = ethtool_op_set_sg,
75c30b13
AR
6650 .get_tso = s2io_ethtool_op_get_tso,
6651 .set_tso = s2io_ethtool_op_set_tso,
fed5eccd 6652 .set_ufo = ethtool_op_set_ufo,
1da177e4
LT
6653 .self_test = s2io_ethtool_test,
6654 .get_strings = s2io_ethtool_get_strings,
6655 .phys_id = s2io_ethtool_idnic,
b9f2c044
JG
6656 .get_ethtool_stats = s2io_get_ethtool_stats,
6657 .get_sset_count = s2io_get_sset_count,
1da177e4
LT
6658};
6659
6660/**
20346722 6661 * s2io_ioctl - Entry point for the Ioctl
1da177e4
LT
6662 * @dev : Device pointer.
6663 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6664 * a proprietary structure used to pass information to the driver.
6665 * @cmd : This is used to distinguish between the different commands that
6666 * can be passed to the IOCTL functions.
6667 * Description:
20346722 6668 * Currently there are no special functionality supported in IOCTL, hence
6669 * function always return EOPNOTSUPPORTED
1da177e4
LT
6670 */
6671
ac1f60db 6672static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4
LT
6673{
6674 return -EOPNOTSUPP;
6675}
6676
6677/**
6678 * s2io_change_mtu - entry point to change MTU size for the device.
6679 * @dev : device pointer.
6680 * @new_mtu : the new MTU size for the device.
6681 * Description: A driver entry point to change MTU size for the device.
6682 * Before changing the MTU the device must be stopped.
6683 * Return value:
6684 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6685 * file on failure.
6686 */
6687
ac1f60db 6688static int s2io_change_mtu(struct net_device *dev, int new_mtu)
1da177e4 6689{
1ee6dd77 6690 struct s2io_nic *sp = dev->priv;
9f74ffde 6691 int ret = 0;
1da177e4
LT
6692
6693 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6694 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6695 dev->name);
6696 return -EPERM;
6697 }
6698
1da177e4 6699 dev->mtu = new_mtu;
d8892c6e 6700 if (netif_running(dev)) {
3a3d5756 6701 s2io_stop_all_tx_queue(sp);
e6a8fee2 6702 s2io_card_down(sp);
9f74ffde
SH
6703 ret = s2io_card_up(sp);
6704 if (ret) {
d8892c6e 6705 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6706 __FUNCTION__);
9f74ffde 6707 return ret;
d8892c6e 6708 }
3a3d5756 6709 s2io_wake_all_tx_queue(sp);
d8892c6e 6710 } else { /* Device is down */
1ee6dd77 6711 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d8892c6e 6712 u64 val64 = new_mtu;
6713
6714 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6715 }
1da177e4 6716
9f74ffde 6717 return ret;
1da177e4
LT
6718}
6719
1da177e4
LT
6720/**
6721 * s2io_set_link - Set the LInk status
6722 * @data: long pointer to device private structue
6723 * Description: Sets the link status for the adapter
6724 */
6725
c4028958 6726static void s2io_set_link(struct work_struct *work)
1da177e4 6727{
1ee6dd77 6728 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
1da177e4 6729 struct net_device *dev = nic->dev;
1ee6dd77 6730 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
6731 register u64 val64;
6732 u16 subid;
6733
22747d6b
FR
6734 rtnl_lock();
6735
6736 if (!netif_running(dev))
6737 goto out_unlock;
6738
92b84437 6739 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
1da177e4 6740 /* The card is being reset, no point doing anything */
22747d6b 6741 goto out_unlock;
1da177e4
LT
6742 }
6743
6744 subid = nic->pdev->subsystem_device;
a371a07d 6745 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6746 /*
6747 * Allow a small delay for the NICs self initiated
6748 * cleanup to complete.
6749 */
6750 msleep(100);
6751 }
1da177e4
LT
6752
6753 val64 = readq(&bar0->adapter_status);
19a60522
SS
6754 if (LINK_IS_UP(val64)) {
6755 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6756 if (verify_xena_quiescence(nic)) {
6757 val64 = readq(&bar0->adapter_control);
6758 val64 |= ADAPTER_CNTL_EN;
1da177e4 6759 writeq(val64, &bar0->adapter_control);
19a60522
SS
6760 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6761 nic->device_type, subid)) {
6762 val64 = readq(&bar0->gpio_control);
6763 val64 |= GPIO_CTRL_GPIO_0;
6764 writeq(val64, &bar0->gpio_control);
6765 val64 = readq(&bar0->gpio_control);
6766 } else {
6767 val64 |= ADAPTER_LED_ON;
6768 writeq(val64, &bar0->adapter_control);
a371a07d 6769 }
1da177e4 6770 nic->device_enabled_once = TRUE;
19a60522
SS
6771 } else {
6772 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6773 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
3a3d5756 6774 s2io_stop_all_tx_queue(nic);
1da177e4 6775 }
19a60522 6776 }
92c48799
SS
6777 val64 = readq(&bar0->adapter_control);
6778 val64 |= ADAPTER_LED_ON;
6779 writeq(val64, &bar0->adapter_control);
6780 s2io_link(nic, LINK_UP);
19a60522
SS
6781 } else {
6782 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6783 subid)) {
6784 val64 = readq(&bar0->gpio_control);
6785 val64 &= ~GPIO_CTRL_GPIO_0;
6786 writeq(val64, &bar0->gpio_control);
6787 val64 = readq(&bar0->gpio_control);
1da177e4 6788 }
92c48799
SS
6789 /* turn off LED */
6790 val64 = readq(&bar0->adapter_control);
6791 val64 = val64 &(~ADAPTER_LED_ON);
6792 writeq(val64, &bar0->adapter_control);
19a60522 6793 s2io_link(nic, LINK_DOWN);
1da177e4 6794 }
92b84437 6795 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
22747d6b
FR
6796
6797out_unlock:
d8d70caf 6798 rtnl_unlock();
1da177e4
LT
6799}
6800
1ee6dd77
RB
6801static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6802 struct buffAdd *ba,
6803 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6804 u64 *temp2, int size)
5d3213cc
AR
6805{
6806 struct net_device *dev = sp->dev;
491abf25 6807 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
5d3213cc
AR
6808
6809 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6d517a27 6810 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
5d3213cc
AR
6811 /* allocate skb */
6812 if (*skb) {
6813 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6814 /*
6815 * As Rx frame are not going to be processed,
6816 * using same mapped address for the Rxd
6817 * buffer pointer
6818 */
6d517a27 6819 rxdp1->Buffer0_ptr = *temp0;
5d3213cc
AR
6820 } else {
6821 *skb = dev_alloc_skb(size);
6822 if (!(*skb)) {
0c61ed5f 6823 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
c53d4945
SH
6824 DBG_PRINT(INFO_DBG, "memory to allocate ");
6825 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6826 sp->mac_control.stats_info->sw_stat. \
6827 mem_alloc_fail_cnt++;
5d3213cc
AR
6828 return -ENOMEM ;
6829 }
8a4bdbaa 6830 sp->mac_control.stats_info->sw_stat.mem_allocated
491976b2 6831 += (*skb)->truesize;
5d3213cc
AR
6832 /* storing the mapped addr in a temp variable
6833 * such it will be used for next rxd whose
6834 * Host Control is NULL
6835 */
6d517a27 6836 rxdp1->Buffer0_ptr = *temp0 =
5d3213cc
AR
6837 pci_map_single( sp->pdev, (*skb)->data,
6838 size - NET_IP_ALIGN,
6839 PCI_DMA_FROMDEVICE);
491abf25
VP
6840 if( (rxdp1->Buffer0_ptr == 0) ||
6841 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6842 goto memalloc_failed;
6843 }
5d3213cc
AR
6844 rxdp->Host_Control = (unsigned long) (*skb);
6845 }
6846 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6d517a27 6847 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
5d3213cc
AR
6848 /* Two buffer Mode */
6849 if (*skb) {
6d517a27
VP
6850 rxdp3->Buffer2_ptr = *temp2;
6851 rxdp3->Buffer0_ptr = *temp0;
6852 rxdp3->Buffer1_ptr = *temp1;
5d3213cc
AR
6853 } else {
6854 *skb = dev_alloc_skb(size);
2ceaac75 6855 if (!(*skb)) {
c53d4945
SH
6856 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6857 DBG_PRINT(INFO_DBG, "memory to allocate ");
6858 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6859 sp->mac_control.stats_info->sw_stat. \
6860 mem_alloc_fail_cnt++;
2ceaac75
DR
6861 return -ENOMEM;
6862 }
8a4bdbaa 6863 sp->mac_control.stats_info->sw_stat.mem_allocated
491976b2 6864 += (*skb)->truesize;
6d517a27 6865 rxdp3->Buffer2_ptr = *temp2 =
5d3213cc
AR
6866 pci_map_single(sp->pdev, (*skb)->data,
6867 dev->mtu + 4,
6868 PCI_DMA_FROMDEVICE);
491abf25
VP
6869 if( (rxdp3->Buffer2_ptr == 0) ||
6870 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6871 goto memalloc_failed;
6872 }
6d517a27 6873 rxdp3->Buffer0_ptr = *temp0 =
