rtlwifi: Convert RT_TRACE macro to use ##__VA_ARGS__
[deliverable/linux.git] / drivers / net / wireless / rtlwifi / rtl8192se / hw.c
CommitLineData
24284531
CL
1/******************************************************************************
2 *
3 * Copyright(c) 2009-2010 Realtek Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
20 *
21 * Contact Information:
22 * wlanfae <wlanfae@realtek.com>
23 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24 * Hsinchu 300, Taiwan.
25 *
26 * Larry Finger <Larry.Finger@lwfinger.net>
27 *
28 *****************************************************************************/
29
292b1192
JP
30#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31
24284531
CL
32#include "../wifi.h"
33#include "../efuse.h"
34#include "../base.h"
35#include "../regd.h"
36#include "../cam.h"
37#include "../ps.h"
38#include "../pci.h"
39#include "reg.h"
40#include "def.h"
41#include "phy.h"
42#include "dm.h"
43#include "fw.h"
44#include "led.h"
45#include "hw.h"
46
47void rtl92se_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
48{
49 struct rtl_priv *rtlpriv = rtl_priv(hw);
50 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
51 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
52
53 switch (variable) {
54 case HW_VAR_RCR: {
55 *((u32 *) (val)) = rtlpci->receive_config;
56 break;
57 }
58 case HW_VAR_RF_STATE: {
59 *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
60 break;
61 }
62 case HW_VAR_FW_PSMODE_STATUS: {
63 *((bool *) (val)) = ppsc->fw_current_inpsmode;
64 break;
65 }
66 case HW_VAR_CORRECT_TSF: {
67 u64 tsf;
68 u32 *ptsf_low = (u32 *)&tsf;
69 u32 *ptsf_high = ((u32 *)&tsf) + 1;
70
71 *ptsf_high = rtl_read_dword(rtlpriv, (TSFR + 4));
72 *ptsf_low = rtl_read_dword(rtlpriv, TSFR);
73
74 *((u64 *) (val)) = tsf;
75
76 break;
77 }
78 case HW_VAR_MRC: {
79 *((bool *)(val)) = rtlpriv->dm.current_mrc_switch;
80 break;
81 }
82 default: {
f30d7507
JP
83 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
84 "switch case not processed\n");
24284531
CL
85 break;
86 }
87 }
88}
89
90void rtl92se_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
91{
92 struct rtl_priv *rtlpriv = rtl_priv(hw);
93 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
94 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
95 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
96 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
97 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
98
99 switch (variable) {
100 case HW_VAR_ETHER_ADDR:{
101 rtl_write_dword(rtlpriv, IDR0, ((u32 *)(val))[0]);
102 rtl_write_word(rtlpriv, IDR4, ((u16 *)(val + 4))[0]);
103 break;
104 }
105 case HW_VAR_BASIC_RATE:{
106 u16 rate_cfg = ((u16 *) val)[0];
107 u8 rate_index = 0;
108
109 if (rtlhal->version == VERSION_8192S_ACUT)
110 rate_cfg = rate_cfg & 0x150;
111 else
112 rate_cfg = rate_cfg & 0x15f;
113
114 rate_cfg |= 0x01;
115
116 rtl_write_byte(rtlpriv, RRSR, rate_cfg & 0xff);
117 rtl_write_byte(rtlpriv, RRSR + 1,
118 (rate_cfg >> 8) & 0xff);
119
120 while (rate_cfg > 0x1) {
121 rate_cfg = (rate_cfg >> 1);
122 rate_index++;
123 }
124 rtl_write_byte(rtlpriv, INIRTSMCS_SEL, rate_index);
125
126 break;
127 }
128 case HW_VAR_BSSID:{
129 rtl_write_dword(rtlpriv, BSSIDR, ((u32 *)(val))[0]);
130 rtl_write_word(rtlpriv, BSSIDR + 4,
131 ((u16 *)(val + 4))[0]);
132 break;
133 }
134 case HW_VAR_SIFS:{
135 rtl_write_byte(rtlpriv, SIFS_OFDM, val[0]);
136 rtl_write_byte(rtlpriv, SIFS_OFDM + 1, val[1]);
137 break;
138 }
139 case HW_VAR_SLOT_TIME:{
140 u8 e_aci;
141
142 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
f30d7507 143 "HW_VAR_SLOT_TIME %x\n", val[0]);
24284531
CL
144
145 rtl_write_byte(rtlpriv, SLOT_TIME, val[0]);
146
147 for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
148 rtlpriv->cfg->ops->set_hw_reg(hw,
149 HW_VAR_AC_PARAM,
150 (u8 *)(&e_aci));
151 }
152 break;
153 }
154 case HW_VAR_ACK_PREAMBLE:{
155 u8 reg_tmp;
156 u8 short_preamble = (bool) (*(u8 *) val);
157 reg_tmp = (mac->cur_40_prime_sc) << 5;
158 if (short_preamble)
159 reg_tmp |= 0x80;
160
161 rtl_write_byte(rtlpriv, RRSR + 2, reg_tmp);
162 break;
163 }
164 case HW_VAR_AMPDU_MIN_SPACE:{
165 u8 min_spacing_to_set;
166 u8 sec_min_space;
167
168 min_spacing_to_set = *((u8 *)val);
169 if (min_spacing_to_set <= 7) {
170 if (rtlpriv->sec.pairwise_enc_algorithm ==
171 NO_ENCRYPTION)
172 sec_min_space = 0;
173 else
174 sec_min_space = 1;
175
176 if (min_spacing_to_set < sec_min_space)
177 min_spacing_to_set = sec_min_space;
178 if (min_spacing_to_set > 5)
179 min_spacing_to_set = 5;
180
181 mac->min_space_cfg =
182 ((mac->min_space_cfg & 0xf8) |
183 min_spacing_to_set);
184
185 *val = min_spacing_to_set;
186
187 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
f30d7507
JP
188 "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
189 mac->min_space_cfg);
24284531
CL
190
191 rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
192 mac->min_space_cfg);
193 }
194 break;
195 }
196 case HW_VAR_SHORTGI_DENSITY:{
197 u8 density_to_set;
198
199 density_to_set = *((u8 *) val);
200 mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
201 mac->min_space_cfg |= (density_to_set << 3);
202
203 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
f30d7507
JP
204 "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
205 mac->min_space_cfg);
24284531
CL
206
207 rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
208 mac->min_space_cfg);
209
210 break;
211 }
212 case HW_VAR_AMPDU_FACTOR:{
213 u8 factor_toset;
214 u8 regtoset;
215 u8 factorlevel[18] = {
216 2, 4, 4, 7, 7, 13, 13,
217 13, 2, 7, 7, 13, 13,
218 15, 15, 15, 15, 0};
219 u8 index = 0;
220
221 factor_toset = *((u8 *) val);
222 if (factor_toset <= 3) {
223 factor_toset = (1 << (factor_toset + 2));
224 if (factor_toset > 0xf)
225 factor_toset = 0xf;
226
227 for (index = 0; index < 17; index++) {
228 if (factorlevel[index] > factor_toset)
229 factorlevel[index] =
230 factor_toset;
231 }
232
233 for (index = 0; index < 8; index++) {
234 regtoset = ((factorlevel[index * 2]) |
235 (factorlevel[index *
236 2 + 1] << 4));
237 rtl_write_byte(rtlpriv,
238 AGGLEN_LMT_L + index,
239 regtoset);
240 }
241
242 regtoset = ((factorlevel[16]) |
243 (factorlevel[17] << 4));
244 rtl_write_byte(rtlpriv, AGGLEN_LMT_H, regtoset);
245
246 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
f30d7507
JP
247 "Set HW_VAR_AMPDU_FACTOR: %#x\n",
248 factor_toset);
24284531
CL
249 }
250 break;
251 }
252 case HW_VAR_AC_PARAM:{
253 u8 e_aci = *((u8 *) val);
254 rtl92s_dm_init_edca_turbo(hw);
255
256 if (rtlpci->acm_method != eAcmWay2_SW)
257 rtlpriv->cfg->ops->set_hw_reg(hw,
258 HW_VAR_ACM_CTRL,
259 (u8 *)(&e_aci));
260 break;
261 }
262 case HW_VAR_ACM_CTRL:{
263 u8 e_aci = *((u8 *) val);
264 union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)(&(
265 mac->ac[0].aifs));
266 u8 acm = p_aci_aifsn->f.acm;
267 u8 acm_ctrl = rtl_read_byte(rtlpriv, AcmHwCtrl);
268
269 acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ?
