ath9k: Adding initvalues for Atheros AR9285 chipset.
[deliverable/linux.git] / drivers / net / wireless / ath9k / eeprom.c
CommitLineData
f1dc5600
S
1/*
2 * Copyright (c) 2008 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include "core.h"
18#include "hw.h"
19#include "reg.h"
20#include "phy.h"
21
22static void ath9k_hw_analog_shift_rmw(struct ath_hal *ah,
23 u32 reg, u32 mask,
24 u32 shift, u32 val)
25{
26 u32 regVal;
27
28 regVal = REG_READ(ah, reg) & ~mask;
29 regVal |= (val << shift) & mask;
30
31 REG_WRITE(ah, reg, regVal);
32
33 if (ah->ah_config.analog_shiftreg)
34 udelay(100);
35
36 return;
37}
38
39static inline u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
40{
41
42 if (fbin == AR5416_BCHAN_UNUSED)
43 return fbin;
44
45 return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
46}
47
48static inline int16_t ath9k_hw_interpolate(u16 target,
49 u16 srcLeft, u16 srcRight,
50 int16_t targetLeft,
51 int16_t targetRight)
52{
53 int16_t rv;
54
55 if (srcRight == srcLeft) {
56 rv = targetLeft;
57 } else {
58 rv = (int16_t) (((target - srcLeft) * targetRight +
59 (srcRight - target) * targetLeft) /
60 (srcRight - srcLeft));
61 }
62 return rv;
63}
64
65static inline bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList,
66 u16 listSize, u16 *indexL,
67 u16 *indexR)
68{
69 u16 i;
70
71 if (target <= pList[0]) {
72 *indexL = *indexR = 0;
73 return true;
74 }
75 if (target >= pList[listSize - 1]) {
76 *indexL = *indexR = (u16) (listSize - 1);
77 return true;
78 }
79
80 for (i = 0; i < listSize - 1; i++) {
81 if (pList[i] == target) {
82 *indexL = *indexR = i;
83 return true;
84 }
85 if (target < pList[i + 1]) {
86 *indexL = i;
87 *indexR = (u16) (i + 1);
88 return false;
89 }
90 }
91 return false;
92}
93
94static bool ath9k_hw_eeprom_read(struct ath_hal *ah, u32 off, u16 *data)
95{
96 (void)REG_READ(ah, AR5416_EEPROM_OFFSET + (off << AR5416_EEPROM_S));
97
98 if (!ath9k_hw_wait(ah,
99 AR_EEPROM_STATUS_DATA,
100 AR_EEPROM_STATUS_DATA_BUSY |
101 AR_EEPROM_STATUS_DATA_PROT_ACCESS, 0)) {
102 return false;
103 }
104
105 *data = MS(REG_READ(ah, AR_EEPROM_STATUS_DATA),
106 AR_EEPROM_STATUS_DATA_VAL);
107
108 return true;
109}
110
111static int ath9k_hw_flash_map(struct ath_hal *ah)
112{
113 struct ath_hal_5416 *ahp = AH5416(ah);
114
115 ahp->ah_cal_mem = ioremap(AR5416_EEPROM_START_ADDR, AR5416_EEPROM_MAX);
116
117 if (!ahp->ah_cal_mem) {
118 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
04bd4638 119 "cannot remap eeprom region \n");
f1dc5600
S
120 return -EIO;
121 }
122
123 return 0;
124}
125
126static bool ath9k_hw_flash_read(struct ath_hal *ah, u32 off, u16 *data)
127{
128 struct ath_hal_5416 *ahp = AH5416(ah);
129
130 *data = ioread16(ahp->ah_cal_mem + off);
131
132 return true;
133}
134
135static inline bool ath9k_hw_nvram_read(struct ath_hal *ah, u32 off, u16 *data)
136{
137 if (ath9k_hw_use_flash(ah))
138 return ath9k_hw_flash_read(ah, off, data);
139 else
140 return ath9k_hw_eeprom_read(ah, off, data);
141}
142
143static bool ath9k_hw_fill_eeprom(struct ath_hal *ah)
144{
145 struct ath_hal_5416 *ahp = AH5416(ah);
146 struct ar5416_eeprom *eep = &ahp->ah_eeprom;
147 u16 *eep_data;
148 int addr, ar5416_eep_start_loc = 0;
149
150 if (!ath9k_hw_use_flash(ah)) {
151 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
04bd4638 152 "Reading from EEPROM, not flash\n");
f1dc5600
S
153 ar5416_eep_start_loc = 256;
154 }
155
156 if (AR_SREV_9100(ah))
157 ar5416_eep_start_loc = 256;
158
159 eep_data = (u16 *)eep;
160
161 for (addr = 0; addr < sizeof(struct ar5416_eeprom) / sizeof(u16); addr++) {
162 if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc,
163 eep_data)) {
164 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
04bd4638 165 "Unable to read eeprom region \n");
f1dc5600
S
166 return false;
167 }
168 eep_data++;
169 }
170 return true;
171}
172
173static int ath9k_hw_check_eeprom(struct ath_hal *ah)
174{
175 struct ath_hal_5416 *ahp = AH5416(ah);
176 struct ar5416_eeprom *eep =
177 (struct ar5416_eeprom *) &ahp->ah_eeprom;
178 u16 *eepdata, temp, magic, magic2;
179 u32 sum = 0, el;
180 bool need_swap = false;
181 int i, addr, size;
182
183 if (!ath9k_hw_use_flash(ah)) {
184 if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
185 &magic)) {
186 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
04bd4638 187 "Reading Magic # failed\n");
f1dc5600
S
188 return false;
189 }
190
04bd4638 191 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "Read Magic = 0x%04X\n", magic);
f1dc5600
S
192
193 if (magic != AR5416_EEPROM_MAGIC) {
194 magic2 = swab16(magic);
195
196 if (magic2 == AR5416_EEPROM_MAGIC) {
197 size = sizeof(struct ar5416_eeprom);
198 need_swap = true;
199 eepdata = (u16 *) (&ahp->ah_eeprom);
200
201 for (addr = 0; addr < size / sizeof(u16); addr++) {
202 temp = swab16(*eepdata);
203 *eepdata = temp;
204 eepdata++;
205
206 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
207 "0x%04X ", *eepdata);
208
209 if (((addr + 1) % 6) == 0)
210 DPRINTF(ah->ah_sc,
211 ATH_DBG_EEPROM, "\n");
212 }
213 } else {
214 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
215 "Invalid EEPROM Magic. "
216 "endianness mismatch.\n");
217 return -EINVAL;
218 }
219 }
220 }
221
222 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
223 need_swap ? "True" : "False");
224
225 if (need_swap)
226 el = swab16(ahp->ah_eeprom.baseEepHeader.length);
