Commit | Line | Data |
---|---|---|
f078f209 LR |
1 | /* |
2 | * Copyright (c) 2004 Video54 Technologies, Inc. | |
3 | * Copyright (c) 2004-2008 Atheros Communications, Inc. | |
4 | * | |
5 | * Permission to use, copy, modify, and/or distribute this software for any | |
6 | * purpose with or without fee is hereby granted, provided that the above | |
7 | * copyright notice and this permission notice appear in all copies. | |
8 | * | |
9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | |
10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | |
11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | |
12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | |
13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | |
14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | |
15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | |
16 | */ | |
17 | ||
18 | /* | |
19 | * Atheros rate control algorithm | |
20 | */ | |
21 | ||
22 | #include "core.h" | |
23 | #include "../net/mac80211/rate.h" | |
24 | ||
25 | static u32 tx_triglevel_max; | |
26 | ||
27 | static struct ath_rate_table ar5416_11na_ratetable = { | |
28 | 42, | |
29 | { | |
30 | { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 6 Mb */ | |
31 | 5400, 0x0b, 0x00, 12, | |
32 | 0, 2, 1, 0, 0, 0, 0, 0 }, | |
33 | { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 9 Mb */ | |
34 | 7800, 0x0f, 0x00, 18, | |
35 | 0, 3, 1, 1, 1, 1, 1, 0 }, | |
36 | { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */ | |
37 | 10000, 0x0a, 0x00, 24, | |
38 | 2, 4, 2, 2, 2, 2, 2, 0 }, | |
39 | { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */ | |
40 | 13900, 0x0e, 0x00, 36, | |
41 | 2, 6, 2, 3, 3, 3, 3, 0 }, | |
42 | { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */ | |
43 | 17300, 0x09, 0x00, 48, | |
44 | 4, 10, 3, 4, 4, 4, 4, 0 }, | |
45 | { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */ | |
46 | 23000, 0x0d, 0x00, 72, | |
47 | 4, 14, 3, 5, 5, 5, 5, 0 }, | |
48 | { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */ | |
49 | 27400, 0x08, 0x00, 96, | |
50 | 4, 20, 3, 6, 6, 6, 6, 0 }, | |
51 | { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */ | |
52 | 29300, 0x0c, 0x00, 108, | |
53 | 4, 23, 3, 7, 7, 7, 7, 0 }, | |
54 | { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 6500, /* 6.5 Mb */ | |
55 | 6400, 0x80, 0x00, 0, | |
56 | 0, 2, 3, 8, 24, 8, 24, 3216 }, | |
57 | { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 13000, /* 13 Mb */ | |
58 | 12700, 0x81, 0x00, 1, | |
59 | 2, 4, 3, 9, 25, 9, 25, 6434 }, | |
60 | { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 19500, /* 19.5 Mb */ | |
61 | 18800, 0x82, 0x00, 2, | |
62 | 2, 6, 3, 10, 26, 10, 26, 9650 }, | |
63 | { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 26000, /* 26 Mb */ | |
64 | 25000, 0x83, 0x00, 3, | |
65 | 4, 10, 3, 11, 27, 11, 27, 12868 }, | |
66 | { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 39000, /* 39 Mb */ | |
67 | 36700, 0x84, 0x00, 4, | |
68 | 4, 14, 3, 12, 28, 12, 28, 19304 }, | |
69 | { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 52000, /* 52 Mb */ | |
70 | 48100, 0x85, 0x00, 5, | |
71 | 4, 20, 3, 13, 29, 13, 29, 25740 }, | |
72 | { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 58500, /* 58.5 Mb */ | |
73 | 53500, 0x86, 0x00, 6, | |
74 | 4, 23, 3, 14, 30, 14, 30, 28956 }, | |
75 | { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 65000, /* 65 Mb */ | |
76 | 59000, 0x87, 0x00, 7, | |
77 | 4, 25, 3, 15, 31, 15, 32, 32180 }, | |
78 | { FALSE, FALSE, WLAN_PHY_HT_20_DS, 13000, /* 13 Mb */ | |
79 | 12700, 0x88, 0x00, | |
80 | 8, 0, 2, 3, 16, 33, 16, 33, 6430 }, | |
81 | { FALSE, FALSE, WLAN_PHY_HT_20_DS, 26000, /* 26 Mb */ | |
82 | 24800, 0x89, 0x00, 9, | |
83 | 2, 4, 3, 17, 34, 17, 34, 12860 }, | |
84 | { FALSE, FALSE, WLAN_PHY_HT_20_DS, 39000, /* 39 Mb */ | |
85 | 36600, 0x8a, 0x00, 10, | |
86 | 2, 6, 3, 18, 35, 18, 35, 19300 }, | |
87 | { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 52000, /* 52 Mb */ | |
88 | 48100, 0x8b, 0x00, 11, | |
89 | 4, 10, 3, 19, 36, 19, 36, 25736 }, | |
90 | { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 78000, /* 78 Mb */ | |
91 | 69500, 0x8c, 0x00, 12, | |
92 | 4, 14, 3, 20, 37, 20, 37, 38600 }, | |
93 | { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 104000, /* 104 Mb */ | |
94 | 89500, 0x8d, 0x00, 13, | |
95 | 4, 20, 3, 21, 38, 21, 38, 51472 }, | |
96 | { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 117000, /* 117 Mb */ | |
97 | 98900, 0x8e, 0x00, 14, | |
98 | 4, 23, 3, 22, 39, 22, 39, 57890 }, | |
99 | { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 130000, /* 130 Mb */ | |
100 | 108300, 0x8f, 0x00, 15, | |
101 | 4, 25, 3, 23, 40, 23, 41, 64320 }, | |
102 | { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 13500, /* 13.5 Mb */ | |
103 | 13200, 0x80, 0x00, 0, | |
104 | 0, 2, 3, 8, 24, 24, 24, 6684 }, | |
105 | { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 27500, /* 27.0 Mb */ | |
106 | 25900, 0x81, 0x00, 1, | |
107 | 2, 4, 3, 9, 25, 25, 25, 13368 }, | |
108 | { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 40500, /* 40.5 Mb */ | |
109 | 38600, 0x82, 0x00, 2, | |
110 | 2, 6, 3, 10, 26, 26, 26, 20052 }, | |
111 | { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 54000, /* 54 Mb */ | |
112 | 49800, 0x83, 0x00, 3, | |
113 | 4, 10, 3, 11, 27, 27, 27, 26738 }, | |
114 | { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 81500, /* 81 Mb */ | |
115 | 72200, 0x84, 0x00, 4, | |
116 | 4, 14, 3, 12, 28, 28, 28, 40104 }, | |
117 | { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 108000, /* 108 Mb */ | |
118 | 92900, 0x85, 0x00, 5, | |
119 | 4, 20, 3, 13, 29, 29, 29, 53476 }, | |
120 | { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 121500, /* 121.5 Mb */ | |
121 | 102700, 0x86, 0x00, 6, | |
122 | 4, 23, 3, 14, 30, 30, 30, 60156 }, | |
123 | { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 135000, /* 135 Mb */ | |
124 | 112000, 0x87, 0x00, 7, | |
125 | 4, 25, 3, 15, 31, 32, 32, 66840 }, | |
126 | { FALSE, TRUE_40, WLAN_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */ | |
127 | 122000, 0x87, 0x00, 7, | |
128 | 4, 25, 3, 15, 31, 32, 32, 74200 }, | |
129 | { FALSE, FALSE, WLAN_PHY_HT_40_DS, 27000, /* 27 Mb */ | |
130 | 25800, 0x88, 0x00, 8, | |
131 | 0, 2, 3, 16, 33, 33, 33, 13360 }, | |
132 | { FALSE, FALSE, WLAN_PHY_HT_40_DS, 54000, /* 54 Mb */ | |
133 | 49800, 0x89, 0x00, 9, | |
134 | 2, 4, 3, 17, 34, 34, 34, 26720 }, | |
135 | { FALSE, FALSE, WLAN_PHY_HT_40_DS, 81000, /* 81 Mb */ | |
136 | 71900, 0x8a, 0x00, 10, | |
137 | 2, 6, 3, 18, 35, 35, 35, 40080 }, | |
138 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 108000, /* 108 Mb */ | |
139 | 92500, 0x8b, 0x00, 11, | |
140 | 4, 10, 3, 19, 36, 36, 36, 53440 }, | |
141 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 162000, /* 162 Mb */ | |
142 | 130300, 0x8c, 0x00, 12, | |
143 | 4, 14, 3, 20, 37, 37, 37, 80160 }, | |
144 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 216000, /* 216 Mb */ | |
145 | 162800, 0x8d, 0x00, 13, | |
146 | 4, 20, 3, 21, 38, 38, 38, 106880 }, | |
147 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 243000, /* 243 Mb */ | |
148 | 178200, 0x8e, 0x00, 14, | |
149 | 4, 23, 3, 22, 39, 39, 39, 120240 }, | |
150 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 270000, /* 270 Mb */ | |
151 | 192100, 0x8f, 0x00, 15, | |
152 | 4, 25, 3, 23, 40, 41, 41, 133600 }, | |
153 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */ | |
154 | 207000, 0x8f, 0x00, 15, | |
155 | 4, 25, 3, 23, 40, 41, 41, 148400 }, | |
156 | }, | |
157 | 50, /* probe interval */ | |
158 | 50, /* rssi reduce interval */ | |
159 | WLAN_RC_HT_FLAG, /* Phy rates allowed initially */ | |
160 | }; | |
161 | ||
162 | /* TRUE_ALL - valid for 20/40/Legacy, | |
163 | * TRUE - Legacy only, | |
164 | * TRUE_20 - HT 20 only, | |
165 | * TRUE_40 - HT 40 only */ | |
166 | ||
167 | /* 4ms frame limit not used for NG mode. The values filled | |
168 | * for HT are the 64K max aggregate limit */ | |
169 | ||
170 | static struct ath_rate_table ar5416_11ng_ratetable = { | |
171 | 46, | |
172 | { | |
173 | { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 1000, /* 1 Mb */ | |
174 | 900, 0x1b, 0x00, 2, | |
175 | 0, 0, 1, 0, 0, 0, 0, 0 }, | |
176 | { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 2000, /* 2 Mb */ | |
177 | 1900, 0x1a, 0x04, 4, | |
178 | 1, 1, 1, 1, 1, 1, 1, 0 }, | |
179 | { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 5500, /* 5.5 Mb */ | |
180 | 4900, 0x19, 0x04, 11, | |
181 | 2, 2, 2, 2, 2, 2, 2, 0 }, | |
182 | { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 11000, /* 11 Mb */ | |
183 | 8100, 0x18, 0x04, 22, | |
184 | 3, 3, 2, 3, 3, 3, 3, 0 }, | |
185 | { FALSE, FALSE, WLAN_PHY_OFDM, 6000, /* 6 Mb */ | |
186 | 5400, 0x0b, 0x00, 12, | |
187 | 4, 2, 1, 4, 4, 4, 4, 0 }, | |
188 | { FALSE, FALSE, WLAN_PHY_OFDM, 9000, /* 9 Mb */ | |
189 | 7800, 0x0f, 0x00, 18, | |
190 | 4, 3, 1, 5, 5, 5, 5, 0 }, | |
191 | { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */ | |
192 | 10100, 0x0a, 0x00, 24, | |
193 | 6, 4, 1, 6, 6, 6, 6, 0 }, | |
194 | { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */ | |
195 | 14100, 0x0e, 0x00, 36, | |
196 | 6, 6, 2, 7, 7, 7, 7, 0 }, | |
197 | { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */ | |
198 | 17700, 0x09, 0x00, 48, | |
199 | 8, 10, 3, 8, 8, 8, 8, 0 }, | |
200 | { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */ | |
201 | 23700, 0x0d, 0x00, 72, | |
202 | 8, 14, 3, 9, 9, 9, 9, 0 }, | |
203 | { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */ | |
204 | 27400, 0x08, 0x00, 96, | |
205 | 8, 20, 3, 10, 10, 10, 10, 0 }, | |
206 | { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */ | |
207 | 30900, 0x0c, 0x00, 108, | |
208 | 8, 23, 3, 11, 11, 11, 11, 0 }, | |
209 | { FALSE, FALSE, WLAN_PHY_HT_20_SS, 6500, /* 6.5 Mb */ | |
210 | 6400, 0x80, 0x00, 0, | |
211 | 4, 2, 3, 12, 28, 12, 28, 3216 }, | |
212 | { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 13000, /* 13 Mb */ | |
213 | 12700, 0x81, 0x00, 1, | |
214 | 6, 4, 3, 13, 29, 13, 29, 6434 }, | |