5d3213cc
AR
6874 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6875 PCI_DMA_FROMDEVICE);
491abf25
VP
6876 if( (rxdp3->Buffer0_ptr == 0) ||
6877 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6878 pci_unmap_single (sp->pdev,
3e847423 6879 (dma_addr_t)rxdp3->Buffer2_ptr,
491abf25
VP
6880 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6881 goto memalloc_failed;
6882 }
5d3213cc
AR
6883 rxdp->Host_Control = (unsigned long) (*skb);
6884
6885 /* Buffer-1 will be dummy buffer not used */
6d517a27 6886 rxdp3->Buffer1_ptr = *temp1 =
5d3213cc 6887 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
5d3213cc 6888 PCI_DMA_FROMDEVICE);
491abf25
VP
6889 if( (rxdp3->Buffer1_ptr == 0) ||
6890 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6891 pci_unmap_single (sp->pdev,
3e847423
AV
6892 (dma_addr_t)rxdp3->Buffer0_ptr,
6893 BUF0_LEN, PCI_DMA_FROMDEVICE);
6894 pci_unmap_single (sp->pdev,
6895 (dma_addr_t)rxdp3->Buffer2_ptr,
491abf25
VP
6896 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6897 goto memalloc_failed;
6898 }
5d3213cc
AR
6899 }
6900 }
6901 return 0;
491abf25
VP
6902 memalloc_failed:
6903 stats->pci_map_fail_cnt++;
6904 stats->mem_freed += (*skb)->truesize;
6905 dev_kfree_skb(*skb);
6906 return -ENOMEM;
5d3213cc 6907}
491abf25 6908
1ee6dd77
RB
6909static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6910 int size)
5d3213cc
AR
6911{
6912 struct net_device *dev = sp->dev;
6913 if (sp->rxd_mode == RXD_MODE_1) {
6914 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6915 } else if (sp->rxd_mode == RXD_MODE_3B) {
6916 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6917 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6918 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
5d3213cc
AR
6919 }
6920}
6921
1ee6dd77 6922static int rxd_owner_bit_reset(struct s2io_nic *sp)
5d3213cc
AR
6923{
6924 int i, j, k, blk_cnt = 0, size;
1ee6dd77 6925 struct mac_info * mac_control = &sp->mac_control;
5d3213cc
AR
6926 struct config_param *config = &sp->config;
6927 struct net_device *dev = sp->dev;
1ee6dd77 6928 struct RxD_t *rxdp = NULL;
5d3213cc 6929 struct sk_buff *skb = NULL;
1ee6dd77 6930 struct buffAdd *ba = NULL;
5d3213cc
AR
6931 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6932
6933 /* Calculate the size based on ring mode */
6934 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6935 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6936 if (sp->rxd_mode == RXD_MODE_1)
6937 size += NET_IP_ALIGN;
6938 else if (sp->rxd_mode == RXD_MODE_3B)
6939 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
5d3213cc
AR
6940
6941 for (i = 0; i < config->rx_ring_num; i++) {
6942 blk_cnt = config->rx_cfg[i].num_rxd /
6943 (rxd_count[sp->rxd_mode] +1);
6944
6945 for (j = 0; j < blk_cnt; j++) {
6946 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6947 rxdp = mac_control->rings[i].
6948 rx_blocks[j].rxds[k].virt_addr;
6d517a27 6949 if(sp->rxd_mode == RXD_MODE_3B)
5d3213cc 6950 ba = &mac_control->rings[i].ba[j][k];
ac1f90d6 6951 if (set_rxd_buffer_pointer(sp, rxdp, ba,
5d3213cc
AR
6952 &skb,(u64 *)&temp0_64,
6953 (u64 *)&temp1_64,
ac1f90d6
SS
6954 (u64 *)&temp2_64,
6955 size) == ENOMEM) {
6956 return 0;
6957 }
5d3213cc
AR
6958
6959 set_rxd_buffer_size(sp, rxdp, size);
6960 wmb();
6961 /* flip the Ownership bit to Hardware */
6962 rxdp->Control_1 |= RXD_OWN_XENA;
6963 }
6964 }
6965 }
6966 return 0;
6967
6968}
6969
1ee6dd77 6970static int s2io_add_isr(struct s2io_nic * sp)
1da177e4 6971{
e6a8fee2 6972 int ret = 0;
c92ca04b 6973 struct net_device *dev = sp->dev;
e6a8fee2 6974 int err = 0;
1da177e4 6975
eaae7f72 6976 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
6977 ret = s2io_enable_msi_x(sp);
6978 if (ret) {
6979 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
eaae7f72 6980 sp->config.intr_type = INTA;
20346722 6981 }
1da177e4 6982
1ee6dd77 6983 /* Store the values of the MSIX table in the struct s2io_nic structure */
e6a8fee2 6984 store_xmsi_data(sp);
c92ca04b 6985
e6a8fee2 6986 /* After proper initialization of H/W, register ISR */
eaae7f72 6987 if (sp->config.intr_type == MSI_X) {
fb6a825b 6988 int i, msix_tx_cnt=0,msix_rx_cnt=0;
c92ca04b 6989
e6a8fee2
AR
6990 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6991 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6992 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6993 dev->name, i);
6994 err = request_irq(sp->entries[i].vector,
6995 s2io_msix_fifo_handle, 0, sp->desc[i],
6996 sp->s2io_entries[i].arg);
fb6a825b
SS
6997 /* If either data or addr is zero print it */
6998 if(!(sp->msix_info[i].addr &&
6999 sp->msix_info[i].data)) {
2450022a 7000 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
3459feb8 7001 "Data:0x%llx\n",sp->desc[i],
fb6a825b
SS
7002 (unsigned long long)
7003 sp->msix_info[i].addr,
3459feb8
AV
7004 (unsigned long long)
7005 sp->msix_info[i].data);
fb6a825b
SS
7006 } else {
7007 msix_tx_cnt++;
7008 }
e6a8fee2
AR
7009 } else {
7010 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7011 dev->name, i);
7012 err = request_irq(sp->entries[i].vector,
7013 s2io_msix_ring_handle, 0, sp->desc[i],
7014 sp->s2io_entries[i].arg);
fb6a825b
SS
7015 /* If either data or addr is zero print it */
7016 if(!(sp->msix_info[i].addr &&
7017 sp->msix_info[i].data)) {
2450022a 7018 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
3459feb8 7019 "Data:0x%llx\n",sp->desc[i],
fb6a825b
SS
7020 (unsigned long long)
7021 sp->msix_info[i].addr,
3459feb8
AV
7022 (unsigned long long)
7023 sp->msix_info[i].data);
fb6a825b
SS
7024 } else {
7025 msix_rx_cnt++;
7026 }
c92ca04b 7027 }
e6a8fee2 7028 if (err) {
18b2b7bd 7029 remove_msix_isr(sp);
e6a8fee2
AR
7030 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
7031 "failed\n", dev->name, i);
18b2b7bd
SH
7032 DBG_PRINT(ERR_DBG, "%s: defaulting to INTA\n",
7033 dev->name);
7034 sp->config.intr_type = INTA;
7035 break;
e6a8fee2
AR
7036 }
7037 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
7038 }
18b2b7bd
SH
7039 if (!err) {
7040 printk(KERN_INFO "MSI-X-TX %d entries enabled\n",
7041 msix_tx_cnt);
7042 printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
7043 msix_rx_cnt);
7044 }
e6a8fee2 7045 }
eaae7f72 7046 if (sp->config.intr_type == INTA) {
e6a8fee2
AR
7047 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
7048 sp->name, dev);
7049 if (err) {
7050 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7051 dev->name);
7052 return -1;
7053 }
7054 }
7055 return 0;
7056}
1ee6dd77 7057static void s2io_rem_isr(struct s2io_nic * sp)
e6a8fee2 7058{
18b2b7bd
SH
7059 if (sp->config.intr_type == MSI_X)
7060 remove_msix_isr(sp);
7061 else
7062 remove_inta_isr(sp);
e6a8fee2
AR
7063}
7064
d796fdb7 7065static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
e6a8fee2
AR
7066{
7067 int cnt = 0;
1ee6dd77 7068 struct XENA_dev_config __iomem *bar0 = sp->bar0;
e6a8fee2 7069 register u64 val64 = 0;
5f490c96
SH
7070 struct config_param *config;
7071 config = &sp->config;
e6a8fee2 7072
9f74ffde
SH
7073 if (!is_s2io_card_up(sp))
7074 return;
7075
e6a8fee2
AR
7076 del_timer_sync(&sp->alarm_timer);
7077 /* If s2io_set_link task is executing, wait till it completes. */
92b84437 7078 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
e6a8fee2
AR
7079 msleep(50);
7080 }
92b84437 7081 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
e6a8fee2 7082
5f490c96
SH
7083 /* Disable napi */
7084 if (config->napi)
7085 napi_disable(&sp->napi);
7086
e6a8fee2 7087 /* disable Tx and Rx traffic on the NIC */
d796fdb7
LV
7088 if (do_io)
7089 stop_nic(sp);
e6a8fee2
AR
7090
7091 s2io_rem_isr(sp);
1da177e4 7092
1da177e4 7093 /* Check if the device is Quiescent and then Reset the NIC */
d796fdb7 7094 while(do_io) {
5d3213cc
AR
7095 /* As per the HW requirement we need to replenish the
7096 * receive buffer to avoid the ring bump. Since there is
7097 * no intention of processing the Rx frame at this pointwe are
7098 * just settting the ownership bit of rxd in Each Rx
7099 * ring to HW and set the appropriate buffer size
7100 * based on the ring mode
7101 */
7102 rxd_owner_bit_reset(sp);
7103
1da177e4 7104 val64 = readq(&bar0->adapter_status);
