firmware: convert tg3 driver to request_firmware()
[deliverable/linux.git] / drivers / net / starfire.c
CommitLineData
1da177e4
LT
1/* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2/*
3 Written 1998-2000 by Donald Becker.
4
fdecea66 5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
1da177e4
LT
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
8
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
15
16 The information below comes from Donald Becker's original driver:
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
03a8c661 25 [link no longer provides useful info -jgarzik]
1da177e4 26
1da177e4
LT
27*/
28
29#define DRV_NAME "starfire"
a6676019
FR
30#define DRV_VERSION "2.1"
31#define DRV_RELDATE "July 6, 2008"
1da177e4 32
1da177e4
LT
33#include <linux/module.h>
34#include <linux/kernel.h>
35#include <linux/pci.h>
36#include <linux/netdevice.h>
37#include <linux/etherdevice.h>
38#include <linux/init.h>
39#include <linux/delay.h>
fdecea66
JG
40#include <linux/crc32.h>
41#include <linux/ethtool.h>
42#include <linux/mii.h>
43#include <linux/if_vlan.h>
d7fe0f24 44#include <linux/mm.h>
1da177e4
LT
45#include <asm/processor.h> /* Processor type for cache alignment. */
46#include <asm/uaccess.h>
47#include <asm/io.h>
48
fdecea66 49#include "starfire_firmware.h"
1da177e4
LT
50/*
51 * The current frame processor firmware fails to checksum a fragment
52 * of length 1. If and when this is fixed, the #define below can be removed.
53 */
54#define HAS_BROKEN_FIRMWARE
67974231
IB
55
56/*
57 * If using the broken firmware, data must be padded to the next 32-bit boundary.
58 */
59#ifdef HAS_BROKEN_FIRMWARE
60#define PADDING_MASK 3
61#endif
62
1da177e4
LT
63/*
64 * Define this if using the driver with the zero-copy patch
65 */
1da177e4 66#define ZEROCOPY
1da177e4
LT
67
68#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
69#define VLAN_SUPPORT
70#endif
71
1da177e4
LT
72/* The user-configurable values.
73 These may be modified when a driver module is loaded.*/
74
75/* Used for tuning interrupt latency vs. overhead. */
76static int intr_latency;
77static int small_frames;
78
79static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
80static int max_interrupt_work = 20;
81static int mtu;
82/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
83 The Starfire has a 512 element hash table based on the Ethernet CRC. */
f71e1309 84static const int multicast_filter_limit = 512;
1da177e4 85/* Whether to do TCP/UDP checksums in hardware */
1da177e4 86static int enable_hw_cksum = 1;
1da177e4
LT
87
88#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
89/*
90 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
91 * Setting to > 1518 effectively disables this feature.
92 *
93 * NOTE:
94 * The ia64 doesn't allow for unaligned loads even of integers being
95 * misaligned on a 2 byte boundary. Thus always force copying of
96 * packets as the starfire doesn't allow for misaligned DMAs ;-(
97 * 23/10/2000 - Jes
98 *
99 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
100 * at least, having unaligned frames leads to a rather serious performance
101 * penalty. -Ion
102 */
103#if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
104static int rx_copybreak = PKT_BUF_SZ;
105#else
106static int rx_copybreak /* = 0 */;
107#endif
108
109/* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
110#ifdef __sparc__
111#define DMA_BURST_SIZE 64
112#else
113#define DMA_BURST_SIZE 128
114#endif
115
116/* Used to pass the media type, etc.
117 Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
118 The media type is usually passed in 'options[]'.
119 These variables are deprecated, use ethtool instead. -Ion
120*/
121#define MAX_UNITS 8 /* More are supported, limit only on options */
122static int options[MAX_UNITS] = {0, };
123static int full_duplex[MAX_UNITS] = {0, };
124
125/* Operational parameters that are set at compile time. */
126
127/* The "native" ring sizes are either 256 or 2048.
128 However in some modes a descriptor may be marked to wrap the ring earlier.
129*/
130#define RX_RING_SIZE 256
131#define TX_RING_SIZE 32
132/* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
133#define DONE_Q_SIZE 1024
134/* All queues must be aligned on a 256-byte boundary */
135#define QUEUE_ALIGN 256
136
137#if RX_RING_SIZE > 256
138#define RX_Q_ENTRIES Rx2048QEntries
139#else
140#define RX_Q_ENTRIES Rx256QEntries
141#endif
142
143/* Operational parameters that usually are not changed. */
144/* Time in jiffies before concluding the transmitter is hung. */
145#define TX_TIMEOUT (2 * HZ)
146
147/*
148 * This SUCKS.
149 * We need a much better method to determine if dma_addr_t is 64-bit.
150 */
983b7dc0 151#if (defined(__i386__) && defined(CONFIG_HIGHMEM64G)) || defined(__x86_64__) || defined (__ia64__) || defined(__alpha__) || defined(__mips64__) || (defined(__mips__) && defined(CONFIG_HIGHMEM) && defined(CONFIG_64BIT_PHYS_ADDR))
1da177e4
LT
152/* 64-bit dma_addr_t */
153#define ADDR_64BITS /* This chip uses 64 bit addresses. */
88b1943b 154#define netdrv_addr_t __le64
1da177e4
LT
155#define cpu_to_dma(x) cpu_to_le64(x)
156#define dma_to_cpu(x) le64_to_cpu(x)
157#define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
158#define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
159#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
160#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
161#define RX_DESC_ADDR_SIZE RxDescAddr64bit
162#else /* 32-bit dma_addr_t */
88b1943b 163#define netdrv_addr_t __le32
1da177e4
LT
164#define cpu_to_dma(x) cpu_to_le32(x)
165#define dma_to_cpu(x) le32_to_cpu(x)
166#define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
167#define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
168#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
169#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
170#define RX_DESC_ADDR_SIZE RxDescAddr32bit
171#endif
172
1da177e4
LT
173#define skb_first_frag_len(skb) skb_headlen(skb)
174#define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
1da177e4 175
1da177e4 176/* These identify the driver base version and may not be removed. */
da219b7c 177static char version[] =
1da177e4
LT
178KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
179KERN_INFO " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
180
181MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
182MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
183MODULE_LICENSE("GPL");
fdecea66 184MODULE_VERSION(DRV_VERSION);
1da177e4
LT
185
186module_param(max_interrupt_work, int, 0);
187module_param(mtu, int, 0);
188module_param(debug, int, 0);
189module_param(rx_copybreak, int, 0);
190module_param(intr_latency, int, 0);
191module_param(small_frames, int, 0);
192module_param_array(options, int, NULL, 0);
193module_param_array(full_duplex, int, NULL, 0);
194module_param(enable_hw_cksum, int, 0);
195MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
196MODULE_PARM_DESC(mtu, "MTU (all boards)");
197MODULE_PARM_DESC(debug, "Debug level (0-6)");
198MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
199MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
200MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
201MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex");
202MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)");
203MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
204
205/*
206 Theory of Operation
207
208I. Board Compatibility
209
210This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
211
212II. Board-specific settings
213
214III. Driver operation
215
216IIIa. Ring buffers
217
218The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
219ring sizes are set fixed by the hardware, but may optionally be wrapped
220earlier by the END bit in the descriptor.
221This driver uses that hardware queue size for the Rx ring, where a large
222number of entries has no ill effect beyond increases the potential backlog.
223The Tx ring is wrapped with the END bit, since a large hardware Tx queue
224disables the queue layer priority ordering and we have no mechanism to
225utilize the hardware two-level priority queue. When modifying the
226RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
227levels.
228
229IIIb/c. Transmit/Receive Structure
230
231See the Adaptec manual for the many possible structures, and options for
232each structure. There are far too many to document all of them here.
233
234For transmit this driver uses type 0/1 transmit descriptors (depending
235on the 32/64 bitness of the architecture), and relies on automatic
236minimum-length padding. It does not use the completion queue
237consumer index, but instead checks for non-zero status entries.
238
fdecea66 239For receive this driver uses type 2/3 receive descriptors. The driver
1da177e4
LT
240allocates full frame size skbuffs for the Rx ring buffers, so all frames
241should fit in a single descriptor. The driver does not use the completion
242queue consumer index, but instead checks for non-zero status entries.
243
244When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
245is allocated and the frame is copied to the new skbuff. When the incoming
246frame is larger, the skbuff is passed directly up the protocol stack.
247Buffers consumed this way are replaced by newly allocated skbuffs in a later
248phase of receive.
