wavelan: Test arraysize before an element of the array.
[deliverable/linux.git] / drivers / net / wireless / wavelan.c
CommitLineData
1da177e4
LT
1/*
2 * WaveLAN ISA driver
3 *
4 * Jean II - HPLB '96
5 *
6 * Reorganisation and extension of the driver.
7 * Original copyright follows (also see the end of this file).
8 * See wavelan.p.h for details.
9 *
10 *
11 *
12 * AT&T GIS (nee NCR) WaveLAN card:
13 * An Ethernet-like radio transceiver
14 * controlled by an Intel 82586 coprocessor.
15 */
16
17#include "wavelan.p.h" /* Private header */
18
19/************************* MISC SUBROUTINES **************************/
20/*
21 * Subroutines which won't fit in one of the following category
22 * (WaveLAN modem or i82586)
23 */
24
25/*------------------------------------------------------------------*/
26/*
27 * Translate irq number to PSA irq parameter
28 */
29static u8 wv_irq_to_psa(int irq)
30{
0a92dd0a 31 if (irq < 0 || irq >= ARRAY_SIZE(irqvals))
1da177e4
LT
32 return 0;
33
34 return irqvals[irq];
35}
36
37/*------------------------------------------------------------------*/
38/*
39 * Translate PSA irq parameter to irq number
40 */
41static int __init wv_psa_to_irq(u8 irqval)
42{
49c4a5dc 43 int i;
1da177e4 44
49c4a5dc
HE
45 for (i = 0; i < ARRAY_SIZE(irqvals); i++)
46 if (irqvals[i] == irqval)
47 return i;
1da177e4
LT
48
49 return -1;
50}
51
1da177e4
LT
52/********************* HOST ADAPTER SUBROUTINES *********************/
53/*
54 * Useful subroutines to manage the WaveLAN ISA interface
55 *
56 * One major difference with the PCMCIA hardware (except the port mapping)
57 * is that we have to keep the state of the Host Control Register
58 * because of the interrupt enable & bus size flags.
59 */
60
61/*------------------------------------------------------------------*/
62/*
63 * Read from card's Host Adaptor Status Register.
64 */
65static inline u16 hasr_read(unsigned long ioaddr)
66{
67 return (inw(HASR(ioaddr)));
68} /* hasr_read */
69
70/*------------------------------------------------------------------*/
71/*
72 * Write to card's Host Adapter Command Register.
73 */
74static inline void hacr_write(unsigned long ioaddr, u16 hacr)
75{
76 outw(hacr, HACR(ioaddr));
77} /* hacr_write */
78
79/*------------------------------------------------------------------*/
80/*
81 * Write to card's Host Adapter Command Register. Include a delay for
82 * those times when it is needed.
83 */
858119e1 84static void hacr_write_slow(unsigned long ioaddr, u16 hacr)
1da177e4
LT
85{
86 hacr_write(ioaddr, hacr);
87 /* delay might only be needed sometimes */
88 mdelay(1);
89} /* hacr_write_slow */
90
91/*------------------------------------------------------------------*/
92/*
93 * Set the channel attention bit.
94 */
95static inline void set_chan_attn(unsigned long ioaddr, u16 hacr)
96{
97 hacr_write(ioaddr, hacr | HACR_CA);
98} /* set_chan_attn */
99
100/*------------------------------------------------------------------*/
101/*
102 * Reset, and then set host adaptor into default mode.
103 */
104static inline void wv_hacr_reset(unsigned long ioaddr)
105{
106 hacr_write_slow(ioaddr, HACR_RESET);
107 hacr_write(ioaddr, HACR_DEFAULT);
108} /* wv_hacr_reset */
109
110/*------------------------------------------------------------------*/
111/*
112 * Set the I/O transfer over the ISA bus to 8-bit mode
113 */
114static inline void wv_16_off(unsigned long ioaddr, u16 hacr)
115{
116 hacr &= ~HACR_16BITS;
117 hacr_write(ioaddr, hacr);
118} /* wv_16_off */
119
120/*------------------------------------------------------------------*/
121/*
122 * Set the I/O transfer over the ISA bus to 8-bit mode
123 */
124static inline void wv_16_on(unsigned long ioaddr, u16 hacr)
125{
126 hacr |= HACR_16BITS;
127 hacr_write(ioaddr, hacr);
128} /* wv_16_on */
129
130/*------------------------------------------------------------------*/
131/*
132 * Disable interrupts on the WaveLAN hardware.
133 * (called by wv_82586_stop())
134 */
135static inline void wv_ints_off(struct net_device * dev)
136{
524ad0a7 137 net_local *lp = netdev_priv(dev);
1da177e4
LT
138 unsigned long ioaddr = dev->base_addr;
139
140 lp->hacr &= ~HACR_INTRON;
141 hacr_write(ioaddr, lp->hacr);
142} /* wv_ints_off */
143
144/*------------------------------------------------------------------*/
145/*
146 * Enable interrupts on the WaveLAN hardware.
147 * (called by wv_hw_reset())
148 */
149static inline void wv_ints_on(struct net_device * dev)
150{
524ad0a7 151 net_local *lp = netdev_priv(dev);
1da177e4
LT
152 unsigned long ioaddr = dev->base_addr;
153
154 lp->hacr |= HACR_INTRON;
155 hacr_write(ioaddr, lp->hacr);
156} /* wv_ints_on */
157
158/******************* MODEM MANAGEMENT SUBROUTINES *******************/
159/*
160 * Useful subroutines to manage the modem of the WaveLAN
161 */
162
163/*------------------------------------------------------------------*/
164/*
165 * Read the Parameter Storage Area from the WaveLAN card's memory
166 */
167/*
168 * Read bytes from the PSA.
169 */
170static void psa_read(unsigned long ioaddr, u16 hacr, int o, /* offset in PSA */
171 u8 * b, /* buffer to fill */
172 int n)
173{ /* size to read */
174 wv_16_off(ioaddr, hacr);
175
176 while (n-- > 0) {
177 outw(o, PIOR2(ioaddr));
178 o++;
179 *b++ = inb(PIOP2(ioaddr));
180 }
181
182 wv_16_on(ioaddr, hacr);
183} /* psa_read */
184
185/*------------------------------------------------------------------*/
186/*
187 * Write the Parameter Storage Area to the WaveLAN card's memory.
188 */
189static void psa_write(unsigned long ioaddr, u16 hacr, int o, /* Offset in PSA */
190 u8 * b, /* Buffer in memory */
191 int n)
192{ /* Length of buffer */
193 int count = 0;
194
195 wv_16_off(ioaddr, hacr);
196
197 while (n-- > 0) {
198 outw(o, PIOR2(ioaddr));
199 o++;
200
201 outb(*b, PIOP2(ioaddr));
202 b++;
203
204 /* Wait for the memory to finish its write cycle */
205 count = 0;
206 while ((count++ < 100) &&
207 (hasr_read(ioaddr) & HASR_PSA_BUSY)) mdelay(1);
208 }
209
210 wv_16_on(ioaddr, hacr);
211} /* psa_write */
212
213#ifdef SET_PSA_CRC
214/*------------------------------------------------------------------*/
215/*
216 * Calculate the PSA CRC
217 * Thanks to Valster, Nico <NVALSTER@wcnd.nl.lucent.com> for the code
218 * NOTE: By specifying a length including the CRC position the
219 * returned value should be zero. (i.e. a correct checksum in the PSA)
220 *
221 * The Windows drivers don't use the CRC, but the AP and the PtP tool
222 * depend on it.
223 */
858119e1 224static u16 psa_crc(u8 * psa, /* The PSA */
1da177e4
LT
225 int size)
226{ /* Number of short for CRC */
227 int byte_cnt; /* Loop on the PSA */
228 u16 crc_bytes = 0; /* Data in the PSA */
229 int bit_cnt; /* Loop on the bits of the short */
230
231 for (byte_cnt = 0; byte_cnt < size; byte_cnt++) {
232 crc_bytes ^= psa[byte_cnt]; /* Its an xor */
233
234 for (bit_cnt = 1; bit_cnt < 9; bit_cnt++) {
235 if (crc_bytes & 0x0001)
236 crc_bytes = (crc_bytes >> 1) ^ 0xA001;
237 else
238 crc_bytes >>= 1;
239 }
240 }
241
242 return crc_bytes;
243} /* psa_crc */
244#endif /* SET_PSA_CRC */
245
246/*------------------------------------------------------------------*/
247/*
248 * update the checksum field in the Wavelan's PSA
249 */
250static void update_psa_checksum(struct net_device * dev, unsigned long ioaddr, u16 hacr)
251{
252#ifdef SET_PSA_CRC
253 psa_t psa;
254 u16 crc;
255
256 /* read the parameter storage area */
257 psa_read(ioaddr, hacr, 0, (unsigned char *) &psa, sizeof(psa));
258
259 /* update the checksum */
260 crc = psa_crc((unsigned char *) &psa,
261 sizeof(psa) - sizeof(psa.psa_crc[0]) -
262 sizeof(psa.psa_crc[1])
263 - sizeof(psa.psa_crc_status));
264
265 psa.psa_crc[0] = crc & 0xFF;
266 psa.psa_crc[1] = (crc & 0xFF00) >> 8;
267
268 /* Write it ! */
269 psa_write(ioaddr, hacr, (char *) &psa.psa_crc - (char *) &psa,
270 (unsigned char *) &psa.psa_crc, 2);
271
272#ifdef DEBUG_IOCTL_INFO
273 printk(KERN_DEBUG "%s: update_psa_checksum(): crc = 0x%02x%02x\n",
274 dev->name, psa.psa_crc[0], psa.psa_crc[1]);
275
276 /* Check again (luxury !) */
277 crc = psa_crc((unsigned char *) &psa,
278 sizeof(psa) - sizeof(psa.psa_crc_status));
279
280 if (crc != 0)
281 printk(KERN_WARNING
282 "%s: update_psa_checksum(): CRC does not agree with PSA data (even after recalculating)\n",
283 dev->name);
284#endif /* DEBUG_IOCTL_INFO */
285#endif /* SET_PSA_CRC */
286} /* update_psa_checksum */
287
288/*------------------------------------------------------------------*/
289/*
290 * Write 1 byte to the MMC.
291 */
858119e1 292static void mmc_out(unsigned long ioaddr, u16 o, u8 d)
1da177e4
LT
293{
294 int count = 0;
295
296 /* Wait for MMC to go idle */
297 while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
298 udelay(10);
299
300 outw((u16) (((u16) d << 8) | (o << 1) | 1), MMCR(ioaddr));
301}
302
303/*------------------------------------------------------------------*/
304/*
305 * Routine to write bytes to the Modem Management Controller.
306 * We start at the end because it is the way it should be!
307 */
858119e1 308static void mmc_write(unsigned long ioaddr, u8 o, u8 * b, int n)
1da177e4
LT
309{
310 o += n;
311 b += n;
312
313 while (n-- > 0)
314 mmc_out(ioaddr, --o, *(--b));
315} /* mmc_write */
316
317/*------------------------------------------------------------------*/
318/*
319 * Read a byte from the MMC.
320 * Optimised version for 1 byte, avoid using memory.
321 */
858119e1 322static u8 mmc_in(unsigned long ioaddr, u16 o)
1da177e4
LT
323{
324 int count = 0;
325
326 while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
327 udelay(10);
328 outw(o << 1, MMCR(ioaddr));
329
330 while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
331 udelay(10);
332 return (u8) (inw(MMCR(ioaddr)) >> 8);
333}
334
335/*------------------------------------------------------------------*/
336/*
337 * Routine to read bytes from the Modem Management Controller.
338 * The implementation is complicated by a lack of address lines,
339 * which prevents decoding of the low-order bit.
340 * (code has just been moved in the above function)
341 * We start at the end because it is the way it should be!
342 */
343static inline void mmc_read(unsigned long ioaddr, u8 o, u8 * b, int n)
344{
345 o += n;
346 b += n;
347
348 while (n-- > 0)
349 *(--b) = mmc_in(ioaddr, --o);
350} /* mmc_read */
351
352/*------------------------------------------------------------------*/
353/*
354 * Get the type of encryption available.
355 */
356static inline int mmc_encr(unsigned long ioaddr)
357{ /* I/O port of the card */
358 int temp;
359
360 temp = mmc_in(ioaddr, mmroff(0, mmr_des_avail));
361 if ((temp != MMR_DES_AVAIL_DES) && (temp != MMR_DES_AVAIL_AES))
362 return 0;
363 else
364 return temp;
365}
366
367/*------------------------------------------------------------------*/
368/*
369 * Wait for the frequency EEPROM to complete a command.
370 * I hope this one will be optimally inlined.
371 */
372static inline void fee_wait(unsigned long ioaddr, /* I/O port of the card */
373 int delay, /* Base delay to wait for */
374 int number)
375{ /* Number of time to wait */
376 int count = 0; /* Wait only a limited time */
377
378 while ((count++ < number) &&
379 (mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
380 MMR_FEE_STATUS_BUSY)) udelay(delay);
381}
382
383/*------------------------------------------------------------------*/
384/*
385 * Read bytes from the Frequency EEPROM (frequency select cards).
386 */
387static void fee_read(unsigned long ioaddr, /* I/O port of the card */
388 u16 o, /* destination offset */
389 u16 * b, /* data buffer */
390 int n)
391{ /* number of registers */
392 b += n; /* Position at the end of the area */
393
394 /* Write the address */
395 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);
396
397 /* Loop on all buffer */
398 while (n-- > 0) {
399 /* Write the read command */
400 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
401 MMW_FEE_CTRL_READ);
402
403 /* Wait until EEPROM is ready (should be quick). */
404 fee_wait(ioaddr, 10, 100);
405
406 /* Read the value. */
407 *--b = ((mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)) << 8) |
408 mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
409 }
410}
411
1da177e4
LT
412
413/*------------------------------------------------------------------*/
414/*
415 * Write bytes from the Frequency EEPROM (frequency select cards).
416 * This is a bit complicated, because the frequency EEPROM has to
417 * be unprotected and the write enabled.
418 * Jean II
419 */
420static void fee_write(unsigned long ioaddr, /* I/O port of the card */
421 u16 o, /* destination offset */
422 u16 * b, /* data buffer */
423 int n)
424{ /* number of registers */
425 b += n; /* Position at the end of the area. */
426
427#ifdef EEPROM_IS_PROTECTED /* disabled */
428#ifdef DOESNT_SEEM_TO_WORK /* disabled */
429 /* Ask to read the protected register */
430 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRREAD);
431
432 fee_wait(ioaddr, 10, 100);
433
434 /* Read the protected register. */
435 printk("Protected 2: %02X-%02X\n",
436 mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)),
437 mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
438#endif /* DOESNT_SEEM_TO_WORK */
439
440 /* Enable protected register. */
441 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
442 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PREN);
443
444 fee_wait(ioaddr, 10, 100);
445
446 /* Unprotect area. */
447 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n);
448 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
449#ifdef DOESNT_SEEM_TO_WORK /* disabled */
450 /* or use: */
451 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRCLEAR);
452#endif /* DOESNT_SEEM_TO_WORK */
453
454 fee_wait(ioaddr, 10, 100);
455#endif /* EEPROM_IS_PROTECTED */
456
457 /* Write enable. */
458 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
459 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WREN);
460
461 fee_wait(ioaddr, 10, 100);
462
463 /* Write the EEPROM address. */
464 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);
465
466 /* Loop on all buffer */
467 while (n-- > 0) {
468 /* Write the value. */
469 mmc_out(ioaddr, mmwoff(0, mmw_fee_data_h), (*--b) >> 8);
470 mmc_out(ioaddr, mmwoff(0, mmw_fee_data_l), *b & 0xFF);
471
472 /* Write the write command. */
473 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
474 MMW_FEE_CTRL_WRITE);
475
476 /* WaveLAN documentation says to wait at least 10 ms for EEBUSY = 0 */
477 mdelay(10);
478 fee_wait(ioaddr, 10, 100);
479 }
480
481 /* Write disable. */
482 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_DS);
483 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WDS);
484
485 fee_wait(ioaddr, 10, 100);
486
487#ifdef EEPROM_IS_PROTECTED /* disabled */
488 /* Reprotect EEPROM. */
489 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x00);
490 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
491
492 fee_wait(ioaddr, 10, 100);
493#endif /* EEPROM_IS_PROTECTED */
494}
1da177e4
LT
495
496/************************ I82586 SUBROUTINES *************************/
497/*
498 * Useful subroutines to manage the Ethernet controller
499 */
500
501/*------------------------------------------------------------------*/
502/*
503 * Read bytes from the on-board RAM.
504 * Why does inlining this function make it fail?
505 */
506static /*inline */ void obram_read(unsigned long ioaddr,
507 u16 o, u8 * b, int n)
508{
509 outw(o, PIOR1(ioaddr));
510 insw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
511}
512
513/*------------------------------------------------------------------*/
514/*
515 * Write bytes to the on-board RAM.
516 */
517static inline void obram_write(unsigned long ioaddr, u16 o, u8 * b, int n)
518{
519 outw(o, PIOR1(ioaddr));
520 outsw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
521}
522
523/*------------------------------------------------------------------*/
524/*
525 * Acknowledge the reading of the status issued by the i82586.
526 */
527static void wv_ack(struct net_device * dev)
528{
524ad0a7 529 net_local *lp = netdev_priv(dev);
1da177e4
LT
530 unsigned long ioaddr = dev->base_addr;
531 u16 scb_cs;
532 int i;
533
534 obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
535 (unsigned char *) &scb_cs, sizeof(scb_cs));
536 scb_cs &= SCB_ST_INT;
537
538 if (scb_cs == 0)
539 return;
540
541 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
542 (unsigned char *) &scb_cs, sizeof(scb_cs));
543
544 set_chan_attn(ioaddr, lp->hacr);
545
546 for (i = 1000; i > 0; i--) {
547 obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
548 (unsigned char *) &scb_cs, sizeof(scb_cs));
549 if (scb_cs == 0)
550 break;
551
552 udelay(10);
553 }
554 udelay(100);
555
556#ifdef DEBUG_CONFIG_ERROR
557 if (i <= 0)
558 printk(KERN_INFO
559 "%s: wv_ack(): board not accepting command.\n",
560 dev->name);
561#endif
562}
563
564/*------------------------------------------------------------------*/
565/*
566 * Set channel attention bit and busy wait until command has
567 * completed, then acknowledge completion of the command.