19a60522
SS
7105 if (verify_xena_quiescence(sp)) {
7106 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
1da177e4
LT
7107 break;
7108 }
7109
7110 msleep(50);
7111 cnt++;
7112 if (cnt == 10) {
7113 DBG_PRINT(ERR_DBG,
7114 "s2io_close:Device not Quiescent ");
7115 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7116 (unsigned long long) val64);
7117 break;
7118 }
d796fdb7
LV
7119 }
7120 if (do_io)
7121 s2io_reset(sp);
1da177e4 7122
7ba013ac 7123 /* Free all Tx buffers */
1da177e4 7124 free_tx_buffers(sp);
7ba013ac 7125
7126 /* Free all Rx buffers */
1da177e4
LT
7127 free_rx_buffers(sp);
7128
92b84437 7129 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
1da177e4
LT
7130}
7131
d796fdb7
LV
7132static void s2io_card_down(struct s2io_nic * sp)
7133{
7134 do_s2io_card_down(sp, 1);
7135}
7136
1ee6dd77 7137static int s2io_card_up(struct s2io_nic * sp)
1da177e4 7138{
cc6e7c44 7139 int i, ret = 0;
1ee6dd77 7140 struct mac_info *mac_control;
1da177e4
LT
7141 struct config_param *config;
7142 struct net_device *dev = (struct net_device *) sp->dev;
e6a8fee2 7143 u16 interruptible;
1da177e4
LT
7144
7145 /* Initialize the H/W I/O registers */
9f74ffde
SH
7146 ret = init_nic(sp);
7147 if (ret != 0) {
1da177e4
LT
7148 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7149 dev->name);
9f74ffde
SH
7150 if (ret != -EIO)
7151 s2io_reset(sp);
7152 return ret;
1da177e4
LT
7153 }
7154
20346722 7155 /*
7156 * Initializing the Rx buffers. For now we are considering only 1
1da177e4
LT
7157 * Rx ring and initializing buffers into 30 Rx blocks
7158 */
7159 mac_control = &sp->mac_control;
7160 config = &sp->config;
7161
7162 for (i = 0; i < config->rx_ring_num; i++) {
0425b46a
SH
7163 mac_control->rings[i].mtu = dev->mtu;
7164 ret = fill_rx_buffers(&mac_control->rings[i]);
7165 if (ret) {
1da177e4
LT
7166 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7167 dev->name);
7168 s2io_reset(sp);
7169 free_rx_buffers(sp);
7170 return -ENOMEM;
7171 }
7172 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
0425b46a 7173 mac_control->rings[i].rx_bufs_left);
1da177e4 7174 }
5f490c96
SH
7175
7176 /* Initialise napi */
7177 if (config->napi)
7178 napi_enable(&sp->napi);
7179
19a60522
SS
7180 /* Maintain the state prior to the open */
7181 if (sp->promisc_flg)
7182 sp->promisc_flg = 0;
7183 if (sp->m_cast_flg) {
7184 sp->m_cast_flg = 0;
7185 sp->all_multi_pos= 0;
7186 }
1da177e4
LT
7187
7188 /* Setting its receive mode */
7189 s2io_set_multicast(dev);
7190
7d3d0439 7191 if (sp->lro) {
b41477f3 7192 /* Initialize max aggregatable pkts per session based on MTU */
7d3d0439
RA
7193 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7194 /* Check if we can use(if specified) user provided value */
7195 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7196 sp->lro_max_aggr_per_sess = lro_max_pkts;
7197 }
7198
1da177e4
LT
7199 /* Enable Rx Traffic and interrupts on the NIC */
7200 if (start_nic(sp)) {
7201 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
1da177e4 7202 s2io_reset(sp);
e6a8fee2
AR
7203 free_rx_buffers(sp);
7204 return -ENODEV;
7205 }
7206
7207 /* Add interrupt service routine */
7208 if (s2io_add_isr(sp) != 0) {
eaae7f72 7209 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
7210 s2io_rem_isr(sp);
7211 s2io_reset(sp);
1da177e4
LT
7212 free_rx_buffers(sp);
7213 return -ENODEV;
7214 }
7215
25fff88e 7216 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7217
e6a8fee2 7218 /* Enable select interrupts */
9caab458 7219 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
eaae7f72 7220 if (sp->config.intr_type != INTA)
e6a8fee2
AR
7221 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
7222 else {
7223 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 7224 interruptible |= TX_PIC_INTR;
e6a8fee2
AR
7225 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7226 }
7227
92b84437 7228 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
1da177e4
LT
7229 return 0;
7230}
7231
20346722 7232/**
1da177e4
LT
7233 * s2io_restart_nic - Resets the NIC.
7234 * @data : long pointer to the device private structure
7235 * Description:
7236 * This function is scheduled to be run by the s2io_tx_watchdog
20346722 7237 * function after 0.5 secs to reset the NIC. The idea is to reduce
1da177e4
LT
7238 * the run time of the watch dog routine which is run holding a
7239 * spin lock.
7240 */
7241
c4028958 7242static void s2io_restart_nic(struct work_struct *work)
1da177e4 7243{
1ee6dd77 7244 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
c4028958 7245 struct net_device *dev = sp->dev;
1da177e4 7246
22747d6b
FR
7247 rtnl_lock();
7248
7249 if (!netif_running(dev))
7250 goto out_unlock;
7251
e6a8fee2 7252 s2io_card_down(sp);
1da177e4
LT
7253 if (s2io_card_up(sp)) {
7254 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7255 dev->name);
7256 }
3a3d5756 7257 s2io_wake_all_tx_queue(sp);
1da177e4
LT
7258 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7259 dev->name);
22747d6b
FR
7260out_unlock:
7261 rtnl_unlock();
1da177e4
LT
7262}
7263
20346722 7264/**
7265 * s2io_tx_watchdog - Watchdog for transmit side.
1da177e4
LT
7266 * @dev : Pointer to net device structure
7267 * Description:
7268 * This function is triggered if the Tx Queue is stopped
7269 * for a pre-defined amount of time when the Interface is still up.
7270 * If the Interface is jammed in such a situation, the hardware is
7271 * reset (by s2io_close) and restarted again (by s2io_open) to
7272 * overcome any problem that might have been caused in the hardware.
7273 * Return value:
7274 * void
7275 */
7276
7277static void s2io_tx_watchdog(struct net_device *dev)
7278{
1ee6dd77 7279 struct s2io_nic *sp = dev->priv;
1da177e4
LT
7280
7281 if (netif_carrier_ok(dev)) {
c53d4945 7282 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
1da177e4 7283 schedule_work(&sp->rst_timer_task);
bd1034f0 7284 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
1da177e4
LT
7285 }
7286}
7287
7288/**
7289 * rx_osm_handler - To perform some OS related operations on SKB.
7290 * @sp: private member of the device structure,pointer to s2io_nic structure.
7291 * @skb : the socket buffer pointer.
7292 * @len : length of the packet
7293 * @cksum : FCS checksum of the frame.
7294 * @ring_no : the ring from which this RxD was extracted.
20346722 7295 * Description:
b41477f3 7296 * This function is called by the Rx interrupt serivce routine to perform
1da177e4
LT
7297 * some OS related operations on the SKB before passing it to the upper
7298 * layers. It mainly checks if the checksum is OK, if so adds it to the
7299 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7300 * to the upper layer. If the checksum is wrong, it increments the Rx
7301 * packet error count, frees the SKB and returns error.
7302 * Return value:
7303 * SUCCESS on success and -1 on failure.
7304 */
1ee6dd77 7305static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
1da177e4 7306{
1ee6dd77 7307 struct s2io_nic *sp = ring_data->nic;
0425b46a 7308 struct net_device *dev = (struct net_device *) ring_data->dev;
20346722 7309 struct sk_buff *skb = (struct sk_buff *)
7310 ((unsigned long) rxdp->Host_Control);
7311 int ring_no = ring_data->ring_no;
1da177e4 7312 u16 l3_csum, l4_csum;
863c11a9 7313 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
1ee6dd77 7314 struct lro *lro;
f9046eb3 7315 u8 err_mask;
da6971d8 7316
20346722 7317 skb->dev = dev;
c92ca04b 7318
863c11a9 7319 if (err) {
bd1034f0
AR
7320 /* Check for parity error */
7321 if (err & 0x1) {
7322 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7323 }
f9046eb3
OH
7324 err_mask = err >> 48;
7325 switch(err_mask) {
491976b2
SH
7326 case 1:
7327 sp->mac_control.stats_info->sw_stat.
7328 rx_parity_err_cnt++;
7329 break;
7330
7331 case 2:
7332 sp->mac_control.stats_info->sw_stat.
7333 rx_abort_cnt++;
7334 break;
7335
7336 case 3:
7337 sp->mac_control.stats_info->sw_stat.
7338 rx_parity_abort_cnt++;
7339 break;
7340
7341 case 4:
7342 sp->mac_control.stats_info->sw_stat.
7343 rx_rda_fail_cnt++;
7344 break;
7345
7346 case 5:
7347 sp->mac_control.stats_info->sw_stat.