249
250A notable aspect of operation is that unaligned buffers are not permitted by
251the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
252isn't longword aligned, which may cause problems on some machine
253e.g. Alphas and IA64. For these architectures, the driver is forced to copy
254the frame into a new skbuff unconditionally. Copied frames are put into the
255skbuff at an offset of "+2", thus 16-byte aligning the IP header.
256
257IIId. Synchronization
258
259The driver runs as two independent, single-threaded flows of control. One
260is the send-packet routine, which enforces single-threaded use by the
261dev->tbusy flag. The other thread is the interrupt handler, which is single
262threaded by the hardware and interrupt handling software.
263
264The send packet thread has partial control over the Tx ring and the netif_queue
265status. If the number of free Tx slots in the ring falls below a certain number
266(currently hardcoded to 4), it signals the upper layer to stop the queue.
267
268The interrupt handler has exclusive control over the Rx ring and records stats
269from the Tx ring. After reaping the stats, it marks the Tx queue entry as
270empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
271number of free Tx slow is above the threshold, it signals the upper layer to
272restart the queue.
273
274IV. Notes
275
276IVb. References
277
278The Adaptec Starfire manuals, available only from Adaptec.
279http://www.scyld.com/expert/100mbps.html
280http://www.scyld.com/expert/NWay.html
281
282IVc. Errata
283
284- StopOnPerr is broken, don't enable
285- Hardware ethernet padding exposes random data, perform software padding
286 instead (unverified -- works correctly for all the hardware I have)
287
288*/
289
fdecea66 290
1da177e4
LT
291
292enum chip_capability_flags {CanHaveMII=1, };
293
294enum chipset {
295 CH_6915 = 0,
296};
297
298static struct pci_device_id starfire_pci_tbl[] = {
299 { 0x9004, 0x6915, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_6915 },
300 { 0, }
301};
302MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
303
304/* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
f71e1309 305static const struct chip_info {
1da177e4
LT
306 const char *name;
307 int drv_flags;
308} netdrv_tbl[] __devinitdata = {
309 { "Adaptec Starfire 6915", CanHaveMII },
310};
311
312
313/* Offsets to the device registers.
314 Unlike software-only systems, device drivers interact with complex hardware.
315 It's not useful to define symbolic names for every register bit in the
316 device. The name can only partially document the semantics and make
317 the driver longer and more difficult to read.
318 In general, only the important configuration values or bits changed
319 multiple times should be defined symbolically.
320*/
321enum register_offsets {
322 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
323 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
324 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
325 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
326 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
327 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
328 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
329 TxThreshold=0x500B0,
330 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
331 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
332 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
333 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
334 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
335 TxMode=0x55000, VlanType=0x55064,
336 PerfFilterTable=0x56000, HashTable=0x56100,
337 TxGfpMem=0x58000, RxGfpMem=0x5a000,
338};
339
340/*
341 * Bits in the interrupt status/mask registers.
342 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
343 * enables all the interrupt sources that are or'ed into those status bits.
344 */
345enum intr_status_bits {
346 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
347 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
348 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
349 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
350 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
351 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
352 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
353 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
354 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
355 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
356 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
357 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
358 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
359 IntrTxGfp=0x02, IntrPCIPad=0x01,
360 /* not quite bits */
361 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
362 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
363 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
364};
365
366/* Bits in the RxFilterMode register. */
367enum rx_mode_bits {
368 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
369 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
370 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
371 WakeupOnGFP=0x0800,
372};
373
374/* Bits in the TxMode register */
375enum tx_mode_bits {
376 MiiSoftReset=0x8000, MIILoopback=0x4000,
377 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
378 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
379};
380
381/* Bits in the TxDescCtrl register. */
382enum tx_ctrl_bits {
383 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
384 TxDescSpace128=0x30, TxDescSpace256=0x40,
385 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
386 TxDescType3=0x03, TxDescType4=0x04,
387 TxNoDMACompletion=0x08,
388 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
389 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
390 TxDMABurstSizeShift=8,
391};
392
393/* Bits in the RxDescQCtrl register. */
394enum rx_ctrl_bits {
395 RxBufferLenShift=16, RxMinDescrThreshShift=0,
396 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
397 Rx2048QEntries=0x4000, Rx256QEntries=0,
398 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
399 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
400 RxDescSpace4=0x000, RxDescSpace8=0x100,
401 RxDescSpace16=0x200, RxDescSpace32=0x300,
402 RxDescSpace64=0x400, RxDescSpace128=0x500,
403 RxConsumerWrEn=0x80,
404};
405
406/* Bits in the RxDMACtrl register. */
407enum rx_dmactrl_bits {
408 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
409 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
410 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
411 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
412 RxChecksumRejectTCPOnly=0x01000000,
413 RxCompletionQ2Enable=0x800000,
414 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
415 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
416 RxDMAQ2NonIP=0x400000,
417 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
418 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
419 RxBurstSizeShift=0,
420};
421
422/* Bits in the RxCompletionAddr register */
423enum rx_compl_bits {
424 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
425 RxComplProducerWrEn=0x40,
426 RxComplType0=0x00, RxComplType1=0x10,
427 RxComplType2=0x20, RxComplType3=0x30,
428 RxComplThreshShift=0,
429};
430
431/* Bits in the TxCompletionAddr register */
432enum tx_compl_bits {
433 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
434 TxComplProducerWrEn=0x40,
435 TxComplIntrStatus=0x20,
436 CommonQueueMode=0x10,
437 TxComplThreshShift=0,
438};
439
440/* Bits in the GenCtrl register */
441enum gen_ctrl_bits {
442 RxEnable=0x05, TxEnable=0x0a,
443 RxGFPEnable=0x10, TxGFPEnable=0x20,
444};
445
446/* Bits in the IntrTimerCtrl register */
447enum intr_ctrl_bits {
448 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
449 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
450 IntrLatencyMask=0x1f,
451};
452
453/* The Rx and Tx buffer descriptors. */
454struct starfire_rx_desc {
88b1943b 455 netdrv_addr_t rxaddr;
1da177e4
LT
456};
457enum rx_desc_bits {
458 RxDescValid=1, RxDescEndRing=2,
459};
460
461/* Completion queue entry. */
462struct short_rx_done_desc {
88b1943b 463 __le32 status; /* Low 16 bits is length. */
1da177e4
LT
464};
465struct basic_rx_done_desc {
88b1943b
AV
466 __le32 status; /* Low 16 bits is length. */
467 __le16 vlanid;
