iwlwifi: fix check for a single rx antenna
[deliverable/linux.git] / drivers / net / wireless / iwlwifi / mvm / tt.c
CommitLineData
9ee718aa
EL
1/******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2013 Intel Corporation. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
23 *
24 * The full GNU General Public License is included in this distribution
25 * in the file called COPYING.
26 *
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *
31 * BSD LICENSE
32 *
33 * Copyright(c) 2012 - 2013 Intel Corporation. All rights reserved.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 *
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 *****************************************************************************/
63
64#include "mvm.h"
65#include "iwl-config.h"
66#include "iwl-io.h"
67#include "iwl-csr.h"
68#include "iwl-prph.h"
69
70#define OTP_DTS_DIODE_DEVIATION 96 /*in words*/
71/* VBG - Voltage Band Gap error data (temperature offset) */
72#define OTP_WP_DTS_VBG (OTP_DTS_DIODE_DEVIATION + 2)
73#define MEAS_VBG_MIN_VAL 2300
74#define MEAS_VBG_MAX_VAL 3000
75#define MEAS_VBG_DEFAULT_VAL 2700
76#define DTS_DIODE_VALID(flags) (flags & DTS_DIODE_REG_FLAGS_PASS_ONCE)
77#define MIN_TEMPERATURE 0
78#define MAX_TEMPERATURE 125
79#define TEMPERATURE_ERROR (MAX_TEMPERATURE + 1)
80#define PTAT_DIGITAL_VALUE_MIN_VALUE 0
81#define PTAT_DIGITAL_VALUE_MAX_VALUE 0xFF
82#define DTS_VREFS_NUM 5
83static inline u32 DTS_DIODE_GET_VREFS_ID(u32 flags)
84{
85 return (flags & DTS_DIODE_REG_FLAGS_VREFS_ID) >>
86 DTS_DIODE_REG_FLAGS_VREFS_ID_POS;
87}
88
89#define CALC_VREFS_MIN_DIFF 43
90#define CALC_VREFS_MAX_DIFF 51
91#define CALC_LUT_SIZE (1 + CALC_VREFS_MAX_DIFF - CALC_VREFS_MIN_DIFF)
92#define CALC_LUT_INDEX_OFFSET CALC_VREFS_MIN_DIFF
93#define CALC_TEMPERATURE_RESULT_SHIFT_OFFSET 23
94
95/*
96 * @digital_value: The diode's digital-value sampled (temperature/voltage)
97 * @vref_low: The lower voltage-reference (the vref just below the diode's
98 * sampled digital-value)
99 * @vref_high: The higher voltage-reference (the vref just above the diode's
100 * sampled digital-value)
101 * @flags: bits[1:0]: The ID of the Vrefs pair (lowVref,highVref)
102 * bits[6:2]: Reserved.
103 * bits[7:7]: Indicates completion of at least 1 successful sample
104 * since last DTS reset.
105 */
106struct iwl_mvm_dts_diode_bits {
107 u8 digital_value;
108 u8 vref_low;
109 u8 vref_high;
110 u8 flags;
111} __packed;
112
113union dts_diode_results {
114 u32 reg_value;
115 struct iwl_mvm_dts_diode_bits bits;
116} __packed;
117
118static s16 iwl_mvm_dts_get_volt_band_gap(struct iwl_mvm *mvm)
119{
120 struct iwl_nvm_section calib_sec;
121 const __le16 *calib;
122 u16 vbg;
123
124 /* TODO: move parsing to NVM code */
125 calib_sec = mvm->nvm_sections[NVM_SECTION_TYPE_CALIBRATION];
126 calib = (__le16 *)calib_sec.data;
127
128 vbg = le16_to_cpu(calib[OTP_WP_DTS_VBG]);
129
130 if (vbg < MEAS_VBG_MIN_VAL || vbg > MEAS_VBG_MAX_VAL)
131 vbg = MEAS_VBG_DEFAULT_VAL;
132
133 return vbg;
134}
135
136static u16 iwl_mvm_dts_get_ptat_deviation_offset(struct iwl_mvm *mvm)
137{
138 const u8 *calib;
139 u8 ptat, pa1, pa2, median;
140
141 /* TODO: move parsing to NVM code */
142 calib = mvm->nvm_sections[NVM_SECTION_TYPE_CALIBRATION].data;
143 ptat = calib[OTP_DTS_DIODE_DEVIATION];
144 pa1 = calib[OTP_DTS_DIODE_DEVIATION + 1];
145 pa2 = calib[OTP_DTS_DIODE_DEVIATION + 2];
146
147 /* get the median: */
148 if (ptat > pa1) {
149 if (ptat > pa2)
150 median = (pa1 > pa2) ? pa1 : pa2;
151 else
152 median = ptat;
153 } else {
154 if (pa1 > pa2)
155 median = (ptat > pa2) ? ptat : pa2;
156 else
157 median = pa1;
158 }
159
160 return ptat - median;
161}
162