7348 rx_unkn_prot_cnt++;
7349 break;
7350
7351 case 6:
7352 sp->mac_control.stats_info->sw_stat.
7353 rx_fcs_err_cnt++;
7354 break;
bd1034f0 7355
491976b2
SH
7356 case 7:
7357 sp->mac_control.stats_info->sw_stat.
7358 rx_buf_size_err_cnt++;
7359 break;
7360
7361 case 8:
7362 sp->mac_control.stats_info->sw_stat.
7363 rx_rxd_corrupt_cnt++;
7364 break;
7365
7366 case 15:
7367 sp->mac_control.stats_info->sw_stat.
7368 rx_unkn_err_cnt++;
7369 break;
7370 }
863c11a9
AR
7371 /*
7372 * Drop the packet if bad transfer code. Exception being
7373 * 0x5, which could be due to unsupported IPv6 extension header.
7374 * In this case, we let stack handle the packet.
7375 * Note that in this case, since checksum will be incorrect,
7376 * stack will validate the same.
7377 */
f9046eb3
OH
7378 if (err_mask != 0x5) {
7379 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7380 dev->name, err_mask);
863c11a9 7381 sp->stats.rx_crc_errors++;
8a4bdbaa 7382 sp->mac_control.stats_info->sw_stat.mem_freed
491976b2 7383 += skb->truesize;
863c11a9 7384 dev_kfree_skb(skb);
0425b46a 7385 ring_data->rx_bufs_left -= 1;
863c11a9
AR
7386 rxdp->Host_Control = 0;
7387 return 0;
7388 }
20346722 7389 }
1da177e4 7390
20346722 7391 /* Updating statistics */
0425b46a 7392 ring_data->rx_packets++;
20346722 7393 rxdp->Host_Control = 0;
da6971d8
AR
7394 if (sp->rxd_mode == RXD_MODE_1) {
7395 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
20346722 7396
0425b46a 7397 ring_data->rx_bytes += len;
da6971d8
AR
7398 skb_put(skb, len);
7399
6d517a27 7400 } else if (sp->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
7401 int get_block = ring_data->rx_curr_get_info.block_index;
7402 int get_off = ring_data->rx_curr_get_info.offset;
7403 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7404 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7405 unsigned char *buff = skb_push(skb, buf0_len);
7406
1ee6dd77 7407 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
0425b46a 7408 ring_data->rx_bytes += buf0_len + buf2_len;
da6971d8 7409 memcpy(buff, ba->ba_0, buf0_len);
6d517a27 7410 skb_put(skb, buf2_len);
da6971d8 7411 }
20346722 7412
0425b46a
SH
7413 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!ring_data->lro) ||
7414 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
20346722 7415 (sp->rx_csum)) {
7416 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
1da177e4
LT
7417 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7418 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
20346722 7419 /*
1da177e4
LT
7420 * NIC verifies if the Checksum of the received
7421 * frame is Ok or not and accordingly returns
7422 * a flag in the RxD.
7423 */
7424 skb->ip_summed = CHECKSUM_UNNECESSARY;
0425b46a 7425 if (ring_data->lro) {
7d3d0439
RA
7426 u32 tcp_len;
7427 u8 *tcp;
7428 int ret = 0;
7429
0425b46a
SH
7430 ret = s2io_club_tcp_session(ring_data,
7431 skb->data, &tcp, &tcp_len, &lro,
7432 rxdp, sp);
7d3d0439
RA
7433 switch (ret) {
7434 case 3: /* Begin anew */
7435 lro->parent = skb;
7436 goto aggregate;
7437 case 1: /* Aggregate */
7438 {
7439 lro_append_pkt(sp, lro,
7440 skb, tcp_len);
7441 goto aggregate;
7442 }
7443 case 4: /* Flush session */
7444 {
7445 lro_append_pkt(sp, lro,
7446 skb, tcp_len);
cdb5bf02
SH
7447 queue_rx_frame(lro->parent,
7448 lro->vlan_tag);
7d3d0439
RA
7449 clear_lro_session(lro);
7450 sp->mac_control.stats_info->
7451 sw_stat.flush_max_pkts++;
7452 goto aggregate;
7453 }
7454 case 2: /* Flush both */
7455 lro->parent->data_len =
7456 lro->frags_len;
7457 sp->mac_control.stats_info->
7458 sw_stat.sending_both++;
cdb5bf02
SH
7459 queue_rx_frame(lro->parent,
7460 lro->vlan_tag);
7d3d0439
RA
7461 clear_lro_session(lro);
7462 goto send_up;
7463 case 0: /* sessions exceeded */
c92ca04b
AR
7464 case -1: /* non-TCP or not
7465 * L2 aggregatable
7466 */
7d3d0439
RA
7467 case 5: /*
7468 * First pkt in session not
7469 * L3/L4 aggregatable
7470 */
7471 break;
7472 default:
7473 DBG_PRINT(ERR_DBG,
7474 "%s: Samadhana!!\n",
7475 __FUNCTION__);
7476 BUG();
7477 }
7478 }
1da177e4 7479 } else {
20346722 7480 /*
7481 * Packet with erroneous checksum, let the
1da177e4
LT
7482 * upper layers deal with it.
7483 */
7484 skb->ip_summed = CHECKSUM_NONE;
7485 }
cdb5bf02 7486 } else
1da177e4 7487 skb->ip_summed = CHECKSUM_NONE;
cdb5bf02 7488
491976b2 7489 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7d3d0439 7490send_up:
cdb5bf02 7491 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
1da177e4 7492 dev->last_rx = jiffies;
7d3d0439 7493aggregate:
0425b46a 7494 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
1da177e4
LT
7495 return SUCCESS;
7496}
7497
7498/**
7499 * s2io_link - stops/starts the Tx queue.
7500 * @sp : private member of the device structure, which is a pointer to the
7501 * s2io_nic structure.
7502 * @link : inidicates whether link is UP/DOWN.
7503 * Description:
7504 * This function stops/starts the Tx queue depending on whether the link
20346722 7505 * status of the NIC is is down or up. This is called by the Alarm
7506 * interrupt handler whenever a link change interrupt comes up.
1da177e4
LT
7507 * Return value:
7508 * void.
7509 */
7510
1ee6dd77 7511static void s2io_link(struct s2io_nic * sp, int link)
1da177e4
LT
7512{
7513 struct net_device *dev = (struct net_device *) sp->dev;
7514
7515 if (link != sp->last_link_state) {
b7c5678f 7516 init_tti(sp, link);
1da177e4
LT
7517 if (link == LINK_DOWN) {
7518 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
3a3d5756 7519 s2io_stop_all_tx_queue(sp);
1da177e4 7520 netif_carrier_off(dev);
491976b2 7521 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
8a4bdbaa 7522 sp->mac_control.stats_info->sw_stat.link_up_time =
491976b2
SH
7523 jiffies - sp->start_time;
7524 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
1da177e4
LT
7525 } else {
7526 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
491976b2 7527 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
8a4bdbaa 7528 sp->mac_control.stats_info->sw_stat.link_down_time =
491976b2
SH
7529 jiffies - sp->start_time;
7530 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
1da177e4 7531 netif_carrier_on(dev);
3a3d5756 7532 s2io_wake_all_tx_queue(sp);
1da177e4
LT
7533 }
7534 }
7535 sp->last_link_state = link;
491976b2 7536 sp->start_time = jiffies;
1da177e4
LT
7537}
7538
20346722 7539/**
7540 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7541 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
7542 * s2io_nic structure.
7543 * Description:
7544 * This function initializes a few of the PCI and PCI-X configuration registers
7545 * with recommended values.