468 __le16 status2;
1da177e4
LT
469};
470struct csum_rx_done_desc {
88b1943b
AV
471 __le32 status; /* Low 16 bits is length. */
472 __le16 csum; /* Partial checksum */
473 __le16 status2;
1da177e4
LT
474};
475struct full_rx_done_desc {
88b1943b
AV
476 __le32 status; /* Low 16 bits is length. */
477 __le16 status3;
478 __le16 status2;
479 __le16 vlanid;
480 __le16 csum; /* partial checksum */
481 __le32 timestamp;
1da177e4
LT
482};
483/* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
1da177e4
LT
484#ifdef VLAN_SUPPORT
485typedef struct full_rx_done_desc rx_done_desc;
486#define RxComplType RxComplType3
487#else /* not VLAN_SUPPORT */
488typedef struct csum_rx_done_desc rx_done_desc;
489#define RxComplType RxComplType2
490#endif /* not VLAN_SUPPORT */
1da177e4
LT
491
492enum rx_done_bits {
493 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
494};
495
496/* Type 1 Tx descriptor. */
497struct starfire_tx_desc_1 {
88b1943b
AV
498 __le32 status; /* Upper bits are status, lower 16 length. */
499 __le32 addr;
1da177e4
LT
500};
501
502/* Type 2 Tx descriptor. */
503struct starfire_tx_desc_2 {
88b1943b
AV
504 __le32 status; /* Upper bits are status, lower 16 length. */
505 __le32 reserved;
506 __le64 addr;
1da177e4
LT
507};
508
509#ifdef ADDR_64BITS
510typedef struct starfire_tx_desc_2 starfire_tx_desc;
511#define TX_DESC_TYPE TxDescType2
512#else /* not ADDR_64BITS */
513typedef struct starfire_tx_desc_1 starfire_tx_desc;
514#define TX_DESC_TYPE TxDescType1
515#endif /* not ADDR_64BITS */
516#define TX_DESC_SPACING TxDescSpaceUnlim
517
518enum tx_desc_bits {
519 TxDescID=0xB0000000,
520 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
521 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
522};
523struct tx_done_desc {
88b1943b 524 __le32 status; /* timestamp, index. */
1da177e4 525#if 0
88b1943b 526 __le32 intrstatus; /* interrupt status */
1da177e4
LT
527#endif
528};
529
530struct rx_ring_info {
531 struct sk_buff *skb;
532 dma_addr_t mapping;
533};
534struct tx_ring_info {
535 struct sk_buff *skb;
536 dma_addr_t mapping;
537 unsigned int used_slots;
538};
539
540#define PHY_CNT 2
541struct netdev_private {
542 /* Descriptor rings first for alignment. */
543 struct starfire_rx_desc *rx_ring;
544 starfire_tx_desc *tx_ring;
545 dma_addr_t rx_ring_dma;
546 dma_addr_t tx_ring_dma;
547 /* The addresses of rx/tx-in-place skbuffs. */
548 struct rx_ring_info rx_info[RX_RING_SIZE];
549 struct tx_ring_info tx_info[TX_RING_SIZE];
550 /* Pointers to completion queues (full pages). */
551 rx_done_desc *rx_done_q;
552 dma_addr_t rx_done_q_dma;
553 unsigned int rx_done;
554 struct tx_done_desc *tx_done_q;
555 dma_addr_t tx_done_q_dma;
556 unsigned int tx_done;
bea3348e
SH
557 struct napi_struct napi;
558 struct net_device *dev;
1da177e4
LT
559 struct net_device_stats stats;
560 struct pci_dev *pci_dev;
561#ifdef VLAN_SUPPORT
562 struct vlan_group *vlgrp;
563#endif
564 void *queue_mem;
565 dma_addr_t queue_mem_dma;
566 size_t queue_mem_size;
567
568 /* Frequently used values: keep some adjacent for cache effect. */
569 spinlock_t lock;
570 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
571 unsigned int cur_tx, dirty_tx, reap_tx;
572 unsigned int rx_buf_sz; /* Based on MTU+slack. */
573 /* These values keep track of the transceiver/media in use. */
574 int speed100; /* Set if speed == 100MBit. */
575 u32 tx_mode;
576 u32 intr_timer_ctrl;
577 u8 tx_threshold;
578 /* MII transceiver section. */
579 struct mii_if_info mii_if; /* MII lib hooks/info */
580 int phy_cnt; /* MII device addresses. */
581 unsigned char phys[PHY_CNT]; /* MII device addresses. */
582 void __iomem *base;
583};
584
585
586static int mdio_read(struct net_device *dev, int phy_id, int location);
587static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
588static int netdev_open(struct net_device *dev);
589static void check_duplex(struct net_device *dev);
590static void tx_timeout(struct net_device *dev);
591static void init_ring(struct net_device *dev);
592static int start_tx(struct sk_buff *skb, struct net_device *dev);
7d12e780 593static irqreturn_t intr_handler(int irq, void *dev_instance);
1da177e4
LT
594static void netdev_error(struct net_device *dev, int intr_status);
595static int __netdev_rx(struct net_device *dev, int *quota);
a6676019 596static int netdev_poll(struct napi_struct *napi, int budget);
1da177e4
LT
597static void refill_rx_ring(struct net_device *dev);
598static void netdev_error(struct net_device *dev, int intr_status);
599static void set_rx_mode(struct net_device *dev);
600static struct net_device_stats *get_stats(struct net_device *dev);
601static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
602static int netdev_close(struct net_device *dev);
603static void netdev_media_change(struct net_device *dev);
7282d491 604static const struct ethtool_ops ethtool_ops;
1da177e4
LT
605
606
607#ifdef VLAN_SUPPORT
608static void netdev_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
609{
610 struct netdev_private *np = netdev_priv(dev);
611
612 spin_lock(&np->lock);
613 if (debug > 2)
614 printk("%s: Setting vlgrp to %p\n", dev->name, grp);
615 np->vlgrp = grp;
616 set_rx_mode(dev);
617 spin_unlock(&np->lock);
618}
619
620static void netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
621{
622 struct netdev_private *np = netdev_priv(dev);
623
624 spin_lock(&np->lock);
625 if (debug > 1)
626 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
627 set_rx_mode(dev);
628 spin_unlock(&np->lock);
629}
630
631static void netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
632{
633 struct netdev_private *np = netdev_priv(dev);
634
635 spin_lock(&np->lock);
636 if (debug > 1)
637 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
5c15bdec 638 vlan_group_set_device(np->vlgrp, vid, NULL);
1da177e4
LT
639 set_rx_mode(dev);
640 spin_unlock(&np->lock);
641}
642#endif /* VLAN_SUPPORT */
643
644
645static int __devinit starfire_init_one(struct pci_dev *pdev,
646 const struct pci_device_id *ent)
647{
648 struct netdev_private *np;
649 int i, irq, option, chip_idx = ent->driver_data;
650 struct net_device *dev;
651 static int card_idx = -1;
652 long ioaddr;
653 void __iomem *base;
654 int drv_flags, io_size;
655 int boguscnt;
656
657/* when built into the kernel, we only print version if device is found */
658#ifndef MODULE
659 static int printed_version;
660 if (!printed_version++)
661 printk(version);
662#endif
663
664 card_idx++;
665
666 if (pci_enable_device (pdev))
667 return -EIO;
668
669 ioaddr = pci_resource_start(pdev, 0);
670 io_size = pci_resource_len(pdev, 0);
671 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
672 printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx);
673 return -ENODEV;
674 }
675
676 dev = alloc_etherdev(sizeof(*np));
677 if (!dev) {
678 printk(KERN_ERR DRV_NAME " %d: cannot alloc etherdev, aborting\n", card_idx);
679 return -ENOMEM;
680 }
1da177e4
LT
681 SET_NETDEV_DEV(dev, &pdev->dev);
682
683 irq = pdev->irq;
684
685 if (pci_request_regions (pdev, DRV_NAME)) {
686 printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx);
687 goto err_out_free_netdev;
688 }
689
1da177e4
LT
690 base = ioremap(ioaddr, io_size);
691 if (!base) {
692 printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n",
693 card_idx, io_size, ioaddr);
694 goto err_out_free_res;
695 }
696
697 pci_set_master(pdev);
698
699 /* enable MWI -- it vastly improves Rx performance on sparc64 */
694625c0 700 pci_try_set_mwi(pdev);
1da177e4 701
1da177e4
LT
702#ifdef ZEROCOPY
703 /* Starfire can do TCP/UDP checksumming */
704 if (enable_hw_cksum)
fdecea66 705 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1da177e4
LT
706#endif /* ZEROCOPY */
707#ifdef VLAN_SUPPORT
708 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
709 dev->vlan_rx_register = netdev_vlan_rx_register;
710 dev->vlan_rx_add_vid = netdev_vlan_rx_add_vid;
711 dev->vlan_rx_kill_vid = netdev_vlan_rx_kill_vid;
712#endif /* VLAN_RX_KILL_VID */
713#ifdef ADDR_64BITS
714 dev->features |= NETIF_F_HIGHDMA;
715#endif /* ADDR_64BITS */
716
717 /* Serial EEPROM reads are hidden by the hardware. */
718 for (i = 0; i < 6; i++)
719 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
720
721#if ! defined(final_version) /* Dump the EEPROM contents during development. */
722 if (debug > 4)
723 for (i = 0; i < 0x20; i++)
724 printk("%2.2x%s",