215 | { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 19500, /* 19.5 Mb */ | |
216 | 18800, 0x82, 0x00, 2, | |
217 | 6, 6, 3, 14, 30, 14, 30, 9650 }, | |
218 | { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 26000, /* 26 Mb */ | |
219 | 25000, 0x83, 0x00, 3, | |
220 | 8, 10, 3, 15, 31, 15, 31, 12868 }, | |
221 | { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 39000, /* 39 Mb */ | |
222 | 36700, 0x84, 0x00, 4, | |
223 | 8, 14, 3, 16, 32, 16, 32, 19304 }, | |
224 | { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 52000, /* 52 Mb */ | |
225 | 48100, 0x85, 0x00, 5, | |
226 | 8, 20, 3, 17, 33, 17, 33, 25740 }, | |
227 | { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 58500, /* 58.5 Mb */ | |
228 | 53500, 0x86, 0x00, 6, | |
229 | 8, 23, 3, 18, 34, 18, 34, 28956 }, | |
230 | { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 65000, /* 65 Mb */ | |
231 | 59000, 0x87, 0x00, 7, | |
232 | 8, 25, 3, 19, 35, 19, 36, 32180 }, | |
233 | { FALSE, FALSE, WLAN_PHY_HT_20_DS, 13000, /* 13 Mb */ | |
234 | 12700, 0x88, 0x00, 8, | |
235 | 4, 2, 3, 20, 37, 20, 37, 6430 }, | |
236 | { FALSE, FALSE, WLAN_PHY_HT_20_DS, 26000, /* 26 Mb */ | |
237 | 24800, 0x89, 0x00, 9, | |
238 | 6, 4, 3, 21, 38, 21, 38, 12860 }, | |
239 | { FALSE, FALSE, WLAN_PHY_HT_20_DS, 39000, /* 39 Mb */ | |
240 | 36600, 0x8a, 0x00, 10, | |
241 | 6, 6, 3, 22, 39, 22, 39, 19300 }, | |
242 | { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 52000, /* 52 Mb */ | |
243 | 48100, 0x8b, 0x00, 11, | |
244 | 8, 10, 3, 23, 40, 23, 40, 25736 }, | |
245 | { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 78000, /* 78 Mb */ | |
246 | 69500, 0x8c, 0x00, 12, | |
247 | 8, 14, 3, 24, 41, 24, 41, 38600 }, | |
248 | { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 104000, /* 104 Mb */ | |
249 | 89500, 0x8d, 0x00, 13, | |
250 | 8, 20, 3, 25, 42, 25, 42, 51472 }, | |
251 | { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 117000, /* 117 Mb */ | |
252 | 98900, 0x8e, 0x00, 14, | |
253 | 8, 23, 3, 26, 43, 26, 44, 57890 }, | |
254 | { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 130000, /* 130 Mb */ | |
255 | 108300, 0x8f, 0x00, 15, | |
256 | 8, 25, 3, 27, 44, 27, 45, 64320 }, | |
257 | { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 13500, /* 13.5 Mb */ | |
258 | 13200, 0x80, 0x00, 0, | |
259 | 8, 2, 3, 12, 28, 28, 28, 6684 }, | |
260 | { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 27500, /* 27.0 Mb */ | |
261 | 25900, 0x81, 0x00, 1, | |
262 | 8, 4, 3, 13, 29, 29, 29, 13368 }, | |
263 | { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 40500, /* 40.5 Mb */ | |
264 | 38600, 0x82, 0x00, 2, | |
265 | 8, 6, 3, 14, 30, 30, 30, 20052 }, | |
266 | { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 54000, /* 54 Mb */ | |
267 | 49800, 0x83, 0x00, 3, | |
268 | 8, 10, 3, 15, 31, 31, 31, 26738 }, | |
269 | { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 81500, /* 81 Mb */ | |
270 | 72200, 0x84, 0x00, 4, | |
271 | 8, 14, 3, 16, 32, 32, 32, 40104 }, | |
272 | { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 108000, /* 108 Mb */ | |
273 | 92900, 0x85, 0x00, 5, | |
274 | 8, 20, 3, 17, 33, 33, 33, 53476 }, | |
275 | { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 121500, /* 121.5 Mb */ | |
276 | 102700, 0x86, 0x00, 6, | |
277 | 8, 23, 3, 18, 34, 34, 34, 60156 }, | |
278 | { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 135000, /* 135 Mb */ | |
279 | 112000, 0x87, 0x00, 7, | |
280 | 8, 23, 3, 19, 35, 36, 36, 66840 }, | |
281 | { FALSE, TRUE_40, WLAN_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */ | |
282 | 122000, 0x87, 0x00, 7, | |
283 | 8, 25, 3, 19, 35, 36, 36, 74200 }, | |
284 | { FALSE, FALSE, WLAN_PHY_HT_40_DS, 27000, /* 27 Mb */ | |
285 | 25800, 0x88, 0x00, 8, | |
286 | 8, 2, 3, 20, 37, 37, 37, 13360 }, | |
287 | { FALSE, FALSE, WLAN_PHY_HT_40_DS, 54000, /* 54 Mb */ | |
288 | 49800, 0x89, 0x00, 9, | |
289 | 8, 4, 3, 21, 38, 38, 38, 26720 }, | |
290 | { FALSE, FALSE, WLAN_PHY_HT_40_DS, 81000, /* 81 Mb */ | |
291 | 71900, 0x8a, 0x00, 10, | |
292 | 8, 6, 3, 22, 39, 39, 39, 40080 }, | |
293 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 108000, /* 108 Mb */ | |
294 | 92500, 0x8b, 0x00, 11, | |
295 | 8, 10, 3, 23, 40, 40, 40, 53440 }, | |
296 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 162000, /* 162 Mb */ | |
297 | 130300, 0x8c, 0x00, 12, | |
298 | 8, 14, 3, 24, 41, 41, 41, 80160 }, | |
299 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 216000, /* 216 Mb */ | |
300 | 162800, 0x8d, 0x00, 13, | |
301 | 8, 20, 3, 25, 42, 42, 42, 106880 }, | |
302 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 243000, /* 243 Mb */ | |
303 | 178200, 0x8e, 0x00, 14, | |
304 | 8, 23, 3, 26, 43, 43, 43, 120240 }, | |
305 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 270000, /* 270 Mb */ | |
306 | 192100, 0x8f, 0x00, 15, | |
307 | 8, 23, 3, 27, 44, 45, 45, 133600 }, | |
308 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */ | |
309 | 207000, 0x8f, 0x00, 15, | |
310 | 8, 25, 3, 27, 44, 45, 45, 148400 }, | |
311 | }, | |
312 | 50, /* probe interval */ | |
313 | 50, /* rssi reduce interval */ | |
314 | WLAN_RC_HT_FLAG, /* Phy rates allowed initially */ | |
315 | }; | |
316 | ||
317 | static struct ath_rate_table ar5416_11a_ratetable = { | |
318 | 8, | |
319 | { | |
320 | { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 6 Mb */ | |
321 | 5400, 0x0b, 0x00, (0x80|12), | |
322 | 0, 2, 1, 0, 0 }, | |
323 | { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 9 Mb */ | |
324 | 7800, 0x0f, 0x00, 18, | |
325 | 0, 3, 1, 1, 0 }, | |
326 | { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */ | |
327 | 10000, 0x0a, 0x00, (0x80|24), | |
328 | 2, 4, 2, 2, 0 }, | |
329 | { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */ | |
330 | 13900, 0x0e, 0x00, 36, | |
331 | 2, 6, 2, 3, 0 }, | |
332 | { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */ | |
333 | 17300, 0x09, 0x00, (0x80|48), | |
334 | 4, 10, 3, 4, 0 }, | |
335 | { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */ | |
336 | 23000, 0x0d, 0x00, 72, | |
337 | 4, 14, 3, 5, 0 }, | |
338 | { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */ | |
339 | 27400, 0x08, 0x00, 96, | |
340 | 4, 19, 3, 6, 0 }, | |
341 | { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */ | |
342 | 29300, 0x0c, 0x00, 108, | |
343 | 4, 23, 3, 7, 0 }, | |
344 | }, | |
345 | 50, /* probe interval */ | |
346 | 50, /* rssi reduce interval */ | |
347 | 0, /* Phy rates allowed initially */ | |
348 | }; | |
349 | ||
350 | static struct ath_rate_table ar5416_11a_ratetable_Half = { | |
351 | 8, | |
352 | { | |
353 | { TRUE, TRUE, WLAN_PHY_OFDM, 3000, /* 6 Mb */ | |
354 | 2700, 0x0b, 0x00, (0x80|6), | |
355 | 0, 2, 1, 0, 0}, | |
356 | { TRUE, TRUE, WLAN_PHY_OFDM, 4500, /* 9 Mb */ | |
357 | 3900, 0x0f, 0x00, 9, | |
358 | 0, 3, 1, 1, 0 }, | |
359 | { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 12 Mb */ | |
360 | 5000, 0x0a, 0x00, (0x80|12), | |
361 | 2, 4, 2, 2, 0 }, | |
362 | { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 18 Mb */ | |
363 | 6950, 0x0e, 0x00, 18, | |
364 | 2, 6, 2, 3, 0 }, | |
365 | { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 24 Mb */ | |
366 | 8650, 0x09, 0x00, (0x80|24), | |
367 | 4, 10, 3, 4, 0 }, | |
368 | { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 36 Mb */ | |
369 | 11500, 0x0d, 0x00, 36, | |
370 | 4, 14, 3, 5, 0 }, | |
371 | { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 48 Mb */ | |
372 | 13700, 0x08, 0x00, 48, | |
373 | 4, 19, 3, 6, 0 }, | |
374 | { TRUE, TRUE, WLAN_PHY_OFDM, 27000, /* 54 Mb */ | |
375 | 14650, 0x0c, 0x00, 54, | |
376 | 4, 23, 3, 7, 0 }, | |
377 | }, | |
378 | 50, /* probe interval */ | |
379 | 50, /* rssi reduce interval */ | |
380 | 0, /* Phy rates allowed initially */ | |
381 | }; | |
382 | ||
383 | static struct ath_rate_table ar5416_11a_ratetable_Quarter = { | |
384 | 8, | |
385 | { | |
386 | { TRUE, TRUE, WLAN_PHY_OFDM, 1500, /* 6 Mb */ | |
387 | 1350, 0x0b, 0x00, (0x80|3), | |
388 | 0, 2, 1, 0, 0 }, | |
389 | { TRUE, TRUE, WLAN_PHY_OFDM, 2250, /* 9 Mb */ | |
390 | 1950, 0x0f, 0x00, 4, | |
391 | 0, 3, 1, 1, 0 }, | |
392 | { TRUE, TRUE, WLAN_PHY_OFDM, 3000, /* 12 Mb */ | |
393 | 2500, 0x0a, 0x00, (0x80|6), | |
394 | 2, 4, 2, 2, 0 }, | |
395 | { TRUE, TRUE, WLAN_PHY_OFDM, 4500, /* 18 Mb */ | |
396 | 3475, 0x0e, 0x00, 9, | |
397 | 2, 6, 2, 3, 0 }, | |
398 | { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 25 Mb */ | |
399 | 4325, 0x09, 0x00, (0x80|12), | |
400 | 4, 10, 3, 4, 0 }, | |
401 | { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 36 Mb */ | |
402 | 5750, 0x0d, 0x00, 18, | |
403 | 4, 14, 3, 5, 0 }, | |
404 | { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 48 Mb */ | |
405 | 6850, 0x08, 0x00, 24, | |
406 | 4, 19, 3, 6, 0 }, | |
407 | { TRUE, TRUE, WLAN_PHY_OFDM, 13500, /* 54 Mb */ | |
408 | 7325, 0x0c, 0x00, 27, | |
409 | 4, 23, 3, 7, 0 }, | |
410 | }, | |
411 | 50, /* probe interval */ | |
412 | 50, /* rssi reduce interval */ | |
413 | 0, /* Phy rates allowed initially */ | |
414 | }; | |
415 | ||
416 | static struct ath_rate_table ar5416_11g_ratetable = { | |
417 | 12, | |
418 | { | |
419 | { TRUE, TRUE, WLAN_PHY_CCK, 1000, /* 1 Mb */ | |
420 | 900, 0x1b, 0x00, 2, | |
421 | 0, 0, 1, 0, 0 }, | |
422 | { TRUE, TRUE, WLAN_PHY_CCK, 2000, /* 2 Mb */ | |
423 | 1900, 0x1a, 0x04, 4, | |
424 | 1, 1, 1, 1, 0 }, | |
425 | { TRUE, TRUE, WLAN_PHY_CCK, 5500, /* 5.5 Mb */ | |
426 | 4900, 0x19, 0x04, 11, | |
427 | 2, 2, 2, 2, 0 }, | |
428 | { TRUE, TRUE, WLAN_PHY_CCK, 11000, /* 11 Mb */ | |
429 | 8100, 0x18, 0x04, 22, | |
430 | 3, 3, 2, 3, 0 }, | |
431 | { FALSE, FALSE, WLAN_PHY_OFDM, 6000, /* 6 Mb */ | |
432 | 5400, 0x0b, 0x00, 12, | |
433 | 4, 2, 1, 4, 0 }, | |
434 | { FALSE, FALSE, WLAN_PHY_OFDM, 9000, /* 9 Mb */ | |
435 | 7800, 0x0f, 0x00, 18, | |
436 | 4, 3, 1, 5, 0 }, | |
437 | { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */ | |
438 | 10000, 0x0a, 0x00, 24, | |
439 | 6, 4, 1, 6, 0 }, | |
440 | { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */ | |
441 | 13900, 0x0e, 0x00, 36, | |
442 | 6, 6, 2, 7, 0 }, | |
443 | { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */ | |
