iwlegacy: rename REPLY_ to N_ or C_
[deliverable/linux.git] / drivers / net / wireless / iwlegacy / 4965.h
CommitLineData
4bc85c13 1/******************************************************************************
4bc85c13
WYG
2 *
3 * GPL LICENSE SUMMARY
4 *
af038f40 5 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
4bc85c13
WYG
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of version 2 of the GNU General Public License as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
19 * USA
20 *
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * Contact Information:
25 * Intel Linux Wireless <ilw@linux.intel.com>
26 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *
4bc85c13 28 *****************************************************************************/
af038f40
SG
29
30#ifndef __il_4965_h__
31#define __il_4965_h__
32
33#include "iwl-fh.h"
34#include "iwl-debug.h"
35
36struct il_rx_queue;
37struct il_rx_buf;
38struct il_rx_pkt;
39struct il_tx_queue;
40struct il_rxon_context;
41
42/* configuration for the _4965 devices */
43extern struct il_cfg il4965_cfg;
44
45extern struct il_mod_params il4965_mod_params;
46
47extern struct ieee80211_ops il4965_hw_ops;
48
49/* tx queue */
50void il4965_free_tfds_in_queue(struct il_priv *il,
51 int sta_id, int tid, int freed);
52
53/* RXON */
54void il4965_set_rxon_chain(struct il_priv *il,
55 struct il_rxon_context *ctx);
56
57/* uCode */
58int il4965_verify_ucode(struct il_priv *il);
59
60/* lib */
61void il4965_check_abort_status(struct il_priv *il,
62 u8 frame_count, u32 status);
63
64void il4965_rx_queue_reset(struct il_priv *il, struct il_rx_queue *rxq);
65int il4965_rx_init(struct il_priv *il, struct il_rx_queue *rxq);
66int il4965_hw_nic_init(struct il_priv *il);
67int il4965_dump_fh(struct il_priv *il, char **buf, bool display);
68
69/* rx */
70void il4965_rx_queue_restock(struct il_priv *il);
71void il4965_rx_replenish(struct il_priv *il);
72void il4965_rx_replenish_now(struct il_priv *il);
73void il4965_rx_queue_free(struct il_priv *il, struct il_rx_queue *rxq);
74int il4965_rxq_stop(struct il_priv *il);
75int il4965_hwrate_to_mac80211_idx(u32 rate_n_flags, enum ieee80211_band band);
76void il4965_rx_reply_rx(struct il_priv *il,
77 struct il_rx_buf *rxb);
78void il4965_rx_reply_rx_phy(struct il_priv *il,
79 struct il_rx_buf *rxb);
80void il4965_rx_handle(struct il_priv *il);
81
82/* tx */
83void il4965_hw_txq_free_tfd(struct il_priv *il, struct il_tx_queue *txq);
84int il4965_hw_txq_attach_buf_to_tfd(struct il_priv *il,
85 struct il_tx_queue *txq,
86 dma_addr_t addr, u16 len, u8 reset, u8 pad);
87int il4965_hw_tx_queue_init(struct il_priv *il,
88 struct il_tx_queue *txq);
89void il4965_hwrate_to_tx_control(struct il_priv *il, u32 rate_n_flags,
90 struct ieee80211_tx_info *info);
91int il4965_tx_skb(struct il_priv *il, struct sk_buff *skb);
92int il4965_tx_agg_start(struct il_priv *il, struct ieee80211_vif *vif,
93 struct ieee80211_sta *sta, u16 tid, u16 *ssn);
94int il4965_tx_agg_stop(struct il_priv *il, struct ieee80211_vif *vif,
95 struct ieee80211_sta *sta, u16 tid);
96int il4965_txq_check_empty(struct il_priv *il,
97 int sta_id, u8 tid, int txq_id);
98void il4965_rx_reply_compressed_ba(struct il_priv *il,
99 struct il_rx_buf *rxb);
100int il4965_tx_queue_reclaim(struct il_priv *il, int txq_id, int idx);
101void il4965_hw_txq_ctx_free(struct il_priv *il);
102int il4965_txq_ctx_alloc(struct il_priv *il);
103void il4965_txq_ctx_reset(struct il_priv *il);
104void il4965_txq_ctx_stop(struct il_priv *il);
105void il4965_txq_set_sched(struct il_priv *il, u32 mask);
106
4bc85c13 107/*
af038f40 108 * Acquire il->lock before calling this function !
4bc85c13 109 */
af038f40
SG
110void il4965_set_wr_ptrs(struct il_priv *il, int txq_id, u32 idx);
111/**
112 * il4965_tx_queue_set_status - (optionally) start Tx/Cmd queue
113 * @tx_fifo_id: Tx DMA/FIFO channel (range 0-7) that the queue will feed
114 * @scd_retry: (1) Indicates queue will be used in aggregation mode
115 *
116 * NOTE: Acquire il->lock before calling this function !