227 else
228 el = ahp->ah_eeprom.baseEepHeader.length;
229
230 if (el > sizeof(struct ar5416_eeprom))
231 el = sizeof(struct ar5416_eeprom) / sizeof(u16);
232 else
233 el = el / sizeof(u16);
234
235 eepdata = (u16 *)(&ahp->ah_eeprom);
236
237 for (i = 0; i < el; i++)
238 sum ^= *eepdata++;
239
240 if (need_swap) {
241 u32 integer, j;
242 u16 word;
243
244 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
245 "EEPROM Endianness is not native.. Changing \n");
246
247 word = swab16(eep->baseEepHeader.length);
248 eep->baseEepHeader.length = word;
249
250 word = swab16(eep->baseEepHeader.checksum);
251 eep->baseEepHeader.checksum = word;
252
253 word = swab16(eep->baseEepHeader.version);
254 eep->baseEepHeader.version = word;
255
256 word = swab16(eep->baseEepHeader.regDmn[0]);
257 eep->baseEepHeader.regDmn[0] = word;
258
259 word = swab16(eep->baseEepHeader.regDmn[1]);
260 eep->baseEepHeader.regDmn[1] = word;
261
262 word = swab16(eep->baseEepHeader.rfSilent);
263 eep->baseEepHeader.rfSilent = word;
264
265 word = swab16(eep->baseEepHeader.blueToothOptions);
266 eep->baseEepHeader.blueToothOptions = word;
267
268 word = swab16(eep->baseEepHeader.deviceCap);
269 eep->baseEepHeader.deviceCap = word;
270
271 for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
272 struct modal_eep_header *pModal =
273 &eep->modalHeader[j];
274 integer = swab32(pModal->antCtrlCommon);
275 pModal->antCtrlCommon = integer;
276
277 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
278 integer = swab32(pModal->antCtrlChain[i]);
279 pModal->antCtrlChain[i] = integer;
280 }
281
282 for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
283 word = swab16(pModal->spurChans[i].spurChan);
284 pModal->spurChans[i].spurChan = word;
285 }
286 }
287 }
288
289 if (sum != 0xffff || ar5416_get_eep_ver(ahp) != AR5416_EEP_VER ||
290 ar5416_get_eep_rev(ahp) < AR5416_EEP_NO_BACK_VER) {
291 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
292 "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
293 sum, ar5416_get_eep_ver(ahp));
294 return -EINVAL;
295 }
296
297 return 0;
298}
299
300static inline bool ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
301 u8 *pVpdList, u16 numIntercepts,
302 u8 *pRetVpdList)
303{
304 u16 i, k;
305 u8 currPwr = pwrMin;
306 u16 idxL = 0, idxR = 0;
307
308 for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
309 ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
310 numIntercepts, &(idxL),
311 &(idxR));
312 if (idxR < 1)
313 idxR = 1;
314 if (idxL == numIntercepts - 1)
315 idxL = (u16) (numIntercepts - 2);
316 if (pPwrList[idxL] == pPwrList[idxR])
317 k = pVpdList[idxL];
318 else
319 k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
320 (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
321 (pPwrList[idxR] - pPwrList[idxL]));
322 pRetVpdList[i] = (u8) k;
323 currPwr += 2;
324 }
325
326 return true;
327}
328
329static void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hal *ah,
330 struct ath9k_channel *chan,
331 struct cal_data_per_freq *pRawDataSet,
332 u8 *bChans, u16 availPiers,
333 u16 tPdGainOverlap, int16_t *pMinCalPower,
334 u16 *pPdGainBoundaries, u8 *pPDADCValues,
335 u16 numXpdGains)
336{
337 int i, j, k;
338 int16_t ss;
339 u16 idxL = 0, idxR = 0, numPiers;
340 static u8 vpdTableL[AR5416_NUM_PD_GAINS]
341 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
342 static u8 vpdTableR[AR5416_NUM_PD_GAINS]
343 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
344 static u8 vpdTableI[AR5416_NUM_PD_GAINS]
345 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
346
347 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
348 u8 minPwrT4[AR5416_NUM_PD_GAINS];
349 u8 maxPwrT4[AR5416_NUM_PD_GAINS];
350 int16_t vpdStep;
351 int16_t tmpVal;
352 u16 sizeCurrVpdTable, maxIndex, tgtIndex;
353 bool match;
354 int16_t minDelta = 0;
355 struct chan_centers centers;
356
357 ath9k_hw_get_channel_centers(ah, chan, &centers);
358
359 for (numPiers = 0; numPiers < availPiers; numPiers++) {
360 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
361 break;
362 }
363
364 match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
365 IS_CHAN_2GHZ(chan)),
366 bChans, numPiers, &idxL, &idxR);
367
368 if (match) {
369 for (i = 0; i < numXpdGains; i++) {
370 minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
371 maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
372 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
373 pRawDataSet[idxL].pwrPdg[i],
374 pRawDataSet[idxL].vpdPdg[i],
375 AR5416_PD_GAIN_ICEPTS,
376 vpdTableI[i]);
377 }
378 } else {
379 for (i = 0; i < numXpdGains; i++) {
380 pVpdL = pRawDataSet[idxL].vpdPdg[i];
381 pPwrL = pRawDataSet[idxL].pwrPdg[i];
382 pVpdR = pRawDataSet[idxR].vpdPdg[i];
383 pPwrR = pRawDataSet[idxR].pwrPdg[i];
384
385 minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
386
387 maxPwrT4[i] =
388 min(pPwrL[AR5416_PD_GAIN_ICEPTS - 1],
389 pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
390
391
392 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
393 pPwrL, pVpdL,
394 AR5416_PD_GAIN_ICEPTS,
395 vpdTableL[i]);
396 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
397 pPwrR, pVpdR,
398 AR5416_PD_GAIN_ICEPTS,
399 vpdTableR[i]);
400
401 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
402 vpdTableI[i][j] =
403 (u8)(ath9k_hw_interpolate((u16)