725 (unsigned int)readb(base + EEPROMCtrl + i),
726 i % 16 != 15 ? " " : "\n");
727#endif
728
729 /* Issue soft reset */
730 writel(MiiSoftReset, base + TxMode);
731 udelay(1000);
732 writel(0, base + TxMode);
733
734 /* Reset the chip to erase previous misconfiguration. */
735 writel(1, base + PCIDeviceConfig);
736 boguscnt = 1000;
737 while (--boguscnt > 0) {
738 udelay(10);
739 if ((readl(base + PCIDeviceConfig) & 1) == 0)
740 break;
741 }
742 if (boguscnt == 0)
743 printk("%s: chipset reset never completed!\n", dev->name);
744 /* wait a little longer */
745 udelay(1000);
746
747 dev->base_addr = (unsigned long)base;
748 dev->irq = irq;
749
750 np = netdev_priv(dev);
bea3348e 751 np->dev = dev;
1da177e4
LT
752 np->base = base;
753 spin_lock_init(&np->lock);
754 pci_set_drvdata(pdev, dev);
755
756 np->pci_dev = pdev;
757
758 np->mii_if.dev = dev;
759 np->mii_if.mdio_read = mdio_read;
760 np->mii_if.mdio_write = mdio_write;
761 np->mii_if.phy_id_mask = 0x1f;
762 np->mii_if.reg_num_mask = 0x1f;
763
764 drv_flags = netdrv_tbl[chip_idx].drv_flags;
765
766 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
767 if (dev->mem_start)
768 option = dev->mem_start;
769
770 /* The lower four bits are the media type. */
771 if (option & 0x200)
772 np->mii_if.full_duplex = 1;
773
774 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
775 np->mii_if.full_duplex = 1;
776
777 if (np->mii_if.full_duplex)
778 np->mii_if.force_media = 1;
779 else
780 np->mii_if.force_media = 0;
781 np->speed100 = 1;
782
783 /* timer resolution is 128 * 0.8us */
784 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
785 Timer10X | EnableIntrMasking;
786
787 if (small_frames > 0) {
788 np->intr_timer_ctrl |= SmallFrameBypass;
789 switch (small_frames) {
790 case 1 ... 64:
791 np->intr_timer_ctrl |= SmallFrame64;
792 break;
793 case 65 ... 128:
794 np->intr_timer_ctrl |= SmallFrame128;
795 break;
796 case 129 ... 256:
797 np->intr_timer_ctrl |= SmallFrame256;
798 break;
799 default:
800 np->intr_timer_ctrl |= SmallFrame512;
801 if (small_frames > 512)
802 printk("Adjusting small_frames down to 512\n");
803 break;
804 }
805 }
806
807 /* The chip-specific entries in the device structure. */
808 dev->open = &netdev_open;
809 dev->hard_start_xmit = &start_tx;
fdecea66
JG
810 dev->tx_timeout = tx_timeout;
811 dev->watchdog_timeo = TX_TIMEOUT;
a6676019 812 netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
1da177e4
LT
813 dev->stop = &netdev_close;
814 dev->get_stats = &get_stats;
815 dev->set_multicast_list = &set_rx_mode;
816 dev->do_ioctl = &netdev_ioctl;
817 SET_ETHTOOL_OPS(dev, &ethtool_ops);
818
819 if (mtu)
820 dev->mtu = mtu;
821
822 if (register_netdev(dev))
823 goto err_out_cleardev;
824
e174961c 825 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
0795af57 826 dev->name, netdrv_tbl[chip_idx].name, base,
e174961c 827 dev->dev_addr, irq);
1da177e4
LT
828
829 if (drv_flags & CanHaveMII) {
830 int phy, phy_idx = 0;
831 int mii_status;
832 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
833 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
834 mdelay(100);
835 boguscnt = 1000;
836 while (--boguscnt > 0)
837 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
838 break;
839 if (boguscnt == 0) {
fdecea66 840 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
1da177e4
LT
841 continue;
842 }
843 mii_status = mdio_read(dev, phy, MII_BMSR);
844 if (mii_status != 0) {
845 np->phys[phy_idx++] = phy;
846 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
847 printk(KERN_INFO "%s: MII PHY found at address %d, status "
848 "%#4.4x advertising %#4.4x.\n",
849 dev->name, phy, mii_status, np->mii_if.advertising);
850 /* there can be only one PHY on-board */
851 break;
852 }
853 }
854 np->phy_cnt = phy_idx;
855 if (np->phy_cnt > 0)
856 np->mii_if.phy_id = np->phys[0];
857 else
858 memset(&np->mii_if, 0, sizeof(np->mii_if));
859 }
860
861 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
862 dev->name, enable_hw_cksum ? "enabled" : "disabled");
863 return 0;
864
865err_out_cleardev:
866 pci_set_drvdata(pdev, NULL);
867 iounmap(base);
868err_out_free_res:
869 pci_release_regions (pdev);
870err_out_free_netdev:
871 free_netdev(dev);
872 return -ENODEV;
873}
874
875
876/* Read the MII Management Data I/O (MDIO) interfaces. */
877static int mdio_read(struct net_device *dev, int phy_id, int location)
878{
879 struct netdev_private *np = netdev_priv(dev);
880 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
881 int result, boguscnt=1000;
882 /* ??? Should we add a busy-wait here? */
e4c3c13c 883 do {
1da177e4 884 result = readl(mdio_addr);
e4c3c13c 885 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
1da177e4
LT
886 if (boguscnt == 0)
887 return 0;
888 if ((result & 0xffff) == 0xffff)
889 return 0;
890 return result & 0xffff;
891}
892
893
894static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
895{
896 struct netdev_private *np = netdev_priv(dev);
897 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
898 writel(value, mdio_addr);
899 /* The busy-wait will occur before a read. */
900}
901
902
903static int netdev_open(struct net_device *dev)
904{
905 struct netdev_private *np = netdev_priv(dev);
906 void __iomem *ioaddr = np->base;
907 int i, retval;
908 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
909
910 /* Do we ever need to reset the chip??? */
fdecea66 911
1fb9df5d 912 retval = request_irq(dev->irq, &intr_handler, IRQF_SHARED, dev->name, dev);
1da177e4
LT
913 if (retval)
914 return retval;
915
916 /* Disable the Rx and Tx, and reset the chip. */
917 writel(0, ioaddr + GenCtrl);
918 writel(1, ioaddr + PCIDeviceConfig);
919 if (debug > 1)
920 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
921 dev->name, dev->irq);
922
923 /* Allocate the various queues. */
88b1943b 924 if (!np->queue_mem) {
1da177e4
LT
925 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
926 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
927 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
928 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
929 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
930 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
d8840ac9
AD
931 if (np->queue_mem == NULL) {
932 free_irq(dev->irq, dev);
1da177e4 933 return -ENOMEM;
d8840ac9 934 }
1da177e4
LT
935
936 np->tx_done_q = np->queue_mem;
937 np->tx_done_q_dma = np->queue_mem_dma;
938 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
939 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
940 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
941 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
942 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
943 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
944 }
945
946 /* Start with no carrier, it gets adjusted later */
947 netif_carrier_off(dev);
948 init_ring(dev);
949 /* Set the size of the Rx buffers. */
950 writel((np->rx_buf_sz << RxBufferLenShift) |
951 (0 << RxMinDescrThreshShift) |
952 RxPrefetchMode | RxVariableQ |
953 RX_Q_ENTRIES |
954 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
955 RxDescSpace4,
956 ioaddr + RxDescQCtrl);
957
958 /* Set up the Rx DMA controller. */
959 writel(RxChecksumIgnore |
960 (0 << RxEarlyIntThreshShift) |
961 (6 << RxHighPrioThreshShift) |
962 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
963 ioaddr + RxDMACtrl);
964
965 /* Set Tx descriptor */
966 writel((2 << TxHiPriFIFOThreshShift) |
967 (0 << TxPadLenShift) |
968 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
969 TX_DESC_Q_ADDR_SIZE |
970 TX_DESC_SPACING | TX_DESC_TYPE,
971 ioaddr + TxDescCtrl);
972
973 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
974 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
975 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
976 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
977 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
978
979 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
980 writel(np->rx_done_q_dma |
981 RxComplType |
982 (0 << RxComplThreshShift),
983 ioaddr + RxCompletionAddr);
984
985 if (debug > 1)
986 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
987
988 /* Fill both the Tx SA register and the Rx perfect filter. */
989 for (i = 0; i < 6; i++)
990 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
991 /* The first entry is special because it bypasses the VLAN filter.