270 0x0 : 0x1);
271
272 if (acm) {
273 switch (e_aci) {
274 case AC0_BE:
275 acm_ctrl |= AcmHw_BeqEn;
276 break;
277 case AC2_VI:
278 acm_ctrl |= AcmHw_ViqEn;
279 break;
280 case AC3_VO:
281 acm_ctrl |= AcmHw_VoqEn;
282 break;
283 default:
284 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
f30d7507
JP
285 "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
286 acm);
24284531
CL
287 break;
288 }
289 } else {
290 switch (e_aci) {
291 case AC0_BE:
292 acm_ctrl &= (~AcmHw_BeqEn);
293 break;
294 case AC2_VI:
295 acm_ctrl &= (~AcmHw_ViqEn);
296 break;
297 case AC3_VO:
298 acm_ctrl &= (~AcmHw_BeqEn);
299 break;
300 default:
301 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
f30d7507 302 "switch case not processed\n");
24284531
CL
303 break;
304 }
305 }
306
307 RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
f30d7507 308 "HW_VAR_ACM_CTRL Write 0x%X\n", acm_ctrl);
24284531
CL
309 rtl_write_byte(rtlpriv, AcmHwCtrl, acm_ctrl);
310 break;
311 }
312 case HW_VAR_RCR:{
313 rtl_write_dword(rtlpriv, RCR, ((u32 *) (val))[0]);
314 rtlpci->receive_config = ((u32 *) (val))[0];
315 break;
316 }
317 case HW_VAR_RETRY_LIMIT:{
318 u8 retry_limit = ((u8 *) (val))[0];
319
320 rtl_write_word(rtlpriv, RETRY_LIMIT,
321 retry_limit << RETRY_LIMIT_SHORT_SHIFT |
322 retry_limit << RETRY_LIMIT_LONG_SHIFT);
323 break;
324 }
325 case HW_VAR_DUAL_TSF_RST: {
326 break;
327 }
328 case HW_VAR_EFUSE_BYTES: {
329 rtlefuse->efuse_usedbytes = *((u16 *) val);
330 break;
331 }
332 case HW_VAR_EFUSE_USAGE: {
333 rtlefuse->efuse_usedpercentage = *((u8 *) val);
334 break;
335 }
336 case HW_VAR_IO_CMD: {
337 break;
338 }
339 case HW_VAR_WPA_CONFIG: {
340 rtl_write_byte(rtlpriv, REG_SECR, *((u8 *) val));
341 break;
342 }
343 case HW_VAR_SET_RPWM:{
344 break;
345 }
346 case HW_VAR_H2C_FW_PWRMODE:{
347 break;
348 }
349 case HW_VAR_FW_PSMODE_STATUS: {
350 ppsc->fw_current_inpsmode = *((bool *) val);
351 break;
352 }
353 case HW_VAR_H2C_FW_JOINBSSRPT:{
354 break;
355 }
356 case HW_VAR_AID:{
357 break;
358 }
359 case HW_VAR_CORRECT_TSF:{
360 break;
361 }
362 case HW_VAR_MRC: {
363 bool bmrc_toset = *((bool *)val);
364 u8 u1bdata = 0;
365
366 if (bmrc_toset) {
367 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
368 MASKBYTE0, 0x33);
369 u1bdata = (u8)rtl_get_bbreg(hw,
370 ROFDM1_TRXPATHENABLE,
371 MASKBYTE0);
372 rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
373 MASKBYTE0,
374 ((u1bdata & 0xf0) | 0x03));
375 u1bdata = (u8)rtl_get_bbreg(hw,
376 ROFDM0_TRXPATHENABLE,
377 MASKBYTE1);
378 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
379 MASKBYTE1,
380 (u1bdata | 0x04));
381
382 /* Update current settings. */
383 rtlpriv->dm.current_mrc_switch = bmrc_toset;
384 } else {
385 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
386 MASKBYTE0, 0x13);
387 u1bdata = (u8)rtl_get_bbreg(hw,
388 ROFDM1_TRXPATHENABLE,
389 MASKBYTE0);
390 rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
391 MASKBYTE0,
392 ((u1bdata & 0xf0) | 0x01));
393 u1bdata = (u8)rtl_get_bbreg(hw,
394 ROFDM0_TRXPATHENABLE,
395 MASKBYTE1);
396 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
397 MASKBYTE1, (u1bdata & 0xfb));
398
399 /* Update current settings. */
400 rtlpriv->dm.current_mrc_switch = bmrc_toset;
401 }
402
403 break;
404 }
405 default:
406 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
f30d7507 407 "switch case not processed\n");
24284531
CL
408 break;
409 }
410
411}
412
413void rtl92se_enable_hw_security_config(struct ieee80211_hw *hw)
414{
415 struct rtl_priv *rtlpriv = rtl_priv(hw);
416 u8 sec_reg_value = 0x0;
417
f30d7507
JP
418 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
419 "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
24284531 420 rtlpriv->sec.pairwise_enc_algorithm,
f30d7507 421 rtlpriv->sec.group_enc_algorithm);
24284531
CL
422
423 if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
424 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
f30d7507 425 "not open hw encryption\n");
24284531
CL
426 return;
427 }
428
429 sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
430
431 if (rtlpriv->sec.use_defaultkey) {
432 sec_reg_value |= SCR_TXUSEDK;
433 sec_reg_value |= SCR_RXUSEDK;
434 }
435
f30d7507
JP
436 RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, "The SECR-value %x\n",
437 sec_reg_value);
24284531
CL
438
439 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
440
441}
442
443static u8 _rtl92ce_halset_sysclk(struct ieee80211_hw *hw, u8 data)
444{
445 struct rtl_priv *rtlpriv = rtl_priv(hw);
446 u8 waitcount = 100;
447 bool bresult = false;
448 u8 tmpvalue;
449
450 rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
451
452 /* Wait the MAC synchronized. */
453 udelay(400);
454
455 /* Check if it is set ready. */
456 tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
457 bresult = ((tmpvalue & BIT(7)) == (data & BIT(7)));
458
459 if ((data & (BIT(6) | BIT(7))) == false) {
460 waitcount = 100;
461 tmpvalue = 0;
462
463 while (1) {
464 waitcount--;
465
466 tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
467 if ((tmpvalue & BIT(6)))
468 break;
469
292b1192 470 pr_err("wait for BIT(6) return value %x\n", tmpvalue);
24284531
CL
471 if (waitcount == 0)
472 break;
473
474 udelay(10);
475 }
476
477 if (waitcount == 0)
478 bresult = false;
479 else
480 bresult = true;
481 }
482
483 return bresult;
484}
485
486void rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw *hw)
487{
488 struct rtl_priv *rtlpriv = rtl_priv(hw);
489 u8 u1tmp;
490
491 /* The following config GPIO function */
492 rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
493 u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
494
495 /* config GPIO3 to input */
496 u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
497 rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
498
499}
500
501static u8 _rtl92se_rf_onoff_detect(struct ieee80211_hw *hw)
502{
503 struct rtl_priv *rtlpriv = rtl_priv(hw);
504 u8 u1tmp;
505 u8 retval = ERFON;
506
507 /* The following config GPIO function */
508 rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
509 u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
510
511 /* config GPIO3 to input */
512 u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
513 rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
514
515 /* On some of the platform, driver cannot read correct
516 * value without delay between Write_GPIO_SEL and Read_GPIO_IN */
517 mdelay(10);
518
519 /* check GPIO3 */
7101f404 520 u1tmp = rtl_read_byte(rtlpriv, GPIO_IN_SE);
24284531
CL
521 retval = (u1tmp & HAL_8192S_HW_GPIO_OFF_BIT) ? ERFON : ERFOFF;
522
523 return retval;
524}
525
526static void _rtl92se_macconfig_before_fwdownload(struct ieee80211_hw *hw)
527{
528 struct rtl_priv *rtlpriv = rtl_priv(hw);
529 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
530 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
531
532 u8 i;
533 u8 tmpu1b;
534 u16 tmpu2b;
535 u8 pollingcnt = 20;
536
537 if (rtlpci->first_init) {
538 /* Reset PCIE Digital */
539 tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
540 tmpu1b &= 0xFE;
541 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
542 udelay(1);
543 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b | BIT(0));
544 }
545
546 /* Switch to SW IO control */
547 tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
548 if (tmpu1b & BIT(7)) {
549 tmpu1b &= ~(BIT(6) | BIT(7));
550
551 /* Set failed, return to prevent hang. */
552 if (!_rtl92ce_halset_sysclk(hw, tmpu1b))
553 return;
554 }
555
556 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
557 udelay(50);
558 rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
559 udelay(50);
560
561 /* Clear FW RPWM for FW control LPS.*/
562 rtl_write_byte(rtlpriv, RPWM, 0x0);
563
564 /* Reset MAC-IO and CPU and Core Digital BIT(10)/11/15 */
565 tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
566 tmpu1b &= 0x73;
567 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
568 /* wait for BIT 10/11/15 to pull high automatically!! */
569 mdelay(1);
570
571 rtl_write_byte(rtlpriv, CMDR, 0);
572 rtl_write_byte(rtlpriv, TCR, 0);
573
574 /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
575 tmpu1b = rtl_read_byte(rtlpriv, 0x562);
576 tmpu1b |= 0x08;
577 rtl_write_byte(rtlpriv, 0x562, tmpu1b);
578 tmpu1b &= ~(BIT(3));
579 rtl_write_byte(rtlpriv, 0x562, tmpu1b);
580
581 /* Enable AFE clock source */
582 tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
583 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
584 /* Delay 1.5ms */
585 mdelay(2);
586 tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
587 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
588
589 /* Enable AFE Macro Block's Bandgap */
590 tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
591 rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
592 mdelay(1);
593
594 /* Enable AFE Mbias */
595 tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
596 rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
597 mdelay(1);
598
599 /* Enable LDOA15 block */
600 tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
601 rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
602
603 /* Set Digital Vdd to Retention isolation Path. */
604 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
605 rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
606
607 /* For warm reboot NIC disappera bug. */
608 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
609 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
610
611 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
612
613 /* Enable AFE PLL Macro Block */
614 /* We need to delay 100u before enabling PLL. */
615 udelay(200);
616 tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
617 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
618
619 /* for divider reset */
620 udelay(100);
621 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) |
622 BIT(4) | BIT(6)));
623 udelay(10);
624 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
625 udelay(10);
626
627 /* Enable MAC 80MHZ clock */
628 tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
629 rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
630 mdelay(1);
631
632 /* Release isolation AFE PLL & MD */
633 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
634
635 /* Enable MAC clock */
636 tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
637 rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
638
639 /* Enable Core digital and enable IOREG R/W */
640 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
641 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
642
643 tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
644 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b & ~(BIT(7)));
645
646 /* enable REG_EN */
647 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
648
649 /* Switch the control path. */
650 tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
651 rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
652
653 tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
654 tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
655 if (!_rtl92ce_halset_sysclk(hw, tmpu1b))
656 return; /* Set failed, return to prevent hang. */
657
658 rtl_write_word(rtlpriv, CMDR, 0x07FC);
659
660 /* MH We must enable the section of code to prevent load IMEM fail. */
661 /* Load MAC register from WMAc temporarily We simulate macreg. */
662 /* txt HW will provide MAC txt later */
663 rtl_write_byte(rtlpriv, 0x6, 0x30);
664 rtl_write_byte(rtlpriv, 0x49, 0xf0);
665
666 rtl_write_byte(rtlpriv, 0x4b, 0x81);
667
668 rtl_write_byte(rtlpriv, 0xb5, 0x21);
669
670 rtl_write_byte(rtlpriv, 0xdc, 0xff);
671 rtl_write_byte(rtlpriv, 0xdd, 0xff);
672 rtl_write_byte(rtlpriv, 0xde, 0xff);
673 rtl_write_byte(rtlpriv, 0xdf, 0xff);
674
675 rtl_write_byte(rtlpriv, 0x11a, 0x00);
676 rtl_write_byte(rtlpriv, 0x11b, 0x00);
677
678 for (i = 0; i < 32; i++)
679 rtl_write_byte(rtlpriv, INIMCS_SEL + i, 0x1b);
680
681 rtl_write_byte(rtlpriv, 0x236, 0xff);
682
683 rtl_write_byte(rtlpriv, 0x503, 0x22);
684
685 if (ppsc->support_aspm && !ppsc->support_backdoor)
686 rtl_write_byte(rtlpriv, 0x560, 0x40);
687 else
688 rtl_write_byte(rtlpriv, 0x560, 0x00);
689
690 rtl_write_byte(rtlpriv, DBG_PORT, 0x91);
691
692 /* Set RX Desc Address */
693 rtl_write_dword(rtlpriv, RDQDA, rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
694 rtl_write_dword(rtlpriv, RCDA, rtlpci->rx_ring[RX_CMD_QUEUE].dma);
695
696 /* Set TX Desc Address */
697 rtl_write_dword(rtlpriv, TBKDA, rtlpci->tx_ring[BK_QUEUE].dma);
698 rtl_write_dword(rtlpriv, TBEDA, rtlpci->tx_ring[BE_QUEUE].dma);
699 rtl_write_dword(rtlpriv, TVIDA, rtlpci->tx_ring[VI_QUEUE].dma);
700 rtl_write_dword(rtlpriv, TVODA, rtlpci->tx_ring[VO_QUEUE].dma);
701 rtl_write_dword(rtlpriv, TBDA, rtlpci->tx_ring[BEACON_QUEUE].dma);
702 rtl_write_dword(rtlpriv, TCDA, rtlpci->tx_ring[TXCMD_QUEUE].dma);
703 rtl_write_dword(rtlpriv, TMDA, rtlpci->tx_ring[MGNT_QUEUE].dma);
704 rtl_write_dword(rtlpriv, THPDA, rtlpci->tx_ring[HIGH_QUEUE].dma);
705 rtl_write_dword(rtlpriv, HDA, rtlpci->tx_ring[HCCA_QUEUE].dma);
706
707 rtl_write_word(rtlpriv, CMDR, 0x37FC);
708
709 /* To make sure that TxDMA can ready to download FW. */
710 /* We should reset TxDMA if IMEM RPT was not ready. */
711 do {
712 tmpu1b = rtl_read_byte(rtlpriv, TCR);
713 if ((tmpu1b & TXDMA_INIT_VALUE) == TXDMA_INIT_VALUE)
714 break;
715
716 udelay(5);
717 } while (pollingcnt--);
718
719 if (pollingcnt <= 0) {
720 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
f30d7507
JP
721 "Polling TXDMA_INIT_VALUE timeout!! Current TCR(%#x)\n",
722 tmpu1b);
24284531
CL
723 tmpu1b = rtl_read_byte(rtlpriv, CMDR);
724 rtl_write_byte(rtlpriv, CMDR, tmpu1b & (~TXDMA_EN));
725 udelay(2);
726 /* Reset TxDMA */
727 rtl_write_byte(rtlpriv, CMDR, tmpu1b | TXDMA_EN);
728 }
729
730 /* After MACIO reset,we must refresh LED state. */
731 if ((ppsc->rfoff_reason == RF_CHANGE_BY_IPS) ||
732 (ppsc->rfoff_reason == 0)) {
733 struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
734 struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
735 enum rf_pwrstate rfpwr_state_toset;
736 rfpwr_state_toset = _rtl92se_rf_onoff_detect(hw);
737
738 if (rfpwr_state_toset == ERFON)
739 rtl92se_sw_led_on(hw, pLed0);
740 }
741}
742
743static void _rtl92se_macconfig_after_fwdownload(struct ieee80211_hw *hw)
744{
745 struct rtl_priv *rtlpriv = rtl_priv(hw);
746 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
747 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
748 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
749 u8 i;
750 u16 tmpu2b;
751
752 /* 1. System Configure Register (Offset: 0x0000 - 0x003F) */
753
754 /* 2. Command Control Register (Offset: 0x0040 - 0x004F) */
755 /* Turn on 0x40 Command register */
756 rtl_write_word(rtlpriv, CMDR, (BBRSTN | BB_GLB_RSTN |
757 SCHEDULE_EN | MACRXEN | MACTXEN | DDMA_EN | FW2HW_EN |
758 RXDMA_EN | TXDMA_EN | HCI_RXDMA_EN | HCI_TXDMA_EN));
759
760 /* Set TCR TX DMA pre 2 FULL enable bit */
761 rtl_write_dword(rtlpriv, TCR, rtl_read_dword(rtlpriv, TCR) |
762 TXDMAPRE2FULL);
763
764 /* Set RCR */
765 rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
766
767 /* 3. MACID Setting Register (Offset: 0x0050 - 0x007F) */
768
769 /* 4. Timing Control Register (Offset: 0x0080 - 0x009F) */
770 /* Set CCK/OFDM SIFS */
771 /* CCK SIFS shall always be 10us. */
772 rtl_write_word(rtlpriv, SIFS_CCK, 0x0a0a);
773 rtl_write_word(rtlpriv, SIFS_OFDM, 0x1010);
774
775 /* Set AckTimeout */
776 rtl_write_byte(rtlpriv, ACK_TIMEOUT, 0x40);
777
778 /* Beacon related */
779 rtl_write_word(rtlpriv, BCN_INTERVAL, 100);
780 rtl_write_word(rtlpriv, ATIMWND, 2);
781
782 /* 5. FIFO Control Register (Offset: 0x00A0 - 0x015F) */
783 /* 5.1 Initialize Number of Reserved Pages in Firmware Queue */
784 /* Firmware allocate now, associate with FW internal setting.!!! */
785
786 /* 5.2 Setting TX/RX page size 0/1/2/3/4=64/128/256/512/1024 */
787 /* 5.3 Set driver info, we only accept PHY status now. */
788 /* 5.4 Set RXDMA arbitration to control RXDMA/MAC/FW R/W for RXFIFO */
789 rtl_write_byte(rtlpriv, RXDMA, rtl_read_byte(rtlpriv, RXDMA) | BIT(6));
790
791 /* 6. Adaptive Control Register (Offset: 0x0160 - 0x01CF) */
792 /* Set RRSR to all legacy rate and HT rate
793 * CCK rate is supported by default.
