ath9k_hw: Move some RF ops to the private callbacks
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / ar9002_phy.c
CommitLineData
8fe65368
LR
1/*
2 * Copyright (c) 2008-2010 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17/**
18 * DOC: Programming Atheros 802.11n analog front end radios
19 *
20 * AR5416 MAC based PCI devices and AR518 MAC based PCI-Express
21 * devices have either an external AR2133 analog front end radio for single
22 * band 2.4 GHz communication or an AR5133 analog front end radio for dual
23 * band 2.4 GHz / 5 GHz communication.
24 *
25 * All devices after the AR5416 and AR5418 family starting with the AR9280
26 * have their analog front radios, MAC/BB and host PCIe/USB interface embedded
27 * into a single-chip and require less programming.
28 *
29 * The following single-chips exist with a respective embedded radio:
30 *
31 * AR9280 - 11n dual-band 2x2 MIMO for PCIe
32 * AR9281 - 11n single-band 1x2 MIMO for PCIe
33 * AR9285 - 11n single-band 1x1 for PCIe
34 * AR9287 - 11n single-band 2x2 MIMO for PCIe
35 *
36 * AR9220 - 11n dual-band 2x2 MIMO for PCI
37 * AR9223 - 11n single-band 2x2 MIMO for PCI
38 *
39 * AR9287 - 11n single-band 1x1 MIMO for USB
40 */
41
42#include "hw.h"
43#include "ar9002_phy.h"
44
45/**
46 * ar9002_hw_set_channel - set channel on single-chip device
47 * @ah: atheros hardware structure
48 * @chan:
49 *
50 * This is the function to change channel on single-chip devices, that is
51 * all devices after ar9280.
52 *
53 * This function takes the channel value in MHz and sets
54 * hardware channel value. Assumes writes have been enabled to analog bus.
55 *
56 * Actual Expression,
57 *
58 * For 2GHz channel,
59 * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
60 * (freq_ref = 40MHz)
61 *
62 * For 5GHz channel,
63 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
64 * (freq_ref = 40MHz/(24>>amodeRefSel))
65 */
66static int ar9002_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
67{
68 u16 bMode, fracMode, aModeRefSel = 0;
69 u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
70 struct chan_centers centers;
71 u32 refDivA = 24;
72
73 ath9k_hw_get_channel_centers(ah, chan, &centers);
74 freq = centers.synth_center;
75
76 reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
77 reg32 &= 0xc0000000;
78
79 if (freq < 4800) { /* 2 GHz, fractional mode */
80 u32 txctl;
81 int regWrites = 0;
82
83 bMode = 1;
84 fracMode = 1;
85 aModeRefSel = 0;
86 channelSel = (freq * 0x10000) / 15;
87
88 if (AR_SREV_9287_11_OR_LATER(ah)) {
89 if (freq == 2484) {
90 /* Enable channel spreading for channel 14 */
91 REG_WRITE_ARRAY(&ah->iniCckfirJapan2484,
92 1, regWrites);
93 } else {
94 REG_WRITE_ARRAY(&ah->iniCckfirNormal,
95 1, regWrites);
96 }
97 } else {
98 txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
99 if (freq == 2484) {
100 /* Enable channel spreading for channel 14 */
101 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
102 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
103 } else {
104 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
105 txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
106 }
107 }
108 } else {
109 bMode = 0;
110 fracMode = 0;
111
112 switch (ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
113 case 0:
114 if ((freq % 20) == 0)
115 aModeRefSel = 3;
116 else if ((freq % 10) == 0)
117 aModeRefSel = 2;
118 if (aModeRefSel)
119 break;
120 case 1:
121 default:
122 aModeRefSel = 0;
123 /*
124 * Enable 2G (fractional) mode for channels
125 * which are 5MHz spaced.
126 */
127 fracMode = 1;
128 refDivA = 1;
129 channelSel = (freq * 0x8000) / 15;
130
131 /* RefDivA setting */
132 REG_RMW_FIELD(ah, AR_AN_SYNTH9,
133 AR_AN_SYNTH9_REFDIVA, refDivA);
134
135 }
136
137 if (!fracMode) {
138 ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
139 channelSel = ndiv & 0x1ff;
140 channelFrac = (ndiv & 0xfffffe00) * 2;
141 channelSel = (channelSel << 17) | channelFrac;
142 }
143 }
144
145 reg32 = reg32 |
146 (bMode << 29) |
147 (fracMode << 28) | (aModeRefSel << 26) | (channelSel);
148
149 REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
150
151 ah->curchan = chan;
152 ah->curchan_rad_index = -1;
153
154 return 0;
155}
156
157/**
158 * ar9002_hw_spur_mitigate - convert baseband spur frequency
159 * @ah: atheros hardware structure
160 * @chan:
161 *
162 * For single-chip solutions. Converts to baseband spur frequency given the
163 * input channel frequency and compute register settings below.
