ath5k: support for FIF_FCSFAIL filter
[deliverable/linux.git] / drivers / net / wireless / ath / ath5k / base.c
CommitLineData
fa1c114f
JS
1/*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
23 *
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
27 *
28 * NO WARRANTY
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
40 *
41 */
42
516304b0
JP
43#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44
fa1c114f
JS
45#include <linux/module.h>
46#include <linux/delay.h>
b7f080cf 47#include <linux/dma-mapping.h>
274c7c36 48#include <linux/hardirq.h>
fa1c114f 49#include <linux/if.h>
274c7c36 50#include <linux/io.h>
fa1c114f
JS
51#include <linux/netdevice.h>
52#include <linux/cache.h>
fa1c114f
JS
53#include <linux/ethtool.h>
54#include <linux/uaccess.h>
5a0e3ad6 55#include <linux/slab.h>
b1ae1edf 56#include <linux/etherdevice.h>
931be260 57#include <linux/nl80211.h>
fa1c114f 58
4d70f2fb 59#include <net/cfg80211.h>
fa1c114f
JS
60#include <net/ieee80211_radiotap.h>
61
62#include <asm/unaligned.h>
63
0967e01e 64#include <net/mac80211.h>
fa1c114f
JS
65#include "base.h"
66#include "reg.h"
67#include "debug.h"
2111ac0d 68#include "ani.h"
931be260
PR
69#include "ath5k.h"
70#include "../regd.h"
fa1c114f 71
0e472252
BC
72#define CREATE_TRACE_POINTS
73#include "trace.h"
74
eb939922 75bool ath5k_modparam_nohwcrypt;
18cb6e32 76module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
9ad9a26e 77MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
fa1c114f 78
eb939922 79static bool modparam_fastchanswitch;
a99168ee
NK
80module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO);
81MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
82
11deb533 83static bool ath5k_modparam_no_hw_rfkill_switch;
84e1e737
NK
84module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
85 bool, S_IRUGO);
86MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
87
a99168ee 88
fa1c114f
JS
89/* Module info */
90MODULE_AUTHOR("Jiri Slaby");
91MODULE_AUTHOR("Nick Kossifidis");
92MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
93MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
94MODULE_LICENSE("Dual BSD/GPL");
fa1c114f 95
132b1c3e 96static int ath5k_init(struct ieee80211_hw *hw);
e0d687bd 97static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
8aec7af9 98 bool skip_pcu);
fa1c114f 99
fa1c114f 100/* Known SREVs */
2c91108c 101static const struct ath5k_srev_name srev_names[] = {
a0b907ee
FF
102#ifdef CONFIG_ATHEROS_AR231X
103 { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R2 },
104 { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R7 },
105 { "2313", AR5K_VERSION_MAC, AR5K_SREV_AR2313_R8 },
106 { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R6 },
107 { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R7 },
108 { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R1 },
109 { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R2 },
110#else
1bef016a
NK
111 { "5210", AR5K_VERSION_MAC, AR5K_SREV_AR5210 },
112 { "5311", AR5K_VERSION_MAC, AR5K_SREV_AR5311 },
113 { "5311A", AR5K_VERSION_MAC, AR5K_SREV_AR5311A },
114 { "5311B", AR5K_VERSION_MAC, AR5K_SREV_AR5311B },
115 { "5211", AR5K_VERSION_MAC, AR5K_SREV_AR5211 },
116 { "5212", AR5K_VERSION_MAC, AR5K_SREV_AR5212 },
117 { "5213", AR5K_VERSION_MAC, AR5K_SREV_AR5213 },
118 { "5213A", AR5K_VERSION_MAC, AR5K_SREV_AR5213A },
119 { "2413", AR5K_VERSION_MAC, AR5K_SREV_AR2413 },
120 { "2414", AR5K_VERSION_MAC, AR5K_SREV_AR2414 },
121 { "5424", AR5K_VERSION_MAC, AR5K_SREV_AR5424 },
122 { "5413", AR5K_VERSION_MAC, AR5K_SREV_AR5413 },
123 { "5414", AR5K_VERSION_MAC, AR5K_SREV_AR5414 },
124 { "2415", AR5K_VERSION_MAC, AR5K_SREV_AR2415 },
125 { "5416", AR5K_VERSION_MAC, AR5K_SREV_AR5416 },
126 { "5418", AR5K_VERSION_MAC, AR5K_SREV_AR5418 },
127 { "2425", AR5K_VERSION_MAC, AR5K_SREV_AR2425 },
128 { "2417", AR5K_VERSION_MAC, AR5K_SREV_AR2417 },
a0b907ee 129#endif
1bef016a 130 { "xxxxx", AR5K_VERSION_MAC, AR5K_SREV_UNKNOWN },
fa1c114f
JS
131 { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 },
132 { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 },
1bef016a 133 { "5111A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111A },
fa1c114f
JS
134 { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 },
135 { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 },
136 { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A },
1bef016a 137 { "5112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112B },
fa1c114f
JS
138 { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 },
139 { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A },
1bef016a
NK
140 { "2112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112B },
141 { "2413", AR5K_VERSION_RAD, AR5K_SREV_RAD_2413 },
142 { "5413", AR5K_VERSION_RAD, AR5K_SREV_RAD_5413 },
1bef016a 143 { "5424", AR5K_VERSION_RAD, AR5K_SREV_RAD_5424 },
fa1c114f 144 { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 },
a0b907ee
FF
145#ifdef CONFIG_ATHEROS_AR231X
146 { "2316", AR5K_VERSION_RAD, AR5K_SREV_RAD_2316 },
147 { "2317", AR5K_VERSION_RAD, AR5K_SREV_RAD_2317 },
148#endif
fa1c114f
JS
149 { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
150};
151
2c91108c 152static const struct ieee80211_rate ath5k_rates[] = {
63266a65
BR
153 { .bitrate = 10,
154 .hw_value = ATH5K_RATE_CODE_1M, },
155 { .bitrate = 20,
156 .hw_value = ATH5K_RATE_CODE_2M,
157 .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
158 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
159 { .bitrate = 55,
160 .hw_value = ATH5K_RATE_CODE_5_5M,
161 .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
162 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
163 { .bitrate = 110,
164 .hw_value = ATH5K_RATE_CODE_11M,
165 .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
166 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
167 { .bitrate = 60,
168 .hw_value = ATH5K_RATE_CODE_6M,
6a09ae95
SW
169 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
170 IEEE80211_RATE_SUPPORTS_10MHZ },
63266a65
BR
171 { .bitrate = 90,
172 .hw_value = ATH5K_RATE_CODE_9M,
6a09ae95
SW
173 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
174 IEEE80211_RATE_SUPPORTS_10MHZ },
63266a65
BR
175 { .bitrate = 120,
176 .hw_value = ATH5K_RATE_CODE_12M,
6a09ae95
SW
177 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
178 IEEE80211_RATE_SUPPORTS_10MHZ },
63266a65
BR
179 { .bitrate = 180,
180 .hw_value = ATH5K_RATE_CODE_18M,
6a09ae95
SW
181 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
182 IEEE80211_RATE_SUPPORTS_10MHZ },
63266a65
BR
183 { .bitrate = 240,
184 .hw_value = ATH5K_RATE_CODE_24M,
6a09ae95
SW
185 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
186 IEEE80211_RATE_SUPPORTS_10MHZ },
63266a65
BR
187 { .bitrate = 360,
188 .hw_value = ATH5K_RATE_CODE_36M,
6a09ae95
SW
189 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
190 IEEE80211_RATE_SUPPORTS_10MHZ },
63266a65
BR
191 { .bitrate = 480,
192 .hw_value = ATH5K_RATE_CODE_48M,
6a09ae95
SW
193 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
194 IEEE80211_RATE_SUPPORTS_10MHZ },
63266a65
BR
195 { .bitrate = 540,
196 .hw_value = ATH5K_RATE_CODE_54M,
6a09ae95
SW
197 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
198 IEEE80211_RATE_SUPPORTS_10MHZ },
63266a65
BR
199};
200
fa1c114f
JS
201static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
202{
203 u64 tsf = ath5k_hw_get_tsf64(ah);
204
205 if ((tsf & 0x7fff) < rstamp)
206 tsf -= 0x8000;
207
208 return (tsf & ~0x7fff) | rstamp;
209}
210
e5b046d8 211const char *
fa1c114f
JS
212ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
213{
214 const char *name = "xxxxx";
215 unsigned int i;
216
217 for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
218 if (srev_names[i].sr_type != type)
219 continue;
75d0edb8
NK
220
221 if ((val & 0xf0) == srev_names[i].sr_val)
222 name = srev_names[i].sr_name;
223
224 if ((val & 0xff) == srev_names[i].sr_val) {
fa1c114f
JS
225 name = srev_names[i].sr_name;
226 break;
227 }
228 }
229
230 return name;
231}
e5aa8474
LR
232static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
233{
234 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
235 return ath5k_hw_reg_read(ah, reg_offset);
236}
237
238static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
239{
240 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
241 ath5k_hw_reg_write(ah, val, reg_offset);
242}
243
244static const struct ath_ops ath5k_common_ops = {
245 .read = ath5k_ioread32,
246 .write = ath5k_iowrite32,
247};
fa1c114f 248
8a63facc
BC
249/***********************\
250* Driver Initialization *
251\***********************/
252
0c0280bd
LR
253static void ath5k_reg_notifier(struct wiphy *wiphy,
254 struct regulatory_request *request)
fa1c114f 255{
8a63facc 256 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
e0d687bd
PR
257 struct ath5k_hw *ah = hw->priv;
258 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
fa1c114f 259
0c0280bd 260 ath_reg_notifier_apply(wiphy, request, regulatory);
8a63facc 261}
6ccf15a1 262
8a63facc
BC
263/********************\
264* Channel/mode setup *
265\********************/
fa1c114f 266
8a63facc 267/*
2f8684ce 268 * Returns true for the channel numbers used.
8a63facc 269 */
2f8684ce
LR
270#ifdef CONFIG_ATH5K_TEST_CHANNELS
271static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
272{
273 return true;
274}
275
276#else
410e6120 277static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
8a63facc 278{
410e6120
BR
279 if (band == IEEE80211_BAND_2GHZ && chan <= 14)
280 return true;
281
282 return /* UNII 1,2 */
283 (((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
8a63facc
BC
284 /* midband */
285 ((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
286 /* UNII-3 */
410e6120
BR
287 ((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
288 /* 802.11j 5.030-5.080 GHz (20MHz) */
289 (chan == 8 || chan == 12 || chan == 16) ||
290 /* 802.11j 4.9GHz (20MHz) */
291 (chan == 184 || chan == 188 || chan == 192 || chan == 196));
8a63facc 292}
2f8684ce 293#endif
fa1c114f 294
8a63facc 295static unsigned int
97d9c3a3
BR
296ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
297 unsigned int mode, unsigned int max)
8a63facc 298{
32c25464 299 unsigned int count, size, freq, ch;
90c02d72 300 enum ieee80211_band band;
fa1c114f 301
8a63facc
BC
302 switch (mode) {
303 case AR5K_MODE_11A:
8a63facc 304 /* 1..220, but 2GHz frequencies are filtered by check_channel */
97d9c3a3 305 size = 220;
90c02d72 306 band = IEEE80211_BAND_5GHZ;
8a63facc
BC
307 break;
308 case AR5K_MODE_11B:
309 case AR5K_MODE_11G:
8a63facc 310 size = 26;
90c02d72 311 band = IEEE80211_BAND_2GHZ;
8a63facc
BC
312 break;
313 default:
e0d687bd 314 ATH5K_WARN(ah, "bad mode, not copying channels\n");
8a63facc 315 return 0;
fa1c114f
JS
316 }
317
2b1351a3
BR
318 count = 0;
319 for (ch = 1; ch <= size && count < max; ch++) {
90c02d72
BR
320 freq = ieee80211_channel_to_frequency(ch, band);
321
322 if (freq == 0) /* mapping failed - not a standard channel */
323 continue;
fa1c114f 324
32c25464
PR
325 /* Write channel info, needed for ath5k_channel_ok() */
326 channels[count].center_freq = freq;
327 channels[count].band = band;
328 channels[count].hw_value = mode;
329
8a63facc 330 /* Check if channel is supported by the chipset */
32c25464 331 if (!ath5k_channel_ok(ah, &channels[count]))
8a63facc 332 continue;
f59ac048 333
2f8684ce 334 if (!ath5k_is_standard_channel(ch, band))
8a63facc 335 continue;
f59ac048 336
8a63facc 337 count++;
8a63facc 338 }
fa1c114f 339
8a63facc
BC
340 return count;
341}
fa1c114f 342
8a63facc 343static void
e0d687bd 344ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
8a63facc
BC
345{
346 u8 i;
fa1c114f 347
8a63facc 348 for (i = 0; i < AR5K_MAX_RATES; i++)
e0d687bd 349 ah->rate_idx[b->band][i] = -1;
fa1c114f 350
8a63facc 351 for (i = 0; i < b->n_bitrates; i++) {
e0d687bd 352 ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
8a63facc 353 if (b->bitrates[i].hw_value_short)
e0d687bd 354 ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
fa1c114f 355 }
8a63facc 356}
fa1c114f 357
8a63facc
BC
358static int
359ath5k_setup_bands(struct ieee80211_hw *hw)
360{
e0d687bd 361 struct ath5k_hw *ah = hw->priv;
8a63facc
BC
362 struct ieee80211_supported_band *sband;
363 int max_c, count_c = 0;
364 int i;
fa1c114f 365
e0d687bd
PR
366 BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < IEEE80211_NUM_BANDS);
367 max_c = ARRAY_SIZE(ah->channels);
db719718 368
8a63facc 369 /* 2GHz band */
e0d687bd 370 sband = &ah->sbands[IEEE80211_BAND_2GHZ];
8a63facc 371 sband->band = IEEE80211_BAND_2GHZ;
e0d687bd 372 sband->bitrates = &ah->rates[IEEE80211_BAND_2GHZ][0];
9adca126 373
e0d687bd 374 if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
8a63facc
BC
375 /* G mode */
376 memcpy(sband->bitrates, &ath5k_rates[0],
377 sizeof(struct ieee80211_rate) * 12);
378 sband->n_bitrates = 12;
2f7fe870 379
e0d687bd 380 sband->channels = ah->channels;
08105690 381 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
8a63facc 382 AR5K_MODE_11G, max_c);
fa1c114f 383
8a63facc
BC
384 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
385 count_c = sband->n_channels;
386 max_c -= count_c;
e0d687bd 387 } else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
8a63facc
BC
388 /* B mode */
389 memcpy(sband->bitrates, &ath5k_rates[0],
390 sizeof(struct ieee80211_rate) * 4);
391 sband->n_bitrates = 4;
fa1c114f 392
8a63facc
BC
393 /* 5211 only supports B rates and uses 4bit rate codes
394 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
395 * fix them up here:
396 */
397 if (ah->ah_version == AR5K_AR5211) {
398 for (i = 0; i < 4; i++) {
399 sband->bitrates[i].hw_value =
400 sband->bitrates[i].hw_value & 0xF;
401 sband->bitrates[i].hw_value_short =
402 sband->bitrates[i].hw_value_short & 0xF;
fa1c114f
JS
403 }
404 }
fa1c114f 405
e0d687bd 406 sband->channels = ah->channels;
08105690 407 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
8a63facc 408 AR5K_MODE_11B, max_c);
fa1c114f 409
8a63facc
BC
410 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
411 count_c = sband->n_channels;
412 max_c -= count_c;
413 }
e0d687bd 414 ath5k_setup_rate_idx(ah, sband);
fa1c114f 415
8a63facc 416 /* 5GHz band, A mode */
e0d687bd
PR
417 if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
418 sband = &ah->sbands[IEEE80211_BAND_5GHZ];
8a63facc 419 sband->band = IEEE80211_BAND_5GHZ;
e0d687bd 420 sband->bitrates = &ah->rates[IEEE80211_BAND_5GHZ][0];
fa1c114f 421
8a63facc
BC
422 memcpy(sband->bitrates, &ath5k_rates[4],
423 sizeof(struct ieee80211_rate) * 8);
424 sband->n_bitrates = 8;
fa1c114f 425
e0d687bd 426 sband->channels = &ah->channels[count_c];
08105690 427 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
8a63facc 428 AR5K_MODE_11A, max_c);
fa1c114f 429
8a63facc
BC
430 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
431 }
e0d687bd 432 ath5k_setup_rate_idx(ah, sband);
8a63facc 433
e0d687bd 434 ath5k_debug_dump_bands(ah);
fa1c114f 435
fa1c114f
JS
436 return 0;
437}
438
8a63facc
BC
439/*
440 * Set/change channels. We always reset the chip.