794 * CCK rate will be filtered out only when associated
795 * AP does not support it.
796 * Only enable ACK rate to OFDM 24M
797 * Disable RRSR for CCK rate in A-Cut */
798
799 if (rtlhal->version == VERSION_8192S_ACUT)
800 rtl_write_byte(rtlpriv, RRSR, 0xf0);
801 else if (rtlhal->version == VERSION_8192S_BCUT)
802 rtl_write_byte(rtlpriv, RRSR, 0xff);
803 rtl_write_byte(rtlpriv, RRSR + 1, 0x01);
804 rtl_write_byte(rtlpriv, RRSR + 2, 0x00);
805
806 /* A-Cut IC do not support CCK rate. We forbid ARFR to */
807 /* fallback to CCK rate */
808 for (i = 0; i < 8; i++) {
809 /*Disable RRSR for CCK rate in A-Cut */
810 if (rtlhal->version == VERSION_8192S_ACUT)
811 rtl_write_dword(rtlpriv, ARFR0 + i * 4, 0x1f0ff0f0);
812 }
813
814 /* Different rate use different AMPDU size */
815 /* MCS32/ MCS15_SG use max AMPDU size 15*2=30K */
816 rtl_write_byte(rtlpriv, AGGLEN_LMT_H, 0x0f);
817 /* MCS0/1/2/3 use max AMPDU size 4*2=8K */
818 rtl_write_word(rtlpriv, AGGLEN_LMT_L, 0x7442);
819 /* MCS4/5 use max AMPDU size 8*2=16K 6/7 use 10*2=20K */
820 rtl_write_word(rtlpriv, AGGLEN_LMT_L + 2, 0xddd7);
821 /* MCS8/9 use max AMPDU size 8*2=16K 10/11 use 10*2=20K */
822 rtl_write_word(rtlpriv, AGGLEN_LMT_L + 4, 0xd772);
823 /* MCS12/13/14/15 use max AMPDU size 15*2=30K */
824 rtl_write_word(rtlpriv, AGGLEN_LMT_L + 6, 0xfffd);
825
826 /* Set Data / Response auto rate fallack retry count */
827 rtl_write_dword(rtlpriv, DARFRC, 0x04010000);
828 rtl_write_dword(rtlpriv, DARFRC + 4, 0x09070605);
829 rtl_write_dword(rtlpriv, RARFRC, 0x04010000);
830 rtl_write_dword(rtlpriv, RARFRC + 4, 0x09070605);
831
832 /* 7. EDCA Setting Register (Offset: 0x01D0 - 0x01FF) */
833 /* Set all rate to support SG */
834 rtl_write_word(rtlpriv, SG_RATE, 0xFFFF);
835
836 /* 8. WMAC, BA, and CCX related Register (Offset: 0x0200 - 0x023F) */
837 /* Set NAV protection length */
838 rtl_write_word(rtlpriv, NAV_PROT_LEN, 0x0080);
839 /* CF-END Threshold */
840 rtl_write_byte(rtlpriv, CFEND_TH, 0xFF);
841 /* Set AMPDU minimum space */
842 rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, 0x07);
843 /* Set TXOP stall control for several queue/HI/BCN/MGT/ */
844 rtl_write_byte(rtlpriv, TXOP_STALL_CTRL, 0x00);
845
846 /* 9. Security Control Register (Offset: 0x0240 - 0x025F) */
847 /* 10. Power Save Control Register (Offset: 0x0260 - 0x02DF) */
848 /* 11. General Purpose Register (Offset: 0x02E0 - 0x02FF) */
849 /* 12. Host Interrupt Status Register (Offset: 0x0300 - 0x030F) */
850 /* 13. Test Mode and Debug Control Register (Offset: 0x0310 - 0x034F) */
851
852 /* 14. Set driver info, we only accept PHY status now. */
853 rtl_write_byte(rtlpriv, RXDRVINFO_SZ, 4);
854
855 /* 15. For EEPROM R/W Workaround */
856 /* 16. For EFUSE to share REG_SYS_FUNC_EN with EEPROM!!! */
857 tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN);
858 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, tmpu2b | BIT(13));
859 tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL);
860 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, tmpu2b & (~BIT(8)));
861
862 /* 17. For EFUSE */
863 /* We may R/W EFUSE in EEPROM mode */
864 if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
865 u8 tempval;
866
867 tempval = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL + 1);
868 tempval &= 0xFE;
869 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, tempval);
870
871 /* Change Program timing */
872 rtl_write_byte(rtlpriv, REG_EFUSE_CTRL + 3, 0x72);
f30d7507 873 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "EFUSE CONFIG OK\n");
24284531
CL
874 }
875
f30d7507 876 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "OK\n");
24284531
CL
877
878}
879
880static void _rtl92se_hw_configure(struct ieee80211_hw *hw)
881{
882 struct rtl_priv *rtlpriv = rtl_priv(hw);
883 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
884 struct rtl_phy *rtlphy = &(rtlpriv->phy);
885 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
886
887 u8 reg_bw_opmode = 0;
78d57372 888 u32 reg_rrsr = 0;
24284531
CL
889 u8 regtmp = 0;
890
891 reg_bw_opmode = BW_OPMODE_20MHZ;
24284531
CL
892 reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
893
894 regtmp = rtl_read_byte(rtlpriv, INIRTSMCS_SEL);
895 reg_rrsr = ((reg_rrsr & 0x000fffff) << 8) | regtmp;
896 rtl_write_dword(rtlpriv, INIRTSMCS_SEL, reg_rrsr);
897 rtl_write_byte(rtlpriv, BW_OPMODE, reg_bw_opmode);
898
899 /* Set Retry Limit here */
900 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RETRY_LIMIT,
901 (u8 *)(&rtlpci->shortretry_limit));
902
903 rtl_write_byte(rtlpriv, MLT, 0x8f);
904
905 /* For Min Spacing configuration. */
906 switch (rtlphy->rf_type) {
907 case RF_1T2R:
908 case RF_1T1R:
909 rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
910 break;
911 case RF_2T2R:
912 case RF_2T2R_GREEN:
913 rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
914 break;
915 }
916 rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, rtlhal->minspace_cfg);
917}
918
919int rtl92se_hw_init(struct ieee80211_hw *hw)
920{
921 struct rtl_priv *rtlpriv = rtl_priv(hw);
922 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
923 struct rtl_phy *rtlphy = &(rtlpriv->phy);
924 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
925 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
926 u8 tmp_byte = 0;
927
928 bool rtstatus = true;
929 u8 tmp_u1b;
930 int err = false;
931 u8 i;
932 int wdcapra_add[] = {
933 EDCAPARA_BE, EDCAPARA_BK,
934 EDCAPARA_VI, EDCAPARA_VO};
935 u8 secr_value = 0x0;
936
937 rtlpci->being_init_adapter = true;
938
939 rtlpriv->intf_ops->disable_aspm(hw);
940
941 /* 1. MAC Initialize */
942 /* Before FW download, we have to set some MAC register */
943 _rtl92se_macconfig_before_fwdownload(hw);
944
945 rtlhal->version = (enum version_8192s)((rtl_read_dword(rtlpriv,
946 PMC_FSM) >> 16) & 0xF);
947
948 rtl8192se_gpiobit3_cfg_inputmode(hw);
949
950 /* 2. download firmware */
951 rtstatus = rtl92s_download_fw(hw);
952 if (!rtstatus) {
953 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
f30d7507 954 "Failed to download FW. Init HW without FW now... Please copy FW into /lib/firmware/rtlwifi\n");
24284531
CL
955 rtlhal->fw_ready = false;
956 } else {
957 rtlhal->fw_ready = true;
958 }
959
960 /* After FW download, we have to reset MAC register */
961 _rtl92se_macconfig_after_fwdownload(hw);
962
963 /*Retrieve default FW Cmd IO map. */
964 rtlhal->fwcmd_iomap = rtl_read_word(rtlpriv, LBUS_MON_ADDR);
965 rtlhal->fwcmd_ioparam = rtl_read_dword(rtlpriv, LBUS_ADDR_MASK);
966
967 /* 3. Initialize MAC/PHY Config by MACPHY_reg.txt */
968 if (rtl92s_phy_mac_config(hw) != true) {
f30d7507 969 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "MAC Config failed\n");
24284531
CL
970 return rtstatus;
971 }
972
973 /* Make sure BB/RF write OK. We should prevent enter IPS. radio off. */
974 /* We must set flag avoid BB/RF config period later!! */
975 rtl_write_dword(rtlpriv, CMDR, 0x37FC);
976
977 /* 4. Initialize BB After MAC Config PHY_reg.txt, AGC_Tab.txt */
978 if (rtl92s_phy_bb_config(hw) != true) {
f30d7507 979 RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "BB Config failed\n");
24284531
CL
980 return rtstatus;
981 }
982
983 /* 5. Initiailze RF RAIO_A.txt RF RAIO_B.txt */
984 /* Before initalizing RF. We can not use FW to do RF-R/W. */
985
986 rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
987
988 /* RF Power Save */
989#if 0
990 /* H/W or S/W RF OFF before sleep. */
991 if (rtlpriv->psc.rfoff_reason > RF_CHANGE_BY_PS) {
992 u32 rfoffreason = rtlpriv->psc.rfoff_reason;
993
994 rtlpriv->psc.rfoff_reason = RF_CHANGE_BY_INIT;
995 rtlpriv->psc.rfpwr_state = ERFON;
4b9d8d67
MM
996 /* FIXME: check spinlocks if this block is uncommented */
997 rtl_ps_set_rf_state(hw, ERFOFF, rfoffreason);
24284531
CL
998 } else {
999 /* gpio radio on/off is out of adapter start */
1000 if (rtlpriv->psc.hwradiooff == false) {
1001 rtlpriv->psc.rfpwr_state = ERFON;
1002 rtlpriv->psc.rfoff_reason = 0;
1003 }
1004 }
1005#endif
1006
1007 /* Before RF-R/W we must execute the IO from Scott's suggestion. */
1008 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, 0xDB);
1009 if (rtlhal->version == VERSION_8192S_ACUT)
1010 rtl_write_byte(rtlpriv, SPS1_CTRL + 3, 0x07);
1011 else
1012 rtl_write_byte(rtlpriv, RF_CTRL, 0x07);
1013
1014 if (rtl92s_phy_rf_config(hw) != true) {
f30d7507 1015 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "RF Config failed\n");
24284531
CL
1016 return rtstatus;
1017 }
1018
1019 /* After read predefined TXT, we must set BB/MAC/RF
1020 * register as our requirement */
1021
1022 rtlphy->rfreg_chnlval[0] = rtl92s_phy_query_rf_reg(hw,
1023 (enum radio_path)0,
1024 RF_CHNLBW,
1025 RFREG_OFFSET_MASK);
1026 rtlphy->rfreg_chnlval[1] = rtl92s_phy_query_rf_reg(hw,
1027 (enum radio_path)1,
1028 RF_CHNLBW,
1029 RFREG_OFFSET_MASK);
1030
1031 /*---- Set CCK and OFDM Block "ON"----*/
1032 rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
1033 rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
1034
1035 /*3 Set Hardware(Do nothing now) */
1036 _rtl92se_hw_configure(hw);
1037
1038 /* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
1039 /* TX power index for different rate set. */
1040 /* Get original hw reg values */
1041 rtl92s_phy_get_hw_reg_originalvalue(hw);
1042 /* Write correct tx power index */
1043 rtl92s_phy_set_txpower(hw, rtlphy->current_channel);
1044
1045 /* We must set MAC address after firmware download. */
1046 for (i = 0; i < 6; i++)
1047 rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
1048
1049 /* EEPROM R/W workaround */
1050 tmp_u1b = rtl_read_byte(rtlpriv, MAC_PINMUX_CFG);
1051 rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, tmp_u1b & (~BIT(3)));
1052
1053 rtl_write_byte(rtlpriv, 0x4d, 0x0);
1054
1055 if (hal_get_firmwareversion(rtlpriv) >= 0x49) {
1056 tmp_byte = rtl_read_byte(rtlpriv, FW_RSVD_PG_CRTL) & (~BIT(4));
1057 tmp_byte = tmp_byte | BIT(5);