404 FREQ2FBIN(centers.
405 synth_center,
406 IS_CHAN_2GHZ
407 (chan)),
408 bChans[idxL], bChans[idxR],
409 vpdTableL[i][j], vpdTableR[i][j]));
410 }
411 }
412 }
413
414 *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
415
416 k = 0;
417
418 for (i = 0; i < numXpdGains; i++) {
419 if (i == (numXpdGains - 1))
420 pPdGainBoundaries[i] =
421 (u16)(maxPwrT4[i] / 2);
422 else
423 pPdGainBoundaries[i] =
424 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
425
426 pPdGainBoundaries[i] =
427 min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
428
429 if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah)) {
430 minDelta = pPdGainBoundaries[0] - 23;
431 pPdGainBoundaries[0] = 23;
432 } else {
433 minDelta = 0;
434 }
435
436 if (i == 0) {
437 if (AR_SREV_9280_10_OR_LATER(ah))
438 ss = (int16_t)(0 - (minPwrT4[i] / 2));
439 else
440 ss = 0;
441 } else {
442 ss = (int16_t)((pPdGainBoundaries[i - 1] -
443 (minPwrT4[i] / 2)) -
444 tPdGainOverlap + 1 + minDelta);
445 }
446 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
447 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
448
449 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
450 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
451 pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
452 ss++;
453 }
454
455 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
456 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
457 (minPwrT4[i] / 2));
458 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
459 tgtIndex : sizeCurrVpdTable;
460
461 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
462 pPDADCValues[k++] = vpdTableI[i][ss++];
463 }
464
465 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
466 vpdTableI[i][sizeCurrVpdTable - 2]);
467 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
468
469 if (tgtIndex > maxIndex) {
470 while ((ss <= tgtIndex) &&
471 (k < (AR5416_NUM_PDADC_VALUES - 1))) {
472 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
473 (ss - maxIndex + 1) * vpdStep));
474 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
475 255 : tmpVal);
476 ss++;
477 }
478 }
479 }
480
481 while (i < AR5416_PD_GAINS_IN_MASK) {
482 pPdGainBoundaries[i] = pPdGainBoundaries[i - 1];
483 i++;
484 }
485
486 while (k < AR5416_NUM_PDADC_VALUES) {
487 pPDADCValues[k] = pPDADCValues[k - 1];
488 k++;
489 }
490
491 return;
492}
493
494static void ath9k_hw_get_legacy_target_powers(struct ath_hal *ah,
495 struct ath9k_channel *chan,
496 struct cal_target_power_leg *powInfo,
497 u16 numChannels,
498 struct cal_target_power_leg *pNewPower,
499 u16 numRates, bool isExtTarget)
500{
501 struct chan_centers centers;
502 u16 clo, chi;
503 int i;
504 int matchIndex = -1, lowIndex = -1;
505 u16 freq;
506
507 ath9k_hw_get_channel_centers(ah, chan, &centers);
508 freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
509
510 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
511 IS_CHAN_2GHZ(chan))) {
512 matchIndex = 0;
513 } else {
514 for (i = 0; (i < numChannels) &&
515 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
516 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
517 IS_CHAN_2GHZ(chan))) {
518 matchIndex = i;
519 break;
520 } else if ((freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
521 IS_CHAN_2GHZ(chan))) &&
522 (freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
523 IS_CHAN_2GHZ(chan)))) {
524 lowIndex = i - 1;
525 break;
526 }
527 }
528 if ((matchIndex == -1) && (lowIndex == -1))
529 matchIndex = i - 1;
530 }
531
532 if (matchIndex != -1) {
533 *pNewPower = powInfo[matchIndex];
534 } else {
535 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
536 IS_CHAN_2GHZ(chan));
537 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
538 IS_CHAN_2GHZ(chan));
539
540 for (i = 0; i < numRates; i++) {
541 pNewPower->tPow2x[i] =
542 (u8)ath9k_hw_interpolate(freq, clo, chi,
543 powInfo[lowIndex].tPow2x[i],
544 powInfo[lowIndex + 1].tPow2x[i]);
545 }
546 }
547}
548
549static void ath9k_hw_get_target_powers(struct ath_hal *ah,
550 struct ath9k_channel *chan,
551 struct cal_target_power_ht *powInfo,
552 u16 numChannels,
553 struct cal_target_power_ht *pNewPower,
554 u16 numRates, bool isHt40Target)
555{
556 struct chan_centers centers;
557 u16 clo, chi;
558 int i;
559 int matchIndex = -1, lowIndex = -1;
560 u16 freq;
561
562 ath9k_hw_get_channel_centers(ah, chan, &centers);
563 freq = isHt40Target ? centers.synth_center : centers.ctl_center;
564
565 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
566 matchIndex = 0;
567 } else {
568 for (i = 0; (i < numChannels) &&
569 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
570 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
571 IS_CHAN_2GHZ(chan))) {
572 matchIndex = i;
573 break;
574 } else
575 if ((freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
576 IS_CHAN_2GHZ(chan))) &&
577 (freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
578 IS_CHAN_2GHZ(chan)))) {
579 lowIndex = i - 1;
580 break;
581 }
582 }
583 if ((matchIndex == -1) && (lowIndex == -1))
584 matchIndex = i - 1;
585 }
586
587 if (matchIndex != -1) {
588 *pNewPower = powInfo[matchIndex];
589 } else {
590 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
591 IS_CHAN_2GHZ(chan));
592 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
593 IS_CHAN_2GHZ(chan));
594
595 for (i = 0; i < numRates; i++) {
596 pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
597 clo, chi,
598 powInfo[lowIndex].tPow2x[i],
599 powInfo[lowIndex + 1].tPow2x[i]);
600 }
601 }
602}
603
604static u16 ath9k_hw_get_max_edge_power(u16 freq,
605 struct cal_ctl_edges *pRdEdgesPower,
606 bool is2GHz)
607{
608 u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
609 int i;
610
611 for (i = 0; (i < AR5416_NUM_BAND_EDGES) &&
612 (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
613 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
614 twiceMaxEdgePower = pRdEdgesPower[i].tPower;
615 break;
616 } else if ((i > 0) &&
617 (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
618 is2GHz))) {
619 if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
620 is2GHz) < freq &&
621 pRdEdgesPower[i - 1].flag) {
622 twiceMaxEdgePower =
623 pRdEdgesPower[i - 1].tPower;
624 }
625 break;
626 }
627 }