568 */
858119e1 569static int wv_synchronous_cmd(struct net_device * dev, const char *str)
1da177e4 570{
524ad0a7 571 net_local *lp = netdev_priv(dev);
1da177e4
LT
572 unsigned long ioaddr = dev->base_addr;
573 u16 scb_cmd;
574 ach_t cb;
575 int i;
576
577 scb_cmd = SCB_CMD_CUC & SCB_CMD_CUC_GO;
578 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
579 (unsigned char *) &scb_cmd, sizeof(scb_cmd));
580
581 set_chan_attn(ioaddr, lp->hacr);
582
583 for (i = 1000; i > 0; i--) {
584 obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb,
585 sizeof(cb));
586 if (cb.ac_status & AC_SFLD_C)
587 break;
588
589 udelay(10);
590 }
591 udelay(100);
592
593 if (i <= 0 || !(cb.ac_status & AC_SFLD_OK)) {
594#ifdef DEBUG_CONFIG_ERROR
595 printk(KERN_INFO "%s: %s failed; status = 0x%x\n",
596 dev->name, str, cb.ac_status);
597#endif
598#ifdef DEBUG_I82586_SHOW
599 wv_scb_show(ioaddr);
600#endif
601 return -1;
602 }
603
604 /* Ack the status */
605 wv_ack(dev);
606
607 return 0;
608}
609
610/*------------------------------------------------------------------*/
611/*
612 * Configuration commands completion interrupt.
613 * Check if done, and if OK.
614 */
858119e1 615static int
1da177e4
LT
616wv_config_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp)
617{
618 unsigned short mcs_addr;
619 unsigned short status;
620 int ret;
621
622#ifdef DEBUG_INTERRUPT_TRACE
623 printk(KERN_DEBUG "%s: ->wv_config_complete()\n", dev->name);
624#endif
625
626 mcs_addr = lp->tx_first_in_use + sizeof(ac_tx_t) + sizeof(ac_nop_t)
627 + sizeof(tbd_t) + sizeof(ac_cfg_t) + sizeof(ac_ias_t);
628
629 /* Read the status of the last command (set mc list). */
630 obram_read(ioaddr, acoff(mcs_addr, ac_status),
631 (unsigned char *) &status, sizeof(status));
632
633 /* If not completed -> exit */
634 if ((status & AC_SFLD_C) == 0)
635 ret = 0; /* Not ready to be scrapped */
636 else {
637#ifdef DEBUG_CONFIG_ERROR
638 unsigned short cfg_addr;
639 unsigned short ias_addr;
640
641 /* Check mc_config command */
642 if ((status & AC_SFLD_OK) != AC_SFLD_OK)
643 printk(KERN_INFO
644 "%s: wv_config_complete(): set_multicast_address failed; status = 0x%x\n",
645 dev->name, status);
646
647 /* check ia-config command */
648 ias_addr = mcs_addr - sizeof(ac_ias_t);
649 obram_read(ioaddr, acoff(ias_addr, ac_status),
650 (unsigned char *) &status, sizeof(status));
651 if ((status & AC_SFLD_OK) != AC_SFLD_OK)
652 printk(KERN_INFO
653 "%s: wv_config_complete(): set_MAC_address failed; status = 0x%x\n",
654 dev->name, status);
655
656 /* Check config command. */
657 cfg_addr = ias_addr - sizeof(ac_cfg_t);
658 obram_read(ioaddr, acoff(cfg_addr, ac_status),
659 (unsigned char *) &status, sizeof(status));
660 if ((status & AC_SFLD_OK) != AC_SFLD_OK)
661 printk(KERN_INFO
662 "%s: wv_config_complete(): configure failed; status = 0x%x\n",
663 dev->name, status);
664#endif /* DEBUG_CONFIG_ERROR */
665
666 ret = 1; /* Ready to be scrapped */
667 }
668
669#ifdef DEBUG_INTERRUPT_TRACE
670 printk(KERN_DEBUG "%s: <-wv_config_complete() - %d\n", dev->name,
671 ret);
672#endif
673 return ret;
674}
675
676/*------------------------------------------------------------------*/
677/*
678 * Command completion interrupt.
679 * Reclaim as many freed tx buffers as we can.
680 * (called in wavelan_interrupt()).
681 * Note : the spinlock is already grabbed for us.
682 */
683static int wv_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp)
684{
685 int nreaped = 0;
686
687#ifdef DEBUG_INTERRUPT_TRACE
688 printk(KERN_DEBUG "%s: ->wv_complete()\n", dev->name);
689#endif
690
691 /* Loop on all the transmit buffers */
692 while (lp->tx_first_in_use != I82586NULL) {
693 unsigned short tx_status;
694
695 /* Read the first transmit buffer */
696 obram_read(ioaddr, acoff(lp->tx_first_in_use, ac_status),
697 (unsigned char *) &tx_status,
698 sizeof(tx_status));
699
700 /* If not completed -> exit */
701 if ((tx_status & AC_SFLD_C) == 0)
702 break;
703
704 /* Hack for reconfiguration */
705 if (tx_status == 0xFFFF)
706 if (!wv_config_complete(dev, ioaddr, lp))
707 break; /* Not completed */
708
709 /* We now remove this buffer */
710 nreaped++;
711 --lp->tx_n_in_use;
712
713/*
714if (lp->tx_n_in_use > 0)
715 printk("%c", "0123456789abcdefghijk"[lp->tx_n_in_use]);
716*/
717
718 /* Was it the last one? */
719 if (lp->tx_n_in_use <= 0)
720 lp->tx_first_in_use = I82586NULL;
721 else {
722 /* Next one in the chain */
723 lp->tx_first_in_use += TXBLOCKZ;
724 if (lp->tx_first_in_use >=
725 OFFSET_CU +
726 NTXBLOCKS * TXBLOCKZ) lp->tx_first_in_use -=
727 NTXBLOCKS * TXBLOCKZ;
728 }
729
730 /* Hack for reconfiguration */
731 if (tx_status == 0xFFFF)
732 continue;
733
734 /* Now, check status of the finished command */
735 if (tx_status & AC_SFLD_OK) {
736 int ncollisions;
737
738 lp->stats.tx_packets++;
739 ncollisions = tx_status & AC_SFLD_MAXCOL;
740 lp->stats.collisions += ncollisions;
741#ifdef DEBUG_TX_INFO
742 if (ncollisions > 0)
743 printk(KERN_DEBUG
744 "%s: wv_complete(): tx completed after %d collisions.\n",
745 dev->name, ncollisions);
746#endif
747 } else {
748 lp->stats.tx_errors++;
749 if (tx_status & AC_SFLD_S10) {
750 lp->stats.tx_carrier_errors++;
751#ifdef DEBUG_TX_FAIL
752 printk(KERN_DEBUG
753 "%s: wv_complete(): tx error: no CS.\n",
754 dev->name);
755#endif
756 }
757 if (tx_status & AC_SFLD_S9) {
758 lp->stats.tx_carrier_errors++;
759#ifdef DEBUG_TX_FAIL
760 printk(KERN_DEBUG
761 "%s: wv_complete(): tx error: lost CTS.\n",
762 dev->name);
763#endif
764 }
765 if (tx_status & AC_SFLD_S8) {
766 lp->stats.tx_fifo_errors++;
767#ifdef DEBUG_TX_FAIL
768 printk(KERN_DEBUG
769 "%s: wv_complete(): tx error: slow DMA.\n",
770 dev->name);
771#endif
772 }
773 if (tx_status & AC_SFLD_S6) {
774 lp->stats.tx_heartbeat_errors++;
775#ifdef DEBUG_TX_FAIL
776 printk(KERN_DEBUG
777 "%s: wv_complete(): tx error: heart beat.\n",
778 dev->name);
779#endif
780 }
781 if (tx_status & AC_SFLD_S5) {
782 lp->stats.tx_aborted_errors++;
783#ifdef DEBUG_TX_FAIL
784 printk(KERN_DEBUG
785 "%s: wv_complete(): tx error: too many collisions.\n",
786 dev->name);
787#endif
788 }
789 }
790
791#ifdef DEBUG_TX_INFO
792 printk(KERN_DEBUG
793 "%s: wv_complete(): tx completed, tx_status 0x%04x\n",
794 dev->name, tx_status);
795#endif
796 }
797
798#ifdef DEBUG_INTERRUPT_INFO
799 if (nreaped > 1)
800 printk(KERN_DEBUG "%s: wv_complete(): reaped %d\n",
801 dev->name, nreaped);
802#endif
803
804 /*
805 * Inform upper layers.
806 */
807 if (lp->tx_n_in_use < NTXBLOCKS - 1) {
808 netif_wake_queue(dev);
809 }
810#ifdef DEBUG_INTERRUPT_TRACE
811 printk(KERN_DEBUG "%s: <-wv_complete()\n", dev->name);
812#endif
813 return nreaped;
814}
815
816/*------------------------------------------------------------------*/
817/*
818 * Reconfigure the i82586, or at least ask for it.
819 * Because wv_82586_config uses a transmission buffer, we must do it
820 * when we are sure that there is one left, so we do it now
821 * or in wavelan_packet_xmit() (I can't find any better place,
822 * wavelan_interrupt is not an option), so you may experience
823 * delays sometimes.
824 */
858119e1 825static void wv_82586_reconfig(struct net_device * dev)
1da177e4 826{
524ad0a7 827 net_local *lp = netdev_priv(dev);
1da177e4
LT
828 unsigned long flags;
829
830 /* Arm the flag, will be cleard in wv_82586_config() */
831 lp->reconfig_82586 = 1;
832
833 /* Check if we can do it now ! */
834 if((netif_running(dev)) && !(netif_queue_stopped(dev))) {
835 spin_lock_irqsave(&lp->spinlock, flags);
836 /* May fail */
837 wv_82586_config(dev);
838 spin_unlock_irqrestore(&lp->spinlock, flags);
839 }
840 else {
841#ifdef DEBUG_CONFIG_INFO
842 printk(KERN_DEBUG
843 "%s: wv_82586_reconfig(): delayed (state = %lX)\n",
844 dev->name, dev->state);
845#endif
846 }
847}
848
849/********************* DEBUG & INFO SUBROUTINES *********************/
850/*
851 * This routine is used in the code to show information for debugging.
852 * Most of the time, it dumps the contents of hardware structures.
853 */
854
855#ifdef DEBUG_PSA_SHOW
856/*------------------------------------------------------------------*/
857/*
858 * Print the formatted contents of the Parameter Storage Area.
859 */
860static void wv_psa_show(psa_t * p)
861{
862 printk(KERN_DEBUG "##### WaveLAN PSA contents: #####\n");
863 printk(KERN_DEBUG "psa_io_base_addr_1: 0x%02X %02X %02X %02X\n",
864 p->psa_io_base_addr_1,
865 p->psa_io_base_addr_2,
866 p->psa_io_base_addr_3, p->psa_io_base_addr_4);
867 printk(KERN_DEBUG "psa_rem_boot_addr_1: 0x%02X %02X %02X\n",
868 p->psa_rem_boot_addr_1,
869 p->psa_rem_boot_addr_2, p->psa_rem_boot_addr_3);
870 printk(KERN_DEBUG "psa_holi_params: 0x%02x, ", p->psa_holi_params);
871 printk("psa_int_req_no: %d\n", p->psa_int_req_no);
872#ifdef DEBUG_SHOW_UNUSED
e174961c 873 printk(KERN_DEBUG "psa_unused0[]: %pM\n", p->psa_unused0);
1da177e4 874#endif /* DEBUG_SHOW_UNUSED */
e174961c
JB
875 printk(KERN_DEBUG "psa_univ_mac_addr[]: %pM\n", p->psa_univ_mac_addr);
876 printk(KERN_DEBUG "psa_local_mac_addr[]: %pM\n", p->psa_local_mac_addr);
1da177e4
LT
877 printk(KERN_DEBUG "psa_univ_local_sel: %d, ",
878 p->psa_univ_local_sel);
879 printk("psa_comp_number: %d, ", p->psa_comp_number);
880 printk("psa_thr_pre_set: 0x%02x\n", p->psa_thr_pre_set);
881 printk(KERN_DEBUG "psa_feature_select/decay_prm: 0x%02x, ",
882 p->psa_feature_select);
883 printk("psa_subband/decay_update_prm: %d\n", p->psa_subband);
884 printk(KERN_DEBUG "psa_quality_thr: 0x%02x, ", p->psa_quality_thr);
885 printk("psa_mod_delay: 0x%02x\n", p->psa_mod_delay);
886 printk(KERN_DEBUG "psa_nwid: 0x%02x%02x, ", p->psa_nwid[0],
887 p->psa_nwid[1]);
888 printk("psa_nwid_select: %d\n", p->psa_nwid_select);
889 printk(KERN_DEBUG "psa_encryption_select: %d, ",
890 p->psa_encryption_select);
891 printk
892 ("psa_encryption_key[]: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
893 p->psa_encryption_key[0], p->psa_encryption_key[1],
894 p->psa_encryption_key[2], p->psa_encryption_key[3],
895 p->psa_encryption_key[4], p->psa_encryption_key[5],
896 p->psa_encryption_key[6], p->psa_encryption_key[7]);
897 printk(KERN_DEBUG "psa_databus_width: %d\n", p->psa_databus_width);
898 printk(KERN_DEBUG "psa_call_code/auto_squelch: 0x%02x, ",
899 p->psa_call_code[0]);
900 printk
901 ("psa_call_code[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
902 p->psa_call_code[0], p->psa_call_code[1], p->psa_call_code[2],
903 p->psa_call_code[3], p->psa_call_code[4], p->psa_call_code[5],
904 p->psa_call_code[6], p->psa_call_code[7]);
905#ifdef DEBUG_SHOW_UNUSED
d5251aea 906 printk(KERN_DEBUG "psa_reserved[]: %02X:%02X\n",
1da177e4 907 p->psa_reserved[0],
d5251aea 908 p->psa_reserved[1]);
1da177e4
LT
909#endif /* DEBUG_SHOW_UNUSED */
910 printk(KERN_DEBUG "psa_conf_status: %d, ", p->psa_conf_status);
911 printk("psa_crc: 0x%02x%02x, ", p->psa_crc[0], p->psa_crc[1]);
912 printk("psa_crc_status: 0x%02x\n", p->psa_crc_status);
913} /* wv_psa_show */
914#endif /* DEBUG_PSA_SHOW */
915
916#ifdef DEBUG_MMC_SHOW
917/*------------------------------------------------------------------*/
918/*
919 * Print the formatted status of the Modem Management Controller.
920 * This function needs to be completed.
921 */
922static void wv_mmc_show(struct net_device * dev)
923{
924 unsigned long ioaddr = dev->base_addr;
524ad0a7 925 net_local *lp = netdev_priv(dev);
1da177e4
LT
926 mmr_t m;
927
928 /* Basic check */
929 if (hasr_read(ioaddr) & HASR_NO_CLK) {
930 printk(KERN_WARNING
931 "%s: wv_mmc_show: modem not connected\n",
932 dev->name);
933 return;
934 }
935
936 /* Read the mmc */
937 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
938 mmc_read(ioaddr, 0, (u8 *) & m, sizeof(m));
939 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
940
1da177e4
LT
941 /* Don't forget to update statistics */
942 lp->wstats.discard.nwid +=
943 (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
1da177e4
LT
944
945 printk(KERN_DEBUG "##### WaveLAN modem status registers: #####\n");
946#ifdef DEBUG_SHOW_UNUSED
947 printk(KERN_DEBUG
948 "mmc_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
949 m.mmr_unused0[0], m.mmr_unused0[1], m.mmr_unused0[2],
950 m.mmr_unused0[3], m.mmr_unused0[4], m.mmr_unused0[5],
951 m.mmr_unused0[6], m.mmr_unused0[7]);
952#endif /* DEBUG_SHOW_UNUSED */
953 printk(KERN_DEBUG "Encryption algorithm: %02X - Status: %02X\n",
954 m.mmr_des_avail, m.mmr_des_status);
955#ifdef DEBUG_SHOW_UNUSED
956 printk(KERN_DEBUG "mmc_unused1[]: %02X:%02X:%02X:%02X:%02X\n",
957 m.mmr_unused1[0],
958 m.mmr_unused1[1],
959 m.mmr_unused1[2], m.mmr_unused1[3], m.mmr_unused1[4]);
960#endif /* DEBUG_SHOW_UNUSED */
961 printk(KERN_DEBUG "dce_status: 0x%x [%s%s%s%s]\n",
962 m.mmr_dce_status,
963 (m.
964 mmr_dce_status & MMR_DCE_STATUS_RX_BUSY) ?
965 "energy detected," : "",
966 (m.
967 mmr_dce_status & MMR_DCE_STATUS_LOOPT_IND) ?
968 "loop test indicated," : "",
969 (m.
970 mmr_dce_status & MMR_DCE_STATUS_TX_BUSY) ?
971 "transmitter on," : "",
972 (m.
973 mmr_dce_status & MMR_DCE_STATUS_JBR_EXPIRED) ?
974 "jabber timer expired," : "");
975 printk(KERN_DEBUG "Dsp ID: %02X\n", m.mmr_dsp_id);
976#ifdef DEBUG_SHOW_UNUSED
977 printk(KERN_DEBUG "mmc_unused2[]: %02X:%02X\n",
978 m.mmr_unused2[0], m.mmr_unused2[1]);
979#endif /* DEBUG_SHOW_UNUSED */
980 printk(KERN_DEBUG "# correct_nwid: %d, # wrong_nwid: %d\n",
981 (m.mmr_correct_nwid_h << 8) | m.mmr_correct_nwid_l,
982 (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l);
983 printk(KERN_DEBUG "thr_pre_set: 0x%x [current signal %s]\n",
984 m.mmr_thr_pre_set & MMR_THR_PRE_SET,
985 (m.
986 mmr_thr_pre_set & MMR_THR_PRE_SET_CUR) ? "above" :
987 "below");
988 printk(KERN_DEBUG "signal_lvl: %d [%s], ",
989 m.mmr_signal_lvl & MMR_SIGNAL_LVL,
990 (m.
991 mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) ? "new msg" :
992 "no new msg");
993 printk("silence_lvl: %d [%s], ",
994 m.mmr_silence_lvl & MMR_SILENCE_LVL,
995 (m.
996 mmr_silence_lvl & MMR_SILENCE_LVL_VALID) ? "update done" :
997 "no new update");
998 printk("sgnl_qual: 0x%x [%s]\n", m.mmr_sgnl_qual & MMR_SGNL_QUAL,
999 (m.
1000 mmr_sgnl_qual & MMR_SGNL_QUAL_ANT) ? "Antenna 1" :
1001 "Antenna 0");
1002#ifdef DEBUG_SHOW_UNUSED
1003 printk(KERN_DEBUG "netw_id_l: %x\n", m.mmr_netw_id_l);
1004#endif /* DEBUG_SHOW_UNUSED */
1005} /* wv_mmc_show */
1006#endif /* DEBUG_MMC_SHOW */
1007
1008#ifdef DEBUG_I82586_SHOW
1009/*------------------------------------------------------------------*/
1010/*
1011 * Print the last block of the i82586 memory.
1012 */
1013static void wv_scb_show(unsigned long ioaddr)
1014{
1015 scb_t scb;
1016
1017 obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
1018 sizeof(scb));
1019
1020 printk(KERN_DEBUG "##### WaveLAN system control block: #####\n");
1021
1022 printk(KERN_DEBUG "status: ");
1023 printk("stat 0x%x[%s%s%s%s] ",
1024 (scb.
1025 scb_status & (SCB_ST_CX | SCB_ST_FR | SCB_ST_CNA |
1026 SCB_ST_RNR)) >> 12,
1027 (scb.