992 Don't use it. */
993 writew(0, ioaddr + PerfFilterTable);
994 writew(0, ioaddr + PerfFilterTable + 4);
995 writew(0, ioaddr + PerfFilterTable + 8);
996 for (i = 1; i < 16; i++) {
88b1943b 997 __be16 *eaddrs = (__be16 *)dev->dev_addr;
1da177e4 998 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
88b1943b
AV
999 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
1000 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
1001 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
1da177e4
LT
1002 }
1003
1004 /* Initialize other registers. */
1005 /* Configure the PCI bus bursts and FIFO thresholds. */
1006 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
1007 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
1008 udelay(1000);
1009 writel(np->tx_mode, ioaddr + TxMode);
1010 np->tx_threshold = 4;
1011 writel(np->tx_threshold, ioaddr + TxThreshold);
1012
1013 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1014
bea3348e 1015 napi_enable(&np->napi);
a6676019 1016
1da177e4
LT
1017 netif_start_queue(dev);
1018
1019 if (debug > 1)
1020 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
1021 set_rx_mode(dev);
1022
1023 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1024 check_duplex(dev);
1025
1026 /* Enable GPIO interrupts on link change */
1027 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1028
1029 /* Set the interrupt mask */
1030 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1031 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1032 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1033 ioaddr + IntrEnable);
1034 /* Enable PCI interrupts. */
1035 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1036 ioaddr + PCIDeviceConfig);
1037
1038#ifdef VLAN_SUPPORT
1039 /* Set VLAN type to 802.1q */
1040 writel(ETH_P_8021Q, ioaddr + VlanType);
1041#endif /* VLAN_SUPPORT */
1042
1da177e4
LT
1043 /* Load Rx/Tx firmware into the frame processors */
1044 for (i = 0; i < FIRMWARE_RX_SIZE * 2; i++)
1045 writel(firmware_rx[i], ioaddr + RxGfpMem + i * 4);
1046 for (i = 0; i < FIRMWARE_TX_SIZE * 2; i++)
1047 writel(firmware_tx[i], ioaddr + TxGfpMem + i * 4);
1da177e4
LT
1048 if (enable_hw_cksum)
1049 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1050 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1051 else
1052 /* Enable the Rx and Tx units only. */
1053 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1054
1055 if (debug > 1)
1056 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1057 dev->name);
1058
1059 return 0;
1060}
1061
1062
1063static void check_duplex(struct net_device *dev)
1064{
1065 struct netdev_private *np = netdev_priv(dev);
1066 u16 reg0;
1067 int silly_count = 1000;
1068
1069 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1070 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1071 udelay(500);
1072 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1073 /* do nothing */;
1074 if (!silly_count) {
1075 printk("%s: MII reset failed!\n", dev->name);
1076 return;
1077 }
1078
1079 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1080
1081 if (!np->mii_if.force_media) {
1082 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1083 } else {
1084 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1085 if (np->speed100)
1086 reg0 |= BMCR_SPEED100;
1087 if (np->mii_if.full_duplex)
1088 reg0 |= BMCR_FULLDPLX;
1089 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1090 dev->name,
1091 np->speed100 ? "100" : "10",
1092 np->mii_if.full_duplex ? "full" : "half");
1093 }
1094 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1095}
1096
1097
1098static void tx_timeout(struct net_device *dev)
1099{
1100 struct netdev_private *np = netdev_priv(dev);
1101 void __iomem *ioaddr = np->base;
1102 int old_debug;
1103
1104 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1105 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1106
1107 /* Perhaps we should reinitialize the hardware here. */
1108
1109 /*
1110 * Stop and restart the interface.
1111 * Cheat and increase the debug level temporarily.
1112 */
1113 old_debug = debug;
1114 debug = 2;
1115 netdev_close(dev);
1116 netdev_open(dev);
1117 debug = old_debug;
1118
1119 /* Trigger an immediate transmit demand. */
1120
1121 dev->trans_start = jiffies;
1122 np->stats.tx_errors++;
1123 netif_wake_queue(dev);
1124}
1125
1126
1127/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1128static void init_ring(struct net_device *dev)
1129{
1130 struct netdev_private *np = netdev_priv(dev);
1131 int i;
1132
1133 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1134 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1135
1136 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1137
1138 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1139 for (i = 0; i < RX_RING_SIZE; i++) {
1140 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
1141 np->rx_info[i].skb = skb;
1142 if (skb == NULL)
1143 break;
689be439 1144 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1da177e4
LT
1145 skb->dev = dev; /* Mark as being used by this device. */
1146 /* Grrr, we cannot offset to correctly align the IP header. */
1147 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1148 }
1149 writew(i - 1, np->base + RxDescQIdx);
1150 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1151
1152 /* Clear the remainder of the Rx buffer ring. */
1153 for ( ; i < RX_RING_SIZE; i++) {
1154 np->rx_ring[i].rxaddr = 0;
1155 np->rx_info[i].skb = NULL;
1156 np->rx_info[i].mapping = 0;
1157 }
1158 /* Mark the last entry as wrapping the ring. */
1159 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1160
1161 /* Clear the completion rings. */
1162 for (i = 0; i < DONE_Q_SIZE; i++) {
1163 np->rx_done_q[i].status = 0;
1164 np->tx_done_q[i].status = 0;
1165 }
1166
1167 for (i = 0; i < TX_RING_SIZE; i++)
1168 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1169
1170 return;
1171}
1172
1173
1174static int start_tx(struct sk_buff *skb, struct net_device *dev)
1175{
1176 struct netdev_private *np = netdev_priv(dev);
1177 unsigned int entry;
1178 u32 status;
1179 int i;
1180
1da177e4
LT
1181 /*
1182 * be cautious here, wrapping the queue has weird semantics
1183 * and we may not have enough slots even when it seems we do.
1184 */
1185 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1186 netif_stop_queue(dev);
1187 return 1;
1188 }
1189
1190#if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
84fa7933 1191 if (skb->ip_summed == CHECKSUM_PARTIAL) {
5b057c6b 1192 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
67974231 1193 return NETDEV_TX_OK;
1da177e4
LT
1194 }
1195#endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1196
1197 entry = np->cur_tx % TX_RING_SIZE;
1198 for (i = 0; i < skb_num_frags(skb); i++) {
1199 int wrap_ring = 0;
1200 status = TxDescID;
1201
1202 if (i == 0) {
1203 np->tx_info[entry].skb = skb;
1204 status |= TxCRCEn;
1205 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1206 status |= TxRingWrap;
1207 wrap_ring = 1;
1208 }
1209 if (np->reap_tx) {
1210 status |= TxDescIntr;
1211 np->reap_tx = 0;
1212 }
84fa7933 1213 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1da177e4
LT
1214 status |= TxCalTCP;
1215 np->stats.tx_compressed++;
1216 }
1217 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1218
1219 np->tx_info[entry].mapping =
1220 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1221 } else {
1da177e4
LT
1222 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1223 status |= this_frag->size;
1224 np->tx_info[entry].mapping =
1225 pci_map_single(np->pci_dev, page_address(this_frag->page) + this_frag->page_offset, this_frag->size, PCI_DMA_TODEVICE);
1da177e4
LT
1226 }
1227
1228 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1229 np->tx_ring[entry].status = cpu_to_le32(status);
1230 if (debug > 3)
1231 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1232 dev->name, np->cur_tx, np->dirty_tx,
1233 entry, status);
1234 if (wrap_ring) {
1235 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1236 np->cur_tx += np->tx_info[entry].used_slots;
1237 entry = 0;
1238 } else {
1239 np->tx_info[entry].used_slots = 1;
1240 np->cur_tx += np->tx_info[entry].used_slots;
1241 entry++;
1242 }
1243 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1244 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1245 np->reap_tx = 1;
1246 }
1247
1248 /* Non-x86: explicitly flush descriptor cache lines here. */
1249 /* Ensure all descriptors are written back before the transmit is
1250 initiated. - Jes */
1251 wmb();
1252
1253 /* Update the producer index. */
1254 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1255
1256 /* 4 is arbitrary, but should be ok */
1257 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1258 netif_stop_queue(dev);
1259
1260 dev->trans_start = jiffies;
1261
1262 return 0;
1263}
1264
1265
1266/* The interrupt handler does all of the Rx thread work and cleans up
1267 after the Tx thread. */
7d12e780 1268static irqreturn_t intr_handler(int irq, void *dev_instance)
1da177e4
LT
1269{
1270 struct net_device *dev = dev_instance;
1271 struct netdev_private *np = netdev_priv(dev);
1272 void __iomem *ioaddr = np->base;
1273 int boguscnt = max_interrupt_work;
1274 int consumer;
1275 int tx_status;
1276 int handled = 0;
1277
1278 do {
1279 u32 intr_status = readl(ioaddr + IntrClear);
1280
1281 if (debug > 4)
1282 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1283 dev->name, intr_status);
1284
1285 if (intr_status == 0 || intr_status == (u32) -1)
1286 break;
1287
1288 handled = 1;
1289
a6676019
FR
1290 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1291 u32 enable;
1292
908a7a16
NH
1293 if (likely(netif_rx_schedule_prep(&np->napi))) {
1294 __netif_rx_schedule(&np->napi);
a6676019
FR
1295 enable = readl(ioaddr + IntrEnable);
1296 enable &= ~(IntrRxDone | IntrRxEmpty);
1297 writel(enable, ioaddr + IntrEnable);
1298 /* flush PCI posting buffers */
1299 readl(ioaddr + IntrEnable);
1300 } else {
1301 /* Paranoia check */
1302 enable = readl(ioaddr + IntrEnable);
1303 if (enable & (IntrRxDone | IntrRxEmpty)) {
1304 printk(KERN_INFO
1305 "%s: interrupt while in poll!\n",
1306 dev->name);
1307 enable &= ~(IntrRxDone | IntrRxEmpty);
1308 writel(enable, ioaddr + IntrEnable);
1309 }
1310 }
1311 }
1da177e4
LT
1312
1313 /* Scavenge the skbuff list based on the Tx-done queue.