441 * To accomplish this we must first cleanup any pending DMA,
442 * then restart stuff after a la ath5k_init.
443 *
e0d687bd 444 * Called with ah->lock.
8a63facc 445 */
cd2c5486 446int
4d70f2fb 447ath5k_chan_set(struct ath5k_hw *ah, struct cfg80211_chan_def *chandef)
8a63facc 448{
e0d687bd 449 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
8a63facc 450 "channel set, resetting (%u -> %u MHz)\n",
4d70f2fb
SW
451 ah->curchan->center_freq, chandef->chan->center_freq);
452
453 switch (chandef->width) {
454 case NL80211_CHAN_WIDTH_20:
455 case NL80211_CHAN_WIDTH_20_NOHT:
456 ah->ah_bwmode = AR5K_BWMODE_DEFAULT;
457 break;
458 case NL80211_CHAN_WIDTH_5:
459 ah->ah_bwmode = AR5K_BWMODE_5MHZ;
460 break;
461 case NL80211_CHAN_WIDTH_10:
462 ah->ah_bwmode = AR5K_BWMODE_10MHZ;
463 break;
464 default:
465 WARN_ON(1);
466 return -EINVAL;
467 }
8a63facc 468
8451d22d 469 /*
8a63facc
BC
470 * To switch channels clear any pending DMA operations;
471 * wait long enough for the RX fifo to drain, reset the
472 * hardware at the new frequency, and then re-enable
473 * the relevant bits of the h/w.
8451d22d 474 */
4d70f2fb 475 return ath5k_reset(ah, chandef->chan, true);
fa1c114f 476}
fa1c114f 477
e4b0b32a 478void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
b1ae1edf 479{
e4b0b32a 480 struct ath5k_vif_iter_data *iter_data = data;
b1ae1edf 481 int i;
62c58fb4 482 struct ath5k_vif *avf = (void *)vif->drv_priv;
b1ae1edf
BG
483
484 if (iter_data->hw_macaddr)
485 for (i = 0; i < ETH_ALEN; i++)
486 iter_data->mask[i] &=
487 ~(iter_data->hw_macaddr[i] ^ mac[i]);
488
489 if (!iter_data->found_active) {
490 iter_data->found_active = true;
491 memcpy(iter_data->active_mac, mac, ETH_ALEN);
492 }
493
494 if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
2e42e474 495 if (ether_addr_equal(iter_data->hw_macaddr, mac))
b1ae1edf
BG
496 iter_data->need_set_hw_addr = false;
497
498 if (!iter_data->any_assoc) {
b1ae1edf
BG
499 if (avf->assoc)
500 iter_data->any_assoc = true;
501 }
62c58fb4
BG
502
503 /* Calculate combined mode - when APs are active, operate in AP mode.
504 * Otherwise use the mode of the new interface. This can currently
505 * only deal with combinations of APs and STAs. Only one ad-hoc
7afbb2f0 506 * interfaces is allowed.
62c58fb4
BG
507 */
508 if (avf->opmode == NL80211_IFTYPE_AP)
509 iter_data->opmode = NL80211_IFTYPE_AP;
e4b0b32a
BG
510 else {
511 if (avf->opmode == NL80211_IFTYPE_STATION)
512 iter_data->n_stas++;
62c58fb4
BG
513 if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
514 iter_data->opmode = avf->opmode;
e4b0b32a 515 }
b1ae1edf
BG
516}
517
cd2c5486 518void
e0d687bd 519ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
cd2c5486 520 struct ieee80211_vif *vif)
b1ae1edf 521{
e0d687bd 522 struct ath_common *common = ath5k_hw_common(ah);
e4b0b32a
BG
523 struct ath5k_vif_iter_data iter_data;
524 u32 rfilt;
b1ae1edf
BG
525
526 /*
527 * Use the hardware MAC address as reference, the hardware uses it
528 * together with the BSSID mask when matching addresses.
529 */
530 iter_data.hw_macaddr = common->macaddr;
531 memset(&iter_data.mask, 0xff, ETH_ALEN);
532 iter_data.found_active = false;
533 iter_data.need_set_hw_addr = true;
62c58fb4 534 iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
e4b0b32a 535 iter_data.n_stas = 0;
b1ae1edf
BG
536
537 if (vif)
e4b0b32a 538 ath5k_vif_iter(&iter_data, vif->addr, vif);
b1ae1edf
BG
539
540 /* Get list of all active MAC addresses */
8b2c9824
JB
541 ieee80211_iterate_active_interfaces_atomic(
542 ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
543 ath5k_vif_iter, &iter_data);
e0d687bd 544 memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
b1ae1edf 545
e0d687bd
PR
546 ah->opmode = iter_data.opmode;
547 if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
62c58fb4 548 /* Nothing active, default to station mode */
e0d687bd 549 ah->opmode = NL80211_IFTYPE_STATION;
62c58fb4 550
e0d687bd
PR
551 ath5k_hw_set_opmode(ah, ah->opmode);
552 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
553 ah->opmode, ath_opmode_to_string(ah->opmode));
62c58fb4 554
b1ae1edf 555 if (iter_data.need_set_hw_addr && iter_data.found_active)
e0d687bd 556 ath5k_hw_set_lladdr(ah, iter_data.active_mac);
b1ae1edf 557
e0d687bd
PR
558 if (ath5k_hw_hasbssidmask(ah))
559 ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
b1ae1edf 560
e4b0b32a
BG
561 /* Set up RX Filter */
562 if (iter_data.n_stas > 1) {
563 /* If you have multiple STA interfaces connected to
564 * different APs, ARPs are not received (most of the time?)
6a2a0e73 565 * Enabling PROMISC appears to fix that problem.
e4b0b32a 566 */
e0d687bd 567 ah->filter_flags |= AR5K_RX_FILTER_PROM;
e4b0b32a 568 }
fa1c114f 569
e0d687bd
PR
570 rfilt = ah->filter_flags;
571 ath5k_hw_set_rx_filter(ah, rfilt);
572 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
8a63facc 573}
fa1c114f 574
8a63facc 575static inline int
e0d687bd 576ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
8a63facc
BC
577{
578 int rix;
fa1c114f 579
8a63facc
BC
580 /* return base rate on errors */
581 if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
582 "hw_rix out of bounds: %x\n", hw_rix))
583 return 0;
584
e0d687bd 585 rix = ah->rate_idx[ah->curchan->band][hw_rix];
8a63facc
BC
586 if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
587 rix = 0;
588
589 return rix;
590}
591
592/***************\
593* Buffers setup *
594\***************/
595
596static
e0d687bd 597struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
8a63facc 598{
e0d687bd 599 struct ath_common *common = ath5k_hw_common(ah);
8a63facc 600 struct sk_buff *skb;
fa1c114f
JS
601
602 /*
8a63facc
BC
603 * Allocate buffer with headroom_needed space for the
604 * fake physical layer header at the start.
fa1c114f 605 */
8a63facc
BC
606 skb = ath_rxbuf_alloc(common,
607 common->rx_bufsize,
608 GFP_ATOMIC);
fa1c114f 609
8a63facc 610 if (!skb) {
e0d687bd 611 ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
8a63facc
BC
612 common->rx_bufsize);
613 return NULL;
fa1c114f
JS
614 }
615
e0d687bd 616 *skb_addr = dma_map_single(ah->dev,
8a63facc 617 skb->data, common->rx_bufsize,
aeae4ac9
FF
618 DMA_FROM_DEVICE);
619
e0d687bd
PR
620 if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
621 ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
8a63facc
BC
622 dev_kfree_skb(skb);
623 return NULL;
0e149cf5 624 }
8a63facc
BC
625 return skb;
626}
0e149cf5 627
8a63facc 628static int
e0d687bd 629ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
8a63facc 630{
8a63facc
BC
631 struct sk_buff *skb = bf->skb;
632 struct ath5k_desc *ds;
633 int ret;
fa1c114f 634
8a63facc 635 if (!skb) {
e0d687bd 636 skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
8a63facc
BC
637 if (!skb)
638 return -ENOMEM;
639 bf->skb = skb;
f769c36b
BC
640 }
641
8a63facc
BC
642 /*
643 * Setup descriptors. For receive we always terminate
644 * the descriptor list with a self-linked entry so we'll
645 * not get overrun under high load (as can happen with a
646 * 5212 when ANI processing enables PHY error frames).
647 *
648 * To ensure the last descriptor is self-linked we create
649 * each descriptor as self-linked and add it to the end. As
650 * each additional descriptor is added the previous self-linked
651 * entry is "fixed" naturally. This should be safe even
652 * if DMA is happening. When processing RX interrupts we
653 * never remove/process the last, self-linked, entry on the
654 * descriptor list. This ensures the hardware always has
655 * someplace to write a new frame.
656 */
657 ds = bf->desc;
658 ds->ds_link = bf->daddr; /* link to self */
659 ds->ds_data = bf->skbaddr;
660 ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
fa1c114f 661 if (ret) {
e0d687bd 662 ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
8a63facc 663 return ret;
fa1c114f
JS
664 }
665
e0d687bd
PR
666 if (ah->rxlink != NULL)
667 *ah->rxlink = bf->daddr;
668 ah->rxlink = &ds->ds_link;
fa1c114f 669 return 0;
fa1c114f
JS
670}
671
8a63facc 672static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
fa1c114f 673{
8a63facc
BC
674 struct ieee80211_hdr *hdr;
675 enum ath5k_pkt_type htype;
676 __le16 fc;
fa1c114f 677
8a63facc
BC
678 hdr = (struct ieee80211_hdr *)skb->data;
679 fc = hdr->frame_control;
fa1c114f 680
8a63facc
BC
681 if (ieee80211_is_beacon(fc))
682 htype = AR5K_PKT_TYPE_BEACON;
683 else if (ieee80211_is_probe_resp(fc))
684 htype = AR5K_PKT_TYPE_PROBE_RESP;
685 else if (ieee80211_is_atim(fc))
686 htype = AR5K_PKT_TYPE_ATIM;
687 else if (ieee80211_is_pspoll(fc))
688 htype = AR5K_PKT_TYPE_PSPOLL;
fa1c114f 689 else
8a63facc 690 htype = AR5K_PKT_TYPE_NORMAL;
fa1c114f 691
8a63facc 692 return htype;
42639fcd
BC
693}
694
0967e01e
TH
695static struct ieee80211_rate *
696ath5k_get_rate(const struct ieee80211_hw *hw,
697 const struct ieee80211_tx_info *info,
698 struct ath5k_buf *bf, int idx)
699{
700 /*
701 * convert a ieee80211_tx_rate RC-table entry to
702 * the respective ieee80211_rate struct
703 */
704 if (bf->rates[idx].idx < 0) {
705 return NULL;
706 }
707
708 return &hw->wiphy->bands[info->band]->bitrates[ bf->rates[idx].idx ];
709}
710
711static u16
712ath5k_get_rate_hw_value(const struct ieee80211_hw *hw,
713 const struct ieee80211_tx_info *info,
714 struct ath5k_buf *bf, int idx)
715{
716 struct ieee80211_rate *rate;
717 u16 hw_rate;
718 u8 rc_flags;
719
720 rate = ath5k_get_rate(hw, info, bf, idx);
721 if (!rate)
722 return 0;
723
724 rc_flags = bf->rates[idx].flags;
725 hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
726 rate->hw_value_short : rate->hw_value;
727
728 return hw_rate;
729}
730
8a63facc 731static int
e0d687bd 732ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
0967e01e
TH
733 struct ath5k_txq *txq, int padsize,
734 struct ieee80211_tx_control *control)
fa1c114f 735{
8a63facc
BC
736 struct ath5k_desc *ds = bf->desc;
737 struct sk_buff *skb = bf->skb;
738 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
739 unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
740 struct ieee80211_rate *rate;
741 unsigned int mrr_rate[3], mrr_tries[3];
742 int i, ret;
743 u16 hw_rate;
744 u16 cts_rate = 0;
745 u16 duration = 0;
746 u8 rc_flags;
fa1c114f 747
8a63facc 748 flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
fa1c114f 749
8a63facc 750 /* XXX endianness */
e0d687bd 751 bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
aeae4ac9 752 DMA_TO_DEVICE);
fa1c114f 753
b499abdc
JG
754 if (dma_mapping_error(ah->dev, bf->skbaddr))
755 return -ENOSPC;
756
0967e01e
TH
757 ieee80211_get_tx_rates(info->control.vif, (control) ? control->sta : NULL, skb, bf->rates,
758 ARRAY_SIZE(bf->rates));
759
760 rate = ath5k_get_rate(ah->hw, info, bf, 0);
761
29ad2fac
JL
762 if (!rate) {
763 ret = -EINVAL;
764 goto err_unmap;
765 }
fa1c114f 766
8a63facc
BC
767 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
768 flags |= AR5K_TXDESC_NOACK;
fa1c114f 769
8a63facc 770 rc_flags = info->control.rates[0].flags;
0967e01e
TH
771
772 hw_rate = ath5k_get_rate_hw_value(ah->hw, info, bf, 0);
42639fcd 773
8a63facc
BC
774 pktlen = skb->len;
775
776 /* FIXME: If we are in g mode and rate is a CCK rate
777 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
778 * from tx power (value is in dB units already) */
779 if (info->control.hw_key) {
780 keyidx = info->control.hw_key->hw_key_idx;
781 pktlen += info->control.hw_key->icv_len;
782 }
783 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
784 flags |= AR5K_TXDESC_RTSENA;
e0d687bd
PR
785 cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
786 duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
b1ae1edf 787 info->control.vif, pktlen, info));
8a63facc
BC
788 }
789 if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
790 flags |= AR5K_TXDESC_CTSENA;
e0d687bd
PR
791 cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
792 duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
b1ae1edf 793 info->control.vif, pktlen, info));
8a63facc 794 }
0967e01e 795
8a63facc
BC
796 ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
797 ieee80211_get_hdrlen_from_skb(skb), padsize,
798 get_hw_packet_type(skb),
987af54f 799 (ah->ah_txpower.txp_requested * 2),
8a63facc 800 hw_rate,
0967e01e 801 bf->rates[0].count, keyidx, ah->ah_tx_ant, flags,
8a63facc
BC
802 cts_rate, duration);
803 if (ret)
804 goto err_unmap;
805
86f62d9b
NK
806 /* Set up MRR descriptor */
807 if (ah->ah_capabilities.cap_has_mrr_support) {
808 memset(mrr_rate, 0, sizeof(mrr_rate));
809 memset(mrr_tries, 0, sizeof(mrr_tries));
0967e01e 810
86f62d9b 811 for (i = 0; i < 3; i++) {
0967e01e
TH
812
813 rate = ath5k_get_rate(ah->hw, info, bf, i);
86f62d9b
NK
814 if (!rate)
815 break;
fa1c114f 816
0967e01e
TH
817 mrr_rate[i] = ath5k_get_rate_hw_value(ah->hw, info, bf, i);
818 mrr_tries[i] = bf->rates[i].count;
86f62d9b 819 }
fa1c114f 820
86f62d9b
NK
821 ath5k_hw_setup_mrr_tx_desc(ah, ds,
822 mrr_rate[0], mrr_tries[0],
823 mrr_rate[1], mrr_tries[1],
824 mrr_rate[2], mrr_tries[2]);
825 }
fa1c114f 826
8a63facc
BC
827 ds->ds_link = 0;
828 ds->ds_data = bf->skbaddr;
63266a65 829
8a63facc
BC
830 spin_lock_bh(&txq->lock);
831 list_add_tail(&bf->list, &txq->q);
925e0b06 832 txq->txq_len++;
8a63facc
BC
833 if (txq->link == NULL) /* is this first packet? */
834 ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
835 else /* no, so only link it */
836 *txq->link = bf->daddr;
63266a65 837
8a63facc
BC
838 txq->link = &ds->ds_link;
839 ath5k_hw_start_tx_dma(ah, txq->qnum);
840 mmiowb();