1058 rtl_write_byte(rtlpriv, FW_RSVD_PG_CRTL, tmp_byte);
1059 rtl_write_dword(rtlpriv, TXDESC_MSK, 0xFFFFCFFF);
1060 }
1061
1062 /* We enable high power and RA related mechanism after NIC
1063 * initialized. */
1064 rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_INIT);
1065
1066 /* Add to prevent ASPM bug. */
1067 /* Always enable hst and NIC clock request. */
1068 rtl92s_phy_switch_ephy_parameter(hw);
1069
1070 /* Security related
1071 * 1. Clear all H/W keys.
1072 * 2. Enable H/W encryption/decryption. */
1073 rtl_cam_reset_all_entry(hw);
1074 secr_value |= SCR_TXENCENABLE;
1075 secr_value |= SCR_RXENCENABLE;
1076 secr_value |= SCR_NOSKMC;
1077 rtl_write_byte(rtlpriv, REG_SECR, secr_value);
1078
1079 for (i = 0; i < 4; i++)
1080 rtl_write_dword(rtlpriv, wdcapra_add[i], 0x5e4322);
1081
1082 if (rtlphy->rf_type == RF_1T2R) {
1083 bool mrc2set = true;
1084 /* Turn on B-Path */
1085 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_MRC, (u8 *)&mrc2set);
1086 }
1087
1088 rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_ON);
1089 rtl92s_dm_init(hw);
1090 rtlpci->being_init_adapter = false;
1091
1092 return err;
1093}
1094
1095void rtl92se_set_mac_addr(struct rtl_io *io, const u8 * addr)
1096{
1097}
1098
1099void rtl92se_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
1100{
1101 struct rtl_priv *rtlpriv = rtl_priv(hw);
1102 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1103 u32 reg_rcr = rtlpci->receive_config;
1104
1105 if (rtlpriv->psc.rfpwr_state != ERFON)
1106 return;
1107
e10542c4 1108 if (check_bssid) {
24284531
CL
1109 reg_rcr |= (RCR_CBSSID);
1110 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1111 } else if (check_bssid == false) {
1112 reg_rcr &= (~RCR_CBSSID);
1113 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1114 }
1115
1116}
1117
1118static int _rtl92se_set_media_status(struct ieee80211_hw *hw,
1119 enum nl80211_iftype type)
1120{
1121 struct rtl_priv *rtlpriv = rtl_priv(hw);
1122 u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
24284531
CL
1123 u32 temp;
1124 bt_msr &= ~MSR_LINK_MASK;
1125
1126 switch (type) {
1127 case NL80211_IFTYPE_UNSPECIFIED:
1128 bt_msr |= (MSR_LINK_NONE << MSR_LINK_SHIFT);
24284531 1129 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
f30d7507 1130 "Set Network type to NO LINK!\n");
24284531
CL
1131 break;
1132 case NL80211_IFTYPE_ADHOC:
1133 bt_msr |= (MSR_LINK_ADHOC << MSR_LINK_SHIFT);
1134 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
f30d7507 1135 "Set Network type to Ad Hoc!\n");
24284531
CL
1136 break;
1137 case NL80211_IFTYPE_STATION:
1138 bt_msr |= (MSR_LINK_MANAGED << MSR_LINK_SHIFT);
24284531 1139 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
f30d7507 1140 "Set Network type to STA!\n");
24284531
CL
1141 break;
1142 case NL80211_IFTYPE_AP:
1143 bt_msr |= (MSR_LINK_MASTER << MSR_LINK_SHIFT);
1144 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
f30d7507 1145 "Set Network type to AP!\n");
24284531
CL
1146 break;
1147 default:
1148 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
f30d7507 1149 "Network type %d not supported!\n", type);
24284531
CL
1150 return 1;
1151 break;
1152
1153 }
1154
1155 rtl_write_byte(rtlpriv, (MSR), bt_msr);
1156
1157 temp = rtl_read_dword(rtlpriv, TCR);
1158 rtl_write_dword(rtlpriv, TCR, temp & (~BIT(8)));
1159 rtl_write_dword(rtlpriv, TCR, temp | BIT(8));
1160
1161
1162 return 0;
1163}
1164
1165/* HW_VAR_MEDIA_STATUS & HW_VAR_CECHK_BSSID */
1166int rtl92se_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
1167{
1168 struct rtl_priv *rtlpriv = rtl_priv(hw);
1169
1170 if (_rtl92se_set_media_status(hw, type))
1171 return -EOPNOTSUPP;
1172
1173 if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
1174 if (type != NL80211_IFTYPE_AP)
1175 rtl92se_set_check_bssid(hw, true);
1176 } else {
1177 rtl92se_set_check_bssid(hw, false);
1178 }
1179
1180 return 0;
1181}
1182
1183/* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
1184void rtl92se_set_qos(struct ieee80211_hw *hw, int aci)
1185{
1186 struct rtl_priv *rtlpriv = rtl_priv(hw);
1187 rtl92s_dm_init_edca_turbo(hw);
1188
1189 switch (aci) {
1190 case AC1_BK:
1191 rtl_write_dword(rtlpriv, EDCAPARA_BK, 0xa44f);
1192 break;
1193 case AC0_BE:
1194 /* rtl_write_dword(rtlpriv, EDCAPARA_BE, u4b_ac_param); */
1195 break;
1196 case AC2_VI:
1197 rtl_write_dword(rtlpriv, EDCAPARA_VI, 0x5e4322);
1198 break;
1199 case AC3_VO:
1200 rtl_write_dword(rtlpriv, EDCAPARA_VO, 0x2f3222);
1201 break;
1202 default:
1203 RT_ASSERT(false, ("invalid aci: %d !\n", aci));
1204 break;
1205 }
1206}
1207
1208void rtl92se_enable_interrupt(struct ieee80211_hw *hw)
1209{
1210 struct rtl_priv *rtlpriv = rtl_priv(hw);
1211 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1212
1213 rtl_write_dword(rtlpriv, INTA_MASK, rtlpci->irq_mask[0]);
1214 /* Support Bit 32-37(Assign as Bit 0-5) interrupt setting now */
1215 rtl_write_dword(rtlpriv, INTA_MASK + 4, rtlpci->irq_mask[1] & 0x3F);
24284531
CL
1216}
1217
1218void rtl92se_disable_interrupt(struct ieee80211_hw *hw)
1219{
1220 struct rtl_priv *rtlpriv = rtl_priv(hw);
1221 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1222
1223 rtl_write_dword(rtlpriv, INTA_MASK, 0);
1224 rtl_write_dword(rtlpriv, INTA_MASK + 4, 0);
1225
049436b9 1226 synchronize_irq(rtlpci->pdev->irq);
24284531
CL
1227}
1228
1229
1230static u8 _rtl92s_set_sysclk(struct ieee80211_hw *hw, u8 data)
1231{
1232 struct rtl_priv *rtlpriv = rtl_priv(hw);
1233 u8 waitcnt = 100;
1234 bool result = false;
1235 u8 tmp;
1236
1237 rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
1238
1239 /* Wait the MAC synchronized. */
1240 udelay(400);
1241
1242 /* Check if it is set ready. */
1243 tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
1244 result = ((tmp & BIT(7)) == (data & BIT(7)));
1245
1246 if ((data & (BIT(6) | BIT(7))) == false) {
1247 waitcnt = 100;
1248 tmp = 0;
1249
1250 while (1) {
1251 waitcnt--;
1252 tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
1253
1254 if ((tmp & BIT(6)))
1255 break;
1256
292b1192 1257 pr_err("wait for BIT(6) return value %x\n", tmp);
24284531
CL
1258
1259 if (waitcnt == 0)
1260 break;
1261 udelay(10);
1262 }
1263
1264 if (waitcnt == 0)
1265 result = false;
1266 else
1267 result = true;
1268 }
1269
1270 return result;
1271}
1272
1273static void _rtl92s_phy_set_rfhalt(struct ieee80211_hw *hw)
1274{
1275 struct rtl_priv *rtlpriv = rtl_priv(hw);
1276 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1277 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1278 u8 u1btmp;
1279
1280 if (rtlhal->driver_going2unload)
1281 rtl_write_byte(rtlpriv, 0x560, 0x0);
1282
1283 /* Power save for BB/RF */
1284 u1btmp = rtl_read_byte(rtlpriv, LDOV12D_CTRL);
1285 u1btmp |= BIT(0);
1286 rtl_write_byte(rtlpriv, LDOV12D_CTRL, u1btmp);
1287 rtl_write_byte(rtlpriv, SPS1_CTRL, 0x0);
1288 rtl_write_byte(rtlpriv, TXPAUSE, 0xFF);
1289 rtl_write_word(rtlpriv, CMDR, 0x57FC);
1290 udelay(100);
1291 rtl_write_word(rtlpriv, CMDR, 0x77FC);
1292 rtl_write_byte(rtlpriv, PHY_CCA, 0x0);
1293 udelay(10);
1294 rtl_write_word(rtlpriv, CMDR, 0x37FC);
1295 udelay(10);
1296 rtl_write_word(rtlpriv, CMDR, 0x77FC);
1297 udelay(10);
1298 rtl_write_word(rtlpriv, CMDR, 0x57FC);
1299 rtl_write_word(rtlpriv, CMDR, 0x0000);
1300
1301 if (rtlhal->driver_going2unload) {
1302 u1btmp = rtl_read_byte(rtlpriv, (REG_SYS_FUNC_EN + 1));
1303 u1btmp &= ~(BIT(0));
1304 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, u1btmp);
1305 }
1306
1307 u1btmp = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1308
1309 /* Add description. After switch control path. register
1310 * after page1 will be invisible. We can not do any IO
1311 * for register>0x40. After resume&MACIO reset, we need
1312 * to remember previous reg content. */
1313 if (u1btmp & BIT(7)) {
1314 u1btmp &= ~(BIT(6) | BIT(7));
1315 if (!_rtl92s_set_sysclk(hw, u1btmp)) {
292b1192 1316 pr_err("Switch ctrl path fail\n");
24284531
CL
1317 return;
1318 }
1319 }
1320
1321 /* Power save for MAC */
1322 if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS &&
1323 !rtlhal->driver_going2unload) {
1324 /* enable LED function */
1325 rtl_write_byte(rtlpriv, 0x03, 0xF9);
1326 /* SW/HW radio off or halt adapter!! For example S3/S4 */
1327 } else {
1328 /* LED function disable. Power range is about 8mA now. */
1329 /* if write 0xF1 disconnet_pci power
1330 * ifconfig wlan0 down power are both high 35:70 */
1331 /* if write oxF9 disconnet_pci power
1332 * ifconfig wlan0 down power are both low 12:45*/
1333 rtl_write_byte(rtlpriv, 0x03, 0xF9);
1334 }
1335
1336 rtl_write_byte(rtlpriv, SYS_CLKR + 1, 0x70);
1337 rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, 0x68);
1338 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x00);
1339 rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
1340 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, 0x0E);
1341 RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
1342
1343}
1344
1345static void _rtl92se_gen_refreshledstate(struct ieee80211_hw *hw)
1346{
1347 struct rtl_priv *rtlpriv = rtl_priv(hw);
1348 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1349 struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
1350 struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
1351
1352 if (rtlpci->up_first_time == 1)
1353 return;
1354
1355 if (rtlpriv->psc.rfoff_reason == RF_CHANGE_BY_IPS)
1356 rtl92se_sw_led_on(hw, pLed0);
1357 else
1358 rtl92se_sw_led_off(hw, pLed0);
1359}
1360
1361
1362static void _rtl92se_power_domain_init(struct ieee80211_hw *hw)
1363{
1364 struct rtl_priv *rtlpriv = rtl_priv(hw);
1365 u16 tmpu2b;
1366 u8 tmpu1b;
1367
1368 rtlpriv->psc.pwrdomain_protect = true;
1369
1370 tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1371 if (tmpu1b & BIT(7)) {
1372 tmpu1b &= ~(BIT(6) | BIT(7));
1373 if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
1374 rtlpriv->psc.pwrdomain_protect = false;