1314 There are redundant checks here that may be cleaned up
1315 after the driver has proven to be reliable. */
1316 consumer = readl(ioaddr + TxConsumerIdx);
1317 if (debug > 3)
1318 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1319 dev->name, consumer);
1320
1321 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1322 if (debug > 3)
1323 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1324 dev->name, np->dirty_tx, np->tx_done, tx_status);
1325 if ((tx_status & 0xe0000000) == 0xa0000000) {
1326 np->stats.tx_packets++;
1327 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1328 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1329 struct sk_buff *skb = np->tx_info[entry].skb;
1330 np->tx_info[entry].skb = NULL;
1331 pci_unmap_single(np->pci_dev,
1332 np->tx_info[entry].mapping,
1333 skb_first_frag_len(skb),
1334 PCI_DMA_TODEVICE);
1335 np->tx_info[entry].mapping = 0;
1336 np->dirty_tx += np->tx_info[entry].used_slots;
1337 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1da177e4
LT
1338 {
1339 int i;
1340 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1341 pci_unmap_single(np->pci_dev,
1342 np->tx_info[entry].mapping,
1343 skb_shinfo(skb)->frags[i].size,
1344 PCI_DMA_TODEVICE);
1345 np->dirty_tx++;
1346 entry++;
1347 }
1348 }
fdecea66 1349
1da177e4
LT
1350 dev_kfree_skb_irq(skb);
1351 }
1352 np->tx_done_q[np->tx_done].status = 0;
1353 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1354 }
1355 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1356
1357 if (netif_queue_stopped(dev) &&
1358 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1359 /* The ring is no longer full, wake the queue. */
1360 netif_wake_queue(dev);
1361 }
1362
1363 /* Stats overflow */
1364 if (intr_status & IntrStatsMax)
1365 get_stats(dev);
1366
1367 /* Media change interrupt. */
1368 if (intr_status & IntrLinkChange)
1369 netdev_media_change(dev);
1370
1371 /* Abnormal error summary/uncommon events handlers. */
1372 if (intr_status & IntrAbnormalSummary)
1373 netdev_error(dev, intr_status);
1374
1375 if (--boguscnt < 0) {
1376 if (debug > 1)
1377 printk(KERN_WARNING "%s: Too much work at interrupt, "
1378 "status=%#8.8x.\n",
1379 dev->name, intr_status);
1380 break;
1381 }
1382 } while (1);
1383
1384 if (debug > 4)
1385 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1386 dev->name, (int) readl(ioaddr + IntrStatus));
1387 return IRQ_RETVAL(handled);
1388}
1389
1390
a6676019
FR
1391/*
1392 * This routine is logically part of the interrupt/poll handler, but separated
1393 * for clarity and better register allocation.
1394 */
1da177e4
LT
1395static int __netdev_rx(struct net_device *dev, int *quota)
1396{
1397 struct netdev_private *np = netdev_priv(dev);
1398 u32 desc_status;
1399 int retcode = 0;
1400
1401 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1402 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1403 struct sk_buff *skb;
1404 u16 pkt_len;
1405 int entry;
1406 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1407
1408 if (debug > 4)
1409 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1410 if (!(desc_status & RxOK)) {
fdecea66 1411 /* There was an error. */
1da177e4
LT
1412 if (debug > 2)
1413 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1414 np->stats.rx_errors++;
1415 if (desc_status & RxFIFOErr)
1416 np->stats.rx_fifo_errors++;
1417 goto next_rx;
1418 }
1419
1420 if (*quota <= 0) { /* out of rx quota */
1421 retcode = 1;
1422 goto out;
1423 }
1424 (*quota)--;
1425
1426 pkt_len = desc_status; /* Implicitly Truncate */
1427 entry = (desc_status >> 16) & 0x7ff;
1428
1429 if (debug > 4)
1430 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1431 /* Check if the packet is long enough to accept without copying
1432 to a minimally-sized skbuff. */
1433 if (pkt_len < rx_copybreak
1434 && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1da177e4
LT
1435 skb_reserve(skb, 2); /* 16 byte align the IP header */
1436 pci_dma_sync_single_for_cpu(np->pci_dev,
1437 np->rx_info[entry].mapping,
1438 pkt_len, PCI_DMA_FROMDEVICE);
8c7b7faa 1439 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1da177e4
LT
1440 pci_dma_sync_single_for_device(np->pci_dev,
1441 np->rx_info[entry].mapping,
1442 pkt_len, PCI_DMA_FROMDEVICE);
1443 skb_put(skb, pkt_len);
1444 } else {
1445 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1446 skb = np->rx_info[entry].skb;
1447 skb_put(skb, pkt_len);
1448 np->rx_info[entry].skb = NULL;
1449 np->rx_info[entry].mapping = 0;
1450 }
1451#ifndef final_version /* Remove after testing. */
1452 /* You will want this info for the initial debug. */
0795af57 1453 if (debug > 5) {
e174961c
JB
1454 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n",
1455 skb->data, skb->data + 6,
0795af57
JP
1456 skb->data[12], skb->data[13]);
1457 }
1da177e4
LT
1458#endif
1459
1460 skb->protocol = eth_type_trans(skb, dev);
fdecea66 1461#ifdef VLAN_SUPPORT
1da177e4
LT
1462 if (debug > 4)
1463 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1464#endif
1da177e4
LT
1465 if (le16_to_cpu(desc->status2) & 0x0100) {
1466 skb->ip_summed = CHECKSUM_UNNECESSARY;
1467 np->stats.rx_compressed++;
1468 }
1469 /*
1470 * This feature doesn't seem to be working, at least
1471 * with the two firmware versions I have. If the GFP sees
1472 * an IP fragment, it either ignores it completely, or reports
1473 * "bad checksum" on it.
1474 *
1475 * Maybe I missed something -- corrections are welcome.
1476 * Until then, the printk stays. :-) -Ion
1477 */
1478 else if (le16_to_cpu(desc->status2) & 0x0040) {
84fa7933 1479 skb->ip_summed = CHECKSUM_COMPLETE;
1da177e4
LT
1480 skb->csum = le16_to_cpu(desc->csum);
1481 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1482 }
1da177e4
LT
1483#ifdef VLAN_SUPPORT
1484 if (np->vlgrp && le16_to_cpu(desc->status2) & 0x0200) {
a6676019
FR
1485 u16 vlid = le16_to_cpu(desc->vlanid);
1486
1487 if (debug > 4) {
1488 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
1489 vlid);
1490 }
1491 /*
1492 * vlan_hwaccel_rx expects a packet with the VLAN tag
1493 * stripped out.