841 spin_unlock_bh(&txq->lock);
842
843 return 0;
844err_unmap:
e0d687bd 845 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
8a63facc 846 return ret;
63266a65
BR
847}
848
8a63facc
BC
849/*******************\
850* Descriptors setup *
851\*******************/
852
d8ee398d 853static int
e0d687bd 854ath5k_desc_alloc(struct ath5k_hw *ah)
fa1c114f 855{
8a63facc
BC
856 struct ath5k_desc *ds;
857 struct ath5k_buf *bf;
858 dma_addr_t da;
859 unsigned int i;
860 int ret;
d8ee398d 861
8a63facc 862 /* allocate descriptors */
e0d687bd 863 ah->desc_len = sizeof(struct ath5k_desc) *
8a63facc 864 (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
aeae4ac9 865
e0d687bd
PR
866 ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
867 &ah->desc_daddr, GFP_KERNEL);
868 if (ah->desc == NULL) {
869 ATH5K_ERR(ah, "can't allocate descriptors\n");
8a63facc
BC
870 ret = -ENOMEM;
871 goto err;
872 }
e0d687bd
PR
873 ds = ah->desc;
874 da = ah->desc_daddr;
875 ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
876 ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
fa1c114f 877
8a63facc
BC
878 bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
879 sizeof(struct ath5k_buf), GFP_KERNEL);
880 if (bf == NULL) {
e0d687bd 881 ATH5K_ERR(ah, "can't allocate bufptr\n");
8a63facc
BC
882 ret = -ENOMEM;
883 goto err_free;
884 }
e0d687bd 885 ah->bufptr = bf;
fa1c114f 886
e0d687bd 887 INIT_LIST_HEAD(&ah->rxbuf);
8a63facc
BC
888 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
889 bf->desc = ds;
890 bf->daddr = da;
e0d687bd 891 list_add_tail(&bf->list, &ah->rxbuf);
8a63facc 892 }
d8ee398d 893
e0d687bd
PR
894 INIT_LIST_HEAD(&ah->txbuf);
895 ah->txbuf_len = ATH_TXBUF;
e4bbf2f5 896 for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
8a63facc
BC
897 bf->desc = ds;
898 bf->daddr = da;
e0d687bd 899 list_add_tail(&bf->list, &ah->txbuf);
fa1c114f
JS
900 }
901
b1ae1edf 902 /* beacon buffers */
e0d687bd 903 INIT_LIST_HEAD(&ah->bcbuf);
b1ae1edf
BG
904 for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
905 bf->desc = ds;
906 bf->daddr = da;
e0d687bd 907 list_add_tail(&bf->list, &ah->bcbuf);
b1ae1edf 908 }
fa1c114f 909
8a63facc
BC
910 return 0;
911err_free:
e0d687bd 912 dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
8a63facc 913err:
e0d687bd 914 ah->desc = NULL;
8a63facc
BC
915 return ret;
916}
fa1c114f 917
cd2c5486 918void
e0d687bd 919ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
cd2c5486
BR
920{
921 BUG_ON(!bf);
922 if (!bf->skb)
923 return;
e0d687bd 924 dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
cd2c5486 925 DMA_TO_DEVICE);
596ab5ec 926 ieee80211_free_txskb(ah->hw, bf->skb);
cd2c5486
BR
927 bf->skb = NULL;
928 bf->skbaddr = 0;
929 bf->desc->ds_data = 0;
930}
931
932void
e0d687bd 933ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
cd2c5486 934{
cd2c5486
BR
935 struct ath_common *common = ath5k_hw_common(ah);
936
937 BUG_ON(!bf);
938 if (!bf->skb)
939 return;
e0d687bd 940 dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
cd2c5486
BR
941 DMA_FROM_DEVICE);
942 dev_kfree_skb_any(bf->skb);
943 bf->skb = NULL;
944 bf->skbaddr = 0;
945 bf->desc->ds_data = 0;
946}
947
8a63facc 948static void
e0d687bd 949ath5k_desc_free(struct ath5k_hw *ah)
8a63facc
BC
950{
951 struct ath5k_buf *bf;
d8ee398d 952
e0d687bd
PR
953 list_for_each_entry(bf, &ah->txbuf, list)
954 ath5k_txbuf_free_skb(ah, bf);
955 list_for_each_entry(bf, &ah->rxbuf, list)
956 ath5k_rxbuf_free_skb(ah, bf);
957 list_for_each_entry(bf, &ah->bcbuf, list)
958 ath5k_txbuf_free_skb(ah, bf);
d8ee398d 959
8a63facc 960 /* Free memory associated with all descriptors */
e0d687bd
PR
961 dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
962 ah->desc = NULL;
963 ah->desc_daddr = 0;
d8ee398d 964
e0d687bd
PR
965 kfree(ah->bufptr);
966 ah->bufptr = NULL;
fa1c114f
JS
967}
968
8a63facc
BC
969
970/**************\
971* Queues setup *
972\**************/
973
974static struct ath5k_txq *
e0d687bd 975ath5k_txq_setup(struct ath5k_hw *ah,
8a63facc 976 int qtype, int subtype)
fa1c114f 977{
8a63facc
BC
978 struct ath5k_txq *txq;
979 struct ath5k_txq_info qi = {
980 .tqi_subtype = subtype,
de8af455
BR
981 /* XXX: default values not correct for B and XR channels,
982 * but who cares? */
983 .tqi_aifs = AR5K_TUNE_AIFS,
984 .tqi_cw_min = AR5K_TUNE_CWMIN,
985 .tqi_cw_max = AR5K_TUNE_CWMAX
8a63facc
BC
986 };
987 int qnum;
d8ee398d 988
e30eb4ab 989 /*
8a63facc
BC
990 * Enable interrupts only for EOL and DESC conditions.
991 * We mark tx descriptors to receive a DESC interrupt
992 * when a tx queue gets deep; otherwise we wait for the
993 * EOL to reap descriptors. Note that this is done to
994 * reduce interrupt load and this only defers reaping
995 * descriptors, never transmitting frames. Aside from
996 * reducing interrupts this also permits more concurrency.
997 * The only potential downside is if the tx queue backs
998 * up in which case the top half of the kernel may backup
999 * due to a lack of tx descriptors.
e30eb4ab 1000 */
8a63facc
BC
1001 qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1002 AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1003 qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1004 if (qnum < 0) {
1005 /*
1006 * NB: don't print a message, this happens
1007 * normally on parts with too few tx queues
1008 */
1009 return ERR_PTR(qnum);
1010 }
e0d687bd 1011 txq = &ah->txqs[qnum];
8a63facc
BC
1012 if (!txq->setup) {
1013 txq->qnum = qnum;
1014 txq->link = NULL;
1015 INIT_LIST_HEAD(&txq->q);
1016 spin_lock_init(&txq->lock);
1017 txq->setup = true;
925e0b06 1018 txq->txq_len = 0;
81266baf 1019 txq->txq_max = ATH5K_TXQ_LEN_MAX;
4edd761f 1020 txq->txq_poll_mark = false;
923e5b3d 1021 txq->txq_stuck = 0;
8a63facc 1022 }
e0d687bd 1023 return &ah->txqs[qnum];
fa1c114f
JS
1024}
1025
8a63facc
BC
1026static int
1027ath5k_beaconq_setup(struct ath5k_hw *ah)
fa1c114f 1028{
8a63facc 1029 struct ath5k_txq_info qi = {
de8af455
BR
1030 /* XXX: default values not correct for B and XR channels,
1031 * but who cares? */
1032 .tqi_aifs = AR5K_TUNE_AIFS,
1033 .tqi_cw_min = AR5K_TUNE_CWMIN,
1034 .tqi_cw_max = AR5K_TUNE_CWMAX,
8a63facc
BC
1035 /* NB: for dynamic turbo, don't enable any other interrupts */
1036 .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1037 };
d8ee398d 1038
8a63facc 1039 return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
fa1c114f
JS
1040}
1041
8a63facc 1042static int
e0d687bd 1043ath5k_beaconq_config(struct ath5k_hw *ah)
fa1c114f 1044{
8a63facc
BC
1045 struct ath5k_txq_info qi;
1046 int ret;
fa1c114f 1047
e0d687bd 1048 ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
8a63facc
BC
1049 if (ret)
1050 goto err;
fa1c114f 1051
e0d687bd
PR
1052 if (ah->opmode == NL80211_IFTYPE_AP ||
1053 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
8a63facc
BC
1054 /*
1055 * Always burst out beacon and CAB traffic
1056 * (aifs = cwmin = cwmax = 0)
1057 */
1058 qi.tqi_aifs = 0;
1059 qi.tqi_cw_min = 0;
1060 qi.tqi_cw_max = 0;
e0d687bd 1061 } else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
8a63facc
BC
1062 /*
1063 * Adhoc mode; backoff between 0 and (2 * cw_min).
1064 */
1065 qi.tqi_aifs = 0;
1066 qi.tqi_cw_min = 0;
de8af455 1067 qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
8a63facc 1068 }
fa1c114f 1069
e0d687bd 1070 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
8a63facc
BC
1071 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1072 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
fa1c114f 1073
e0d687bd 1074 ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
8a63facc 1075 if (ret) {
e0d687bd 1076 ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
8a63facc
BC
1077 "hardware queue!\n", __func__);
1078 goto err;
1079 }
e0d687bd 1080 ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
8a63facc
BC
1081 if (ret)
1082 goto err;
b7266047 1083
8a63facc
BC
1084 /* reconfigure cabq with ready time to 80% of beacon_interval */
1085 ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1086 if (ret)
1087 goto err;
b7266047 1088
e0d687bd 1089 qi.tqi_ready_time = (ah->bintval * 80) / 100;
8a63facc
BC
1090 ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1091 if (ret)
1092 goto err;
b7266047 1093
8a63facc
BC
1094 ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1095err:
1096 return ret;
d8ee398d
LR
1097}
1098
80dac9ee
NK
1099/**
1100 * ath5k_drain_tx_buffs - Empty tx buffers
1101 *
e0d687bd 1102 * @ah The &struct ath5k_hw
80dac9ee
NK
1103 *
1104 * Empty tx buffers from all queues in preparation
1105 * of a reset or during shutdown.
1106 *
1107 * NB: this assumes output has been stopped and
1108 * we do not need to block ath5k_tx_tasklet
1109 */
8a63facc 1110static void
e0d687bd 1111ath5k_drain_tx_buffs(struct ath5k_hw *ah)
8a63facc 1112{
80dac9ee 1113 struct ath5k_txq *txq;
8a63facc 1114 struct ath5k_buf *bf, *bf0;
80dac9ee 1115 int i;
b6ea0356 1116
e0d687bd
PR
1117 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1118 if (ah->txqs[i].setup) {
1119 txq = &ah->txqs[i];
80dac9ee
NK
1120 spin_lock_bh(&txq->lock);
1121 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
e0d687bd 1122 ath5k_debug_printtxbuf(ah, bf);
b6ea0356 1123
e0d687bd 1124 ath5k_txbuf_free_skb(ah, bf);
fa1c114f 1125
6617942e 1126 spin_lock(&ah->txbuflock);
e0d687bd
PR
1127 list_move_tail(&bf->list, &ah->txbuf);
1128 ah->txbuf_len++;
80dac9ee 1129 txq->txq_len--;
6617942e 1130 spin_unlock(&ah->txbuflock);
8a63facc 1131 }
80dac9ee
NK
1132 txq->link = NULL;
1133 txq->txq_poll_mark = false;
1134 spin_unlock_bh(&txq->lock);
1135 }
0452d4a5 1136 }
fa1c114f
JS
1137}
1138
8a63facc 1139static void
e0d687bd 1140ath5k_txq_release(struct ath5k_hw *ah)
2ac2927a 1141{
e0d687bd 1142 struct ath5k_txq *txq = ah->txqs;
8a63facc 1143 unsigned int i;
2ac2927a 1144
e0d687bd 1145 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
8a63facc 1146 if (txq->setup) {
e0d687bd 1147 ath5k_hw_release_tx_queue(ah, txq->qnum);
8a63facc
BC
1148 txq->setup = false;
1149 }
1150}
2ac2927a 1151
2ac2927a 1152
8a63facc
BC
1153/*************\
1154* RX Handling *
1155\*************/
2ac2927a 1156
8a63facc
BC
1157/*
1158 * Enable the receive h/w following a reset.
1159 */
fa1c114f 1160static int
e0d687bd 1161ath5k_rx_start(struct ath5k_hw *ah)
fa1c114f 1162{
8a63facc
BC
1163 struct ath_common *common = ath5k_hw_common(ah);
1164 struct ath5k_buf *bf;
1165 int ret;
fa1c114f 1166
8a63facc 1167 common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
fa1c114f 1168
e0d687bd 1169 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
8a63facc 1170 common->cachelsz, common->rx_bufsize);
2f7fe870 1171
e0d687bd
PR
1172 spin_lock_bh(&ah->rxbuflock);
1173 ah->rxlink = NULL;
1174 list_for_each_entry(bf, &ah->rxbuf, list) {
1175 ret = ath5k_rxbuf_setup(ah, bf);
8a63facc 1176 if (ret != 0) {
e0d687bd 1177 spin_unlock_bh(&ah->rxbuflock);
8a63facc
BC
1178 goto err;
1179 }
2f7fe870 1180 }
e0d687bd 1181 bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
8a63facc 1182 ath5k_hw_set_rxdp(ah, bf->daddr);
e0d687bd 1183 spin_unlock_bh(&ah->rxbuflock);
2f7fe870 1184
8a63facc 1185 ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */
e0d687bd 1186 ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
8a63facc 1187 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
fa1c114f
JS
1188
1189 return 0;
8a63facc 1190err:
fa1c114f
JS
1191 return ret;
1192}
1193
8a63facc 1194/*
80dac9ee
NK
1195 * Disable the receive logic on PCU (DRU)
1196 * In preparation for a shutdown.
1197 *
1198 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1199 * does.
8a63facc
BC
1200 */
1201static void
e0d687bd 1202ath5k_rx_stop(struct ath5k_hw *ah)
fa1c114f 1203{
fa1c114f 1204
8a63facc 1205 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
80dac9ee 1206 ath5k_hw_stop_rx_pcu(ah); /* disable PCU */
fa1c114f 1207
e0d687bd 1208 ath5k_debug_printrxbuffs(ah);
8a63facc 1209}
fa1c114f 1210
8a63facc 1211static unsigned int
e0d687bd 1212ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
8a63facc
BC
1213 struct ath5k_rx_status *rs)
1214{
8a63facc
BC
1215 struct ath_common *common = ath5k_hw_common(ah);
1216 struct ieee80211_hdr *hdr = (void *)skb->data;
1217 unsigned int keyix, hlen;
fa1c114f 1218
8a63facc
BC
1219 if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1220 rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1221 return RX_FLAG_DECRYPTED;
fa1c114f 1222
8a63facc
BC
1223 /* Apparently when a default key is used to decrypt the packet
1224 the hw does not set the index used to decrypt. In such cases
1225 get the index from the packet. */
1226 hlen = ieee80211_hdrlen(hdr->frame_control);
1227 if (ieee80211_has_protected(hdr->frame_control) &&
1228 !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1229 skb->len >= hlen + 4) {
1230 keyix = skb->data[hlen + 3] >> 6;
1231
1232 if (test_bit(keyix, common->keymap))
1233 return RX_FLAG_DECRYPTED;
1234 }
fa1c114f
JS
1235
1236 return 0;
fa1c114f
JS
1237}
1238
8a63facc 1239
fa1c114f 1240static void
e0d687bd 1241ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
8a63facc 1242 struct ieee80211_rx_status *rxs)
fa1c114f 1243{
8a63facc
BC
1244 u64 tsf, bc_tstamp;
1245 u32 hw_tu;
1246 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
fa1c114f 1247
d44efe21 1248 if (le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS) {
8a63facc
BC
1249 /*
1250 * Received an IBSS beacon with the same BSSID. Hardware *must*
1251 * have updated the local TSF. We have to work around various
1252 * hardware bugs, though...