117 */
118void il4965_tx_queue_set_status(struct il_priv *il,
119 struct il_tx_queue *txq,
120 int tx_fifo_id, int scd_retry);
121
122u8 il4965_toggle_tx_ant(struct il_priv *il, u8 ant_idx, u8 valid);
123
124/* rx */
125void il4965_rx_missed_beacon_notif(struct il_priv *il,
126 struct il_rx_buf *rxb);
127bool il4965_good_plcp_health(struct il_priv *il,
128 struct il_rx_pkt *pkt);
129void il4965_rx_stats(struct il_priv *il,
130 struct il_rx_buf *rxb);
131void il4965_reply_stats(struct il_priv *il,
132 struct il_rx_buf *rxb);
133
134/* scan */
135int il4965_request_scan(struct il_priv *il, struct ieee80211_vif *vif);
136
137/* station mgmt */
138int il4965_manage_ibss_station(struct il_priv *il,
139 struct ieee80211_vif *vif, bool add);
140
141/* hcmd */
142int il4965_send_beacon_cmd(struct il_priv *il);
143
144#ifdef CONFIG_IWLEGACY_DEBUG
145const char *il4965_get_tx_fail_reason(u32 status);
146#else
147static inline const char *
148il4965_get_tx_fail_reason(u32 status) { return ""; }
149#endif
150
151/* station management */
152int il4965_alloc_bcast_station(struct il_priv *il,
153 struct il_rxon_context *ctx);
154int il4965_add_bssid_station(struct il_priv *il,
155 struct il_rxon_context *ctx,
156 const u8 *addr, u8 *sta_id_r);
157int il4965_remove_default_wep_key(struct il_priv *il,
158 struct il_rxon_context *ctx,
159 struct ieee80211_key_conf *key);
160int il4965_set_default_wep_key(struct il_priv *il,
161 struct il_rxon_context *ctx,
162 struct ieee80211_key_conf *key);
163int il4965_restore_default_wep_keys(struct il_priv *il,
164 struct il_rxon_context *ctx);
165int il4965_set_dynamic_key(struct il_priv *il,
166 struct il_rxon_context *ctx,
167 struct ieee80211_key_conf *key, u8 sta_id);
168int il4965_remove_dynamic_key(struct il_priv *il,
169 struct il_rxon_context *ctx,
170 struct ieee80211_key_conf *key, u8 sta_id);
171void il4965_update_tkip_key(struct il_priv *il,
172 struct il_rxon_context *ctx,
173 struct ieee80211_key_conf *keyconf,
174 struct ieee80211_sta *sta, u32 iv32, u16 *phase1key);
175int il4965_sta_tx_modify_enable_tid(struct il_priv *il,
176 int sta_id, int tid);
177int il4965_sta_rx_agg_start(struct il_priv *il, struct ieee80211_sta *sta,
178 int tid, u16 ssn);
179int il4965_sta_rx_agg_stop(struct il_priv *il, struct ieee80211_sta *sta,
180 int tid);
181void il4965_sta_modify_sleep_tx_count(struct il_priv *il,
182 int sta_id, int cnt);
183int il4965_update_bcast_stations(struct il_priv *il);
184
185/* rate */
186static inline u8 il4965_hw_get_rate(__le32 rate_n_flags)
187{
188 return le32_to_cpu(rate_n_flags) & 0xFF;
189}
4bc85c13 190
af038f40
SG
191static inline __le32 il4965_hw_set_rate_n_flags(u8 rate, u32 flags)
192{
193 return cpu_to_le32(flags|(u32)rate);
194}
195
196/* eeprom */
197void il4965_eeprom_get_mac(const struct il_priv *il, u8 *mac);
198int il4965_eeprom_acquire_semaphore(struct il_priv *il);
199void il4965_eeprom_release_semaphore(struct il_priv *il);
200int il4965_eeprom_check_version(struct il_priv *il);
201
202/* mac80211 handlers (for 4965) */
203void il4965_mac_tx(struct ieee80211_hw *hw, struct sk_buff *skb);
204int il4965_mac_start(struct ieee80211_hw *hw);
205void il4965_mac_stop(struct ieee80211_hw *hw);
206void il4965_configure_filter(struct ieee80211_hw *hw,
207 unsigned int changed_flags,
208 unsigned int *total_flags,
209 u64 multicast);
210int il4965_mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
211 struct ieee80211_vif *vif, struct ieee80211_sta *sta,
212 struct ieee80211_key_conf *key);
213void il4965_mac_update_tkip_key(struct ieee80211_hw *hw,
214 struct ieee80211_vif *vif,
215 struct ieee80211_key_conf *keyconf,
216 struct ieee80211_sta *sta,
217 u32 iv32, u16 *phase1key);
218int il4965_mac_ampdu_action(struct ieee80211_hw *hw,
219 struct ieee80211_vif *vif,
220 enum ieee80211_ampdu_mlme_action action,
221 struct ieee80211_sta *sta, u16 tid, u16 *ssn,
222 u8 buf_size);
223int il4965_mac_sta_add(struct ieee80211_hw *hw,
224 struct ieee80211_vif *vif,
225 struct ieee80211_sta *sta);
226void il4965_mac_channel_switch(struct ieee80211_hw *hw,
227 struct ieee80211_channel_switch *ch_switch);
228
229void il4965_led_enable(struct il_priv *il);
4bc85c13 230
4bc85c13
WYG
231
232/* EEPROM */
d3175167 233#define IL4965_EEPROM_IMG_SIZE 1024
4bc85c13
WYG
234
235/*
236 * uCode queue management definitions ...
237 * The first queue used for block-ack aggregation is #7 (4965 only).
238 * All block-ack aggregation queues should map to Tx DMA/FIFO channel 7.