1494 */
1495 vlan_hwaccel_rx(skb, np->vlgrp, vlid);
1da177e4
LT
1496 } else
1497#endif /* VLAN_SUPPORT */
a6676019 1498 netif_receive_skb(skb);
1da177e4
LT
1499 np->stats.rx_packets++;
1500
1501 next_rx:
1502 np->cur_rx++;
1503 desc->status = 0;
1504 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1505 }
9a3de255
JP
1506
1507 if (*quota == 0) { /* out of rx quota */
1508 retcode = 1;
1509 goto out;
1510 }
1da177e4
LT
1511 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1512
1513 out:
1514 refill_rx_ring(dev);
1515 if (debug > 5)
1516 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1517 retcode, np->rx_done, desc_status);
1518 return retcode;
1519}
1520
bea3348e 1521static int netdev_poll(struct napi_struct *napi, int budget)
1da177e4 1522{
bea3348e
SH
1523 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1524 struct net_device *dev = np->dev;
1da177e4 1525 u32 intr_status;
1da177e4 1526 void __iomem *ioaddr = np->base;
bea3348e 1527 int quota = budget;
1da177e4
LT
1528
1529 do {
1530 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1531
bea3348e 1532 if (__netdev_rx(dev, &quota))
1da177e4
LT
1533 goto out;
1534
1535 intr_status = readl(ioaddr + IntrStatus);
1536 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1537
908a7a16 1538 netif_rx_complete(napi);
1da177e4
LT
1539 intr_status = readl(ioaddr + IntrEnable);
1540 intr_status |= IntrRxDone | IntrRxEmpty;
1541 writel(intr_status, ioaddr + IntrEnable);
1542
1543 out:
1544 if (debug > 5)
bea3348e
SH
1545 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1546 budget - quota);
1da177e4
LT
1547
1548 /* Restart Rx engine if stopped. */
bea3348e 1549 return budget - quota;
1da177e4 1550}
1da177e4
LT
1551
1552static void refill_rx_ring(struct net_device *dev)
1553{
1554 struct netdev_private *np = netdev_priv(dev);
1555 struct sk_buff *skb;
1556 int entry = -1;
1557
1558 /* Refill the Rx ring buffers. */
1559 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1560 entry = np->dirty_rx % RX_RING_SIZE;
1561 if (np->rx_info[entry].skb == NULL) {
1562 skb = dev_alloc_skb(np->rx_buf_sz);
1563 np->rx_info[entry].skb = skb;
1564 if (skb == NULL)
1565 break; /* Better luck next round. */
1566 np->rx_info[entry].mapping =
689be439 1567 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1da177e4
LT
1568 skb->dev = dev; /* Mark as being used by this device. */
1569 np->rx_ring[entry].rxaddr =
1570 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1571 }
1572 if (entry == RX_RING_SIZE - 1)
1573 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1574 }
1575 if (entry >= 0)
1576 writew(entry, np->base + RxDescQIdx);
1577}
1578
1579
1580static void netdev_media_change(struct net_device *dev)
1581{
1582 struct netdev_private *np = netdev_priv(dev);
1583 void __iomem *ioaddr = np->base;
1584 u16 reg0, reg1, reg4, reg5;
1585 u32 new_tx_mode;
1586 u32 new_intr_timer_ctrl;
1587
1588 /* reset status first */
1589 mdio_read(dev, np->phys[0], MII_BMCR);
1590 mdio_read(dev, np->phys[0], MII_BMSR);
1591
1592 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1593 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1594
1595 if (reg1 & BMSR_LSTATUS) {
1596 /* link is up */
1597 if (reg0 & BMCR_ANENABLE) {
1598 /* autonegotiation is enabled */
1599 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1600 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1601 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1602 np->speed100 = 1;
1603 np->mii_if.full_duplex = 1;
1604 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1605 np->speed100 = 1;
1606 np->mii_if.full_duplex = 0;
1607 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1608 np->speed100 = 0;
1609 np->mii_if.full_duplex = 1;
1610 } else {
1611 np->speed100 = 0;
1612 np->mii_if.full_duplex = 0;
1613 }
1614 } else {
1615 /* autonegotiation is disabled */
1616 if (reg0 & BMCR_SPEED100)
1617 np->speed100 = 1;
1618 else
1619 np->speed100 = 0;
1620 if (reg0 & BMCR_FULLDPLX)
1621 np->mii_if.full_duplex = 1;
1622 else
1623 np->mii_if.full_duplex = 0;
1624 }
1625 netif_carrier_on(dev);
1626 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1627 dev->name,
1628 np->speed100 ? "100" : "10",
1629 np->mii_if.full_duplex ? "full" : "half");
1630
1631 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1632 if (np->mii_if.full_duplex)
1633 new_tx_mode |= FullDuplex;
1634 if (np->tx_mode != new_tx_mode) {
1635 np->tx_mode = new_tx_mode;
1636 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1637 udelay(1000);
1638 writel(np->tx_mode, ioaddr + TxMode);
1639 }
1640
1641 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1642 if (np->speed100)
1643 new_intr_timer_ctrl |= Timer10X;
1644 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1645 np->intr_timer_ctrl = new_intr_timer_ctrl;
1646 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1647 }
1648 } else {
1649 netif_carrier_off(dev);
1650 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1651 }
1652}
1653
1654
1655static void netdev_error(struct net_device *dev, int intr_status)
1656{
1657 struct netdev_private *np = netdev_priv(dev);
1658
1659 /* Came close to underrunning the Tx FIFO, increase threshold. */
1660 if (intr_status & IntrTxDataLow) {
1661 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1662 writel(++np->tx_threshold, np->base + TxThreshold);
1663 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1664 dev->name, np->tx_threshold * 16);
1665 } else
1666 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1667 }
1668 if (intr_status & IntrRxGFPDead) {
1669 np->stats.rx_fifo_errors++;
1670 np->stats.rx_errors++;
1671 }
1672 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1673 np->stats.tx_fifo_errors++;
1674 np->stats.tx_errors++;
1675 }
1676 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1677 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1678 dev->name, intr_status);
1679}
1680
1681
1682static struct net_device_stats *get_stats(struct net_device *dev)
1683{
1684 struct netdev_private *np = netdev_priv(dev);
1685 void __iomem *ioaddr = np->base;
1686
1687 /* This adapter architecture needs no SMP locks. */
1688 np->stats.tx_bytes = readl(ioaddr + 0x57010);
1689 np->stats.rx_bytes = readl(ioaddr + 0x57044);
1690 np->stats.tx_packets = readl(ioaddr + 0x57000);
1691 np->stats.tx_aborted_errors =
1692 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1693 np->stats.tx_window_errors = readl(ioaddr + 0x57018);
1694 np->stats.collisions =
1695 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1696
1697 /* The chip only need report frame silently dropped. */
1698 np->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1699 writew(0, ioaddr + RxDMAStatus);
1700 np->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1701 np->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1702 np->stats.rx_length_errors = readl(ioaddr + 0x57058);
1703 np->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1704
1705 return &np->stats;
1706}
1707
1708
1da177e4
LT
1709static void set_rx_mode(struct net_device *dev)
1710{
1711 struct netdev_private *np = netdev_priv(dev);
1712 void __iomem *ioaddr = np->base;
1713 u32 rx_mode = MinVLANPrio;
1714 struct dev_mc_list *mclist;
1715 int i;
1716#ifdef VLAN_SUPPORT
1717
1718 rx_mode |= VlanMode;
1719 if (np->vlgrp) {
1720 int vlan_count = 0;
1721 void __iomem *filter_addr = ioaddr + HashTable + 8;
1722 for (i = 0; i < VLAN_VID_MASK; i++) {
5c15bdec 1723 if (vlan_group_get_device(np->vlgrp, i)) {
1da177e4
LT
1724 if (vlan_count >= 32)
1725 break;
813820b9 1726 writew(i, filter_addr);
1da177e4
LT
1727 filter_addr += 16;
1728 vlan_count++;
1729 }
1730 }
1731 if (i == VLAN_VID_MASK) {
1732 rx_mode |= PerfectFilterVlan;
1733 while (vlan_count < 32) {
1734 writew(0, filter_addr);
1735 filter_addr += 16;
1736 vlan_count++;
1737 }
1738 }
1739 }
1740#endif /* VLAN_SUPPORT */
1741
1742 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1743 rx_mode |= AcceptAll;
1744 } else if ((dev->mc_count > multicast_filter_limit)
1745 || (dev->flags & IFF_ALLMULTI)) {
1746 /* Too many to match, or accept all multicasts. */
1747 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1748 } else if (dev->mc_count <= 14) {
1749 /* Use the 16 element perfect filter, skip first two entries. */
1750 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
88b1943b 1751 __be16 *eaddrs;
1da177e4
LT
1752 for (i = 2, mclist = dev->mc_list; mclist && i < dev->mc_count + 2;
1753 i++, mclist = mclist->next) {
88b1943b
AV
1754 eaddrs = (__be16 *)mclist->dmi_addr;
1755 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1756 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1757 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1da177e4 1758 }
88b1943b 1759 eaddrs = (__be16 *)dev->dev_addr;
1da177e4 1760 while (i++ < 16) {
88b1943b
AV