1253 */
e0d687bd 1254 tsf = ath5k_hw_get_tsf64(ah);
8a63facc
BC
1255 bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1256 hw_tu = TSF_TO_TU(tsf);
fa1c114f 1257
e0d687bd 1258 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
8a63facc
BC
1259 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1260 (unsigned long long)bc_tstamp,
1261 (unsigned long long)rxs->mactime,
1262 (unsigned long long)(rxs->mactime - bc_tstamp),
1263 (unsigned long long)tsf);
fa1c114f 1264
8a63facc
BC
1265 /*
1266 * Sometimes the HW will give us a wrong tstamp in the rx
1267 * status, causing the timestamp extension to go wrong.
1268 * (This seems to happen especially with beacon frames bigger
1269 * than 78 byte (incl. FCS))
1270 * But we know that the receive timestamp must be later than the
1271 * timestamp of the beacon since HW must have synced to that.
1272 *
1273 * NOTE: here we assume mactime to be after the frame was
1274 * received, not like mac80211 which defines it at the start.
1275 */
1276 if (bc_tstamp > rxs->mactime) {
e0d687bd 1277 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
8a63facc
BC
1278 "fixing mactime from %llx to %llx\n",
1279 (unsigned long long)rxs->mactime,
1280 (unsigned long long)tsf);
1281 rxs->mactime = tsf;
1282 }
fa1c114f 1283
8a63facc
BC
1284 /*
1285 * Local TSF might have moved higher than our beacon timers,
1286 * in that case we have to update them to continue sending
1287 * beacons. This also takes care of synchronizing beacon sending
1288 * times with other stations.
1289 */
e0d687bd
PR
1290 if (hw_tu >= ah->nexttbtt)
1291 ath5k_beacon_update_timers(ah, bc_tstamp);
7f896126
BR
1292
1293 /* Check if the beacon timers are still correct, because a TSF
1294 * update might have created a window between them - for a
1295 * longer description see the comment of this function: */
e0d687bd
PR
1296 if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1297 ath5k_beacon_update_timers(ah, bc_tstamp);
1298 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
7f896126
BR
1299 "fixed beacon timers after beacon receive\n");
1300 }
8a63facc
BC
1301 }
1302}
fa1c114f 1303
8a63facc
BC
1304/*
1305 * Compute padding position. skb must contain an IEEE 802.11 frame
1306 */
1307static int ath5k_common_padpos(struct sk_buff *skb)
fa1c114f 1308{
e4bbf2f5 1309 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
8a63facc
BC
1310 __le16 frame_control = hdr->frame_control;
1311 int padpos = 24;
fa1c114f 1312
d2c7f773 1313 if (ieee80211_has_a4(frame_control))
8a63facc 1314 padpos += ETH_ALEN;
d2c7f773
PR
1315
1316 if (ieee80211_is_data_qos(frame_control))
8a63facc 1317 padpos += IEEE80211_QOS_CTL_LEN;
8a63facc
BC
1318
1319 return padpos;
fa1c114f
JS
1320}
1321
8a63facc
BC
1322/*
1323 * This function expects an 802.11 frame and returns the number of
1324 * bytes added, or -1 if we don't have enough header room.
1325 */
1326static int ath5k_add_padding(struct sk_buff *skb)
fa1c114f 1327{
8a63facc
BC
1328 int padpos = ath5k_common_padpos(skb);
1329 int padsize = padpos & 3;
fa1c114f 1330
e4bbf2f5 1331 if (padsize && skb->len > padpos) {
fa1c114f 1332
8a63facc
BC
1333 if (skb_headroom(skb) < padsize)
1334 return -1;
fa1c114f 1335
8a63facc 1336 skb_push(skb, padsize);
e4bbf2f5 1337 memmove(skb->data, skb->data + padsize, padpos);
8a63facc
BC
1338 return padsize;
1339 }
a951ae21 1340
8a63facc
BC
1341 return 0;
1342}
fa1c114f 1343
8a63facc
BC
1344/*
1345 * The MAC header is padded to have 32-bit boundary if the
1346 * packet payload is non-zero. The general calculation for
1347 * padsize would take into account odd header lengths:
1348 * padsize = 4 - (hdrlen & 3); however, since only
1349 * even-length headers are used, padding can only be 0 or 2
1350 * bytes and we can optimize this a bit. We must not try to
1351 * remove padding from short control frames that do not have a
1352 * payload.
1353 *
1354 * This function expects an 802.11 frame and returns the number of
1355 * bytes removed.
1356 */
1357static int ath5k_remove_padding(struct sk_buff *skb)
1358{
1359 int padpos = ath5k_common_padpos(skb);
1360 int padsize = padpos & 3;
6d91e1d8 1361
e4bbf2f5 1362 if (padsize && skb->len >= padpos + padsize) {
8a63facc
BC
1363 memmove(skb->data + padsize, skb->data, padpos);
1364 skb_pull(skb, padsize);
1365 return padsize;
fa1c114f 1366 }
a951ae21 1367
8a63facc 1368 return 0;
fa1c114f
JS
1369}
1370
1371static void
e0d687bd 1372ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
8a63facc 1373 struct ath5k_rx_status *rs)
fa1c114f 1374{
8a63facc 1375 struct ieee80211_rx_status *rxs;
d44efe21 1376 struct ath_common *common = ath5k_hw_common(ah);
8a63facc
BC
1377
1378 ath5k_remove_padding(skb);
1379
1380 rxs = IEEE80211_SKB_RXCB(skb);
1381
1382 rxs->flag = 0;
1383 if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1384 rxs->flag |= RX_FLAG_MMIC_ERROR;
41881354
MV
1385 if (unlikely(rs->rs_status & AR5K_RXERR_CRC))
1386 rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
1387
fa1c114f
JS
1388
1389 /*
8a63facc
BC
1390 * always extend the mac timestamp, since this information is
1391 * also needed for proper IBSS merging.
1392 *
1393 * XXX: it might be too late to do it here, since rs_tstamp is
1394 * 15bit only. that means TSF extension has to be done within
1395 * 32768usec (about 32ms). it might be necessary to move this to
1396 * the interrupt handler, like it is done in madwifi.
fa1c114f 1397 */
e0d687bd 1398 rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
e576defd 1399 rxs->flag |= RX_FLAG_MACTIME_END;
fa1c114f 1400
e0d687bd
PR
1401 rxs->freq = ah->curchan->center_freq;
1402 rxs->band = ah->curchan->band;
fa1c114f 1403
e0d687bd 1404 rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
fa1c114f 1405
8a63facc 1406 rxs->antenna = rs->rs_antenna;
fa1c114f 1407
8a63facc 1408 if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
e0d687bd 1409 ah->stats.antenna_rx[rs->rs_antenna]++;
8a63facc 1410 else
e0d687bd 1411 ah->stats.antenna_rx[0]++; /* invalid */
fa1c114f 1412
e0d687bd
PR
1413 rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1414 rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
312a6443
SW
1415 switch (ah->ah_bwmode) {
1416 case AR5K_BWMODE_5MHZ:
1417 rxs->flag |= RX_FLAG_5MHZ;
1418 break;
1419 case AR5K_BWMODE_10MHZ:
1420 rxs->flag |= RX_FLAG_10MHZ;
1421 break;
1422 default:
1423 break;
1424 }
fa1c114f 1425
8a63facc 1426 if (rxs->rate_idx >= 0 && rs->rs_rate ==
e0d687bd 1427 ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
8a63facc 1428 rxs->flag |= RX_FLAG_SHORTPRE;
fa1c114f 1429
e0d687bd 1430 trace_ath5k_rx(ah, skb);
fa1c114f 1431
d44efe21
OR
1432 if (ath_is_mybeacon(common, (struct ieee80211_hdr *)skb->data)) {
1433 ewma_add(&ah->ah_beacon_rssi_avg, rs->rs_rssi);
fa1c114f 1434
d44efe21
OR
1435 /* check beacons in IBSS mode */
1436 if (ah->opmode == NL80211_IFTYPE_ADHOC)
1437 ath5k_check_ibss_tsf(ah, skb, rxs);
1438 }
fa1c114f 1439
e0d687bd 1440 ieee80211_rx(ah->hw, skb);
8a63facc 1441}
fa1c114f 1442
8a63facc
BC
1443/** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1444 *
1445 * Check if we want to further process this frame or not. Also update
1446 * statistics. Return true if we want this frame, false if not.
fa1c114f 1447 */
8a63facc 1448static bool
e0d687bd 1449ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
fa1c114f 1450{
e0d687bd
PR
1451 ah->stats.rx_all_count++;
1452 ah->stats.rx_bytes_count += rs->rs_datalen;
fa1c114f 1453
8a63facc 1454 if (unlikely(rs->rs_status)) {
41881354
MV
1455 unsigned int filters;
1456
8a63facc 1457 if (rs->rs_status & AR5K_RXERR_CRC)
e0d687bd 1458 ah->stats.rxerr_crc++;
8a63facc 1459 if (rs->rs_status & AR5K_RXERR_FIFO)
e0d687bd 1460 ah->stats.rxerr_fifo++;
8a63facc 1461 if (rs->rs_status & AR5K_RXERR_PHY) {
e0d687bd 1462 ah->stats.rxerr_phy++;
8a63facc 1463 if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
e0d687bd 1464 ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
8a63facc
BC
1465 return false;
1466 }
1467 if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1468 /*
1469 * Decrypt error. If the error occurred
1470 * because there was no hardware key, then
1471 * let the frame through so the upper layers
1472 * can process it. This is necessary for 5210
1473 * parts which have no way to setup a ``clear''
1474 * key cache entry.
1475 *
1476 * XXX do key cache faulting
1477 */
e0d687bd 1478 ah->stats.rxerr_decrypt++;
8a63facc
BC
1479 if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1480 !(rs->rs_status & AR5K_RXERR_CRC))
1481 return true;
1482 }
1483 if (rs->rs_status & AR5K_RXERR_MIC) {
e0d687bd 1484 ah->stats.rxerr_mic++;
8a63facc 1485 return true;
fa1c114f 1486 }
fa1c114f 1487
41881354
MV
1488 /*
1489 * Reject any frames with non-crypto errors, and take into account the
1490 * current FIF_* filters.
1491 */
1492 filters = AR5K_RXERR_DECRYPT;
1493 if (ah->fif_filter_flags & FIF_FCSFAIL)
1494 filters |= AR5K_RXERR_CRC;
1495
1496 if (rs->rs_status & ~filters)
8a63facc
BC
1497 return false;
1498 }
fa1c114f 1499
8a63facc 1500 if (unlikely(rs->rs_more)) {
e0d687bd 1501 ah->stats.rxerr_jumbo++;
8a63facc
BC
1502 return false;
1503 }
1504 return true;
fa1c114f
JS
1505}
1506
c266c71a 1507static void
e0d687bd 1508ath5k_set_current_imask(struct ath5k_hw *ah)
c266c71a 1509{
4fc5401c 1510 enum ath5k_int imask;
c266c71a
FF
1511 unsigned long flags;
1512
e0d687bd
PR
1513 spin_lock_irqsave(&ah->irqlock, flags);
1514 imask = ah->imask;
1515 if (ah->rx_pending)
c266c71a 1516 imask &= ~AR5K_INT_RX_ALL;
e0d687bd 1517 if (ah->tx_pending)
c266c71a 1518 imask &= ~AR5K_INT_TX_ALL;
e0d687bd
PR
1519 ath5k_hw_set_imr(ah, imask);
1520 spin_unlock_irqrestore(&ah->irqlock, flags);
c266c71a
FF
1521}
1522
fa1c114f 1523static void
8a63facc 1524ath5k_tasklet_rx(unsigned long data)
fa1c114f 1525{
8a63facc
BC
1526 struct ath5k_rx_status rs = {};
1527 struct sk_buff *skb, *next_skb;
1528 dma_addr_t next_skb_addr;
e0d687bd 1529 struct ath5k_hw *ah = (void *)data;
dc1e001b 1530 struct ath_common *common = ath5k_hw_common(ah);
8a63facc
BC
1531 struct ath5k_buf *bf;
1532 struct ath5k_desc *ds;
1533 int ret;
fa1c114f 1534
e0d687bd
PR
1535 spin_lock(&ah->rxbuflock);
1536 if (list_empty(&ah->rxbuf)) {
1537 ATH5K_WARN(ah, "empty rx buf pool\n");
8a63facc
BC
1538 goto unlock;
1539 }
1540 do {
e0d687bd 1541 bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
8a63facc
BC
1542 BUG_ON(bf->skb == NULL);
1543 skb = bf->skb;
1544 ds = bf->desc;
fa1c114f 1545
8a63facc 1546 /* bail if HW is still using self-linked descriptor */
e0d687bd 1547 if (ath5k_hw_get_rxdp(ah) == bf->daddr)
8a63facc 1548 break;
fa1c114f 1549
e0d687bd 1550 ret = ah->ah_proc_rx_desc(ah, ds, &rs);
8a63facc
BC
1551 if (unlikely(ret == -EINPROGRESS))
1552 break;
1553 else if (unlikely(ret)) {
e0d687bd
PR
1554 ATH5K_ERR(ah, "error in processing rx descriptor\n");
1555 ah->stats.rxerr_proc++;
8a63facc
BC
1556 break;
1557 }
fa1c114f 1558
e0d687bd
PR
1559 if (ath5k_receive_frame_ok(ah, &rs)) {
1560 next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
fa1c114f 1561
8a63facc
BC
1562 /*
1563 * If we can't replace bf->skb with a new skb under
1564 * memory pressure, just skip this packet
1565 */
1566 if (!next_skb)
1567 goto next;
036cd1ec 1568
e0d687bd 1569 dma_unmap_single(ah->dev, bf->skbaddr,
8a63facc 1570 common->rx_bufsize,
aeae4ac9 1571 DMA_FROM_DEVICE);
036cd1ec 1572
8a63facc 1573 skb_put(skb, rs.rs_datalen);
6ba81c2c 1574
e0d687bd 1575 ath5k_receive_frame(ah, skb, &rs);
6ba81c2c 1576
8a63facc
BC
1577 bf->skb = next_skb;
1578 bf->skbaddr = next_skb_addr;
036cd1ec 1579 }
8a63facc 1580next:
e0d687bd
PR
1581 list_move_tail(&bf->list, &ah->rxbuf);
1582 } while (ath5k_rxbuf_setup(ah, bf) == 0);
8a63facc 1583unlock:
e0d687bd
PR
1584 spin_unlock(&ah->rxbuflock);
1585 ah->rx_pending = false;
1586 ath5k_set_current_imask(ah);
036cd1ec
BR
1587}
1588
b4ea449d 1589
8a63facc
BC
1590/*************\
1591* TX Handling *
1592\*************/
b4ea449d 1593
7bb45683 1594void
cd2c5486 1595ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
0967e01e 1596 struct ath5k_txq *txq, struct ieee80211_tx_control *control)
8a63facc 1597{
e0d687bd 1598 struct ath5k_hw *ah = hw->priv;
8a63facc
BC
1599 struct ath5k_buf *bf;
1600 unsigned long flags;
1601 int padsize;
b4ea449d 1602
e0d687bd 1603 trace_ath5k_tx(ah, skb, txq);
b4ea449d 1604
8a63facc
BC
1605 /*
1606 * The hardware expects the header padded to 4 byte boundaries.
1607 * If this is not the case, we add the padding after the header.