1028 scb_status & SCB_ST_CX) ? "command completion interrupt," :
1029 "", (scb.scb_status & SCB_ST_FR) ? "frame received," : "",
1030 (scb.
1031 scb_status & SCB_ST_CNA) ? "command unit not active," : "",
1032 (scb.
1033 scb_status & SCB_ST_RNR) ? "receiving unit not ready," :
1034 "");
1035 printk("cus 0x%x[%s%s%s] ", (scb.scb_status & SCB_ST_CUS) >> 8,
1036 ((scb.scb_status & SCB_ST_CUS) ==
1037 SCB_ST_CUS_IDLE) ? "idle" : "",
1038 ((scb.scb_status & SCB_ST_CUS) ==
1039 SCB_ST_CUS_SUSP) ? "suspended" : "",
1040 ((scb.scb_status & SCB_ST_CUS) ==
1041 SCB_ST_CUS_ACTV) ? "active" : "");
1042 printk("rus 0x%x[%s%s%s%s]\n", (scb.scb_status & SCB_ST_RUS) >> 4,
1043 ((scb.scb_status & SCB_ST_RUS) ==
1044 SCB_ST_RUS_IDLE) ? "idle" : "",
1045 ((scb.scb_status & SCB_ST_RUS) ==
1046 SCB_ST_RUS_SUSP) ? "suspended" : "",
1047 ((scb.scb_status & SCB_ST_RUS) ==
1048 SCB_ST_RUS_NRES) ? "no resources" : "",
1049 ((scb.scb_status & SCB_ST_RUS) ==
1050 SCB_ST_RUS_RDY) ? "ready" : "");
1051
1052 printk(KERN_DEBUG "command: ");
1053 printk("ack 0x%x[%s%s%s%s] ",
1054 (scb.
1055 scb_command & (SCB_CMD_ACK_CX | SCB_CMD_ACK_FR |
1056 SCB_CMD_ACK_CNA | SCB_CMD_ACK_RNR)) >> 12,
1057 (scb.
1058 scb_command & SCB_CMD_ACK_CX) ? "ack cmd completion," : "",
1059 (scb.
1060 scb_command & SCB_CMD_ACK_FR) ? "ack frame received," : "",
1061 (scb.
1062 scb_command & SCB_CMD_ACK_CNA) ? "ack CU not active," : "",
1063 (scb.
1064 scb_command & SCB_CMD_ACK_RNR) ? "ack RU not ready," : "");
1065 printk("cuc 0x%x[%s%s%s%s%s] ",
1066 (scb.scb_command & SCB_CMD_CUC) >> 8,
1067 ((scb.scb_command & SCB_CMD_CUC) ==
1068 SCB_CMD_CUC_NOP) ? "nop" : "",
1069 ((scb.scb_command & SCB_CMD_CUC) ==
1070 SCB_CMD_CUC_GO) ? "start cbl_offset" : "",
1071 ((scb.scb_command & SCB_CMD_CUC) ==
1072 SCB_CMD_CUC_RES) ? "resume execution" : "",
1073 ((scb.scb_command & SCB_CMD_CUC) ==
1074 SCB_CMD_CUC_SUS) ? "suspend execution" : "",
1075 ((scb.scb_command & SCB_CMD_CUC) ==
1076 SCB_CMD_CUC_ABT) ? "abort execution" : "");
1077 printk("ruc 0x%x[%s%s%s%s%s]\n",
1078 (scb.scb_command & SCB_CMD_RUC) >> 4,
1079 ((scb.scb_command & SCB_CMD_RUC) ==
1080 SCB_CMD_RUC_NOP) ? "nop" : "",
1081 ((scb.scb_command & SCB_CMD_RUC) ==
1082 SCB_CMD_RUC_GO) ? "start rfa_offset" : "",
1083 ((scb.scb_command & SCB_CMD_RUC) ==
1084 SCB_CMD_RUC_RES) ? "resume reception" : "",
1085 ((scb.scb_command & SCB_CMD_RUC) ==
1086 SCB_CMD_RUC_SUS) ? "suspend reception" : "",
1087 ((scb.scb_command & SCB_CMD_RUC) ==
1088 SCB_CMD_RUC_ABT) ? "abort reception" : "");
1089
1090 printk(KERN_DEBUG "cbl_offset 0x%x ", scb.scb_cbl_offset);
1091 printk("rfa_offset 0x%x\n", scb.scb_rfa_offset);
1092
1093 printk(KERN_DEBUG "crcerrs %d ", scb.scb_crcerrs);
1094 printk("alnerrs %d ", scb.scb_alnerrs);
1095 printk("rscerrs %d ", scb.scb_rscerrs);
1096 printk("ovrnerrs %d\n", scb.scb_ovrnerrs);
1097}
1098
1099/*------------------------------------------------------------------*/
1100/*
1101 * Print the formatted status of the i82586's receive unit.
1102 */
1103static void wv_ru_show(struct net_device * dev)
1104{
1da177e4
LT
1105 printk(KERN_DEBUG
1106 "##### WaveLAN i82586 receiver unit status: #####\n");
1107 printk(KERN_DEBUG "ru:");
1108 /*
1109 * Not implemented yet
1110 */
1111 printk("\n");
1112} /* wv_ru_show */
1113
1114/*------------------------------------------------------------------*/
1115/*
1116 * Display info about one control block of the i82586 memory.
1117 */
1118static void wv_cu_show_one(struct net_device * dev, net_local * lp, int i, u16 p)
1119{
1120 unsigned long ioaddr;
1121 ac_tx_t actx;
1122
1123 ioaddr = dev->base_addr;
1124
1125 printk("%d: 0x%x:", i, p);
1126
1127 obram_read(ioaddr, p, (unsigned char *) &actx, sizeof(actx));
1128 printk(" status=0x%x,", actx.tx_h.ac_status);
1129 printk(" command=0x%x,", actx.tx_h.ac_command);
1130
1131 /*
1132 {
1133 tbd_t tbd;
1134
1135 obram_read(ioaddr, actx.tx_tbd_offset, (unsigned char *)&tbd, sizeof(tbd));
1136 printk(" tbd_status=0x%x,", tbd.tbd_status);
1137 }
1138 */
1139
1140 printk("|");
1141}
1142
1143/*------------------------------------------------------------------*/
1144/*
1145 * Print status of the command unit of the i82586.
1146 */
1147static void wv_cu_show(struct net_device * dev)
1148{
524ad0a7 1149 net_local *lp = netdev_priv(dev);
1da177e4
LT
1150 unsigned int i;
1151 u16 p;
1152
1153 printk(KERN_DEBUG
1154 "##### WaveLAN i82586 command unit status: #####\n");
1155
1156 printk(KERN_DEBUG);
1157 for (i = 0, p = lp->tx_first_in_use; i < NTXBLOCKS; i++) {
1158 wv_cu_show_one(dev, lp, i, p);
1159
1160 p += TXBLOCKZ;
1161 if (p >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
1162 p -= NTXBLOCKS * TXBLOCKZ;
1163 }
1164 printk("\n");
1165}
1166#endif /* DEBUG_I82586_SHOW */
1167
1168#ifdef DEBUG_DEVICE_SHOW
1169/*------------------------------------------------------------------*/
1170/*
1171 * Print the formatted status of the WaveLAN PCMCIA device driver.
1172 */
1173static void wv_dev_show(struct net_device * dev)
1174{
1175 printk(KERN_DEBUG "dev:");
1176 printk(" state=%lX,", dev->state);
1177 printk(" trans_start=%ld,", dev->trans_start);
1178 printk(" flags=0x%x,", dev->flags);
1179 printk("\n");
1180} /* wv_dev_show */
1181
1182/*------------------------------------------------------------------*/
1183/*
1184 * Print the formatted status of the WaveLAN PCMCIA device driver's
1185 * private information.
1186 */
1187static void wv_local_show(struct net_device * dev)
1188{
1189 net_local *lp;
1190
524ad0a7 1191 lp = netdev_priv(dev);
1da177e4
LT
1192
1193 printk(KERN_DEBUG "local:");
1194 printk(" tx_n_in_use=%d,", lp->tx_n_in_use);
1195 printk(" hacr=0x%x,", lp->hacr);
1196 printk(" rx_head=0x%x,", lp->rx_head);
1197 printk(" rx_last=0x%x,", lp->rx_last);
1198 printk(" tx_first_free=0x%x,", lp->tx_first_free);
1199 printk(" tx_first_in_use=0x%x,", lp->tx_first_in_use);
1200 printk("\n");
1201} /* wv_local_show */
1202#endif /* DEBUG_DEVICE_SHOW */
1203
1204#if defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO)
1205/*------------------------------------------------------------------*/
1206/*
1207 * Dump packet header (and content if necessary) on the screen
1208 */
1209static inline void wv_packet_info(u8 * p, /* Packet to dump */
1210 int length, /* Length of the packet */
1211 char *msg1, /* Name of the device */
1212 char *msg2)
1213{ /* Name of the function */
1214 int i;
1215 int maxi;
1216
1217 printk(KERN_DEBUG
e174961c
JB
1218 "%s: %s(): dest %pM, length %d\n",
1219 msg1, msg2, p, length);
1da177e4 1220 printk(KERN_DEBUG
e174961c
JB
1221 "%s: %s(): src %pM, type 0x%02X%02X\n",
1222 msg1, msg2, &p[6], p[12], p[13]);
1da177e4
LT
1223
1224#ifdef DEBUG_PACKET_DUMP
1225
1226 printk(KERN_DEBUG "data=\"");
1227
1228 if ((maxi = length) > DEBUG_PACKET_DUMP)
1229 maxi = DEBUG_PACKET_DUMP;
1230 for (i = 14; i < maxi; i++)
1231 if (p[i] >= ' ' && p[i] <= '~')
1232 printk(" %c", p[i]);
1233 else
1234 printk("%02X", p[i]);
1235 if (maxi < length)
1236 printk("..");
1237 printk("\"\n");
1238 printk(KERN_DEBUG "\n");
1239#endif /* DEBUG_PACKET_DUMP */
1240}
1241#endif /* defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO) */
1242
1243/*------------------------------------------------------------------*/
1244/*
1245 * This is the information which is displayed by the driver at startup.
1246 * There are lots of flags for configuring it to your liking.
1247 */
858119e1 1248static void wv_init_info(struct net_device * dev)
1da177e4
LT
1249{
1250 short ioaddr = dev->base_addr;
524ad0a7 1251 net_local *lp = netdev_priv(dev);
1da177e4 1252 psa_t psa;
1da177e4
LT
1253
1254 /* Read the parameter storage area */
1255 psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));
1256
1257#ifdef DEBUG_PSA_SHOW
1258 wv_psa_show(&psa);
1259#endif
1260#ifdef DEBUG_MMC_SHOW
1261 wv_mmc_show(dev);
1262#endif
1263#ifdef DEBUG_I82586_SHOW
1264 wv_cu_show(dev);
1265#endif
1266
1267#ifdef DEBUG_BASIC_SHOW
1268 /* Now, let's go for the basic stuff. */
e174961c
JB
1269 printk(KERN_NOTICE "%s: WaveLAN at %#x, %pM, IRQ %d",
1270 dev->name, ioaddr, dev->dev_addr, dev->irq);
1da177e4
LT
1271
1272 /* Print current network ID. */
1273 if (psa.psa_nwid_select)
1274 printk(", nwid 0x%02X-%02X", psa.psa_nwid[0],
1275 psa.psa_nwid[1]);
1276 else
1277 printk(", nwid off");
1278
1279 /* If 2.00 card */
1280 if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
1281 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
1282 unsigned short freq;
1283
1284 /* Ask the EEPROM to read the frequency from the first area. */
1285 fee_read(ioaddr, 0x00, &freq, 1);
1286
1287 /* Print frequency */
1288 printk(", 2.00, %ld", (freq >> 6) + 2400L);
1289
1290 /* Hack! */
1291 if (freq & 0x20)
1292 printk(".5");
1293 } else {
1294 printk(", PC");
1295 switch (psa.psa_comp_number) {
1296 case PSA_COMP_PC_AT_915:
1297 case PSA_COMP_PC_AT_2400:
1298 printk("-AT");
1299 break;
1300 case PSA_COMP_PC_MC_915:
1301 case PSA_COMP_PC_MC_2400:
1302 printk("-MC");
1303 break;
1304 case PSA_COMP_PCMCIA_915:
1305 printk("MCIA");
1306 break;
1307 default:
1308 printk("?");
1309 }
1310 printk(", ");
1311 switch (psa.psa_subband) {
1312 case PSA_SUBBAND_915:
1313 printk("915");
1314 break;
1315 case PSA_SUBBAND_2425:
1316 printk("2425");
1317 break;
1318 case PSA_SUBBAND_2460:
1319 printk("2460");
1320 break;
1321 case PSA_SUBBAND_2484:
1322 printk("2484");
1323 break;
1324 case PSA_SUBBAND_2430_5:
1325 printk("2430.5");
1326 break;
1327 default:
1328 printk("?");
1329 }
1330 }
1331
1332 printk(" MHz\n");
1333#endif /* DEBUG_BASIC_SHOW */
1334
1335#ifdef DEBUG_VERSION_SHOW
1336 /* Print version information */
1337 printk(KERN_NOTICE "%s", version);
1338#endif
1339} /* wv_init_info */
1340
1341/********************* IOCTL, STATS & RECONFIG *********************/
1342/*
1343 * We found here routines that are called by Linux on different
1344 * occasions after the configuration and not for transmitting data
1345 * These may be called when the user use ifconfig, /proc/net/dev
1346 * or wireless extensions
1347 */
1348
1349/*------------------------------------------------------------------*/
1350/*
1351 * Get the current Ethernet statistics. This may be called with the
1352 * card open or closed.
1353 * Used when the user read /proc/net/dev
1354 */
1355static en_stats *wavelan_get_stats(struct net_device * dev)
1356{
1357#ifdef DEBUG_IOCTL_TRACE
1358 printk(KERN_DEBUG "%s: <>wavelan_get_stats()\n", dev->name);
1359#endif
1360
524ad0a7 1361 return &((net_local *)netdev_priv(dev))->stats;
1da177e4
LT
1362}
1363
1364/*------------------------------------------------------------------*/
1365/*
1366 * Set or clear the multicast filter for this adaptor.
1367 * num_addrs == -1 Promiscuous mode, receive all packets
1368 * num_addrs == 0 Normal mode, clear multicast list
1369 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1370 * and do best-effort filtering.
1371 */
1372static void wavelan_set_multicast_list(struct net_device * dev)
1373{
524ad0a7 1374 net_local *lp = netdev_priv(dev);
1da177e4
LT
1375
1376#ifdef DEBUG_IOCTL_TRACE
1377 printk(KERN_DEBUG "%s: ->wavelan_set_multicast_list()\n",
1378 dev->name);
1379#endif
1380
1381#ifdef DEBUG_IOCTL_INFO
1382 printk(KERN_DEBUG
1383 "%s: wavelan_set_multicast_list(): setting Rx mode %02X to %d addresses.\n",
1384 dev->name, dev->flags, dev->mc_count);
1385#endif
1386
1387 /* Are we asking for promiscuous mode,
1388 * or all multicast addresses (we don't have that!)
1389 * or too many multicast addresses for the hardware filter? */
1390 if ((dev->flags & IFF_PROMISC) ||
1391 (dev->flags & IFF_ALLMULTI) ||
1392 (dev->mc_count > I82586_MAX_MULTICAST_ADDRESSES)) {
1393 /*
1394 * Enable promiscuous mode: receive all packets.
1395 */
1396 if (!lp->promiscuous) {
1397 lp->promiscuous = 1;
1398 lp->mc_count = 0;
1399
1400 wv_82586_reconfig(dev);
1da177e4
LT
1401 }
1402 } else
1403 /* Are there multicast addresses to send? */
1404 if (dev->mc_list != (struct dev_mc_list *) NULL) {
1405 /*
1406 * Disable promiscuous mode, but receive all packets
1407 * in multicast list
1408 */
1409#ifdef MULTICAST_AVOID
1410 if (lp->promiscuous || (dev->mc_count != lp->mc_count))
1411#endif
1412 {
1413 lp->promiscuous = 0;
1414 lp->mc_count = dev->mc_count;
1415
1416 wv_82586_reconfig(dev);
1417 }
1418 } else {
1419 /*
1420 * Switch to normal mode: disable promiscuous mode and
1421 * clear the multicast list.
1422 */
1423 if (lp->promiscuous || lp->mc_count == 0) {
1424 lp->promiscuous = 0;
1425 lp->mc_count = 0;
1426
1427 wv_82586_reconfig(dev);
1428 }
1429 }
1430#ifdef DEBUG_IOCTL_TRACE
1431 printk(KERN_DEBUG "%s: <-wavelan_set_multicast_list()\n",
1432 dev->name);
1433#endif
1434}
1435
1436/*------------------------------------------------------------------*/
1437/*
1438 * This function doesn't exist.
1439 * (Note : it was a nice way to test the reconfigure stuff...)
1440 */
1441#ifdef SET_MAC_ADDRESS
1442static int wavelan_set_mac_address(struct net_device * dev, void *addr)
1443{
1444 struct sockaddr *mac = addr;
1445
1446 /* Copy the address. */
1447 memcpy(dev->dev_addr, mac->sa_data, WAVELAN_ADDR_SIZE);
1448
1449 /* Reconfigure the beast. */
1450 wv_82586_reconfig(dev);
1451
1452 return 0;
1453}
1454#endif /* SET_MAC_ADDRESS */
1455
1da177e4
LT
1456
1457/*------------------------------------------------------------------*/
1458/*
1459 * Frequency setting (for hardware capable of it)
1460 * It's a bit complicated and you don't really want to look into it.
1461 * (called in wavelan_ioctl)
1462 */
858119e1 1463static int wv_set_frequency(unsigned long ioaddr, /* I/O port of the card */
1da177e4
LT
1464 iw_freq * frequency)
1465{
1466 const int BAND_NUM = 10; /* Number of bands */
1467 long freq = 0L; /* offset to 2.4 GHz in .5 MHz */
1468#ifdef DEBUG_IOCTL_INFO
1469 int i;
1470#endif
1471
1472 /* Setting by frequency */
1473 /* Theoretically, you may set any frequency between
1474 * the two limits with a 0.5 MHz precision. In practice,
1475 * I don't want you to have trouble with local regulations.