1375 return;
1376 }
1377 }
1378
1379 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
1380 rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
1381
1382 /* Reset MAC-IO and CPU and Core Digital BIT10/11/15 */
5c079d88 1383 tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
24284531
CL
1384
1385 /* If IPS we need to turn LED on. So we not
1386 * not disable BIT 3/7 of reg3. */
1387 if (rtlpriv->psc.rfoff_reason & (RF_CHANGE_BY_IPS | RF_CHANGE_BY_HW))
1388 tmpu1b &= 0xFB;
1389 else
1390 tmpu1b &= 0x73;
1391
5c079d88 1392 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
24284531
CL
1393 /* wait for BIT 10/11/15 to pull high automatically!! */
1394 mdelay(1);
1395
1396 rtl_write_byte(rtlpriv, CMDR, 0);
1397 rtl_write_byte(rtlpriv, TCR, 0);
1398
1399 /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
1400 tmpu1b = rtl_read_byte(rtlpriv, 0x562);
1401 tmpu1b |= 0x08;
1402 rtl_write_byte(rtlpriv, 0x562, tmpu1b);
1403 tmpu1b &= ~(BIT(3));
1404 rtl_write_byte(rtlpriv, 0x562, tmpu1b);
1405
1406 /* Enable AFE clock source */
1407 tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
1408 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
1409 /* Delay 1.5ms */
1410 udelay(1500);
1411 tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
1412 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
1413
1414 /* Enable AFE Macro Block's Bandgap */
1415 tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
1416 rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
1417 mdelay(1);
1418
1419 /* Enable AFE Mbias */
1420 tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
1421 rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
1422 mdelay(1);
1423
1424 /* Enable LDOA15 block */
1425 tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
1426 rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
1427
1428 /* Set Digital Vdd to Retention isolation Path. */
5c079d88
CL
1429 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
1430 rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
24284531
CL
1431
1432
1433 /* For warm reboot NIC disappera bug. */
5c079d88
CL
1434 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
1435 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
24284531 1436
5c079d88 1437 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
24284531
CL
1438
1439 /* Enable AFE PLL Macro Block */
1440 tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
1441 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
1442 /* Enable MAC 80MHZ clock */
1443 tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
1444 rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
1445 mdelay(1);
1446
1447 /* Release isolation AFE PLL & MD */
5c079d88 1448 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
24284531
CL
1449
1450 /* Enable MAC clock */
1451 tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
1452 rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
1453
1454 /* Enable Core digital and enable IOREG R/W */
5c079d88
CL
1455 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
1456 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
24284531 1457 /* enable REG_EN */
5c079d88 1458 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
24284531
CL
1459
1460 /* Switch the control path. */
1461 tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
1462 rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
1463
1464 tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1465 tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
1466 if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
1467 rtlpriv->psc.pwrdomain_protect = false;
1468 return;
1469 }
1470
1471 rtl_write_word(rtlpriv, CMDR, 0x37FC);
1472
1473 /* After MACIO reset,we must refresh LED state. */
1474 _rtl92se_gen_refreshledstate(hw);
1475
1476 rtlpriv->psc.pwrdomain_protect = false;
1477}
1478
1479void rtl92se_card_disable(struct ieee80211_hw *hw)
1480{
1481 struct rtl_priv *rtlpriv = rtl_priv(hw);
1482 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1483 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1484 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1485 enum nl80211_iftype opmode;
1486 u8 wait = 30;
1487
1488 rtlpriv->intf_ops->enable_aspm(hw);
1489
1490 if (rtlpci->driver_is_goingto_unload ||
1491 ppsc->rfoff_reason > RF_CHANGE_BY_PS)
1492 rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
1493
1494 /* we should chnge GPIO to input mode
1495 * this will drop away current about 25mA*/
1496 rtl8192se_gpiobit3_cfg_inputmode(hw);
1497
1498 /* this is very important for ips power save */
1499 while (wait-- >= 10 && rtlpriv->psc.pwrdomain_protect) {
1500 if (rtlpriv->psc.pwrdomain_protect)
1501 mdelay(20);
1502 else
1503 break;
1504 }
1505
1506 mac->link_state = MAC80211_NOLINK;
1507 opmode = NL80211_IFTYPE_UNSPECIFIED;
1508 _rtl92se_set_media_status(hw, opmode);
1509
1510 _rtl92s_phy_set_rfhalt(hw);
1511 udelay(100);
1512}
1513
1514void rtl92se_interrupt_recognized(struct ieee80211_hw *hw, u32 *p_inta,
1515 u32 *p_intb)
1516{
1517 struct rtl_priv *rtlpriv = rtl_priv(hw);
1518 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1519
1520 *p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
1521 rtl_write_dword(rtlpriv, ISR, *p_inta);
1522
1523 *p_intb = rtl_read_dword(rtlpriv, ISR + 4) & rtlpci->irq_mask[1];
1524 rtl_write_dword(rtlpriv, ISR + 4, *p_intb);
1525}
1526
1527void rtl92se_set_beacon_related_registers(struct ieee80211_hw *hw)
1528{
1529 struct rtl_priv *rtlpriv = rtl_priv(hw);
1530 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1531 u16 bcntime_cfg = 0;
1532 u16 bcn_cw = 6, bcn_ifs = 0xf;
1533 u16 atim_window = 2;
1534
1535 /* ATIM Window (in unit of TU). */
1536 rtl_write_word(rtlpriv, ATIMWND, atim_window);
1537
1538 /* Beacon interval (in unit of TU). */
1539 rtl_write_word(rtlpriv, BCN_INTERVAL, mac->beacon_interval);
1540
1541 /* DrvErlyInt (in unit of TU). (Time to send
1542 * interrupt to notify driver to change
1543 * beacon content) */
1544 rtl_write_word(rtlpriv, BCN_DRV_EARLY_INT, 10 << 4);
1545
1546 /* BcnDMATIM(in unit of us). Indicates the
1547 * time before TBTT to perform beacon queue DMA */
1548 rtl_write_word(rtlpriv, BCN_DMATIME, 256);
1549
1550 /* Force beacon frame transmission even
1551 * after receiving beacon frame from
1552 * other ad hoc STA */
1553 rtl_write_byte(rtlpriv, BCN_ERR_THRESH, 100);
1554
1555 /* Beacon Time Configuration */
1556 if (mac->opmode == NL80211_IFTYPE_ADHOC)
1557 bcntime_cfg |= (bcn_cw << BCN_TCFG_CW_SHIFT);
1558
1559 /* TODO: bcn_ifs may required to be changed on ASIC */
1560 bcntime_cfg |= bcn_ifs << BCN_TCFG_IFS;
1561
1562 /*for beacon changed */
1563 rtl92s_phy_set_beacon_hwreg(hw, mac->beacon_interval);
1564}
1565
1566void rtl92se_set_beacon_interval(struct ieee80211_hw *hw)
1567{
1568 struct rtl_priv *rtlpriv = rtl_priv(hw);
1569 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1570 u16 bcn_interval = mac->beacon_interval;
1571
1572 /* Beacon interval (in unit of TU). */
1573 rtl_write_word(rtlpriv, BCN_INTERVAL, bcn_interval);
1574 /* 2008.10.24 added by tynli for beacon changed. */
1575 rtl92s_phy_set_beacon_hwreg(hw, bcn_interval);
1576}
1577
1578void rtl92se_update_interrupt_mask(struct ieee80211_hw *hw,
1579 u32 add_msr, u32 rm_msr)
1580{
1581 struct rtl_priv *rtlpriv = rtl_priv(hw);
1582 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1583
f30d7507
JP
1584 RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
1585 add_msr, rm_msr);
24284531
CL
1586
1587 if (add_msr)
1588 rtlpci->irq_mask[0] |= add_msr;
1589
1590 if (rm_msr)
1591 rtlpci->irq_mask[0] &= (~rm_msr);
1592
1593 rtl92se_disable_interrupt(hw);
1594 rtl92se_enable_interrupt(hw);
1595}
1596
1597static void _rtl8192se_get_IC_Inferiority(struct ieee80211_hw *hw)
1598{
1599 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1600 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1601 u8 efuse_id;
1602
1603 rtlhal->ic_class = IC_INFERIORITY_A;
1604
1605 /* Only retrieving while using EFUSE. */
1606 if ((rtlefuse->epromtype == EEPROM_BOOT_EFUSE) &&
1607 !rtlefuse->autoload_failflag) {
1608 efuse_id = efuse_read_1byte(hw, EFUSE_IC_ID_OFFSET);
1609
1610 if (efuse_id == 0xfe)
1611 rtlhal->ic_class = IC_INFERIORITY_B;
1612 }
1613}
1614
1615static void _rtl92se_read_adapter_info(struct ieee80211_hw *hw)
1616{
1617 struct rtl_priv *rtlpriv = rtl_priv(hw);
1618 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1619 struct rtl_phy *rtlphy = &(rtlpriv->phy);
1620 u16 i, usvalue;
1621 u16 eeprom_id;
1622 u8 tempval;
1623 u8 hwinfo[HWSET_MAX_SIZE_92S];
1624 u8 rf_path, index;
1625
1626 if (rtlefuse->epromtype == EEPROM_93C46) {
1627 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
f30d7507 1628 "RTL819X Not boot from eeprom, check it !!\n");
24284531
CL
1629 } else if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
1630 rtl_efuse_shadow_map_update(hw);
1631
1632 memcpy((void *)hwinfo, (void *)
1633 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
1634 HWSET_MAX_SIZE_92S);
1635 }
1636
af08687b 1637 RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
24284531
CL
1638 hwinfo, HWSET_MAX_SIZE_92S);
1639
1640 eeprom_id = *((u16 *)&hwinfo[0]);
1641 if (eeprom_id != RTL8190_EEPROM_ID) {
1642 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
f30d7507 1643 "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
24284531
CL
1644 rtlefuse->autoload_failflag = true;
1645 } else {
f30d7507 1646 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
24284531
CL
1647 rtlefuse->autoload_failflag = false;
1648 }
1649
e10542c4 1650 if (rtlefuse->autoload_failflag)
24284531
CL
1651 return;
1652
1653 _rtl8192se_get_IC_Inferiority(hw);
1654
1655 /* Read IC Version && Channel Plan */
1656 /* VID, DID SE 0xA-D */
1657 rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
1658 rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