1608 */
1609 padsize = ath5k_add_padding(skb);
1610 if (padsize < 0) {
e0d687bd 1611 ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
8a63facc
BC
1612 " headroom to pad");
1613 goto drop_packet;
1614 }
8127fbdc 1615
4e868796
FF
1616 if (txq->txq_len >= txq->txq_max &&
1617 txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
925e0b06
BR
1618 ieee80211_stop_queue(hw, txq->qnum);
1619
e0d687bd
PR
1620 spin_lock_irqsave(&ah->txbuflock, flags);
1621 if (list_empty(&ah->txbuf)) {
1622 ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1623 spin_unlock_irqrestore(&ah->txbuflock, flags);
651d9375 1624 ieee80211_stop_queues(hw);
8a63facc 1625 goto drop_packet;
8127fbdc 1626 }
e0d687bd 1627 bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
8a63facc 1628 list_del(&bf->list);
e0d687bd
PR
1629 ah->txbuf_len--;
1630 if (list_empty(&ah->txbuf))
8a63facc 1631 ieee80211_stop_queues(hw);
e0d687bd 1632 spin_unlock_irqrestore(&ah->txbuflock, flags);
8a63facc
BC
1633
1634 bf->skb = skb;
1635
0967e01e 1636 if (ath5k_txbuf_setup(ah, bf, txq, padsize, control)) {
8a63facc 1637 bf->skb = NULL;
e0d687bd
PR
1638 spin_lock_irqsave(&ah->txbuflock, flags);
1639 list_add_tail(&bf->list, &ah->txbuf);
1640 ah->txbuf_len++;
1641 spin_unlock_irqrestore(&ah->txbuflock, flags);
8a63facc 1642 goto drop_packet;
8127fbdc 1643 }
7bb45683 1644 return;
8127fbdc 1645
8a63facc 1646drop_packet:
596ab5ec 1647 ieee80211_free_txskb(hw, skb);
8127fbdc
BP
1648}
1649
1440401e 1650static void
e0d687bd 1651ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
0967e01e
TH
1652 struct ath5k_txq *txq, struct ath5k_tx_status *ts,
1653 struct ath5k_buf *bf)
1440401e
BR
1654{
1655 struct ieee80211_tx_info *info;
ed895085 1656 u8 tries[3];
1440401e 1657 int i;
0967e01e 1658 int size = 0;
1440401e 1659
e0d687bd
PR
1660 ah->stats.tx_all_count++;
1661 ah->stats.tx_bytes_count += skb->len;
1440401e
BR
1662 info = IEEE80211_SKB_CB(skb);
1663
7ede612f
FF
1664 size = min_t(int, sizeof(info->status.rates), sizeof(bf->rates));
1665 memcpy(info->status.rates, bf->rates, size);
1666
ed895085
FF
1667 tries[0] = info->status.rates[0].count;
1668 tries[1] = info->status.rates[1].count;
1669 tries[2] = info->status.rates[2].count;
1670
1440401e 1671 ieee80211_tx_info_clear_status(info);
ed895085
FF
1672
1673 for (i = 0; i < ts->ts_final_idx; i++) {
1440401e
BR
1674 struct ieee80211_tx_rate *r =
1675 &info->status.rates[i];
1676
ed895085 1677 r->count = tries[i];
1440401e
BR
1678 }
1679
ed895085 1680 info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
6d7b97b2 1681 info->status.rates[ts->ts_final_idx + 1].idx = -1;
1440401e
BR
1682
1683 if (unlikely(ts->ts_status)) {
e0d687bd 1684 ah->stats.ack_fail++;
1440401e
BR
1685 if (ts->ts_status & AR5K_TXERR_FILT) {
1686 info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
e0d687bd 1687 ah->stats.txerr_filt++;
1440401e
BR
1688 }
1689 if (ts->ts_status & AR5K_TXERR_XRETRY)
e0d687bd 1690 ah->stats.txerr_retry++;
1440401e 1691 if (ts->ts_status & AR5K_TXERR_FIFO)
e0d687bd 1692 ah->stats.txerr_fifo++;
1440401e
BR
1693 } else {
1694 info->flags |= IEEE80211_TX_STAT_ACK;
1695 info->status.ack_signal = ts->ts_rssi;
6d7b97b2
FF
1696
1697 /* count the successful attempt as well */
1698 info->status.rates[ts->ts_final_idx].count++;
1440401e
BR
1699 }
1700
1701 /*
1702 * Remove MAC header padding before giving the frame
1703 * back to mac80211.
1704 */
1705 ath5k_remove_padding(skb);
1706
1707 if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
e0d687bd 1708 ah->stats.antenna_tx[ts->ts_antenna]++;
1440401e 1709 else
e0d687bd 1710 ah->stats.antenna_tx[0]++; /* invalid */
1440401e 1711
e0d687bd
PR
1712 trace_ath5k_tx_complete(ah, skb, txq, ts);
1713 ieee80211_tx_status(ah->hw, skb);
1440401e 1714}
8a63facc
BC
1715
1716static void
e0d687bd 1717ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
8127fbdc 1718{
8a63facc
BC
1719 struct ath5k_tx_status ts = {};
1720 struct ath5k_buf *bf, *bf0;
1721 struct ath5k_desc *ds;
1722 struct sk_buff *skb;
1440401e 1723 int ret;
8127fbdc 1724
8a63facc
BC
1725 spin_lock(&txq->lock);
1726 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
23413296
BR
1727
1728 txq->txq_poll_mark = false;
1729
1730 /* skb might already have been processed last time. */
1731 if (bf->skb != NULL) {
1732 ds = bf->desc;
1733
e0d687bd 1734 ret = ah->ah_proc_tx_desc(ah, ds, &ts);
23413296
BR
1735 if (unlikely(ret == -EINPROGRESS))
1736 break;
1737 else if (unlikely(ret)) {
e0d687bd 1738 ATH5K_ERR(ah,
23413296
BR
1739 "error %d while processing "
1740 "queue %u\n", ret, txq->qnum);
1741 break;
1742 }
1743
1744 skb = bf->skb;
1745 bf->skb = NULL;
aeae4ac9 1746
e0d687bd 1747 dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
aeae4ac9 1748 DMA_TO_DEVICE);
0967e01e 1749 ath5k_tx_frame_completed(ah, skb, txq, &ts, bf);
23413296 1750 }
8127fbdc 1751
8a63facc
BC
1752 /*
1753 * It's possible that the hardware can say the buffer is
1754 * completed when it hasn't yet loaded the ds_link from
23413296
BR
1755 * host memory and moved on.
1756 * Always keep the last descriptor to avoid HW races...
8a63facc 1757 */
e0d687bd
PR
1758 if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1759 spin_lock(&ah->txbuflock);
1760 list_move_tail(&bf->list, &ah->txbuf);
1761 ah->txbuf_len++;
23413296 1762 txq->txq_len--;
e0d687bd 1763 spin_unlock(&ah->txbuflock);
8a63facc 1764 }
fa1c114f 1765 }
fa1c114f 1766 spin_unlock(&txq->lock);
4198a8d0 1767 if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
e0d687bd 1768 ieee80211_wake_queue(ah->hw, txq->qnum);
fa1c114f
JS
1769}
1770
1771static void
1772ath5k_tasklet_tx(unsigned long data)
1773{
8784d2ee 1774 int i;
e0d687bd 1775 struct ath5k_hw *ah = (void *)data;
fa1c114f 1776
e4bbf2f5 1777 for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
7ff7c82e 1778 if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
e0d687bd 1779 ath5k_tx_processq(ah, &ah->txqs[i]);
c266c71a 1780
e0d687bd
PR
1781 ah->tx_pending = false;
1782 ath5k_set_current_imask(ah);
fa1c114f
JS
1783}
1784
1785
fa1c114f
JS
1786/*****************\
1787* Beacon handling *
1788\*****************/
1789
1790/*
1791 * Setup the beacon frame for transmit.
1792 */
1793static int
e0d687bd 1794ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
fa1c114f
JS
1795{
1796 struct sk_buff *skb = bf->skb;
a888d52d 1797 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
fa1c114f 1798 struct ath5k_desc *ds;
2bed03eb
NK
1799 int ret = 0;
1800 u8 antenna;
fa1c114f 1801 u32 flags;
8127fbdc 1802 const int padsize = 0;
fa1c114f 1803
e0d687bd 1804 bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
aeae4ac9 1805 DMA_TO_DEVICE);
e0d687bd 1806 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
fa1c114f
JS
1807 "skbaddr %llx\n", skb, skb->data, skb->len,
1808 (unsigned long long)bf->skbaddr);
aeae4ac9 1809
e0d687bd
PR
1810 if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1811 ATH5K_ERR(ah, "beacon DMA mapping failed\n");
bdc71bc5
BC
1812 dev_kfree_skb_any(skb);
1813 bf->skb = NULL;
fa1c114f
JS
1814 return -EIO;
1815 }
1816
1817 ds = bf->desc;
2bed03eb 1818 antenna = ah->ah_tx_ant;
fa1c114f
JS
1819
1820 flags = AR5K_TXDESC_NOACK;
e0d687bd 1821 if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
fa1c114f
JS
1822 ds->ds_link = bf->daddr; /* self-linked */
1823 flags |= AR5K_TXDESC_VEOL;
2bed03eb 1824 } else
fa1c114f 1825 ds->ds_link = 0;
2bed03eb
NK
1826
1827 /*
1828 * If we use multiple antennas on AP and use
1829 * the Sectored AP scenario, switch antenna every
1830 * 4 beacons to make sure everybody hears our AP.
1831 * When a client tries to associate, hw will keep
1832 * track of the tx antenna to be used for this client
6a2a0e73 1833 * automatically, based on ACKed packets.
2bed03eb
NK
1834 *
1835 * Note: AP still listens and transmits RTS on the
1836 * default antenna which is supposed to be an omni.
1837 *
1838 * Note2: On sectored scenarios it's possible to have
a180a130
BC
1839 * multiple antennas (1 omni -- the default -- and 14
1840 * sectors), so if we choose to actually support this
1841 * mode, we need to allow the user to set how many antennas
1842 * we have and tweak the code below to send beacons
1843 * on all of them.
2bed03eb
NK
1844 */
1845 if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
e0d687bd 1846 antenna = ah->bsent & 4 ? 2 : 1;
2bed03eb 1847
fa1c114f 1848
8f655dde
NK
1849 /* FIXME: If we are in g mode and rate is a CCK rate
1850 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1851 * from tx power (value is in dB units already) */
fa1c114f 1852 ds->ds_data = bf->skbaddr;
281c56dd 1853 ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
8127fbdc 1854 ieee80211_get_hdrlen_from_skb(skb), padsize,
987af54f
NK
1855 AR5K_PKT_TYPE_BEACON,
1856 (ah->ah_txpower.txp_requested * 2),
e0d687bd 1857 ieee80211_get_tx_rate(ah->hw, info)->hw_value,
2e92e6f2 1858 1, AR5K_TXKEYIX_INVALID,
400ec45a 1859 antenna, flags, 0, 0);
fa1c114f
JS
1860 if (ret)
1861 goto err_unmap;
1862
1863 return 0;
1864err_unmap:
e0d687bd 1865 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
fa1c114f
JS
1866 return ret;
1867}
1868
8a63facc
BC
1869/*
1870 * Updates the beacon that is sent by ath5k_beacon_send. For adhoc,
1871 * this is called only once at config_bss time, for AP we do it every
1872 * SWBA interrupt so that the TIM will reflect buffered frames.
1873 *
1874 * Called with the beacon lock.
1875 */
cd2c5486 1876int
8a63facc
BC
1877ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1878{
1879 int ret;
e0d687bd 1880 struct ath5k_hw *ah = hw->priv;
9c371f99 1881 struct ath5k_vif *avf;
8a63facc
BC
1882 struct sk_buff *skb;
1883
1884 if (WARN_ON(!vif)) {
1885 ret = -EINVAL;
1886 goto out;
1887 }
1888
1889 skb = ieee80211_beacon_get(hw, vif);
1890
1891 if (!skb) {
1892 ret = -ENOMEM;
1893 goto out;
1894 }
1895
9c371f99 1896 avf = (void *)vif->drv_priv;
e0d687bd 1897 ath5k_txbuf_free_skb(ah, avf->bbuf);
b1ae1edf 1898 avf->bbuf->skb = skb;
e0d687bd 1899 ret = ath5k_beacon_setup(ah, avf->bbuf);
8a63facc
BC
1900out:
1901 return ret;
1902}
1903
fa1c114f
JS
1904/*
1905 * Transmit a beacon frame at SWBA. Dynamic updates to the
1906 * frame contents are done as needed and the slot time is
1907 * also adjusted based on current state.
1908 *
5faaff74
BC
1909 * This is called from software irq context (beacontq tasklets)
1910 * or user context from ath5k_beacon_config.
fa1c114f
JS
1911 */
1912static void
e0d687bd 1913ath5k_beacon_send(struct ath5k_hw *ah)
fa1c114f 1914{
b1ae1edf
BG
1915 struct ieee80211_vif *vif;
1916 struct ath5k_vif *avf;
1917 struct ath5k_buf *bf;
cec8db23 1918 struct sk_buff *skb;
bdc71bc5 1919 int err;
fa1c114f 1920
e0d687bd 1921 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
fa1c114f 1922
fa1c114f
JS
1923 /*
1924 * Check if the previous beacon has gone out. If
a180a130 1925 * not, don't don't try to post another: skip this
fa1c114f
JS
1926 * period and wait for the next. Missed beacons
1927 * indicate a problem and should not occur. If we
1928 * miss too many consecutive beacons reset the device.
1929 */
e0d687bd
PR
1930 if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1931 ah->bmisscount++;
1932 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1933 "missed %u consecutive beacons\n", ah->bmisscount);
1934 if (ah->bmisscount > 10) { /* NB: 10 is a guess */
1935 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
fa1c114f 1936 "stuck beacon time (%u missed)\n",
e0d687bd
PR
1937 ah->bmisscount);
1938 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
8d67a031 1939 "stuck beacon, resetting\n");
e0d687bd 1940 ieee80211_queue_work(ah->hw, &ah->reset_work);
fa1c114f
JS
1941 }
1942 return;
1943 }
e0d687bd
PR
1944 if (unlikely(ah->bmisscount != 0)) {
1945 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
fa1c114f 1946 "resume beacon xmit after %u misses\n",
e0d687bd
PR
1947 ah->bmisscount);
1948 ah->bmisscount = 0;
fa1c114f
JS
1949 }
1950
da473b61
CYY
1951 if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
1952 ah->num_mesh_vifs > 1) ||
e0d687bd 1953 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
b1ae1edf
BG
1954 u64 tsf = ath5k_hw_get_tsf64(ah);
1955 u32 tsftu = TSF_TO_TU(tsf);
e0d687bd
PR
1956 int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1957 vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1958 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
b1ae1edf 1959 "tsf %llx tsftu %x intval %u slot %u vif %p\n",
e0d687bd 1960 (unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
b1ae1edf 1961 } else /* only one interface */
e0d687bd 1962 vif = ah->bslot[0];
b1ae1edf
BG
1963
1964 if (!vif)
1965 return;
1966
1967 avf = (void *)vif->drv_priv;
1968 bf = avf->bbuf;
b1ae1edf 1969
fa1c114f
JS
1970 /*
1971 * Stop any current dma and put the new frame on the queue.
1972 * This should never fail since we check above that no frames
1973 * are still pending on the queue.