239 */
d3175167 240#define IL49_FIRST_AMPDU_QUEUE 7
4bc85c13
WYG
241
242/* Sizes and addresses for instruction and data memory (SRAM) in
243 * 4965's embedded processor. Driver access is via HBUS_TARG_MEM_* regs. */
d3175167
SG
244#define IL49_RTC_INST_LOWER_BOUND (0x000000)
245#define IL49_RTC_INST_UPPER_BOUND (0x018000)
4bc85c13 246
d3175167
SG
247#define IL49_RTC_DATA_LOWER_BOUND (0x800000)
248#define IL49_RTC_DATA_UPPER_BOUND (0x80A000)
4bc85c13 249
d3175167
SG
250#define IL49_RTC_INST_SIZE (IL49_RTC_INST_UPPER_BOUND - \
251 IL49_RTC_INST_LOWER_BOUND)
252#define IL49_RTC_DATA_SIZE (IL49_RTC_DATA_UPPER_BOUND - \
253 IL49_RTC_DATA_LOWER_BOUND)
4bc85c13 254
d3175167
SG
255#define IL49_MAX_INST_SIZE IL49_RTC_INST_SIZE
256#define IL49_MAX_DATA_SIZE IL49_RTC_DATA_SIZE
4bc85c13
WYG
257
258/* Size of uCode instruction memory in bootstrap state machine */
d3175167 259#define IL49_MAX_BSM_SIZE BSM_SRAM_SIZE
4bc85c13 260
e2ebc833 261static inline int il4965_hw_valid_rtc_data_addr(u32 addr)
4bc85c13 262{
d3175167
SG
263 return (addr >= IL49_RTC_DATA_LOWER_BOUND &&
264 addr < IL49_RTC_DATA_UPPER_BOUND);
4bc85c13
WYG
265}
266
267/********************* START TEMPERATURE *************************************/
268
269/**
270 * 4965 temperature calculation.
271 *
272 * The driver must calculate the device temperature before calculating
273 * a txpower setting (amplifier gain is temperature dependent). The
274 * calculation uses 4 measurements, 3 of which (R1, R2, R3) are calibration
275 * values used for the life of the driver, and one of which (R4) is the
276 * real-time temperature indicator.
277 *
278 * uCode provides all 4 values to the driver via the "initialize alive"
e2ebc833 279 * notification (see struct il4965_init_alive_resp). After the runtime uCode
ebf0d90d 280 * image loads, uCode updates the R4 value via stats notifications
4d69c752
SG
281 * (see N_STATS), which occur after each received beacon
282 * when associated, or can be requested via C_STATS.
4bc85c13
WYG
283 *
284 * NOTE: uCode provides the R4 value as a 23-bit signed value. Driver
285 * must sign-extend to 32 bits before applying formula below.
286 *
287 * Formula:
288 *
289 * degrees Kelvin = ((97 * 259 * (R4 - R2) / (R3 - R1)) / 100) + 8
290 *
291 * NOTE: The basic formula is 259 * (R4-R2) / (R3-R1). The 97/100 is
292 * an additional correction, which should be centered around 0 degrees
293 * Celsius (273 degrees Kelvin). The 8 (3 percent of 273) compensates for
294 * centering the 97/100 correction around 0 degrees K.
295 *
296 * Add 273 to Kelvin value to find degrees Celsius, for comparing current
297 * temperature with factory-measured temperatures when calculating txpower
298 * settings.
299 */
300#define TEMPERATURE_CALIB_KELVIN_OFFSET 8
301#define TEMPERATURE_CALIB_A_VAL 259
302
303/* Limit range of calculated temperature to be between these Kelvin values */
e2ebc833
SG
304#define IL_TX_POWER_TEMPERATURE_MIN (263)
305#define IL_TX_POWER_TEMPERATURE_MAX (410)
4bc85c13 306
e2ebc833 307#define IL_TX_POWER_TEMPERATURE_OUT_OF_RANGE(t) \
232913b5
SG
308 ((t) < IL_TX_POWER_TEMPERATURE_MIN || \
309 (t) > IL_TX_POWER_TEMPERATURE_MAX)
4bc85c13
WYG
310
311/********************* END TEMPERATURE ***************************************/
312
313/********************* START TXPOWER *****************************************/
314
315/**
316 * 4965 txpower calculations rely on information from three sources:
317 *
318 * 1) EEPROM
319 * 2) "initialize" alive notification
ebf0d90d 320 * 3) stats notifications
4bc85c13
WYG
321 *
322 * EEPROM data consists of:
323 *
324 * 1) Regulatory information (max txpower and channel usage flags) is provided
325 * separately for each channel that can possibly supported by 4965.
326 * 40 MHz wide (.11n HT40) channels are listed separately from 20 MHz
327 * (legacy) channels.
328 *
e2ebc833 329 * See struct il4965_eeprom_channel for format, and struct il4965_eeprom
4bc85c13
WYG
330 * for locations in EEPROM.
331 *
332 * 2) Factory txpower calibration information is provided separately for
333 * sub-bands of contiguous channels. 2.4GHz has just one sub-band,
334 * but 5 GHz has several sub-bands.
335 *
336 * In addition, per-band (2.4 and 5 Ghz) saturation txpowers are provided.
337 *
e2ebc833
SG
338 * See struct il4965_eeprom_calib_info (and the tree of structures
339 * contained within it) for format, and struct il4965_eeprom for
4bc85c13
WYG
340 * locations in EEPROM.
341 *
e2ebc833 342 * "Initialization alive" notification (see struct il4965_init_alive_resp)
4bc85c13
WYG
343 * consists of:
344 *
345 * 1) Temperature calculation parameters.
346 *
347 * 2) Power supply voltage measurement.
348 *
349 * 3) Tx gain compensation to balance 2 transmitters for MIMO use.
350 *
351 * Statistics notifications deliver:
352 *
353 * 1) Current values for temperature param R4.