444 | 17300, 0x09, 0x00, 48, | |
445 | 8, 10, 3, 8, 0 }, | |
446 | { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */ | |
447 | 23000, 0x0d, 0x00, 72, | |
448 | 8, 14, 3, 9, 0 }, | |
449 | { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */ | |
450 | 27400, 0x08, 0x00, 96, | |
451 | 8, 19, 3, 10, 0 }, | |
452 | { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */ | |
453 | 29300, 0x0c, 0x00, 108, | |
454 | 8, 23, 3, 11, 0 }, | |
455 | }, | |
456 | 50, /* probe interval */ | |
457 | 50, /* rssi reduce interval */ | |
458 | 0, /* Phy rates allowed initially */ | |
459 | }; | |
460 | ||
461 | static struct ath_rate_table ar5416_11b_ratetable = { | |
462 | 4, | |
463 | { | |
464 | { TRUE, TRUE, WLAN_PHY_CCK, 1000, /* 1 Mb */ | |
465 | 900, 0x1b, 0x00, (0x80|2), | |
466 | 0, 0, 1, 0, 0 }, | |
467 | { TRUE, TRUE, WLAN_PHY_CCK, 2000, /* 2 Mb */ | |
468 | 1800, 0x1a, 0x04, (0x80|4), | |
469 | 1, 1, 1, 1, 0 }, | |
470 | { TRUE, TRUE, WLAN_PHY_CCK, 5500, /* 5.5 Mb */ | |
471 | 4300, 0x19, 0x04, (0x80|11), | |
472 | 1, 2, 2, 2, 0 }, | |
473 | { TRUE, TRUE, WLAN_PHY_CCK, 11000, /* 11 Mb */ | |
474 | 7100, 0x18, 0x04, (0x80|22), | |
475 | 1, 4, 100, 3, 0 }, | |
476 | }, | |
477 | 100, /* probe interval */ | |
478 | 100, /* rssi reduce interval */ | |
479 | 0, /* Phy rates allowed initially */ | |
480 | }; | |
481 | ||
482 | static void ar5416_attach_ratetables(struct ath_rate_softc *sc) | |
483 | { | |
484 | /* | |
485 | * Attach rate tables. | |
486 | */ | |
487 | sc->hw_rate_table[WIRELESS_MODE_11b] = &ar5416_11b_ratetable; | |
488 | sc->hw_rate_table[WIRELESS_MODE_11a] = &ar5416_11a_ratetable; | |
489 | sc->hw_rate_table[WIRELESS_MODE_11g] = &ar5416_11g_ratetable; | |
490 | ||
491 | sc->hw_rate_table[WIRELESS_MODE_11NA_HT20] = &ar5416_11na_ratetable; | |
492 | sc->hw_rate_table[WIRELESS_MODE_11NG_HT20] = &ar5416_11ng_ratetable; | |
493 | sc->hw_rate_table[WIRELESS_MODE_11NA_HT40PLUS] = | |
494 | &ar5416_11na_ratetable; | |
495 | sc->hw_rate_table[WIRELESS_MODE_11NA_HT40MINUS] = | |
496 | &ar5416_11na_ratetable; | |
497 | sc->hw_rate_table[WIRELESS_MODE_11NG_HT40PLUS] = | |
498 | &ar5416_11ng_ratetable; | |
499 | sc->hw_rate_table[WIRELESS_MODE_11NG_HT40MINUS] = | |
500 | &ar5416_11ng_ratetable; | |
501 | } | |
502 | ||
503 | static void ar5416_setquarter_ratetable(struct ath_rate_softc *sc) | |
504 | { | |
505 | sc->hw_rate_table[WIRELESS_MODE_11a] = &ar5416_11a_ratetable_Quarter; | |
506 | return; | |
507 | } | |
508 | ||
509 | static void ar5416_sethalf_ratetable(struct ath_rate_softc *sc) | |
510 | { | |
511 | sc->hw_rate_table[WIRELESS_MODE_11a] = &ar5416_11a_ratetable_Half; | |
512 | return; | |
513 | } | |
514 | ||
515 | static void ar5416_setfull_ratetable(struct ath_rate_softc *sc) | |
516 | { | |
517 | sc->hw_rate_table[WIRELESS_MODE_11a] = &ar5416_11a_ratetable; | |
518 | return; | |
519 | } | |
520 | ||
521 | /* | |
522 | * Return the median of three numbers | |
523 | */ | |
524 | static inline int8_t median(int8_t a, int8_t b, int8_t c) | |
525 | { | |
526 | if (a >= b) { | |
527 | if (b >= c) | |
528 | return b; | |
529 | else if (a > c) | |
530 | return c; | |
531 | else | |
532 | return a; | |
533 | } else { | |
534 | if (a >= c) | |
535 | return a; | |
536 | else if (b >= c) | |
537 | return c; | |
538 | else | |
539 | return b; | |
540 | } | |
541 | } | |
542 | ||
543 | static void ath_rc_sort_validrates(const struct ath_rate_table *rate_table, | |
544 | struct ath_tx_ratectrl *rate_ctrl) | |
545 | { | |
546 | u8 i, j, idx, idx_next; | |
547 | ||
548 | for (i = rate_ctrl->max_valid_rate - 1; i > 0; i--) { | |
549 | for (j = 0; j <= i-1; j++) { | |
550 | idx = rate_ctrl->valid_rate_index[j]; | |
551 | idx_next = rate_ctrl->valid_rate_index[j+1]; | |
552 | ||
553 | if (rate_table->info[idx].ratekbps > | |
554 | rate_table->info[idx_next].ratekbps) { | |
555 | rate_ctrl->valid_rate_index[j] = idx_next; | |
556 | rate_ctrl->valid_rate_index[j+1] = idx; | |
557 | } | |
558 | } | |
559 | } | |
560 | } | |
561 | ||
562 | /* Access functions for valid_txrate_mask */ | |
563 | ||
564 | static void ath_rc_init_valid_txmask(struct ath_tx_ratectrl *rate_ctrl) | |
565 | { | |
566 | u8 i; | |
567 | ||
568 | for (i = 0; i < rate_ctrl->rate_table_size; i++) | |
569 | rate_ctrl->valid_rate_index[i] = FALSE; | |
570 | } | |
571 | ||
572 | static inline void ath_rc_set_valid_txmask(struct ath_tx_ratectrl *rate_ctrl, | |
573 | u8 index, int valid_tx_rate) | |
574 | { | |
575 | ASSERT(index <= rate_ctrl->rate_table_size); | |
576 | rate_ctrl->valid_rate_index[index] = valid_tx_rate ? TRUE : FALSE; | |
577 | } | |
578 | ||
579 | static inline int ath_rc_isvalid_txmask(struct ath_tx_ratectrl *rate_ctrl, | |
580 | u8 index) | |
581 | { | |
582 | ASSERT(index <= rate_ctrl->rate_table_size); | |
583 | return rate_ctrl->valid_rate_index[index]; | |
584 | } | |
585 | ||
586 | /* Iterators for valid_txrate_mask */ | |
587 | static inline int | |
588 | ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table, | |
589 | struct ath_tx_ratectrl *rate_ctrl, | |
590 | u8 cur_valid_txrate, | |
591 | u8 *next_idx) | |
592 | { | |
593 | u8 i; | |
594 | ||
595 | for (i = 0; i < rate_ctrl->max_valid_rate - 1; i++) { | |
596 | if (rate_ctrl->valid_rate_index[i] == cur_valid_txrate) { | |
597 | *next_idx = rate_ctrl->valid_rate_index[i+1]; | |
598 | return TRUE; | |
599 | } | |
600 | } | |
601 | ||
602 | /* No more valid rates */ | |
603 | *next_idx = 0; | |
604 | return FALSE; | |
605 | } | |
606 | ||
607 | /* Return true only for single stream */ | |
608 | ||
609 | static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw) | |
610 | { | |
611 | if (WLAN_RC_PHY_HT(phy) & !(capflag & WLAN_RC_HT_FLAG)) | |
612 | return FALSE; | |
613 | if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG)) | |
614 | return FALSE; | |
615 | if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG)) | |
616 | return FALSE; | |
617 | if (!ignore_cw && WLAN_RC_PHY_HT(phy)) | |
618 | if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG)) | |
619 | return FALSE; | |
620 | if (!WLAN_RC_PHY_40(phy) && (capflag & WLAN_RC_40_FLAG)) | |
621 | return FALSE; | |
622 | return TRUE; | |
623 | } | |
624 | ||
625 | static inline int | |
626 | ath_rc_get_nextlowervalid_txrate(const struct ath_rate_table *rate_table, | |
627 | struct ath_tx_ratectrl *rate_ctrl, | |
628 | u8 cur_valid_txrate, u8 *next_idx) | |
629 | { | |
630 | int8_t i; | |
631 | ||
632 | for (i = 1; i < rate_ctrl->max_valid_rate ; i++) { | |
633 | if (rate_ctrl->valid_rate_index[i] == cur_valid_txrate) { | |
634 | *next_idx = rate_ctrl->valid_rate_index[i-1]; | |
635 | return TRUE; | |
636 | } | |
637 | } | |
638 | return FALSE; | |
639 | } | |
640 | ||
641 | /* | |
642 | * Initialize the Valid Rate Index from valid entries in Rate Table | |
643 | */ | |
644 | static u8 | |
645 | ath_rc_sib_init_validrates(struct ath_rate_node *ath_rc_priv, | |
646 | const struct ath_rate_table *rate_table, | |
647 | u32 capflag) | |
648 | { | |
649 | struct ath_tx_ratectrl *rate_ctrl; | |
650 | u8 i, hi = 0; | |
651 | u32 valid; | |
652 | ||
653 | rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv); | |
654 | for (i = 0; i < rate_table->rate_cnt; i++) { | |
655 | valid = (ath_rc_priv->single_stream ? | |
656 | rate_table->info[i].valid_single_stream : | |
657 | rate_table->info[i].valid); | |
658 | if (valid == TRUE) { | |
659 | u32 phy = rate_table->info[i].phy; | |
660 | u8 valid_rate_count = 0; | |
661 | ||
662 | if (!ath_rc_valid_phyrate(phy, capflag, FALSE)) | |
663 | continue; | |
664 | ||
665 | valid_rate_count = rate_ctrl->valid_phy_ratecnt[phy]; | |
666 | ||
667 | rate_ctrl->valid_phy_rateidx[phy][valid_rate_count] = i; | |
668 | rate_ctrl->valid_phy_ratecnt[phy] += 1; | |
669 | ath_rc_set_valid_txmask(rate_ctrl, i, TRUE); | |
670 | hi = A_MAX(hi, i); | |
671 | } | |
672 | } | |
673 | return hi; | |
674 | } | |
675 | ||
676 | /* | |
677 | * Initialize the Valid Rate Index from Rate Set | |
678 | */ | |
679 | static u8 | |
680 | ath_rc_sib_setvalid_rates(struct ath_rate_node *ath_rc_priv, | |
681 | const struct ath_rate_table *rate_table, | |
682 | struct ath_rateset *rateset, | |
683 | u32 capflag) | |
684 | { | |
685 | /* XXX: Clean me up and make identation friendly */ | |
686 | u8 i, j, hi = 0; | |
687 | struct ath_tx_ratectrl *rate_ctrl = | |
688 | (struct ath_tx_ratectrl *)(ath_rc_priv); | |
689 | ||
690 | /* Use intersection of working rates and valid rates */ | |
691 | for (i = 0; i < rateset->rs_nrates; i++) { | |
692 | for (j = 0; j < rate_table->rate_cnt; j++) { | |
693 | u32 phy = rate_table->info[j].phy; | |
694 | u32 valid = (ath_rc_priv->single_stream ? | |
695 | rate_table->info[j].valid_single_stream : | |
696 | rate_table->info[j].valid); | |
697 | ||
698 | /* We allow a rate only if its valid and the | |
699 | * capflag matches one of the validity | |
700 | * (TRUE/TRUE_20/TRUE_40) flags */ | |
701 | ||
702 | /* XXX: catch the negative of this branch | |
703 | * first and then continue */ | |
704 | if (((rateset->rs_rates[i] & 0x7F) == | |
705 | (rate_table->info[j].dot11rate & 0x7F)) && | |
706 | ((valid & WLAN_RC_CAP_MODE(capflag)) == | |
707 | WLAN_RC_CAP_MODE(capflag)) && | |
708 | !WLAN_RC_PHY_HT(phy)) { | |
709 | ||
710 | u8 valid_rate_count = 0; | |
711 | ||
712 | if (!ath_rc_valid_phyrate(phy, capflag, FALSE)) | |
713 | continue; | |
714 | ||
715 | valid_rate_count = | |
716 | rate_ctrl->valid_phy_ratecnt[phy]; | |
717 | ||
718 | rate_ctrl->valid_phy_rateidx[phy] | |
719 | [valid_rate_count] = j; | |
720 | rate_ctrl->valid_phy_ratecnt[phy] += 1; | |
721 | ath_rc_set_valid_txmask(rate_ctrl, j, TRUE); | |
722 | hi = A_MAX(hi, j); | |
723 | } | |
724 | } | |
725 | } | |
726 | return hi; | |
727 | } | |
728 | ||
729 | static u8 | |
730 | ath_rc_sib_setvalid_htrates(struct ath_rate_node *ath_rc_priv, | |
731 | const struct ath_rate_table *rate_table, | |
732 | u8 *mcs_set, u32 capflag) | |
733 | { | |
734 | u8 i, j, hi = 0; | |
735 | struct ath_tx_ratectrl *rate_ctrl = | |
736 | (struct ath_tx_ratectrl *)(ath_rc_priv); | |
737 | ||
738 | /* Use intersection of working rates and valid rates */ | |