1974 */
e0d687bd
PR
1975 if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
1976 ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
fa1c114f
JS
1977 /* NB: hw still stops DMA, so proceed */
1978 }
fa1c114f 1979
d82b577b 1980 /* refresh the beacon for AP or MESH mode */
e0d687bd 1981 if (ah->opmode == NL80211_IFTYPE_AP ||
bdc71bc5
BC
1982 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1983 err = ath5k_beacon_update(ah->hw, vif);
1984 if (err)
1985 return;
1986 }
1987
1988 if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
1989 ah->opmode == NL80211_IFTYPE_MONITOR)) {
1990 ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
1991 return;
1992 }
1071db86 1993
e0d687bd 1994 trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
0e472252 1995
e0d687bd
PR
1996 ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
1997 ath5k_hw_start_tx_dma(ah, ah->bhalq);
1998 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
1999 ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
fa1c114f 2000
e0d687bd 2001 skb = ieee80211_get_buffered_bc(ah->hw, vif);
cec8db23 2002 while (skb) {
0967e01e 2003 ath5k_tx_queue(ah->hw, skb, ah->cabq, NULL);
4e868796 2004
e0d687bd 2005 if (ah->cabq->txq_len >= ah->cabq->txq_max)
4e868796
FF
2006 break;
2007
e0d687bd 2008 skb = ieee80211_get_buffered_bc(ah->hw, vif);
cec8db23
BC
2009 }
2010
e0d687bd 2011 ah->bsent++;
fa1c114f
JS
2012}
2013
9804b98d
BR
2014/**
2015 * ath5k_beacon_update_timers - update beacon timers
2016 *
e0d687bd 2017 * @ah: struct ath5k_hw pointer we are operating on
9804b98d
BR
2018 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2019 * beacon timer update based on the current HW TSF.
2020 *
2021 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2022 * of a received beacon or the current local hardware TSF and write it to the
2023 * beacon timer registers.
2024 *
2025 * This is called in a variety of situations, e.g. when a beacon is received,
6ba81c2c 2026 * when a TSF update has been detected, but also when an new IBSS is created or
9804b98d
BR
2027 * when we otherwise know we have to update the timers, but we keep it in this
2028 * function to have it all together in one place.
2029 */
cd2c5486 2030void
e0d687bd 2031ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
fa1c114f 2032{
9804b98d
BR
2033 u32 nexttbtt, intval, hw_tu, bc_tu;
2034 u64 hw_tsf;
fa1c114f 2035
e0d687bd 2036 intval = ah->bintval & AR5K_BEACON_PERIOD;
da473b61
CYY
2037 if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
2038 + ah->num_mesh_vifs > 1) {
b1ae1edf
BG
2039 intval /= ATH_BCBUF; /* staggered multi-bss beacons */
2040 if (intval < 15)
e0d687bd 2041 ATH5K_WARN(ah, "intval %u is too low, min 15\n",
b1ae1edf
BG
2042 intval);
2043 }
fa1c114f
JS
2044 if (WARN_ON(!intval))
2045 return;
2046
9804b98d
BR
2047 /* beacon TSF converted to TU */
2048 bc_tu = TSF_TO_TU(bc_tsf);
fa1c114f 2049
9804b98d
BR
2050 /* current TSF converted to TU */
2051 hw_tsf = ath5k_hw_get_tsf64(ah);
2052 hw_tu = TSF_TO_TU(hw_tsf);
fa1c114f 2053
633d006e 2054#define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
11f21df3 2055 /* We use FUDGE to make sure the next TBTT is ahead of the current TU.
25985edc 2056 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
11f21df3
BR
2057 * configuration we need to make sure it is bigger than that. */
2058
9804b98d
BR
2059 if (bc_tsf == -1) {
2060 /*
2061 * no beacons received, called internally.
2062 * just need to refresh timers based on HW TSF.
2063 */
2064 nexttbtt = roundup(hw_tu + FUDGE, intval);
2065 } else if (bc_tsf == 0) {
2066 /*
2067 * no beacon received, probably called by ath5k_reset_tsf().
2068 * reset TSF to start with 0.
2069 */
2070 nexttbtt = intval;
2071 intval |= AR5K_BEACON_RESET_TSF;
2072 } else if (bc_tsf > hw_tsf) {
2073 /*
25985edc 2074 * beacon received, SW merge happened but HW TSF not yet updated.
9804b98d
BR
2075 * not possible to reconfigure timers yet, but next time we
2076 * receive a beacon with the same BSSID, the hardware will
2077 * automatically update the TSF and then we need to reconfigure
2078 * the timers.
2079 */
e0d687bd 2080 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
9804b98d
BR
2081 "need to wait for HW TSF sync\n");
2082 return;
2083 } else {
2084 /*
2085 * most important case for beacon synchronization between STA.
2086 *
2087 * beacon received and HW TSF has been already updated by HW.
2088 * update next TBTT based on the TSF of the beacon, but make
2089 * sure it is ahead of our local TSF timer.
2090 */
2091 nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2092 }
2093#undef FUDGE
fa1c114f 2094
e0d687bd 2095 ah->nexttbtt = nexttbtt;
036cd1ec 2096
fa1c114f 2097 intval |= AR5K_BEACON_ENA;
c47faa36 2098 ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
9804b98d
BR
2099
2100 /*
2101 * debugging output last in order to preserve the time critical aspect
2102 * of this function
2103 */
2104 if (bc_tsf == -1)
e0d687bd 2105 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
9804b98d
BR
2106 "reconfigured timers based on HW TSF\n");
2107 else if (bc_tsf == 0)
e0d687bd 2108 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
9804b98d
BR
2109 "reset HW TSF and timers\n");
2110 else
e0d687bd 2111 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
9804b98d
BR
2112 "updated timers based on beacon TSF\n");
2113
e0d687bd 2114 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
04f93a87
DM
2115 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2116 (unsigned long long) bc_tsf,
2117 (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
e0d687bd 2118 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
9804b98d
BR
2119 intval & AR5K_BEACON_PERIOD,
2120 intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2121 intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
fa1c114f
JS
2122}
2123
036cd1ec
BR
2124/**
2125 * ath5k_beacon_config - Configure the beacon queues and interrupts
2126 *
e0d687bd 2127 * @ah: struct ath5k_hw pointer we are operating on
fa1c114f 2128 *
036cd1ec 2129 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
6ba81c2c 2130 * interrupts to detect TSF updates only.
fa1c114f 2131 */
cd2c5486 2132void
e0d687bd 2133ath5k_beacon_config(struct ath5k_hw *ah)
fa1c114f 2134{
7dd6753f 2135 spin_lock_bh(&ah->block);
e0d687bd
PR
2136 ah->bmisscount = 0;
2137 ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
fa1c114f 2138
e0d687bd 2139 if (ah->enable_beacon) {
fa1c114f 2140 /*
036cd1ec
BR
2141 * In IBSS mode we use a self-linked tx descriptor and let the
2142 * hardware send the beacons automatically. We have to load it
fa1c114f 2143 * only once here.
036cd1ec 2144 * We use the SWBA interrupt only to keep track of the beacon
6ba81c2c 2145 * timers in order to detect automatic TSF updates.
fa1c114f 2146 */
e0d687bd 2147 ath5k_beaconq_config(ah);
fa1c114f 2148
e0d687bd 2149 ah->imask |= AR5K_INT_SWBA;
036cd1ec 2150
e0d687bd 2151 if (ah->opmode == NL80211_IFTYPE_ADHOC) {
21800491 2152 if (ath5k_hw_hasveol(ah))
e0d687bd 2153 ath5k_beacon_send(ah);
da966bca 2154 } else
e0d687bd 2155 ath5k_beacon_update_timers(ah, -1);
21800491 2156 } else {
e0d687bd 2157 ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
fa1c114f 2158 }
fa1c114f 2159
e0d687bd 2160 ath5k_hw_set_imr(ah, ah->imask);
21800491 2161 mmiowb();
7dd6753f 2162 spin_unlock_bh(&ah->block);
fa1c114f
JS
2163}
2164
428cbd4f
NK
2165static void ath5k_tasklet_beacon(unsigned long data)
2166{
e0d687bd 2167 struct ath5k_hw *ah = (struct ath5k_hw *) data;
428cbd4f
NK
2168
2169 /*
2170 * Software beacon alert--time to send a beacon.
2171 *
2172 * In IBSS mode we use this interrupt just to
2173 * keep track of the next TBTT (target beacon
6a2a0e73 2174 * transmission time) in order to detect whether
428cbd4f
NK
2175 * automatic TSF updates happened.
2176 */
e0d687bd 2177 if (ah->opmode == NL80211_IFTYPE_ADHOC) {
6a2a0e73 2178 /* XXX: only if VEOL supported */
e0d687bd
PR
2179 u64 tsf = ath5k_hw_get_tsf64(ah);
2180 ah->nexttbtt += ah->bintval;
2181 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
428cbd4f
NK
2182 "SWBA nexttbtt: %x hw_tu: %x "
2183 "TSF: %llx\n",
e0d687bd 2184 ah->nexttbtt,
428cbd4f
NK
2185 TSF_TO_TU(tsf),
2186 (unsigned long long) tsf);
2187 } else {
e0d687bd
PR
2188 spin_lock(&ah->block);
2189 ath5k_beacon_send(ah);
2190 spin_unlock(&ah->block);
428cbd4f
NK
2191 }
2192}
2193
fa1c114f
JS
2194
2195/********************\
2196* Interrupt handling *
2197\********************/
2198
6a8a3f6b
BR
2199static void
2200ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2201{
2111ac0d 2202 if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
ce169aca
NK
2203 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2204 !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2205
2206 /* Run ANI only when calibration is not active */
2207
2111ac0d
BR
2208 ah->ah_cal_next_ani = jiffies +
2209 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
e0d687bd 2210 tasklet_schedule(&ah->ani_tasklet);
2111ac0d 2211
ce169aca
NK
2212 } else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2213 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2214 !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2215
2216 /* Run calibration only when another calibration
2217 * is not running.
2218 *
2219 * Note: This is for both full/short calibration,
2220 * if it's time for a full one, ath5k_calibrate_work will deal
2221 * with it. */
2222
2223 ah->ah_cal_next_short = jiffies +
2224 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2225 ieee80211_queue_work(ah->hw, &ah->calib_work);
6a8a3f6b
BR
2226 }
2227 /* we could use SWI to generate enough interrupts to meet our
2228 * calibration interval requirements, if necessary:
2229 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2230}
2231
c266c71a 2232static void
e0d687bd 2233ath5k_schedule_rx(struct ath5k_hw *ah)
c266c71a 2234{
e0d687bd
PR
2235 ah->rx_pending = true;
2236 tasklet_schedule(&ah->rxtq);
c266c71a
FF
2237}
2238
2239static void
e0d687bd 2240ath5k_schedule_tx(struct ath5k_hw *ah)
c266c71a 2241{
e0d687bd
PR
2242 ah->tx_pending = true;
2243 tasklet_schedule(&ah->txtq);
c266c71a
FF
2244}
2245
f5cbc8ba 2246static irqreturn_t
fa1c114f
JS
2247ath5k_intr(int irq, void *dev_id)
2248{
e0d687bd 2249 struct ath5k_hw *ah = dev_id;
fa1c114f
JS
2250 enum ath5k_int status;
2251 unsigned int counter = 1000;
2252
34ce644a
NK
2253
2254 /*
2255 * If hw is not ready (or detached) and we get an
2256 * interrupt, or if we have no interrupts pending
2257 * (that means it's not for us) skip it.
2258 *
2259 * NOTE: Group 0/1 PCI interface registers are not
2260 * supported on WiSOCs, so we can't check for pending
2261 * interrupts (ISR belongs to another register group
2262 * so we are ok).
2263 */
e0d687bd 2264 if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
34ce644a
NK
2265 ((ath5k_get_bus_type(ah) != ATH_AHB) &&
2266 !ath5k_hw_is_intr_pending(ah))))
fa1c114f
JS
2267 return IRQ_NONE;
2268
34ce644a 2269 /** Main loop **/
fa1c114f 2270 do {
34ce644a
NK
2271 ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
2272
e0d687bd
PR
2273 ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2274 status, ah->imask);
34ce644a
NK
2275
2276 /*
2277 * Fatal hw error -> Log and reset
2278 *
2279 * Fatal errors are unrecoverable so we have to
2280 * reset the card. These errors include bus and
2281 * dma errors.
2282 */
fa1c114f 2283 if (unlikely(status & AR5K_INT_FATAL)) {
34ce644a 2284
e0d687bd 2285 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
8d67a031 2286 "fatal int, resetting\n");
e0d687bd 2287 ieee80211_queue_work(ah->hw, &ah->reset_work);
34ce644a
NK
2288
2289 /*
2290 * RX Overrun -> Count and reset if needed
2291 *
2292 * Receive buffers are full. Either the bus is busy or
2293 * the CPU is not fast enough to process all received
2294 * frames.
2295 */
fa1c114f 2296 } else if (unlikely(status & AR5K_INT_RXORN)) {
34ce644a 2297
87d77c4e 2298 /*
87d77c4e
BR
2299 * Older chipsets need a reset to come out of this
2300 * condition, but we treat it as RX for newer chips.
34ce644a 2301 * We don't know exactly which versions need a reset
87d77c4e
BR
2302 * this guess is copied from the HAL.
2303 */
e0d687bd 2304 ah->stats.rxorn_intr++;
34ce644a 2305
8d67a031 2306 if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
e0d687bd 2307 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
8d67a031 2308 "rx overrun, resetting\n");
e0d687bd 2309 ieee80211_queue_work(ah->hw, &ah->reset_work);
d2c7f773 2310 } else
e0d687bd 2311 ath5k_schedule_rx(ah);
34ce644a 2312
fa1c114f 2313 } else {
34ce644a
NK
2314
2315 /* Software Beacon Alert -> Schedule beacon tasklet */
d2c7f773 2316 if (status & AR5K_INT_SWBA)
e0d687bd 2317 tasklet_hi_schedule(&ah->beacontq);
d2c7f773 2318
34ce644a
NK
2319 /*
2320 * No more RX descriptors -> Just count
2321 *
2322 * NB: the hardware should re-read the link when
2323 * RXE bit is written, but it doesn't work at
2324 * least on older hardware revs.
2325 */
2326 if (status & AR5K_INT_RXEOL)
e0d687bd 2327 ah->stats.rxeol_intr++;
34ce644a
NK
2328
2329
2330 /* TX Underrun -> Bump tx trigger level */
2331 if (status & AR5K_INT_TXURN)
fa1c114f 2332 ath5k_hw_update_tx_triglevel(ah, true);
34ce644a
NK
2333
2334 /* RX -> Schedule rx tasklet */
4c674c60 2335 if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
e0d687bd 2336 ath5k_schedule_rx(ah);
34ce644a
NK
2337
2338 /* TX -> Schedule tx tasklet */
2339 if (status & (AR5K_INT_TXOK
2340 | AR5K_INT_TXDESC
2341 | AR5K_INT_TXERR
2342 | AR5K_INT_TXEOL))
e0d687bd 2343 ath5k_schedule_tx(ah);
34ce644a
NK
2344
2345 /* Missed beacon -> TODO
2346 if (status & AR5K_INT_BMISS)
2347 */
2348
2349 /* MIB event -> Update counters and notify ANI */
fa1c114f 2350 if (status & AR5K_INT_MIB) {
e0d687bd 2351 ah->stats.mib_intr++;
495391d7 2352 ath5k_hw_update_mib_counters(ah);
2111ac0d 2353 ath5k_ani_mib_intr(ah);
fa1c114f 2354 }
34ce644a
NK
2355
2356 /* GPIO -> Notify RFKill layer */
e6a3b616 2357 if (status & AR5K_INT_GPIO)
e0d687bd 2358 tasklet_schedule(&ah->rf_kill.toggleq);
a6ae0716 2359
fa1c114f 2360 }
4cebb34c
FF
2361
2362 if (ath5k_get_bus_type(ah) == ATH_AHB)
2363 break;
2364
2516baa6 2365 } while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
fa1c114f 2366
34ce644a
NK
2367 /*
2368 * Until we handle rx/tx interrupts mask them on IMR
2369 *
2370 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2371 * and unset after we 've handled the interrupts.
2372 */
e0d687bd
PR
2373 if (ah->rx_pending || ah->tx_pending)
2374 ath5k_set_current_imask(ah);
c266c71a 2375
fa1c114f 2376 if (unlikely(!counter))
e0d687bd 2377 ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
fa1c114f 2378
34ce644a 2379 /* Fire up calibration poll */
6a8a3f6b 2380 ath5k_intr_calibration_poll(ah);
6e220662 2381
fa1c114f
JS
2382 return IRQ_HANDLED;
2383}
2384
fa1c114f
JS
2385/*
2386 * Periodically recalibrate the PHY to account
2387 * for temperature/environment changes.