7546 * Return value:
7547 * void
7548 */
7549
1ee6dd77 7550static void s2io_init_pci(struct s2io_nic * sp)
1da177e4 7551{
20346722 7552 u16 pci_cmd = 0, pcix_cmd = 0;
1da177e4
LT
7553
7554 /* Enable Data Parity Error Recovery in PCI-X command register. */
7555 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7556 &(pcix_cmd));
1da177e4 7557 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7558 (pcix_cmd | 1));
1da177e4 7559 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7560 &(pcix_cmd));
1da177e4
LT
7561
7562 /* Set the PErr Response bit in PCI command register. */
7563 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7564 pci_write_config_word(sp->pdev, PCI_COMMAND,
7565 (pci_cmd | PCI_COMMAND_PARITY));
7566 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
1da177e4
LT
7567}
7568
3a3d5756
SH
7569static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7570 u8 *dev_multiq)
9dc737a7 7571{
2fda096d 7572 if ((tx_fifo_num > MAX_TX_FIFOS) ||
6cfc482b 7573 (tx_fifo_num < 1)) {
2fda096d
SR
7574 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7575 "(%d) not supported\n", tx_fifo_num);
6cfc482b
SH
7576
7577 if (tx_fifo_num < 1)
7578 tx_fifo_num = 1;
7579 else
7580 tx_fifo_num = MAX_TX_FIFOS;
7581
2fda096d
SR
7582 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7583 DBG_PRINT(ERR_DBG, "tx fifos\n");
9dc737a7 7584 }
2fda096d 7585
3a3d5756
SH
7586#ifndef CONFIG_NETDEVICES_MULTIQUEUE
7587 if (multiq) {
7588 DBG_PRINT(ERR_DBG, "s2io: Multiqueue support not enabled\n");
7589 multiq = 0;
7590 }
7591#endif
6cfc482b 7592 if (multiq)
3a3d5756 7593 *dev_multiq = multiq;
6cfc482b
SH
7594
7595 if (tx_steering_type && (1 == tx_fifo_num)) {
7596 if (tx_steering_type != TX_DEFAULT_STEERING)
7597 DBG_PRINT(ERR_DBG,
7598 "s2io: Tx steering is not supported with "
7599 "one fifo. Disabling Tx steering.\n");
7600 tx_steering_type = NO_STEERING;
7601 }
7602
7603 if ((tx_steering_type < NO_STEERING) ||
7604 (tx_steering_type > TX_DEFAULT_STEERING)) {
7605 DBG_PRINT(ERR_DBG, "s2io: Requested transmit steering not "
7606 "supported\n");
7607 DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
7608 tx_steering_type = NO_STEERING;
3a3d5756
SH
7609 }
7610
0425b46a
SH
7611 if (rx_ring_num > MAX_RX_RINGS) {
7612 DBG_PRINT(ERR_DBG, "s2io: Requested number of rx rings not "
9dc737a7 7613 "supported\n");
0425b46a
SH
7614 DBG_PRINT(ERR_DBG, "s2io: Default to %d rx rings\n",
7615 MAX_RX_RINGS);
7616 rx_ring_num = MAX_RX_RINGS;
9dc737a7 7617 }
0425b46a 7618
db874e65
SS
7619 if (*dev_intr_type != INTA)
7620 napi = 0;
7621
eccb8628 7622 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
9dc737a7
AR
7623 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7624 "Defaulting to INTA\n");
7625 *dev_intr_type = INTA;
7626 }
596c5c97 7627
9dc737a7
AR
7628 if ((*dev_intr_type == MSI_X) &&
7629 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7630 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6aa20a22 7631 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
9dc737a7
AR
7632 "Defaulting to INTA\n");
7633 *dev_intr_type = INTA;
7634 }
fb6a825b 7635
6d517a27 7636 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
9dc737a7 7637 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6d517a27
VP
7638 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7639 rx_ring_mode = 1;
9dc737a7
AR
7640 }
7641 return SUCCESS;
7642}
7643
9fc93a41
SS
7644/**
7645 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7646 * or Traffic class respectively.
b7c5678f 7647 * @nic: device private variable
9fc93a41
SS
7648 * Description: The function configures the receive steering to
7649 * desired receive ring.
7650 * Return Value: SUCCESS on success and
7651 * '-1' on failure (endian settings incorrect).
7652 */
7653static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7654{
7655 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7656 register u64 val64 = 0;
7657
7658 if (ds_codepoint > 63)
7659 return FAILURE;
7660
7661 val64 = RTS_DS_MEM_DATA(ring);
7662 writeq(val64, &bar0->rts_ds_mem_data);
7663
7664 val64 = RTS_DS_MEM_CTRL_WE |
7665 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7666 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7667
7668 writeq(val64, &bar0->rts_ds_mem_ctrl);
7669
7670 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7671 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7672 S2IO_BIT_RESET);
7673}
7674
1da177e4 7675/**
20346722 7676 * s2io_init_nic - Initialization of the adapter .
1da177e4
LT
7677 * @pdev : structure containing the PCI related information of the device.
7678 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7679 * Description:
7680 * The function initializes an adapter identified by the pci_dec structure.
20346722 7681 * All OS related initialization including memory and device structure and
7682 * initlaization of the device private variable is done. Also the swapper
7683 * control register is initialized to enable read and write into the I/O
1da177e4
LT
7684 * registers of the device.
7685 * Return value:
7686 * returns 0 on success and negative on failure.
7687 */
7688
7689static int __devinit
7690s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7691{
1ee6dd77 7692 struct s2io_nic *sp;
1da177e4 7693 struct net_device *dev;
1da177e4
LT
7694 int i, j, ret;
7695 int dma_flag = FALSE;
7696 u32 mac_up, mac_down;
7697 u64 val64 = 0, tmp64 = 0;
1ee6dd77 7698 struct XENA_dev_config __iomem *bar0 = NULL;
1da177e4 7699 u16 subid;
1ee6dd77 7700 struct mac_info *mac_control;
1da177e4 7701 struct config_param *config;
541ae68f 7702 int mode;
cc6e7c44 7703 u8 dev_intr_type = intr_type;
3a3d5756 7704 u8 dev_multiq = 0;
0795af57 7705 DECLARE_MAC_BUF(mac);
1da177e4 7706
3a3d5756
SH
7707 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7708 if (ret)
9dc737a7 7709 return ret;
1da177e4
LT
7710
7711 if ((ret = pci_enable_device(pdev))) {
7712 DBG_PRINT(ERR_DBG,
7713 "s2io_init_nic: pci_enable_device failed\n");
7714 return ret;
7715 }
7716
1e7f0bd8 7717 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1da177e4
LT
7718 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7719 dma_flag = TRUE;
1da177e4 7720 if (pci_set_consistent_dma_mask
1e7f0bd8 7721 (pdev, DMA_64BIT_MASK)) {
1da177e4
LT
7722 DBG_PRINT(ERR_DBG,
7723 "Unable to obtain 64bit DMA for \
7724 consistent allocations\n");
7725 pci_disable_device(pdev);
7726 return -ENOMEM;
7727 }
1e7f0bd8 7728 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
1da177e4
LT
7729 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7730 } else {
7731 pci_disable_device(pdev);
7732 return -ENOMEM;
7733 }
eccb8628
VP
7734 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7735 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7736 pci_disable_device(pdev);
7737 return -ENODEV;
1da177e4 7738 }
3a3d5756
SH
7739#ifdef CONFIG_NETDEVICES_MULTIQUEUE
7740 if (dev_multiq)
6cfc482b 7741 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
3a3d5756
SH
7742 else
7743#endif
1ee6dd77 7744 dev = alloc_etherdev(sizeof(struct s2io_nic));
1da177e4
LT
7745 if (dev == NULL) {
7746 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7747 pci_disable_device(pdev);
7748 pci_release_regions(pdev);
7749 return -ENODEV;
7750 }
7751
7752 pci_set_master(pdev);
7753 pci_set_drvdata(pdev, dev);
1da177e4
LT
7754 SET_NETDEV_DEV(dev, &pdev->dev);
7755
7756 /* Private member variable initialized to s2io NIC structure */
7757 sp = dev->priv;
1ee6dd77 7758 memset(sp, 0, sizeof(struct s2io_nic));
1da177e4
LT
7759 sp->dev = dev;
7760 sp->pdev = pdev;
1da177e4 7761 sp->high_dma_flag = dma_flag;
1da177e4 7762 sp->device_enabled_once = FALSE;
da6971d8
AR
7763 if (rx_ring_mode == 1)
7764 sp->rxd_mode = RXD_MODE_1;
7765 if (rx_ring_mode == 2)
7766 sp->rxd_mode = RXD_MODE_3B;
da6971d8 7767
eaae7f72 7768 sp->config.intr_type = dev_intr_type;
1da177e4 7769
541ae68f 7770 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7771 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7772 sp->device_type = XFRAME_II_DEVICE;
7773 else
7774 sp->device_type = XFRAME_I_DEVICE;
7775
43b7c451 7776 sp->lro = lro_enable;
6aa20a22 7777
1da177e4
LT
7778 /* Initialize some PCI/PCI-X fields of the NIC. */
7779 s2io_init_pci(sp);
7780
20346722 7781 /*
1da177e4 7782 * Setting the device configuration parameters.
20346722 7783 * Most of these parameters can be specified by the user during
7784 * module insertion as they are module loadable parameters. If
7785 * these parameters are not not specified during load time, they
1da177e4
LT
7786 * are initialized with default values.