1476 */
1477 if ((frequency->e == 1) &&
1478 (frequency->m >= (int) 2.412e8)
1479 && (frequency->m <= (int) 2.487e8)) {
1480 freq = ((frequency->m / 10000) - 24000L) / 5;
1481 }
1482
1483 /* Setting by channel (same as wfreqsel) */
1484 /* Warning: each channel is 22 MHz wide, so some of the channels
1485 * will interfere. */
1486 if ((frequency->e == 0) && (frequency->m < BAND_NUM)) {
1487 /* Get frequency offset. */
1488 freq = channel_bands[frequency->m] >> 1;
1489 }
1490
1491 /* Verify that the frequency is allowed. */
1492 if (freq != 0L) {
1493 u16 table[10]; /* Authorized frequency table */
1494
1495 /* Read the frequency table. */
1496 fee_read(ioaddr, 0x71, table, 10);
1497
1498#ifdef DEBUG_IOCTL_INFO
1499 printk(KERN_DEBUG "Frequency table: ");
1500 for (i = 0; i < 10; i++) {
1501 printk(" %04X", table[i]);
1502 }
1503 printk("\n");
1504#endif
1505
1506 /* Look in the table to see whether the frequency is allowed. */
1507 if (!(table[9 - ((freq - 24) / 16)] &
1508 (1 << ((freq - 24) % 16)))) return -EINVAL; /* not allowed */
1509 } else
1510 return -EINVAL;
1511
1512 /* if we get a usable frequency */
1513 if (freq != 0L) {
1514 unsigned short area[16];
1515 unsigned short dac[2];
1516 unsigned short area_verify[16];
1517 unsigned short dac_verify[2];
1518 /* Corresponding gain (in the power adjust value table)
1519 * See AT&T WaveLAN Data Manual, REF 407-024689/E, page 3-8
1520 * and WCIN062D.DOC, page 6.2.9. */
1521 unsigned short power_limit[] = { 40, 80, 120, 160, 0 };
1522 int power_band = 0; /* Selected band */
1523 unsigned short power_adjust; /* Correct value */
1524
1525 /* Search for the gain. */
1526 power_band = 0;
1527 while ((freq > power_limit[power_band]) &&
1528 (power_limit[++power_band] != 0));
1529
1530 /* Read the first area. */
1531 fee_read(ioaddr, 0x00, area, 16);
1532
1533 /* Read the DAC. */
1534 fee_read(ioaddr, 0x60, dac, 2);
1535
1536 /* Read the new power adjust value. */
1537 fee_read(ioaddr, 0x6B - (power_band >> 1), &power_adjust,
1538 1);
1539 if (power_band & 0x1)
1540 power_adjust >>= 8;
1541 else
1542 power_adjust &= 0xFF;
1543
1544#ifdef DEBUG_IOCTL_INFO
1545 printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
1546 for (i = 0; i < 16; i++) {
1547 printk(" %04X", area[i]);
1548 }
1549 printk("\n");
1550
1551 printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n",
1552 dac[0], dac[1]);
1553#endif
1554
1555 /* Frequency offset (for info only) */
1556 area[0] = ((freq << 5) & 0xFFE0) | (area[0] & 0x1F);
1557
1558 /* Receiver Principle main divider coefficient */
1559 area[3] = (freq >> 1) + 2400L - 352L;
1560 area[2] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
1561
1562 /* Transmitter Main divider coefficient */
1563 area[13] = (freq >> 1) + 2400L;
1564 area[12] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
1565
1566 /* Other parts of the area are flags, bit streams or unused. */
1567
1568 /* Set the value in the DAC. */
1569 dac[1] = ((power_adjust >> 1) & 0x7F) | (dac[1] & 0xFF80);
1570 dac[0] = ((power_adjust & 0x1) << 4) | (dac[0] & 0xFFEF);
1571
1572 /* Write the first area. */
1573 fee_write(ioaddr, 0x00, area, 16);
1574
1575 /* Write the DAC. */
1576 fee_write(ioaddr, 0x60, dac, 2);
1577
1578 /* We now should verify here that the writing of the EEPROM went OK. */
1579
1580 /* Reread the first area. */
1581 fee_read(ioaddr, 0x00, area_verify, 16);
1582
1583 /* Reread the DAC. */
1584 fee_read(ioaddr, 0x60, dac_verify, 2);
1585
1586 /* Compare. */
1587 if (memcmp(area, area_verify, 16 * 2) ||
1588 memcmp(dac, dac_verify, 2 * 2)) {
1589#ifdef DEBUG_IOCTL_ERROR
1590 printk(KERN_INFO
1591 "WaveLAN: wv_set_frequency: unable to write new frequency to EEPROM(?).\n");
1592#endif
1593 return -EOPNOTSUPP;
1594 }
1595
1596 /* We must download the frequency parameters to the
1597 * synthesizers (from the EEPROM - area 1)
1598 * Note: as the EEPROM is automatically decremented, we set the end
1599 * if the area... */
1600 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x0F);
1601 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
1602 MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
1603
1604 /* Wait until the download is finished. */
1605 fee_wait(ioaddr, 100, 100);
1606
1607 /* We must now download the power adjust value (gain) to
1608 * the synthesizers (from the EEPROM - area 7 - DAC). */
1609 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x61);
1610 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
1611 MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
1612
1613 /* Wait for the download to finish. */
1614 fee_wait(ioaddr, 100, 100);
1615
1616#ifdef DEBUG_IOCTL_INFO
1617 /* Verification of what we have done */
1618
1619 printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
1620 for (i = 0; i < 16; i++) {
1621 printk(" %04X", area_verify[i]);
1622 }
1623 printk("\n");
1624
1625 printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n",
1626 dac_verify[0], dac_verify[1]);
1627#endif
1628
1629 return 0;
1630 } else
1631 return -EINVAL; /* Bah, never get there... */
1632}
1633
1634/*------------------------------------------------------------------*/
1635/*
1636 * Give the list of available frequencies.
1637 */
858119e1 1638static int wv_frequency_list(unsigned long ioaddr, /* I/O port of the card */
1da177e4
LT
1639 iw_freq * list, /* List of frequencies to fill */
1640 int max)
1641{ /* Maximum number of frequencies */
1642 u16 table[10]; /* Authorized frequency table */
1643 long freq = 0L; /* offset to 2.4 GHz in .5 MHz + 12 MHz */
1644 int i; /* index in the table */
1645 int c = 0; /* Channel number */
1646
1647 /* Read the frequency table. */
1648 fee_read(ioaddr, 0x71 /* frequency table */ , table, 10);
1649
1650 /* Check all frequencies. */
1651 i = 0;
1652 for (freq = 0; freq < 150; freq++)
1653 /* Look in the table if the frequency is allowed */
1654 if (table[9 - (freq / 16)] & (1 << (freq % 16))) {
1655 /* Compute approximate channel number */
0a92dd0a 1656 while ((c < ARRAY_SIZE(channel_bands)) &&
a192491a 1657 (((channel_bands[c] >> 1) - 24) < freq))
1da177e4
LT
1658 c++;
1659 list[i].i = c; /* Set the list index */
1660
1661 /* put in the list */
1662 list[i].m = (((freq + 24) * 5) + 24000L) * 10000;
1663 list[i++].e = 1;
1664
1665 /* Check number. */
1666 if (i >= max)
1667 return (i);
1668 }
1669
1670 return (i);
1671}
1672
1673#ifdef IW_WIRELESS_SPY
1674/*------------------------------------------------------------------*/
1675/*
1676 * Gather wireless spy statistics: for each packet, compare the source
1677 * address with our list, and if they match, get the statistics.
1678 * Sorry, but this function really needs the wireless extensions.
1679 */
1680static inline void wl_spy_gather(struct net_device * dev,
1681 u8 * mac, /* MAC address */
1682 u8 * stats) /* Statistics to gather */
1683{
1684 struct iw_quality wstats;
1685
1686 wstats.qual = stats[2] & MMR_SGNL_QUAL;
1687 wstats.level = stats[0] & MMR_SIGNAL_LVL;
1688 wstats.noise = stats[1] & MMR_SILENCE_LVL;
1689 wstats.updated = 0x7;
1690
1691 /* Update spy records */
1692 wireless_spy_update(dev, mac, &wstats);
1693}
1694#endif /* IW_WIRELESS_SPY */
1695
1696#ifdef HISTOGRAM
1697/*------------------------------------------------------------------*/
1698/*
1699 * This function calculates a histogram of the signal level.
1700 * As the noise is quite constant, it's like doing it on the SNR.
1701 * We have defined a set of interval (lp->his_range), and each time
1702 * the level goes in that interval, we increment the count (lp->his_sum).
1703 * With this histogram you may detect if one WaveLAN is really weak,
1704 * or you may also calculate the mean and standard deviation of the level.
1705 */
1706static inline void wl_his_gather(struct net_device * dev, u8 * stats)
1707{ /* Statistics to gather */
524ad0a7 1708 net_local *lp = netdev_priv(dev);
1da177e4
LT
1709 u8 level = stats[0] & MMR_SIGNAL_LVL;
1710 int i;
1711
1712 /* Find the correct interval. */
1713 i = 0;
1714 while ((i < (lp->his_number - 1))
1715 && (level >= lp->his_range[i++]));
1716
1717 /* Increment interval counter. */
1718 (lp->his_sum[i])++;
1719}
1720#endif /* HISTOGRAM */
1721
1722/*------------------------------------------------------------------*/
1723/*
1724 * Wireless Handler : get protocol name
1725 */
1726static int wavelan_get_name(struct net_device *dev,
1727 struct iw_request_info *info,
1728 union iwreq_data *wrqu,
1729 char *extra)
1730{
1731 strcpy(wrqu->name, "WaveLAN");
1732 return 0;
1733}
1734
1735/*------------------------------------------------------------------*/
1736/*
1737 * Wireless Handler : set NWID
1738 */
1739static int wavelan_set_nwid(struct net_device *dev,
1740 struct iw_request_info *info,
1741 union iwreq_data *wrqu,
1742 char *extra)
1743{
1744 unsigned long ioaddr = dev->base_addr;
524ad0a7 1745 net_local *lp = netdev_priv(dev); /* lp is not unused */
1da177e4
LT
1746 psa_t psa;
1747 mm_t m;
1748 unsigned long flags;
1749 int ret = 0;
1750
1751 /* Disable interrupts and save flags. */
1752 spin_lock_irqsave(&lp->spinlock, flags);
1753
1754 /* Set NWID in WaveLAN. */
1755 if (!wrqu->nwid.disabled) {
1756 /* Set NWID in psa */
1757 psa.psa_nwid[0] = (wrqu->nwid.value & 0xFF00) >> 8;
1758 psa.psa_nwid[1] = wrqu->nwid.value & 0xFF;
1759 psa.psa_nwid_select = 0x01;
1760 psa_write(ioaddr, lp->hacr,
1761 (char *) psa.psa_nwid - (char *) &psa,
1762 (unsigned char *) psa.psa_nwid, 3);
1763
1764 /* Set NWID in mmc. */
1765 m.w.mmw_netw_id_l = psa.psa_nwid[1];
1766 m.w.mmw_netw_id_h = psa.psa_nwid[0];
1767 mmc_write(ioaddr,
1768 (char *) &m.w.mmw_netw_id_l -
1769 (char *) &m,
1770 (unsigned char *) &m.w.mmw_netw_id_l, 2);
1771 mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel), 0x00);
1772 } else {
1773 /* Disable NWID in the psa. */
1774 psa.psa_nwid_select = 0x00;
1775 psa_write(ioaddr, lp->hacr,
1776 (char *) &psa.psa_nwid_select -
1777 (char *) &psa,
1778 (unsigned char *) &psa.psa_nwid_select,
1779 1);
1780
1781 /* Disable NWID in the mmc (no filtering). */
1782 mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel),
1783 MMW_LOOPT_SEL_DIS_NWID);
1784 }
1785 /* update the Wavelan checksum */
1786 update_psa_checksum(dev, ioaddr, lp->hacr);
1787
1788 /* Enable interrupts and restore flags. */
1789 spin_unlock_irqrestore(&lp->spinlock, flags);
1790
1791 return ret;
1792}
1793
1794/*------------------------------------------------------------------*/
1795/*
1796 * Wireless Handler : get NWID
1797 */
1798static int wavelan_get_nwid(struct net_device *dev,
1799 struct iw_request_info *info,
1800 union iwreq_data *wrqu,
1801 char *extra)
1802{
1803 unsigned long ioaddr = dev->base_addr;
524ad0a7 1804 net_local *lp = netdev_priv(dev); /* lp is not unused */
1da177e4
LT
1805 psa_t psa;
1806 unsigned long flags;
1807 int ret = 0;
1808
1809 /* Disable interrupts and save flags. */
1810 spin_lock_irqsave(&lp->spinlock, flags);
1811
1812 /* Read the NWID. */
1813 psa_read(ioaddr, lp->hacr,
1814 (char *) psa.psa_nwid - (char *) &psa,
1815 (unsigned char *) psa.psa_nwid, 3);
1816 wrqu->nwid.value = (psa.psa_nwid[0] << 8) + psa.psa_nwid[1];
1817 wrqu->nwid.disabled = !(psa.psa_nwid_select);
1818 wrqu->nwid.fixed = 1; /* Superfluous */
1819
1820 /* Enable interrupts and restore flags. */
1821 spin_unlock_irqrestore(&lp->spinlock, flags);
1822
1823 return ret;
1824}
1825
1826/*------------------------------------------------------------------*/
1827/*
1828 * Wireless Handler : set frequency
1829 */
1830static int wavelan_set_freq(struct net_device *dev,
1831 struct iw_request_info *info,
1832 union iwreq_data *wrqu,
1833 char *extra)
1834{
1835 unsigned long ioaddr = dev->base_addr;
524ad0a7 1836 net_local *lp = netdev_priv(dev); /* lp is not unused */
1da177e4
LT
1837 unsigned long flags;
1838 int ret;
1839
1840 /* Disable interrupts and save flags. */
1841 spin_lock_irqsave(&lp->spinlock, flags);
1842
1843 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
1844 if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
1845 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY)))
1846 ret = wv_set_frequency(ioaddr, &(wrqu->freq));
1847 else
1848 ret = -EOPNOTSUPP;
1849
1850 /* Enable interrupts and restore flags. */
1851 spin_unlock_irqrestore(&lp->spinlock, flags);
1852
1853 return ret;
1854}
1855
1856/*------------------------------------------------------------------*/
1857/*
1858 * Wireless Handler : get frequency
1859 */
1860static int wavelan_get_freq(struct net_device *dev,
1861 struct iw_request_info *info,
1862 union iwreq_data *wrqu,
1863 char *extra)
1864{
1865 unsigned long ioaddr = dev->base_addr;
524ad0a7 1866 net_local *lp = netdev_priv(dev); /* lp is not unused */
1da177e4
LT
1867 psa_t psa;
1868 unsigned long flags;
1869 int ret = 0;
1870
1871 /* Disable interrupts and save flags. */
1872 spin_lock_irqsave(&lp->spinlock, flags);
1873
1874 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable).
1875 * Does it work for everybody, especially old cards? */
1876 if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
1877 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
1878 unsigned short freq;
1879
1880 /* Ask the EEPROM to read the frequency from the first area. */
1881 fee_read(ioaddr, 0x00, &freq, 1);
1882 wrqu->freq.m = ((freq >> 5) * 5 + 24000L) * 10000;
1883 wrqu->freq.e = 1;
1884 } else {
1885 psa_read(ioaddr, lp->hacr,
1886 (char *) &psa.psa_subband - (char *) &psa,
1887 (unsigned char *) &psa.psa_subband, 1);
1888
1889 if (psa.psa_subband <= 4) {
1890 wrqu->freq.m = fixed_bands[psa.psa_subband];
1891 wrqu->freq.e = (psa.psa_subband != 0);
1892 } else
1893 ret = -EOPNOTSUPP;
1894 }
1895
1896 /* Enable interrupts and restore flags. */
1897 spin_unlock_irqrestore(&lp->spinlock, flags);
1898
1899 return ret;
1900}
1901
1902/*------------------------------------------------------------------*/
1903/*
1904 * Wireless Handler : set level threshold
1905 */
1906static int wavelan_set_sens(struct net_device *dev,
1907 struct iw_request_info *info,
1908 union iwreq_data *wrqu,
1909 char *extra)
1910{
1911 unsigned long ioaddr = dev->base_addr;
524ad0a7 1912 net_local *lp = netdev_priv(dev); /* lp is not unused */
1da177e4
LT
1913 psa_t psa;
1914 unsigned long flags;
1915 int ret = 0;
1916
1917 /* Disable interrupts and save flags. */
1918 spin_lock_irqsave(&lp->spinlock, flags);
1919
1920 /* Set the level threshold. */
1921 /* We should complain loudly if wrqu->sens.fixed = 0, because we
1922 * can't set auto mode... */
1923 psa.psa_thr_pre_set = wrqu->sens.value & 0x3F;
1924 psa_write(ioaddr, lp->hacr,
1925 (char *) &psa.psa_thr_pre_set - (char *) &psa,
1926 (unsigned char *) &psa.psa_thr_pre_set, 1);
1927 /* update the Wavelan checksum */
1928 update_psa_checksum(dev, ioaddr, lp->hacr);
1929 mmc_out(ioaddr, mmwoff(0, mmw_thr_pre_set),
1930 psa.psa_thr_pre_set);
1931
1932 /* Enable interrupts and restore flags. */
1933 spin_unlock_irqrestore(&lp->spinlock, flags);
1934
1935 return ret;
1936}
1937
1938/*------------------------------------------------------------------*/
1939/*
1940 * Wireless Handler : get level threshold
1941 */
1942static int wavelan_get_sens(struct net_device *dev,
1943 struct iw_request_info *info,
1944 union iwreq_data *wrqu,
1945 char *extra)
1946{
1947 unsigned long ioaddr = dev->base_addr;
524ad0a7 1948 net_local *lp = netdev_priv(dev); /* lp is not unused */
1da177e4
LT
1949 psa_t psa;
1950 unsigned long flags;
1951 int ret = 0;
1952
1953 /* Disable interrupts and save flags. */
1954 spin_lock_irqsave(&lp->spinlock, flags);
1955
1956 /* Read the level threshold. */
1957 psa_read(ioaddr, lp->hacr,
1958 (char *) &psa.psa_thr_pre_set - (char *) &psa,
1959 (unsigned char *) &psa.psa_thr_pre_set, 1);
1960 wrqu->sens.value = psa.psa_thr_pre_set & 0x3F;
1961 wrqu->sens.fixed = 1;
1962
1963 /* Enable interrupts and restore flags. */
1964 spin_unlock_irqrestore(&lp->spinlock, flags);
1965
1966 return ret;
1967}
1968
1969/*------------------------------------------------------------------*/
1970/*
1971 * Wireless Handler : set encryption key
1972 */
1973static int wavelan_set_encode(struct net_device *dev,
1974 struct iw_request_info *info,
1975 union iwreq_data *wrqu,
1976 char *extra)
1977{
1978 unsigned long ioaddr = dev->base_addr;
524ad0a7 1979 net_local *lp = netdev_priv(dev); /* lp is not unused */
1da177e4
LT
1980 unsigned long flags;
1981 psa_t psa;
1982 int ret = 0;
1983
1984 /* Disable interrupts and save flags. */
1985 spin_lock_irqsave(&lp->spinlock, flags);
1986
1987 /* Check if capable of encryption */
1988 if (!mmc_encr(ioaddr)) {
1989 ret = -EOPNOTSUPP;
1990 }
1991
1992 /* Check the size of the key */
1993 if((wrqu->encoding.length != 8) && (wrqu->encoding.length != 0)) {
1994 ret = -EINVAL;
1995 }
1996
1997 if(!ret) {
1998 /* Basic checking... */
1999 if (wrqu->encoding.length == 8) {
2000 /* Copy the key in the driver */
2001 memcpy(psa.psa_encryption_key, extra,
2002 wrqu->encoding.length);
2003 psa.psa_encryption_select = 1;
2004
2005 psa_write(ioaddr, lp->hacr,
2006 (char *) &psa.psa_encryption_select -
2007 (char *) &psa,
2008 (unsigned char *) &psa.