628
629 return twiceMaxEdgePower;
630}
631
632int ath9k_hw_set_txpower(struct ath_hal *ah,
633 struct ath9k_channel *chan,
634 u16 cfgCtl,
635 u8 twiceAntennaReduction,
636 u8 twiceMaxRegulatoryPower,
637 u8 powerLimit)
638{
639 struct ath_hal_5416 *ahp = AH5416(ah);
640 struct ar5416_eeprom *pEepData = &ahp->ah_eeprom;
641 struct modal_eep_header *pModal =
642 &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
643 int16_t ratesArray[Ar5416RateSize];
644 int16_t txPowerIndexOffset = 0;
645 u8 ht40PowerIncForPdadc = 2;
646 int i;
647
648 memset(ratesArray, 0, sizeof(ratesArray));
649
650 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
651 AR5416_EEP_MINOR_VER_2) {
652 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
653 }
654
655 if (!ath9k_hw_set_power_per_rate_table(ah, chan,
656 &ratesArray[0], cfgCtl,
657 twiceAntennaReduction,
658 twiceMaxRegulatoryPower,
659 powerLimit)) {
660 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
661 "ath9k_hw_set_txpower: unable to set "
662 "tx power per rate table\n");
663 return -EIO;
664 }
665
666 if (!ath9k_hw_set_power_cal_table(ah, chan, &txPowerIndexOffset)) {
667 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
668 "ath9k_hw_set_txpower: unable to set power table\n");
669 return -EIO;
670 }
671
672 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
673 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
674 if (ratesArray[i] > AR5416_MAX_RATE_POWER)
675 ratesArray[i] = AR5416_MAX_RATE_POWER;
676 }
677
678 if (AR_SREV_9280_10_OR_LATER(ah)) {
679 for (i = 0; i < Ar5416RateSize; i++)
680 ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
681 }
682
683 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
684 ATH9K_POW_SM(ratesArray[rate18mb], 24)
685 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
686 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
687 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
688 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
689 ATH9K_POW_SM(ratesArray[rate54mb], 24)
690 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
691 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
692 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
693
694 if (IS_CHAN_2GHZ(chan)) {
695 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
696 ATH9K_POW_SM(ratesArray[rate2s], 24)
697 | ATH9K_POW_SM(ratesArray[rate2l], 16)
698 | ATH9K_POW_SM(ratesArray[rateXr], 8)
699 | ATH9K_POW_SM(ratesArray[rate1l], 0));
700 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
701 ATH9K_POW_SM(ratesArray[rate11s], 24)
702 | ATH9K_POW_SM(ratesArray[rate11l], 16)
703 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
704 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
705 }
706
707 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
708 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
709 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
710 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
711 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
712 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
713 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
714 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
715 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
716 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
717
718 if (IS_CHAN_HT40(chan)) {
719 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
720 ATH9K_POW_SM(ratesArray[rateHt40_3] +
721 ht40PowerIncForPdadc, 24)
722 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
723 ht40PowerIncForPdadc, 16)
724 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
725 ht40PowerIncForPdadc, 8)
726 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
727 ht40PowerIncForPdadc, 0));
728 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
729 ATH9K_POW_SM(ratesArray[rateHt40_7] +
730 ht40PowerIncForPdadc, 24)
731 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
732 ht40PowerIncForPdadc, 16)
733 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
734 ht40PowerIncForPdadc, 8)
735 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
736 ht40PowerIncForPdadc, 0));
737
738 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
739 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
740 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
741 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
742 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
743 }
744
745 REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
746 ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
747 | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
748
749 i = rate6mb;
750
751 if (IS_CHAN_HT40(chan))
752 i = rateHt40_0;
753 else if (IS_CHAN_HT20(chan))
754 i = rateHt20_0;
755
756 if (AR_SREV_9280_10_OR_LATER(ah))
757 ah->ah_maxPowerLevel =
758 ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2;
759 else
760 ah->ah_maxPowerLevel = ratesArray[i];
761
762 return 0;
763}
764
765void ath9k_hw_set_addac(struct ath_hal *ah, struct ath9k_channel *chan)
766{
767 struct modal_eep_header *pModal;
768 struct ath_hal_5416 *ahp = AH5416(ah);
769 struct ar5416_eeprom *eep = &ahp->ah_eeprom;
770 u8 biaslevel;
771
772 if (ah->ah_macVersion != AR_SREV_VERSION_9160)
773 return;
774
775 if (ar5416_get_eep_rev(ahp) < AR5416_EEP_MINOR_VER_7)
776 return;
777
778 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
779
780 if (pModal->xpaBiasLvl != 0xff) {
781 biaslevel = pModal->xpaBiasLvl;
782 } else {
783 u16 resetFreqBin, freqBin, freqCount = 0;
784 struct chan_centers centers;
785
786 ath9k_hw_get_channel_centers(ah, chan, &centers);
787
788 resetFreqBin = FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan));
789 freqBin = pModal->xpaBiasLvlFreq[0] & 0xff;
790 biaslevel = (u8) (pModal->xpaBiasLvlFreq[0] >> 14);
791
792 freqCount++;
793
794 while (freqCount < 3) {
795 if (pModal->xpaBiasLvlFreq[freqCount] == 0x0)
796 break;
797
798 freqBin = pModal->xpaBiasLvlFreq[freqCount] & 0xff;
799 if (resetFreqBin >= freqBin) {
800 biaslevel = (u8)(pModal->xpaBiasLvlFreq[freqCount] >> 14);
801 } else {
802 break;
803 }
804 freqCount++;
805 }
806 }
807
808 if (IS_CHAN_2GHZ(chan)) {
809 INI_RA(&ahp->ah_iniAddac, 7, 1) =