7787 */
7788 mac_control = &sp->mac_control;
7789 config = &sp->config;
7790
596c5c97 7791 config->napi = napi;
6cfc482b 7792 config->tx_steering_type = tx_steering_type;
596c5c97 7793
1da177e4 7794 /* Tx side parameters. */
6cfc482b
SH
7795 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7796 config->tx_fifo_num = MAX_TX_FIFOS;
7797 else
7798 config->tx_fifo_num = tx_fifo_num;
7799
7800 /* Initialize the fifos used for tx steering */
7801 if (config->tx_fifo_num < 5) {
7802 if (config->tx_fifo_num == 1)
7803 sp->total_tcp_fifos = 1;
7804 else
7805 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7806 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7807 sp->total_udp_fifos = 1;
7808 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7809 } else {
7810 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7811 FIFO_OTHER_MAX_NUM);
7812 sp->udp_fifo_idx = sp->total_tcp_fifos;
7813 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7814 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7815 }
7816
3a3d5756 7817 config->multiq = dev_multiq;
6cfc482b 7818 for (i = 0; i < config->tx_fifo_num; i++) {
1da177e4
LT
7819 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7820 config->tx_cfg[i].fifo_priority = i;
7821 }
7822
20346722 7823 /* mapping the QoS priority to the configured fifos */
7824 for (i = 0; i < MAX_TX_FIFOS; i++)
3a3d5756 7825 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
20346722 7826
6cfc482b
SH
7827 /* map the hashing selector table to the configured fifos */
7828 for (i = 0; i < config->tx_fifo_num; i++)
7829 sp->fifo_selector[i] = fifo_selector[i];
7830
7831
1da177e4
LT
7832 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7833 for (i = 0; i < config->tx_fifo_num; i++) {
7834 config->tx_cfg[i].f_no_snoop =
7835 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7836 if (config->tx_cfg[i].fifo_len < 65) {
7837 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7838 break;
7839 }
7840 }
fed5eccd
AR
7841 /* + 2 because one Txd for skb->data and one Txd for UFO */
7842 config->max_txds = MAX_SKB_FRAGS + 2;
1da177e4
LT
7843
7844 /* Rx side parameters. */
1da177e4 7845 config->rx_ring_num = rx_ring_num;
0425b46a 7846 for (i = 0; i < config->rx_ring_num; i++) {
1da177e4 7847 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
da6971d8 7848 (rxd_count[sp->rxd_mode] + 1);
1da177e4 7849 config->rx_cfg[i].ring_priority = i;
0425b46a
SH
7850 mac_control->rings[i].rx_bufs_left = 0;
7851 mac_control->rings[i].rxd_mode = sp->rxd_mode;
7852 mac_control->rings[i].rxd_count = rxd_count[sp->rxd_mode];
7853 mac_control->rings[i].pdev = sp->pdev;
7854 mac_control->rings[i].dev = sp->dev;
1da177e4
LT
7855 }
7856
7857 for (i = 0; i < rx_ring_num; i++) {
7858 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7859 config->rx_cfg[i].f_no_snoop =
7860 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7861 }
7862
7863 /* Setting Mac Control parameters */
7864 mac_control->rmac_pause_time = rmac_pause_time;
7865 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7866 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7867
7868
1da177e4
LT
7869 /* initialize the shared memory used by the NIC and the host */
7870 if (init_shared_mem(sp)) {
7871 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
b41477f3 7872 dev->name);
1da177e4
LT
7873 ret = -ENOMEM;
7874 goto mem_alloc_failed;
7875 }
7876
7877 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7878 pci_resource_len(pdev, 0));
7879 if (!sp->bar0) {
19a60522 7880 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
1da177e4
LT
7881 dev->name);
7882 ret = -ENOMEM;
7883 goto bar0_remap_failed;
7884 }
7885
7886 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7887 pci_resource_len(pdev, 2));
7888 if (!sp->bar1) {
19a60522 7889 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
1da177e4
LT
7890 dev->name);
7891 ret = -ENOMEM;
7892 goto bar1_remap_failed;
7893 }
7894
7895 dev->irq = pdev->irq;
7896 dev->base_addr = (unsigned long) sp->bar0;
7897
7898 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7899 for (j = 0; j < MAX_TX_FIFOS; j++) {
1ee6dd77 7900 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
1da177e4
LT
7901 (sp->bar1 + (j * 0x00020000));
7902 }
7903
7904 /* Driver entry points */
7905 dev->open = &s2io_open;
7906 dev->stop = &s2io_close;
7907 dev->hard_start_xmit = &s2io_xmit;
7908 dev->get_stats = &s2io_get_stats;
7909 dev->set_multicast_list = &s2io_set_multicast;
7910 dev->do_ioctl = &s2io_ioctl;
2fd37688 7911 dev->set_mac_address = &s2io_set_mac_addr;
1da177e4
LT
7912 dev->change_mtu = &s2io_change_mtu;
7913 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
be3a6b02 7914 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7915 dev->vlan_rx_register = s2io_vlan_rx_register;
cdb5bf02 7916 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
20346722 7917
1da177e4
LT
7918 /*
7919 * will use eth_mac_addr() for dev->set_mac_address
7920 * mac address will be set every time dev->open() is called
7921 */
bea3348e 7922 netif_napi_add(dev, &sp->napi, s2io_poll, 32);
1da177e4 7923
612eff0e
BH
7924#ifdef CONFIG_NET_POLL_CONTROLLER
7925 dev->poll_controller = s2io_netpoll;
7926#endif
7927
1da177e4
LT
7928 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7929 if (sp->high_dma_flag == TRUE)
7930 dev->features |= NETIF_F_HIGHDMA;
1da177e4 7931 dev->features |= NETIF_F_TSO;
f83ef8c0 7932 dev->features |= NETIF_F_TSO6;
db874e65 7933 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
fed5eccd
AR
7934 dev->features |= NETIF_F_UFO;
7935 dev->features |= NETIF_F_HW_CSUM;
7936 }
3a3d5756
SH
7937#ifdef CONFIG_NETDEVICES_MULTIQUEUE
7938 if (config->multiq)
7939 dev->features |= NETIF_F_MULTI_QUEUE;
7940#endif
1da177e4
LT
7941 dev->tx_timeout = &s2io_tx_watchdog;
7942 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
c4028958
DH
7943 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7944 INIT_WORK(&sp->set_link_task, s2io_set_link);
1da177e4 7945
e960fc5c 7946 pci_save_state(sp->pdev);
1da177e4
LT
7947
7948 /* Setting swapper control on the NIC, for proper reset operation */
7949 if (s2io_set_swapper(sp)) {
7950 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7951 dev->name);
7952 ret = -EAGAIN;
7953 goto set_swap_failed;
7954 }
7955
541ae68f 7956 /* Verify if the Herc works on the slot its placed into */
7957 if (sp->device_type & XFRAME_II_DEVICE) {
7958 mode = s2io_verify_pci_mode(sp);
7959 if (mode < 0) {
7960 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7961 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7962 ret = -EBADSLT;
7963 goto set_swap_failed;
7964 }
7965 }
7966
7967 /* Not needed for Herc */
7968 if (sp->device_type & XFRAME_I_DEVICE) {
7969 /*
7970 * Fix for all "FFs" MAC address problems observed on
7971 * Alpha platforms
7972 */
7973 fix_mac_address(sp);
7974 s2io_reset(sp);
7975 }
1da177e4
LT
7976
7977 /*
1da177e4
LT
7978 * MAC address initialization.
7979 * For now only one mac address will be read and used.
7980 */
7981 bar0 = sp->bar0;
7982 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
faa4f796 7983 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
1da177e4 7984 writeq(val64, &bar0->rmac_addr_cmd_mem);
c92ca04b 7985 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41 7986 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
1da177e4
LT
7987 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7988 mac_down = (u32) tmp64;
7989 mac_up = (u32) (tmp64 >> 32);
7990
1da177e4
LT
7991 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7992 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7993 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7994 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7995 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7996 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7997
1da177e4
LT
7998 /* Set the factory defined MAC address initially */
7999 dev->addr_len = ETH_ALEN;
8000 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
2fd37688 8001 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
1da177e4 8002
faa4f796
SH
8003 /* initialize number of multicast & unicast MAC entries variables */
8004 if (sp->device_type == XFRAME_I_DEVICE) {
8005 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8006 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8007 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8008 } else if (sp->device_type == XFRAME_II_DEVICE) {
8009 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8010 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8011 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8012 }
8013
8014 /* store mac addresses from CAM to s2io_nic structure */
8015 do_s2io_store_unicast_mc(sp);
8016
c77dd43e
SS
8017 /* Store the values of the MSIX table in the s2io_nic structure */
8018 store_xmsi_data(sp);
b41477f3
AR
8019 /* reset Nic and bring it to known state */
8020 s2io_reset(sp);
8021
1da177e4 8022 /*
99993af6 8023 * Initialize link state flags
541ae68f 8024 * and the card state parameter
1da177e4 8025 */
92b84437 8026 sp->state = 0;
1da177e4 8027
1da177e4 8028 /* Initialize spinlocks */
2fda096d
SR
8029 for (i = 0; i < sp->config.tx_fifo_num; i++)
8030 spin_lock_init(&mac_control->fifos[i].tx_lock);
db874e65 8031
20346722 8032 /*
8033 * SXE-002: Configure link and activity LED to init state
8034 * on driver load.