2388 */
2389static void
ce169aca 2390ath5k_calibrate_work(struct work_struct *work)
fa1c114f 2391{
ce169aca
NK
2392 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2393 calib_work);
2394
2395 /* Should we run a full calibration ? */
2396 if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2397
2398 ah->ah_cal_next_full = jiffies +
2399 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2400 ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2401
2402 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2403 "running full calibration\n");
2404
2405 if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2406 /*
2407 * Rfgain is out of bounds, reset the chip
2408 * to load new gain values.
2409 */
2410 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2411 "got new rfgain, resetting\n");
2412 ieee80211_queue_work(ah->hw, &ah->reset_work);
2413 }
ce169aca
NK
2414 } else
2415 ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
fa1c114f 2416
6e220662 2417
e0d687bd
PR
2418 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2419 ieee80211_frequency_to_channel(ah->curchan->center_freq),
2420 ah->curchan->hw_value);
fa1c114f 2421
e0d687bd
PR
2422 if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2423 ATH5K_ERR(ah, "calibration of channel %u failed\n",
400ec45a 2424 ieee80211_frequency_to_channel(
e0d687bd 2425 ah->curchan->center_freq));
fa1c114f 2426
ce169aca 2427 /* Clear calibration flags */
62e2c102 2428 if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
ce169aca 2429 ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
62e2c102 2430 else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
ce169aca 2431 ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
fa1c114f
JS
2432}
2433
2434
2111ac0d
BR
2435static void
2436ath5k_tasklet_ani(unsigned long data)
2437{
e0d687bd 2438 struct ath5k_hw *ah = (void *)data;
2111ac0d
BR
2439
2440 ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2441 ath5k_ani_calibration(ah);
2442 ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
fa1c114f
JS
2443}
2444
2445
4edd761f
BR
2446static void
2447ath5k_tx_complete_poll_work(struct work_struct *work)
2448{
e0d687bd 2449 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
4edd761f
BR
2450 tx_complete_work.work);
2451 struct ath5k_txq *txq;
2452 int i;
2453 bool needreset = false;
2454
db178340
SG
2455 if (!test_bit(ATH_STAT_STARTED, ah->status))
2456 return;
2457
e0d687bd 2458 mutex_lock(&ah->lock);
599b13ad 2459
e0d687bd
PR
2460 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2461 if (ah->txqs[i].setup) {
2462 txq = &ah->txqs[i];
4edd761f 2463 spin_lock_bh(&txq->lock);
23413296 2464 if (txq->txq_len > 1) {
4edd761f 2465 if (txq->txq_poll_mark) {
e0d687bd 2466 ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
4edd761f
BR
2467 "TX queue stuck %d\n",
2468 txq->qnum);
2469 needreset = true;
923e5b3d 2470 txq->txq_stuck++;
4edd761f
BR
2471 spin_unlock_bh(&txq->lock);
2472 break;
2473 } else {
2474 txq->txq_poll_mark = true;
2475 }
2476 }
2477 spin_unlock_bh(&txq->lock);
2478 }
2479 }
2480
2481 if (needreset) {
e0d687bd 2482 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
4edd761f 2483 "TX queues stuck, resetting\n");
e0d687bd 2484 ath5k_reset(ah, NULL, true);
4edd761f
BR
2485 }
2486
e0d687bd 2487 mutex_unlock(&ah->lock);
599b13ad 2488
e0d687bd 2489 ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
4edd761f
BR
2490 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2491}
2492
2493
8a63facc
BC
2494/*************************\
2495* Initialization routines *
2496\*************************/
fa1c114f 2497
9b4760e3
FF
2498static const struct ieee80211_iface_limit if_limits[] = {
2499 { .max = 2048, .types = BIT(NL80211_IFTYPE_STATION) },
2500 { .max = 4, .types =
2501#ifdef CONFIG_MAC80211_MESH
2502 BIT(NL80211_IFTYPE_MESH_POINT) |
2503#endif
2504 BIT(NL80211_IFTYPE_AP) },
2505};
2506
2507static const struct ieee80211_iface_combination if_comb = {
2508 .limits = if_limits,
2509 .n_limits = ARRAY_SIZE(if_limits),
2510 .max_interfaces = 2048,
2511 .num_different_channels = 1,
2512};
2513
e829cf96 2514int
bb1f3ad9 2515ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
132b1c3e 2516{
e0d687bd 2517 struct ieee80211_hw *hw = ah->hw;
132b1c3e
FF
2518 struct ath_common *common;
2519 int ret;
2520 int csz;
2521
2522 /* Initialize driver private data */
e0d687bd 2523 SET_IEEE80211_DEV(hw, ah->dev);
132b1c3e 2524 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
b9e61f11
NK
2525 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2526 IEEE80211_HW_SIGNAL_DBM |
90e6274d 2527 IEEE80211_HW_MFP_CAPABLE |
0967e01e
TH
2528 IEEE80211_HW_REPORTS_TX_ACK_STATUS |
2529 IEEE80211_HW_SUPPORTS_RC_TABLE;
132b1c3e
FF
2530
2531 hw->wiphy->interface_modes =
2532 BIT(NL80211_IFTYPE_AP) |
2533 BIT(NL80211_IFTYPE_STATION) |
2534 BIT(NL80211_IFTYPE_ADHOC) |
2535 BIT(NL80211_IFTYPE_MESH_POINT);
2536
9b4760e3
FF
2537 hw->wiphy->iface_combinations = &if_comb;
2538 hw->wiphy->n_iface_combinations = 1;
2539
f9972577
AQ
2540 /* SW support for IBSS_RSN is provided by mac80211 */
2541 hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2542
4d70f2fb
SW
2543 hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ;
2544
3de135db
BR
2545 /* both antennas can be configured as RX or TX */
2546 hw->wiphy->available_antennas_tx = 0x3;
2547 hw->wiphy->available_antennas_rx = 0x3;
2548
132b1c3e 2549 hw->extra_tx_headroom = 2;
132b1c3e
FF
2550
2551 /*
2552 * Mark the device as detached to avoid processing
2553 * interrupts until setup is complete.
2554 */
e0d687bd 2555 __set_bit(ATH_STAT_INVALID, ah->status);
132b1c3e 2556
e0d687bd
PR
2557 ah->opmode = NL80211_IFTYPE_STATION;
2558 ah->bintval = 1000;
2559 mutex_init(&ah->lock);
2560 spin_lock_init(&ah->rxbuflock);
2561 spin_lock_init(&ah->txbuflock);
2562 spin_lock_init(&ah->block);
2563 spin_lock_init(&ah->irqlock);
132b1c3e
FF
2564
2565 /* Setup interrupt handler */
e0d687bd 2566 ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
132b1c3e 2567 if (ret) {
e0d687bd 2568 ATH5K_ERR(ah, "request_irq failed\n");
132b1c3e
FF
2569 goto err;
2570 }
2571
e0d687bd 2572 common = ath5k_hw_common(ah);
132b1c3e
FF
2573 common->ops = &ath5k_common_ops;
2574 common->bus_ops = bus_ops;
e0d687bd 2575 common->ah = ah;
132b1c3e 2576 common->hw = hw;
e0d687bd 2577 common->priv = ah;
26d16d23 2578 common->clockrate = 40;
132b1c3e
FF
2579
2580 /*
2581 * Cache line size is used to size and align various
2582 * structures used to communicate with the hardware.
2583 */
2584 ath5k_read_cachesize(common, &csz);
2585 common->cachelsz = csz << 2; /* convert to bytes */
2586
2587 spin_lock_init(&common->cc_lock);
2588
2589 /* Initialize device */
e0d687bd 2590 ret = ath5k_hw_init(ah);
132b1c3e 2591 if (ret)
e0d687bd 2592 goto err_irq;
132b1c3e 2593
86f62d9b
NK
2594 /* Set up multi-rate retry capabilities */
2595 if (ah->ah_capabilities.cap_has_mrr_support) {
132b1c3e 2596 hw->max_rates = 4;
76a9f6fd
BR
2597 hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2598 AR5K_INIT_RETRY_LONG);
132b1c3e
FF
2599 }
2600
2601 hw->vif_data_size = sizeof(struct ath5k_vif);
2602
2603 /* Finish private driver data initialization */
2604 ret = ath5k_init(hw);
2605 if (ret)
2606 goto err_ah;
2607
e0d687bd
PR
2608 ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2609 ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2610 ah->ah_mac_srev,
2611 ah->ah_phy_revision);
132b1c3e 2612
e0d687bd 2613 if (!ah->ah_single_chip) {
132b1c3e 2614 /* Single chip radio (!RF5111) */
e0d687bd
PR
2615 if (ah->ah_radio_5ghz_revision &&
2616 !ah->ah_radio_2ghz_revision) {
132b1c3e
FF
2617 /* No 5GHz support -> report 2GHz radio */
2618 if (!test_bit(AR5K_MODE_11A,
e0d687bd
PR
2619 ah->ah_capabilities.cap_mode)) {
2620 ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
132b1c3e 2621 ath5k_chip_name(AR5K_VERSION_RAD,
e0d687bd
PR
2622 ah->ah_radio_5ghz_revision),
2623 ah->ah_radio_5ghz_revision);
132b1c3e 2624 /* No 2GHz support (5110 and some
6a2a0e73 2625 * 5GHz only cards) -> report 5GHz radio */
132b1c3e 2626 } else if (!test_bit(AR5K_MODE_11B,
e0d687bd
PR
2627 ah->ah_capabilities.cap_mode)) {
2628 ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
132b1c3e 2629 ath5k_chip_name(AR5K_VERSION_RAD,
e0d687bd
PR
2630 ah->ah_radio_5ghz_revision),
2631 ah->ah_radio_5ghz_revision);
132b1c3e
FF
2632 /* Multiband radio */
2633 } else {
e0d687bd 2634 ATH5K_INFO(ah, "RF%s multiband radio found"
132b1c3e
FF
2635 " (0x%x)\n",
2636 ath5k_chip_name(AR5K_VERSION_RAD,
e0d687bd
PR
2637 ah->ah_radio_5ghz_revision),
2638 ah->ah_radio_5ghz_revision);
132b1c3e
FF
2639 }
2640 }
2641 /* Multi chip radio (RF5111 - RF2111) ->
2642 * report both 2GHz/5GHz radios */
e0d687bd
PR
2643 else if (ah->ah_radio_5ghz_revision &&
2644 ah->ah_radio_2ghz_revision) {
2645 ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
132b1c3e 2646 ath5k_chip_name(AR5K_VERSION_RAD,
e0d687bd
PR
2647 ah->ah_radio_5ghz_revision),
2648 ah->ah_radio_5ghz_revision);
2649 ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
132b1c3e 2650 ath5k_chip_name(AR5K_VERSION_RAD,
e0d687bd
PR
2651 ah->ah_radio_2ghz_revision),
2652 ah->ah_radio_2ghz_revision);
132b1c3e
FF
2653 }
2654 }
2655
e0d687bd 2656 ath5k_debug_init_device(ah);
132b1c3e
FF
2657
2658 /* ready to process interrupts */
e0d687bd 2659 __clear_bit(ATH_STAT_INVALID, ah->status);
132b1c3e
FF
2660
2661 return 0;
2662err_ah:
e0d687bd 2663 ath5k_hw_deinit(ah);
132b1c3e 2664err_irq:
e0d687bd 2665 free_irq(ah->irq, ah);
132b1c3e
FF
2666err:
2667 return ret;
2668}
2669
fa1c114f 2670static int
e0d687bd 2671ath5k_stop_locked(struct ath5k_hw *ah)
cec8db23 2672{
cec8db23 2673
e0d687bd
PR
2674 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2675 test_bit(ATH_STAT_INVALID, ah->status));
8a63facc
BC
2676
2677 /*
2678 * Shutdown the hardware and driver:
2679 * stop output from above
2680 * disable interrupts
2681 * turn off timers
2682 * turn off the radio
2683 * clear transmit machinery
2684 * clear receive machinery
2685 * drain and release tx queues
2686 * reclaim beacon resources
2687 * power down hardware
2688 *
2689 * Note that some of this work is not possible if the
2690 * hardware is gone (invalid).
2691 */
e0d687bd 2692 ieee80211_stop_queues(ah->hw);
8a63facc 2693
e0d687bd
PR
2694 if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2695 ath5k_led_off(ah);
8a63facc 2696 ath5k_hw_set_imr(ah, 0);
e0d687bd
PR
2697 synchronize_irq(ah->irq);
2698 ath5k_rx_stop(ah);
80dac9ee 2699 ath5k_hw_dma_stop(ah);
e0d687bd 2700 ath5k_drain_tx_buffs(ah);
8a63facc
BC
2701 ath5k_hw_phy_disable(ah);
2702 }
2703
2704 return 0;
cec8db23
BC
2705}
2706
fabba048 2707int ath5k_start(struct ieee80211_hw *hw)
fa1c114f 2708{
fabba048 2709 struct ath5k_hw *ah = hw->priv;
8a63facc
BC
2710 struct ath_common *common = ath5k_hw_common(ah);
2711 int ret, i;
fa1c114f 2712
e0d687bd 2713 mutex_lock(&ah->lock);
8a63facc 2714
e0d687bd 2715 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
fa1c114f 2716
fa1c114f 2717 /*
8a63facc
BC
2718 * Stop anything previously setup. This is safe
2719 * no matter this is the first time through or not.
fa1c114f 2720 */
e0d687bd 2721 ath5k_stop_locked(ah);
fa1c114f 2722
8a63facc
BC
2723 /*
2724 * The basic interface to setting the hardware in a good
2725 * state is ``reset''. On return the hardware is known to
2726 * be powered up and with interrupts disabled. This must
2727 * be followed by initialization of the appropriate bits
2728 * and then setup of the interrupt mask.
2729 */
675a0b04 2730 ah->curchan = ah->hw->conf.chandef.chan;
34ce644a
NK
2731 ah->imask = AR5K_INT_RXOK
2732 | AR5K_INT_RXERR
2733 | AR5K_INT_RXEOL
2734 | AR5K_INT_RXORN
2735 | AR5K_INT_TXDESC
2736 | AR5K_INT_TXEOL
2737 | AR5K_INT_FATAL
2738 | AR5K_INT_GLOBAL
2739 | AR5K_INT_MIB;
fa1c114f 2740
e0d687bd 2741 ret = ath5k_reset(ah, NULL, false);
8a63facc
BC
2742 if (ret)
2743 goto done;
fa1c114f 2744
84e1e737
NK
2745 if (!ath5k_modparam_no_hw_rfkill_switch)
2746 ath5k_rfkill_hw_start(ah);
8a63facc
BC
2747
2748 /*
2749 * Reset the key cache since some parts do not reset the
2750 * contents on initial power up or resume from suspend.
2751 */
2752 for (i = 0; i < common->keymax; i++)
2753 ath_hw_keyreset(common, (u16) i);
2754
61cde037
NK
2755 /* Use higher rates for acks instead of base
2756 * rate */
2757 ah->ah_ack_bitrate_high = true;
b1ae1edf 2758
e0d687bd
PR
2759 for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2760 ah->bslot[i] = NULL;
b1ae1edf 2761
8a63facc
BC
2762 ret = 0;
2763done:
2764 mmiowb();
e0d687bd 2765 mutex_unlock(&ah->lock);
4edd761f 2766
db178340 2767 set_bit(ATH_STAT_STARTED, ah->status);
e0d687bd 2768 ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
4edd761f
BR
2769 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2770
8a63facc
BC
2771 return ret;
2772}
2773
e0d687bd 2774static void ath5k_stop_tasklets(struct ath5k_hw *ah)
8a63facc 2775{
e0d687bd
PR
2776 ah->rx_pending = false;
2777 ah->tx_pending = false;
2778 tasklet_kill(&ah->rxtq);
2779 tasklet_kill(&ah->txtq);
e0d687bd
PR
2780 tasklet_kill(&ah->beacontq);
2781 tasklet_kill(&ah->ani_tasklet);
8a63facc
BC
2782}
2783
2784/*
2785 * Stop the device, grabbing the top-level lock to protect
2786 * against concurrent entry through ath5k_init (which can happen
2787 * if another thread does a system call and the thread doing the
2788 * stop is preempted).