164 */
165static void ar9002_hw_spur_mitigate(struct ath_hw *ah,
166 struct ath9k_channel *chan)
167{
168 int bb_spur = AR_NO_SPUR;
169 int freq;
170 int bin, cur_bin;
171 int bb_spur_off, spur_subchannel_sd;
172 int spur_freq_sd;
173 int spur_delta_phase;
174 int denominator;
175 int upper, lower, cur_vit_mask;
176 int tmp, newVal;
177 int i;
178 int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
179 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
180 };
181 int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
182 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
183 };
184 int inc[4] = { 0, 100, 0, 0 };
185 struct chan_centers centers;
186
187 int8_t mask_m[123];
188 int8_t mask_p[123];
189 int8_t mask_amt;
190 int tmp_mask;
191 int cur_bb_spur;
192 bool is2GHz = IS_CHAN_2GHZ(chan);
193
194 memset(&mask_m, 0, sizeof(int8_t) * 123);
195 memset(&mask_p, 0, sizeof(int8_t) * 123);
196
197 ath9k_hw_get_channel_centers(ah, chan, &centers);
198 freq = centers.synth_center;
199
200 ah->config.spurmode = SPUR_ENABLE_EEPROM;
201 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
202 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
203
204 if (is2GHz)
205 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
206 else
207 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
208
209 if (AR_NO_SPUR == cur_bb_spur)
210 break;
211 cur_bb_spur = cur_bb_spur - freq;
212
213 if (IS_CHAN_HT40(chan)) {
214 if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
215 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
216 bb_spur = cur_bb_spur;
217 break;
218 }
219 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
220 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
221 bb_spur = cur_bb_spur;
222 break;
223 }
224 }
225
226 if (AR_NO_SPUR == bb_spur) {
227 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
228 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
229 return;
230 } else {
231 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
232 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
233 }
234
235 bin = bb_spur * 320;
236
237 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
238
239 newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
240 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
241 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
242 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
243 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
244
245 newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
246 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
247 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
248 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
249 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
250 REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
251
252 if (IS_CHAN_HT40(chan)) {
253 if (bb_spur < 0) {
254 spur_subchannel_sd = 1;
255 bb_spur_off = bb_spur + 10;
256 } else {
257 spur_subchannel_sd = 0;
258 bb_spur_off = bb_spur - 10;
259 }
260 } else {
261 spur_subchannel_sd = 0;
262 bb_spur_off = bb_spur;
263 }
264
265 if (IS_CHAN_HT40(chan))
266 spur_delta_phase =
267 ((bb_spur * 262144) /
268 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
269 else
270 spur_delta_phase =
271 ((bb_spur * 524288) /
272 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
273
274 denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
275 spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
276
277 newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
278 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
279 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
280 REG_WRITE(ah, AR_PHY_TIMING11, newVal);
281
282 newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
283 REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
284
285 cur_bin = -6000;
286 upper = bin + 100;
287 lower = bin - 100;
288
289 for (i = 0; i < 4; i++) {
290 int pilot_mask = 0;
291 int chan_mask = 0;
292 int bp = 0;
293 for (bp = 0; bp < 30; bp++) {
294 if ((cur_bin > lower) && (cur_bin < upper)) {
295 pilot_mask = pilot_mask | 0x1 << bp;
296 chan_mask = chan_mask | 0x1 << bp;
297 }
298 cur_bin += 100;
299 }
300 cur_bin += inc[i];
301 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
302 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
303 }
304
305 cur_vit_mask = 6100;
306 upper = bin + 120;
307 lower = bin - 120;
308
309 for (i = 0; i < 123; i++) {
310 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
311
312 /* workaround for gcc bug #37014 */
313 volatile int tmp_v = abs(cur_vit_mask - bin);
314
315 if (tmp_v < 75)
316 mask_amt = 1;
317 else
318 mask_amt = 0;
319 if (cur_vit_mask < 0)
320 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
321 else
322 mask_p[cur_vit_mask / 100] = mask_amt;
323 }
324 cur_vit_mask -= 100;
325 }
326
327 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
328 | (mask_m[48] << 26) | (mask_m[49] << 24)