2009 psa_encryption_select, 8 + 1);
2010
2011 mmc_out(ioaddr, mmwoff(0, mmw_encr_enable),
2012 MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE);
2013 mmc_write(ioaddr, mmwoff(0, mmw_encr_key),
2014 (unsigned char *) &psa.
2015 psa_encryption_key, 8);
2016 }
2017
2018 /* disable encryption */
2019 if (wrqu->encoding.flags & IW_ENCODE_DISABLED) {
2020 psa.psa_encryption_select = 0;
2021 psa_write(ioaddr, lp->hacr,
2022 (char *) &psa.psa_encryption_select -
2023 (char *) &psa,
2024 (unsigned char *) &psa.
2025 psa_encryption_select, 1);
2026
2027 mmc_out(ioaddr, mmwoff(0, mmw_encr_enable), 0);
2028 }
2029 /* update the Wavelan checksum */
2030 update_psa_checksum(dev, ioaddr, lp->hacr);
2031 }
2032
2033 /* Enable interrupts and restore flags. */
2034 spin_unlock_irqrestore(&lp->spinlock, flags);
2035
2036 return ret;
2037}
2038
2039/*------------------------------------------------------------------*/
2040/*
2041 * Wireless Handler : get encryption key
2042 */
2043static int wavelan_get_encode(struct net_device *dev,
2044 struct iw_request_info *info,
2045 union iwreq_data *wrqu,
2046 char *extra)
2047{
2048 unsigned long ioaddr = dev->base_addr;
524ad0a7 2049 net_local *lp = netdev_priv(dev); /* lp is not unused */
1da177e4
LT
2050 psa_t psa;
2051 unsigned long flags;
2052 int ret = 0;
2053
2054 /* Disable interrupts and save flags. */
2055 spin_lock_irqsave(&lp->spinlock, flags);
2056
2057 /* Check if encryption is available */
2058 if (!mmc_encr(ioaddr)) {
2059 ret = -EOPNOTSUPP;
2060 } else {
2061 /* Read the encryption key */
2062 psa_read(ioaddr, lp->hacr,
2063 (char *) &psa.psa_encryption_select -
2064 (char *) &psa,
2065 (unsigned char *) &psa.
2066 psa_encryption_select, 1 + 8);
2067
2068 /* encryption is enabled ? */
2069 if (psa.psa_encryption_select)
2070 wrqu->encoding.flags = IW_ENCODE_ENABLED;
2071 else
2072 wrqu->encoding.flags = IW_ENCODE_DISABLED;
2073 wrqu->encoding.flags |= mmc_encr(ioaddr);
2074
2075 /* Copy the key to the user buffer */
2076 wrqu->encoding.length = 8;
2077 memcpy(extra, psa.psa_encryption_key, wrqu->encoding.length);
2078 }
2079
2080 /* Enable interrupts and restore flags. */
2081 spin_unlock_irqrestore(&lp->spinlock, flags);
2082
2083 return ret;
2084}
2085
2086/*------------------------------------------------------------------*/
2087/*
2088 * Wireless Handler : get range info
2089 */
2090static int wavelan_get_range(struct net_device *dev,
2091 struct iw_request_info *info,
2092 union iwreq_data *wrqu,
2093 char *extra)
2094{
2095 unsigned long ioaddr = dev->base_addr;
524ad0a7 2096 net_local *lp = netdev_priv(dev); /* lp is not unused */
1da177e4
LT
2097 struct iw_range *range = (struct iw_range *) extra;
2098 unsigned long flags;
2099 int ret = 0;
2100
2101 /* Set the length (very important for backward compatibility) */
2102 wrqu->data.length = sizeof(struct iw_range);
2103
2104 /* Set all the info we don't care or don't know about to zero */
2105 memset(range, 0, sizeof(struct iw_range));
2106
2107 /* Set the Wireless Extension versions */
2108 range->we_version_compiled = WIRELESS_EXT;
2109 range->we_version_source = 9;
2110
2111 /* Set information in the range struct. */
2112 range->throughput = 1.6 * 1000 * 1000; /* don't argue on this ! */
2113 range->min_nwid = 0x0000;
2114 range->max_nwid = 0xFFFF;
2115
2116 range->sensitivity = 0x3F;
2117 range->max_qual.qual = MMR_SGNL_QUAL;
2118 range->max_qual.level = MMR_SIGNAL_LVL;
2119 range->max_qual.noise = MMR_SILENCE_LVL;
2120 range->avg_qual.qual = MMR_SGNL_QUAL; /* Always max */
2121 /* Need to get better values for those two */
2122 range->avg_qual.level = 30;
2123 range->avg_qual.noise = 8;
2124
2125 range->num_bitrates = 1;
2126 range->bitrate[0] = 2000000; /* 2 Mb/s */
2127
2128 /* Event capability (kernel + driver) */
2129 range->event_capa[0] = (IW_EVENT_CAPA_MASK(0x8B02) |
2130 IW_EVENT_CAPA_MASK(0x8B04));
2131 range->event_capa[1] = IW_EVENT_CAPA_K_1;
2132
2133 /* Disable interrupts and save flags. */
2134 spin_lock_irqsave(&lp->spinlock, flags);
2135
2136 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
2137 if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
2138 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
2139 range->num_channels = 10;
2140 range->num_frequency = wv_frequency_list(ioaddr, range->freq,
2141 IW_MAX_FREQUENCIES);
2142 } else
2143 range->num_channels = range->num_frequency = 0;
2144
2145 /* Encryption supported ? */
2146 if (mmc_encr(ioaddr)) {
2147 range->encoding_size[0] = 8; /* DES = 64 bits key */
2148 range->num_encoding_sizes = 1;
2149 range->max_encoding_tokens = 1; /* Only one key possible */
2150 } else {
2151 range->num_encoding_sizes = 0;
2152 range->max_encoding_tokens = 0;
2153 }
2154
2155 /* Enable interrupts and restore flags. */
2156 spin_unlock_irqrestore(&lp->spinlock, flags);
2157
2158 return ret;
2159}
2160
2161/*------------------------------------------------------------------*/
2162/*
2163 * Wireless Private Handler : set quality threshold
2164 */
2165static int wavelan_set_qthr(struct net_device *dev,
2166 struct iw_request_info *info,
2167 union iwreq_data *wrqu,
2168 char *extra)
2169{
2170 unsigned long ioaddr = dev->base_addr;
524ad0a7 2171 net_local *lp = netdev_priv(dev); /* lp is not unused */
1da177e4
LT
2172 psa_t psa;
2173 unsigned long flags;
2174
2175 /* Disable interrupts and save flags. */
2176 spin_lock_irqsave(&lp->spinlock, flags);
2177
2178 psa.psa_quality_thr = *(extra) & 0x0F;
2179 psa_write(ioaddr, lp->hacr,
2180 (char *) &psa.psa_quality_thr - (char *) &psa,
2181 (unsigned char *) &psa.psa_quality_thr, 1);
2182 /* update the Wavelan checksum */
2183 update_psa_checksum(dev, ioaddr, lp->hacr);
2184 mmc_out(ioaddr, mmwoff(0, mmw_quality_thr),
2185 psa.psa_quality_thr);
2186
2187 /* Enable interrupts and restore flags. */
2188 spin_unlock_irqrestore(&lp->spinlock, flags);
2189
2190 return 0;
2191}
2192
2193/*------------------------------------------------------------------*/
2194/*
2195 * Wireless Private Handler : get quality threshold
2196 */
2197static int wavelan_get_qthr(struct net_device *dev,
2198 struct iw_request_info *info,
2199 union iwreq_data *wrqu,
2200 char *extra)
2201{
2202 unsigned long ioaddr = dev->base_addr;
524ad0a7 2203 net_local *lp = netdev_priv(dev); /* lp is not unused */
1da177e4
LT
2204 psa_t psa;
2205 unsigned long flags;
2206
2207 /* Disable interrupts and save flags. */
2208 spin_lock_irqsave(&lp->spinlock, flags);
2209
2210 psa_read(ioaddr, lp->hacr,
2211 (char *) &psa.psa_quality_thr - (char *) &psa,
2212 (unsigned char *) &psa.psa_quality_thr, 1);
2213 *(extra) = psa.psa_quality_thr & 0x0F;
2214
2215 /* Enable interrupts and restore flags. */
2216 spin_unlock_irqrestore(&lp->spinlock, flags);
2217
2218 return 0;
2219}
2220
2221#ifdef HISTOGRAM
2222/*------------------------------------------------------------------*/
2223/*
2224 * Wireless Private Handler : set histogram
2225 */
2226static int wavelan_set_histo(struct net_device *dev,
2227 struct iw_request_info *info,
2228 union iwreq_data *wrqu,
2229 char *extra)
2230{
524ad0a7 2231 net_local *lp = netdev_priv(dev); /* lp is not unused */
1da177e4
LT
2232
2233 /* Check the number of intervals. */
2234 if (wrqu->data.length > 16) {
2235 return(-E2BIG);
2236 }
2237
2238 /* Disable histo while we copy the addresses.
2239 * As we don't disable interrupts, we need to do this */
2240 lp->his_number = 0;
2241
2242 /* Are there ranges to copy? */
2243 if (wrqu->data.length > 0) {
2244 /* Copy interval ranges to the driver */
2245 memcpy(lp->his_range, extra, wrqu->data.length);
2246
2247 {
2248 int i;
2249 printk(KERN_DEBUG "Histo :");
2250 for(i = 0; i < wrqu->data.length; i++)
2251 printk(" %d", lp->his_range[i]);
2252 printk("\n");
2253 }
2254
2255 /* Reset result structure. */
2256 memset(lp->his_sum, 0x00, sizeof(long) * 16);
2257 }
2258
2259 /* Now we can set the number of ranges */
2260 lp->his_number = wrqu->data.length;
2261
2262 return(0);
2263}
2264
2265/*------------------------------------------------------------------*/
2266/*
2267 * Wireless Private Handler : get histogram
2268 */
2269static int wavelan_get_histo(struct net_device *dev,
2270 struct iw_request_info *info,
2271 union iwreq_data *wrqu,
2272 char *extra)
2273{
524ad0a7 2274 net_local *lp = netdev_priv(dev); /* lp is not unused */
1da177e4
LT
2275
2276 /* Set the number of intervals. */
2277 wrqu->data.length = lp->his_number;
2278
2279 /* Give back the distribution statistics */
2280 if(lp->his_number > 0)
2281 memcpy(extra, lp->his_sum, sizeof(long) * lp->his_number);
2282
2283 return(0);
2284}
2285#endif /* HISTOGRAM */
2286
2287/*------------------------------------------------------------------*/
2288/*
2289 * Structures to export the Wireless Handlers
2290 */
2291
2292static const iw_handler wavelan_handler[] =
2293{
2294 NULL, /* SIOCSIWNAME */
2295 wavelan_get_name, /* SIOCGIWNAME */
2296 wavelan_set_nwid, /* SIOCSIWNWID */
2297 wavelan_get_nwid, /* SIOCGIWNWID */
2298 wavelan_set_freq, /* SIOCSIWFREQ */
2299 wavelan_get_freq, /* SIOCGIWFREQ */
2300 NULL, /* SIOCSIWMODE */
2301 NULL, /* SIOCGIWMODE */
2302 wavelan_set_sens, /* SIOCSIWSENS */
2303 wavelan_get_sens, /* SIOCGIWSENS */
2304 NULL, /* SIOCSIWRANGE */
2305 wavelan_get_range, /* SIOCGIWRANGE */
2306 NULL, /* SIOCSIWPRIV */
2307 NULL, /* SIOCGIWPRIV */
2308 NULL, /* SIOCSIWSTATS */
2309 NULL, /* SIOCGIWSTATS */
2310 iw_handler_set_spy, /* SIOCSIWSPY */
2311 iw_handler_get_spy, /* SIOCGIWSPY */
2312 iw_handler_set_thrspy, /* SIOCSIWTHRSPY */
2313 iw_handler_get_thrspy, /* SIOCGIWTHRSPY */
2314 NULL, /* SIOCSIWAP */
2315 NULL, /* SIOCGIWAP */
2316 NULL, /* -- hole -- */
2317 NULL, /* SIOCGIWAPLIST */
2318 NULL, /* -- hole -- */
2319 NULL, /* -- hole -- */
2320 NULL, /* SIOCSIWESSID */
2321 NULL, /* SIOCGIWESSID */
2322 NULL, /* SIOCSIWNICKN */
2323 NULL, /* SIOCGIWNICKN */
2324 NULL, /* -- hole -- */
2325 NULL, /* -- hole -- */
2326 NULL, /* SIOCSIWRATE */
2327 NULL, /* SIOCGIWRATE */
2328 NULL, /* SIOCSIWRTS */
2329 NULL, /* SIOCGIWRTS */
2330 NULL, /* SIOCSIWFRAG */
2331 NULL, /* SIOCGIWFRAG */
2332 NULL, /* SIOCSIWTXPOW */
2333 NULL, /* SIOCGIWTXPOW */
2334 NULL, /* SIOCSIWRETRY */
2335 NULL, /* SIOCGIWRETRY */
2336 /* Bummer ! Why those are only at the end ??? */
2337 wavelan_set_encode, /* SIOCSIWENCODE */
2338 wavelan_get_encode, /* SIOCGIWENCODE */
2339};
2340
2341static const iw_handler wavelan_private_handler[] =
2342{
2343 wavelan_set_qthr, /* SIOCIWFIRSTPRIV */
2344 wavelan_get_qthr, /* SIOCIWFIRSTPRIV + 1 */
2345#ifdef HISTOGRAM
2346 wavelan_set_histo, /* SIOCIWFIRSTPRIV + 2 */
2347 wavelan_get_histo, /* SIOCIWFIRSTPRIV + 3 */
2348#endif /* HISTOGRAM */
2349};
2350
2351static const struct iw_priv_args wavelan_private_args[] = {
2352/*{ cmd, set_args, get_args, name } */
2353 { SIOCSIPQTHR, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, 0, "setqualthr" },
2354 { SIOCGIPQTHR, 0, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, "getqualthr" },
2355 { SIOCSIPHISTO, IW_PRIV_TYPE_BYTE | 16, 0, "sethisto" },
2356 { SIOCGIPHISTO, 0, IW_PRIV_TYPE_INT | 16, "gethisto" },
2357};
2358
2359static const struct iw_handler_def wavelan_handler_def =
2360{
ff8ac609
DC
2361 .num_standard = ARRAY_SIZE(wavelan_handler),
2362 .num_private = ARRAY_SIZE(wavelan_private_handler),
2363 .num_private_args = ARRAY_SIZE(wavelan_private_args),
1da177e4
LT
2364 .standard = wavelan_handler,
2365 .private = wavelan_private_handler,
2366 .private_args = wavelan_private_args,
2367 .get_wireless_stats = wavelan_get_wireless_stats,
2368};
2369
2370/*------------------------------------------------------------------*/
2371/*
2372 * Get wireless statistics.
2373 * Called by /proc/net/wireless
2374 */
2375static iw_stats *wavelan_get_wireless_stats(struct net_device * dev)
2376{
2377 unsigned long ioaddr = dev->base_addr;
524ad0a7 2378 net_local *lp = netdev_priv(dev);
1da177e4
LT
2379 mmr_t m;
2380 iw_stats *wstats;
2381 unsigned long flags;
2382
2383#ifdef DEBUG_IOCTL_TRACE
2384 printk(KERN_DEBUG "%s: ->wavelan_get_wireless_stats()\n",
2385 dev->name);
2386#endif
2387
2388 /* Check */
2389 if (lp == (net_local *) NULL)
2390 return (iw_stats *) NULL;
2391
2392 /* Disable interrupts and save flags. */
2393 spin_lock_irqsave(&lp->spinlock, flags);
2394
2395 wstats = &lp->wstats;
2396
2397 /* Get data from the mmc. */
2398 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
2399
2400 mmc_read(ioaddr, mmroff(0, mmr_dce_status), &m.mmr_dce_status, 1);
2401 mmc_read(ioaddr, mmroff(0, mmr_wrong_nwid_l), &m.mmr_wrong_nwid_l,
2402 2);
2403 mmc_read(ioaddr, mmroff(0, mmr_thr_pre_set), &m.mmr_thr_pre_set,
2404 4);
2405
2406 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
2407
2408 /* Copy data to wireless stuff. */
2409 wstats->status = m.mmr_dce_status & MMR_DCE_STATUS;
2410 wstats->qual.qual = m.mmr_sgnl_qual & MMR_SGNL_QUAL;
2411 wstats->qual.level = m.mmr_signal_lvl & MMR_SIGNAL_LVL;
2412 wstats->qual.noise = m.mmr_silence_lvl & MMR_SILENCE_LVL;
2413 wstats->qual.updated = (((m. mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 7)
2414 | ((m.mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 6)
2415 | ((m.mmr_silence_lvl & MMR_SILENCE_LVL_VALID) >> 5));
2416 wstats->discard.nwid += (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
2417 wstats->discard.code = 0L;
2418 wstats->discard.misc = 0L;
2419
2420 /* Enable interrupts and restore flags. */
2421 spin_unlock_irqrestore(&lp->spinlock, flags);
2422
2423#ifdef DEBUG_IOCTL_TRACE
2424 printk(KERN_DEBUG "%s: <-wavelan_get_wireless_stats()\n",
2425 dev->name);
2426#endif
2427 return &lp->wstats;
2428}
1da177e4
LT
2429
2430/************************* PACKET RECEPTION *************************/
2431/*
2432 * This part deals with receiving the packets.
2433 * The interrupt handler gets an interrupt when a packet has been
2434 * successfully received and calls this part.
2435 */
2436
2437/*------------------------------------------------------------------*/
2438/*
2439 * This routine does the actual copying of data (including the Ethernet
2440 * header structure) from the WaveLAN card to an sk_buff chain that
2441 * will be passed up to the network interface layer. NOTE: we
2442 * currently don't handle trailer protocols (neither does the rest of
2443 * the network interface), so if that is needed, it will (at least in
2444 * part) be added here. The contents of the receive ring buffer are
2445 * copied to a message chain that is then passed to the kernel.
2446 *
2447 * Note: if any errors occur, the packet is "dropped on the floor".
