sfc: Stop the TX queues during loopback self-tests
[deliverable/linux.git] / drivers / net / sfc / nic.c
CommitLineData
8e730c15
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
0a6f40c6 4 * Copyright 2006-2011 Solarflare Communications Inc.
8e730c15
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/bitops.h>
12#include <linux/delay.h>
13#include <linux/pci.h>
14#include <linux/module.h>
15#include <linux/seq_file.h>
16#include "net_driver.h"
17#include "bitfield.h"
18#include "efx.h"
19#include "nic.h"
20#include "regs.h"
21#include "io.h"
22#include "workarounds.h"
23
24/**************************************************************************
25 *
26 * Configurable values
27 *
28 **************************************************************************
29 */
30
31/* This is set to 16 for a good reason. In summary, if larger than
32 * 16, the descriptor cache holds more than a default socket
33 * buffer's worth of packets (for UDP we can only have at most one
34 * socket buffer's worth outstanding). This combined with the fact
35 * that we only get 1 TX event per descriptor cache means the NIC
36 * goes idle.
37 */
38#define TX_DC_ENTRIES 16
39#define TX_DC_ENTRIES_ORDER 1
40
41#define RX_DC_ENTRIES 64
42#define RX_DC_ENTRIES_ORDER 3
43
8e730c15
BH
44/* If EFX_MAX_INT_ERRORS internal errors occur within
45 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
46 * disable it.
47 */
48#define EFX_INT_ERROR_EXPIRE 3600
49#define EFX_MAX_INT_ERRORS 5
50
51/* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
52 */
53#define EFX_FLUSH_INTERVAL 10
54#define EFX_FLUSH_POLL_COUNT 100
55
56/* Size and alignment of special buffers (4KB) */
57#define EFX_BUF_SIZE 4096
58
59/* Depth of RX flush request fifo */
60#define EFX_RX_FLUSH_COUNT 4
61
90d683af
SH
62/* Generated event code for efx_generate_test_event() */
63#define EFX_CHANNEL_MAGIC_TEST(_channel) \
d730dc52
SH
64 (0x00010100 + (_channel)->channel)
65
90d683af
SH
66/* Generated event code for efx_generate_fill_event() */
67#define EFX_CHANNEL_MAGIC_FILL(_channel) \
68 (0x00010200 + (_channel)->channel)
69
8e730c15
BH
70/**************************************************************************
71 *
72 * Solarstorm hardware access
73 *
74 **************************************************************************/
75
76static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
77 unsigned int index)
78{
79 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
80 value, index);
81}
82
83/* Read the current event from the event queue */
84static inline efx_qword_t *efx_event(struct efx_channel *channel,
85 unsigned int index)
86{
807540ba 87 return ((efx_qword_t *) (channel->eventq.addr)) + index;
8e730c15
BH
88}
89
90/* See if an event is present
91 *
92 * We check both the high and low dword of the event for all ones. We
93 * wrote all ones when we cleared the event, and no valid event can
94 * have all ones in either its high or low dwords. This approach is
95 * robust against reordering.
96 *
97 * Note that using a single 64-bit comparison is incorrect; even
98 * though the CPU read will be atomic, the DMA write may not be.
99 */
100static inline int efx_event_present(efx_qword_t *event)
101{
807540ba
ED
102 return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
103 EFX_DWORD_IS_ALL_ONES(event->dword[1]));
8e730c15
BH
104}
105
106static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
107 const efx_oword_t *mask)
108{
109 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
110 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
111}
112
113int efx_nic_test_registers(struct efx_nic *efx,
114 const struct efx_nic_register_test *regs,
115 size_t n_regs)
116{
117 unsigned address = 0, i, j;
118 efx_oword_t mask, imask, original, reg, buf;
119
120 /* Falcon should be in loopback to isolate the XMAC from the PHY */
121 WARN_ON(!LOOPBACK_INTERNAL(efx));
122
123 for (i = 0; i < n_regs; ++i) {
124 address = regs[i].address;
125 mask = imask = regs[i].mask;
126 EFX_INVERT_OWORD(imask);
127
128 efx_reado(efx, &original, address);
129
130 /* bit sweep on and off */
131 for (j = 0; j < 128; j++) {
132 if (!EFX_EXTRACT_OWORD32(mask, j, j))
133 continue;
134
135 /* Test this testable bit can be set in isolation */
136 EFX_AND_OWORD(reg, original, mask);
137 EFX_SET_OWORD32(reg, j, j, 1);
138
139 efx_writeo(efx, &reg, address);
140 efx_reado(efx, &buf, address);
141
142 if (efx_masked_compare_oword(&reg, &buf, &mask))
143 goto fail;
144
145 /* Test this testable bit can be cleared in isolation */
146 EFX_OR_OWORD(reg, original, mask);
147 EFX_SET_OWORD32(reg, j, j, 0);
148
149 efx_writeo(efx, &reg, address);
150 efx_reado(efx, &buf, address);
151
152 if (efx_masked_compare_oword(&reg, &buf, &mask))
153 goto fail;
154 }
155
156 efx_writeo(efx, &original, address);
157 }
158
159 return 0;
160
161fail:
62776d03
BH
162 netif_err(efx, hw, efx->net_dev,
163 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
164 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
165 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
8e730c15
BH
166 return -EIO;
167}
168
169/**************************************************************************
170 *
171 * Special buffer handling
172 * Special buffers are used for event queues and the TX and RX
173 * descriptor rings.
174 *
175 *************************************************************************/
176
177/*
178 * Initialise a special buffer
179 *
180 * This will define a buffer (previously allocated via
181 * efx_alloc_special_buffer()) in the buffer table, allowing
182 * it to be used for event queues, descriptor rings etc.
183 */
184static void
185efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
186{
187 efx_qword_t buf_desc;
188 int index;
189 dma_addr_t dma_addr;
190 int i;
191
192 EFX_BUG_ON_PARANOID(!buffer->addr);
193
194 /* Write buffer descriptors to NIC */
195 for (i = 0; i < buffer->entries; i++) {
196 index = buffer->index + i;
197 dma_addr = buffer->dma_addr + (i * 4096);
62776d03
BH
198 netif_dbg(efx, probe, efx->net_dev,
199 "mapping special buffer %d at %llx\n",
200 index, (unsigned long long)dma_addr);
8e730c15
BH
201 EFX_POPULATE_QWORD_3(buf_desc,
202 FRF_AZ_BUF_ADR_REGION, 0,
203 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
204 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
205 efx_write_buf_tbl(efx, &buf_desc, index);
206 }
207}
208
209/* Unmaps a buffer and clears the buffer table entries */
210static void
211efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
212{
213 efx_oword_t buf_tbl_upd;
214 unsigned int start = buffer->index;
215 unsigned int end = (buffer->index + buffer->entries - 1);
216
217 if (!buffer->entries)
218 return;
219
62776d03
BH
220 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
221 buffer->index, buffer->index + buffer->entries - 1);
8e730c15
BH
222
223 EFX_POPULATE_OWORD_4(buf_tbl_upd,
224 FRF_AZ_BUF_UPD_CMD, 0,
225 FRF_AZ_BUF_CLR_CMD, 1,
226 FRF_AZ_BUF_CLR_END_ID, end,
227 FRF_AZ_BUF_CLR_START_ID, start);
228 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
229}
230
231/*
232 * Allocate a new special buffer
233 *
234 * This allocates memory for a new buffer, clears it and allocates a
235 * new buffer ID range. It does not write into the buffer table.
236 *
237 * This call will allocate 4KB buffers, since 8KB buffers can't be
238 * used for event queues and descriptor rings.