163static u8 iwl_mvm_dts_calibrate_ptat_deviation(struct iwl_mvm *mvm, u8 value)
164{
165 /* Calibrate the PTAT digital value, based on PTAT deviation data: */
166 s16 new_val = value - iwl_mvm_dts_get_ptat_deviation_offset(mvm);
167
168 if (new_val > PTAT_DIGITAL_VALUE_MAX_VALUE)
169 new_val = PTAT_DIGITAL_VALUE_MAX_VALUE;
170 else if (new_val < PTAT_DIGITAL_VALUE_MIN_VALUE)
171 new_val = PTAT_DIGITAL_VALUE_MIN_VALUE;
172
173 return new_val;
174}
175
176static bool dts_get_adjacent_vrefs(struct iwl_mvm *mvm,
177 union dts_diode_results *avg_ptat)
178{
179 u8 vrefs_results[DTS_VREFS_NUM];
180 u8 low_vref_index = 0, flags;
181 u32 reg;
182
183 reg = iwl_read_prph(mvm->trans, DTSC_VREF_AVG);
184 memcpy(vrefs_results, &reg, sizeof(reg));
185 reg = iwl_read_prph(mvm->trans, DTSC_VREF5_AVG);
186 vrefs_results[4] = reg & 0xff;
187
188 if (avg_ptat->bits.digital_value < vrefs_results[0] ||
189 avg_ptat->bits.digital_value > vrefs_results[4])
190 return false;
191
192 if (avg_ptat->bits.digital_value > vrefs_results[3])
193 low_vref_index = 3;
194 else if (avg_ptat->bits.digital_value > vrefs_results[2])
195 low_vref_index = 2;
196 else if (avg_ptat->bits.digital_value > vrefs_results[1])
197 low_vref_index = 1;
198
199 avg_ptat->bits.vref_low = vrefs_results[low_vref_index];
200 avg_ptat->bits.vref_high = vrefs_results[low_vref_index + 1];
201 flags = avg_ptat->bits.flags;
202 avg_ptat->bits.flags =
203 (flags & ~DTS_DIODE_REG_FLAGS_VREFS_ID) |
204 (low_vref_index & DTS_DIODE_REG_FLAGS_VREFS_ID);
205 return true;
206}
207
208/*
209 * return true it the results are valid, and false otherwise.
210 */
211static bool dts_read_ptat_avg_results(struct iwl_mvm *mvm,
212 union dts_diode_results *avg_ptat)
213{
214 u32 reg;
215 u8 tmp;
216
217 /* fill the diode value and pass_once with avg-reg results */
218 reg = iwl_read_prph(mvm->trans, DTSC_PTAT_AVG);
219 reg &= DTS_DIODE_REG_DIG_VAL | DTS_DIODE_REG_PASS_ONCE;
220 avg_ptat->reg_value = reg;
221
222 /* calibrate the PTAT digital value */
223 tmp = avg_ptat->bits.digital_value;
224 tmp = iwl_mvm_dts_calibrate_ptat_deviation(mvm, tmp);
225 avg_ptat->bits.digital_value = tmp;
226
227 /*
228 * fill vrefs fields, based on the avgVrefs results
229 * and the diode value
230 */
231 return dts_get_adjacent_vrefs(mvm, avg_ptat) &&
232 DTS_DIODE_VALID(avg_ptat->bits.flags);
233}
234
235static s32 calculate_nic_temperature(union dts_diode_results avg_ptat,
236 u16 volt_band_gap)
237{
238 u32 tmp_result;
239 u8 vrefs_diff;
240 /*
241 * For temperature calculation (at the end, shift right by 23)
242 * LUT[(D2-D1)] = ROUND{ 2^23 / ((D2-D1)*9*10) }
243 * (D2-D1) == 43 44 45 46 47 48 49 50 51
244 */
245 static const u16 calc_lut[CALC_LUT_SIZE] = {
246 2168, 2118, 2071, 2026, 1983, 1942, 1902, 1864, 1828,
247 };
248
249 /*
250 * The diff between the high and low voltage-references is assumed
251 * to be strictly be in range of [60,68]
252 */
253 vrefs_diff = avg_ptat.bits.vref_high - avg_ptat.bits.vref_low;
254
255 if (vrefs_diff < CALC_VREFS_MIN_DIFF ||
256 vrefs_diff > CALC_VREFS_MAX_DIFF)
257 return TEMPERATURE_ERROR;
258
259 /* calculate the result: */
260 tmp_result =
261 vrefs_diff * (DTS_DIODE_GET_VREFS_ID(avg_ptat.bits.flags) + 9);
262 tmp_result += avg_ptat.bits.digital_value;
263 tmp_result -= avg_ptat.bits.vref_high;
264
265 /* multiply by the LUT value (based on the diff) */
266 tmp_result *= calc_lut[vrefs_diff - CALC_LUT_INDEX_OFFSET];
267
268 /*
269 * Get the BandGap (the voltage refereces source) error data
270 * (temperature offset)
271 */
272 tmp_result *= volt_band_gap;
273
274 /*
275 * here, tmp_result value can be up to 32-bits. We want to right-shift
276 * it *without* sign-extend.