354 */
355
356/**
357 * To calculate a txpower setting for a given desired target txpower, channel,
358 * modulation bit rate, and transmitter chain (4965 has 2 transmitters to
359 * support MIMO and transmit diversity), driver must do the following:
360 *
361 * 1) Compare desired txpower vs. (EEPROM) regulatory limit for this channel.
362 * Do not exceed regulatory limit; reduce target txpower if necessary.
363 *
0c2c8852 364 * If setting up txpowers for MIMO rates (rate idxes 8-15, 24-31),
4bc85c13
WYG
365 * 2 transmitters will be used simultaneously; driver must reduce the
366 * regulatory limit by 3 dB (half-power) for each transmitter, so the
367 * combined total output of the 2 transmitters is within regulatory limits.
368 *
369 *
370 * 2) Compare target txpower vs. (EEPROM) saturation txpower *reduced by
371 * backoff for this bit rate*. Do not exceed (saturation - backoff[rate]);
372 * reduce target txpower if necessary.
373 *
374 * Backoff values below are in 1/2 dB units (equivalent to steps in
375 * txpower gain tables):
376 *
377 * OFDM 6 - 36 MBit: 10 steps (5 dB)
378 * OFDM 48 MBit: 15 steps (7.5 dB)
379 * OFDM 54 MBit: 17 steps (8.5 dB)
380 * OFDM 60 MBit: 20 steps (10 dB)
381 * CCK all rates: 10 steps (5 dB)
382 *
383 * Backoff values apply to saturation txpower on a per-transmitter basis;
384 * when using MIMO (2 transmitters), each transmitter uses the same
385 * saturation level provided in EEPROM, and the same backoff values;
386 * no reduction (such as with regulatory txpower limits) is required.
387 *
388 * Saturation and Backoff values apply equally to 20 Mhz (legacy) channel
389 * widths and 40 Mhz (.11n HT40) channel widths; there is no separate
390 * factory measurement for ht40 channels.
391 *
392 * The result of this step is the final target txpower. The rest of
393 * the steps figure out the proper settings for the device to achieve
394 * that target txpower.
395 *
396 *
397 * 3) Determine (EEPROM) calibration sub band for the target channel, by
398 * comparing against first and last channels in each sub band
e2ebc833 399 * (see struct il4965_eeprom_calib_subband_info).
4bc85c13
WYG
400 *
401 *
402 * 4) Linearly interpolate (EEPROM) factory calibration measurement sets,
403 * referencing the 2 factory-measured (sample) channels within the sub band.
404 *
405 * Interpolation is based on difference between target channel's frequency
406 * and the sample channels' frequencies. Since channel numbers are based
407 * on frequency (5 MHz between each channel number), this is equivalent
408 * to interpolating based on channel number differences.
409 *
410 * Note that the sample channels may or may not be the channels at the
411 * edges of the sub band. The target channel may be "outside" of the
412 * span of the sampled channels.
413 *
414 * Driver may choose the pair (for 2 Tx chains) of measurements (see
e2ebc833 415 * struct il4965_eeprom_calib_ch_info) for which the actual measured
4bc85c13
WYG
416 * txpower comes closest to the desired txpower. Usually, though,
417 * the middle set of measurements is closest to the regulatory limits,
418 * and is therefore a good choice for all txpower calculations (this
419 * assumes that high accuracy is needed for maximizing legal txpower,
420 * while lower txpower configurations do not need as much accuracy).
421 *
422 * Driver should interpolate both members of the chosen measurement pair,
423 * i.e. for both Tx chains (radio transmitters), unless the driver knows
424 * that only one of the chains will be used (e.g. only one tx antenna
425 * connected, but this should be unusual). The rate scaling algorithm
426 * switches antennas to find best performance, so both Tx chains will
427 * be used (although only one at a time) even for non-MIMO transmissions.
428 *
429 * Driver should interpolate factory values for temperature, gain table
0c2c8852 430 * idx, and actual power. The power amplifier detector values are
4bc85c13
WYG
431 * not used by the driver.
432 *
433 * Sanity check: If the target channel happens to be one of the sample
434 * channels, the results should agree with the sample channel's
435 * measurements!
436 *
437 *
438 * 5) Find difference between desired txpower and (interpolated)
0c2c8852
SG
439 * factory-measured txpower. Using (interpolated) factory gain table idx
440 * (shown elsewhere) as a starting point, adjust this idx lower to
4bc85c13
WYG
441 * increase txpower, or higher to decrease txpower, until the target
442 * txpower is reached. Each step in the gain table is 1/2 dB.
443 *
444 * For example, if factory measured txpower is 16 dBm, and target txpower
0c2c8852 445 * is 13 dBm, add 6 steps to the factory gain idx to reduce txpower
4bc85c13
WYG
446 * by 3 dB.
447 *
448 *
449 * 6) Find difference between current device temperature and (interpolated)
450 * factory-measured temperature for sub-band. Factory values are in
451 * degrees Celsius. To calculate current temperature, see comments for
452 * "4965 temperature calculation".
453 *
454 * If current temperature is higher than factory temperature, driver must
0c2c8852 455 * increase gain (lower gain table idx), and vice verse.
4bc85c13
WYG
456 *
457 * Temperature affects gain differently for different channels:
458 *
459 * 2.4 GHz all channels: 3.5 degrees per half-dB step
460 * 5 GHz channels 34-43: 4.5 degrees per half-dB step
461 * 5 GHz channels >= 44: 4.0 degrees per half-dB step
462 *
463 * NOTE: Temperature can increase rapidly when transmitting, especially
464 * with heavy traffic at high txpowers. Driver should update
465 * temperature calculations often under these conditions to
466 * maintain strong txpower in the face of rising temperature.