239 */
240static int efx_alloc_special_buffer(struct efx_nic *efx,
241 struct efx_special_buffer *buffer,
242 unsigned int len)
243{
244 len = ALIGN(len, EFX_BUF_SIZE);
245
58758aa5
BH
246 buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
247 &buffer->dma_addr, GFP_KERNEL);
8e730c15
BH
248 if (!buffer->addr)
249 return -ENOMEM;
250 buffer->len = len;
251 buffer->entries = len / EFX_BUF_SIZE;
252 BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
253
254 /* All zeros is a potentially valid event so memset to 0xff */
255 memset(buffer->addr, 0xff, len);
256
257 /* Select new buffer ID */
258 buffer->index = efx->next_buffer_table;
259 efx->next_buffer_table += buffer->entries;
260
62776d03
BH
261 netif_dbg(efx, probe, efx->net_dev,
262 "allocating special buffers %d-%d at %llx+%x "
263 "(virt %p phys %llx)\n", buffer->index,
264 buffer->index + buffer->entries - 1,
265 (u64)buffer->dma_addr, len,
266 buffer->addr, (u64)virt_to_phys(buffer->addr));
8e730c15
BH
267
268 return 0;
269}
270
271static void
272efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
273{
274 if (!buffer->addr)
275 return;
276
62776d03
BH
277 netif_dbg(efx, hw, efx->net_dev,
278 "deallocating special buffers %d-%d at %llx+%x "
279 "(virt %p phys %llx)\n", buffer->index,
280 buffer->index + buffer->entries - 1,
281 (u64)buffer->dma_addr, buffer->len,
282 buffer->addr, (u64)virt_to_phys(buffer->addr));
8e730c15 283
58758aa5
BH
284 dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
285 buffer->dma_addr);
8e730c15
BH
286 buffer->addr = NULL;
287 buffer->entries = 0;
288}
289
290/**************************************************************************
291 *
292 * Generic buffer handling
293 * These buffers are used for interrupt status and MAC stats
294 *
295 **************************************************************************/
296
297int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
298 unsigned int len)
299{
300 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
301 &buffer->dma_addr);
302 if (!buffer->addr)
303 return -ENOMEM;
304 buffer->len = len;
305 memset(buffer->addr, 0, len);
306 return 0;
307}
308
309void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
310{
311 if (buffer->addr) {
312 pci_free_consistent(efx->pci_dev, buffer->len,
313 buffer->addr, buffer->dma_addr);
314 buffer->addr = NULL;
315 }
316}
317
318/**************************************************************************
319 *
320 * TX path
321 *
322 **************************************************************************/
323
324/* Returns a pointer to the specified transmit descriptor in the TX
325 * descriptor queue belonging to the specified channel.
326 */
327static inline efx_qword_t *
328efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
329{
807540ba 330 return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
8e730c15
BH
331}
332
333/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
334static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
335{
336 unsigned write_ptr;
337 efx_dword_t reg;
338
ecc910f5 339 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
8e730c15
BH
340 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
341 efx_writed_page(tx_queue->efx, &reg,
342 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
343}
344
cd38557d
BH
345/* Write pointer and first descriptor for TX descriptor ring */
346static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
347 const efx_qword_t *txd)
348{
349 unsigned write_ptr;
350 efx_oword_t reg;
351
352 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
353 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
354
355 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
356 EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
357 FRF_AZ_TX_DESC_WPTR, write_ptr);
358 reg.qword[0] = *txd;
359 efx_writeo_page(tx_queue->efx, &reg,
360 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
361}
362
363static inline bool
364efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
365{
366 unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
367
368 if (empty_read_count == 0)
369 return false;
370
371 tx_queue->empty_read_count = 0;
372 return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
373}
8e730c15
BH
374
375/* For each entry inserted into the software descriptor ring, create a
376 * descriptor in the hardware TX descriptor ring (in host memory), and
377 * write a doorbell.
378 */
379void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
380{
381
382 struct efx_tx_buffer *buffer;
383 efx_qword_t *txd;
384 unsigned write_ptr;
cd38557d 385 unsigned old_write_count = tx_queue->write_count;
8e730c15
BH
386
387 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
388
389 do {
ecc910f5 390 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
8e730c15
BH
391 buffer = &tx_queue->buffer[write_ptr];
392 txd = efx_tx_desc(tx_queue, write_ptr);
393 ++tx_queue->write_count;
394
395 /* Create TX descriptor ring entry */
396 EFX_POPULATE_QWORD_4(*txd,
397 FSF_AZ_TX_KER_CONT, buffer->continuation,
398 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
399 FSF_AZ_TX_KER_BUF_REGION, 0,
400 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
401 } while (tx_queue->write_count != tx_queue->insert_count);
402
403 wmb(); /* Ensure descriptors are written before they are fetched */
cd38557d
BH
404
405 if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
406 txd = efx_tx_desc(tx_queue,
407 old_write_count & tx_queue->ptr_mask);
408 efx_push_tx_desc(tx_queue, txd);
409 ++tx_queue->pushes;
410 } else {
411 efx_notify_tx_desc(tx_queue);
412 }
8e730c15
BH
413}
414
415/* Allocate hardware resources for a TX queue */
416int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
417{
418 struct efx_nic *efx = tx_queue->efx;
ecc910f5
SH
419 unsigned entries;
420
421 entries = tx_queue->ptr_mask + 1;
8e730c15 422 return efx_alloc_special_buffer(efx, &tx_queue->txd,
ecc910f5 423 entries * sizeof(efx_qword_t));
8e730c15
BH
424}
425
426void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
427{
8e730c15 428 struct efx_nic *efx = tx_queue->efx;
94b274bf 429 efx_oword_t reg;
8e730c15
BH
430
431 tx_queue->flushed = FLUSH_NONE;
432
433 /* Pin TX descriptor ring */
434 efx_init_special_buffer(efx, &tx_queue->txd);
435
436 /* Push TX descriptor ring to card */
94b274bf 437 EFX_POPULATE_OWORD_10(reg,
8e730c15
BH
438 FRF_AZ_TX_DESCQ_EN, 1,
439 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
440 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
441 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
442 FRF_AZ_TX_DESCQ_EVQ_ID,
443 tx_queue->channel->channel,
444 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
445 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
446 FRF_AZ_TX_DESCQ_SIZE,
447 __ffs(tx_queue->txd.entries),
448 FRF_AZ_TX_DESCQ_TYPE, 0,
449 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
450
451 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
a4900ac9 452 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
94b274bf
BH
453 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
454 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
8e730c15
BH
455 !csum);
456 }
457
94b274bf 458 efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
8e730c15
BH
459 tx_queue->queue);
460
461 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
8e730c15 462 /* Only 128 bits in this register */
a4900ac9 463 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
8e730c15
BH
464
465 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
a4900ac9 466 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
8e730c15
BH
467 clear_bit_le(tx_queue->queue, (void *)&reg);
468 else
469 set_bit_le(tx_queue->queue, (void *)&reg);
470 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
471 }
94b274bf
BH
472
473 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
474 EFX_POPULATE_OWORD_1(reg,
475 FRF_BZ_TX_PACE,
476 (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
477 FFE_BZ_TX_PACE_OFF :
478 FFE_BZ_TX_PACE_RESERVED);
479 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
480 tx_queue->queue);
481 }
8e730c15
BH
482}
483
484static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
485{
486 struct efx_nic *efx = tx_queue->efx;
487 efx_oword_t tx_flush_descq;
488
489 tx_queue->flushed = FLUSH_PENDING;
490
491 /* Post a flush command */
492 EFX_POPULATE_OWORD_2(tx_flush_descq,
493 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
494 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
495 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
496}
497
498void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
499{
500 struct efx_nic *efx = tx_queue->efx;
501 efx_oword_t tx_desc_ptr;
502
503 /* The queue should have been flushed */
504 WARN_ON(tx_queue->flushed != FLUSH_DONE);
505
506 /* Remove TX descriptor ring from card */
507 EFX_ZERO_OWORD(tx_desc_ptr);
508 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
509 tx_queue->queue);
510
511 /* Unpin TX descriptor ring */
512 efx_fini_special_buffer(efx, &tx_queue->txd);
513}
514
515/* Free buffers backing TX queue */
516void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
517{
518 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
519}
520
521/**************************************************************************
522 *
523 * RX path
524 *
525 **************************************************************************/
526
527/* Returns a pointer to the specified descriptor in the RX descriptor queue */
528static inline efx_qword_t *
529efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
530{
807540ba 531 return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
8e730c15
BH
532}
533
534/* This creates an entry in the RX descriptor queue */
535static inline void
536efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
537{
538 struct efx_rx_buffer *rx_buf;
539 efx_qword_t *rxd;
540
541 rxd = efx_rx_desc(rx_queue, index);
542 rx_buf = efx_rx_buffer(rx_queue, index);
543 EFX_POPULATE_QWORD_3(*rxd,
544 FSF_AZ_RX_KER_BUF_SIZE,
545 rx_buf->len -
546 rx_queue->efx->type->rx_buffer_padding,
547 FSF_AZ_RX_KER_BUF_REGION, 0,
548 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
549}
550
551/* This writes to the RX_DESC_WPTR register for the specified receive
552 * descriptor ring.