1659 rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
1660 rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
1661 rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
1662
1663 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
f30d7507 1664 "EEPROMId = 0x%4x\n", eeprom_id);
24284531 1665 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
f30d7507 1666 "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
24284531 1667 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
f30d7507 1668 "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
24284531 1669 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
f30d7507 1670 "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
24284531 1671 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
f30d7507 1672 "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
24284531
CL
1673
1674 for (i = 0; i < 6; i += 2) {
1675 usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
1676 *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
1677 }
1678
1679 for (i = 0; i < 6; i++)
1680 rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
1681
f30d7507 1682 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
24284531
CL
1683
1684 /* Get Tx Power Level by Channel */
1685 /* Read Tx power of Channel 1 ~ 14 from EEPROM. */
1686 /* 92S suupport RF A & B */
1687 for (rf_path = 0; rf_path < 2; rf_path++) {
1688 for (i = 0; i < 3; i++) {
1689 /* Read CCK RF A & B Tx power */
1690 rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][i] =
1691 hwinfo[EEPROM_TXPOWERBASE + rf_path * 3 + i];
1692
1693 /* Read OFDM RF A & B Tx power for 1T */
1694 rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
1695 hwinfo[EEPROM_TXPOWERBASE + 6 + rf_path * 3 + i];
1696
1697 /* Read OFDM RF A & B Tx power for 2T */
1698 rtlefuse->eeprom_chnlarea_txpwr_ht40_2sdiif[rf_path][i]
1699 = hwinfo[EEPROM_TXPOWERBASE + 12 +
1700 rf_path * 3 + i];
1701 }
1702 }
1703
1704 for (rf_path = 0; rf_path < 2; rf_path++)
1705 for (i = 0; i < 3; i++)
1706 RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1707 ("RF(%d) EEPROM CCK Area(%d) = 0x%x\n", rf_path,
1708 i, rtlefuse->eeprom_chnlarea_txpwr_cck
1709 [rf_path][i]));
1710 for (rf_path = 0; rf_path < 2; rf_path++)
1711 for (i = 0; i < 3; i++)
1712 RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1713 ("RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
1714 rf_path, i,
1715 rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
1716 [rf_path][i]));
1717 for (rf_path = 0; rf_path < 2; rf_path++)
1718 for (i = 0; i < 3; i++)
1719 RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1720 ("RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
1721 rf_path, i,
1722 rtlefuse->eeprom_chnlarea_txpwr_ht40_2sdiif
1723 [rf_path][i]));
1724
1725 for (rf_path = 0; rf_path < 2; rf_path++) {
1726
1727 /* Assign dedicated channel tx power */
1728 for (i = 0; i < 14; i++) {
1729 /* channel 1~3 use the same Tx Power Level. */
1730 if (i < 3)
1731 index = 0;
1732 /* Channel 4-8 */
1733 else if (i < 8)
1734 index = 1;
1735 /* Channel 9-14 */
1736 else
1737 index = 2;
1738
1739 /* Record A & B CCK /OFDM - 1T/2T Channel area
1740 * tx power */
1741 rtlefuse->txpwrlevel_cck[rf_path][i] =
1742 rtlefuse->eeprom_chnlarea_txpwr_cck
1743 [rf_path][index];
1744 rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
1745 rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
1746 [rf_path][index];
1747 rtlefuse->txpwrlevel_ht40_2s[rf_path][i] =
1748 rtlefuse->eeprom_chnlarea_txpwr_ht40_2sdiif
1749 [rf_path][index];
1750 }
1751
1752 for (i = 0; i < 14; i++) {
1753 RTPRINT(rtlpriv, FINIT, INIT_TxPower,
1754 ("RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = "
1755 "[0x%x / 0x%x / 0x%x]\n", rf_path, i,
1756 rtlefuse->txpwrlevel_cck[rf_path][i],
1757 rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
1758 rtlefuse->txpwrlevel_ht40_2s[rf_path][i]));
1759 }
1760 }
1761
1762 for (rf_path = 0; rf_path < 2; rf_path++) {
1763 for (i = 0; i < 3; i++) {
1764 /* Read Power diff limit. */
1765 rtlefuse->eeprom_pwrgroup[rf_path][i] =
1766 hwinfo[EEPROM_TXPWRGROUP + rf_path * 3 + i];
1767 }
1768 }
1769
1770 for (rf_path = 0; rf_path < 2; rf_path++) {
1771 /* Fill Pwr group */
1772 for (i = 0; i < 14; i++) {
1773 /* Chanel 1-3 */
1774 if (i < 3)
1775 index = 0;
1776 /* Channel 4-8 */
1777 else if (i < 8)
1778 index = 1;
1779 /* Channel 9-13 */
1780 else
1781 index = 2;
1782
1783 rtlefuse->pwrgroup_ht20[rf_path][i] =
1784 (rtlefuse->eeprom_pwrgroup[rf_path][index] &
1785 0xf);
1786 rtlefuse->pwrgroup_ht40[rf_path][i] =
1787 ((rtlefuse->eeprom_pwrgroup[rf_path][index] &
1788 0xf0) >> 4);
1789
1790 RTPRINT(rtlpriv, FINIT, INIT_TxPower,
1791 ("RF-%d pwrgroup_ht20[%d] = 0x%x\n",
1792 rf_path, i,
1793 rtlefuse->pwrgroup_ht20[rf_path][i]));
1794 RTPRINT(rtlpriv, FINIT, INIT_TxPower,
1795 ("RF-%d pwrgroup_ht40[%d] = 0x%x\n",
1796 rf_path, i,
1797 rtlefuse->pwrgroup_ht40[rf_path][i]));
1798 }
1799 }
1800
1801 for (i = 0; i < 14; i++) {
1802 /* Read tx power difference between HT OFDM 20/40 MHZ */
1803 /* channel 1-3 */
1804 if (i < 3)
1805 index = 0;
1806 /* Channel 4-8 */
1807 else if (i < 8)
1808 index = 1;
1809 /* Channel 9-14 */
1810 else
1811 index = 2;
1812
1813 tempval = (*(u8 *)&hwinfo[EEPROM_TX_PWR_HT20_DIFF +
1814 index]) & 0xff;
1815 rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
1816 rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
1817 ((tempval >> 4) & 0xF);
1818
1819 /* Read OFDM<->HT tx power diff */
1820 /* Channel 1-3 */
1821 if (i < 3)
1822 index = 0;
1823 /* Channel 4-8 */
1824 else if (i < 8)
1825 index = 0x11;
1826 /* Channel 9-14 */
1827 else
1828 index = 1;
1829
1830 tempval = (*(u8 *)&hwinfo[EEPROM_TX_PWR_OFDM_DIFF + index])
1831 & 0xff;
1832 rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] =
1833 (tempval & 0xF);
1834 rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
1835 ((tempval >> 4) & 0xF);
1836
1837 tempval = (*(u8 *)&hwinfo[TX_PWR_SAFETY_CHK]);
1838 rtlefuse->txpwr_safetyflag = (tempval & 0x01);
1839 }
1840
1841 rtlefuse->eeprom_regulatory = 0;
1842 if (rtlefuse->eeprom_version >= 2) {
1843 /* BIT(0)~2 */
1844 if (rtlefuse->eeprom_version >= 4)
1845 rtlefuse->eeprom_regulatory =
1846 (hwinfo[EEPROM_REGULATORY] & 0x7);
1847 else /* BIT(0) */
1848 rtlefuse->eeprom_regulatory =
1849 (hwinfo[EEPROM_REGULATORY] & 0x1);
1850 }
1851 RTPRINT(rtlpriv, FINIT, INIT_TxPower,
1852 ("eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory));
1853
1854 for (i = 0; i < 14; i++)
1855 RTPRINT(rtlpriv, FINIT, INIT_TxPower,
1856 ("RF-A Ht20 to HT40 Diff[%d] = 0x%x\n", i,
1857 rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]));
1858 for (i = 0; i < 14; i++)
1859 RTPRINT(rtlpriv, FINIT, INIT_TxPower,
1860 ("RF-A Legacy to Ht40 Diff[%d] = 0x%x\n", i,
1861 rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]));
1862 for (i = 0; i < 14; i++)
1863 RTPRINT(rtlpriv, FINIT, INIT_TxPower,
1864 ("RF-B Ht20 to HT40 Diff[%d] = 0x%x\n", i,
1865 rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]));
1866 for (i = 0; i < 14; i++)
1867 RTPRINT(rtlpriv, FINIT, INIT_TxPower,
1868 ("RF-B Legacy to HT40 Diff[%d] = 0x%x\n", i,
1869 rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]));
1870
1871 RTPRINT(rtlpriv, FINIT, INIT_TxPower, ("TxPwrSafetyFlag = %d\n",
1872 rtlefuse->txpwr_safetyflag));
1873
1874 /* Read RF-indication and Tx Power gain
1875 * index diff of legacy to HT OFDM rate. */
1876 tempval = (*(u8 *)&hwinfo[EEPROM_RFIND_POWERDIFF]) & 0xff;
1877 rtlefuse->eeprom_txpowerdiff = tempval;
1878 rtlefuse->legacy_httxpowerdiff =
1879 rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][0];
1880
1881 RTPRINT(rtlpriv, FINIT, INIT_TxPower, ("TxPowerDiff = %#x\n",
1882 rtlefuse->eeprom_txpowerdiff));
1883
1884 /* Get TSSI value for each path. */
1885 usvalue = *(u16 *)&hwinfo[EEPROM_TSSI_A];
1886 rtlefuse->eeprom_tssi[RF90_PATH_A] = (u8)((usvalue & 0xff00) >> 8);
1887 usvalue = *(u8 *)&hwinfo[EEPROM_TSSI_B];
1888 rtlefuse->eeprom_tssi[RF90_PATH_B] = (u8)(usvalue & 0xff);
1889
1890 RTPRINT(rtlpriv, FINIT, INIT_TxPower, ("TSSI_A = 0x%x, TSSI_B = 0x%x\n",
1891 rtlefuse->eeprom_tssi[RF90_PATH_A],
1892 rtlefuse->eeprom_tssi[RF90_PATH_B]));
1893
1894 /* Read antenna tx power offset of B/C/D to A from EEPROM */
1895 /* and read ThermalMeter from EEPROM */
1896 tempval = *(u8 *)&hwinfo[EEPROM_THERMALMETER];
1897 rtlefuse->eeprom_thermalmeter = tempval;
1898 RTPRINT(rtlpriv, FINIT, INIT_TxPower, ("thermalmeter = 0x%x\n",
1899 rtlefuse->eeprom_thermalmeter));
1900
1901 /* ThermalMeter, BIT(0)~3 for RFIC1, BIT(4)~7 for RFIC2 */
1902 rtlefuse->thermalmeter[0] = (rtlefuse->eeprom_thermalmeter & 0x1f);
1903 rtlefuse->tssi_13dbm = rtlefuse->eeprom_thermalmeter * 100;
1904
1905 /* Read CrystalCap from EEPROM */
1906 tempval = (*(u8 *)&hwinfo[EEPROM_CRYSTALCAP]) >> 4;
1907 rtlefuse->eeprom_crystalcap = tempval;
1908 /* CrystalCap, BIT(12)~15 */
1909 rtlefuse->crystalcap = rtlefuse->eeprom_crystalcap;
1910
1911 /* Read IC Version && Channel Plan */
1912 /* Version ID, Channel plan */
1913 rtlefuse->eeprom_channelplan = *(u8 *)&hwinfo[EEPROM_CHANNELPLAN];
1914 rtlefuse->txpwr_fromeprom = true;
1915 RTPRINT(rtlpriv, FINIT, INIT_TxPower, ("EEPROM ChannelPlan = 0x%4x\n",
1916 rtlefuse->eeprom_channelplan));
1917
1918 /* Read Customer ID or Board Type!!! */
1919 tempval = *(u8 *)&hwinfo[EEPROM_BOARDTYPE];
1920 /* Change RF type definition */
1921 if (tempval == 0)
1922 rtlphy->rf_type = RF_2T2R;
1923 else if (tempval == 1)
1924 rtlphy->rf_type = RF_1T2R;
1925 else if (tempval == 2)
1926 rtlphy->rf_type = RF_1T2R;
1927 else if (tempval == 3)
1928 rtlphy->rf_type = RF_1T1R;
1929
1930 /* 1T2R but 1SS (1x1 receive combining) */
1931 rtlefuse->b1x1_recvcombine = false;
1932 if (rtlphy->rf_type == RF_1T2R) {
1933 tempval = rtl_read_byte(rtlpriv, 0x07);
1934 if (!(tempval & BIT(0))) {
1935 rtlefuse->b1x1_recvcombine = true;