467 *
468 *
469 * 7) Find difference between current power supply voltage indicator
470 * (from "initialize alive") and factory-measured power supply voltage
471 * indicator (EEPROM).
472 *
473 * If the current voltage is higher (indicator is lower) than factory
0c2c8852 474 * voltage, gain should be reduced (gain table idx increased) by:
4bc85c13
WYG
475 *
476 * (eeprom - current) / 7
477 *
478 * If the current voltage is lower (indicator is higher) than factory
0c2c8852 479 * voltage, gain should be increased (gain table idx decreased) by:
4bc85c13
WYG
480 *
481 * 2 * (current - eeprom) / 7
482 *
0c2c8852 483 * If number of idx steps in either direction turns out to be > 2,
4bc85c13
WYG
484 * something is wrong ... just use 0.
485 *
486 * NOTE: Voltage compensation is independent of band/channel.
487 *
488 * NOTE: "Initialize" uCode measures current voltage, which is assumed
489 * to be constant after this initial measurement. Voltage
490 * compensation for txpower (number of steps in gain table)
491 * may be calculated once and used until the next uCode bootload.
492 *
493 *
0c2c8852 494 * 8) If setting up txpowers for MIMO rates (rate idxes 8-15, 24-31),
4bc85c13
WYG
495 * adjust txpower for each transmitter chain, so txpower is balanced
496 * between the two chains. There are 5 pairs of tx_atten[group][chain]
497 * values in "initialize alive", one pair for each of 5 channel ranges:
498 *
499 * Group 0: 5 GHz channel 34-43
500 * Group 1: 5 GHz channel 44-70
501 * Group 2: 5 GHz channel 71-124
502 * Group 3: 5 GHz channel 125-200
503 * Group 4: 2.4 GHz all channels
504 *
0c2c8852 505 * Add the tx_atten[group][chain] value to the idx for the target chain.
4bc85c13
WYG
506 * The values are signed, but are in pairs of 0 and a non-negative number,
507 * so as to reduce gain (if necessary) of the "hotter" channel. This
508 * avoids any need to double-check for regulatory compliance after
509 * this step.
510 *
511 *
512 * 9) If setting up for a CCK rate, lower the gain by adding a CCK compensation
0c2c8852 513 * value to the idx:
4bc85c13
WYG
514 *
515 * Hardware rev B: 9 steps (4.5 dB)
516 * Hardware rev C: 5 steps (2.5 dB)
517 *
518 * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG,
519 * bits [3:2], 1 = B, 2 = C.
520 *
521 * NOTE: This compensation is in addition to any saturation backoff that
522 * might have been applied in an earlier step.
523 *
524 *
525 * 10) Select the gain table, based on band (2.4 vs 5 GHz).
526 *
0c2c8852 527 * Limit the adjusted idx to stay within the table!
4bc85c13
WYG
528 *
529 *
530 * 11) Read gain table entries for DSP and radio gain, place into appropriate
e2ebc833 531 * location(s) in command (struct il4965_txpowertable_cmd).
4bc85c13
WYG
532 */
533
534/**
535 * When MIMO is used (2 transmitters operating simultaneously), driver should
536 * limit each transmitter to deliver a max of 3 dB below the regulatory limit
537 * for the device. That is, use half power for each transmitter, so total
538 * txpower is within regulatory limits.
539 *
540 * The value "6" represents number of steps in gain table to reduce power 3 dB.
541 * Each step is 1/2 dB.
542 */
e2ebc833 543#define IL_TX_POWER_MIMO_REGULATORY_COMPENSATION (6)
4bc85c13
WYG
544
545/**
546 * CCK gain compensation.
547 *
548 * When calculating txpowers for CCK, after making sure that the target power
549 * is within regulatory and saturation limits, driver must additionally
0c2c8852 550 * back off gain by adding these values to the gain table idx.
4bc85c13
WYG
551 *
552 * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG,
553 * bits [3:2], 1 = B, 2 = C.
554 */
e2ebc833
SG
555#define IL_TX_POWER_CCK_COMPENSATION_B_STEP (9)
556#define IL_TX_POWER_CCK_COMPENSATION_C_STEP (5)
4bc85c13
WYG
557
558/*
559 * 4965 power supply voltage compensation for txpower
560 */
e2ebc833 561#define TX_POWER_IL_VOLTAGE_CODES_PER_03V (7)
4bc85c13
WYG
562
563/**
564 * Gain tables.
565 *
566 * The following tables contain pair of values for setting txpower, i.e.
567 * gain settings for the output of the device's digital signal processor (DSP),
568 * and for the analog gain structure of the transmitter.
569 *
570 * Each entry in the gain tables represents a step of 1/2 dB. Note that these
571 * are *relative* steps, not indications of absolute output power. Output
572 * power varies with temperature, voltage, and channel frequency, and also
573 * requires consideration of average power (to satisfy regulatory constraints),
574 * and peak power (to avoid distortion of the output signal).
575 *
576 * Each entry contains two values:
577 * 1) DSP gain (or sometimes called DSP attenuation). This is a fine-grained
578 * linear value that multiplies the output of the digital signal processor,
579 * before being sent to the analog radio.
580 * 2) Radio gain. This sets the analog gain of the radio Tx path.
581 * It is a coarser setting, and behaves in a logarithmic (dB) fashion.
582 *
583 * EEPROM contains factory calibration data for txpower. This maps actual
584 * measured txpower levels to gain settings in the "well known" tables
585 * below ("well-known" means here that both factory calibration *and* the
586 * driver work with the same table).