553 */
554void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
555{
ecc910f5 556 struct efx_nic *efx = rx_queue->efx;
8e730c15
BH
557 efx_dword_t reg;
558 unsigned write_ptr;
559
560 while (rx_queue->notified_count != rx_queue->added_count) {
ecc910f5
SH
561 efx_build_rx_desc(
562 rx_queue,
563 rx_queue->notified_count & rx_queue->ptr_mask);
8e730c15
BH
564 ++rx_queue->notified_count;
565 }
566
567 wmb();
ecc910f5 568 write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
8e730c15 569 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
ecc910f5 570 efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
ba1e8a35 571 efx_rx_queue_index(rx_queue));
8e730c15
BH
572}
573
574int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
575{
576 struct efx_nic *efx = rx_queue->efx;
ecc910f5
SH
577 unsigned entries;
578
579 entries = rx_queue->ptr_mask + 1;
8e730c15 580 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
ecc910f5 581 entries * sizeof(efx_qword_t));
8e730c15
BH
582}
583
584void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
585{
586 efx_oword_t rx_desc_ptr;
587 struct efx_nic *efx = rx_queue->efx;
588 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
589 bool iscsi_digest_en = is_b0;
590
62776d03
BH
591 netif_dbg(efx, hw, efx->net_dev,
592 "RX queue %d ring in special buffers %d-%d\n",
ba1e8a35 593 efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
62776d03 594 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
8e730c15
BH
595
596 rx_queue->flushed = FLUSH_NONE;
597
598 /* Pin RX descriptor ring */
599 efx_init_special_buffer(efx, &rx_queue->rxd);
600
601 /* Push RX descriptor ring to card */
602 EFX_POPULATE_OWORD_10(rx_desc_ptr,
603 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
604 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
605 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
606 FRF_AZ_RX_DESCQ_EVQ_ID,
ba1e8a35 607 efx_rx_queue_channel(rx_queue)->channel,
8e730c15 608 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
ba1e8a35
BH
609 FRF_AZ_RX_DESCQ_LABEL,
610 efx_rx_queue_index(rx_queue),
8e730c15
BH
611 FRF_AZ_RX_DESCQ_SIZE,
612 __ffs(rx_queue->rxd.entries),
613 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
614 /* For >=B0 this is scatter so disable */
615 FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
616 FRF_AZ_RX_DESCQ_EN, 1);
617 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
ba1e8a35 618 efx_rx_queue_index(rx_queue));
8e730c15
BH
619}
620
621static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
622{
623 struct efx_nic *efx = rx_queue->efx;
624 efx_oword_t rx_flush_descq;
625
626 rx_queue->flushed = FLUSH_PENDING;
627
628 /* Post a flush command */
629 EFX_POPULATE_OWORD_2(rx_flush_descq,
630 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
ba1e8a35
BH
631 FRF_AZ_RX_FLUSH_DESCQ,
632 efx_rx_queue_index(rx_queue));
8e730c15
BH
633 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
634}
635
636void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
637{
638 efx_oword_t rx_desc_ptr;
639 struct efx_nic *efx = rx_queue->efx;
640
641 /* The queue should already have been flushed */
642 WARN_ON(rx_queue->flushed != FLUSH_DONE);
643
644 /* Remove RX descriptor ring from card */
645 EFX_ZERO_OWORD(rx_desc_ptr);
646 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
ba1e8a35 647 efx_rx_queue_index(rx_queue));
8e730c15
BH
648
649 /* Unpin RX descriptor ring */
650 efx_fini_special_buffer(efx, &rx_queue->rxd);
651}
652
653/* Free buffers backing RX queue */
654void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
655{
656 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
657}
658
659/**************************************************************************
660 *
661 * Event queue processing
662 * Event queues are processed by per-channel tasklets.
663 *
664 **************************************************************************/
665
666/* Update a channel's event queue's read pointer (RPTR) register
667 *
668 * This writes the EVQ_RPTR_REG register for the specified channel's
669 * event queue.
8e730c15
BH
670 */
671void efx_nic_eventq_read_ack(struct efx_channel *channel)
672{
673 efx_dword_t reg;
674 struct efx_nic *efx = channel->efx;
675
676 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
677 efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
678 channel->channel);
679}
680
681/* Use HW to insert a SW defined event */
d215697f 682static void efx_generate_event(struct efx_channel *channel, efx_qword_t *event)
8e730c15
BH
683{
684 efx_oword_t drv_ev_reg;
685
686 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
687 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
688 drv_ev_reg.u32[0] = event->u32[0];
689 drv_ev_reg.u32[1] = event->u32[1];
690 drv_ev_reg.u32[2] = 0;
691 drv_ev_reg.u32[3] = 0;
692 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
693 efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
694}
695
696/* Handle a transmit completion event
697 *
698 * The NIC batches TX completion events; the message we receive is of
699 * the form "complete all TX events up to this index".
700 */
fa236e18 701static int
8e730c15
BH
702efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
703{
704 unsigned int tx_ev_desc_ptr;
705 unsigned int tx_ev_q_label;
706 struct efx_tx_queue *tx_queue;
707 struct efx_nic *efx = channel->efx;
fa236e18 708 int tx_packets = 0;
8e730c15
BH
709
710 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
711 /* Transmit completion */
712 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
713 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
f7d12cdc
BH
714 tx_queue = efx_channel_get_tx_queue(
715 channel, tx_ev_q_label % EFX_TXQ_TYPES);
fa236e18 716 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
ecc910f5 717 tx_queue->ptr_mask);
fa236e18 718 channel->irq_mod_score += tx_packets;
8e730c15
BH
719 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
720 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
721 /* Rewrite the FIFO write pointer */
722 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
f7d12cdc
BH
723 tx_queue = efx_channel_get_tx_queue(
724 channel, tx_ev_q_label % EFX_TXQ_TYPES);
8e730c15
BH
725
726 if (efx_dev_registered(efx))
727 netif_tx_lock(efx->net_dev);
728 efx_notify_tx_desc(tx_queue);
729 if (efx_dev_registered(efx))
730 netif_tx_unlock(efx->net_dev);
731 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
732 EFX_WORKAROUND_10727(efx)) {
733 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
734 } else {
62776d03
BH
735 netif_err(efx, tx_err, efx->net_dev,
736 "channel %d unexpected TX event "
737 EFX_QWORD_FMT"\n", channel->channel,
738 EFX_QWORD_VAL(*event));
8e730c15 739 }
fa236e18
BH
740
741 return tx_packets;
8e730c15
BH
742}
743
744/* Detect errors included in the rx_evt_pkt_ok bit. */
745static void efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
746 const efx_qword_t *event,
747 bool *rx_ev_pkt_ok,
748 bool *discard)
749{
ba1e8a35 750 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
8e730c15
BH
751 struct efx_nic *efx = rx_queue->efx;
752 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
753 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
754 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
755 bool rx_ev_other_err, rx_ev_pause_frm;
756 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
757 unsigned rx_ev_pkt_type;
758
759 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
760 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
761 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
762 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
763 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
764 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
765 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
766 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
767 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
768 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
769 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
770 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
771 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
772 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
773 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
774
775 /* Every error apart from tobe_disc and pause_frm */
776 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
777 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
778 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
779
780 /* Count errors that are not in MAC stats. Ignore expected
781 * checksum errors during self-test. */
782 if (rx_ev_frm_trunc)
ba1e8a35 783 ++channel->n_rx_frm_trunc;
8e730c15 784 else if (rx_ev_tobe_disc)
ba1e8a35 785 ++channel->n_rx_tobe_disc;
8e730c15
BH
786 else if (!efx->loopback_selftest) {
787 if (rx_ev_ip_hdr_chksum_err)
ba1e8a35 788 ++channel->n_rx_ip_hdr_chksum_err;
8e730c15 789 else if (rx_ev_tcp_udp_chksum_err)
ba1e8a35 790 ++channel->n_rx_tcp_udp_chksum_err;
8e730c15
BH
791 }
792
793 /* The frame must be discarded if any of these are true. */
794 *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
795 rx_ev_tobe_disc | rx_ev_pause_frm);
796
797 /* TOBE_DISC is expected on unicast mismatches; don't print out an
798 * error message. FRM_TRUNC indicates RXDP dropped the packet due
799 * to a FIFO overflow.
800 */
801#ifdef EFX_ENABLE_DEBUG
62776d03
BH
802 if (rx_ev_other_err && net_ratelimit()) {
803 netif_dbg(efx, rx_err, efx->net_dev,
804 " RX queue %d unexpected RX event "
805 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
ba1e8a35 806 efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
62776d03
BH
807 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
808 rx_ev_ip_hdr_chksum_err ?
809 " [IP_HDR_CHKSUM_ERR]" : "",
810 rx_ev_tcp_udp_chksum_err ?