1936 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
f30d7507 1937 "RF_TYPE=1T2R but only 1SS\n");
24284531
CL
1938 }
1939 }
1940 rtlefuse->b1ss_support = rtlefuse->b1x1_recvcombine;
1941 rtlefuse->eeprom_oemid = *(u8 *)&hwinfo[EEPROM_CUSTOMID];
1942
f30d7507
JP
1943 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM Customer ID: 0x%2x",
1944 rtlefuse->eeprom_oemid);
24284531
CL
1945
1946 /* set channel paln to world wide 13 */
1947 rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
1948}
1949
1950void rtl92se_read_eeprom_info(struct ieee80211_hw *hw)
1951{
1952 struct rtl_priv *rtlpriv = rtl_priv(hw);
1953 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1954 u8 tmp_u1b = 0;
1955
1956 tmp_u1b = rtl_read_byte(rtlpriv, EPROM_CMD);
1957
1958 if (tmp_u1b & BIT(4)) {
f30d7507 1959 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
24284531
CL
1960 rtlefuse->epromtype = EEPROM_93C46;
1961 } else {
f30d7507 1962 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
24284531
CL
1963 rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
1964 }
1965
1966 if (tmp_u1b & BIT(5)) {
f30d7507 1967 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
24284531
CL
1968 rtlefuse->autoload_failflag = false;
1969 _rtl92se_read_adapter_info(hw);
1970 } else {
f30d7507 1971 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
24284531
CL
1972 rtlefuse->autoload_failflag = true;
1973 }
1974}
1975
1976static void rtl92se_update_hal_rate_table(struct ieee80211_hw *hw,
1977 struct ieee80211_sta *sta)
1978{
1979 struct rtl_priv *rtlpriv = rtl_priv(hw);
1980 struct rtl_phy *rtlphy = &(rtlpriv->phy);
1981 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1982 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1983 u32 ratr_value;
1984 u8 ratr_index = 0;
1985 u8 nmode = mac->ht_enable;
1986 u8 mimo_ps = IEEE80211_SMPS_OFF;
1987 u16 shortgi_rate = 0;
1988 u32 tmp_ratr_value = 0;
1989 u8 curtxbw_40mhz = mac->bw_40;
1990 u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1991 1 : 0;
1992 u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1993 1 : 0;
1994 enum wireless_mode wirelessmode = mac->mode;
1995
1996 if (rtlhal->current_bandtype == BAND_ON_5G)
1997 ratr_value = sta->supp_rates[1] << 4;
1998 else
1999 ratr_value = sta->supp_rates[0];
2000 ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
2001 sta->ht_cap.mcs.rx_mask[0] << 12);
2002 switch (wirelessmode) {
2003 case WIRELESS_MODE_B:
2004 ratr_value &= 0x0000000D;
2005 break;
2006 case WIRELESS_MODE_G:
2007 ratr_value &= 0x00000FF5;
2008 break;
2009 case WIRELESS_MODE_N_24G:
2010 case WIRELESS_MODE_N_5G:
2011 nmode = 1;
2012 if (mimo_ps == IEEE80211_SMPS_STATIC) {
2013 ratr_value &= 0x0007F005;
2014 } else {
2015 u32 ratr_mask;
2016
2017 if (get_rf_type(rtlphy) == RF_1T2R ||
2018 get_rf_type(rtlphy) == RF_1T1R) {
2019 if (curtxbw_40mhz)
2020 ratr_mask = 0x000ff015;
2021 else
2022 ratr_mask = 0x000ff005;
2023 } else {
2024 if (curtxbw_40mhz)
2025 ratr_mask = 0x0f0ff015;
2026 else
2027 ratr_mask = 0x0f0ff005;
2028 }
2029
2030 ratr_value &= ratr_mask;
2031 }
2032 break;
2033 default:
2034 if (rtlphy->rf_type == RF_1T2R)
2035 ratr_value &= 0x000ff0ff;
2036 else
2037 ratr_value &= 0x0f0ff0ff;
2038
2039 break;
2040 }
2041
2042 if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
2043 ratr_value &= 0x0FFFFFFF;
2044 else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
2045 ratr_value &= 0x0FFFFFF0;
2046
2047 if (nmode && ((curtxbw_40mhz &&
2048 curshortgi_40mhz) || (!curtxbw_40mhz &&
2049 curshortgi_20mhz))) {
2050
2051 ratr_value |= 0x10000000;
2052 tmp_ratr_value = (ratr_value >> 12);
2053
2054 for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
2055 if ((1 << shortgi_rate) & tmp_ratr_value)
2056 break;
2057 }
2058
2059 shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
2060 (shortgi_rate << 4) | (shortgi_rate);
2061
2062 rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
2063 }
2064
2065 rtl_write_dword(rtlpriv, ARFR0 + ratr_index * 4, ratr_value);
2066 if (ratr_value & 0xfffff000)
2067 rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_N);
2068 else
2069 rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_BG);
2070
f30d7507
JP
2071 RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
2072 rtl_read_dword(rtlpriv, ARFR0));
24284531
CL
2073}
2074
2075static void rtl92se_update_hal_rate_mask(struct ieee80211_hw *hw,
2076 struct ieee80211_sta *sta,
2077 u8 rssi_level)
2078{
2079 struct rtl_priv *rtlpriv = rtl_priv(hw);
2080 struct rtl_phy *rtlphy = &(rtlpriv->phy);
2081 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2082 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
2083 struct rtl_sta_info *sta_entry = NULL;
2084 u32 ratr_bitmap;
2085 u8 ratr_index = 0;
2086 u8 curtxbw_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40)
2087 ? 1 : 0;
2088 u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
2089 1 : 0;
2090 u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
2091 1 : 0;
2092 enum wireless_mode wirelessmode = 0;
2093 bool shortgi = false;
2094 u32 ratr_value = 0;
2095 u8 shortgi_rate = 0;
2096 u32 mask = 0;
2097 u32 band = 0;
2098 bool bmulticast = false;
2099 u8 macid = 0;
2100 u8 mimo_ps = IEEE80211_SMPS_OFF;
2101
2102 sta_entry = (struct rtl_sta_info *) sta->drv_priv;
2103 wirelessmode = sta_entry->wireless_mode;
2104 if (mac->opmode == NL80211_IFTYPE_STATION)
2105 curtxbw_40mhz = mac->bw_40;
2106 else if (mac->opmode == NL80211_IFTYPE_AP ||
2107 mac->opmode == NL80211_IFTYPE_ADHOC)
2108 macid = sta->aid + 1;
2109
2110 if (rtlhal->current_bandtype == BAND_ON_5G)
2111 ratr_bitmap = sta->supp_rates[1] << 4;
2112 else
2113 ratr_bitmap = sta->supp_rates[0];
2114 ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
2115 sta->ht_cap.mcs.rx_mask[0] << 12);
2116 switch (wirelessmode) {
2117 case WIRELESS_MODE_B:
2118 band |= WIRELESS_11B;
2119 ratr_index = RATR_INX_WIRELESS_B;
2120 if (ratr_bitmap & 0x0000000c)
2121 ratr_bitmap &= 0x0000000d;
2122 else
2123 ratr_bitmap &= 0x0000000f;
2124 break;
2125 case WIRELESS_MODE_G:
2126 band |= (WIRELESS_11G | WIRELESS_11B);
2127 ratr_index = RATR_INX_WIRELESS_GB;
2128
2129 if (rssi_level == 1)
2130 ratr_bitmap &= 0x00000f00;
2131 else if (rssi_level == 2)
2132 ratr_bitmap &= 0x00000ff0;
2133 else
2134 ratr_bitmap &= 0x00000ff5;
2135 break;
2136 case WIRELESS_MODE_A:
2137 band |= WIRELESS_11A;
2138 ratr_index = RATR_INX_WIRELESS_A;
2139 ratr_bitmap &= 0x00000ff0;
2140 break;
2141 case WIRELESS_MODE_N_24G:
2142 case WIRELESS_MODE_N_5G:
2143 band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
2144 ratr_index = RATR_INX_WIRELESS_NGB;
2145
2146 if (mimo_ps == IEEE80211_SMPS_STATIC) {
2147 if (rssi_level == 1)
2148 ratr_bitmap &= 0x00070000;
2149 else if (rssi_level == 2)
2150 ratr_bitmap &= 0x0007f000;
2151 else
2152 ratr_bitmap &= 0x0007f005;
2153 } else {
2154 if (rtlphy->rf_type == RF_1T2R ||
2155 rtlphy->rf_type == RF_1T1R) {
2156 if (rssi_level == 1) {
2157 ratr_bitmap &= 0x000f0000;
2158 } else if (rssi_level == 3) {
2159 ratr_bitmap &= 0x000fc000;
2160 } else if (rssi_level == 5) {
2161 ratr_bitmap &= 0x000ff000;
2162 } else {
2163 if (curtxbw_40mhz)
2164 ratr_bitmap &= 0x000ff015;
2165 else
2166 ratr_bitmap &= 0x000ff005;
2167 }
2168 } else {
2169 if (rssi_level == 1) {
2170 ratr_bitmap &= 0x0f8f0000;
2171 } else if (rssi_level == 3) {
2172 ratr_bitmap &= 0x0f8fc000;
2173 } else if (rssi_level == 5) {
2174 ratr_bitmap &= 0x0f8ff000;
2175 } else {
2176 if (curtxbw_40mhz)
2177 ratr_bitmap &= 0x0f8ff015;
2178 else
2179 ratr_bitmap &= 0x0f8ff005;
2180 }
2181 }
2182 }
2183
2184 if ((curtxbw_40mhz && curshortgi_40mhz) ||
2185 (!curtxbw_40mhz && curshortgi_20mhz)) {
2186 if (macid == 0)
2187 shortgi = true;
2188 else if (macid == 1)
2189 shortgi = false;
2190 }
2191 break;
2192 default:
2193 band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
2194 ratr_index = RATR_INX_WIRELESS_NGB;
2195
2196 if (rtlphy->rf_type == RF_1T2R)
2197 ratr_bitmap &= 0x000ff0ff;
2198 else
2199 ratr_bitmap &= 0x0f8ff0ff;
2200 break;
2201 }
2202
2203 if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
2204 ratr_bitmap &= 0x0FFFFFFF;
2205 else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
2206 ratr_bitmap &= 0x0FFFFFF0;
2207
2208 if (shortgi) {
2209 ratr_bitmap |= 0x10000000;
2210 /* Get MAX MCS available. */
2211 ratr_value = (ratr_bitmap >> 12);
2212 for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
2213 if ((1 << shortgi_rate) & ratr_value)
2214 break;
2215 }
2216
2217 shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
2218 (shortgi_rate << 4) | (shortgi_rate);
2219 rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
2220 }
2221
2222 mask |= (bmulticast ? 1 : 0) << 9 | (macid & 0x1f) << 4 | (band & 0xf);
2223
f30d7507
JP
2224 RT_TRACE(rtlpriv, COMP_RATR, DBG_TRACE, "mask = %x, bitmap = %x\n",
2225 mask, ratr_bitmap);
24284531
CL
2226 rtl_write_dword(rtlpriv, 0x2c4, ratr_bitmap);
2227 rtl_write_dword(rtlpriv, WFM5, (FW_RA_UPDATE_MASK | (mask << 8)));
2228
2229 if (macid != 0)
2230 sta_entry->ratr_index = ratr_index;
2231}
2232
2233void rtl92se_update_hal_rate_tbl(struct ieee80211_hw *hw,
2234 struct ieee80211_sta *sta, u8 rssi_level)
2235{
2236 struct rtl_priv *rtlpriv = rtl_priv(hw);
2237
2238 if (rtlpriv->dm.useramask)
2239 rtl92se_update_hal_rate_mask(hw, sta, rssi_level);
2240 else
2241 rtl92se_update_hal_rate_table(hw, sta);
2242}
2243
2244void rtl92se_update_channel_access_setting(struct ieee80211_hw *hw)
2245{
2246 struct rtl_priv *rtlpriv = rtl_priv(hw);
2247 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2248 u16 sifs_timer;
2249
2250 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
2251 (u8 *)&mac->slot_time);
2252 sifs_timer = 0x0e0e;
2253 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
2254
2255}
2256
2257/* this ifunction is for RFKILL, it's different with windows,
2258 * because UI will disable wireless when GPIO Radio Off.