739 | for (i = 0; i < ((struct ath_rateset *)mcs_set)->rs_nrates; i++) { | |
740 | for (j = 0; j < rate_table->rate_cnt; j++) { | |
741 | u32 phy = rate_table->info[j].phy; | |
742 | u32 valid = (ath_rc_priv->single_stream ? | |
743 | rate_table->info[j].valid_single_stream : | |
744 | rate_table->info[j].valid); | |
745 | ||
746 | if (((((struct ath_rateset *) | |
747 | mcs_set)->rs_rates[i] & 0x7F) != | |
748 | (rate_table->info[j].dot11rate & 0x7F)) || | |
749 | !WLAN_RC_PHY_HT(phy) || | |
750 | !WLAN_RC_PHY_HT_VALID(valid, capflag)) | |
751 | continue; | |
752 | ||
753 | if (!ath_rc_valid_phyrate(phy, capflag, FALSE)) | |
754 | continue; | |
755 | ||
756 | rate_ctrl->valid_phy_rateidx[phy] | |
757 | [rate_ctrl->valid_phy_ratecnt[phy]] = j; | |
758 | rate_ctrl->valid_phy_ratecnt[phy] += 1; | |
759 | ath_rc_set_valid_txmask(rate_ctrl, j, TRUE); | |
760 | hi = A_MAX(hi, j); | |
761 | } | |
762 | } | |
763 | return hi; | |
764 | } | |
765 | ||
766 | /* | |
767 | * Attach to a device instance. Setup the public definition | |
768 | * of how much per-node space we need and setup the private | |
769 | * phy tables that have rate control parameters. | |
770 | */ | |
771 | struct ath_rate_softc *ath_rate_attach(struct ath_hal *ah) | |
772 | { | |
773 | struct ath_rate_softc *asc; | |
774 | ||
775 | /* we are only in user context so we can sleep for memory */ | |
776 | asc = kzalloc(sizeof(struct ath_rate_softc), GFP_KERNEL); | |
777 | if (asc == NULL) | |
778 | return NULL; | |
779 | ||
780 | ar5416_attach_ratetables(asc); | |
781 | ||
782 | /* Save Maximum TX Trigger Level (used for 11n) */ | |
60b67f51 | 783 | tx_triglevel_max = ah->ah_caps.tx_triglevel_max; |
f078f209 LR |
784 | /* return alias for ath_rate_softc * */ |
785 | return asc; | |
786 | } | |
787 | ||
788 | static struct ath_rate_node *ath_rate_node_alloc(struct ath_vap *avp, | |
789 | struct ath_rate_softc *rsc, | |
790 | gfp_t gfp) | |
791 | { | |
792 | struct ath_rate_node *anode; | |
793 | ||
794 | anode = kzalloc(sizeof(struct ath_rate_node), gfp); | |
795 | if (anode == NULL) | |
796 | return NULL; | |
797 | ||
798 | anode->avp = avp; | |
799 | anode->asc = rsc; | |
800 | avp->rc_node = anode; | |
801 | ||
802 | return anode; | |
803 | } | |
804 | ||
805 | static void ath_rate_node_free(struct ath_rate_node *anode) | |
806 | { | |
807 | if (anode != NULL) | |
808 | kfree(anode); | |
809 | } | |
810 | ||
811 | void ath_rate_detach(struct ath_rate_softc *asc) | |
812 | { | |
813 | if (asc != NULL) | |
814 | kfree(asc); | |
815 | } | |
816 | ||
817 | u8 ath_rate_findrateix(struct ath_softc *sc, | |
818 | u8 dot11rate) | |
819 | { | |
820 | const struct ath_rate_table *ratetable; | |
821 | struct ath_rate_softc *rsc = sc->sc_rc; | |
822 | int i; | |
823 | ||
824 | ratetable = rsc->hw_rate_table[sc->sc_curmode]; | |
825 | ||
826 | if (WARN_ON(!ratetable)) | |
827 | return 0; | |
828 | ||
829 | for (i = 0; i < ratetable->rate_cnt; i++) { | |
830 | if ((ratetable->info[i].dot11rate & 0x7f) == (dot11rate & 0x7f)) | |
831 | return i; | |
832 | } | |
833 | ||
834 | return 0; | |
835 | } | |
836 | ||
837 | /* | |
838 | * Update rate-control state on a device state change. When | |
839 | * operating as a station this includes associate/reassociate | |
840 | * with an AP. Otherwise this gets called, for example, when | |
841 | * the we transition to run state when operating as an AP. | |
842 | */ | |
843 | void ath_rate_newstate(struct ath_softc *sc, struct ath_vap *avp) | |
844 | { | |
845 | struct ath_rate_softc *asc = sc->sc_rc; | |
846 | ||
847 | /* For half and quarter rate channles use different | |
848 | * rate tables | |
849 | */ | |
850 | if (sc->sc_curchan.channelFlags & CHANNEL_HALF) | |
851 | ar5416_sethalf_ratetable(asc); | |
852 | else if (sc->sc_curchan.channelFlags & CHANNEL_QUARTER) | |
853 | ar5416_setquarter_ratetable(asc); | |
854 | else /* full rate */ | |
855 | ar5416_setfull_ratetable(asc); | |
856 | ||
857 | if (avp->av_config.av_fixed_rateset != IEEE80211_FIXED_RATE_NONE) { | |
858 | asc->fixedrix = | |
859 | sc->sc_rixmap[avp->av_config.av_fixed_rateset & 0xff]; | |
860 | /* NB: check the fixed rate exists */ | |
861 | if (asc->fixedrix == 0xff) | |
862 | asc->fixedrix = IEEE80211_FIXED_RATE_NONE; | |
863 | } else { | |
864 | asc->fixedrix = IEEE80211_FIXED_RATE_NONE; | |
865 | } | |
866 | } | |
867 | ||
868 | static u8 ath_rc_ratefind_ht(struct ath_softc *sc, | |
869 | struct ath_rate_node *ath_rc_priv, | |
870 | const struct ath_rate_table *rate_table, | |
871 | int probe_allowed, int *is_probing, | |
872 | int is_retry) | |
873 | { | |
874 | u32 dt, best_thruput, this_thruput, now_msec; | |
875 | u8 rate, next_rate, best_rate, maxindex, minindex; | |
876 | int8_t rssi_last, rssi_reduce = 0, index = 0; | |
877 | struct ath_tx_ratectrl *rate_ctrl = NULL; | |
878 | ||
879 | rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv ? | |
880 | (ath_rc_priv) : NULL); | |
881 | ||
882 | *is_probing = FALSE; | |
883 | ||
884 | rssi_last = median(rate_ctrl->rssi_last, | |
885 | rate_ctrl->rssi_last_prev, | |
886 | rate_ctrl->rssi_last_prev2); | |
887 | ||
888 | /* | |
889 | * Age (reduce) last ack rssi based on how old it is. | |
890 | * The bizarre numbers are so the delta is 160msec, | |
891 | * meaning we divide by 16. | |
892 | * 0msec <= dt <= 25msec: don't derate | |
893 | * 25msec <= dt <= 185msec: derate linearly from 0 to 10dB | |
894 | * 185msec <= dt: derate by 10dB | |
895 | */ | |
896 | ||
897 | now_msec = jiffies_to_msecs(jiffies); | |
898 | dt = now_msec - rate_ctrl->rssi_time; | |
899 | ||
900 | if (dt >= 185) | |
901 | rssi_reduce = 10; | |
902 | else if (dt >= 25) | |
903 | rssi_reduce = (u8)((dt - 25) >> 4); | |
904 | ||
905 | /* Now reduce rssi_last by rssi_reduce */ | |
906 | if (rssi_last < rssi_reduce) | |
907 | rssi_last = 0; | |
908 | else | |
909 | rssi_last -= rssi_reduce; | |
910 | ||
911 | /* | |
912 | * Now look up the rate in the rssi table and return it. | |
913 | * If no rates match then we return 0 (lowest rate) | |
914 | */ | |
915 | ||
916 | best_thruput = 0; | |
917 | maxindex = rate_ctrl->max_valid_rate-1; | |
918 | ||
919 | minindex = 0; | |
920 | best_rate = minindex; | |
921 | ||
922 | /* | |
923 | * Try the higher rate first. It will reduce memory moving time | |
924 | * if we have very good channel characteristics. | |
925 | */ | |
926 | for (index = maxindex; index >= minindex ; index--) { | |
927 | u8 per_thres; | |
928 | ||
929 | rate = rate_ctrl->valid_rate_index[index]; | |
930 | if (rate > rate_ctrl->rate_max_phy) | |
931 | continue; | |
932 | ||
933 | /* | |
934 | * For TCP the average collision rate is around 11%, | |
935 | * so we ignore PERs less than this. This is to | |
936 | * prevent the rate we are currently using (whose | |
937 | * PER might be in the 10-15 range because of TCP | |
938 | * collisions) looking worse than the next lower | |
939 | * rate whose PER has decayed close to 0. If we | |
940 | * used to next lower rate, its PER would grow to | |
941 | * 10-15 and we would be worse off then staying | |
942 | * at the current rate. | |
943 | */ | |
944 | per_thres = rate_ctrl->state[rate].per; | |
945 | if (per_thres < 12) | |
946 | per_thres = 12; | |
947 | ||
948 | this_thruput = rate_table->info[rate].user_ratekbps * | |
949 | (100 - per_thres); | |
950 | ||
951 | if (best_thruput <= this_thruput) { | |
952 | best_thruput = this_thruput; | |
953 | best_rate = rate; | |
954 | } | |
955 | } | |
956 | ||
957 | rate = best_rate; | |
958 | ||
959 | /* if we are retrying for more than half the number | |
960 | * of max retries, use the min rate for the next retry | |
961 | */ | |
962 | if (is_retry) | |
963 | rate = rate_ctrl->valid_rate_index[minindex]; | |
964 | ||
965 | rate_ctrl->rssi_last_lookup = rssi_last; | |
966 | ||
967 | /* | |
968 | * Must check the actual rate (ratekbps) to account for | |
969 | * non-monoticity of 11g's rate table | |
970 | */ | |
971 | ||
972 | if (rate >= rate_ctrl->rate_max_phy && probe_allowed) { | |
973 | rate = rate_ctrl->rate_max_phy; | |
974 | ||
975 | /* Probe the next allowed phy state */ | |
976 | /* FIXME:XXXX Check to make sure ratMax is checked properly */ | |
977 | if (ath_rc_get_nextvalid_txrate(rate_table, | |
978 | rate_ctrl, rate, &next_rate) && | |
979 | (now_msec - rate_ctrl->probe_time > | |
980 | rate_table->probe_interval) && | |
981 | (rate_ctrl->hw_maxretry_pktcnt >= 1)) { | |
982 | rate = next_rate; | |
983 | rate_ctrl->probe_rate = rate; | |
984 | rate_ctrl->probe_time = now_msec; | |
985 | rate_ctrl->hw_maxretry_pktcnt = 0; | |
986 | *is_probing = TRUE; | |
987 | } | |
988 | } | |
989 | ||
990 | /* | |
991 | * Make sure rate is not higher than the allowed maximum. | |
992 | * We should also enforce the min, but I suspect the min is | |
993 | * normally 1 rather than 0 because of the rate 9 vs 6 issue | |
994 | * in the old code. | |
995 | */ | |
996 | if (rate > (rate_ctrl->rate_table_size - 1)) | |
997 | rate = rate_ctrl->rate_table_size - 1; | |
998 | ||
999 | ASSERT((rate_table->info[rate].valid && !ath_rc_priv->single_stream) || | |
1000 | (rate_table->info[rate].valid_single_stream && | |
1001 | ath_rc_priv->single_stream)); | |
1002 | ||
1003 | return rate; | |
1004 | } | |
1005 | ||
1006 | static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table , | |
1007 | struct ath_rc_series *series, | |
1008 | u8 tries, | |
1009 | u8 rix, | |
1010 | int rtsctsenable) | |
1011 | { | |
1012 | series->tries = tries; | |
1013 | series->flags = (rtsctsenable ? ATH_RC_RTSCTS_FLAG : 0) | | |
1014 | (WLAN_RC_PHY_DS(rate_table->info[rix].phy) ? | |
1015 | ATH_RC_DS_FLAG : 0) | | |
1016 | (WLAN_RC_PHY_40(rate_table->info[rix].phy) ? | |
1017 | ATH_RC_CW40_FLAG : 0) | | |
1018 | (WLAN_RC_PHY_SGI(rate_table->info[rix].phy) ? | |
1019 | ATH_RC_SGI_FLAG : 0); | |
1020 | ||
1021 | series->rix = rate_table->info[rix].base_index; | |
1022 | series->max_4ms_framelen = rate_table->info[rix].max_4ms_framelen; | |
1023 | } | |
1024 | ||
1025 | static u8 ath_rc_rate_getidx(struct ath_softc *sc, | |
1026 | struct ath_rate_node *ath_rc_priv, | |