2448 * (called by wv_packet_rcv())
2449 */
858119e1 2450static void
1da177e4
LT
2451wv_packet_read(struct net_device * dev, u16 buf_off, int sksize)
2452{
524ad0a7 2453 net_local *lp = netdev_priv(dev);
1da177e4
LT
2454 unsigned long ioaddr = dev->base_addr;
2455 struct sk_buff *skb;
2456
2457#ifdef DEBUG_RX_TRACE
2458 printk(KERN_DEBUG "%s: ->wv_packet_read(0x%X, %d)\n",
2459 dev->name, buf_off, sksize);
2460#endif
2461
2462 /* Allocate buffer for the data */
2463 if ((skb = dev_alloc_skb(sksize)) == (struct sk_buff *) NULL) {
2464#ifdef DEBUG_RX_ERROR
2465 printk(KERN_INFO
2466 "%s: wv_packet_read(): could not alloc_skb(%d, GFP_ATOMIC).\n",
2467 dev->name, sksize);
2468#endif
2469 lp->stats.rx_dropped++;
2470 return;
2471 }
2472
1da177e4
LT
2473 /* Copy the packet to the buffer. */
2474 obram_read(ioaddr, buf_off, skb_put(skb, sksize), sksize);
2475 skb->protocol = eth_type_trans(skb, dev);
2476
2477#ifdef DEBUG_RX_INFO
98e399f8
ACM
2478 wv_packet_info(skb_mac_header(skb), sksize, dev->name,
2479 "wv_packet_read");
1da177e4
LT
2480#endif /* DEBUG_RX_INFO */
2481
2482 /* Statistics-gathering and associated stuff.
2483 * It seem a bit messy with all the define, but it's really
2484 * simple... */
2485 if (
2486#ifdef IW_WIRELESS_SPY /* defined in iw_handler.h */
2487 (lp->spy_data.spy_number > 0) ||
2488#endif /* IW_WIRELESS_SPY */
2489#ifdef HISTOGRAM
2490 (lp->his_number > 0) ||
2491#endif /* HISTOGRAM */
2492 0) {
2493 u8 stats[3]; /* signal level, noise level, signal quality */
2494
2495 /* Read signal level, silence level and signal quality bytes */
2496 /* Note: in the PCMCIA hardware, these are part of the frame.
2497 * It seems that for the ISA hardware, it's nowhere to be
2498 * found in the frame, so I'm obliged to do this (it has a
2499 * side effect on /proc/net/wireless).
2500 * Any ideas?
2501 */
2502 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
2503 mmc_read(ioaddr, mmroff(0, mmr_signal_lvl), stats, 3);
2504 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
2505
2506#ifdef DEBUG_RX_INFO
2507 printk(KERN_DEBUG
2508 "%s: wv_packet_read(): Signal level %d/63, Silence level %d/63, signal quality %d/16\n",
2509 dev->name, stats[0] & 0x3F, stats[1] & 0x3F,
2510 stats[2] & 0x0F);
2511#endif
2512
2513 /* Spying stuff */
2514#ifdef IW_WIRELESS_SPY
98e399f8 2515 wl_spy_gather(dev, skb_mac_header(skb) + WAVELAN_ADDR_SIZE,
1da177e4
LT
2516 stats);
2517#endif /* IW_WIRELESS_SPY */
2518#ifdef HISTOGRAM
2519 wl_his_gather(dev, stats);
2520#endif /* HISTOGRAM */
2521 }
2522
2523 /*
2524 * Hand the packet to the network module.
2525 */
2526 netif_rx(skb);
2527
2528 /* Keep statistics up to date */
1da177e4
LT
2529 lp->stats.rx_packets++;
2530 lp->stats.rx_bytes += sksize;
2531
2532#ifdef DEBUG_RX_TRACE
2533 printk(KERN_DEBUG "%s: <-wv_packet_read()\n", dev->name);
2534#endif
2535}
2536
2537/*------------------------------------------------------------------*/
2538/*
2539 * Transfer as many packets as we can
2540 * from the device RAM.
2541 * (called in wavelan_interrupt()).
2542 * Note : the spinlock is already grabbed for us.
2543 */
858119e1 2544static void wv_receive(struct net_device * dev)
1da177e4
LT
2545{
2546 unsigned long ioaddr = dev->base_addr;
524ad0a7 2547 net_local *lp = netdev_priv(dev);
1da177e4
LT
2548 fd_t fd;
2549 rbd_t rbd;
2550 int nreaped = 0;
2551
2552#ifdef DEBUG_RX_TRACE
2553 printk(KERN_DEBUG "%s: ->wv_receive()\n", dev->name);
2554#endif
2555
2556 /* Loop on each received packet. */
2557 for (;;) {
2558 obram_read(ioaddr, lp->rx_head, (unsigned char *) &fd,
2559 sizeof(fd));
2560
2561 /* Note about the status :
2562 * It start up to be 0 (the value we set). Then, when the RU
2563 * grab the buffer to prepare for reception, it sets the
2564 * FD_STATUS_B flag. When the RU has finished receiving the
2565 * frame, it clears FD_STATUS_B, set FD_STATUS_C to indicate
2566 * completion and set the other flags to indicate the eventual
2567 * errors. FD_STATUS_OK indicates that the reception was OK.
2568 */
2569
2570 /* If the current frame is not complete, we have reached the end. */
2571 if ((fd.fd_status & FD_STATUS_C) != FD_STATUS_C)
2572 break; /* This is how we exit the loop. */
2573
2574 nreaped++;
2575
2576 /* Check whether frame was correctly received. */
2577 if ((fd.fd_status & FD_STATUS_OK) == FD_STATUS_OK) {
2578 /* Does the frame contain a pointer to the data? Let's check. */
2579 if (fd.fd_rbd_offset != I82586NULL) {
2580 /* Read the receive buffer descriptor */
2581 obram_read(ioaddr, fd.fd_rbd_offset,
2582 (unsigned char *) &rbd,
2583 sizeof(rbd));
2584
2585#ifdef DEBUG_RX_ERROR
2586 if ((rbd.rbd_status & RBD_STATUS_EOF) !=
2587 RBD_STATUS_EOF) printk(KERN_INFO
2588 "%s: wv_receive(): missing EOF flag.\n",
2589 dev->name);
2590
2591 if ((rbd.rbd_status & RBD_STATUS_F) !=
2592 RBD_STATUS_F) printk(KERN_INFO
2593 "%s: wv_receive(): missing F flag.\n",
2594 dev->name);
2595#endif /* DEBUG_RX_ERROR */
2596
2597 /* Read the packet and transmit to Linux */
2598 wv_packet_read(dev, rbd.rbd_bufl,
2599 rbd.
2600 rbd_status &
2601 RBD_STATUS_ACNT);
2602 }
2603#ifdef DEBUG_RX_ERROR
2604 else /* if frame has no data */
2605 printk(KERN_INFO
2606 "%s: wv_receive(): frame has no data.\n",
2607 dev->name);
2608#endif
2609 } else { /* If reception was no successful */
2610
2611 lp->stats.rx_errors++;
2612
2613#ifdef DEBUG_RX_INFO
2614 printk(KERN_DEBUG
2615 "%s: wv_receive(): frame not received successfully (%X).\n",
2616 dev->name, fd.fd_status);
2617#endif
2618
2619#ifdef DEBUG_RX_ERROR
2620 if ((fd.fd_status & FD_STATUS_S6) != 0)
2621 printk(KERN_INFO
2622 "%s: wv_receive(): no EOF flag.\n",
2623 dev->name);
2624#endif
2625
2626 if ((fd.fd_status & FD_STATUS_S7) != 0) {
2627 lp->stats.rx_length_errors++;
2628#ifdef DEBUG_RX_FAIL
2629 printk(KERN_DEBUG
2630 "%s: wv_receive(): frame too short.\n",
2631 dev->name);
2632#endif
2633 }
2634
2635 if ((fd.fd_status & FD_STATUS_S8) != 0) {
2636 lp->stats.rx_over_errors++;
2637#ifdef DEBUG_RX_FAIL
2638 printk(KERN_DEBUG
2639 "%s: wv_receive(): rx DMA overrun.\n",
2640 dev->name);
2641#endif
2642 }
2643
2644 if ((fd.fd_status & FD_STATUS_S9) != 0) {
2645 lp->stats.rx_fifo_errors++;
2646#ifdef DEBUG_RX_FAIL
2647 printk(KERN_DEBUG
2648 "%s: wv_receive(): ran out of resources.\n",
2649 dev->name);
2650#endif
2651 }
2652
2653 if ((fd.fd_status & FD_STATUS_S10) != 0) {
2654 lp->stats.rx_frame_errors++;
2655#ifdef DEBUG_RX_FAIL
2656 printk(KERN_DEBUG
2657 "%s: wv_receive(): alignment error.\n",
2658 dev->name);
2659#endif
2660 }
2661
2662 if ((fd.fd_status & FD_STATUS_S11) != 0) {
2663 lp->stats.rx_crc_errors++;
2664#ifdef DEBUG_RX_FAIL
2665 printk(KERN_DEBUG
2666 "%s: wv_receive(): CRC error.\n",
2667 dev->name);
2668#endif
2669 }
2670 }
2671
2672 fd.fd_status = 0;
2673 obram_write(ioaddr, fdoff(lp->rx_head, fd_status),
2674 (unsigned char *) &fd.fd_status,
2675 sizeof(fd.fd_status));
2676
2677 fd.fd_command = FD_COMMAND_EL;
2678 obram_write(ioaddr, fdoff(lp->rx_head, fd_command),
2679 (unsigned char *) &fd.fd_command,
2680 sizeof(fd.fd_command));
2681
2682 fd.fd_command = 0;
2683 obram_write(ioaddr, fdoff(lp->rx_last, fd_command),
2684 (unsigned char *) &fd.fd_command,
2685 sizeof(fd.fd_command));
2686
2687 lp->rx_last = lp->rx_head;
2688 lp->rx_head = fd.fd_link_offset;
2689 } /* for(;;) -> loop on all frames */
2690
2691#ifdef DEBUG_RX_INFO
2692 if (nreaped > 1)
2693 printk(KERN_DEBUG "%s: wv_receive(): reaped %d\n",
2694 dev->name, nreaped);
2695#endif
2696#ifdef DEBUG_RX_TRACE
2697 printk(KERN_DEBUG "%s: <-wv_receive()\n", dev->name);
2698#endif
2699}
2700
2701/*********************** PACKET TRANSMISSION ***********************/
2702/*
2703 * This part deals with sending packets through the WaveLAN.
2704 *
2705 */
2706
2707/*------------------------------------------------------------------*/
2708/*
2709 * This routine fills in the appropriate registers and memory
2710 * locations on the WaveLAN card and starts the card off on
2711 * the transmit.
2712 *
2713 * The principle:
2714 * Each block contains a transmit command, a NOP command,
2715 * a transmit block descriptor and a buffer.
2716 * The CU read the transmit block which point to the tbd,
2717 * read the tbd and the content of the buffer.
2718 * When it has finish with it, it goes to the next command
2719 * which in our case is the NOP. The NOP points on itself,
2720 * so the CU stop here.
2721 * When we add the next block, we modify the previous nop
2722 * to make it point on the new tx command.
2723 * Simple, isn't it ?
2724 *
2725 * (called in wavelan_packet_xmit())
2726 */
858119e1 2727static int wv_packet_write(struct net_device * dev, void *buf, short length)
1da177e4 2728{
524ad0a7 2729 net_local *lp = netdev_priv(dev);
1da177e4
LT
2730 unsigned long ioaddr = dev->base_addr;
2731 unsigned short txblock;
2732 unsigned short txpred;
2733 unsigned short tx_addr;
2734 unsigned short nop_addr;
2735 unsigned short tbd_addr;
2736 unsigned short buf_addr;
2737 ac_tx_t tx;
2738 ac_nop_t nop;
2739 tbd_t tbd;
2740 int clen = length;
2741 unsigned long flags;
2742
2743#ifdef DEBUG_TX_TRACE
2744 printk(KERN_DEBUG "%s: ->wv_packet_write(%d)\n", dev->name,
2745 length);
2746#endif
2747
2748 spin_lock_irqsave(&lp->spinlock, flags);
2749
2750 /* Check nothing bad has happened */
2751 if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
2752#ifdef DEBUG_TX_ERROR
2753 printk(KERN_INFO "%s: wv_packet_write(): Tx queue full.\n",
2754 dev->name);
2755#endif
2756 spin_unlock_irqrestore(&lp->spinlock, flags);
2757 return 1;
2758 }
2759
2760 /* Calculate addresses of next block and previous block. */
2761 txblock = lp->tx_first_free;
2762 txpred = txblock - TXBLOCKZ;
2763 if (txpred < OFFSET_CU)
2764 txpred += NTXBLOCKS * TXBLOCKZ;
2765 lp->tx_first_free += TXBLOCKZ;
2766 if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
2767 lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;
2768
2769 lp->tx_n_in_use++;
2770
2771 /* Calculate addresses of the different parts of the block. */
2772 tx_addr = txblock;
2773 nop_addr = tx_addr + sizeof(tx);
2774 tbd_addr = nop_addr + sizeof(nop);
2775 buf_addr = tbd_addr + sizeof(tbd);
2776
2777 /*
2778 * Transmit command
2779 */
2780 tx.tx_h.ac_status = 0;
2781 obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
2782 (unsigned char *) &tx.tx_h.ac_status,
2783 sizeof(tx.tx_h.ac_status));
2784
2785 /*
2786 * NOP command
2787 */
2788 nop.nop_h.ac_status = 0;
2789 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
2790 (unsigned char *) &nop.nop_h.ac_status,
2791 sizeof(nop.nop_h.ac_status));
2792 nop.nop_h.ac_link = nop_addr;
2793 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
2794 (unsigned char *) &nop.nop_h.ac_link,
2795 sizeof(nop.nop_h.ac_link));
2796
2797 /*
2798 * Transmit buffer descriptor
2799 */
2800 tbd.tbd_status = TBD_STATUS_EOF | (TBD_STATUS_ACNT & clen);
2801 tbd.tbd_next_bd_offset = I82586NULL;
2802 tbd.tbd_bufl = buf_addr;
2803 tbd.tbd_bufh = 0;
2804 obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd, sizeof(tbd));
2805
2806 /*
2807 * Data
2808 */
2809 obram_write(ioaddr, buf_addr, buf, length);
2810
2811 /*
2812 * Overwrite the predecessor NOP link
2813 * so that it points to this txblock.
2814 */
2815 nop_addr = txpred + sizeof(tx);
2816 nop.nop_h.ac_status = 0;
2817 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
2818 (unsigned char *) &nop.nop_h.ac_status,
2819 sizeof(nop.nop_h.ac_status));
2820 nop.nop_h.ac_link = txblock;
2821 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
2822 (unsigned char *) &nop.nop_h.ac_link,
2823 sizeof(nop.nop_h.ac_link));
2824
2825 /* Make sure the watchdog will keep quiet for a while */
2826 dev->trans_start = jiffies;
2827
2828 /* Keep stats up to date. */
2829 lp->stats.tx_bytes += length;
2830
2831 if (lp->tx_first_in_use == I82586NULL)
2832 lp->tx_first_in_use = txblock;
2833
2834 if (lp->tx_n_in_use < NTXBLOCKS - 1)
2835 netif_wake_queue(dev);
2836
2837 spin_unlock_irqrestore(&lp->spinlock, flags);
2838
2839#ifdef DEBUG_TX_INFO
2840 wv_packet_info((u8 *) buf, length, dev->name,
2841 "wv_packet_write");
2842#endif /* DEBUG_TX_INFO */
2843
2844#ifdef DEBUG_TX_TRACE
2845 printk(KERN_DEBUG "%s: <-wv_packet_write()\n", dev->name);
2846#endif
2847
2848 return 0;
2849}
2850
2851/*------------------------------------------------------------------*/
2852/*
2853 * This routine is called when we want to send a packet (NET3 callback)
2854 * In this routine, we check if the harware is ready to accept
2855 * the packet. We also prevent reentrance. Then we call the function
2856 * to send the packet.
2857 */
2858static int wavelan_packet_xmit(struct sk_buff *skb, struct net_device * dev)
2859{
524ad0a7 2860 net_local *lp = netdev_priv(dev);
1da177e4 2861 unsigned long flags;
aa95abef 2862 char data[ETH_ZLEN];
1da177e4
LT
2863
2864#ifdef DEBUG_TX_TRACE
2865 printk(KERN_DEBUG "%s: ->wavelan_packet_xmit(0x%X)\n", dev->name,
2866 (unsigned) skb);
2867#endif
2868
2869 /*
2870 * Block a timer-based transmit from overlapping.
2871 * In other words, prevent reentering this routine.
2872 */
2873 netif_stop_queue(dev);
2874
2875 /* If somebody has asked to reconfigure the controller,
2876 * we can do it now.
2877 */
2878 if (lp->reconfig_82586) {
2879 spin_lock_irqsave(&lp->spinlock, flags);
2880 wv_82586_config(dev);
2881 spin_unlock_irqrestore(&lp->spinlock, flags);
2882 /* Check that we can continue */
2883 if (lp->tx_n_in_use == (NTXBLOCKS - 1))
2884 return 1;
2885 }
2886#ifdef DEBUG_TX_ERROR
2887 if (skb->next)
2888 printk(KERN_INFO "skb has next\n");
2889#endif
2890
2891 /* Do we need some padding? */
2892 /* Note : on wireless the propagation time is in the order of 1us,
2893 * and we don't have the Ethernet specific requirement of beeing
2894 * able to detect collisions, therefore in theory we don't really
2895 * need to pad. Jean II */
2896 if (skb->len < ETH_ZLEN) {
aa95abef 2897 memset(data, 0, ETH_ZLEN);
d626f62b 2898 skb_copy_from_linear_data(skb, data, skb->len);
aa95abef
AC
2899 /* Write packet on the card */
2900 if(wv_packet_write(dev, data, ETH_ZLEN))
2901 return 1; /* We failed */
1da177e4 2902 }
aa95abef 2903 else if(wv_packet_write(dev, skb->data, skb->len))
1da177e4
LT
2904 return 1; /* We failed */
2905
aa95abef 2906
1da177e4
LT
2907 dev_kfree_skb(skb);
2908
2909#ifdef DEBUG_TX_TRACE
2910 printk(KERN_DEBUG "%s: <-wavelan_packet_xmit()\n", dev->name);
2911#endif
2912 return 0;
2913}
2914
2915/*********************** HARDWARE CONFIGURATION ***********************/
2916/*
2917 * This part does the real job of starting and configuring the hardware.
2918 */
2919
2920/*--------------------------------------------------------------------*/
2921/*
2922 * Routine to initialize the Modem Management Controller.