1da177e4
LT
8035 */
8036 subid = sp->pdev->subsystem_device;
8037 if ((subid & 0xFF) >= 0x07) {
8038 val64 = readq(&bar0->gpio_control);
8039 val64 |= 0x0000800000000000ULL;
8040 writeq(val64, &bar0->gpio_control);
8041 val64 = 0x0411040400000000ULL;
8042 writeq(val64, (void __iomem *) bar0 + 0x2700);
8043 val64 = readq(&bar0->gpio_control);
8044 }
8045
8046 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8047
8048 if (register_netdev(dev)) {
8049 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8050 ret = -ENODEV;
8051 goto register_failed;
8052 }
9dc737a7 8053 s2io_vpd_read(sp);
0c61ed5f 8054 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
b41477f3 8055 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
44c10138 8056 sp->product_name, pdev->revision);
b41477f3
AR
8057 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8058 s2io_driver_version);
0795af57
JP
8059 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
8060 dev->name, print_mac(mac, dev->dev_addr));
19a60522 8061 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
9dc737a7 8062 if (sp->device_type & XFRAME_II_DEVICE) {
0b1f7ebe 8063 mode = s2io_print_pci_mode(sp);
541ae68f 8064 if (mode < 0) {
9dc737a7 8065 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
541ae68f 8066 ret = -EBADSLT;
9dc737a7 8067 unregister_netdev(dev);
541ae68f 8068 goto set_swap_failed;
8069 }
541ae68f 8070 }
9dc737a7
AR
8071 switch(sp->rxd_mode) {
8072 case RXD_MODE_1:
8073 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8074 dev->name);
8075 break;
8076 case RXD_MODE_3B:
8077 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8078 dev->name);
8079 break;
9dc737a7 8080 }
db874e65
SS
8081
8082 if (napi)
8083 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
3a3d5756
SH
8084
8085 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8086 sp->config.tx_fifo_num);
8087
0425b46a
SH
8088 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8089 sp->config.rx_ring_num);
8090
eaae7f72 8091 switch(sp->config.intr_type) {
9dc737a7
AR
8092 case INTA:
8093 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8094 break;
9dc737a7
AR
8095 case MSI_X:
8096 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8097 break;
8098 }
3a3d5756
SH
8099 if (sp->config.multiq) {
8100 for (i = 0; i < sp->config.tx_fifo_num; i++)
8101 mac_control->fifos[i].multiq = config->multiq;
8102 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8103 dev->name);
8104 } else
8105 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8106 dev->name);
8107
6cfc482b
SH
8108 switch (sp->config.tx_steering_type) {
8109 case NO_STEERING:
8110 DBG_PRINT(ERR_DBG, "%s: No steering enabled for"
8111 " transmit\n", dev->name);
8112 break;
8113 case TX_PRIORITY_STEERING:
8114 DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for"
8115 " transmit\n", dev->name);
8116 break;
8117 case TX_DEFAULT_STEERING:
8118 DBG_PRINT(ERR_DBG, "%s: Default steering enabled for"
8119 " transmit\n", dev->name);
8120 }
8121
7d3d0439
RA
8122 if (sp->lro)
8123 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
9dc737a7 8124 dev->name);
db874e65
SS
8125 if (ufo)
8126 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
8127 " enabled\n", dev->name);
7ba013ac 8128 /* Initialize device name */
9dc737a7 8129 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7ba013ac 8130
20346722 8131 /*
8132 * Make Link state as off at this point, when the Link change
8133 * interrupt comes the state will be automatically changed to
1da177e4
LT
8134 * the right state.
8135 */
8136 netif_carrier_off(dev);
1da177e4
LT
8137
8138 return 0;
8139
8140 register_failed:
8141 set_swap_failed:
8142 iounmap(sp->bar1);
8143 bar1_remap_failed:
8144 iounmap(sp->bar0);
8145 bar0_remap_failed:
8146 mem_alloc_failed:
8147 free_shared_mem(sp);
8148 pci_disable_device(pdev);
eccb8628 8149 pci_release_regions(pdev);
1da177e4
LT
8150 pci_set_drvdata(pdev, NULL);
8151 free_netdev(dev);
8152
8153 return ret;
8154}
8155
8156/**
20346722 8157 * s2io_rem_nic - Free the PCI device
1da177e4 8158 * @pdev: structure containing the PCI related information of the device.
20346722 8159 * Description: This function is called by the Pci subsystem to release a
1da177e4 8160 * PCI device and free up all resource held up by the device. This could
20346722 8161 * be in response to a Hot plug event or when the driver is to be removed
1da177e4
LT
8162 * from memory.
8163 */
8164
8165static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8166{
8167 struct net_device *dev =
8168 (struct net_device *) pci_get_drvdata(pdev);
1ee6dd77 8169 struct s2io_nic *sp;
1da177e4
LT
8170
8171 if (dev == NULL) {
8172 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8173 return;
8174 }
8175
22747d6b
FR
8176 flush_scheduled_work();
8177
1da177e4
LT
8178 sp = dev->priv;
8179 unregister_netdev(dev);
8180
8181 free_shared_mem(sp);
8182 iounmap(sp->bar0);
8183 iounmap(sp->bar1);
eccb8628 8184 pci_release_regions(pdev);
1da177e4 8185 pci_set_drvdata(pdev, NULL);
1da177e4 8186 free_netdev(dev);
19a60522 8187 pci_disable_device(pdev);
1da177e4
LT
8188}
8189
8190/**
8191 * s2io_starter - Entry point for the driver
8192 * Description: This function is the entry point for the driver. It verifies
8193 * the module loadable parameters and initializes PCI configuration space.
8194 */
8195
43b7c451 8196static int __init s2io_starter(void)
1da177e4 8197{
29917620 8198 return pci_register_driver(&s2io_driver);
1da177e4
LT
8199}
8200
8201/**
20346722 8202 * s2io_closer - Cleanup routine for the driver
1da177e4
LT
8203 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8204 */
8205
372cc597 8206static __exit void s2io_closer(void)
1da177e4
LT
8207{
8208 pci_unregister_driver(&s2io_driver);
8209 DBG_PRINT(INIT_DBG, "cleanup done\n");
8210}
8211
8212module_init(s2io_starter);
8213module_exit(s2io_closer);
7d3d0439 8214
6aa20a22 8215static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
cdb5bf02
SH
8216 struct tcphdr **tcp, struct RxD_t *rxdp,
8217 struct s2io_nic *sp)
7d3d0439
RA
8218{
8219 int ip_off;
8220 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8221
8222 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8223 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
8224 __FUNCTION__);
8225 return -1;
8226 }
8227
cdb5bf02
SH
8228 /* Checking for DIX type or DIX type with VLAN */
8229 if ((l2_type == 0)
8230 || (l2_type == 4)) {
8231 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8232 /*
8233 * If vlan stripping is disabled and the frame is VLAN tagged,
8234 * shift the offset by the VLAN header size bytes.
8235 */
8236 if ((!vlan_strip_flag) &&
8237 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8238 ip_off += HEADER_VLAN_SIZE;
8239 } else {
7d3d0439 8240 /* LLC, SNAP etc are considered non-mergeable */
cdb5bf02 8241 return -1;
7d3d0439
RA
8242 }
8243
8244 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8245 ip_len = (u8)((*ip)->ihl);
8246 ip_len <<= 2;
8247 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8248
8249 return 0;
8250}
8251
1ee6dd77 8252static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
8253 struct tcphdr *tcp)
8254{
8255 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8256 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
8257 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
8258 return -1;
8259 return 0;
8260}
8261
8262static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8263{
8264 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
8265}
8266
1ee6dd77 8267static void initiate_new_session(struct lro *lro, u8 *l2h,
cdb5bf02 8268 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag)
7d3d0439
RA
8269{
8270 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8271 lro->l2h = l2h;
8272 lro->iph = ip;
8273 lro->tcph = tcp;
8274 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
c8855953 8275 lro->tcp_ack = tcp->ack_seq;
7d3d0439
RA
8276 lro->sg_num = 1;
8277 lro->total_len = ntohs(ip->tot_len);
8278 lro->frags_len = 0;
cdb5bf02 8279 lro->vlan_tag = vlan_tag;
6aa20a22 8280 /*
7d3d0439
RA
8281 * check if we saw TCP timestamp. Other consistency checks have
8282 * already been done.
8283 */
8284 if (tcp->doff == 8) {
c8855953
SR
8285 __be32 *ptr;
8286 ptr = (__be32 *)(tcp+1);
7d3d0439 8287 lro->saw_ts = 1;
c8855953 8288 lro->cur_tsval = ntohl(*(ptr+1));
7d3d0439
RA
8289 lro->cur_tsecr = *(ptr+2);
8290 }
8291 lro->in_use = 1;
8292}
8293
1ee6dd77 8294static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7d3d0439
RA
8295{
8296 struct iphdr *ip = lro->iph;
8297 struct tcphdr *tcp = lro->tcph;
bd4f3ae1 8298 __sum16 nchk;
1ee6dd77 8299 struct stat_block *statinfo = sp->mac_control.stats_info;
7d3d0439
RA
8300 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8301
8302 /* Update L3 header */
8303 ip->tot_len = htons(lro->total_len);
8304 ip->check = 0;
8305 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8306 ip->check = nchk;
8307
8308 /* Update L4 header */
8309 tcp->ack_seq = lro->tcp_ack;
8310 tcp->window = lro->window;
8311
8312 /* Update tsecr field if this session has timestamps enabled */
8313 if (lro->saw_ts) {
c8855953 8314 __be32 *ptr = (__be32 *)(tcp + 1);
7d3d0439
RA
8315 *(ptr+2) = lro->cur_tsecr;
8316 }
8317
8318 /* Update counters required for calculation of
8319 * average no. of packets aggregated.
8320 */
8321 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8322 statinfo->sw_stat.num_aggregations++;
8323}
8324
1ee6dd77 8325static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
8326 struct tcphdr *tcp, u32 l4_pyld)
8327{
8328 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8329 lro->total_len += l4_pyld;
8330 lro->frags_len += l4_pyld;
8331 lro->tcp_next_seq += l4_pyld;
8332 lro->sg_num++;
8333
8334 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8335 lro->tcp_ack = tcp->ack_seq;
8336 lro->window = tcp->window;
6aa20a22 8337
7d3d0439 8338 if (lro->saw_ts) {
c8855953 8339 __be32 *ptr;
7d3d0439 8340 /* Update tsecr and tsval from this packet */
c8855953
SR
8341 ptr = (__be32 *)(tcp+1);
8342 lro->cur_tsval = ntohl(*(ptr+1));
7d3d0439
RA
8343 lro->cur_tsecr = *(ptr + 2);
8344 }
8345}
8346
1ee6dd77 8347static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7d3d0439
RA
8348 struct tcphdr *tcp, u32 tcp_pyld_len)
8349{
7d3d0439
RA
8350 u8 *ptr;
8351
79dc1901
AM
8352 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8353
7d3d0439
RA
8354 if (!tcp_pyld_len) {
8355 /* Runt frame or a pure ack */
8356 return -1;
8357 }
8358
8359 if (ip->ihl != 5) /* IP has options */
8360 return -1;
8361
75c30b13
AR
8362 /* If we see CE codepoint in IP header, packet is not mergeable */
8363 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8364 return -1;
8365
8366 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7d3d0439 8367 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
75c30b13 8368 tcp->ece || tcp->cwr || !tcp->ack) {
7d3d0439
RA
8369 /*
8370 * Currently recognize only the ack control word and
8371 * any other control field being set would result in
8372 * flushing the LRO session
8373 */
8374 return -1;
8375 }
8376
6aa20a22 8377 /*
7d3d0439
RA
8378 * Allow only one TCP timestamp option. Don't aggregate if
8379 * any other options are detected.