810 (INI_RA(&ahp->ah_iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
811 } else {
812 INI_RA(&ahp->ah_iniAddac, 6, 1) =
813 (INI_RA(&ahp->ah_iniAddac, 6, 1) & (~0xc0)) | biaslevel << 6;
814 }
815}
816
817bool ath9k_hw_set_power_per_rate_table(struct ath_hal *ah,
818 struct ath9k_channel *chan,
819 int16_t *ratesArray,
820 u16 cfgCtl,
821 u8 AntennaReduction,
822 u8 twiceMaxRegulatoryPower,
823 u8 powerLimit)
824{
825 struct ath_hal_5416 *ahp = AH5416(ah);
826 struct ar5416_eeprom *pEepData = &ahp->ah_eeprom;
827 u8 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
828 static const u16 tpScaleReductionTable[5] =
829 { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
830
831 int i;
832 int8_t twiceLargestAntenna;
833 struct cal_ctl_data *rep;
834 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
835 0, { 0, 0, 0, 0}
836 };
837 struct cal_target_power_leg targetPowerOfdmExt = {
838 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
839 0, { 0, 0, 0, 0 }
840 };
841 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
842 0, {0, 0, 0, 0}
843 };
844 u8 scaledPower = 0, minCtlPower, maxRegAllowedPower;
845 u16 ctlModesFor11a[] =
846 { CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 };
847 u16 ctlModesFor11g[] =
848 { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
849 CTL_2GHT40
850 };
851 u16 numCtlModes, *pCtlMode, ctlMode, freq;
852 struct chan_centers centers;
853 int tx_chainmask;
854 u8 twiceMinEdgePower;
855
856 tx_chainmask = ahp->ah_txchainmask;
857
858 ath9k_hw_get_channel_centers(ah, chan, &centers);
859
860 twiceLargestAntenna = max(
861 pEepData->modalHeader
862 [IS_CHAN_2GHZ(chan)].antennaGainCh[0],
863 pEepData->modalHeader
864 [IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
865
866 twiceLargestAntenna = max((u8)twiceLargestAntenna,
867 pEepData->modalHeader
868 [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
869
870 twiceLargestAntenna = (int8_t)min(AntennaReduction - twiceLargestAntenna, 0);
871
872 maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
873
874 if (ah->ah_tpScale != ATH9K_TP_SCALE_MAX) {
875 maxRegAllowedPower -=
876 (tpScaleReductionTable[(ah->ah_tpScale)] * 2);
877 }
878
879 scaledPower = min(powerLimit, maxRegAllowedPower);
880
881 switch (ar5416_get_ntxchains(tx_chainmask)) {
882 case 1:
883 break;
884 case 2:
885 scaledPower -=
886 pEepData->modalHeader[IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain;
887 break;
888 case 3:
889 scaledPower -=
890 pEepData->modalHeader[IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain;
891 break;
892 }
893
894 scaledPower = max(0, (int32_t) scaledPower);
895
896 if (IS_CHAN_2GHZ(chan)) {
897 numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
898 SUB_NUM_CTL_MODES_AT_2G_40;
899 pCtlMode = ctlModesFor11g;
900
901 ath9k_hw_get_legacy_target_powers(ah, chan,
902 pEepData->calTargetPowerCck,
903 AR5416_NUM_2G_CCK_TARGET_POWERS,
904 &targetPowerCck, 4, false);
905 ath9k_hw_get_legacy_target_powers(ah, chan,
906 pEepData->calTargetPower2G,
907 AR5416_NUM_2G_20_TARGET_POWERS,
908 &targetPowerOfdm, 4, false);
909 ath9k_hw_get_target_powers(ah, chan,
910 pEepData->calTargetPower2GHT20,
911 AR5416_NUM_2G_20_TARGET_POWERS,
912 &targetPowerHt20, 8, false);
913
914 if (IS_CHAN_HT40(chan)) {
915 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
916 ath9k_hw_get_target_powers(ah, chan,
917 pEepData->calTargetPower2GHT40,
918 AR5416_NUM_2G_40_TARGET_POWERS,
919 &targetPowerHt40, 8, true);
920 ath9k_hw_get_legacy_target_powers(ah, chan,
921 pEepData->calTargetPowerCck,
922 AR5416_NUM_2G_CCK_TARGET_POWERS,
923 &targetPowerCckExt, 4, true);
924 ath9k_hw_get_legacy_target_powers(ah, chan,
925 pEepData->calTargetPower2G,
926 AR5416_NUM_2G_20_TARGET_POWERS,
927 &targetPowerOfdmExt, 4, true);
928 }
929 } else {
930 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
931 SUB_NUM_CTL_MODES_AT_5G_40;
932 pCtlMode = ctlModesFor11a;
933
934 ath9k_hw_get_legacy_target_powers(ah, chan,
935 pEepData->calTargetPower5G,
936 AR5416_NUM_5G_20_TARGET_POWERS,
937 &targetPowerOfdm, 4, false);
938 ath9k_hw_get_target_powers(ah, chan,
939 pEepData->calTargetPower5GHT20,
940 AR5416_NUM_5G_20_TARGET_POWERS,
941 &targetPowerHt20, 8, false);
942
943 if (IS_CHAN_HT40(chan)) {
944 numCtlModes = ARRAY_SIZE(ctlModesFor11a);
945 ath9k_hw_get_target_powers(ah, chan,
946 pEepData->calTargetPower5GHT40,
947 AR5416_NUM_5G_40_TARGET_POWERS,
948 &targetPowerHt40, 8, true);
949 ath9k_hw_get_legacy_target_powers(ah, chan,
950 pEepData->calTargetPower5G,
951 AR5416_NUM_5G_20_TARGET_POWERS,
952 &targetPowerOfdmExt, 4, true);
953 }
954 }
955
956 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
957 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
958 (pCtlMode[ctlMode] == CTL_2GHT40);
959 if (isHt40CtlMode)
960 freq = centers.synth_center;
961 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
962 freq = centers.ext_center;
963 else
964 freq = centers.ctl_center;
965
966 if (ar5416_get_eep_ver(ahp) == 14 && ar5416_get_eep_rev(ahp) <= 2)
967 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
968
969 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
970 "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, "
971 "EXT_ADDITIVE %d\n",
972 ctlMode, numCtlModes, isHt40CtlMode,
973 (pCtlMode[ctlMode] & EXT_ADDITIVE));
974
975 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
976 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
977 " LOOP-Ctlidx %d: cfgCtl 0x%2.2x "
978 "pCtlMode 0x%2.2x ctlIndex 0x%2.2x "
979 "chan %d\n",
980 i, cfgCtl, pCtlMode[ctlMode],
981 pEepData->ctlIndex[i], chan->channel);
982
983 if ((((cfgCtl & ~CTL_MODE_M) |
984 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
985 pEepData->ctlIndex[i]) ||
986 (((cfgCtl & ~CTL_MODE_M) |
987 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
988 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
989 rep = &(pEepData->ctlData[i]);
990
991 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
992 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
993 IS_CHAN_2GHZ(chan));
994
995 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
996 " MATCH-EE_IDX %d: ch %d is2 %d "
997 "2xMinEdge %d chainmask %d chains %d\n",
998 i, freq, IS_CHAN_2GHZ(chan),