2923 * (called by wv_hw_reset())
2924 */
858119e1 2925static int wv_mmc_init(struct net_device * dev)
1da177e4
LT
2926{
2927 unsigned long ioaddr = dev->base_addr;
524ad0a7 2928 net_local *lp = netdev_priv(dev);
1da177e4
LT
2929 psa_t psa;
2930 mmw_t m;
2931 int configured;
2932
2933#ifdef DEBUG_CONFIG_TRACE
2934 printk(KERN_DEBUG "%s: ->wv_mmc_init()\n", dev->name);
2935#endif
2936
2937 /* Read the parameter storage area. */
2938 psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));
2939
2940#ifdef USE_PSA_CONFIG
2941 configured = psa.psa_conf_status & 1;
2942#else
2943 configured = 0;
2944#endif
2945
2946 /* Is the PSA is not configured */
2947 if (!configured) {
2948 /* User will be able to configure NWID later (with iwconfig). */
2949 psa.psa_nwid[0] = 0;
2950 psa.psa_nwid[1] = 0;
2951
2952 /* no NWID checking since NWID is not set */
2953 psa.psa_nwid_select = 0;
2954
2955 /* Disable encryption */
2956 psa.psa_encryption_select = 0;
2957
2958 /* Set to standard values:
2959 * 0x04 for AT,
2960 * 0x01 for MCA,
2961 * 0x04 for PCMCIA and 2.00 card (AT&T 407-024689/E document)
2962 */
2963 if (psa.psa_comp_number & 1)
2964 psa.psa_thr_pre_set = 0x01;
2965 else
2966 psa.psa_thr_pre_set = 0x04;
2967 psa.psa_quality_thr = 0x03;
2968
2969 /* It is configured */
2970 psa.psa_conf_status |= 1;
2971
2972#ifdef USE_PSA_CONFIG
2973 /* Write the psa. */
2974 psa_write(ioaddr, lp->hacr,
2975 (char *) psa.psa_nwid - (char *) &psa,
2976 (unsigned char *) psa.psa_nwid, 4);
2977 psa_write(ioaddr, lp->hacr,
2978 (char *) &psa.psa_thr_pre_set - (char *) &psa,
2979 (unsigned char *) &psa.psa_thr_pre_set, 1);
2980 psa_write(ioaddr, lp->hacr,
2981 (char *) &psa.psa_quality_thr - (char *) &psa,
2982 (unsigned char *) &psa.psa_quality_thr, 1);
2983 psa_write(ioaddr, lp->hacr,
2984 (char *) &psa.psa_conf_status - (char *) &psa,
2985 (unsigned char *) &psa.psa_conf_status, 1);
2986 /* update the Wavelan checksum */
2987 update_psa_checksum(dev, ioaddr, lp->hacr);
2988#endif
2989 }
2990
2991 /* Zero the mmc structure. */
2992 memset(&m, 0x00, sizeof(m));
2993
2994 /* Copy PSA info to the mmc. */
2995 m.mmw_netw_id_l = psa.psa_nwid[1];
2996 m.mmw_netw_id_h = psa.psa_nwid[0];
2997
2998 if (psa.psa_nwid_select & 1)
2999 m.mmw_loopt_sel = 0x00;
3000 else
3001 m.mmw_loopt_sel = MMW_LOOPT_SEL_DIS_NWID;
3002
3003 memcpy(&m.mmw_encr_key, &psa.psa_encryption_key,
3004 sizeof(m.mmw_encr_key));
3005
3006 if (psa.psa_encryption_select)
3007 m.mmw_encr_enable =
3008 MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE;
3009 else
3010 m.mmw_encr_enable = 0;
3011
3012 m.mmw_thr_pre_set = psa.psa_thr_pre_set & 0x3F;
3013 m.mmw_quality_thr = psa.psa_quality_thr & 0x0F;
3014
3015 /*
3016 * Set default modem control parameters.
3017 * See NCR document 407-0024326 Rev. A.
3018 */
3019 m.mmw_jabber_enable = 0x01;
3020 m.mmw_freeze = 0;
3021 m.mmw_anten_sel = MMW_ANTEN_SEL_ALG_EN;
3022 m.mmw_ifs = 0x20;
3023 m.mmw_mod_delay = 0x04;
3024 m.mmw_jam_time = 0x38;
3025
3026 m.mmw_des_io_invert = 0;
3027 m.mmw_decay_prm = 0;
3028 m.mmw_decay_updat_prm = 0;
3029
3030 /* Write all info to MMC. */
3031 mmc_write(ioaddr, 0, (u8 *) & m, sizeof(m));
3032
3033 /* The following code starts the modem of the 2.00 frequency
3034 * selectable cards at power on. It's not strictly needed for the
3035 * following boots.
3036 * The original patch was by Joe Finney for the PCMCIA driver, but
3037 * I've cleaned it up a bit and added documentation.
3038 * Thanks to Loeke Brederveld from Lucent for the info.
3039 */
3040
3041 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable)
3042 * Does it work for everybody, especially old cards? */
3043 /* Note: WFREQSEL verifies that it is able to read a sensible
3044 * frequency from EEPROM (address 0x00) and that MMR_FEE_STATUS_ID
3045 * is 0xA (Xilinx version) or 0xB (Ariadne version).
3046 * My test is more crude but does work. */
3047 if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
3048 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
3049 /* We must download the frequency parameters to the
3050 * synthesizers (from the EEPROM - area 1)
3051 * Note: as the EEPROM is automatically decremented, we set the end
3052 * if the area... */
3053 m.mmw_fee_addr = 0x0F;
3054 m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
3055 mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
3056 (unsigned char *) &m.mmw_fee_ctrl, 2);
3057
3058 /* Wait until the download is finished. */
3059 fee_wait(ioaddr, 100, 100);
3060
3061#ifdef DEBUG_CONFIG_INFO
3062 /* The frequency was in the last word downloaded. */
3063 mmc_read(ioaddr, (char *) &m.mmw_fee_data_l - (char *) &m,
3064 (unsigned char *) &m.mmw_fee_data_l, 2);
3065
3066 /* Print some info for the user. */
3067 printk(KERN_DEBUG
3068 "%s: WaveLAN 2.00 recognised (frequency select). Current frequency = %ld\n",
3069 dev->name,
3070 ((m.
3071 mmw_fee_data_h << 4) | (m.mmw_fee_data_l >> 4)) *
3072 5 / 2 + 24000L);
3073#endif
3074
3075 /* We must now download the power adjust value (gain) to
3076 * the synthesizers (from the EEPROM - area 7 - DAC). */
3077 m.mmw_fee_addr = 0x61;
3078 m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
3079 mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
3080 (unsigned char *) &m.mmw_fee_ctrl, 2);
3081
3082 /* Wait until the download is finished. */
3083 }
3084 /* if 2.00 card */
3085#ifdef DEBUG_CONFIG_TRACE
3086 printk(KERN_DEBUG "%s: <-wv_mmc_init()\n", dev->name);
3087#endif
3088 return 0;
3089}
3090
3091/*------------------------------------------------------------------*/
3092/*
3093 * Construct the fd and rbd structures.
3094 * Start the receive unit.
3095 * (called by wv_hw_reset())
3096 */
858119e1 3097static int wv_ru_start(struct net_device * dev)
1da177e4 3098{
524ad0a7 3099 net_local *lp = netdev_priv(dev);
1da177e4
LT
3100 unsigned long ioaddr = dev->base_addr;
3101 u16 scb_cs;
3102 fd_t fd;
3103 rbd_t rbd;
3104 u16 rx;
3105 u16 rx_next;
3106 int i;
3107
3108#ifdef DEBUG_CONFIG_TRACE
3109 printk(KERN_DEBUG "%s: ->wv_ru_start()\n", dev->name);
3110#endif
3111
3112 obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
3113 (unsigned char *) &scb_cs, sizeof(scb_cs));
3114 if ((scb_cs & SCB_ST_RUS) == SCB_ST_RUS_RDY)
3115 return 0;
3116
3117 lp->rx_head = OFFSET_RU;
3118
3119 for (i = 0, rx = lp->rx_head; i < NRXBLOCKS; i++, rx = rx_next) {
3120 rx_next =
3121 (i == NRXBLOCKS - 1) ? lp->rx_head : rx + RXBLOCKZ;
3122
3123 fd.fd_status = 0;
3124 fd.fd_command = (i == NRXBLOCKS - 1) ? FD_COMMAND_EL : 0;
3125 fd.fd_link_offset = rx_next;
3126 fd.fd_rbd_offset = rx + sizeof(fd);
3127 obram_write(ioaddr, rx, (unsigned char *) &fd, sizeof(fd));
3128
3129 rbd.rbd_status = 0;
3130 rbd.rbd_next_rbd_offset = I82586NULL;
3131 rbd.rbd_bufl = rx + sizeof(fd) + sizeof(rbd);
3132 rbd.rbd_bufh = 0;
3133 rbd.rbd_el_size = RBD_EL | (RBD_SIZE & MAXDATAZ);
3134 obram_write(ioaddr, rx + sizeof(fd),
3135 (unsigned char *) &rbd, sizeof(rbd));
3136
3137 lp->rx_last = rx;
3138 }
3139
3140 obram_write(ioaddr, scboff(OFFSET_SCB, scb_rfa_offset),
3141 (unsigned char *) &lp->rx_head, sizeof(lp->rx_head));
3142
3143 scb_cs = SCB_CMD_RUC_GO;
3144 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3145 (unsigned char *) &scb_cs, sizeof(scb_cs));
3146
3147 set_chan_attn(ioaddr, lp->hacr);
3148
3149 for (i = 1000; i > 0; i--) {
3150 obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
3151 (unsigned char *) &scb_cs, sizeof(scb_cs));
3152 if (scb_cs == 0)
3153 break;
3154
3155 udelay(10);
3156 }
3157
3158 if (i <= 0) {
3159#ifdef DEBUG_CONFIG_ERROR
3160 printk(KERN_INFO
3161 "%s: wavelan_ru_start(): board not accepting command.\n",
3162 dev->name);
3163#endif
3164 return -1;
3165 }
3166#ifdef DEBUG_CONFIG_TRACE
3167 printk(KERN_DEBUG "%s: <-wv_ru_start()\n", dev->name);
3168#endif
3169 return 0;
3170}
3171
3172/*------------------------------------------------------------------*/
3173/*
3174 * Initialise the transmit blocks.
3175 * Start the command unit executing the NOP
3176 * self-loop of the first transmit block.
3177 *
3178 * Here we create the list of send buffers used to transmit packets
3179 * between the PC and the command unit. For each buffer, we create a
3180 * buffer descriptor (pointing on the buffer), a transmit command
3181 * (pointing to the buffer descriptor) and a NOP command.
3182 * The transmit command is linked to the NOP, and the NOP to itself.
3183 * When we will have finished executing the transmit command, we will
3184 * then loop on the NOP. By releasing the NOP link to a new command,
3185 * we may send another buffer.
3186 *
3187 * (called by wv_hw_reset())
3188 */
858119e1 3189static int wv_cu_start(struct net_device * dev)
1da177e4 3190{
524ad0a7 3191 net_local *lp = netdev_priv(dev);
1da177e4
LT
3192 unsigned long ioaddr = dev->base_addr;
3193 int i;
3194 u16 txblock;
3195 u16 first_nop;
3196 u16 scb_cs;
3197
3198#ifdef DEBUG_CONFIG_TRACE
3199 printk(KERN_DEBUG "%s: ->wv_cu_start()\n", dev->name);
3200#endif
3201
3202 lp->tx_first_free = OFFSET_CU;
3203 lp->tx_first_in_use = I82586NULL;
3204
3205 for (i = 0, txblock = OFFSET_CU;
3206 i < NTXBLOCKS; i++, txblock += TXBLOCKZ) {
3207 ac_tx_t tx;
3208 ac_nop_t nop;
3209 tbd_t tbd;
3210 unsigned short tx_addr;
3211 unsigned short nop_addr;
3212 unsigned short tbd_addr;
3213 unsigned short buf_addr;
3214
3215 tx_addr = txblock;
3216 nop_addr = tx_addr + sizeof(tx);
3217 tbd_addr = nop_addr + sizeof(nop);
3218 buf_addr = tbd_addr + sizeof(tbd);
3219
3220 tx.tx_h.ac_status = 0;
3221 tx.tx_h.ac_command = acmd_transmit | AC_CFLD_I;
3222 tx.tx_h.ac_link = nop_addr;
3223 tx.tx_tbd_offset = tbd_addr;
3224 obram_write(ioaddr, tx_addr, (unsigned char *) &tx,
3225 sizeof(tx));
3226
3227 nop.nop_h.ac_status = 0;
3228 nop.nop_h.ac_command = acmd_nop;
3229 nop.nop_h.ac_link = nop_addr;
3230 obram_write(ioaddr, nop_addr, (unsigned char *) &nop,
3231 sizeof(nop));
3232
3233 tbd.tbd_status = TBD_STATUS_EOF;
3234 tbd.tbd_next_bd_offset = I82586NULL;
3235 tbd.tbd_bufl = buf_addr;
3236 tbd.tbd_bufh = 0;
3237 obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd,
3238 sizeof(tbd));
3239 }
3240
3241 first_nop =
3242 OFFSET_CU + (NTXBLOCKS - 1) * TXBLOCKZ + sizeof(ac_tx_t);
3243 obram_write(ioaddr, scboff(OFFSET_SCB, scb_cbl_offset),
3244 (unsigned char *) &first_nop, sizeof(first_nop));
3245
3246 scb_cs = SCB_CMD_CUC_GO;
3247 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3248 (unsigned char *) &scb_cs, sizeof(scb_cs));
3249
3250 set_chan_attn(ioaddr, lp->hacr);
3251
3252 for (i = 1000; i > 0; i--) {
3253 obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
3254 (unsigned char *) &scb_cs, sizeof(scb_cs));
3255 if (scb_cs == 0)
3256 break;
3257
3258 udelay(10);
3259 }
3260
3261 if (i <= 0) {
3262#ifdef DEBUG_CONFIG_ERROR
3263 printk(KERN_INFO
3264 "%s: wavelan_cu_start(): board not accepting command.\n",
3265 dev->name);
3266#endif
3267 return -1;
3268 }
3269
3270 lp->tx_n_in_use = 0;
3271 netif_start_queue(dev);
3272#ifdef DEBUG_CONFIG_TRACE
3273 printk(KERN_DEBUG "%s: <-wv_cu_start()\n", dev->name);
3274#endif
3275 return 0;
3276}
3277
3278/*------------------------------------------------------------------*/
3279/*
3280 * This routine does a standard configuration of the WaveLAN
3281 * controller (i82586).
3282 *
3283 * It initialises the scp, iscp and scb structure
3284 * The first two are just pointers to the next.
3285 * The last one is used for basic configuration and for basic
3286 * communication (interrupt status).
3287 *
3288 * (called by wv_hw_reset())
3289 */
858119e1 3290static int wv_82586_start(struct net_device * dev)
1da177e4 3291{
524ad0a7 3292 net_local *lp = netdev_priv(dev);
1da177e4
LT
3293 unsigned long ioaddr = dev->base_addr;
3294 scp_t scp; /* system configuration pointer */
3295 iscp_t iscp; /* intermediate scp */
3296 scb_t scb; /* system control block */
3297 ach_t cb; /* Action command header */
3298 u8 zeroes[512];
3299 int i;
3300
3301#ifdef DEBUG_CONFIG_TRACE
3302 printk(KERN_DEBUG "%s: ->wv_82586_start()\n", dev->name);
3303#endif
3304
3305 /*
3306 * Clear the onboard RAM.
3307 */
3308 memset(&zeroes[0], 0x00, sizeof(zeroes));
3309 for (i = 0; i < I82586_MEMZ; i += sizeof(zeroes))
3310 obram_write(ioaddr, i, &zeroes[0], sizeof(zeroes));
3311
3312 /*
3313 * Construct the command unit structures:
3314 * scp, iscp, scb, cb.
3315 */
3316 memset(&scp, 0x00, sizeof(scp));
3317 scp.scp_sysbus = SCP_SY_16BBUS;
3318 scp.scp_iscpl = OFFSET_ISCP;
3319 obram_write(ioaddr, OFFSET_SCP, (unsigned char *) &scp,
3320 sizeof(scp));
3321
3322 memset(&iscp, 0x00, sizeof(iscp));
3323 iscp.iscp_busy = 1;
3324 iscp.iscp_offset = OFFSET_SCB;
3325 obram_write(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
3326 sizeof(iscp));
3327
3328 /* Our first command is to reset the i82586. */
3329 memset(&scb, 0x00, sizeof(scb));
3330 scb.scb_command = SCB_CMD_RESET;
3331 scb.scb_cbl_offset = OFFSET_CU;
3332 scb.scb_rfa_offset = OFFSET_RU;
3333 obram_write(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
3334 sizeof(scb));
3335
3336 set_chan_attn(ioaddr, lp->hacr);
3337
3338 /* Wait for command to finish. */
3339 for (i = 1000; i > 0; i--) {
3340 obram_read(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
3341 sizeof(iscp));
3342
3343 if (iscp.iscp_busy == (unsigned short) 0)
3344 break;
3345
3346 udelay(10);
3347 }
3348
3349 if (i <= 0) {
3350#ifdef DEBUG_CONFIG_ERROR
3351 printk(KERN_INFO
3352 "%s: wv_82586_start(): iscp_busy timeout.\n",
3353 dev->name);
3354#endif
3355 return -1;
3356 }
3357
3358 /* Check command completion. */
3359 for (i = 15; i > 0; i--) {
3360 obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
3361 sizeof(scb));
3362
3363 if (scb.scb_status == (SCB_ST_CX | SCB_ST_CNA))
3364 break;
3365
3366 udelay(10);
3367 }
3368
3369 if (i <= 0) {
3370#ifdef DEBUG_CONFIG_ERROR
3371 printk(KERN_INFO
3372 "%s: wv_82586_start(): status: expected 0x%02x, got 0x%02x.\n",
3373 dev->name, SCB_ST_CX | SCB_ST_CNA, scb.scb_status);
3374#endif
3375 return -1;
3376 }
3377
3378 wv_ack(dev);
3379
3380 /* Set the action command header. */
3381 memset(&cb, 0x00, sizeof(cb));
3382 cb.ac_command = AC_CFLD_EL | (AC_CFLD_CMD & acmd_diagnose);
3383 cb.ac_link = OFFSET_CU;
3384 obram_write(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));
3385
3386 if (wv_synchronous_cmd(dev, "diag()") == -1)
3387 return -1;
3388
3389 obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));
3390 if (cb.ac_status & AC_SFLD_FAIL) {
3391#ifdef DEBUG_CONFIG_ERROR
3392 printk(KERN_INFO
3393 "%s: wv_82586_start(): i82586 Self Test failed.\n",
3394 dev->name);
3395#endif
3396 return -1;
3397 }
3398#ifdef DEBUG_I82586_SHOW
3399 wv_scb_show(ioaddr);
3400#endif
3401
3402#ifdef DEBUG_CONFIG_TRACE
3403 printk(KERN_DEBUG "%s: <-wv_82586_start()\n", dev->name);
3404#endif
3405 return 0;
3406}
3407
3408/*------------------------------------------------------------------*/
3409/*
3410 * This routine does a standard configuration of the WaveLAN
3411 * controller (i82586).
3412 *
3413 * This routine is a violent hack. We use the first free transmit block
3414 * to make our configuration. In the buffer area, we create the three
3415 * configuration commands (linked). We make the previous NOP point to
3416 * the beginning of the buffer instead of the tx command. After, we go
3417 * as usual to the NOP command.
3418 * Note that only the last command (mc_set) will generate an interrupt.