811 " [TCP_UDP_CHKSUM_ERR]" : "",
812 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
813 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
814 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
815 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
816 rx_ev_pause_frm ? " [PAUSE]" : "");
8e730c15
BH
817 }
818#endif
819}
820
821/* Handle receive events that are not in-order. */
822static void
823efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
824{
825 struct efx_nic *efx = rx_queue->efx;
826 unsigned expected, dropped;
827
ecc910f5
SH
828 expected = rx_queue->removed_count & rx_queue->ptr_mask;
829 dropped = (index - expected) & rx_queue->ptr_mask;
62776d03
BH
830 netif_info(efx, rx_err, efx->net_dev,
831 "dropped %d events (index=%d expected=%d)\n",
832 dropped, index, expected);
8e730c15
BH
833
834 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
835 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
836}
837
838/* Handle a packet received event
839 *
840 * The NIC gives a "discard" flag if it's a unicast packet with the
841 * wrong destination address
842 * Also "is multicast" and "matches multicast filter" flags can be used to
843 * discard non-matching multicast packets.
844 */
845static void
846efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
847{
848 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
849 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
850 unsigned expected_ptr;
851 bool rx_ev_pkt_ok, discard = false, checksummed;
852 struct efx_rx_queue *rx_queue;
853 struct efx_nic *efx = channel->efx;
854
855 /* Basic packet information */
856 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
857 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
858 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
859 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
860 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
861 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
862 channel->channel);
863
f7d12cdc 864 rx_queue = efx_channel_get_rx_queue(channel);
8e730c15
BH
865
866 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
ecc910f5 867 expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
8e730c15
BH
868 if (unlikely(rx_ev_desc_ptr != expected_ptr))
869 efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
870
871 if (likely(rx_ev_pkt_ok)) {
872 /* If packet is marked as OK and packet type is TCP/IP or
873 * UDP/IP, then we can rely on the hardware checksum.
874 */
875 checksummed =
876 likely(efx->rx_checksum_enabled) &&
877 (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
878 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP);
879 } else {
880 efx_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, &discard);
881 checksummed = false;
882 }
883
884 /* Detect multicast packets that didn't match the filter */
885 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
886 if (rx_ev_mcast_pkt) {
887 unsigned int rx_ev_mcast_hash_match =
888 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
889
890 if (unlikely(!rx_ev_mcast_hash_match)) {
891 ++channel->n_rx_mcast_mismatch;
892 discard = true;
893 }
894 }
895
896 channel->irq_mod_score += 2;
897
898 /* Handle received packet */
899 efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
900 checksummed, discard);
901}
902
90d683af
SH
903static void
904efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
905{
906 struct efx_nic *efx = channel->efx;
907 unsigned code;
908
909 code = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
910 if (code == EFX_CHANNEL_MAGIC_TEST(channel))
911 ++channel->magic_count;
912 else if (code == EFX_CHANNEL_MAGIC_FILL(channel))
913 /* The queue must be empty, so we won't receive any rx
914 * events, so efx_process_channel() won't refill the
915 * queue. Refill it here */
f7d12cdc 916 efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
90d683af 917 else
62776d03
BH
918 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
919 "generated event "EFX_QWORD_FMT"\n",
920 channel->channel, EFX_QWORD_VAL(*event));
90d683af
SH
921}
922
8e730c15
BH
923static void
924efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
925{
926 struct efx_nic *efx = channel->efx;
927 unsigned int ev_sub_code;
928 unsigned int ev_sub_data;
929
930 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
931 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
932
933 switch (ev_sub_code) {
934 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
62776d03
BH
935 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
936 channel->channel, ev_sub_data);
8e730c15
BH
937 break;
938 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
62776d03
BH
939 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
940 channel->channel, ev_sub_data);
8e730c15
BH
941 break;
942 case FSE_AZ_EVQ_INIT_DONE_EV:
62776d03
BH
943 netif_dbg(efx, hw, efx->net_dev,
944 "channel %d EVQ %d initialised\n",
945 channel->channel, ev_sub_data);
8e730c15
BH
946 break;
947 case FSE_AZ_SRM_UPD_DONE_EV:
62776d03
BH
948 netif_vdbg(efx, hw, efx->net_dev,
949 "channel %d SRAM update done\n", channel->channel);
8e730c15
BH
950 break;
951 case FSE_AZ_WAKE_UP_EV:
62776d03
BH
952 netif_vdbg(efx, hw, efx->net_dev,
953 "channel %d RXQ %d wakeup event\n",
954 channel->channel, ev_sub_data);
8e730c15
BH
955 break;
956 case FSE_AZ_TIMER_EV:
62776d03
BH
957 netif_vdbg(efx, hw, efx->net_dev,
958 "channel %d RX queue %d timer expired\n",
959 channel->channel, ev_sub_data);
8e730c15
BH
960 break;
961 case FSE_AA_RX_RECOVER_EV:
62776d03
BH
962 netif_err(efx, rx_err, efx->net_dev,
963 "channel %d seen DRIVER RX_RESET event. "
8e730c15
BH
964 "Resetting.\n", channel->channel);
965 atomic_inc(&efx->rx_reset);
966 efx_schedule_reset(efx,
967 EFX_WORKAROUND_6555(efx) ?
968 RESET_TYPE_RX_RECOVERY :
969 RESET_TYPE_DISABLE);
970 break;
971 case FSE_BZ_RX_DSC_ERROR_EV:
62776d03
BH
972 netif_err(efx, rx_err, efx->net_dev,
973 "RX DMA Q %d reports descriptor fetch error."
974 " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
8e730c15
BH
975 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
976 break;
977 case FSE_BZ_TX_DSC_ERROR_EV:
62776d03
BH
978 netif_err(efx, tx_err, efx->net_dev,
979 "TX DMA Q %d reports descriptor fetch error."
980 " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
8e730c15
BH
981 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
982 break;
983 default:
62776d03
BH
984 netif_vdbg(efx, hw, efx->net_dev,
985 "channel %d unknown driver event code %d "
986 "data %04x\n", channel->channel, ev_sub_code,
987 ev_sub_data);
8e730c15
BH
988 break;
989 }
990}
991
fa236e18 992int efx_nic_process_eventq(struct efx_channel *channel, int budget)
8e730c15 993{
ecc910f5 994 struct efx_nic *efx = channel->efx;
8e730c15
BH
995 unsigned int read_ptr;
996 efx_qword_t event, *p_event;
997 int ev_code;
fa236e18
BH
998 int tx_packets = 0;
999 int spent = 0;
8e730c15
BH
1000
1001 read_ptr = channel->eventq_read_ptr;
1002
fa236e18 1003 for (;;) {
8e730c15
BH
1004 p_event = efx_event(channel, read_ptr);
1005 event = *p_event;
1006
1007 if (!efx_event_present(&event))
1008 /* End of events */
1009 break;
1010
62776d03
BH
1011 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1012 "channel %d event is "EFX_QWORD_FMT"\n",
1013 channel->channel, EFX_QWORD_VAL(event));
8e730c15
BH
1014
1015 /* Clear this event by marking it all ones */
1016 EFX_SET_QWORD(*p_event);
1017
fa236e18 1018 /* Increment read pointer */
ecc910f5 1019 read_ptr = (read_ptr + 1) & channel->eventq_mask;
fa236e18 1020
8e730c15
BH
1021 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1022
1023 switch (ev_code) {
1024 case FSE_AZ_EV_CODE_RX_EV:
1025 efx_handle_rx_event(channel, &event);
fa236e18
BH
1026 if (++spent == budget)
1027 goto out;
8e730c15
BH
1028 break;
1029 case FSE_AZ_EV_CODE_TX_EV:
fa236e18 1030 tx_packets += efx_handle_tx_event(channel, &event);
ecc910f5 1031 if (tx_packets > efx->txq_entries) {
fa236e18
BH
1032 spent = budget;
1033 goto out;
1034 }
8e730c15
BH
1035 break;
1036 case FSE_AZ_EV_CODE_DRV_GEN_EV:
90d683af 1037 efx_handle_generated_event(channel, &event);
8e730c15 1038 break;
8e730c15
BH
1039 case FSE_AZ_EV_CODE_DRIVER_EV:
1040 efx_handle_driver_event(channel, &event);
1041 break;
8880f4ec
BH
1042 case FSE_CZ_EV_CODE_MCDI_EV:
1043 efx_mcdi_process_event(channel, &event);
1044 break;
40641ed9
BH
1045 case FSE_AZ_EV_CODE_GLOBAL_EV:
1046 if (efx->type->handle_global_event &&
1047 efx->type->handle_global_event(channel, &event))
1048 break;
1049 /* else fall through */
8e730c15 1050 default:
62776d03
BH
1051 netif_err(channel->efx, hw, channel->efx->net_dev,