999 twiceMinEdgePower, tx_chainmask,
1000 ar5416_get_ntxchains
1001 (tx_chainmask));
1002 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1003 twiceMaxEdgePower = min(twiceMaxEdgePower,
1004 twiceMinEdgePower);
1005 } else {
1006 twiceMaxEdgePower = twiceMinEdgePower;
1007 break;
1008 }
1009 }
1010 }
1011
1012 minCtlPower = min(twiceMaxEdgePower, scaledPower);
1013
1014 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
1015 " SEL-Min ctlMode %d pCtlMode %d "
1016 "2xMaxEdge %d sP %d minCtlPwr %d\n",
1017 ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
1018 scaledPower, minCtlPower);
1019
1020 switch (pCtlMode[ctlMode]) {
1021 case CTL_11B:
1022 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
1023 targetPowerCck.tPow2x[i] =
1024 min(targetPowerCck.tPow2x[i],
1025 minCtlPower);
1026 }
1027 break;
1028 case CTL_11A:
1029 case CTL_11G:
1030 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
1031 targetPowerOfdm.tPow2x[i] =
1032 min(targetPowerOfdm.tPow2x[i],
1033 minCtlPower);
1034 }
1035 break;
1036 case CTL_5GHT20:
1037 case CTL_2GHT20:
1038 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
1039 targetPowerHt20.tPow2x[i] =
1040 min(targetPowerHt20.tPow2x[i],
1041 minCtlPower);
1042 }
1043 break;
1044 case CTL_11B_EXT:
1045 targetPowerCckExt.tPow2x[0] =
1046 min(targetPowerCckExt.tPow2x[0], minCtlPower);
1047 break;
1048 case CTL_11A_EXT:
1049 case CTL_11G_EXT:
1050 targetPowerOfdmExt.tPow2x[0] =
1051 min(targetPowerOfdmExt.tPow2x[0], minCtlPower);
1052 break;
1053 case CTL_5GHT40:
1054 case CTL_2GHT40:
1055 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1056 targetPowerHt40.tPow2x[i] =
1057 min(targetPowerHt40.tPow2x[i],
1058 minCtlPower);
1059 }
1060 break;
1061 default:
1062 break;
1063 }
1064 }
1065
1066 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1067 ratesArray[rate18mb] = ratesArray[rate24mb] =
1068 targetPowerOfdm.tPow2x[0];
1069 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1070 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1071 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1072 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1073
1074 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1075 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1076
1077 if (IS_CHAN_2GHZ(chan)) {
1078 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1079 ratesArray[rate2s] = ratesArray[rate2l] =
1080 targetPowerCck.tPow2x[1];
1081 ratesArray[rate5_5s] = ratesArray[rate5_5l] =
1082 targetPowerCck.tPow2x[2];
1083 ;
1084 ratesArray[rate11s] = ratesArray[rate11l] =
1085 targetPowerCck.tPow2x[3];
1086 ;
1087 }
1088 if (IS_CHAN_HT40(chan)) {
1089 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1090 ratesArray[rateHt40_0 + i] =
1091 targetPowerHt40.tPow2x[i];
1092 }
1093 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1094 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1095 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1096 if (IS_CHAN_2GHZ(chan)) {
1097 ratesArray[rateExtCck] =
1098 targetPowerCckExt.tPow2x[0];
1099 }
1100 }
1101 return true;
1102}
1103
1104bool ath9k_hw_set_power_cal_table(struct ath_hal *ah,
1105 struct ath9k_channel *chan,
1106 int16_t *pTxPowerIndexOffset)
1107{
1108 struct ath_hal_5416 *ahp = AH5416(ah);
1109 struct ar5416_eeprom *pEepData = &ahp->ah_eeprom;
1110 struct cal_data_per_freq *pRawDataset;
1111 u8 *pCalBChans = NULL;
1112 u16 pdGainOverlap_t2;
1113 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
1114 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
1115 u16 numPiers, i, j;
1116 int16_t tMinCalPower;
1117 u16 numXpdGain, xpdMask;
1118 u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
1119 u32 reg32, regOffset, regChainOffset;
1120 int16_t modalIdx;
1121
1122 modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
1123 xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
1124
1125 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1126 AR5416_EEP_MINOR_VER_2) {
1127 pdGainOverlap_t2 =
1128 pEepData->modalHeader[modalIdx].pdGainOverlap;
1129 } else {
1130 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
1131 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
1132 }
1133
1134 if (IS_CHAN_2GHZ(chan)) {
1135 pCalBChans = pEepData->calFreqPier2G;
1136 numPiers = AR5416_NUM_2G_CAL_PIERS;
1137 } else {
1138 pCalBChans = pEepData->calFreqPier5G;
1139 numPiers = AR5416_NUM_5G_CAL_PIERS;
1140 }
1141
1142 numXpdGain = 0;
1143
1144 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
1145 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
1146 if (numXpdGain >= AR5416_NUM_PD_GAINS)
1147 break;
1148 xpdGainValues[numXpdGain] =
1149 (u16)(AR5416_PD_GAINS_IN_MASK - i);
1150 numXpdGain++;
1151 }
1152 }
1153
1154 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
1155 (numXpdGain - 1) & 0x3);
1156 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
1157 xpdGainValues[0]);
1158 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
1159 xpdGainValues[1]);
1160 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
1161 xpdGainValues[2]);
1162
1163 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1164 if (AR_SREV_5416_V20_OR_LATER(ah) &&
1165 (ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5) &&
1166 (i != 0)) {
1167 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
1168 } else
1169 regChainOffset = i * 0x1000;
1170
1171 if (pEepData->baseEepHeader.txMask & (1 << i)) {
1172 if (IS_CHAN_2GHZ(chan))
1173 pRawDataset = pEepData->calPierData2G[i];
1174 else
1175 pRawDataset = pEepData->calPierData5G[i];
1176
1177 ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
1178 pRawDataset, pCalBChans,
1179 numPiers, pdGainOverlap_t2,
1180 &tMinCalPower, gainBoundaries,
1181 pdadcValues, numXpdGain);
1182
1183 if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
1184 REG_WRITE(ah,
1185 AR_PHY_TPCRG5 + regChainOffset,
1186 SM(pdGainOverlap_t2,
1187 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
1188 | SM(gainBoundaries[0],
1189 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
1190 | SM(gainBoundaries[1],
1191 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
1192 | SM(gainBoundaries[2],
1193 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