277 */
278 tmp_result = tmp_result >> CALC_TEMPERATURE_RESULT_SHIFT_OFFSET;
279
280 /*
281 * at this point, tmp_result should be in the range:
282 * 200 <= tmp_result <= 365
283 */
284 return (s16)tmp_result - 240;
285}
286
287static s32 check_nic_temperature(struct iwl_mvm *mvm)
288{
289 u16 volt_band_gap;
290 union dts_diode_results avg_ptat;
291
292 volt_band_gap = iwl_mvm_dts_get_volt_band_gap(mvm);
293
294 /* disable DTS */
295 iwl_write_prph(mvm->trans, SHR_MISC_WFM_DTS_EN, 0);
296
297 /* SV initialization */
298 iwl_write_prph(mvm->trans, SHR_MISC_WFM_DTS_EN, 1);
299 iwl_write_prph(mvm->trans, DTSC_CFG_MODE,
300 DTSC_CFG_MODE_PERIODIC);
301
302 /* wait for results */
303 msleep(100);
304 if (!dts_read_ptat_avg_results(mvm, &avg_ptat))
305 return TEMPERATURE_ERROR;
306
307 /* disable DTS */
308 iwl_write_prph(mvm->trans, SHR_MISC_WFM_DTS_EN, 0);
309
310 return calculate_nic_temperature(avg_ptat, volt_band_gap);
311}
312
313static void iwl_mvm_enter_ctkill(struct iwl_mvm *mvm)
314{
315 u32 duration = mvm->thermal_throttle.params->ct_kill_duration;
316
317 IWL_ERR(mvm, "Enter CT Kill\n");
318 iwl_mvm_set_hw_ctkill_state(mvm, true);
319 schedule_delayed_work(&mvm->thermal_throttle.ct_kill_exit,
320 round_jiffies_relative(duration * HZ));
321}
322
323static void iwl_mvm_exit_ctkill(struct iwl_mvm *mvm)
324{
325 IWL_ERR(mvm, "Exit CT Kill\n");
326 iwl_mvm_set_hw_ctkill_state(mvm, false);
327}
328
329static void check_exit_ctkill(struct work_struct *work)
330{
331 struct iwl_mvm_tt_mgmt *tt;
332 struct iwl_mvm *mvm;
333 u32 duration;
334 s32 temp;
335
336 tt = container_of(work, struct iwl_mvm_tt_mgmt, ct_kill_exit.work);
337 mvm = container_of(tt, struct iwl_mvm, thermal_throttle);
338
339 duration = tt->params->ct_kill_duration;
340
341 iwl_trans_start_hw(mvm->trans);
342 temp = check_nic_temperature(mvm);
343 iwl_trans_stop_hw(mvm->trans, false);
344
345 if (temp < MIN_TEMPERATURE || temp > MAX_TEMPERATURE) {
346 IWL_DEBUG_TEMP(mvm, "Failed to measure NIC temperature\n");
347 goto reschedule;
348 }
349 IWL_DEBUG_TEMP(mvm, "NIC temperature: %d\n", temp);
350
351 if (temp <= tt->params->ct_kill_exit) {
352 iwl_mvm_exit_ctkill(mvm);
353 return;
354 }
355
356reschedule:
357 schedule_delayed_work(&mvm->thermal_throttle.ct_kill_exit,
358 round_jiffies(duration * HZ));
359}
360
361static void iwl_mvm_tt_smps_iterator(void *_data, u8 *mac,
362 struct ieee80211_vif *vif)
363{
364 struct iwl_mvm *mvm = _data;
365 enum ieee80211_smps_mode smps_mode;
366
367 lockdep_assert_held(&mvm->mutex);
368
369 if (mvm->thermal_throttle.dynamic_smps)
370 smps_mode = IEEE80211_SMPS_DYNAMIC;
371 else
372 smps_mode = IEEE80211_SMPS_AUTOMATIC;
373
fded313e
EL
374 if (vif->type != NL80211_IFTYPE_STATION)
375 return;
376
9ee718aa
EL
377 iwl_mvm_update_smps(mvm, vif, IWL_MVM_SMPS_REQ_TT, smps_mode);
378}
379