2789 */
fabba048 2790void ath5k_stop(struct ieee80211_hw *hw)
8a63facc 2791{
fabba048 2792 struct ath5k_hw *ah = hw->priv;
8a63facc
BC
2793 int ret;
2794
e0d687bd
PR
2795 mutex_lock(&ah->lock);
2796 ret = ath5k_stop_locked(ah);
2797 if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
8a63facc
BC
2798 /*
2799 * Don't set the card in full sleep mode!
2800 *
2801 * a) When the device is in this state it must be carefully
2802 * woken up or references to registers in the PCI clock
2803 * domain may freeze the bus (and system). This varies
2804 * by chip and is mostly an issue with newer parts
2805 * (madwifi sources mentioned srev >= 0x78) that go to
2806 * sleep more quickly.
2807 *
2808 * b) On older chips full sleep results a weird behaviour
2809 * during wakeup. I tested various cards with srev < 0x78
2810 * and they don't wake up after module reload, a second
2811 * module reload is needed to bring the card up again.
2812 *
2813 * Until we figure out what's going on don't enable
2814 * full chip reset on any chip (this is what Legacy HAL
2815 * and Sam's HAL do anyway). Instead Perform a full reset
2816 * on the device (same as initial state after attach) and
2817 * leave it idle (keep MAC/BB on warm reset) */
e0d687bd 2818 ret = ath5k_hw_on_hold(ah);
8a63facc 2819
e0d687bd 2820 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
8a63facc 2821 "putting device to sleep\n");
fa1c114f
JS
2822 }
2823
8a63facc 2824 mmiowb();
e0d687bd 2825 mutex_unlock(&ah->lock);
8a63facc 2826
e0d687bd 2827 ath5k_stop_tasklets(ah);
4edd761f 2828
db178340 2829 clear_bit(ATH_STAT_STARTED, ah->status);
e0d687bd 2830 cancel_delayed_work_sync(&ah->tx_complete_work);
8a63facc 2831
84e1e737
NK
2832 if (!ath5k_modparam_no_hw_rfkill_switch)
2833 ath5k_rfkill_hw_stop(ah);
fa1c114f
JS
2834}
2835
209d889b
BC
2836/*
2837 * Reset the hardware. If chan is not NULL, then also pause rx/tx
2838 * and change to the given channel.
5faaff74 2839 *
e0d687bd 2840 * This should be called with ah->lock.
209d889b 2841 */
fa1c114f 2842static int
e0d687bd 2843ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
8aec7af9 2844 bool skip_pcu)
fa1c114f 2845{
f15a4bb2 2846 struct ath_common *common = ath5k_hw_common(ah);
344b54b9 2847 int ret, ani_mode;
a99168ee 2848 bool fast;
fa1c114f 2849
e0d687bd 2850 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
fa1c114f 2851
450464de 2852 ath5k_hw_set_imr(ah, 0);
e0d687bd
PR
2853 synchronize_irq(ah->irq);
2854 ath5k_stop_tasklets(ah);
450464de 2855
25985edc 2856 /* Save ani mode and disable ANI during
344b54b9
NK
2857 * reset. If we don't we might get false
2858 * PHY error interrupts. */
e0d687bd 2859 ani_mode = ah->ani_state.ani_mode;
344b54b9
NK
2860 ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2861
19252ecb
NK
2862 /* We are going to empty hw queues
2863 * so we should also free any remaining
2864 * tx buffers */
e0d687bd 2865 ath5k_drain_tx_buffs(ah);
930a7622 2866 if (chan)
e0d687bd 2867 ah->curchan = chan;
a99168ee
NK
2868
2869 fast = ((chan != NULL) && modparam_fastchanswitch) ? 1 : 0;
2870
e0d687bd 2871 ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
d7dc1003 2872 if (ret) {
e0d687bd 2873 ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
fa1c114f
JS
2874 goto err;
2875 }
d7dc1003 2876
e0d687bd 2877 ret = ath5k_rx_start(ah);
d7dc1003 2878 if (ret) {
e0d687bd 2879 ATH5K_ERR(ah, "can't start recv logic\n");
fa1c114f
JS
2880 goto err;
2881 }
d7dc1003 2882
344b54b9 2883 ath5k_ani_init(ah, ani_mode);
2111ac0d 2884
ce169aca
NK
2885 /*
2886 * Set calibration intervals
2887 *
2888 * Note: We don't need to run calibration imediately
2889 * since some initial calibration is done on reset
2890 * even for fast channel switching. Also on scanning
2891 * this will get set again and again and it won't get
2892 * executed unless we connect somewhere and spend some
2893 * time on the channel (that's what calibration needs
2894 * anyway to be accurate).
2895 */
2896 ah->ah_cal_next_full = jiffies +
2897 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2898 ah->ah_cal_next_ani = jiffies +
2899 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2900 ah->ah_cal_next_short = jiffies +
2901 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2902
5dcc03fe 2903 ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8);
afe86286 2904
f15a4bb2 2905 /* clear survey data and cycle counters */
e0d687bd 2906 memset(&ah->survey, 0, sizeof(ah->survey));
bb007554 2907 spin_lock_bh(&common->cc_lock);
f15a4bb2
BR
2908 ath_hw_cycle_counters_update(common);
2909 memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2910 memset(&common->cc_ani, 0, sizeof(common->cc_ani));
bb007554 2911 spin_unlock_bh(&common->cc_lock);
f15a4bb2 2912
fa1c114f 2913 /*
d7dc1003
JS
2914 * Change channels and update the h/w rate map if we're switching;
2915 * e.g. 11a to 11b/g.
2916 *
2917 * We may be doing a reset in response to an ioctl that changes the
2918 * channel so update any state that might change as a result.
fa1c114f
JS
2919 *
2920 * XXX needed?
2921 */
e0d687bd 2922/* ath5k_chan_change(ah, c); */
fa1c114f 2923
e0d687bd 2924 ath5k_beacon_config(ah);
d7dc1003 2925 /* intrs are enabled by ath5k_beacon_config */
fa1c114f 2926
e0d687bd 2927 ieee80211_wake_queues(ah->hw);
397f385b 2928
fa1c114f
JS
2929 return 0;
2930err:
2931 return ret;
2932}
2933
5faaff74
BC
2934static void ath5k_reset_work(struct work_struct *work)
2935{
e0d687bd 2936 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
5faaff74
BC
2937 reset_work);
2938
e0d687bd
PR
2939 mutex_lock(&ah->lock);
2940 ath5k_reset(ah, NULL, true);
2941 mutex_unlock(&ah->lock);
5faaff74
BC
2942}
2943
e829cf96 2944static int
132b1c3e 2945ath5k_init(struct ieee80211_hw *hw)
fa1c114f 2946{
132b1c3e 2947
e0d687bd 2948 struct ath5k_hw *ah = hw->priv;
8a63facc 2949 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
925e0b06 2950 struct ath5k_txq *txq;
8a63facc 2951 u8 mac[ETH_ALEN] = {};
fa1c114f
JS
2952 int ret;
2953
fa1c114f 2954
8a63facc
BC
2955 /*
2956 * Collect the channel list. The 802.11 layer
6a2a0e73 2957 * is responsible for filtering this list based
8a63facc
BC
2958 * on settings like the phy mode and regulatory
2959 * domain restrictions.
2960 */
2961 ret = ath5k_setup_bands(hw);
2962 if (ret) {
e0d687bd 2963 ATH5K_ERR(ah, "can't get channels\n");
8a63facc
BC
2964 goto err;
2965 }
67d2e2df 2966
8a63facc
BC
2967 /*
2968 * Allocate tx+rx descriptors and populate the lists.
2969 */
e0d687bd 2970 ret = ath5k_desc_alloc(ah);
8a63facc 2971 if (ret) {
e0d687bd 2972 ATH5K_ERR(ah, "can't allocate descriptors\n");
8a63facc
BC
2973 goto err;
2974 }
fa1c114f 2975
8a63facc
BC
2976 /*
2977 * Allocate hardware transmit queues: one queue for
2978 * beacon frames and one data queue for each QoS
2979 * priority. Note that hw functions handle resetting
2980 * these queues at the needed time.
2981 */
2982 ret = ath5k_beaconq_setup(ah);
2983 if (ret < 0) {
e0d687bd 2984 ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
8a63facc
BC
2985 goto err_desc;
2986 }
e0d687bd
PR
2987 ah->bhalq = ret;
2988 ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
2989 if (IS_ERR(ah->cabq)) {
2990 ATH5K_ERR(ah, "can't setup cab queue\n");
2991 ret = PTR_ERR(ah->cabq);
8a63facc
BC
2992 goto err_bhal;
2993 }
fa1c114f 2994
22d8d9f8
BR
2995 /* 5211 and 5212 usually support 10 queues but we better rely on the
2996 * capability information */
2997 if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
2998 /* This order matches mac80211's queue priority, so we can
2999 * directly use the mac80211 queue number without any mapping */
e0d687bd 3000 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
22d8d9f8 3001 if (IS_ERR(txq)) {
e0d687bd 3002 ATH5K_ERR(ah, "can't setup xmit queue\n");
22d8d9f8
BR
3003 ret = PTR_ERR(txq);
3004 goto err_queues;
3005 }
e0d687bd 3006 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
22d8d9f8 3007 if (IS_ERR(txq)) {
e0d687bd 3008 ATH5K_ERR(ah, "can't setup xmit queue\n");
22d8d9f8
BR
3009 ret = PTR_ERR(txq);
3010 goto err_queues;
3011 }
e0d687bd 3012 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
22d8d9f8 3013 if (IS_ERR(txq)) {
e0d687bd 3014 ATH5K_ERR(ah, "can't setup xmit queue\n");
22d8d9f8
BR
3015 ret = PTR_ERR(txq);
3016 goto err_queues;
3017 }
e0d687bd 3018 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
22d8d9f8 3019 if (IS_ERR(txq)) {
e0d687bd 3020 ATH5K_ERR(ah, "can't setup xmit queue\n");
22d8d9f8
BR
3021 ret = PTR_ERR(txq);
3022 goto err_queues;
3023 }
3024 hw->queues = 4;
3025 } else {
3026 /* older hardware (5210) can only support one data queue */
e0d687bd 3027 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
22d8d9f8 3028 if (IS_ERR(txq)) {
e0d687bd 3029 ATH5K_ERR(ah, "can't setup xmit queue\n");
22d8d9f8
BR
3030 ret = PTR_ERR(txq);
3031 goto err_queues;
3032 }
3033 hw->queues = 1;
3034 }
fa1c114f 3035
e0d687bd
PR
3036 tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
3037 tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
e0d687bd
PR
3038 tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
3039 tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
be009370 3040
e0d687bd 3041 INIT_WORK(&ah->reset_work, ath5k_reset_work);
ce169aca 3042 INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
e0d687bd 3043 INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
fa1c114f 3044
fa9bfd61 3045 ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
8a63facc 3046 if (ret) {
e0d687bd 3047 ATH5K_ERR(ah, "unable to read address from EEPROM\n");
8a63facc 3048 goto err_queues;
e30eb4ab 3049 }
2bed03eb 3050
8a63facc
BC
3051 SET_IEEE80211_PERM_ADDR(hw, mac);
3052 /* All MAC address bits matter for ACKs */
e0d687bd 3053 ath5k_update_bssid_mask_and_opmode(ah, NULL);
8a63facc
BC
3054
3055 regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
3056 ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
3057 if (ret) {
e0d687bd 3058 ATH5K_ERR(ah, "can't initialize regulatory system\n");
8a63facc
BC
3059 goto err_queues;
3060 }
3061
3062 ret = ieee80211_register_hw(hw);
3063 if (ret) {
e0d687bd 3064 ATH5K_ERR(ah, "can't register ieee80211 hw\n");
8a63facc
BC
3065 goto err_queues;
3066 }
3067
3068 if (!ath_is_world_regd(regulatory))
3069 regulatory_hint(hw->wiphy, regulatory->alpha2);
3070
e0d687bd 3071 ath5k_init_leds(ah);
8a63facc 3072
e0d687bd 3073 ath5k_sysfs_register(ah);
8a63facc
BC
3074
3075 return 0;
3076err_queues:
e0d687bd 3077 ath5k_txq_release(ah);
8a63facc 3078err_bhal:
e0d687bd 3079 ath5k_hw_release_tx_queue(ah, ah->bhalq);
8a63facc 3080err_desc:
e0d687bd 3081 ath5k_desc_free(ah);
8a63facc
BC
3082err:
3083 return ret;
3084}
3085
132b1c3e 3086void
bb1f3ad9 3087ath5k_deinit_ah(struct ath5k_hw *ah)
8a63facc 3088{
e0d687bd 3089 struct ieee80211_hw *hw = ah->hw;
8a63facc
BC
3090
3091 /*
3092 * NB: the order of these is important:
3093 * o call the 802.11 layer before detaching ath5k_hw to
3094 * ensure callbacks into the driver to delete global
3095 * key cache entries can be handled
3096 * o reclaim the tx queue data structures after calling
3097 * the 802.11 layer as we'll get called back to reclaim
3098 * node state and potentially want to use them
3099 * o to cleanup the tx queues the hal is called, so detach
3100 * it last
3101 * XXX: ??? detach ath5k_hw ???
3102 * Other than that, it's straightforward...
3103 */
3104 ieee80211_unregister_hw(hw);
e0d687bd
PR
3105 ath5k_desc_free(ah);
3106 ath5k_txq_release(ah);
3107 ath5k_hw_release_tx_queue(ah, ah->bhalq);
3108 ath5k_unregister_leds(ah);
8a63facc 3109
e0d687bd 3110 ath5k_sysfs_unregister(ah);
8a63facc
BC
3111 /*
3112 * NB: can't reclaim these until after ieee80211_ifdetach
3113 * returns because we'll get called back to reclaim node
3114 * state and potentially want to use them.
3115 */
e0d687bd
PR
3116 ath5k_hw_deinit(ah);
3117 free_irq(ah->irq, ah);
8a63facc
BC
3118}
3119
cd2c5486 3120bool
e0d687bd 3121ath5k_any_vif_assoc(struct ath5k_hw *ah)
b1ae1edf 3122{
e4b0b32a 3123 struct ath5k_vif_iter_data iter_data;
b1ae1edf
BG
3124 iter_data.hw_macaddr = NULL;
3125 iter_data.any_assoc = false;
3126 iter_data.need_set_hw_addr = false;
3127 iter_data.found_active = true;
3128
8b2c9824
JB
3129 ieee80211_iterate_active_interfaces_atomic(
3130 ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
3131 ath5k_vif_iter, &iter_data);
b1ae1edf
BG
3132 return iter_data.any_assoc;
3133}
3134
cd2c5486 3135void
f5cbc8ba 3136ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
8a63facc 3137{
e0d687bd 3138 struct ath5k_hw *ah = hw->priv;
8a63facc
BC
3139 u32 rfilt;
3140 rfilt = ath5k_hw_get_rx_filter(ah);
3141 if (enable)
3142 rfilt |= AR5K_RX_FILTER_BEACON;
3143 else
3144 rfilt &= ~AR5K_RX_FILTER_BEACON;
3145 ath5k_hw_set_rx_filter(ah, rfilt);
e0d687bd 3146 ah->filter_flags = rfilt;
8a63facc 3147}
227842d1
JP
3148
3149void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
3150 const char *fmt, ...)
3151{
3152 struct va_format vaf;
3153 va_list args;
3154
3155 va_start(args, fmt);
3156
3157 vaf.fmt = fmt;
3158 vaf.va = &args;
3159
3160 if (ah && ah->hw)
3161 printk("%s" pr_fmt("%s: %pV"),
3162 level, wiphy_name(ah->hw->wiphy), &vaf);
3163 else
3164 printk("%s" pr_fmt("%pV"), level, &vaf);
3165
3166 va_end(args);
3167}
This page took 1.143027 seconds and 5 git commands to generate.