1194 | SM(gainBoundaries[3],
1195 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
1196 }
1197
1198 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
1199 for (j = 0; j < 32; j++) {
1200 reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
1201 ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
1202 ((pdadcValues[4 * j + 2] & 0xFF) << 16) |
1203 ((pdadcValues[4 * j + 3] & 0xFF) << 24);
1204 REG_WRITE(ah, regOffset, reg32);
1205
04bd4638 1206 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
f1dc5600
S
1207 "PDADC (%d,%4x): %4.4x %8.8x\n",
1208 i, regChainOffset, regOffset,
1209 reg32);
04bd4638 1210 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
f1dc5600
S
1211 "PDADC: Chain %d | PDADC %3d Value %3d | "
1212 "PDADC %3d Value %3d | PDADC %3d Value %3d | "
1213 "PDADC %3d Value %3d |\n",
1214 i, 4 * j, pdadcValues[4 * j],
1215 4 * j + 1, pdadcValues[4 * j + 1],
1216 4 * j + 2, pdadcValues[4 * j + 2],
1217 4 * j + 3,
1218 pdadcValues[4 * j + 3]);
1219
1220 regOffset += 4;
1221 }
1222 }
1223 }
1224
1225 *pTxPowerIndexOffset = 0;
1226
1227 return true;
1228}
1229
1230/* XXX: Clean me up, make me more legible */
1231bool ath9k_hw_eeprom_set_board_values(struct ath_hal *ah,
1232 struct ath9k_channel *chan)
1233{
1234 struct modal_eep_header *pModal;
1235 struct ath_hal_5416 *ahp = AH5416(ah);
1236 struct ar5416_eeprom *eep = &ahp->ah_eeprom;
1237 int i, regChainOffset;
1238 u8 txRxAttenLocal;
1239 u16 ant_config;
1240
1241 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
1242
1243 txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
1244
4d3601b2 1245 ath9k_hw_get_eeprom_antenna_cfg(ah, chan, 0, &ant_config);
f1dc5600
S
1246 REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
1247
1248 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1249 if (AR_SREV_9280(ah)) {
1250 if (i >= 2)
1251 break;
1252 }
1253
1254 if (AR_SREV_5416_V20_OR_LATER(ah) &&
1255 (ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5)
1256 && (i != 0))
1257 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
1258 else
1259 regChainOffset = i * 0x1000;
1260
1261 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
1262 pModal->antCtrlChain[i]);
1263
1264 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
1265 (REG_READ(ah,
1266 AR_PHY_TIMING_CTRL4(0) +
1267 regChainOffset) &
1268 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
1269 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
1270 SM(pModal->iqCalICh[i],
1271 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
1272 SM(pModal->iqCalQCh[i],
1273 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
1274
1275 if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
1276 if ((eep->baseEepHeader.version &
1277 AR5416_EEP_VER_MINOR_MASK) >=
1278 AR5416_EEP_MINOR_VER_3) {
1279 txRxAttenLocal = pModal->txRxAttenCh[i];
1280 if (AR_SREV_9280_10_OR_LATER(ah)) {
1281 REG_RMW_FIELD(ah,
1282 AR_PHY_GAIN_2GHZ +
1283 regChainOffset,
1284 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
1285 pModal->
1286 bswMargin[i]);
1287 REG_RMW_FIELD(ah,
1288 AR_PHY_GAIN_2GHZ +
1289 regChainOffset,
1290 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
1291 pModal->
1292 bswAtten[i]);
1293 REG_RMW_FIELD(ah,
1294 AR_PHY_GAIN_2GHZ +
1295 regChainOffset,
1296 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
1297 pModal->
1298 xatten2Margin[i]);
1299 REG_RMW_FIELD(ah,
1300 AR_PHY_GAIN_2GHZ +
1301 regChainOffset,
1302 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
1303 pModal->
1304 xatten2Db[i]);
1305 } else {
1306 REG_WRITE(ah,
1307 AR_PHY_GAIN_2GHZ +
1308 regChainOffset,
1309 (REG_READ(ah,
1310 AR_PHY_GAIN_2GHZ +
1311 regChainOffset) &
1312 ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
1313 | SM(pModal->
1314 bswMargin[i],
1315 AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1316 REG_WRITE(ah,
1317 AR_PHY_GAIN_2GHZ +
1318 regChainOffset,
1319 (REG_READ(ah,
1320 AR_PHY_GAIN_2GHZ +
1321 regChainOffset) &
1322 ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
1323 | SM(pModal->bswAtten[i],
1324 AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1325 }
1326 }
1327 if (AR_SREV_9280_10_OR_LATER(ah)) {
1328 REG_RMW_FIELD(ah,
1329 AR_PHY_RXGAIN +
1330 regChainOffset,
1331 AR9280_PHY_RXGAIN_TXRX_ATTEN,
1332 txRxAttenLocal);
1333 REG_RMW_FIELD(ah,
1334 AR_PHY_RXGAIN +
1335 regChainOffset,
1336 AR9280_PHY_RXGAIN_TXRX_MARGIN,
1337 pModal->rxTxMarginCh[i]);
1338 } else {
1339 REG_WRITE(ah,
1340 AR_PHY_RXGAIN + regChainOffset,
1341 (REG_READ(ah,
1342 AR_PHY_RXGAIN +
1343 regChainOffset) &
1344 ~AR_PHY_RXGAIN_TXRX_ATTEN) |
1345 SM(txRxAttenLocal,
1346 AR_PHY_RXGAIN_TXRX_ATTEN));
1347 REG_WRITE(ah,
1348 AR_PHY_GAIN_2GHZ +
1349 regChainOffset,
1350 (REG_READ(ah,
1351 AR_PHY_GAIN_2GHZ +
1352 regChainOffset) &
1353 ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
1354 SM(pModal->rxTxMarginCh[i],
1355 AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
1356 }
1357 }
1358 }
1359
1360 if (AR_SREV_9280_10_OR_LATER(ah)) {
1361 if (IS_CHAN_2GHZ(chan)) {
1362 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
1363 AR_AN_RF2G1_CH0_OB,
1364 AR_AN_RF2G1_CH0_OB_S,
1365 pModal->ob);
1366 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
1367 AR_AN_RF2G1_CH0_DB,
1368 AR_AN_RF2G1_CH0_DB_S,
1369 pModal->db);
1370 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
1371 AR_AN_RF2G1_CH1_OB,
1372 AR_AN_RF2G1_CH1_OB_S,
1373 pModal->ob_ch1);
1374 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
1375 AR_AN_RF2G1_CH1_DB,
1376 AR_AN_RF2G1_CH1_DB_S,
1377 pModal->db_ch1);
1378 } else {
1379 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
1380 AR_AN_RF5G1_CH0_OB5,
1381 AR_AN_RF5G1_CH0_OB5_S,
1382 pModal->ob);
1383 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
1384 AR_AN_RF5G1_CH0_DB5,
1385 AR_AN_RF5G1_CH0_DB5_S,
1386 pModal->db);
1387 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
1388 AR_AN_RF5G1_CH1_OB5,
1389 AR_AN_RF5G1_CH1_OB5_S,
1390 pModal->ob_ch1);
1391 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
1392 AR_AN_RF5G1_CH1_DB5,
1393 AR_AN_RF5G1_CH1_DB5_S,
1394 pModal->db_ch1);
1395 }
1396 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
1397 AR_AN_TOP2_XPABIAS_LVL,
1398 AR_AN_TOP2_XPABIAS_LVL_S,
1399 pModal->xpaBiasLvl);