587 *
588 * There are separate tables for 2.4 GHz and 5 GHz bands. The 5 GHz table
0c2c8852 589 * has an extension (into negative idxes), in case the driver needs to
4bc85c13 590 * boost power setting for high device temperatures (higher than would be
0c2c8852 591 * present during factory calibration). A 5 Ghz EEPROM idx of "40"
4bc85c13
WYG
592 * corresponds to the 49th entry in the table used by the driver.
593 */
2d09b062
SG
594#define MIN_TX_GAIN_IDX (0) /* highest gain, lowest idx, 2.4 */
595#define MIN_TX_GAIN_IDX_52GHZ_EXT (-9) /* highest gain, lowest idx, 5 */
4bc85c13
WYG
596
597/**
598 * 2.4 GHz gain table
599 *
600 * Index Dsp gain Radio gain
601 * 0 110 0x3f (highest gain)
602 * 1 104 0x3f
603 * 2 98 0x3f
604 * 3 110 0x3e
605 * 4 104 0x3e
606 * 5 98 0x3e
607 * 6 110 0x3d
608 * 7 104 0x3d
609 * 8 98 0x3d
610 * 9 110 0x3c
611 * 10 104 0x3c
612 * 11 98 0x3c
613 * 12 110 0x3b
614 * 13 104 0x3b
615 * 14 98 0x3b
616 * 15 110 0x3a
617 * 16 104 0x3a
618 * 17 98 0x3a
619 * 18 110 0x39
620 * 19 104 0x39
621 * 20 98 0x39
622 * 21 110 0x38
623 * 22 104 0x38
624 * 23 98 0x38
625 * 24 110 0x37
626 * 25 104 0x37
627 * 26 98 0x37
628 * 27 110 0x36
629 * 28 104 0x36
630 * 29 98 0x36
631 * 30 110 0x35
632 * 31 104 0x35
633 * 32 98 0x35
634 * 33 110 0x34
635 * 34 104 0x34
636 * 35 98 0x34
637 * 36 110 0x33
638 * 37 104 0x33
639 * 38 98 0x33
640 * 39 110 0x32
641 * 40 104 0x32
642 * 41 98 0x32
643 * 42 110 0x31
644 * 43 104 0x31
645 * 44 98 0x31
646 * 45 110 0x30
647 * 46 104 0x30
648 * 47 98 0x30
649 * 48 110 0x6
650 * 49 104 0x6
651 * 50 98 0x6
652 * 51 110 0x5
653 * 52 104 0x5
654 * 53 98 0x5
655 * 54 110 0x4
656 * 55 104 0x4
657 * 56 98 0x4
658 * 57 110 0x3
659 * 58 104 0x3
660 * 59 98 0x3
661 * 60 110 0x2
662 * 61 104 0x2
663 * 62 98 0x2
664 * 63 110 0x1
665 * 64 104 0x1
666 * 65 98 0x1
667 * 66 110 0x0
668 * 67 104 0x0
669 * 68 98 0x0
670 * 69 97 0
671 * 70 96 0
672 * 71 95 0
673 * 72 94 0
674 * 73 93 0
675 * 74 92 0
676 * 75 91 0
677 * 76 90 0
678 * 77 89 0
679 * 78 88 0
680 * 79 87 0
681 * 80 86 0
682 * 81 85 0
683 * 82 84 0
684 * 83 83 0
685 * 84 82 0
686 * 85 81 0
687 * 86 80 0
688 * 87 79 0
689 * 88 78 0
690 * 89 77 0
691 * 90 76 0
692 * 91 75 0
693 * 92 74 0
694 * 93 73 0
695 * 94 72 0
696 * 95 71 0
697 * 96 70 0
698 * 97 69 0
699 * 98 68 0
700 */
701
702/**
703 * 5 GHz gain table
704 *
705 * Index Dsp gain Radio gain
706 * -9 123 0x3F (highest gain)
707 * -8 117 0x3F
708 * -7 110 0x3F
709 * -6 104 0x3F
710 * -5 98 0x3F
711 * -4 110 0x3E
712 * -3 104 0x3E
713 * -2 98 0x3E
714 * -1 110 0x3D
715 * 0 104 0x3D
716 * 1 98 0x3D
717 * 2 110 0x3C
718 * 3 104 0x3C
719 * 4 98 0x3C
720 * 5 110 0x3B
721 * 6 104 0x3B
722 * 7 98 0x3B
723 * 8 110 0x3A
724 * 9 104 0x3A
725 * 10 98 0x3A
726 * 11 110 0x39
727 * 12 104 0x39
728 * 13 98 0x39
729 * 14 110 0x38
730 * 15 104 0x38
731 * 16 98 0x38
732 * 17 110 0x37
733 * 18 104 0x37
734 * 19 98 0x37
735 * 20 110 0x36
736 * 21 104 0x36
737 * 22 98 0x36
738 * 23 110 0x35
739 * 24 104 0x35
740 * 25 98 0x35
741 * 26 110 0x34
742 * 27 104 0x34
743 * 28 98 0x34
744 * 29 110 0x33
745 * 30 104 0x33
746 * 31 98 0x33
747 * 32 110 0x32
748 * 33 104 0x32
749 * 34 98 0x32
750 * 35 110 0x31
751 * 36 104 0x31
752 * 37 98 0x31
753 * 38 110 0x30
754 * 39 104 0x30
755 * 40 98 0x30
756 * 41 110 0x25
757 * 42 104 0x25
758 * 43 98 0x25
759 * 44 110 0x24
760 * 45 104 0x24
761 * 46 98 0x24
762 * 47 110 0x23
763 * 48 104 0x23
764 * 49 98 0x23
765 * 50 110 0x22
766 * 51 104 0x18
767 * 52 98 0x18
768 * 53 110 0x17
769 * 54 104 0x17
770 * 55 98 0x17
771 * 56 110 0x16
772 * 57 104 0x16
773 * 58 98 0x16
774 * 59 110 0x15
775 * 60 104 0x15
776 * 61 98 0x15
777 * 62 110 0x14
778 * 63 104 0x14
779 * 64 98 0x14
780 * 65 110 0x13
781 * 66 104 0x13
782 * 67 98 0x13
783 * 68 110 0x12
784 * 69 104 0x08
785 * 70 98 0x08
786 * 71 110 0x07
787 * 72 104 0x07
788 * 73 98 0x07
789 * 74 110 0x06
790 * 75 104 0x06
791 * 76 98 0x06
792 * 77 110 0x05
793 * 78 104 0x05
794 * 79 98 0x05
795 * 80 110 0x04
796 * 81 104 0x04
797 * 82 98 0x04