1027 | const struct ath_rate_table *rate_table, | |
1028 | u8 rix, u16 stepdown, | |
1029 | u16 min_rate) | |
1030 | { | |
1031 | u32 j; | |
1032 | u8 nextindex; | |
1033 | struct ath_tx_ratectrl *rate_ctrl = | |
1034 | (struct ath_tx_ratectrl *)(ath_rc_priv); | |
1035 | ||
1036 | if (min_rate) { | |
1037 | for (j = RATE_TABLE_SIZE; j > 0; j--) { | |
1038 | if (ath_rc_get_nextlowervalid_txrate(rate_table, | |
1039 | rate_ctrl, rix, &nextindex)) | |
1040 | rix = nextindex; | |
1041 | else | |
1042 | break; | |
1043 | } | |
1044 | } else { | |
1045 | for (j = stepdown; j > 0; j--) { | |
1046 | if (ath_rc_get_nextlowervalid_txrate(rate_table, | |
1047 | rate_ctrl, rix, &nextindex)) | |
1048 | rix = nextindex; | |
1049 | else | |
1050 | break; | |
1051 | } | |
1052 | } | |
1053 | return rix; | |
1054 | } | |
1055 | ||
1056 | static void ath_rc_ratefind(struct ath_softc *sc, | |
1057 | struct ath_rate_node *ath_rc_priv, | |
1058 | int num_tries, int num_rates, unsigned int rcflag, | |
1059 | struct ath_rc_series series[], int *is_probe, | |
1060 | int is_retry) | |
1061 | { | |
1062 | u8 try_per_rate = 0, i = 0, rix, nrix; | |
1063 | struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc; | |
1064 | struct ath_rate_table *rate_table; | |
1065 | ||
1066 | rate_table = | |
1067 | (struct ath_rate_table *)asc->hw_rate_table[sc->sc_curmode]; | |
1068 | rix = ath_rc_ratefind_ht(sc, ath_rc_priv, rate_table, | |
1069 | (rcflag & ATH_RC_PROBE_ALLOWED) ? 1 : 0, | |
1070 | is_probe, is_retry); | |
1071 | nrix = rix; | |
1072 | ||
1073 | if ((rcflag & ATH_RC_PROBE_ALLOWED) && (*is_probe)) { | |
1074 | /* set one try for probe rates. For the | |
1075 | * probes don't enable rts */ | |
1076 | ath_rc_rate_set_series(rate_table, | |
1077 | &series[i++], 1, nrix, FALSE); | |
1078 | ||
1079 | try_per_rate = (num_tries/num_rates); | |
1080 | /* Get the next tried/allowed rate. No RTS for the next series | |
1081 | * after the probe rate | |
1082 | */ | |
1083 | nrix = ath_rc_rate_getidx(sc, | |
1084 | ath_rc_priv, rate_table, nrix, 1, FALSE); | |
1085 | ath_rc_rate_set_series(rate_table, | |
1086 | &series[i++], try_per_rate, nrix, 0); | |
1087 | } else { | |
1088 | try_per_rate = (num_tries/num_rates); | |
1089 | /* Set the choosen rate. No RTS for first series entry. */ | |
1090 | ath_rc_rate_set_series(rate_table, | |
1091 | &series[i++], try_per_rate, nrix, FALSE); | |
1092 | } | |
1093 | ||
1094 | /* Fill in the other rates for multirate retry */ | |
1095 | for ( ; i < num_rates; i++) { | |
1096 | u8 try_num; | |
1097 | u8 min_rate; | |
1098 | ||
1099 | try_num = ((i + 1) == num_rates) ? | |
1100 | num_tries - (try_per_rate * i) : try_per_rate ; | |
1101 | min_rate = (((i + 1) == num_rates) && | |
1102 | (rcflag & ATH_RC_MINRATE_LASTRATE)) ? 1 : 0; | |
1103 | ||
1104 | nrix = ath_rc_rate_getidx(sc, ath_rc_priv, | |
1105 | rate_table, nrix, 1, min_rate); | |
1106 | /* All other rates in the series have RTS enabled */ | |
1107 | ath_rc_rate_set_series(rate_table, | |
1108 | &series[i], try_num, nrix, TRUE); | |
1109 | } | |
1110 | ||
1111 | /* | |
1112 | * NB:Change rate series to enable aggregation when operating | |
1113 | * at lower MCS rates. When first rate in series is MCS2 | |
1114 | * in HT40 @ 2.4GHz, series should look like: | |
1115 | * | |
1116 | * {MCS2, MCS1, MCS0, MCS0}. | |
1117 | * | |
1118 | * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should | |
1119 | * look like: | |
1120 | * | |
1121 | * {MCS3, MCS2, MCS1, MCS1} | |
1122 | * | |
1123 | * So, set fourth rate in series to be same as third one for | |
1124 | * above conditions. | |
1125 | */ | |
1126 | if ((sc->sc_curmode == WIRELESS_MODE_11NG_HT20) || | |
1127 | (sc->sc_curmode == WIRELESS_MODE_11NG_HT40PLUS) || | |
1128 | (sc->sc_curmode == WIRELESS_MODE_11NG_HT40MINUS)) { | |
1129 | u8 dot11rate = rate_table->info[rix].dot11rate; | |
1130 | u8 phy = rate_table->info[rix].phy; | |
1131 | if (i == 4 && | |
1132 | ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) || | |
1133 | (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) { | |
1134 | series[3].rix = series[2].rix; | |
1135 | series[3].flags = series[2].flags; | |
1136 | series[3].max_4ms_framelen = series[2].max_4ms_framelen; | |
1137 | } | |
1138 | } | |
1139 | } | |
1140 | ||
1141 | /* | |
1142 | * Return the Tx rate series. | |
1143 | */ | |
1144 | void ath_rate_findrate(struct ath_softc *sc, | |
1145 | struct ath_rate_node *ath_rc_priv, | |
1146 | int num_tries, | |
1147 | int num_rates, | |
1148 | unsigned int rcflag, | |
1149 | struct ath_rc_series series[], | |
1150 | int *is_probe, | |
1151 | int is_retry) | |
1152 | { | |
1153 | struct ath_vap *avp = ath_rc_priv->avp; | |
1154 | ||
1155 | DPRINTF(sc, ATH_DBG_RATE, "%s", __func__); | |
1156 | if (!num_rates || !num_tries) | |
1157 | return; | |
1158 | ||
1159 | if (avp->av_config.av_fixed_rateset == IEEE80211_FIXED_RATE_NONE) { | |
1160 | ath_rc_ratefind(sc, ath_rc_priv, num_tries, num_rates, | |
1161 | rcflag, series, is_probe, is_retry); | |
1162 | } else { | |
1163 | /* Fixed rate */ | |
1164 | int idx; | |
1165 | u8 flags; | |
1166 | u32 rix; | |
1167 | struct ath_rate_softc *asc = ath_rc_priv->asc; | |
1168 | struct ath_rate_table *rate_table; | |
1169 | ||
1170 | rate_table = (struct ath_rate_table *) | |
1171 | asc->hw_rate_table[sc->sc_curmode]; | |
1172 | ||
1173 | for (idx = 0; idx < 4; idx++) { | |
1174 | unsigned int mcs; | |
1175 | u8 series_rix = 0; | |
1176 | ||
1177 | series[idx].tries = | |
1178 | IEEE80211_RATE_IDX_ENTRY( | |
1179 | avp->av_config.av_fixed_retryset, idx); | |
1180 | ||
1181 | mcs = IEEE80211_RATE_IDX_ENTRY( | |
1182 | avp->av_config.av_fixed_rateset, idx); | |
1183 | ||
1184 | if (idx == 3 && (mcs & 0xf0) == 0x70) | |
1185 | mcs = (mcs & ~0xf0)|0x80; | |
1186 | ||
1187 | if (!(mcs & 0x80)) | |
1188 | flags = 0; | |
1189 | else | |
1190 | flags = ((ath_rc_priv->ht_cap & | |
1191 | WLAN_RC_DS_FLAG) ? | |
1192 | ATH_RC_DS_FLAG : 0) | | |
1193 | ((ath_rc_priv->ht_cap & | |
1194 | WLAN_RC_40_FLAG) ? | |
1195 | ATH_RC_CW40_FLAG : 0) | | |
1196 | ((ath_rc_priv->ht_cap & | |
1197 | WLAN_RC_SGI_FLAG) ? | |
1198 | ((ath_rc_priv->ht_cap & | |
1199 | WLAN_RC_40_FLAG) ? | |
1200 | ATH_RC_SGI_FLAG : 0) : 0); | |
1201 | ||
1202 | series[idx].rix = sc->sc_rixmap[mcs]; | |
1203 | series_rix = series[idx].rix; | |
1204 | ||
1205 | /* XXX: Give me some cleanup love */ | |
1206 | if ((flags & ATH_RC_CW40_FLAG) && | |
1207 | (flags & ATH_RC_SGI_FLAG)) | |
1208 | rix = rate_table->info[series_rix].ht_index; | |
1209 | else if (flags & ATH_RC_SGI_FLAG) | |
1210 | rix = rate_table->info[series_rix].sgi_index; | |
1211 | else if (flags & ATH_RC_CW40_FLAG) | |
1212 | rix = rate_table->info[series_rix].cw40index; | |
1213 | else | |
1214 | rix = rate_table->info[series_rix].base_index; | |
1215 | series[idx].max_4ms_framelen = | |
1216 | rate_table->info[rix].max_4ms_framelen; | |
1217 | series[idx].flags = flags; | |
1218 | } | |
1219 | } | |
1220 | } | |
1221 | ||
1222 | static void ath_rc_update_ht(struct ath_softc *sc, | |
1223 | struct ath_rate_node *ath_rc_priv, | |
1224 | struct ath_tx_info_priv *info_priv, | |
1225 | int tx_rate, int xretries, int retries) | |
1226 | { | |
1227 | struct ath_tx_ratectrl *rate_ctrl; | |
1228 | u32 now_msec = jiffies_to_msecs(jiffies); | |
1229 | int state_change = FALSE, rate, count; | |
1230 | u8 last_per; | |
1231 | struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc; | |
1232 | struct ath_rate_table *rate_table = | |
1233 | (struct ath_rate_table *)asc->hw_rate_table[sc->sc_curmode]; | |
1234 | ||
1235 | static u32 nretry_to_per_lookup[10] = { | |
1236 | 100 * 0 / 1, | |
1237 | 100 * 1 / 4, | |
1238 | 100 * 1 / 2, | |
1239 | 100 * 3 / 4, | |
1240 | 100 * 4 / 5, | |
1241 | 100 * 5 / 6, | |
1242 | 100 * 6 / 7, | |
1243 | 100 * 7 / 8, | |
1244 | 100 * 8 / 9, | |
1245 | 100 * 9 / 10 | |
1246 | }; | |
1247 | ||
1248 | if (!ath_rc_priv) | |
1249 | return; | |
1250 | ||
1251 | rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv); | |
1252 | ||
1253 | ASSERT(tx_rate >= 0); | |
1254 | if (tx_rate < 0) | |
1255 | return; | |
1256 | ||
1257 | /* To compensate for some imbalance between ctrl and ext. channel */ | |
1258 | ||
1259 | if (WLAN_RC_PHY_40(rate_table->info[tx_rate].phy)) | |
1260 | info_priv->tx.ts_rssi = | |
1261 | info_priv->tx.ts_rssi < 3 ? 0 : | |
1262 | info_priv->tx.ts_rssi - 3; | |
1263 | ||
1264 | last_per = rate_ctrl->state[tx_rate].per; | |
1265 | ||
1266 | if (xretries) { | |
1267 | /* Update the PER. */ | |
1268 | if (xretries == 1) { | |
1269 | rate_ctrl->state[tx_rate].per += 30; | |
1270 | if (rate_ctrl->state[tx_rate].per > 100) | |
1271 | rate_ctrl->state[tx_rate].per = 100; | |
1272 | } else { | |
1273 | /* xretries == 2 */ | |
1274 | count = sizeof(nretry_to_per_lookup) / | |
1275 | sizeof(nretry_to_per_lookup[0]); | |
1276 | if (retries >= count) | |
1277 | retries = count - 1; | |
1278 | /* new_PER = 7/8*old_PER + 1/8*(currentPER) */ | |
1279 | rate_ctrl->state[tx_rate].per = | |
1280 | (u8)(rate_ctrl->state[tx_rate].per - | |
1281 | (rate_ctrl->state[tx_rate].per >> 3) + | |
1282 | ((100) >> 3)); | |
1283 | } | |
1284 | ||
1285 | /* xretries == 1 or 2 */ | |
1286 | ||
1287 | if (rate_ctrl->probe_rate == tx_rate) | |
1288 | rate_ctrl->probe_rate = 0; | |
1289 | ||
1290 | } else { /* xretries == 0 */ | |
1291 | /* Update the PER. */ | |
1292 | /* Make sure it doesn't index out of array's bounds. */ | |
1293 | count = sizeof(nretry_to_per_lookup) / | |
1294 | sizeof(nretry_to_per_lookup[0]); | |
1295 | if (retries >= count) | |
1296 | retries = count - 1; | |
1297 | if (info_priv->n_bad_frames) { | |
1298 | /* new_PER = 7/8*old_PER + 1/8*(currentPER) */ | |
1299 | /* | |
1300 | * Assuming that n_frames is not 0. The current PER | |
1301 | * from the retries is 100 * retries / (retries+1), | |
1302 | * since the first retries attempts failed, and the | |
1303 | * next one worked. For the one that worked, | |
1304 | * n_bad_frames subframes out of n_frames wored, | |
1305 | * so the PER for that part is | |
1306 | * 100 * n_bad_frames / n_frames, and it contributes | |