380static void iwl_mvm_tt_tx_protection(struct iwl_mvm *mvm, bool enable)
381{
382 struct ieee80211_sta *sta;
383 struct iwl_mvm_sta *mvmsta;
384 int i, err;
385
386 for (i = 0; i < IWL_MVM_STATION_COUNT; i++) {
387 sta = rcu_dereference_protected(mvm->fw_id_to_mac_id[i],
388 lockdep_is_held(&mvm->mutex));
389 if (IS_ERR_OR_NULL(sta))
390 continue;
391 mvmsta = (void *)sta->drv_priv;
392 if (enable == mvmsta->tt_tx_protection)
393 continue;
e126b5d9 394 err = iwl_mvm_tx_protection(mvm, mvmsta, enable);
9ee718aa
EL
395 if (err) {
396 IWL_ERR(mvm, "Failed to %s Tx protection\n",
397 enable ? "enable" : "disable");
398 } else {
399 IWL_DEBUG_TEMP(mvm, "%s Tx protection\n",
400 enable ? "Enable" : "Disable");
401 mvmsta->tt_tx_protection = enable;
402 }
403 }
404}
405
406static void iwl_mvm_tt_tx_backoff(struct iwl_mvm *mvm, u32 backoff)
407{
408 struct iwl_host_cmd cmd = {
409 .id = REPLY_THERMAL_MNG_BACKOFF,
410 .len = { sizeof(u32), },
411 .data = { &backoff, },
412 .flags = CMD_SYNC,
413 };
414
415 if (iwl_mvm_send_cmd(mvm, &cmd) == 0) {
416 IWL_DEBUG_TEMP(mvm, "Set Thermal Tx backoff to: %u\n",
417 backoff);
418 mvm->thermal_throttle.tx_backoff = backoff;
419 } else {
420 IWL_ERR(mvm, "Failed to change Thermal Tx backoff\n");
421 }
422}
423
424void iwl_mvm_tt_handler(struct iwl_mvm *mvm)
425{
426 const struct iwl_tt_params *params = mvm->thermal_throttle.params;
427 struct iwl_mvm_tt_mgmt *tt = &mvm->thermal_throttle;
428 s32 temperature = mvm->temperature;
dafe6c43 429 bool throttle_enable = false;
9ee718aa
EL
430 int i;
431 u32 tx_backoff;
432
433 IWL_DEBUG_TEMP(mvm, "NIC temperature: %d\n", mvm->temperature);
434
435 if (params->support_ct_kill && temperature >= params->ct_kill_entry) {
436 iwl_mvm_enter_ctkill(mvm);
437 return;
438 }
439
440 if (params->support_dynamic_smps) {
441 if (!tt->dynamic_smps &&
442 temperature >= params->dynamic_smps_entry) {
443 IWL_DEBUG_TEMP(mvm, "Enable dynamic SMPS\n");
444 tt->dynamic_smps = true;
445 ieee80211_iterate_active_interfaces_atomic(
446 mvm->hw, IEEE80211_IFACE_ITER_NORMAL,
447 iwl_mvm_tt_smps_iterator, mvm);
dafe6c43 448 throttle_enable = true;
9ee718aa
EL
449 } else if (tt->dynamic_smps &&
450 temperature <= params->dynamic_smps_exit) {
451 IWL_DEBUG_TEMP(mvm, "Disable dynamic SMPS\n");
452 tt->dynamic_smps = false;
453 ieee80211_iterate_active_interfaces_atomic(
454 mvm->hw, IEEE80211_IFACE_ITER_NORMAL,
455 iwl_mvm_tt_smps_iterator, mvm);
456 }
457 }
458
459 if (params->support_tx_protection) {
dafe6c43 460 if (temperature >= params->tx_protection_entry) {
9ee718aa 461 iwl_mvm_tt_tx_protection(mvm, true);
dafe6c43 462 throttle_enable = true;
463 } else if (temperature <= params->tx_protection_exit) {
9ee718aa 464 iwl_mvm_tt_tx_protection(mvm, false);
dafe6c43 465 }
9ee718aa
EL
466 }
467
468 if (params->support_tx_backoff) {
469 tx_backoff = 0;