8380 */
8381 if (tcp->doff != 5 && tcp->doff != 8)
8382 return -1;
8383
8384 if (tcp->doff == 8) {
6aa20a22 8385 ptr = (u8 *)(tcp + 1);
7d3d0439
RA
8386 while (*ptr == TCPOPT_NOP)
8387 ptr++;
8388 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8389 return -1;
8390
8391 /* Ensure timestamp value increases monotonically */
8392 if (l_lro)
c8855953 8393 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
7d3d0439
RA
8394 return -1;
8395
8396 /* timestamp echo reply should be non-zero */
c8855953 8397 if (*((__be32 *)(ptr+6)) == 0)
7d3d0439
RA
8398 return -1;
8399 }
8400
8401 return 0;
8402}
8403
8404static int
0425b46a
SH
8405s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, u8 **tcp,
8406 u32 *tcp_len, struct lro **lro, struct RxD_t *rxdp,
8407 struct s2io_nic *sp)
7d3d0439
RA
8408{
8409 struct iphdr *ip;
8410 struct tcphdr *tcph;
8411 int ret = 0, i;
cdb5bf02 8412 u16 vlan_tag = 0;
7d3d0439
RA
8413
8414 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
cdb5bf02 8415 rxdp, sp))) {
7d3d0439
RA
8416 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8417 ip->saddr, ip->daddr);
cdb5bf02 8418 } else
7d3d0439 8419 return ret;
7d3d0439 8420
cdb5bf02 8421 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
7d3d0439
RA
8422 tcph = (struct tcphdr *)*tcp;
8423 *tcp_len = get_l4_pyld_length(ip, tcph);
8424 for (i=0; i<MAX_LRO_SESSIONS; i++) {
0425b46a 8425 struct lro *l_lro = &ring_data->lro0_n[i];
7d3d0439
RA
8426 if (l_lro->in_use) {
8427 if (check_for_socket_match(l_lro, ip, tcph))
8428 continue;
8429 /* Sock pair matched */
8430 *lro = l_lro;
8431
8432 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8433 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8434 "0x%x, actual 0x%x\n", __FUNCTION__,
8435 (*lro)->tcp_next_seq,
8436 ntohl(tcph->seq));
8437
8438 sp->mac_control.stats_info->
8439 sw_stat.outof_sequence_pkts++;
8440 ret = 2;
8441 break;
8442 }
8443
8444 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8445 ret = 1; /* Aggregate */
8446 else
8447 ret = 2; /* Flush both */
8448 break;
8449 }
8450 }
8451
8452 if (ret == 0) {
8453 /* Before searching for available LRO objects,
8454 * check if the pkt is L3/L4 aggregatable. If not
8455 * don't create new LRO session. Just send this
8456 * packet up.
8457 */
8458 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8459 return 5;
8460 }
8461
8462 for (i=0; i<MAX_LRO_SESSIONS; i++) {
0425b46a 8463 struct lro *l_lro = &ring_data->lro0_n[i];
7d3d0439
RA
8464 if (!(l_lro->in_use)) {
8465 *lro = l_lro;
8466 ret = 3; /* Begin anew */
8467 break;
8468 }
8469 }
8470 }
8471
8472 if (ret == 0) { /* sessions exceeded */
8473 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8474 __FUNCTION__);
8475 *lro = NULL;
8476 return ret;
8477 }
8478
8479 switch (ret) {
8480 case 3:
cdb5bf02
SH
8481 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8482 vlan_tag);
7d3d0439
RA
8483 break;
8484 case 2:
8485 update_L3L4_header(sp, *lro);
8486 break;
8487 case 1:
8488 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8489 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8490 update_L3L4_header(sp, *lro);
8491 ret = 4; /* Flush the LRO */
8492 }
8493 break;
8494 default:
8495 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8496 __FUNCTION__);
8497 break;
8498 }
8499
8500 return ret;
8501}
8502
1ee6dd77 8503static void clear_lro_session(struct lro *lro)
7d3d0439 8504{
1ee6dd77 8505 static u16 lro_struct_size = sizeof(struct lro);
7d3d0439
RA
8506
8507 memset(lro, 0, lro_struct_size);
8508}
8509
cdb5bf02 8510static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
7d3d0439
RA
8511{
8512 struct net_device *dev = skb->dev;
cdb5bf02 8513 struct s2io_nic *sp = dev->priv;
7d3d0439
RA
8514
8515 skb->protocol = eth_type_trans(skb, dev);
cdb5bf02
SH
8516 if (sp->vlgrp && vlan_tag
8517 && (vlan_strip_flag)) {
8518 /* Queueing the vlan frame to the upper layer */
8519 if (sp->config.napi)
8520 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8521 else
8522 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8523 } else {
8524 if (sp->config.napi)
8525 netif_receive_skb(skb);
8526 else
8527 netif_rx(skb);
8528 }
7d3d0439
RA
8529}
8530
1ee6dd77
RB
8531static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8532 struct sk_buff *skb,
7d3d0439
RA
8533 u32 tcp_len)
8534{
75c30b13 8535 struct sk_buff *first = lro->parent;
7d3d0439
RA
8536
8537 first->len += tcp_len;
8538 first->data_len = lro->frags_len;
8539 skb_pull(skb, (skb->len - tcp_len));
75c30b13
AR
8540 if (skb_shinfo(first)->frag_list)
8541 lro->last_frag->next = skb;
7d3d0439
RA
8542 else
8543 skb_shinfo(first)->frag_list = skb;
372cc597 8544 first->truesize += skb->truesize;
75c30b13 8545 lro->last_frag = skb;
7d3d0439
RA
8546 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8547 return;
8548}
d796fdb7
LV
8549
8550/**
8551 * s2io_io_error_detected - called when PCI error is detected
8552 * @pdev: Pointer to PCI device
8453d43f 8553 * @state: The current pci connection state
d796fdb7
LV
8554 *
8555 * This function is called after a PCI bus error affecting
8556 * this device has been detected.
8557 */
8558static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8559 pci_channel_state_t state)
8560{
8561 struct net_device *netdev = pci_get_drvdata(pdev);
8562 struct s2io_nic *sp = netdev->priv;
8563
8564 netif_device_detach(netdev);
8565
8566 if (netif_running(netdev)) {
8567 /* Bring down the card, while avoiding PCI I/O */
8568 do_s2io_card_down(sp, 0);
d796fdb7
LV
8569 }
8570 pci_disable_device(pdev);
8571
8572 return PCI_ERS_RESULT_NEED_RESET;
8573}
8574
8575/**
8576 * s2io_io_slot_reset - called after the pci bus has been reset.
8577 * @pdev: Pointer to PCI device
8578 *
8579 * Restart the card from scratch, as if from a cold-boot.
8580 * At this point, the card has exprienced a hard reset,
8581 * followed by fixups by BIOS, and has its config space
8582 * set up identically to what it was at cold boot.
8583 */
8584static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8585{
8586 struct net_device *netdev = pci_get_drvdata(pdev);
8587 struct s2io_nic *sp = netdev->priv;
8588
8589 if (pci_enable_device(pdev)) {
8590 printk(KERN_ERR "s2io: "
8591 "Cannot re-enable PCI device after reset.\n");
8592 return PCI_ERS_RESULT_DISCONNECT;
8593 }
8594
8595 pci_set_master(pdev);
8596 s2io_reset(sp);
8597
8598 return PCI_ERS_RESULT_RECOVERED;
8599}
8600
8601/**
8602 * s2io_io_resume - called when traffic can start flowing again.
8603 * @pdev: Pointer to PCI device
8604 *
8605 * This callback is called when the error recovery driver tells
8606 * us that its OK to resume normal operation.
8607 */
8608static void s2io_io_resume(struct pci_dev *pdev)
8609{
8610 struct net_device *netdev = pci_get_drvdata(pdev);
8611 struct s2io_nic *sp = netdev->priv;
8612
8613 if (netif_running(netdev)) {
8614 if (s2io_card_up(sp)) {
8615 printk(KERN_ERR "s2io: "
8616 "Can't bring device back up after reset.\n");
8617 return;
8618 }
8619
8620 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8621 s2io_card_down(sp);
8622 printk(KERN_ERR "s2io: "
8623 "Can't resetore mac addr after reset.\n");
8624 return;
8625 }
8626 }
8627
8628 netif_device_attach(netdev);
8629 netif_wake_queue(netdev);
8630}
This page took 0.951106 seconds and 5 git commands to generate.