1052 "channel %d unknown event type %d (data "
1053 EFX_QWORD_FMT ")\n", channel->channel,
1054 ev_code, EFX_QWORD_VAL(event));
8e730c15 1055 }
fa236e18 1056 }
8e730c15 1057
fa236e18 1058out:
8e730c15 1059 channel->eventq_read_ptr = read_ptr;
fa236e18 1060 return spent;
8e730c15
BH
1061}
1062
1063
1064/* Allocate buffer table entries for event queue */
1065int efx_nic_probe_eventq(struct efx_channel *channel)
1066{
1067 struct efx_nic *efx = channel->efx;
ecc910f5
SH
1068 unsigned entries;
1069
1070 entries = channel->eventq_mask + 1;
8e730c15 1071 return efx_alloc_special_buffer(efx, &channel->eventq,
ecc910f5 1072 entries * sizeof(efx_qword_t));
8e730c15
BH
1073}
1074
1075void efx_nic_init_eventq(struct efx_channel *channel)
1076{
8880f4ec 1077 efx_oword_t reg;
8e730c15
BH
1078 struct efx_nic *efx = channel->efx;
1079
62776d03
BH
1080 netif_dbg(efx, hw, efx->net_dev,
1081 "channel %d event queue in special buffers %d-%d\n",
1082 channel->channel, channel->eventq.index,
1083 channel->eventq.index + channel->eventq.entries - 1);
8e730c15 1084
8880f4ec
BH
1085 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1086 EFX_POPULATE_OWORD_3(reg,
1087 FRF_CZ_TIMER_Q_EN, 1,
1088 FRF_CZ_HOST_NOTIFY_MODE, 0,
1089 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1090 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1091 }
1092
8e730c15
BH
1093 /* Pin event queue buffer */
1094 efx_init_special_buffer(efx, &channel->eventq);
1095
1096 /* Fill event queue with all ones (i.e. empty events) */
1097 memset(channel->eventq.addr, 0xff, channel->eventq.len);
1098
1099 /* Push event queue to card */
8880f4ec 1100 EFX_POPULATE_OWORD_3(reg,
8e730c15
BH
1101 FRF_AZ_EVQ_EN, 1,
1102 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1103 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
8880f4ec 1104 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
8e730c15
BH
1105 channel->channel);
1106
1107 efx->type->push_irq_moderation(channel);
1108}
1109
1110void efx_nic_fini_eventq(struct efx_channel *channel)
1111{
8880f4ec 1112 efx_oword_t reg;
8e730c15
BH
1113 struct efx_nic *efx = channel->efx;
1114
1115 /* Remove event queue from card */
8880f4ec
BH
1116 EFX_ZERO_OWORD(reg);
1117 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
8e730c15 1118 channel->channel);
8880f4ec
BH
1119 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1120 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
8e730c15
BH
1121
1122 /* Unpin event queue */
1123 efx_fini_special_buffer(efx, &channel->eventq);
1124}
1125
1126/* Free buffers backing event queue */
1127void efx_nic_remove_eventq(struct efx_channel *channel)
1128{
1129 efx_free_special_buffer(channel->efx, &channel->eventq);
1130}
1131
1132
d730dc52 1133void efx_nic_generate_test_event(struct efx_channel *channel)
8e730c15 1134{
90d683af
SH
1135 unsigned int magic = EFX_CHANNEL_MAGIC_TEST(channel);
1136 efx_qword_t test_event;
1137
1138 EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1139 FSE_AZ_EV_CODE_DRV_GEN_EV,
1140 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1141 efx_generate_event(channel, &test_event);
1142}
1143
1144void efx_nic_generate_fill_event(struct efx_channel *channel)
1145{
1146 unsigned int magic = EFX_CHANNEL_MAGIC_FILL(channel);
8e730c15
BH
1147 efx_qword_t test_event;
1148
1149 EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1150 FSE_AZ_EV_CODE_DRV_GEN_EV,
1151 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1152 efx_generate_event(channel, &test_event);
1153}
1154
1155/**************************************************************************
1156 *
1157 * Flush handling
1158 *
1159 **************************************************************************/
1160
1161
1162static void efx_poll_flush_events(struct efx_nic *efx)
1163{
f7d12cdc 1164 struct efx_channel *channel = efx_get_channel(efx, 0);
8e730c15
BH
1165 struct efx_tx_queue *tx_queue;
1166 struct efx_rx_queue *rx_queue;
1167 unsigned int read_ptr = channel->eventq_read_ptr;
ecc910f5 1168 unsigned int end_ptr = (read_ptr - 1) & channel->eventq_mask;
8e730c15
BH
1169
1170 do {
1171 efx_qword_t *event = efx_event(channel, read_ptr);
1172 int ev_code, ev_sub_code, ev_queue;
1173 bool ev_failed;
1174
1175 if (!efx_event_present(event))
1176 break;
1177
1178 ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
1179 ev_sub_code = EFX_QWORD_FIELD(*event,
1180 FSF_AZ_DRIVER_EV_SUBCODE);
1181 if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1182 ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
1183 ev_queue = EFX_QWORD_FIELD(*event,
1184 FSF_AZ_DRIVER_EV_SUBDATA);
a4900ac9 1185 if (ev_queue < EFX_TXQ_TYPES * efx->n_tx_channels) {
f7d12cdc
BH
1186 tx_queue = efx_get_tx_queue(
1187 efx, ev_queue / EFX_TXQ_TYPES,
1188 ev_queue % EFX_TXQ_TYPES);
8e730c15
BH
1189 tx_queue->flushed = FLUSH_DONE;
1190 }
1191 } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1192 ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
1193 ev_queue = EFX_QWORD_FIELD(
1194 *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1195 ev_failed = EFX_QWORD_FIELD(
1196 *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
a4900ac9 1197 if (ev_queue < efx->n_rx_channels) {
f7d12cdc 1198 rx_queue = efx_get_rx_queue(efx, ev_queue);
8e730c15
BH
1199 rx_queue->flushed =
1200 ev_failed ? FLUSH_FAILED : FLUSH_DONE;
1201 }
1202 }
1203
1204 /* We're about to destroy the queue anyway, so
1205 * it's ok to throw away every non-flush event */
1206 EFX_SET_QWORD(*event);
1207
ecc910f5 1208 read_ptr = (read_ptr + 1) & channel->eventq_mask;
8e730c15
BH
1209 } while (read_ptr != end_ptr);
1210
1211 channel->eventq_read_ptr = read_ptr;
1212}
1213
1214/* Handle tx and rx flushes at the same time, since they run in
1215 * parallel in the hardware and there's no reason for us to
1216 * serialise them */
1217int efx_nic_flush_queues(struct efx_nic *efx)
1218{
f7d12cdc 1219 struct efx_channel *channel;
8e730c15
BH
1220 struct efx_rx_queue *rx_queue;
1221 struct efx_tx_queue *tx_queue;
1222 int i, tx_pending, rx_pending;
1223
1224 /* If necessary prepare the hardware for flushing */
1225 efx->type->prepare_flush(efx);
1226
1227 /* Flush all tx queues in parallel */
f7d12cdc 1228 efx_for_each_channel(channel, efx) {
94b274bf
BH
1229 efx_for_each_possible_channel_tx_queue(tx_queue, channel) {
1230 if (tx_queue->initialised)
1231 efx_flush_tx_queue(tx_queue);
1232 }
f7d12cdc 1233 }
8e730c15
BH
1234
1235 /* The hardware supports four concurrent rx flushes, each of which may
1236 * need to be retried if there is an outstanding descriptor fetch */
1237 for (i = 0; i < EFX_FLUSH_POLL_COUNT; ++i) {
1238 rx_pending = tx_pending = 0;
f7d12cdc
BH
1239 efx_for_each_channel(channel, efx) {
1240 efx_for_each_channel_rx_queue(rx_queue, channel) {
1241 if (rx_queue->flushed == FLUSH_PENDING)
1242 ++rx_pending;
8e730c15
BH
1243 }
1244 }
f7d12cdc
BH
1245 efx_for_each_channel(channel, efx) {
1246 efx_for_each_channel_rx_queue(rx_queue, channel) {
1247 if (rx_pending == EFX_RX_FLUSH_COUNT)
1248 break;
1249 if (rx_queue->flushed == FLUSH_FAILED ||
1250 rx_queue->flushed == FLUSH_NONE) {
1251 efx_flush_rx_queue(rx_queue);
1252 ++rx_pending;
1253 }
1254 }
94b274bf
BH
1255 efx_for_each_possible_channel_tx_queue(tx_queue, channel) {
1256 if (tx_queue->initialised &&
1257 tx_queue->flushed != FLUSH_DONE)
f7d12cdc
BH
1258 ++tx_pending;
1259 }
8e730c15
BH
1260 }
1261
1262 if (rx_pending == 0 && tx_pending == 0)
1263 return 0;
1264
1265 msleep(EFX_FLUSH_INTERVAL);
1266 efx_poll_flush_events(efx);
1267 }
1268
1269 /* Mark the queues as all flushed. We're going to return failure
1270 * leading to a reset, or fake up success anyway */
f7d12cdc 1271 efx_for_each_channel(channel, efx) {
94b274bf
BH
1272 efx_for_each_possible_channel_tx_queue(tx_queue, channel) {
1273 if (tx_queue->initialised &&
1274 tx_queue->flushed != FLUSH_DONE)
f7d12cdc
BH
1275 netif_err(efx, hw, efx->net_dev,
1276 "tx queue %d flush command timed out\n",
1277 tx_queue->queue);
1278 tx_queue->flushed = FLUSH_DONE;
1279 }
1280 efx_for_each_channel_rx_queue(rx_queue, channel) {
1281 if (rx_queue->flushed != FLUSH_DONE)
1282 netif_err(efx, hw, efx->net_dev,
1283 "rx queue %d flush command timed out\n",
1284 efx_rx_queue_index(rx_queue));
1285 rx_queue->flushed = FLUSH_DONE;
1286 }
8e730c15
BH
1287 }
1288
8e730c15
BH
1289 return -ETIMEDOUT;
1290}
1291
1292/**************************************************************************
1293 *
1294 * Hardware interrupts
1295 * The hardware interrupt handler does very little work; all the event
1296 * queue processing is carried out by per-channel tasklets.