1307 | * 100 * n_bad_frames / (n_frames * (retries+1)) to | |
1308 | * the above PER. The expression below is a | |
1309 | * simplified version of the sum of these two terms. | |
1310 | */ | |
1311 | if (info_priv->n_frames > 0) | |
1312 | rate_ctrl->state[tx_rate].per | |
1313 | = (u8) | |
1314 | (rate_ctrl->state[tx_rate].per - | |
1315 | (rate_ctrl->state[tx_rate].per >> 3) + | |
1316 | ((100*(retries*info_priv->n_frames + | |
1317 | info_priv->n_bad_frames) / | |
1318 | (info_priv->n_frames * | |
1319 | (retries+1))) >> 3)); | |
1320 | } else { | |
1321 | /* new_PER = 7/8*old_PER + 1/8*(currentPER) */ | |
1322 | ||
1323 | rate_ctrl->state[tx_rate].per = (u8) | |
1324 | (rate_ctrl->state[tx_rate].per - | |
1325 | (rate_ctrl->state[tx_rate].per >> 3) + | |
1326 | (nretry_to_per_lookup[retries] >> 3)); | |
1327 | } | |
1328 | ||
1329 | rate_ctrl->rssi_last_prev2 = rate_ctrl->rssi_last_prev; | |
1330 | rate_ctrl->rssi_last_prev = rate_ctrl->rssi_last; | |
1331 | rate_ctrl->rssi_last = info_priv->tx.ts_rssi; | |
1332 | rate_ctrl->rssi_time = now_msec; | |
1333 | ||
1334 | /* | |
1335 | * If we got at most one retry then increase the max rate if | |
1336 | * this was a probe. Otherwise, ignore the probe. | |
1337 | */ | |
1338 | ||
1339 | if (rate_ctrl->probe_rate && rate_ctrl->probe_rate == tx_rate) { | |
1340 | if (retries > 0 || 2 * info_priv->n_bad_frames > | |
1341 | info_priv->n_frames) { | |
1342 | /* | |
1343 | * Since we probed with just a single attempt, | |
1344 | * any retries means the probe failed. Also, | |
1345 | * if the attempt worked, but more than half | |
1346 | * the subframes were bad then also consider | |
1347 | * the probe a failure. | |
1348 | */ | |
1349 | rate_ctrl->probe_rate = 0; | |
1350 | } else { | |
1351 | u8 probe_rate = 0; | |
1352 | ||
1353 | rate_ctrl->rate_max_phy = rate_ctrl->probe_rate; | |
1354 | probe_rate = rate_ctrl->probe_rate; | |
1355 | ||
1356 | if (rate_ctrl->state[probe_rate].per > 30) | |
1357 | rate_ctrl->state[probe_rate].per = 20; | |
1358 | ||
1359 | rate_ctrl->probe_rate = 0; | |
1360 | ||
1361 | /* | |
1362 | * Since this probe succeeded, we allow the next | |
1363 | * probe twice as soon. This allows the maxRate | |
1364 | * to move up faster if the probes are | |
1365 | * succesful. | |
1366 | */ | |
1367 | rate_ctrl->probe_time = now_msec - | |
1368 | rate_table->probe_interval / 2; | |
1369 | } | |
1370 | } | |
1371 | ||
1372 | if (retries > 0) { | |
1373 | /* | |
1374 | * Don't update anything. We don't know if | |
1375 | * this was because of collisions or poor signal. | |
1376 | * | |
1377 | * Later: if rssi_ack is close to | |
1378 | * rate_ctrl->state[txRate].rssi_thres and we see lots | |
1379 | * of retries, then we could increase | |
1380 | * rate_ctrl->state[txRate].rssi_thres. | |
1381 | */ | |
1382 | rate_ctrl->hw_maxretry_pktcnt = 0; | |
1383 | } else { | |
1384 | /* | |
1385 | * It worked with no retries. First ignore bogus (small) | |
1386 | * rssi_ack values. | |
1387 | */ | |
1388 | if (tx_rate == rate_ctrl->rate_max_phy && | |
1389 | rate_ctrl->hw_maxretry_pktcnt < 255) { | |
1390 | rate_ctrl->hw_maxretry_pktcnt++; | |
1391 | } | |
1392 | ||
1393 | if (info_priv->tx.ts_rssi >= | |
1394 | rate_table->info[tx_rate].rssi_ack_validmin) { | |
1395 | /* Average the rssi */ | |
1396 | if (tx_rate != rate_ctrl->rssi_sum_rate) { | |
1397 | rate_ctrl->rssi_sum_rate = tx_rate; | |
1398 | rate_ctrl->rssi_sum = | |
1399 | rate_ctrl->rssi_sum_cnt = 0; | |
1400 | } | |
1401 | ||
1402 | rate_ctrl->rssi_sum += info_priv->tx.ts_rssi; | |
1403 | rate_ctrl->rssi_sum_cnt++; | |
1404 | ||
1405 | if (rate_ctrl->rssi_sum_cnt > 4) { | |
1406 | int32_t rssi_ackAvg = | |
1407 | (rate_ctrl->rssi_sum + 2) / 4; | |
1408 | int8_t rssi_thres = | |
1409 | rate_ctrl->state[tx_rate]. | |
1410 | rssi_thres; | |
1411 | int8_t rssi_ack_vmin = | |
1412 | rate_table->info[tx_rate]. | |
1413 | rssi_ack_validmin; | |
1414 | ||
1415 | rate_ctrl->rssi_sum = | |
1416 | rate_ctrl->rssi_sum_cnt = 0; | |
1417 | ||
1418 | /* Now reduce the current | |
1419 | * rssi threshold. */ | |
1420 | if ((rssi_ackAvg < rssi_thres + 2) && | |
1421 | (rssi_thres > rssi_ack_vmin)) { | |
1422 | rate_ctrl->state[tx_rate]. | |
1423 | rssi_thres--; | |
1424 | } | |
1425 | ||
1426 | state_change = TRUE; | |
1427 | } | |
1428 | } | |
1429 | } | |
1430 | } | |
1431 | ||
1432 | /* For all cases */ | |
1433 | ||
1434 | /* | |
1435 | * If this rate looks bad (high PER) then stop using it for | |
1436 | * a while (except if we are probing). | |
1437 | */ | |
1438 | if (rate_ctrl->state[tx_rate].per >= 55 && tx_rate > 0 && | |
1439 | rate_table->info[tx_rate].ratekbps <= | |
1440 | rate_table->info[rate_ctrl->rate_max_phy].ratekbps) { | |
1441 | ath_rc_get_nextlowervalid_txrate(rate_table, rate_ctrl, | |
1442 | (u8) tx_rate, &rate_ctrl->rate_max_phy); | |
1443 | ||
1444 | /* Don't probe for a little while. */ | |
1445 | rate_ctrl->probe_time = now_msec; | |
1446 | } | |
1447 | ||
1448 | if (state_change) { | |
1449 | /* | |
1450 | * Make sure the rates above this have higher rssi thresholds. | |
1451 | * (Note: Monotonicity is kept within the OFDM rates and | |
1452 | * within the CCK rates. However, no adjustment is | |
1453 | * made to keep the rssi thresholds monotonically | |
1454 | * increasing between the CCK and OFDM rates.) | |
1455 | */ | |
1456 | for (rate = tx_rate; rate < | |
1457 | rate_ctrl->rate_table_size - 1; rate++) { | |
1458 | if (rate_table->info[rate+1].phy != | |
1459 | rate_table->info[tx_rate].phy) | |
1460 | break; | |
1461 | ||
1462 | if (rate_ctrl->state[rate].rssi_thres + | |
1463 | rate_table->info[rate].rssi_ack_deltamin > | |
1464 | rate_ctrl->state[rate+1].rssi_thres) { | |
1465 | rate_ctrl->state[rate+1].rssi_thres = | |
1466 | rate_ctrl->state[rate]. | |
1467 | rssi_thres + | |
1468 | rate_table->info[rate]. | |
1469 | rssi_ack_deltamin; | |
1470 | } | |
1471 | } | |
1472 | ||
1473 | /* Make sure the rates below this have lower rssi thresholds. */ | |
1474 | for (rate = tx_rate - 1; rate >= 0; rate--) { | |
1475 | if (rate_table->info[rate].phy != | |
1476 | rate_table->info[tx_rate].phy) | |
1477 | break; | |
1478 | ||
1479 | if (rate_ctrl->state[rate].rssi_thres + | |
1480 | rate_table->info[rate].rssi_ack_deltamin > | |
1481 | rate_ctrl->state[rate+1].rssi_thres) { | |
1482 | if (rate_ctrl->state[rate+1].rssi_thres < | |
1483 | rate_table->info[rate]. | |
1484 | rssi_ack_deltamin) | |
1485 | rate_ctrl->state[rate].rssi_thres = 0; | |
1486 | else { | |
1487 | rate_ctrl->state[rate].rssi_thres = | |
1488 | rate_ctrl->state[rate+1]. | |
1489 | rssi_thres - | |
1490 | rate_table->info[rate]. | |
1491 | rssi_ack_deltamin; | |
1492 | } | |
1493 | ||
1494 | if (rate_ctrl->state[rate].rssi_thres < | |
1495 | rate_table->info[rate]. | |
1496 | rssi_ack_validmin) { | |
1497 | rate_ctrl->state[rate].rssi_thres = | |
1498 | rate_table->info[rate]. | |
1499 | rssi_ack_validmin; | |
1500 | } | |
1501 | } | |
1502 | } | |
1503 | } | |
1504 | ||
1505 | /* Make sure the rates below this have lower PER */ | |
1506 | /* Monotonicity is kept only for rates below the current rate. */ | |
1507 | if (rate_ctrl->state[tx_rate].per < last_per) { | |
1508 | for (rate = tx_rate - 1; rate >= 0; rate--) { | |
1509 | if (rate_table->info[rate].phy != | |
1510 | rate_table->info[tx_rate].phy) | |
1511 | break; | |
1512 | ||
1513 | if (rate_ctrl->state[rate].per > | |
1514 | rate_ctrl->state[rate+1].per) { | |
1515 | rate_ctrl->state[rate].per = | |
1516 | rate_ctrl->state[rate+1].per; | |
1517 | } | |
1518 | } | |
1519 | } | |
1520 | ||
1521 | /* Maintain monotonicity for rates above the current rate */ | |
1522 | for (rate = tx_rate; rate < rate_ctrl->rate_table_size - 1; rate++) { | |
1523 | if (rate_ctrl->state[rate+1].per < rate_ctrl->state[rate].per) | |
1524 | rate_ctrl->state[rate+1].per = | |
1525 | rate_ctrl->state[rate].per; | |
1526 | } | |
1527 | ||
1528 | /* Every so often, we reduce the thresholds and | |
1529 | * PER (different for CCK and OFDM). */ | |
1530 | if (now_msec - rate_ctrl->rssi_down_time >= | |
1531 | rate_table->rssi_reduce_interval) { | |
1532 | ||
1533 | for (rate = 0; rate < rate_ctrl->rate_table_size; rate++) { | |
1534 | if (rate_ctrl->state[rate].rssi_thres > | |
1535 | rate_table->info[rate].rssi_ack_validmin) | |
1536 | rate_ctrl->state[rate].rssi_thres -= 1; | |
1537 | } | |
1538 | rate_ctrl->rssi_down_time = now_msec; | |
1539 | } | |
1540 | ||
1541 | /* Every so often, we reduce the thresholds | |
1542 | * and PER (different for CCK and OFDM). */ | |
1543 | if (now_msec - rate_ctrl->per_down_time >= | |
1544 | rate_table->rssi_reduce_interval) { | |
1545 | for (rate = 0; rate < rate_ctrl->rate_table_size; rate++) { | |
1546 | rate_ctrl->state[rate].per = | |
1547 | 7 * rate_ctrl->state[rate].per / 8; | |
1548 | } | |
1549 | ||
1550 | rate_ctrl->per_down_time = now_msec; | |
1551 | } | |
1552 | } | |
1553 | ||
1554 | /* | |
1555 | * This routine is called in rate control callback tx_status() to give | |
1556 | * the status of previous frames. | |
1557 | */ | |
1558 | static void ath_rc_update(struct ath_softc *sc, | |
1559 | struct ath_rate_node *ath_rc_priv, | |
1560 | struct ath_tx_info_priv *info_priv, int final_ts_idx, | |
1561 | int xretries, int long_retry) | |
1562 | { | |
1563 | struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc; | |
1564 | struct ath_rate_table *rate_table; | |
1565 | struct ath_tx_ratectrl *rate_ctrl; | |
1566 | struct ath_rc_series rcs[4]; | |
1567 | u8 flags; | |
1568 | u32 series = 0, rix; | |
1569 | ||
1570 | memcpy(rcs, info_priv->rcs, 4 * sizeof(rcs[0])); | |
1571 | rate_table = (struct ath_rate_table *) | |
1572 | asc->hw_rate_table[sc->sc_curmode]; | |
1573 | rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv); | |
1574 | ASSERT(rcs[0].tries != 0); | |
1575 | ||
1576 | /* | |
1577 | * If the first rate is not the final index, there | |
1578 | * are intermediate rate failures to be processed. | |
1579 | */ | |
1580 | if (final_ts_idx != 0) { | |
1581 | /* Process intermediate rates that failed.*/ | |
1582 | for (series = 0; series < final_ts_idx ; series++) { | |