798 * 83 110 0x03
799 * 84 104 0x03
800 * 85 98 0x03
801 * 86 110 0x02
802 * 87 104 0x02
803 * 88 98 0x02
804 * 89 110 0x01
805 * 90 104 0x01
806 * 91 98 0x01
807 * 92 110 0x00
808 * 93 104 0x00
809 * 94 98 0x00
810 * 95 93 0x00
811 * 96 88 0x00
812 * 97 83 0x00
813 * 98 78 0x00
814 */
815
816
817/**
818 * Sanity checks and default values for EEPROM regulatory levels.
819 * If EEPROM values fall outside MIN/MAX range, use default values.
820 *
821 * Regulatory limits refer to the maximum average txpower allowed by
822 * regulatory agencies in the geographies in which the device is meant
823 * to be operated. These limits are SKU-specific (i.e. geography-specific),
824 * and channel-specific; each channel has an individual regulatory limit
825 * listed in the EEPROM.
826 *
827 * Units are in half-dBm (i.e. "34" means 17 dBm).
828 */
e2ebc833
SG
829#define IL_TX_POWER_DEFAULT_REGULATORY_24 (34)
830#define IL_TX_POWER_DEFAULT_REGULATORY_52 (34)
831#define IL_TX_POWER_REGULATORY_MIN (0)
832#define IL_TX_POWER_REGULATORY_MAX (34)
4bc85c13
WYG
833
834/**
835 * Sanity checks and default values for EEPROM saturation levels.
836 * If EEPROM values fall outside MIN/MAX range, use default values.
837 *
838 * Saturation is the highest level that the output power amplifier can produce
839 * without significant clipping distortion. This is a "peak" power level.
840 * Different types of modulation (i.e. various "rates", and OFDM vs. CCK)
841 * require differing amounts of backoff, relative to their average power output,
842 * in order to avoid clipping distortion.
843 *
844 * Driver must make sure that it is violating neither the saturation limit,
845 * nor the regulatory limit, when calculating Tx power settings for various
846 * rates.
847 *
848 * Units are in half-dBm (i.e. "38" means 19 dBm).
849 */
e2ebc833
SG
850#define IL_TX_POWER_DEFAULT_SATURATION_24 (38)
851#define IL_TX_POWER_DEFAULT_SATURATION_52 (38)
852#define IL_TX_POWER_SATURATION_MIN (20)
853#define IL_TX_POWER_SATURATION_MAX (50)
4bc85c13
WYG
854
855/**
856 * Channel groups used for Tx Attenuation calibration (MIMO tx channel balance)
857 * and thermal Txpower calibration.
858 *
859 * When calculating txpower, driver must compensate for current device
860 * temperature; higher temperature requires higher gain. Driver must calculate
861 * current temperature (see "4965 temperature calculation"), then compare vs.
862 * factory calibration temperature in EEPROM; if current temperature is higher
863 * than factory temperature, driver must *increase* gain by proportions shown
864 * in table below. If current temperature is lower than factory, driver must
865 * *decrease* gain.
866 *
867 * Different frequency ranges require different compensation, as shown below.
868 */
869/* Group 0, 5.2 GHz ch 34-43: 4.5 degrees per 1/2 dB. */
e2ebc833
SG
870#define CALIB_IL_TX_ATTEN_GR1_FCH 34
871#define CALIB_IL_TX_ATTEN_GR1_LCH 43
4bc85c13
WYG
872
873/* Group 1, 5.3 GHz ch 44-70: 4.0 degrees per 1/2 dB. */
e2ebc833
SG
874#define CALIB_IL_TX_ATTEN_GR2_FCH 44
875#define CALIB_IL_TX_ATTEN_GR2_LCH 70
4bc85c13
WYG
876
877/* Group 2, 5.5 GHz ch 71-124: 4.0 degrees per 1/2 dB. */
e2ebc833
SG
878#define CALIB_IL_TX_ATTEN_GR3_FCH 71
879#define CALIB_IL_TX_ATTEN_GR3_LCH 124
4bc85c13
WYG
880
881/* Group 3, 5.7 GHz ch 125-200: 4.0 degrees per 1/2 dB. */
e2ebc833
SG
882#define CALIB_IL_TX_ATTEN_GR4_FCH 125
883#define CALIB_IL_TX_ATTEN_GR4_LCH 200
4bc85c13
WYG
884
885/* Group 4, 2.4 GHz all channels: 3.5 degrees per 1/2 dB. */
e2ebc833
SG
886#define CALIB_IL_TX_ATTEN_GR5_FCH 1
887#define CALIB_IL_TX_ATTEN_GR5_LCH 20
4bc85c13
WYG
888
889enum {
890 CALIB_CH_GROUP_1 = 0,
891 CALIB_CH_GROUP_2 = 1,
892 CALIB_CH_GROUP_3 = 2,
893 CALIB_CH_GROUP_4 = 3,
894 CALIB_CH_GROUP_5 = 4,
895 CALIB_CH_GROUP_MAX
896};
897
898/********************* END TXPOWER *****************************************/
899
900
901/**
902 * Tx/Rx Queues
903 *
904 * Most communication between driver and 4965 is via queues of data buffers.