2259 * And here we not check or Disable/Enable ASPM like windows*/
2260bool rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
2261{
2262 struct rtl_priv *rtlpriv = rtl_priv(hw);
2263 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2264 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
78d57372 2265 enum rf_pwrstate rfpwr_toset /*, cur_rfstate */;
24284531
CL
2266 unsigned long flag = 0;
2267 bool actuallyset = false;
2268 bool turnonbypowerdomain = false;
2269
2270 /* just 8191se can check gpio before firstup, 92c/92d have fixed it */
2271 if ((rtlpci->up_first_time == 1) || (rtlpci->being_init_adapter))
2272 return false;
2273
2274 if (ppsc->swrf_processing)
2275 return false;
2276
2277 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2278 if (ppsc->rfchange_inprogress) {
2279 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2280 return false;
2281 } else {
2282 ppsc->rfchange_inprogress = true;
2283 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2284 }
2285
78d57372 2286 /* cur_rfstate = ppsc->rfpwr_state;*/
24284531
CL
2287
2288 /* because after _rtl92s_phy_set_rfhalt, all power
2289 * closed, so we must open some power for GPIO check,
2290 * or we will always check GPIO RFOFF here,
2291 * And we should close power after GPIO check */
2292 if (RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
2293 _rtl92se_power_domain_init(hw);
2294 turnonbypowerdomain = true;
2295 }
2296
2297 rfpwr_toset = _rtl92se_rf_onoff_detect(hw);
2298
e10542c4 2299 if ((ppsc->hwradiooff) && (rfpwr_toset == ERFON)) {
24284531 2300 RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
f30d7507 2301 "RFKILL-HW Radio ON, RF ON\n");
24284531
CL
2302
2303 rfpwr_toset = ERFON;
2304 ppsc->hwradiooff = false;
2305 actuallyset = true;
2306 } else if ((ppsc->hwradiooff == false) && (rfpwr_toset == ERFOFF)) {
f30d7507
JP
2307 RT_TRACE(rtlpriv, COMP_RF,
2308 DBG_DMESG, "RFKILL-HW Radio OFF, RF OFF\n");
24284531
CL
2309
2310 rfpwr_toset = ERFOFF;
2311 ppsc->hwradiooff = true;
2312 actuallyset = true;
2313 }
2314
2315 if (actuallyset) {
2316 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2317 ppsc->rfchange_inprogress = false;
2318 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2319
2320 /* this not include ifconfig wlan0 down case */
2321 /* } else if (rfpwr_toset == ERFOFF || cur_rfstate == ERFOFF) { */
2322 } else {
2323 /* because power_domain_init may be happen when
2324 * _rtl92s_phy_set_rfhalt, this will open some powers
2325 * and cause current increasing about 40 mA for ips,
2326 * rfoff and ifconfig down, so we set
2327 * _rtl92s_phy_set_rfhalt again here */
2328 if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC &&
2329 turnonbypowerdomain) {
2330 _rtl92s_phy_set_rfhalt(hw);
2331 RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
2332 }
2333
2334 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2335 ppsc->rfchange_inprogress = false;
2336 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2337 }
2338
2339 *valid = 1;
2340 return !ppsc->hwradiooff;
2341
2342}
2343
2344/* Is_wepkey just used for WEP used as group & pairwise key
2345 * if pairwise is AES ang group is WEP Is_wepkey == false.*/
2346void rtl92se_set_key(struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr,
2347 bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all)
2348{
2349 struct rtl_priv *rtlpriv = rtl_priv(hw);
2350 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2351 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2352 u8 *macaddr = p_macaddr;
2353
2354 u32 entry_id = 0;
2355 bool is_pairwise = false;
2356
2357 static u8 cam_const_addr[4][6] = {
2358 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
2359 {0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
2360 {0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
2361 {0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
2362 };
2363 static u8 cam_const_broad[] = {
2364 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2365 };
2366
2367 if (clear_all) {
2368 u8 idx = 0;
2369 u8 cam_offset = 0;
2370 u8 clear_number = 5;
2371
f30d7507 2372 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
24284531
CL
2373
2374 for (idx = 0; idx < clear_number; idx++) {
2375 rtl_cam_mark_invalid(hw, cam_offset + idx);
2376 rtl_cam_empty_entry(hw, cam_offset + idx);
2377
2378 if (idx < 5) {
2379 memset(rtlpriv->sec.key_buf[idx], 0,
2380 MAX_KEY_LEN);
2381 rtlpriv->sec.key_len[idx] = 0;
2382 }
2383 }
2384
2385 } else {
2386 switch (enc_algo) {
2387 case WEP40_ENCRYPTION:
2388 enc_algo = CAM_WEP40;
2389 break;
2390 case WEP104_ENCRYPTION:
2391 enc_algo = CAM_WEP104;
2392 break;
2393 case TKIP_ENCRYPTION:
2394 enc_algo = CAM_TKIP;
2395 break;
2396 case AESCCMP_ENCRYPTION:
2397 enc_algo = CAM_AES;
2398 break;
2399 default:
2400 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
f30d7507 2401 "switch case not processed\n");
24284531
CL
2402 enc_algo = CAM_TKIP;
2403 break;
2404 }
2405
2406 if (is_wepkey || rtlpriv->sec.use_defaultkey) {
2407 macaddr = cam_const_addr[key_index];
2408 entry_id = key_index;
2409 } else {
2410 if (is_group) {
2411 macaddr = cam_const_broad;
2412 entry_id = key_index;
2413 } else {
2414 if (mac->opmode == NL80211_IFTYPE_AP) {
2415 entry_id = rtl_cam_get_free_entry(hw,
2416 p_macaddr);
2417 if (entry_id >= TOTAL_CAM_ENTRY) {
2418 RT_TRACE(rtlpriv,
f30d7507
JP
2419 COMP_SEC, DBG_EMERG,
2420 "Can not find free hw security cam entry\n");
24284531
CL
2421 return;
2422 }
2423 } else {
2424 entry_id = CAM_PAIRWISE_KEY_POSITION;
2425 }
2426
2427 key_index = PAIRWISE_KEYIDX;
2428 is_pairwise = true;
2429 }
2430 }
2431
2432 if (rtlpriv->sec.key_len[key_index] == 0) {
2433 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
f30d7507
JP
2434 "delete one entry, entry_id is %d\n",
2435 entry_id);
24284531
CL
2436 if (mac->opmode == NL80211_IFTYPE_AP)
2437 rtl_cam_del_entry(hw, p_macaddr);
2438 rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
2439 } else {
2440 RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
f30d7507
JP
2441 "The insert KEY length is %d\n",
2442 rtlpriv->sec.key_len[PAIRWISE_KEYIDX]);
24284531 2443 RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
f30d7507
JP
2444 "The insert KEY is %x %x\n",
2445 rtlpriv->sec.key_buf[0][0],
2446 rtlpriv->sec.key_buf[0][1]);
24284531
CL
2447
2448 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
f30d7507 2449 "add one entry\n");
24284531
CL
2450 if (is_pairwise) {
2451 RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD,
f30d7507
JP
2452 "Pairwise Key content",
2453 rtlpriv->sec.pairwise_key,
2454 rtlpriv->sec.
2455 key_len[PAIRWISE_KEYIDX]);
24284531
CL
2456
2457 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
f30d7507 2458 "set Pairwise key\n");
24284531
CL
2459
2460 rtl_cam_add_one_entry(hw, macaddr, key_index,
2461 entry_id, enc_algo,
2462 CAM_CONFIG_NO_USEDK,
2463 rtlpriv->sec.key_buf[key_index]);
2464 } else {
2465 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
f30d7507 2466 "set group key\n");
24284531
CL
2467
2468 if (mac->opmode == NL80211_IFTYPE_ADHOC) {
2469 rtl_cam_add_one_entry(hw,
2470 rtlefuse->dev_addr,
2471 PAIRWISE_KEYIDX,
2472 CAM_PAIRWISE_KEY_POSITION,
2473 enc_algo, CAM_CONFIG_NO_USEDK,
2474 rtlpriv->sec.key_buf[entry_id]);
2475 }
2476
2477 rtl_cam_add_one_entry(hw, macaddr, key_index,
2478 entry_id, enc_algo,
2479 CAM_CONFIG_NO_USEDK,
2480 rtlpriv->sec.key_buf[entry_id]);
2481 }
2482
2483 }
2484 }
2485}
2486
2487void rtl92se_suspend(struct ieee80211_hw *hw)
2488{
2489 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2490
2491 rtlpci->up_first_time = true;
2492}
2493
2494void rtl92se_resume(struct ieee80211_hw *hw)
2495{
2496 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2497 u32 val;
2498
2499 pci_read_config_dword(rtlpci->pdev, 0x40, &val);
2500 if ((val & 0x0000ff00) != 0)
2501 pci_write_config_dword(rtlpci->pdev, 0x40,
2502 val & 0xffff00ff);
2503}
This page took 0.199048 seconds and 5 git commands to generate.