1297 *
1298 **************************************************************************/
1299
1300/* Enable/disable/generate interrupts */
1301static inline void efx_nic_interrupts(struct efx_nic *efx,
1302 bool enabled, bool force)
1303{
1304 efx_oword_t int_en_reg_ker;
8880f4ec
BH
1305
1306 EFX_POPULATE_OWORD_3(int_en_reg_ker,
63695459 1307 FRF_AZ_KER_INT_LEVE_SEL, efx->fatal_irq_level,
8e730c15
BH
1308 FRF_AZ_KER_INT_KER, force,
1309 FRF_AZ_DRV_INT_EN_KER, enabled);
1310 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1311}
1312
1313void efx_nic_enable_interrupts(struct efx_nic *efx)
1314{
1315 struct efx_channel *channel;
1316
1317 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1318 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1319
1320 /* Enable interrupts */
1321 efx_nic_interrupts(efx, true, false);
1322
1323 /* Force processing of all the channels to get the EVQ RPTRs up to
1324 date */
1325 efx_for_each_channel(channel, efx)
1326 efx_schedule_channel(channel);
1327}
1328
1329void efx_nic_disable_interrupts(struct efx_nic *efx)
1330{
1331 /* Disable interrupts */
1332 efx_nic_interrupts(efx, false, false);
1333}
1334
1335/* Generate a test interrupt
1336 * Interrupt must already have been enabled, otherwise nasty things
1337 * may happen.
1338 */
1339void efx_nic_generate_interrupt(struct efx_nic *efx)
1340{
1341 efx_nic_interrupts(efx, true, true);
1342}
1343
1344/* Process a fatal interrupt
1345 * Disable bus mastering ASAP and schedule a reset
1346 */
1347irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1348{
1349 struct falcon_nic_data *nic_data = efx->nic_data;
1350 efx_oword_t *int_ker = efx->irq_status.addr;
1351 efx_oword_t fatal_intr;
1352 int error, mem_perr;
1353
1354 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1355 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1356
62776d03
BH
1357 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1358 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1359 EFX_OWORD_VAL(fatal_intr),
1360 error ? "disabling bus mastering" : "no recognised error");
8e730c15
BH
1361
1362 /* If this is a memory parity error dump which blocks are offending */
97e1eaa0
SH
1363 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1364 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
8e730c15
BH
1365 if (mem_perr) {
1366 efx_oword_t reg;
1367 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
62776d03
BH
1368 netif_err(efx, hw, efx->net_dev,
1369 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1370 EFX_OWORD_VAL(reg));
8e730c15
BH
1371 }
1372
1373 /* Disable both devices */
1374 pci_clear_master(efx->pci_dev);
1375 if (efx_nic_is_dual_func(efx))
1376 pci_clear_master(nic_data->pci_dev2);
1377 efx_nic_disable_interrupts(efx);
1378
1379 /* Count errors and reset or disable the NIC accordingly */
1380 if (efx->int_error_count == 0 ||
1381 time_after(jiffies, efx->int_error_expire)) {
1382 efx->int_error_count = 0;
1383 efx->int_error_expire =
1384 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1385 }
1386 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
62776d03
BH
1387 netif_err(efx, hw, efx->net_dev,
1388 "SYSTEM ERROR - reset scheduled\n");
8e730c15
BH
1389 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1390 } else {
62776d03
BH
1391 netif_err(efx, hw, efx->net_dev,
1392 "SYSTEM ERROR - max number of errors seen."
1393 "NIC will be disabled\n");
8e730c15
BH
1394 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1395 }
63695459 1396
8e730c15
BH
1397 return IRQ_HANDLED;
1398}
1399
1400/* Handle a legacy interrupt
1401 * Acknowledges the interrupt and schedule event queue processing.
1402 */
1403static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1404{
1405 struct efx_nic *efx = dev_id;
1406 efx_oword_t *int_ker = efx->irq_status.addr;
1407 irqreturn_t result = IRQ_NONE;
1408 struct efx_channel *channel;
1409 efx_dword_t reg;
1410 u32 queues;
1411 int syserr;
1412
94dec6a2
BH
1413 /* Could this be ours? If interrupts are disabled then the
1414 * channel state may not be valid.
1415 */
1416 if (!efx->legacy_irq_enabled)
1417 return result;
1418
8e730c15
BH
1419 /* Read the ISR which also ACKs the interrupts */
1420 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1421 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1422
1423 /* Check to see if we have a serious error condition */
63695459
SH
1424 if (queues & (1U << efx->fatal_irq_level)) {
1425 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1426 if (unlikely(syserr))
1427 return efx_nic_fatal_interrupt(efx);
1428 }
8e730c15 1429
8880f4ec
BH
1430 if (queues != 0) {
1431 if (EFX_WORKAROUND_15783(efx))
1432 efx->irq_zero_count = 0;
1433
1434 /* Schedule processing of any interrupting queues */
1435 efx_for_each_channel(channel, efx) {
1436 if (queues & 1)
8e730c15 1437 efx_schedule_channel(channel);
8880f4ec 1438 queues >>= 1;
8e730c15 1439 }
8880f4ec
BH
1440 result = IRQ_HANDLED;
1441
41b7e4c3 1442 } else if (EFX_WORKAROUND_15783(efx)) {
8880f4ec
BH
1443 efx_qword_t *event;
1444
41b7e4c3
SH
1445 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1446 * because this might be a shared interrupt. */
1447 if (efx->irq_zero_count++ == 0)
1448 result = IRQ_HANDLED;
1449
1450 /* Ensure we schedule or rearm all event queues */
8880f4ec
BH
1451 efx_for_each_channel(channel, efx) {
1452 event = efx_event(channel, channel->eventq_read_ptr);
1453 if (efx_event_present(event))
1454 efx_schedule_channel(channel);
41b7e4c3
SH
1455 else
1456 efx_nic_eventq_read_ack(channel);
8880f4ec 1457 }
8e730c15
BH
1458 }
1459
1460 if (result == IRQ_HANDLED) {
1461 efx->last_irq_cpu = raw_smp_processor_id();
62776d03
BH
1462 netif_vdbg(efx, intr, efx->net_dev,
1463 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1464 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
8e730c15
BH
1465 }
1466
1467 return result;
1468}
1469
1470/* Handle an MSI interrupt
1471 *
1472 * Handle an MSI hardware interrupt. This routine schedules event
1473 * queue processing. No interrupt acknowledgement cycle is necessary.
1474 * Also, we never need to check that the interrupt is for us, since
1475 * MSI interrupts cannot be shared.
1476 */
1477static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1478{
4642610c 1479 struct efx_channel *channel = *(struct efx_channel **)dev_id;
8e730c15
BH
1480 struct efx_nic *efx = channel->efx;
1481 efx_oword_t *int_ker = efx->irq_status.addr;
1482 int syserr;
1483
1484 efx->last_irq_cpu = raw_smp_processor_id();
62776d03
BH
1485 netif_vdbg(efx, intr, efx->net_dev,
1486 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1487 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
8e730c15
BH
1488
1489 /* Check to see if we have a serious error condition */
63695459
SH
1490 if (channel->channel == efx->fatal_irq_level) {
1491 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1492 if (unlikely(syserr))
1493 return efx_nic_fatal_interrupt(efx);
1494 }
8e730c15
BH
1495
1496 /* Schedule processing of the channel */
1497 efx_schedule_channel(channel);
1498
1499 return IRQ_HANDLED;
1500}
1501
1502
1503/* Setup RSS indirection table.