905 * For example, all commands that the driver issues to device's embedded
906 * controller (uCode) are via the command queue (one of the Tx queues). All
907 * uCode command responses/replies/notifications, including Rx frames, are
908 * conveyed from uCode to driver via the Rx queue.
909 *
910 * Most support for these queues, including handshake support, resides in
911 * structures in host DRAM, shared between the driver and the device. When
912 * allocating this memory, the driver must make sure that data written by
913 * the host CPU updates DRAM immediately (and does not get "stuck" in CPU's
914 * cache memory), so DRAM and cache are consistent, and the device can
915 * immediately see changes made by the driver.
916 *
917 * 4965 supports up to 16 DRAM-based Tx queues, and services these queues via
918 * up to 7 DMA channels (FIFOs). Each Tx queue is supported by a circular array
919 * in DRAM containing 256 Transmit Frame Descriptors (TFDs).
920 */
d3175167
SG
921#define IL49_NUM_FIFOS 7
922#define IL49_CMD_FIFO_NUM 4
923#define IL49_NUM_QUEUES 16
924#define IL49_NUM_AMPDU_QUEUES 8
4bc85c13
WYG
925
926
927/**
e2ebc833 928 * struct il4965_schedq_bc_tbl
4bc85c13
WYG
929 *
930 * Byte Count table
931 *
932 * Each Tx queue uses a byte-count table containing 320 entries:
933 * one 16-bit entry for each of 256 TFDs, plus an additional 64 entries that
6ce1dc45
SG
934 * duplicate the first 64 entries (to avoid wrap-around within a Tx win;
935 * max Tx win is 64 TFDs).
4bc85c13
WYG
936 *
937 * When driver sets up a new TFD, it must also enter the total byte count
938 * of the frame to be transmitted into the corresponding entry in the byte
0c2c8852
SG
939 * count table for the chosen Tx queue. If the TFD idx is 0-63, the driver
940 * must duplicate the byte count entry in corresponding idx 256-319.
4bc85c13
WYG
941 *
942 * padding puts each byte count table on a 1024-byte boundary;
943 * 4965 assumes tables are separated by 1024 bytes.
944 */
e2ebc833 945struct il4965_scd_bc_tbl {
4bc85c13
WYG
946 __le16 tfd_offset[TFD_QUEUE_BC_SIZE];
947 u8 pad[1024 - (TFD_QUEUE_BC_SIZE) * sizeof(__le16)];
948} __packed;
949
be663ab6 950
d3175167 951#define IL4965_RTC_INST_LOWER_BOUND (0x000000)
be663ab6
WYG
952
953/* RSSI to dBm */
d3175167 954#define IL4965_RSSI_OFFSET 44
be663ab6
WYG
955
956/* PCI registers */
957#define PCI_CFG_RETRY_TIMEOUT 0x041
958
959/* PCI register values */
960#define PCI_CFG_LINK_CTRL_VAL_L0S_EN 0x01
961#define PCI_CFG_LINK_CTRL_VAL_L1_EN 0x02
962
d3175167 963#define IL4965_DEFAULT_TX_RETRY 15
be663ab6 964
be663ab6 965/* EEPROM */
d3175167 966#define IL4965_FIRST_AMPDU_QUEUE 10
be663ab6 967
af038f40
SG
968/* Calibration */
969void il4965_chain_noise_calibration(struct il_priv *il, void *stat_resp);
970void il4965_sensitivity_calibration(struct il_priv *il, void *resp);
971void il4965_init_sensitivity(struct il_priv *il);
972void il4965_reset_run_time_calib(struct il_priv *il);
973void il4965_calib_free_results(struct il_priv *il);
974
975/* Debug */
976#ifdef CONFIG_IWLEGACY_DEBUGFS
977ssize_t il4965_ucode_rx_stats_read(struct file *file, char __user *user_buf,
978 size_t count, loff_t *ppos);
979ssize_t il4965_ucode_tx_stats_read(struct file *file, char __user *user_buf,
980 size_t count, loff_t *ppos);
981ssize_t il4965_ucode_general_stats_read(struct file *file,
982 char __user *user_buf, size_t count, loff_t *ppos);
983#else
984static ssize_t
985il4965_ucode_rx_stats_read(struct file *file, char __user *user_buf,
986 size_t count, loff_t *ppos)
987{
988 return 0;
989}
990static ssize_t
991il4965_ucode_tx_stats_read(struct file *file, char __user *user_buf,
992 size_t count, loff_t *ppos)
993{
994 return 0;
995}
996static ssize_t
997il4965_ucode_general_stats_read(struct file *file, char __user *user_buf,
998 size_t count, loff_t *ppos)
999{
1000 return 0;
1001}
1002#endif
be663ab6 1003
af038f40 1004#endif /* __il_4965_h__ */
This page took 0.173875 seconds and 5 git commands to generate.