1400 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
1401 AR_AN_TOP2_LOCALBIAS,
1402 AR_AN_TOP2_LOCALBIAS_S,
1403 pModal->local_bias);
1404 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "ForceXPAon: %d\n",
1405 pModal->force_xpaon);
1406 REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
1407 pModal->force_xpaon);
1408 }
1409
1410 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
1411 pModal->switchSettling);
1412 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
1413 pModal->adcDesiredSize);
1414
1415 if (!AR_SREV_9280_10_OR_LATER(ah))
1416 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
1417 AR_PHY_DESIRED_SZ_PGA,
1418 pModal->pgaDesiredSize);
1419
1420 REG_WRITE(ah, AR_PHY_RF_CTL4,
1421 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
1422 | SM(pModal->txEndToXpaOff,
1423 AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
1424 | SM(pModal->txFrameToXpaOn,
1425 AR_PHY_RF_CTL4_FRAME_XPAA_ON)
1426 | SM(pModal->txFrameToXpaOn,
1427 AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1428
1429 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1430 pModal->txEndToRxOn);
1431 if (AR_SREV_9280_10_OR_LATER(ah)) {
1432 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1433 pModal->thresh62);
1434 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
1435 AR_PHY_EXT_CCA0_THRESH62,
1436 pModal->thresh62);
1437 } else {
1438 REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
1439 pModal->thresh62);
1440 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
1441 AR_PHY_EXT_CCA_THRESH62,
1442 pModal->thresh62);
1443 }
1444
1445 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1446 AR5416_EEP_MINOR_VER_2) {
1447 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
1448 AR_PHY_TX_END_DATA_START,
1449 pModal->txFrameToDataStart);
1450 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
1451 pModal->txFrameToPaOn);
1452 }
1453
1454 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1455 AR5416_EEP_MINOR_VER_3) {
1456 if (IS_CHAN_HT40(chan))
1457 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1458 AR_PHY_SETTLING_SWITCH,
1459 pModal->swSettleHt40);
1460 }
1461
1462 return true;
1463}
1464
1465int ath9k_hw_get_eeprom_antenna_cfg(struct ath_hal *ah,
1466 struct ath9k_channel *chan,
1467 u8 index, u16 *config)
1468{
1469 struct ath_hal_5416 *ahp = AH5416(ah);
1470 struct ar5416_eeprom *eep = &ahp->ah_eeprom;
1471 struct modal_eep_header *pModal =
1472 &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
1473 struct base_eep_header *pBase = &eep->baseEepHeader;
1474
1475 switch (index) {
1476 case 0:
1477 *config = pModal->antCtrlCommon & 0xFFFF;
1478 return 0;
1479 case 1:
1480 if (pBase->version >= 0x0E0D) {
1481 if (pModal->useAnt1) {
1482 *config =
1483 ((pModal->antCtrlCommon & 0xFFFF0000) >> 16);
1484 return 0;
1485 }
1486 }
1487 break;
1488 default:
1489 break;
1490 }
1491
1492 return -EINVAL;
1493}
1494
1495u8 ath9k_hw_get_num_ant_config(struct ath_hal *ah,
1496 enum ieee80211_band freq_band)
1497{
1498 struct ath_hal_5416 *ahp = AH5416(ah);
1499 struct ar5416_eeprom *eep = &ahp->ah_eeprom;
1500 struct modal_eep_header *pModal =
1501 &(eep->modalHeader[IEEE80211_BAND_5GHZ == freq_band]);
1502 struct base_eep_header *pBase = &eep->baseEepHeader;
1503 u8 num_ant_config;
1504
1505 num_ant_config = 1;
1506
1507 if (pBase->version >= 0x0E0D)
1508 if (pModal->useAnt1)
1509 num_ant_config += 1;
1510
1511 return num_ant_config;
1512}
1513
1514u16 ath9k_hw_eeprom_get_spur_chan(struct ath_hal *ah, u16 i, bool is2GHz)
1515{
1516 struct ath_hal_5416 *ahp = AH5416(ah);
1517 struct ar5416_eeprom *eep =
1518 (struct ar5416_eeprom *) &ahp->ah_eeprom;
1519 u16 spur_val = AR_NO_SPUR;
1520
1521 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
1522 "Getting spur idx %d is2Ghz. %d val %x\n",
1523 i, is2GHz, ah->ah_config.spurchans[i][is2GHz]);
1524
1525 switch (ah->ah_config.spurmode) {
1526 case SPUR_DISABLE:
1527 break;
1528 case SPUR_ENABLE_IOCTL:
1529 spur_val = ah->ah_config.spurchans[i][is2GHz];
1530 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
1531 "Getting spur val from new loc. %d\n", spur_val);
1532 break;
1533 case SPUR_ENABLE_EEPROM:
1534 spur_val = eep->modalHeader[is2GHz].spurChans[i].spurChan;
1535 break;
1536
1537 }
1538
1539 return spur_val;
1540}
1541
1542u32 ath9k_hw_get_eeprom(struct ath_hal *ah,
1543 enum eeprom_param param)
1544{
1545 struct ath_hal_5416 *ahp = AH5416(ah);
1546 struct ar5416_eeprom *eep = &ahp->ah_eeprom;
1547 struct modal_eep_header *pModal = eep->modalHeader;
1548 struct base_eep_header *pBase = &eep->baseEepHeader;
1549
1550 switch (param) {
1551 case EEP_NFTHRESH_5:
f9bbf431 1552 return pModal[0].noiseFloorThreshCh[0];
f1dc5600 1553 case EEP_NFTHRESH_2:
f9bbf431 1554 return pModal[1].noiseFloorThreshCh[0];
f1dc5600
S
1555 case AR_EEPROM_MAC(0):
1556 return pBase->macAddr[0] << 8 | pBase->macAddr[1];
1557 case AR_EEPROM_MAC(1):
1558 return pBase->macAddr[2] << 8 | pBase->macAddr[3];
1559 case AR_EEPROM_MAC(2):
1560 return pBase->macAddr[4] << 8 | pBase->macAddr[5];
1561 case EEP_REG_0:
1562 return pBase->regDmn[0];
1563 case EEP_REG_1:
1564 return pBase->regDmn[1];
1565 case EEP_OP_CAP:
1566 return pBase->deviceCap;
1567 case EEP_OP_MODE:
1568 return pBase->opCapFlags;
1569 case EEP_RF_SILENT:
1570 return pBase->rfSilent;
1571 case EEP_OB_5:
1572 return pModal[0].ob;
1573 case EEP_DB_5:
1574 return pModal[0].db;
1575 case EEP_OB_2:
1576 return pModal[1].ob;
1577 case EEP_DB_2:
1578 return pModal[1].db;
1579 case EEP_MINOR_REV:
1580 return pBase->version & AR5416_EEP_VER_MINOR_MASK;
1581 case EEP_TX_MASK:
1582 return pBase->txMask;
1583 case EEP_RX_MASK:
1584 return pBase->rxMask;
9f804202
SB
1585 case EEP_RXGAIN_TYPE:
1586 return pBase->rxGainType;
1587 case EEP_TXGAIN_TYPE:
1588 return pBase->txGainType;
1589
f1dc5600
S
1590 default:
1591 return 0;
1592 }
1593}
1594
1595int ath9k_hw_eeprom_attach(struct ath_hal *ah)
1596{
1597 int status;
1598
1599 if (ath9k_hw_use_flash(ah))
1600 ath9k_hw_flash_map(ah);
1601
1602 if (!ath9k_hw_fill_eeprom(ah))
1603 return -EIO;
1604
1605 status = ath9k_hw_check_eeprom(ah);
1606
1607 return status;
1608}
This page took 0.10411 seconds and 5 git commands to generate.