1504 * This maps from the hash value of the packet to RXQ
1505 */
765c9f46 1506void efx_nic_push_rx_indir_table(struct efx_nic *efx)
8e730c15 1507{
765c9f46 1508 size_t i = 0;
8e730c15
BH
1509 efx_dword_t dword;
1510
1511 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1512 return;
1513
765c9f46
BH
1514 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1515 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1516
1517 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
8e730c15 1518 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
765c9f46
BH
1519 efx->rx_indir_table[i]);
1520 efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i);
8e730c15
BH
1521 }
1522}
1523
1524/* Hook interrupt handler(s)
1525 * Try MSI and then legacy interrupts.
1526 */
1527int efx_nic_init_interrupt(struct efx_nic *efx)
1528{
1529 struct efx_channel *channel;
1530 int rc;
1531
1532 if (!EFX_INT_MODE_USE_MSI(efx)) {
1533 irq_handler_t handler;
1534 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1535 handler = efx_legacy_interrupt;
1536 else
1537 handler = falcon_legacy_interrupt_a1;
1538
1539 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1540 efx->name, efx);
1541 if (rc) {
62776d03
BH
1542 netif_err(efx, drv, efx->net_dev,
1543 "failed to hook legacy IRQ %d\n",
1544 efx->pci_dev->irq);
8e730c15
BH
1545 goto fail1;
1546 }
1547 return 0;
1548 }
1549
1550 /* Hook MSI or MSI-X interrupt */
1551 efx_for_each_channel(channel, efx) {
1552 rc = request_irq(channel->irq, efx_msi_interrupt,
1553 IRQF_PROBE_SHARED, /* Not shared */
4642610c
BH
1554 efx->channel_name[channel->channel],
1555 &efx->channel[channel->channel]);
8e730c15 1556 if (rc) {
62776d03
BH
1557 netif_err(efx, drv, efx->net_dev,
1558 "failed to hook IRQ %d\n", channel->irq);
8e730c15
BH
1559 goto fail2;
1560 }
1561 }
1562
1563 return 0;
1564
1565 fail2:
1566 efx_for_each_channel(channel, efx)
4642610c 1567 free_irq(channel->irq, &efx->channel[channel->channel]);
8e730c15
BH
1568 fail1:
1569 return rc;
1570}
1571
1572void efx_nic_fini_interrupt(struct efx_nic *efx)
1573{
1574 struct efx_channel *channel;
1575 efx_oword_t reg;
1576
1577 /* Disable MSI/MSI-X interrupts */
1578 efx_for_each_channel(channel, efx) {
1579 if (channel->irq)
4642610c 1580 free_irq(channel->irq, &efx->channel[channel->channel]);
8e730c15
BH
1581 }
1582
1583 /* ACK legacy interrupt */
1584 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1585 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1586 else
1587 falcon_irq_ack_a1(efx);
1588
1589 /* Disable legacy interrupt */
1590 if (efx->legacy_irq)
1591 free_irq(efx->legacy_irq, efx);
1592}
1593
1594u32 efx_nic_fpga_ver(struct efx_nic *efx)
1595{
1596 efx_oword_t altera_build;
1597 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1598 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1599}
1600
1601void efx_nic_init_common(struct efx_nic *efx)
1602{
1603 efx_oword_t temp;
1604
1605 /* Set positions of descriptor caches in SRAM. */
1606 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR,
1607 efx->type->tx_dc_base / 8);
1608 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1609 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR,
1610 efx->type->rx_dc_base / 8);
1611 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1612
1613 /* Set TX descriptor cache size. */
1614 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1615 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1616 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1617
1618 /* Set RX descriptor cache size. Set low watermark to size-8, as
1619 * this allows most efficient prefetching.
1620 */
1621 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1622 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1623 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1624 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1625 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1626
1627 /* Program INT_KER address */
1628 EFX_POPULATE_OWORD_2(temp,
1629 FRF_AZ_NORM_INT_VEC_DIS_KER,
1630 EFX_INT_MODE_USE_MSI(efx),
1631 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1632 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1633
63695459
SH
1634 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1635 /* Use an interrupt level unused by event queues */
1636 efx->fatal_irq_level = 0x1f;
1637 else
1638 /* Use a valid MSI-X vector */
1639 efx->fatal_irq_level = 0;
1640
8e730c15
BH
1641 /* Enable all the genuinely fatal interrupts. (They are still
1642 * masked by the overall interrupt mask, controlled by
1643 * falcon_interrupts()).
1644 *
1645 * Note: All other fatal interrupts are enabled
1646 */
1647 EFX_POPULATE_OWORD_3(temp,
1648 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1649 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1650 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
b17424b0
SH
1651 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1652 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
8e730c15
BH
1653 EFX_INVERT_OWORD(temp);
1654 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1655
765c9f46 1656 efx_nic_push_rx_indir_table(efx);
8e730c15
BH
1657
1658 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1659 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1660 */
1661 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1662 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1663 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1664 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
cd38557d 1665 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
8e730c15
BH
1666 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1667 /* Enable SW_EV to inherit in char driver - assume harmless here */
1668 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1669 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1670 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
286d47ba
BH
1671 /* Disable hardware watchdog which can misfire */
1672 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
8e730c15
BH
1673 /* Squash TX of packets of 16 bytes or less */
1674 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1675 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1676 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
94b274bf
BH
1677
1678 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1679 EFX_POPULATE_OWORD_4(temp,
1680 /* Default values */
1681 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1682 FRF_BZ_TX_PACE_SB_AF, 0xb,
1683 FRF_BZ_TX_PACE_FB_BASE, 0,
1684 /* Allow large pace values in the
1685 * fast bin. */
1686 FRF_BZ_TX_PACE_BIN_TH,
1687 FFE_BZ_TX_PACE_RESERVED);
1688 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1689 }
8e730c15 1690}
5b98c1bf
BH
1691
1692/* Register dump */
1693
1694#define REGISTER_REVISION_A 1
1695#define REGISTER_REVISION_B 2
1696#define REGISTER_REVISION_C 3
1697#define REGISTER_REVISION_Z 3 /* latest revision */
1698
1699struct efx_nic_reg {
1700 u32 offset:24;
1701 u32 min_revision:2, max_revision:2;
1702};
1703
1704#define REGISTER(name, min_rev, max_rev) { \
1705 FR_ ## min_rev ## max_rev ## _ ## name, \
1706 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \
1707}
1708#define REGISTER_AA(name) REGISTER(name, A, A)
1709#define REGISTER_AB(name) REGISTER(name, A, B)
1710#define REGISTER_AZ(name) REGISTER(name, A, Z)
1711#define REGISTER_BB(name) REGISTER(name, B, B)
1712#define REGISTER_BZ(name) REGISTER(name, B, Z)
1713#define REGISTER_CZ(name) REGISTER(name, C, Z)
1714
1715static const struct efx_nic_reg efx_nic_regs[] = {
1716 REGISTER_AZ(ADR_REGION),
1717 REGISTER_AZ(INT_EN_KER),
1718 REGISTER_BZ(INT_EN_CHAR),
1719 REGISTER_AZ(INT_ADR_KER),
1720 REGISTER_BZ(INT_ADR_CHAR),
1721 /* INT_ACK_KER is WO */
1722 /* INT_ISR0 is RC */
1723 REGISTER_AZ(HW_INIT),
1724 REGISTER_CZ(USR_EV_CFG),
1725 REGISTER_AB(EE_SPI_HCMD),
1726 REGISTER_AB(EE_SPI_HADR),
1727 REGISTER_AB(EE_SPI_HDATA),