1583 | if (rcs[series].tries != 0) { | |
1584 | flags = rcs[series].flags; | |
1585 | /* If HT40 and we have switched mode from | |
1586 | * 40 to 20 => don't update */ | |
1587 | if ((flags & ATH_RC_CW40_FLAG) && | |
1588 | (rate_ctrl->rc_phy_mode != | |
1589 | (flags & ATH_RC_CW40_FLAG))) | |
1590 | return; | |
1591 | if ((flags & ATH_RC_CW40_FLAG) && | |
1592 | (flags & ATH_RC_SGI_FLAG)) | |
1593 | rix = rate_table->info[ | |
1594 | rcs[series].rix].ht_index; | |
1595 | else if (flags & ATH_RC_SGI_FLAG) | |
1596 | rix = rate_table->info[ | |
1597 | rcs[series].rix].sgi_index; | |
1598 | else if (flags & ATH_RC_CW40_FLAG) | |
1599 | rix = rate_table->info[ | |
1600 | rcs[series].rix].cw40index; | |
1601 | else | |
1602 | rix = rate_table->info[ | |
1603 | rcs[series].rix].base_index; | |
1604 | ath_rc_update_ht(sc, ath_rc_priv, | |
1605 | info_priv, rix, | |
1606 | xretries ? 1 : 2, | |
1607 | rcs[series].tries); | |
1608 | } | |
1609 | } | |
1610 | } else { | |
1611 | /* | |
1612 | * Handle the special case of MIMO PS burst, where the second | |
1613 | * aggregate is sent out with only one rate and one try. | |
1614 | * Treating it as an excessive retry penalizes the rate | |
1615 | * inordinately. | |
1616 | */ | |
1617 | if (rcs[0].tries == 1 && xretries == 1) | |
1618 | xretries = 2; | |
1619 | } | |
1620 | ||
1621 | flags = rcs[series].flags; | |
1622 | /* If HT40 and we have switched mode from 40 to 20 => don't update */ | |
1623 | if ((flags & ATH_RC_CW40_FLAG) && | |
1624 | (rate_ctrl->rc_phy_mode != (flags & ATH_RC_CW40_FLAG))) | |
1625 | return; | |
1626 | ||
1627 | if ((flags & ATH_RC_CW40_FLAG) && (flags & ATH_RC_SGI_FLAG)) | |
1628 | rix = rate_table->info[rcs[series].rix].ht_index; | |
1629 | else if (flags & ATH_RC_SGI_FLAG) | |
1630 | rix = rate_table->info[rcs[series].rix].sgi_index; | |
1631 | else if (flags & ATH_RC_CW40_FLAG) | |
1632 | rix = rate_table->info[rcs[series].rix].cw40index; | |
1633 | else | |
1634 | rix = rate_table->info[rcs[series].rix].base_index; | |
1635 | ||
1636 | ath_rc_update_ht(sc, ath_rc_priv, info_priv, rix, | |
1637 | xretries, long_retry); | |
1638 | } | |
1639 | ||
1640 | ||
1641 | /* | |
1642 | * Process a tx descriptor for a completed transmit (success or failure). | |
1643 | */ | |
1644 | static void ath_rate_tx_complete(struct ath_softc *sc, | |
1645 | struct ath_node *an, | |
1646 | struct ath_rate_node *rc_priv, | |
1647 | struct ath_tx_info_priv *info_priv) | |
1648 | { | |
1649 | int final_ts_idx = info_priv->tx.ts_rateindex; | |
1650 | int tx_status = 0, is_underrun = 0; | |
1651 | struct ath_vap *avp; | |
1652 | ||
1653 | avp = rc_priv->avp; | |
1654 | if ((avp->av_config.av_fixed_rateset != IEEE80211_FIXED_RATE_NONE) | |
1655 | || info_priv->tx.ts_status & ATH9K_TXERR_FILT) | |
1656 | return; | |
1657 | ||
1658 | if (info_priv->tx.ts_rssi > 0) { | |
1659 | ATH_RSSI_LPF(an->an_chainmask_sel.tx_avgrssi, | |
1660 | info_priv->tx.ts_rssi); | |
1661 | } | |
1662 | ||
1663 | /* | |
1664 | * If underrun error is seen assume it as an excessive retry only | |
1665 | * if prefetch trigger level have reached the max (0x3f for 5416) | |
1666 | * Adjust the long retry as if the frame was tried ATH_11N_TXMAXTRY | |
1667 | * times. This affects how ratectrl updates PER for the failed rate. | |
1668 | */ | |
1669 | if (info_priv->tx.ts_flags & | |
1670 | (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN) && | |
1671 | ((sc->sc_ah->ah_txTrigLevel) >= tx_triglevel_max)) { | |
1672 | tx_status = 1; | |
1673 | is_underrun = 1; | |
1674 | } | |
1675 | ||
1676 | if ((info_priv->tx.ts_status & ATH9K_TXERR_XRETRY) || | |
1677 | (info_priv->tx.ts_status & ATH9K_TXERR_FIFO)) | |
1678 | tx_status = 1; | |
1679 | ||
1680 | ath_rc_update(sc, rc_priv, info_priv, final_ts_idx, tx_status, | |
1681 | (is_underrun) ? ATH_11N_TXMAXTRY : | |
1682 | info_priv->tx.ts_longretry); | |
1683 | } | |
1684 | ||
1685 | ||
1686 | /* | |
1687 | * Update the SIB's rate control information | |
1688 | * | |
1689 | * This should be called when the supported rates change | |
1690 | * (e.g. SME operation, wireless mode change) | |
1691 | * | |
1692 | * It will determine which rates are valid for use. | |
1693 | */ | |
1694 | static void ath_rc_sib_update(struct ath_softc *sc, | |
1695 | struct ath_rate_node *ath_rc_priv, | |
1696 | u32 capflag, int keep_state, | |
1697 | struct ath_rateset *negotiated_rates, | |
1698 | struct ath_rateset *negotiated_htrates) | |
1699 | { | |
1700 | struct ath_rate_table *rate_table = NULL; | |
1701 | struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc; | |
1702 | struct ath_rateset *rateset = negotiated_rates; | |
1703 | u8 *ht_mcs = (u8 *)negotiated_htrates; | |
1704 | struct ath_tx_ratectrl *rate_ctrl = (struct ath_tx_ratectrl *) | |
1705 | (ath_rc_priv); | |
1706 | u8 i, j, k, hi = 0, hthi = 0; | |
1707 | ||
1708 | rate_table = (struct ath_rate_table *) | |
1709 | asc->hw_rate_table[sc->sc_curmode]; | |
1710 | ||
1711 | /* Initial rate table size. Will change depending | |
1712 | * on the working rate set */ | |
1713 | rate_ctrl->rate_table_size = MAX_TX_RATE_TBL; | |
1714 | ||
1715 | /* Initialize thresholds according to the global rate table */ | |
1716 | for (i = 0 ; (i < rate_ctrl->rate_table_size) && (!keep_state); i++) { | |
1717 | rate_ctrl->state[i].rssi_thres = | |
1718 | rate_table->info[i].rssi_ack_validmin; | |
1719 | rate_ctrl->state[i].per = 0; | |
1720 | } | |
1721 | ||
1722 | /* Determine the valid rates */ | |
1723 | ath_rc_init_valid_txmask(rate_ctrl); | |
1724 | ||
1725 | for (i = 0; i < WLAN_RC_PHY_MAX; i++) { | |
1726 | for (j = 0; j < MAX_TX_RATE_PHY; j++) | |
1727 | rate_ctrl->valid_phy_rateidx[i][j] = 0; | |
1728 | rate_ctrl->valid_phy_ratecnt[i] = 0; | |
1729 | } | |
1730 | rate_ctrl->rc_phy_mode = (capflag & WLAN_RC_40_FLAG); | |
1731 | ||
1732 | /* Set stream capability */ | |
1733 | ath_rc_priv->single_stream = (capflag & WLAN_RC_DS_FLAG) ? 0 : 1; | |
1734 | ||
1735 | if (!rateset->rs_nrates) { | |
1736 | /* No working rate, just initialize valid rates */ | |
1737 | hi = ath_rc_sib_init_validrates(ath_rc_priv, rate_table, | |
1738 | capflag); | |
1739 | } else { | |
1740 | /* Use intersection of working rates and valid rates */ | |
1741 | hi = ath_rc_sib_setvalid_rates(ath_rc_priv, rate_table, | |
1742 | rateset, capflag); | |
1743 | if (capflag & WLAN_RC_HT_FLAG) { | |
1744 | hthi = ath_rc_sib_setvalid_htrates(ath_rc_priv, | |
1745 | rate_table, | |
1746 | ht_mcs, | |
1747 | capflag); | |
1748 | } | |
1749 | hi = A_MAX(hi, hthi); | |
1750 | } | |
1751 | ||
1752 | rate_ctrl->rate_table_size = hi + 1; | |
1753 | rate_ctrl->rate_max_phy = 0; | |
1754 | ASSERT(rate_ctrl->rate_table_size <= MAX_TX_RATE_TBL); | |
1755 | ||
1756 | for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) { | |
1757 | for (j = 0; j < rate_ctrl->valid_phy_ratecnt[i]; j++) { | |
1758 | rate_ctrl->valid_rate_index[k++] = | |
1759 | rate_ctrl->valid_phy_rateidx[i][j]; | |
1760 | } | |
1761 | ||
1762 | if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, TRUE) | |
1763 | || !rate_ctrl->valid_phy_ratecnt[i]) | |
1764 | continue; | |
1765 | ||
1766 | rate_ctrl->rate_max_phy = rate_ctrl->valid_phy_rateidx[i][j-1]; | |
1767 | } | |
1768 | ASSERT(rate_ctrl->rate_table_size <= MAX_TX_RATE_TBL); | |
1769 | ASSERT(k <= MAX_TX_RATE_TBL); | |
1770 | ||
1771 | rate_ctrl->max_valid_rate = k; | |
1772 | /* | |
1773 | * Some third party vendors don't send the supported rate series in | |
1774 | * order. So sorting to make sure its in order, otherwise our RateFind | |
1775 | * Algo will select wrong rates | |
1776 | */ | |
1777 | ath_rc_sort_validrates(rate_table, rate_ctrl); | |
1778 | rate_ctrl->rate_max_phy = rate_ctrl->valid_rate_index[k-4]; | |
1779 | } | |
1780 | ||
1781 | /* | |
1782 | * Update rate-control state on station associate/reassociate. | |
1783 | */ | |
1784 | static int ath_rate_newassoc(struct ath_softc *sc, | |
1785 | struct ath_rate_node *ath_rc_priv, | |
1786 | unsigned int capflag, | |
1787 | struct ath_rateset *negotiated_rates, | |
1788 | struct ath_rateset *negotiated_htrates) | |
1789 | { | |
1790 | ||
1791 | ||
1792 | ath_rc_priv->ht_cap = | |
1793 | ((capflag & ATH_RC_DS_FLAG) ? WLAN_RC_DS_FLAG : 0) | | |
1794 | ((capflag & ATH_RC_SGI_FLAG) ? WLAN_RC_SGI_FLAG : 0) | | |
1795 | ((capflag & ATH_RC_HT_FLAG) ? WLAN_RC_HT_FLAG : 0) | | |
1796 | ((capflag & ATH_RC_CW40_FLAG) ? WLAN_RC_40_FLAG : 0); | |
1797 | ||
1798 | ath_rc_sib_update(sc, ath_rc_priv, ath_rc_priv->ht_cap, 0, | |
1799 | negotiated_rates, negotiated_htrates); | |
1800 | ||
1801 | return 0; | |
1802 | } | |
1803 | ||
1804 | /* | |
1805 | * This routine is called to initialize the rate control parameters | |
1806 | * in the SIB. It is called initially during system initialization | |
1807 | * or when a station is associated with the AP. | |
1808 | */ | |
1809 | static void ath_rc_sib_init(struct ath_rate_node *ath_rc_priv) | |
1810 | { | |
1811 | struct ath_tx_ratectrl *rate_ctrl; | |
1812 | ||
1813 | rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv); | |
1814 | rate_ctrl->rssi_down_time = jiffies_to_msecs(jiffies); | |
1815 | } | |
1816 | ||
1817 | ||
1818 | static void ath_setup_rates(struct ieee80211_local *local, struct sta_info *sta) | |
1819 | ||
1820 | { | |
1821 | struct ieee80211_supported_band *sband; | |
1822 | struct ieee80211_hw *hw = local_to_hw(local); | |
1823 | struct ath_softc *sc = hw->priv; | |
1824 | struct ath_rate_node *rc_priv = sta->rate_ctrl_priv; | |
1825 | int i, j = 0; | |
1826 | ||
1827 | DPRINTF(sc, ATH_DBG_RATE, "%s", __func__); | |
1828 | sband = local->hw.wiphy->bands[local->hw.conf.channel->band]; | |
1829 | for (i = 0; i < sband->n_bitrates; i++) { | |
1830 | if (sta->supp_rates[local->hw.conf.channel->band] & BIT(i)) { | |
1831 | rc_priv->neg_rates.rs_rates[j] | |
1832 | = (sband->bitrates[i].bitrate * 2) / 10; | |
1833 | j++; | |
1834 | } | |
1835 | } | |
1836 | rc_priv->neg_rates.rs_nrates = j; | |
1837 | } | |
1838 | ||
1839 | void ath_rc_node_update(struct ieee80211_hw *hw, struct ath_rate_node *rc_priv) | |
1840 | { | |