329 | (mask_m[50] << 22) | (mask_m[51] << 20)
330 | (mask_m[52] << 18) | (mask_m[53] << 16)
331 | (mask_m[54] << 14) | (mask_m[55] << 12)
332 | (mask_m[56] << 10) | (mask_m[57] << 8)
333 | (mask_m[58] << 6) | (mask_m[59] << 4)
334 | (mask_m[60] << 2) | (mask_m[61] << 0);
335 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
336 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
337
338 tmp_mask = (mask_m[31] << 28)
339 | (mask_m[32] << 26) | (mask_m[33] << 24)
340 | (mask_m[34] << 22) | (mask_m[35] << 20)
341 | (mask_m[36] << 18) | (mask_m[37] << 16)
342 | (mask_m[48] << 14) | (mask_m[39] << 12)
343 | (mask_m[40] << 10) | (mask_m[41] << 8)
344 | (mask_m[42] << 6) | (mask_m[43] << 4)
345 | (mask_m[44] << 2) | (mask_m[45] << 0);
346 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
347 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
348
349 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
350 | (mask_m[18] << 26) | (mask_m[18] << 24)
351 | (mask_m[20] << 22) | (mask_m[20] << 20)
352 | (mask_m[22] << 18) | (mask_m[22] << 16)
353 | (mask_m[24] << 14) | (mask_m[24] << 12)
354 | (mask_m[25] << 10) | (mask_m[26] << 8)
355 | (mask_m[27] << 6) | (mask_m[28] << 4)
356 | (mask_m[29] << 2) | (mask_m[30] << 0);
357 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
358 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
359
360 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
361 | (mask_m[2] << 26) | (mask_m[3] << 24)
362 | (mask_m[4] << 22) | (mask_m[5] << 20)
363 | (mask_m[6] << 18) | (mask_m[7] << 16)
364 | (mask_m[8] << 14) | (mask_m[9] << 12)
365 | (mask_m[10] << 10) | (mask_m[11] << 8)
366 | (mask_m[12] << 6) | (mask_m[13] << 4)
367 | (mask_m[14] << 2) | (mask_m[15] << 0);
368 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
369 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
370
371 tmp_mask = (mask_p[15] << 28)
372 | (mask_p[14] << 26) | (mask_p[13] << 24)
373 | (mask_p[12] << 22) | (mask_p[11] << 20)
374 | (mask_p[10] << 18) | (mask_p[9] << 16)
375 | (mask_p[8] << 14) | (mask_p[7] << 12)
376 | (mask_p[6] << 10) | (mask_p[5] << 8)
377 | (mask_p[4] << 6) | (mask_p[3] << 4)
378 | (mask_p[2] << 2) | (mask_p[1] << 0);
379 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
380 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
381
382 tmp_mask = (mask_p[30] << 28)
383 | (mask_p[29] << 26) | (mask_p[28] << 24)
384 | (mask_p[27] << 22) | (mask_p[26] << 20)
385 | (mask_p[25] << 18) | (mask_p[24] << 16)
386 | (mask_p[23] << 14) | (mask_p[22] << 12)
387 | (mask_p[21] << 10) | (mask_p[20] << 8)
388 | (mask_p[19] << 6) | (mask_p[18] << 4)
389 | (mask_p[17] << 2) | (mask_p[16] << 0);
390 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
391 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
392
393 tmp_mask = (mask_p[45] << 28)
394 | (mask_p[44] << 26) | (mask_p[43] << 24)
395 | (mask_p[42] << 22) | (mask_p[41] << 20)
396 | (mask_p[40] << 18) | (mask_p[39] << 16)
397 | (mask_p[38] << 14) | (mask_p[37] << 12)
398 | (mask_p[36] << 10) | (mask_p[35] << 8)
399 | (mask_p[34] << 6) | (mask_p[33] << 4)
400 | (mask_p[32] << 2) | (mask_p[31] << 0);
401 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
402 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
403
404 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
405 | (mask_p[59] << 26) | (mask_p[58] << 24)
406 | (mask_p[57] << 22) | (mask_p[56] << 20)
407 | (mask_p[55] << 18) | (mask_p[54] << 16)
408 | (mask_p[53] << 14) | (mask_p[52] << 12)
409 | (mask_p[51] << 10) | (mask_p[50] << 8)
410 | (mask_p[49] << 6) | (mask_p[48] << 4)
411 | (mask_p[47] << 2) | (mask_p[46] << 0);
412 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
413 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
414}
415
416static void ar9002_olc_init(struct ath_hw *ah)
417{
418 u32 i;
419
420 if (!OLC_FOR_AR9280_20_LATER)
421 return;
422
423 if (OLC_FOR_AR9287_10_LATER) {
424 REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
425 AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
426 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
427 AR9287_AN_TXPC0_TXPCMODE,
428 AR9287_AN_TXPC0_TXPCMODE_S,
429 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
430 udelay(100);
431 } else {
432 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
433 ah->originalGain[i] =
434 MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
435 AR_PHY_TX_GAIN);
436 ah->PDADCdelta = 0;
437 }
438}
439
440void ar9002_hw_attach_phy_ops(struct ath_hw *ah)
441{
442 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
443
444 priv_ops->set_rf_regs = NULL;
445 priv_ops->rf_alloc_ext_banks = NULL;
446 priv_ops->rf_free_ext_banks = NULL;
447 priv_ops->rf_set_freq = ar9002_hw_set_channel;
448 priv_ops->spur_mitigate_freq = ar9002_hw_spur_mitigate;
449 priv_ops->olc_init = ar9002_olc_init;
450}
This page took 0.063656 seconds and 5 git commands to generate.