470 for (i = 0; i < TT_TX_BACKOFF_SIZE; i++) {
471 if (temperature < params->tx_backoff[i].temperature)
472 break;
473 tx_backoff = params->tx_backoff[i].backoff;
474 }
dafe6c43 475 if (tx_backoff != 0)
476 throttle_enable = true;
9ee718aa
EL
477 if (tt->tx_backoff != tx_backoff)
478 iwl_mvm_tt_tx_backoff(mvm, tx_backoff);
479 }
dafe6c43 480
481 if (!tt->throttle && throttle_enable) {
482 IWL_WARN(mvm,
483 "Due to high temperature thermal throttling initiated\n");
484 tt->throttle = true;
485 } else if (tt->throttle && !tt->dynamic_smps && tt->tx_backoff == 0 &&
486 temperature <= params->tx_protection_exit) {
487 IWL_WARN(mvm,
488 "Temperature is back to normal thermal throttling stopped\n");
489 tt->throttle = false;
490 }
9ee718aa
EL
491}
492
493static const struct iwl_tt_params iwl7000_tt_params = {
494 .ct_kill_entry = 118,
495 .ct_kill_exit = 96,
496 .ct_kill_duration = 5,
497 .dynamic_smps_entry = 114,
498 .dynamic_smps_exit = 110,
499 .tx_protection_entry = 114,
500 .tx_protection_exit = 108,
501 .tx_backoff = {
502 {.temperature = 112, .backoff = 200},
503 {.temperature = 113, .backoff = 600},
504 {.temperature = 114, .backoff = 1200},
505 {.temperature = 115, .backoff = 2000},
506 {.temperature = 116, .backoff = 4000},
507 {.temperature = 117, .backoff = 10000},
508 },
509 .support_ct_kill = true,
510 .support_dynamic_smps = true,
511 .support_tx_protection = true,
512 .support_tx_backoff = true,
513};
514
6be497f2
EL
515static const struct iwl_tt_params iwl7000_high_temp_tt_params = {
516 .ct_kill_entry = 118,
517 .ct_kill_exit = 96,
518 .ct_kill_duration = 5,
519 .dynamic_smps_entry = 114,
520 .dynamic_smps_exit = 110,
521 .tx_protection_entry = 114,
522 .tx_protection_exit = 108,
523 .tx_backoff = {
524 {.temperature = 112, .backoff = 300},
525 {.temperature = 113, .backoff = 800},
526 {.temperature = 114, .backoff = 1500},
527 {.temperature = 115, .backoff = 3000},
528 {.temperature = 116, .backoff = 5000},
529 {.temperature = 117, .backoff = 10000},
530 },
531 .support_ct_kill = true,
532 .support_dynamic_smps = true,
533 .support_tx_protection = true,
534 .support_tx_backoff = true,
535};
536
9ee718aa
EL
537void iwl_mvm_tt_initialize(struct iwl_mvm *mvm)
538{
539 struct iwl_mvm_tt_mgmt *tt = &mvm->thermal_throttle;
540
541 IWL_DEBUG_TEMP(mvm, "Initialize Thermal Throttling\n");
6be497f2
EL
542
543 if (mvm->cfg->high_temp)
544 tt->params = &iwl7000_high_temp_tt_params;
545 else
546 tt->params = &iwl7000_tt_params;
547
dafe6c43 548 tt->throttle = false;
9ee718aa
EL
549 INIT_DELAYED_WORK(&tt->ct_kill_exit, check_exit_ctkill);
550}
551
552void iwl_mvm_tt_exit(struct iwl_mvm *mvm)
553{
554 cancel_delayed_work_sync(&mvm->thermal_throttle.ct_kill_exit);
555 IWL_DEBUG_TEMP(mvm, "Exit Thermal Throttling\n");
556}
This page took 0.080458 seconds and 5 git commands to generate.