1728 REGISTER_AB(EE_BASE_PAGE),
1729 REGISTER_AB(EE_VPD_CFG0),
1730 /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1731 /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1732 /* PCIE_CORE_INDIRECT is indirect */
1733 REGISTER_AB(NIC_STAT),
1734 REGISTER_AB(GPIO_CTL),
1735 REGISTER_AB(GLB_CTL),
1736 /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1737 REGISTER_BZ(DP_CTRL),
1738 REGISTER_AZ(MEM_STAT),
1739 REGISTER_AZ(CS_DEBUG),
1740 REGISTER_AZ(ALTERA_BUILD),
1741 REGISTER_AZ(CSR_SPARE),
1742 REGISTER_AB(PCIE_SD_CTL0123),
1743 REGISTER_AB(PCIE_SD_CTL45),
1744 REGISTER_AB(PCIE_PCS_CTL_STAT),
1745 /* DEBUG_DATA_OUT is not used */
1746 /* DRV_EV is WO */
1747 REGISTER_AZ(EVQ_CTL),
1748 REGISTER_AZ(EVQ_CNT1),
1749 REGISTER_AZ(EVQ_CNT2),
1750 REGISTER_AZ(BUF_TBL_CFG),
1751 REGISTER_AZ(SRM_RX_DC_CFG),
1752 REGISTER_AZ(SRM_TX_DC_CFG),
1753 REGISTER_AZ(SRM_CFG),
1754 /* BUF_TBL_UPD is WO */
1755 REGISTER_AZ(SRM_UPD_EVQ),
1756 REGISTER_AZ(SRAM_PARITY),
1757 REGISTER_AZ(RX_CFG),
1758 REGISTER_BZ(RX_FILTER_CTL),
1759 /* RX_FLUSH_DESCQ is WO */
1760 REGISTER_AZ(RX_DC_CFG),
1761 REGISTER_AZ(RX_DC_PF_WM),
1762 REGISTER_BZ(RX_RSS_TKEY),
1763 /* RX_NODESC_DROP is RC */
1764 REGISTER_AA(RX_SELF_RST),
1765 /* RX_DEBUG, RX_PUSH_DROP are not used */
1766 REGISTER_CZ(RX_RSS_IPV6_REG1),
1767 REGISTER_CZ(RX_RSS_IPV6_REG2),
1768 REGISTER_CZ(RX_RSS_IPV6_REG3),
1769 /* TX_FLUSH_DESCQ is WO */
1770 REGISTER_AZ(TX_DC_CFG),
1771 REGISTER_AA(TX_CHKSM_CFG),
1772 REGISTER_AZ(TX_CFG),
1773 /* TX_PUSH_DROP is not used */
1774 REGISTER_AZ(TX_RESERVED),
1775 REGISTER_BZ(TX_PACE),
1776 /* TX_PACE_DROP_QID is RC */
1777 REGISTER_BB(TX_VLAN),
1778 REGISTER_BZ(TX_IPFIL_PORTEN),
1779 REGISTER_AB(MD_TXD),
1780 REGISTER_AB(MD_RXD),
1781 REGISTER_AB(MD_CS),
1782 REGISTER_AB(MD_PHY_ADR),
1783 REGISTER_AB(MD_ID),
1784 /* MD_STAT is RC */
1785 REGISTER_AB(MAC_STAT_DMA),
1786 REGISTER_AB(MAC_CTRL),
1787 REGISTER_BB(GEN_MODE),
1788 REGISTER_AB(MAC_MC_HASH_REG0),
1789 REGISTER_AB(MAC_MC_HASH_REG1),
1790 REGISTER_AB(GM_CFG1),
1791 REGISTER_AB(GM_CFG2),
1792 /* GM_IPG and GM_HD are not used */
1793 REGISTER_AB(GM_MAX_FLEN),
1794 /* GM_TEST is not used */
1795 REGISTER_AB(GM_ADR1),
1796 REGISTER_AB(GM_ADR2),
1797 REGISTER_AB(GMF_CFG0),
1798 REGISTER_AB(GMF_CFG1),
1799 REGISTER_AB(GMF_CFG2),
1800 REGISTER_AB(GMF_CFG3),
1801 REGISTER_AB(GMF_CFG4),
1802 REGISTER_AB(GMF_CFG5),
1803 REGISTER_BB(TX_SRC_MAC_CTL),
1804 REGISTER_AB(XM_ADR_LO),
1805 REGISTER_AB(XM_ADR_HI),
1806 REGISTER_AB(XM_GLB_CFG),
1807 REGISTER_AB(XM_TX_CFG),
1808 REGISTER_AB(XM_RX_CFG),
1809 REGISTER_AB(XM_MGT_INT_MASK),
1810 REGISTER_AB(XM_FC),
1811 REGISTER_AB(XM_PAUSE_TIME),
1812 REGISTER_AB(XM_TX_PARAM),
1813 REGISTER_AB(XM_RX_PARAM),
1814 /* XM_MGT_INT_MSK (note no 'A') is RC */
1815 REGISTER_AB(XX_PWR_RST),
1816 REGISTER_AB(XX_SD_CTL),
1817 REGISTER_AB(XX_TXDRV_CTL),
1818 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1819 /* XX_CORE_STAT is partly RC */
1820};
1821
1822struct efx_nic_reg_table {
1823 u32 offset:24;
1824 u32 min_revision:2, max_revision:2;
1825 u32 step:6, rows:21;
1826};
1827
1828#define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1829 offset, \
1830 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \
1831 step, rows \
1832}
1833#define REGISTER_TABLE(name, min_rev, max_rev) \
1834 REGISTER_TABLE_DIMENSIONS( \
1835 name, FR_ ## min_rev ## max_rev ## _ ## name, \
1836 min_rev, max_rev, \
1837 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
1838 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1839#define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1840#define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1841#define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1842#define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1843#define REGISTER_TABLE_BB_CZ(name) \
1844 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \
1845 FR_BZ_ ## name ## _STEP, \
1846 FR_BB_ ## name ## _ROWS), \
1847 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \
1848 FR_BZ_ ## name ## _STEP, \
1849 FR_CZ_ ## name ## _ROWS)
1850#define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
1851
1852static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
1853 /* DRIVER is not used */
1854 /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
1855 REGISTER_TABLE_BB(TX_IPFIL_TBL),
1856 REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
1857 REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
1858 REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
1859 REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
1860 REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
1861 REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
1862 REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
75abc51c 1863 /* We can't reasonably read all of the buffer table (up to 8MB!).
5b98c1bf
BH
1864 * However this driver will only use a few entries. Reading
1865 * 1K entries allows for some expansion of queue count and
1866 * size before we need to change the version. */
1867 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
1868 A, A, 8, 1024),
1869 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
1870 B, Z, 8, 1024),
5b98c1bf
BH
1871 REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
1872 REGISTER_TABLE_BB_CZ(TIMER_TBL),
1873 REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
1874 REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
1875 /* TX_FILTER_TBL0 is huge and not used by this driver */
1876 REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
1877 REGISTER_TABLE_CZ(MC_TREG_SMEM),
1878 /* MSIX_PBA_TABLE is not mapped */
1879 /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
75abc51c 1880 REGISTER_TABLE_BZ(RX_FILTER_TBL0),
5b98c1bf
BH
1881};
1882
1883size_t efx_nic_get_regs_len(struct efx_nic *efx)
1884{
1885 const struct efx_nic_reg *reg;
1886 const struct efx_nic_reg_table *table;
1887 size_t len = 0;
1888
1889 for (reg = efx_nic_regs;
1890 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1891 reg++)
1892 if (efx->type->revision >= reg->min_revision &&
1893 efx->type->revision <= reg->max_revision)
1894 len += sizeof(efx_oword_t);
1895
1896 for (table = efx_nic_reg_tables;
1897 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1898 table++)
1899 if (efx->type->revision >= table->min_revision &&
1900 efx->type->revision <= table->max_revision)
1901 len += table->rows * min_t(size_t, table->step, 16);
1902
1903 return len;
1904}
1905
1906void efx_nic_get_regs(struct efx_nic *efx, void *buf)
1907{
1908 const struct efx_nic_reg *reg;
1909 const struct efx_nic_reg_table *table;
1910
1911 for (reg = efx_nic_regs;
1912 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1913 reg++) {
1914 if (efx->type->revision >= reg->min_revision &&
1915 efx->type->revision <= reg->max_revision) {
1916 efx_reado(efx, (efx_oword_t *)buf, reg->offset);
1917 buf += sizeof(efx_oword_t);
1918 }
1919 }
1920
1921 for (table = efx_nic_reg_tables;
1922 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1923 table++) {
1924 size_t size, i;
1925
1926 if (!(efx->type->revision >= table->min_revision &&
1927 efx->type->revision <= table->max_revision))
1928 continue;
1929
1930 size = min_t(size_t, table->step, 16);
1931
1932 for (i = 0; i < table->rows; i++) {
1933 switch (table->step) {
1934 case 4: /* 32-bit register or SRAM */
1935 efx_readd_table(efx, buf, table->offset, i);
1936 break;
1937 case 8: /* 64-bit SRAM */
1938 efx_sram_readq(efx,
1939 efx->membase + table->offset,
1940 buf, i);
1941 break;
1942 case 16: /* 128-bit register */
1943 efx_reado_table(efx, buf, table->offset, i);
1944 break;
1945 case 32: /* 128-bit register, interleaved */
1946 efx_reado_table(efx, buf, table->offset, 2 * i);
1947 break;
1948 default:
1949 WARN_ON(1);
1950 return;
1951 }
1952 buf += size;
1953 }
1954 }
1955}
This page took 0.33787 seconds and 5 git commands to generate.