1841 | struct ath_softc *sc = hw->priv; | |
1842 | u32 capflag = 0; | |
1843 | ||
1844 | if (hw->conf.ht_conf.ht_supported) { | |
1845 | capflag |= ATH_RC_HT_FLAG | ATH_RC_DS_FLAG; | |
1846 | if (sc->sc_ht_info.tx_chan_width == ATH9K_HT_MACMODE_2040) | |
1847 | capflag |= ATH_RC_CW40_FLAG; | |
1848 | } | |
1849 | ||
1850 | ath_rate_newassoc(sc, rc_priv, capflag, | |
1851 | &rc_priv->neg_rates, | |
1852 | &rc_priv->neg_ht_rates); | |
1853 | ||
1854 | } | |
1855 | ||
1856 | /* Rate Control callbacks */ | |
1857 | static void ath_tx_status(void *priv, struct net_device *dev, | |
1858 | struct sk_buff *skb) | |
1859 | { | |
1860 | struct ath_softc *sc = priv; | |
1861 | struct ath_tx_info_priv *tx_info_priv; | |
1862 | struct ath_node *an; | |
1863 | struct sta_info *sta; | |
1864 | struct ieee80211_local *local; | |
1865 | struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); | |
1866 | struct ieee80211_hdr *hdr; | |
1867 | __le16 fc; | |
1868 | ||
1869 | local = hw_to_local(sc->hw); | |
1870 | hdr = (struct ieee80211_hdr *)skb->data; | |
1871 | fc = hdr->frame_control; | |
1872 | tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0]; | |
1873 | ||
1874 | spin_lock_bh(&sc->node_lock); | |
1875 | an = ath_node_find(sc, hdr->addr1); | |
1876 | spin_unlock_bh(&sc->node_lock); | |
1877 | ||
1878 | sta = sta_info_get(local, hdr->addr1); | |
1879 | if (!an || !sta || !ieee80211_is_data(fc)) { | |
1880 | if (tx_info->driver_data[0] != NULL) { | |
1881 | kfree(tx_info->driver_data[0]); | |
1882 | tx_info->driver_data[0] = NULL; | |
1883 | } | |
1884 | return; | |
1885 | } | |
1886 | if (tx_info->driver_data[0] != NULL) { | |
1887 | ath_rate_tx_complete(sc, an, sta->rate_ctrl_priv, tx_info_priv); | |
1888 | kfree(tx_info->driver_data[0]); | |
1889 | tx_info->driver_data[0] = NULL; | |
1890 | } | |
1891 | } | |
1892 | ||
1893 | static void ath_tx_aggr_resp(struct ath_softc *sc, | |
1894 | struct sta_info *sta, | |
1895 | struct ath_node *an, | |
1896 | u8 tidno) | |
1897 | { | |
1898 | struct ieee80211_hw *hw = sc->hw; | |
1899 | struct ieee80211_local *local; | |
1900 | struct ath_atx_tid *txtid; | |
1901 | struct ieee80211_supported_band *sband; | |
1902 | u16 buffersize = 0; | |
1903 | int state; | |
1904 | DECLARE_MAC_BUF(mac); | |
1905 | ||
1906 | if (!sc->sc_txaggr) | |
1907 | return; | |
1908 | ||
1909 | txtid = ATH_AN_2_TID(an, tidno); | |
1910 | if (!txtid->paused) | |
1911 | return; | |
1912 | ||
1913 | local = hw_to_local(sc->hw); | |
1914 | sband = hw->wiphy->bands[hw->conf.channel->band]; | |
1915 | buffersize = IEEE80211_MIN_AMPDU_BUF << | |
1916 | sband->ht_info.ampdu_factor; /* FIXME */ | |
1917 | state = sta->ampdu_mlme.tid_state_tx[tidno]; | |
1918 | ||
1919 | if (state & HT_ADDBA_RECEIVED_MSK) { | |
1920 | txtid->addba_exchangecomplete = 1; | |
1921 | txtid->addba_exchangeinprogress = 0; | |
1922 | txtid->baw_size = buffersize; | |
1923 | ||
1924 | DPRINTF(sc, ATH_DBG_AGGR, | |
1925 | "%s: Resuming tid, buffersize: %d\n", | |
1926 | __func__, | |
1927 | buffersize); | |
1928 | ||
1929 | ath_tx_resume_tid(sc, txtid); | |
1930 | } | |
1931 | } | |
1932 | ||
1933 | static void ath_get_rate(void *priv, struct net_device *dev, | |
1934 | struct ieee80211_supported_band *sband, | |
1935 | struct sk_buff *skb, | |
1936 | struct rate_selection *sel) | |
1937 | { | |
1938 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; | |
1939 | struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); | |
1940 | struct sta_info *sta; | |
1941 | struct ath_softc *sc = (struct ath_softc *)priv; | |
1942 | struct ieee80211_hw *hw = sc->hw; | |
1943 | struct ath_tx_info_priv *tx_info_priv; | |
1944 | struct ath_rate_node *ath_rc_priv; | |
1945 | struct ath_node *an; | |
1946 | struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); | |
1947 | int is_probe, chk, ret; | |
1948 | s8 lowest_idx; | |
1949 | __le16 fc = hdr->frame_control; | |
1950 | u8 *qc, tid; | |
1951 | DECLARE_MAC_BUF(mac); | |
1952 | ||
1953 | DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__); | |
1954 | ||
1955 | /* allocate driver private area of tx_info */ | |
1956 | tx_info->driver_data[0] = kzalloc(sizeof(*tx_info_priv), GFP_ATOMIC); | |
1957 | ASSERT(tx_info->driver_data[0] != NULL); | |
1958 | tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0]; | |
1959 | ||
1960 | sta = sta_info_get(local, hdr->addr1); | |
1961 | lowest_idx = rate_lowest_index(local, sband, sta); | |
1962 | tx_info_priv->min_rate = (sband->bitrates[lowest_idx].bitrate * 2) / 10; | |
1963 | /* lowest rate for management and multicast/broadcast frames */ | |
1964 | if (!ieee80211_is_data(fc) || | |
1965 | is_multicast_ether_addr(hdr->addr1) || !sta) { | |
1966 | sel->rate_idx = lowest_idx; | |
1967 | return; | |
1968 | } | |
1969 | ||
1970 | ath_rc_priv = sta->rate_ctrl_priv; | |
1971 | ||
1972 | /* Find tx rate for unicast frames */ | |
1973 | ath_rate_findrate(sc, ath_rc_priv, | |
1974 | ATH_11N_TXMAXTRY, 4, | |
1975 | ATH_RC_PROBE_ALLOWED, | |
1976 | tx_info_priv->rcs, | |
1977 | &is_probe, | |
1978 | false); | |
1979 | if (is_probe) | |
1980 | sel->probe_idx = ((struct ath_tx_ratectrl *) | |
1981 | sta->rate_ctrl_priv)->probe_rate; | |
1982 | ||
1983 | /* Ratecontrol sometimes returns invalid rate index */ | |
1984 | if (tx_info_priv->rcs[0].rix != 0xff) | |
1985 | ath_rc_priv->prev_data_rix = tx_info_priv->rcs[0].rix; | |
1986 | else | |
1987 | tx_info_priv->rcs[0].rix = ath_rc_priv->prev_data_rix; | |
1988 | ||
1989 | sel->rate_idx = tx_info_priv->rcs[0].rix; | |
1990 | ||
1991 | /* Check if aggregation has to be enabled for this tid */ | |
1992 | ||
1993 | if (hw->conf.ht_conf.ht_supported) { | |
1994 | if (ieee80211_is_data_qos(fc)) { | |
1995 | qc = ieee80211_get_qos_ctl(hdr); | |
1996 | tid = qc[0] & 0xf; | |
1997 | ||
1998 | spin_lock_bh(&sc->node_lock); | |
1999 | an = ath_node_find(sc, hdr->addr1); | |
2000 | spin_unlock_bh(&sc->node_lock); | |
2001 | ||
2002 | if (!an) { | |
2003 | DPRINTF(sc, ATH_DBG_AGGR, | |
2004 | "%s: Node not found to " | |
2005 | "init/chk TX aggr\n", __func__); | |
2006 | return; | |
2007 | } | |
2008 | ||
2009 | chk = ath_tx_aggr_check(sc, an, tid); | |
2010 | if (chk == AGGR_REQUIRED) { | |
2011 | ret = ieee80211_start_tx_ba_session(hw, | |
2012 | hdr->addr1, tid); | |
2013 | if (ret) | |
2014 | DPRINTF(sc, ATH_DBG_AGGR, | |
2015 | "%s: Unable to start tx " | |
2016 | "aggr for: %s\n", | |
2017 | __func__, | |
2018 | print_mac(mac, hdr->addr1)); | |
2019 | else | |
2020 | DPRINTF(sc, ATH_DBG_AGGR, | |
2021 | "%s: Started tx aggr for: %s\n", | |
2022 | __func__, | |
2023 | print_mac(mac, hdr->addr1)); | |
2024 | } else if (chk == AGGR_EXCHANGE_PROGRESS) | |
2025 | ath_tx_aggr_resp(sc, sta, an, tid); | |
2026 | } | |
2027 | } | |
2028 | } | |
2029 | ||
2030 | static void ath_rate_init(void *priv, void *priv_sta, | |
2031 | struct ieee80211_local *local, | |
2032 | struct sta_info *sta) | |
2033 | { | |
2034 | struct ieee80211_supported_band *sband; | |
2035 | struct ieee80211_hw *hw = local_to_hw(local); | |
2036 | struct ieee80211_conf *conf = &local->hw.conf; | |
2037 | struct ath_softc *sc = hw->priv; | |
2038 | int i, j = 0; | |
2039 | ||
2040 | DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__); | |
2041 | ||
2042 | sband = local->hw.wiphy->bands[local->hw.conf.channel->band]; | |
2043 | sta->txrate_idx = rate_lowest_index(local, sband, sta); | |
2044 | ||
2045 | ath_setup_rates(local, sta); | |
2046 | if (conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) { | |
2047 | for (i = 0; i < MCS_SET_SIZE; i++) { | |
2048 | if (conf->ht_conf.supp_mcs_set[i/8] & (1<<(i%8))) | |
2049 | ((struct ath_rate_node *) | |
2050 | priv_sta)->neg_ht_rates.rs_rates[j++] = i; | |
2051 | if (j == ATH_RATE_MAX) | |
2052 | break; | |
2053 | } | |
2054 | ((struct ath_rate_node *)priv_sta)->neg_ht_rates.rs_nrates = j; | |
2055 | } | |
2056 | ath_rc_node_update(hw, priv_sta); | |
2057 | } | |
2058 | ||
2059 | static void ath_rate_clear(void *priv) | |
2060 | { | |
2061 | return; | |
2062 | } | |
2063 | ||
2064 | static void *ath_rate_alloc(struct ieee80211_local *local) | |
2065 | { | |
2066 | struct ieee80211_hw *hw = local_to_hw(local); | |
2067 | struct ath_softc *sc = hw->priv; | |
2068 | ||
2069 | DPRINTF(sc, ATH_DBG_RATE, "%s", __func__); | |
2070 | return local->hw.priv; | |
2071 | } | |
2072 | ||
2073 | static void ath_rate_free(void *priv) | |
2074 | { | |
2075 | return; | |
2076 | } | |
2077 | ||
2078 | static void *ath_rate_alloc_sta(void *priv, gfp_t gfp) | |
2079 | { | |
2080 | struct ath_softc *sc = priv; | |
2081 | struct ath_vap *avp = sc->sc_vaps[0]; | |
2082 | struct ath_rate_node *rate_priv; | |
2083 | ||
2084 | DPRINTF(sc, ATH_DBG_RATE, "%s", __func__); | |
2085 | rate_priv = ath_rate_node_alloc(avp, sc->sc_rc, gfp); | |
2086 | if (!rate_priv) { | |
2087 | DPRINTF(sc, ATH_DBG_FATAL, "%s:Unable to allocate" | |
2088 | "private rate control structure", __func__); | |
2089 | return NULL; | |
2090 | } | |
2091 | ath_rc_sib_init(rate_priv); | |
2092 | return rate_priv; | |
2093 | } | |
2094 | ||
2095 | static void ath_rate_free_sta(void *priv, void *priv_sta) | |
2096 | { | |
2097 | struct ath_rate_node *rate_priv = priv_sta; | |
2098 | struct ath_softc *sc = priv; | |
2099 | ||
2100 | DPRINTF(sc, ATH_DBG_RATE, "%s", __func__); | |
2101 | ath_rate_node_free(rate_priv); | |
2102 | } | |
2103 | ||
2104 | static struct rate_control_ops ath_rate_ops = { | |
2105 | .module = NULL, | |
2106 | .name = "ath9k_rate_control", | |
2107 | .tx_status = ath_tx_status, | |
2108 | .get_rate = ath_get_rate, | |
2109 | .rate_init = ath_rate_init, | |
2110 | .clear = ath_rate_clear, | |
2111 | .alloc = ath_rate_alloc, | |
2112 | .free = ath_rate_free, | |
2113 | .alloc_sta = ath_rate_alloc_sta, | |
2114 | .free_sta = ath_rate_free_sta | |
2115 | }; | |
2116 | ||
2117 | int ath_rate_control_register(void) | |
2118 | { | |
2119 | return ieee80211_rate_control_register(&ath_rate_ops); | |
2120 | } | |
2121 | ||
2122 | void ath_rate_control_unregister(void) | |
2123 | { | |
2124 | ieee80211_rate_control_unregister(&ath_rate_ops); | |
2125 | } | |
2126 |