1761 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1762 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1763 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1da177e4
LT
1764 }
1765 rx_mode |= AcceptBroadcast|PerfectFilter;
1766 } else {
1767 /* Must use a multicast hash table. */
1768 void __iomem *filter_addr;
88b1943b
AV
1769 __be16 *eaddrs;
1770 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1da177e4
LT
1771
1772 memset(mc_filter, 0, sizeof(mc_filter));
1773 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1774 i++, mclist = mclist->next) {
fdecea66
JG
1775 /* The chip uses the upper 9 CRC bits
1776 as index into the hash table */
1da177e4 1777 int bit_nr = ether_crc_le(ETH_ALEN, mclist->dmi_addr) >> 23;
88b1943b 1778 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1da177e4
LT
1779
1780 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1781 }
1782 /* Clear the perfect filter list, skip first two entries. */
1783 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
88b1943b 1784 eaddrs = (__be16 *)dev->dev_addr;
1da177e4 1785 for (i = 2; i < 16; i++) {
88b1943b
AV
1786 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1787 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1788 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1da177e4
LT
1789 }
1790 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1791 writew(mc_filter[i], filter_addr);
1792 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1793 }
1794 writel(rx_mode, ioaddr + RxFilterMode);
1795}
1796
1797static int check_if_running(struct net_device *dev)
1798{
1799 if (!netif_running(dev))
1800 return -EINVAL;
1801 return 0;
1802}
1803
1804static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1805{
1806 struct netdev_private *np = netdev_priv(dev);
1807 strcpy(info->driver, DRV_NAME);
1808 strcpy(info->version, DRV_VERSION);
fdecea66 1809 strcpy(info->bus_info, pci_name(np->pci_dev));
1da177e4
LT
1810}
1811
1812static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1813{
1814 struct netdev_private *np = netdev_priv(dev);
1815 spin_lock_irq(&np->lock);
1816 mii_ethtool_gset(&np->mii_if, ecmd);
1817 spin_unlock_irq(&np->lock);
1818 return 0;
1819}
1820
1821static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1822{
1823 struct netdev_private *np = netdev_priv(dev);
1824 int res;
1825 spin_lock_irq(&np->lock);
1826 res = mii_ethtool_sset(&np->mii_if, ecmd);
1827 spin_unlock_irq(&np->lock);
1828 check_duplex(dev);
1829 return res;
1830}
1831
1832static int nway_reset(struct net_device *dev)
1833{
1834 struct netdev_private *np = netdev_priv(dev);
1835 return mii_nway_restart(&np->mii_if);
1836}
1837
1838static u32 get_link(struct net_device *dev)
1839{
1840 struct netdev_private *np = netdev_priv(dev);
1841 return mii_link_ok(&np->mii_if);
1842}
1843
1844static u32 get_msglevel(struct net_device *dev)
1845{
1846 return debug;
1847}
1848
1849static void set_msglevel(struct net_device *dev, u32 val)
1850{
1851 debug = val;
1852}
1853
7282d491 1854static const struct ethtool_ops ethtool_ops = {
1da177e4
LT
1855 .begin = check_if_running,
1856 .get_drvinfo = get_drvinfo,
1857 .get_settings = get_settings,
1858 .set_settings = set_settings,
1859 .nway_reset = nway_reset,
1860 .get_link = get_link,
1861 .get_msglevel = get_msglevel,
1862 .set_msglevel = set_msglevel,
1863};
1864
1865static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1866{
1867 struct netdev_private *np = netdev_priv(dev);
1868 struct mii_ioctl_data *data = if_mii(rq);
1869 int rc;
1870
1871 if (!netif_running(dev))
1872 return -EINVAL;
1873
1874 spin_lock_irq(&np->lock);
1875 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1876 spin_unlock_irq(&np->lock);
1877
1878 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1879 check_duplex(dev);
1880
1881 return rc;
1882}
1883
1884static int netdev_close(struct net_device *dev)
1885{
1886 struct netdev_private *np = netdev_priv(dev);
1887 void __iomem *ioaddr = np->base;
1888 int i;
1889
1890 netif_stop_queue(dev);
a6676019 1891
bea3348e 1892 napi_disable(&np->napi);
1da177e4
LT
1893
1894 if (debug > 1) {
1895 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1896 dev->name, (int) readl(ioaddr + IntrStatus));
1897 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1898 dev->name, np->cur_tx, np->dirty_tx,
1899 np->cur_rx, np->dirty_rx);
1900 }
1901
1902 /* Disable interrupts by clearing the interrupt mask. */
1903 writel(0, ioaddr + IntrEnable);
1904
1905 /* Stop the chip's Tx and Rx processes. */
1906 writel(0, ioaddr + GenCtrl);
1907 readl(ioaddr + GenCtrl);
1908
1909 if (debug > 5) {
1910 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1911 (long long) np->tx_ring_dma);
1912 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1913 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1914 i, le32_to_cpu(np->tx_ring[i].status),
1915 (long long) dma_to_cpu(np->tx_ring[i].addr),
1916 le32_to_cpu(np->tx_done_q[i].status));
1917 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1918 (long long) np->rx_ring_dma, np->rx_done_q);
1919 if (np->rx_done_q)
1920 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1921 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1922 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1923 }
1924 }
1925
1926 free_irq(dev->irq, dev);
1927
1928 /* Free all the skbuffs in the Rx queue. */
1929 for (i = 0; i < RX_RING_SIZE; i++) {
1930 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1931 if (np->rx_info[i].skb != NULL) {
1932 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1933 dev_kfree_skb(np->rx_info[i].skb);
1934 }
1935 np->rx_info[i].skb = NULL;
1936 np->rx_info[i].mapping = 0;
1937 }
1938 for (i = 0; i < TX_RING_SIZE; i++) {
1939 struct sk_buff *skb = np->tx_info[i].skb;
1940 if (skb == NULL)
1941 continue;
1942 pci_unmap_single(np->pci_dev,
1943 np->tx_info[i].mapping,
1944 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1945 np->tx_info[i].mapping = 0;
1946 dev_kfree_skb(skb);
1947 np->tx_info[i].skb = NULL;
1948 }
1949
1950 return 0;
1951}
1952
d4fbeabb
SR
1953#ifdef CONFIG_PM
1954static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
1955{
1956 struct net_device *dev = pci_get_drvdata(pdev);
1957
1958 if (netif_running(dev)) {
1959 netif_device_detach(dev);
1960 netdev_close(dev);
1961 }
1962
1963 pci_save_state(pdev);
1964 pci_set_power_state(pdev, pci_choose_state(pdev,state));
1965
1966 return 0;
1967}
1968
1969static int starfire_resume(struct pci_dev *pdev)
1970{
1971 struct net_device *dev = pci_get_drvdata(pdev);
6aa20a22 1972
d4fbeabb
SR
1973 pci_set_power_state(pdev, PCI_D0);
1974 pci_restore_state(pdev);
1975
1976 if (netif_running(dev)) {
1977 netdev_open(dev);
1978 netif_device_attach(dev);
1979 }
1980
1981 return 0;
1982}
1983#endif /* CONFIG_PM */
1984
1da177e4
LT
1985
1986static void __devexit starfire_remove_one (struct pci_dev *pdev)
1987{
1988 struct net_device *dev = pci_get_drvdata(pdev);
1989 struct netdev_private *np = netdev_priv(dev);
1990
5d9428de 1991 BUG_ON(!dev);
1da177e4
LT
1992
1993 unregister_netdev(dev);
1994
1995 if (np->queue_mem)
1996 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
1997
1998
1999 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2000 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2001 pci_disable_device(pdev);
2002
2003 iounmap(np->base);
2004 pci_release_regions(pdev);
2005
2006 pci_set_drvdata(pdev, NULL);
2007 free_netdev(dev); /* Will also free np!! */
2008}
2009
2010
2011static struct pci_driver starfire_driver = {
2012 .name = DRV_NAME,
2013 .probe = starfire_init_one,
2014 .remove = __devexit_p(starfire_remove_one),
d4fbeabb
SR
2015#ifdef CONFIG_PM
2016 .suspend = starfire_suspend,
2017 .resume = starfire_resume,
2018#endif /* CONFIG_PM */
1da177e4
LT
2019 .id_table = starfire_pci_tbl,
2020};
2021
2022
2023static int __init starfire_init (void)
2024{
2025/* when a module, this is printed whether or not devices are found in probe */
2026#ifdef MODULE
2027 printk(version);
a6676019 2028
fdecea66 2029 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
fdecea66
JG
2030#endif
2031
1da177e4 2032 /* we can do this test only at run-time... sigh */
67974231
IB
2033 if (sizeof(dma_addr_t) != sizeof(netdrv_addr_t)) {
2034 printk("This driver has dma_addr_t issues, please send email to maintainer\n");
1da177e4
LT
2035 return -ENODEV;
2036 }
67974231 2037
29917620 2038 return pci_register_driver(&starfire_driver);
1da177e4
LT
2039}
2040
2041
2042static void __exit starfire_cleanup (void)
2043{
2044 pci_unregister_driver (&starfire_driver);
2045}
2046
2047
2048module_init(starfire_init);
2049module_exit(starfire_cleanup);
2050
2051
2052/*
2053 * Local variables:
2054 * c-basic-offset: 8
2055 * tab-width: 8
2056 * End:
2057 */
This page took 0.543775 seconds and 5 git commands to generate.