3419 *
3420 * (called by wv_hw_reset(), wv_82586_reconfig(), wavelan_packet_xmit())
3421 */
3422static void wv_82586_config(struct net_device * dev)
3423{
524ad0a7 3424 net_local *lp = netdev_priv(dev);
1da177e4
LT
3425 unsigned long ioaddr = dev->base_addr;
3426 unsigned short txblock;
3427 unsigned short txpred;
3428 unsigned short tx_addr;
3429 unsigned short nop_addr;
3430 unsigned short tbd_addr;
3431 unsigned short cfg_addr;
3432 unsigned short ias_addr;
3433 unsigned short mcs_addr;
3434 ac_tx_t tx;
3435 ac_nop_t nop;
3436 ac_cfg_t cfg; /* Configure action */
3437 ac_ias_t ias; /* IA-setup action */
3438 ac_mcs_t mcs; /* Multicast setup */
3439 struct dev_mc_list *dmi;
3440
3441#ifdef DEBUG_CONFIG_TRACE
3442 printk(KERN_DEBUG "%s: ->wv_82586_config()\n", dev->name);
3443#endif
3444
3445 /* Check nothing bad has happened */
3446 if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
3447#ifdef DEBUG_CONFIG_ERROR
3448 printk(KERN_INFO "%s: wv_82586_config(): Tx queue full.\n",
3449 dev->name);
3450#endif
3451 return;
3452 }
3453
3454 /* Calculate addresses of next block and previous block. */
3455 txblock = lp->tx_first_free;
3456 txpred = txblock - TXBLOCKZ;
3457 if (txpred < OFFSET_CU)
3458 txpred += NTXBLOCKS * TXBLOCKZ;
3459 lp->tx_first_free += TXBLOCKZ;
3460 if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
3461 lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;
3462
3463 lp->tx_n_in_use++;
3464
3465 /* Calculate addresses of the different parts of the block. */
3466 tx_addr = txblock;
3467 nop_addr = tx_addr + sizeof(tx);
3468 tbd_addr = nop_addr + sizeof(nop);
3469 cfg_addr = tbd_addr + sizeof(tbd_t); /* beginning of the buffer */
3470 ias_addr = cfg_addr + sizeof(cfg);
3471 mcs_addr = ias_addr + sizeof(ias);
3472
3473 /*
3474 * Transmit command
3475 */
3476 tx.tx_h.ac_status = 0xFFFF; /* Fake completion value */
3477 obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
3478 (unsigned char *) &tx.tx_h.ac_status,
3479 sizeof(tx.tx_h.ac_status));
3480
3481 /*
3482 * NOP command
3483 */
3484 nop.nop_h.ac_status = 0;
3485 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
3486 (unsigned char *) &nop.nop_h.ac_status,
3487 sizeof(nop.nop_h.ac_status));
3488 nop.nop_h.ac_link = nop_addr;
3489 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
3490 (unsigned char *) &nop.nop_h.ac_link,
3491 sizeof(nop.nop_h.ac_link));
3492
3493 /* Create a configure action. */
3494 memset(&cfg, 0x00, sizeof(cfg));
3495
3496 /*
3497 * For Linux we invert AC_CFG_ALOC() so as to conform
3498 * to the way that net packets reach us from above.
3499 * (See also ac_tx_t.)
3500 *
3501 * Updated from Wavelan Manual WCIN085B
3502 */
3503 cfg.cfg_byte_cnt =
3504 AC_CFG_BYTE_CNT(sizeof(ac_cfg_t) - sizeof(ach_t));
3505 cfg.cfg_fifolim = AC_CFG_FIFOLIM(4);
3506 cfg.cfg_byte8 = AC_CFG_SAV_BF(1) | AC_CFG_SRDY(0);
3507 cfg.cfg_byte9 = AC_CFG_ELPBCK(0) |
3508 AC_CFG_ILPBCK(0) |
3509 AC_CFG_PRELEN(AC_CFG_PLEN_2) |
3510 AC_CFG_ALOC(1) | AC_CFG_ADDRLEN(WAVELAN_ADDR_SIZE);
3511 cfg.cfg_byte10 = AC_CFG_BOFMET(1) |
3512 AC_CFG_ACR(6) | AC_CFG_LINPRIO(0);
3513 cfg.cfg_ifs = 0x20;
3514 cfg.cfg_slotl = 0x0C;
3515 cfg.cfg_byte13 = AC_CFG_RETRYNUM(15) | AC_CFG_SLTTMHI(0);
3516 cfg.cfg_byte14 = AC_CFG_FLGPAD(0) |
3517 AC_CFG_BTSTF(0) |
3518 AC_CFG_CRC16(0) |
3519 AC_CFG_NCRC(0) |
3520 AC_CFG_TNCRS(1) |
3521 AC_CFG_MANCH(0) |
3522 AC_CFG_BCDIS(0) | AC_CFG_PRM(lp->promiscuous);
3523 cfg.cfg_byte15 = AC_CFG_ICDS(0) |
3524 AC_CFG_CDTF(0) | AC_CFG_ICSS(0) | AC_CFG_CSTF(0);
3525/*
3526 cfg.cfg_min_frm_len = AC_CFG_MNFRM(64);
3527*/
3528 cfg.cfg_min_frm_len = AC_CFG_MNFRM(8);
3529
3530 cfg.cfg_h.ac_command = (AC_CFLD_CMD & acmd_configure);
3531 cfg.cfg_h.ac_link = ias_addr;
3532 obram_write(ioaddr, cfg_addr, (unsigned char *) &cfg, sizeof(cfg));
3533
3534 /* Set up the MAC address */
3535 memset(&ias, 0x00, sizeof(ias));
3536 ias.ias_h.ac_command = (AC_CFLD_CMD & acmd_ia_setup);
3537 ias.ias_h.ac_link = mcs_addr;
3538 memcpy(&ias.ias_addr[0], (unsigned char *) &dev->dev_addr[0],
3539 sizeof(ias.ias_addr));
3540 obram_write(ioaddr, ias_addr, (unsigned char *) &ias, sizeof(ias));
3541
3542 /* Initialize adapter's Ethernet multicast addresses */
3543 memset(&mcs, 0x00, sizeof(mcs));
3544 mcs.mcs_h.ac_command = AC_CFLD_I | (AC_CFLD_CMD & acmd_mc_setup);
3545 mcs.mcs_h.ac_link = nop_addr;
3546 mcs.mcs_cnt = WAVELAN_ADDR_SIZE * lp->mc_count;
3547 obram_write(ioaddr, mcs_addr, (unsigned char *) &mcs, sizeof(mcs));
3548
3549 /* Any address to set? */
3550 if (lp->mc_count) {
3551 for (dmi = dev->mc_list; dmi; dmi = dmi->next)
3552 outsw(PIOP1(ioaddr), (u16 *) dmi->dmi_addr,
3553 WAVELAN_ADDR_SIZE >> 1);
3554
3555#ifdef DEBUG_CONFIG_INFO
3556 printk(KERN_DEBUG
3557 "%s: wv_82586_config(): set %d multicast addresses:\n",
3558 dev->name, lp->mc_count);
3559 for (dmi = dev->mc_list; dmi; dmi = dmi->next)
e174961c 3560 printk(KERN_DEBUG " %pM\n", dmi->dmi_addr);
1da177e4
LT
3561#endif
3562 }
3563
3564 /*
3565 * Overwrite the predecessor NOP link
3566 * so that it points to the configure action.
3567 */
3568 nop_addr = txpred + sizeof(tx);
3569 nop.nop_h.ac_status = 0;
3570 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
3571 (unsigned char *) &nop.nop_h.ac_status,
3572 sizeof(nop.nop_h.ac_status));
3573 nop.nop_h.ac_link = cfg_addr;
3574 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
3575 (unsigned char *) &nop.nop_h.ac_link,
3576 sizeof(nop.nop_h.ac_link));
3577
3578 /* Job done, clear the flag */
3579 lp->reconfig_82586 = 0;
3580
3581 if (lp->tx_first_in_use == I82586NULL)
3582 lp->tx_first_in_use = txblock;
3583
3584 if (lp->tx_n_in_use == (NTXBLOCKS - 1))
3585 netif_stop_queue(dev);
3586
3587#ifdef DEBUG_CONFIG_TRACE
3588 printk(KERN_DEBUG "%s: <-wv_82586_config()\n", dev->name);
3589#endif
3590}
3591
3592/*------------------------------------------------------------------*/
3593/*
3594 * This routine, called by wavelan_close(), gracefully stops the
3595 * WaveLAN controller (i82586).
3596 * (called by wavelan_close())
3597 */
858119e1 3598static void wv_82586_stop(struct net_device * dev)
1da177e4 3599{
524ad0a7 3600 net_local *lp = netdev_priv(dev);
1da177e4
LT
3601 unsigned long ioaddr = dev->base_addr;
3602 u16 scb_cmd;
3603
3604#ifdef DEBUG_CONFIG_TRACE
3605 printk(KERN_DEBUG "%s: ->wv_82586_stop()\n", dev->name);
3606#endif
3607
3608 /* Suspend both command unit and receive unit. */
3609 scb_cmd =
3610 (SCB_CMD_CUC & SCB_CMD_CUC_SUS) | (SCB_CMD_RUC &
3611 SCB_CMD_RUC_SUS);
3612 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3613 (unsigned char *) &scb_cmd, sizeof(scb_cmd));
3614 set_chan_attn(ioaddr, lp->hacr);
3615
3616 /* No more interrupts */
3617 wv_ints_off(dev);
3618
3619#ifdef DEBUG_CONFIG_TRACE
3620 printk(KERN_DEBUG "%s: <-wv_82586_stop()\n", dev->name);
3621#endif
3622}
3623
3624/*------------------------------------------------------------------*/
3625/*
3626 * Totally reset the WaveLAN and restart it.
3627 * Performs the following actions:
3628 * 1. A power reset (reset DMA)
3629 * 2. Initialize the radio modem (using wv_mmc_init)
3630 * 3. Reset & Configure LAN controller (using wv_82586_start)
3631 * 4. Start the LAN controller's command unit
3632 * 5. Start the LAN controller's receive unit
3633 * (called by wavelan_interrupt(), wavelan_watchdog() & wavelan_open())
3634 */
3635static int wv_hw_reset(struct net_device * dev)
3636{
524ad0a7 3637 net_local *lp = netdev_priv(dev);
1da177e4
LT
3638 unsigned long ioaddr = dev->base_addr;
3639
3640#ifdef DEBUG_CONFIG_TRACE
3641 printk(KERN_DEBUG "%s: ->wv_hw_reset(dev=0x%x)\n", dev->name,
3642 (unsigned int) dev);
3643#endif
3644
3645 /* Increase the number of resets done. */
3646 lp->nresets++;
3647
3648 wv_hacr_reset(ioaddr);
3649 lp->hacr = HACR_DEFAULT;
3650
3651 if ((wv_mmc_init(dev) < 0) || (wv_82586_start(dev) < 0))
3652 return -1;
3653
3654 /* Enable the card to send interrupts. */
3655 wv_ints_on(dev);
3656
3657 /* Start card functions */
3658 if (wv_cu_start(dev) < 0)
3659 return -1;
3660
3661 /* Setup the controller and parameters */
3662 wv_82586_config(dev);
3663
3664 /* Finish configuration with the receive unit */
3665 if (wv_ru_start(dev) < 0)
3666 return -1;
3667
3668#ifdef DEBUG_CONFIG_TRACE
3669 printk(KERN_DEBUG "%s: <-wv_hw_reset()\n", dev->name);
3670#endif
3671 return 0;
3672}
3673
3674/*------------------------------------------------------------------*/
3675/*
3676 * Check if there is a WaveLAN at the specific base address.
3677 * As a side effect, this reads the MAC address.
3678 * (called in wavelan_probe() and init_module())
3679 */
3680static int wv_check_ioaddr(unsigned long ioaddr, u8 * mac)
3681{
3682 int i; /* Loop counter */
3683
3684 /* Check if the base address if available. */
3685 if (!request_region(ioaddr, sizeof(ha_t), "wavelan probe"))
3686 return -EBUSY; /* ioaddr already used */
3687
3688 /* Reset host interface */
3689 wv_hacr_reset(ioaddr);
3690
3691 /* Read the MAC address from the parameter storage area. */
3692 psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_univ_mac_addr),
3693 mac, 6);
3694
3695 release_region(ioaddr, sizeof(ha_t));
3696
3697 /*
3698 * Check the first three octets of the address for the manufacturer's code.
3699 * Note: if this can't find your WaveLAN card, you've got a
3700 * non-NCR/AT&T/Lucent ISA card. See wavelan.p.h for detail on
3701 * how to configure your card.
3702 */
c00acf46 3703 for (i = 0; i < ARRAY_SIZE(MAC_ADDRESSES); i++)
1da177e4
LT
3704 if ((mac[0] == MAC_ADDRESSES[i][0]) &&
3705 (mac[1] == MAC_ADDRESSES[i][1]) &&
3706 (mac[2] == MAC_ADDRESSES[i][2]))
3707 return 0;
3708
3709#ifdef DEBUG_CONFIG_INFO
3710 printk(KERN_WARNING
3711 "WaveLAN (0x%3X): your MAC address might be %02X:%02X:%02X.\n",
3712 ioaddr, mac[0], mac[1], mac[2]);
3713#endif
3714 return -ENODEV;
3715}
3716
3717/************************ INTERRUPT HANDLING ************************/
3718
3719/*
3720 * This function is the interrupt handler for the WaveLAN card. This
3721 * routine will be called whenever:
3722 */
7d12e780 3723static irqreturn_t wavelan_interrupt(int irq, void *dev_id)
1da177e4
LT
3724{
3725 struct net_device *dev;
3726 unsigned long ioaddr;
3727 net_local *lp;
3728 u16 hasr;
3729 u16 status;
3730 u16 ack_cmd;
3731
3732 dev = dev_id;
3733
3734#ifdef DEBUG_INTERRUPT_TRACE
3735 printk(KERN_DEBUG "%s: ->wavelan_interrupt()\n", dev->name);
3736#endif
3737
524ad0a7 3738 lp = netdev_priv(dev);
1da177e4
LT
3739 ioaddr = dev->base_addr;
3740
3741#ifdef DEBUG_INTERRUPT_INFO
3742 /* Check state of our spinlock */
3743 if(spin_is_locked(&lp->spinlock))
3744 printk(KERN_DEBUG
3745 "%s: wavelan_interrupt(): spinlock is already locked !!!\n",
3746 dev->name);
3747#endif
3748
3749 /* Prevent reentrancy. We need to do that because we may have
3750 * multiple interrupt handler running concurrently.
3751 * It is safe because interrupts are disabled before acquiring
3752 * the spinlock. */
3753 spin_lock(&lp->spinlock);
3754
3755 /* We always had spurious interrupts at startup, but lately I
3756 * saw them comming *between* the request_irq() and the
3757 * spin_lock_irqsave() in wavelan_open(), so the spinlock
3758 * protection is no enough.
3759 * So, we also check lp->hacr that will tell us is we enabled
3760 * irqs or not (see wv_ints_on()).
3761 * We can't use netif_running(dev) because we depend on the
3762 * proper processing of the irq generated during the config. */
3763
3764 /* Which interrupt it is ? */
3765 hasr = hasr_read(ioaddr);
3766
3767#ifdef DEBUG_INTERRUPT_INFO
3768 printk(KERN_INFO
3769 "%s: wavelan_interrupt(): hasr 0x%04x; hacr 0x%04x.\n",
3770 dev->name, hasr, lp->hacr);
3771#endif
3772
3773 /* Check modem interrupt */
3774 if ((hasr & HASR_MMC_INTR) && (lp->hacr & HACR_MMC_INT_ENABLE)) {
3775 u8 dce_status;
3776
3777 /*
3778 * Interrupt from the modem management controller.
3779 * This will clear it -- ignored for now.
3780 */
3781 mmc_read(ioaddr, mmroff(0, mmr_dce_status), &dce_status,
3782 sizeof(dce_status));
3783
3784#ifdef DEBUG_INTERRUPT_ERROR
3785 printk(KERN_INFO
3786 "%s: wavelan_interrupt(): unexpected mmc interrupt: status 0x%04x.\n",
3787 dev->name, dce_status);
3788#endif
3789 }
3790
3791 /* Check if not controller interrupt */
3792 if (((hasr & HASR_82586_INTR) == 0) ||
3793 ((lp->hacr & HACR_82586_INT_ENABLE) == 0)) {
3794#ifdef DEBUG_INTERRUPT_ERROR
3795 printk(KERN_INFO
3796 "%s: wavelan_interrupt(): interrupt not coming from i82586 - hasr 0x%04x.\n",
3797 dev->name, hasr);
3798#endif
3799 spin_unlock (&lp->spinlock);
3800 return IRQ_NONE;
3801 }
3802
3803 /* Read interrupt data. */
3804 obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
3805 (unsigned char *) &status, sizeof(status));
3806
3807 /*
3808 * Acknowledge the interrupt(s).
3809 */
3810 ack_cmd = status & SCB_ST_INT;
3811 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3812 (unsigned char *) &ack_cmd, sizeof(ack_cmd));
3813 set_chan_attn(ioaddr, lp->hacr);
3814
3815#ifdef DEBUG_INTERRUPT_INFO
3816 printk(KERN_DEBUG "%s: wavelan_interrupt(): status 0x%04x.\n",
3817 dev->name, status);
3818#endif
3819
3820 /* Command completed. */
3821 if ((status & SCB_ST_CX) == SCB_ST_CX) {
3822#ifdef DEBUG_INTERRUPT_INFO
3823 printk(KERN_DEBUG
3824 "%s: wavelan_interrupt(): command completed.\n",
3825 dev->name);
3826#endif
3827 wv_complete(dev, ioaddr, lp);
3828 }
3829
3830 /* Frame received. */
3831 if ((status & SCB_ST_FR) == SCB_ST_FR) {
3832#ifdef DEBUG_INTERRUPT_INFO
3833 printk(KERN_DEBUG
3834 "%s: wavelan_interrupt(): received packet.\n",
3835 dev->name);
3836#endif
3837 wv_receive(dev);
3838 }
3839
3840 /* Check the state of the command unit. */
3841 if (((status & SCB_ST_CNA) == SCB_ST_CNA) ||
3842 (((status & SCB_ST_CUS) != SCB_ST_CUS_ACTV) &&
3843 (netif_running(dev)))) {
3844#ifdef DEBUG_INTERRUPT_ERROR
3845 printk(KERN_INFO
3846 "%s: wavelan_interrupt(): CU inactive -- restarting\n",
3847 dev->name);
3848#endif
3849 wv_hw_reset(dev);
3850 }
3851
3852 /* Check the state of the command unit. */
3853 if (((status & SCB_ST_RNR) == SCB_ST_RNR) ||
3854 (((status & SCB_ST_RUS) != SCB_ST_RUS_RDY) &&
3855 (netif_running(dev)))) {
3856#ifdef DEBUG_INTERRUPT_ERROR
3857 printk(KERN_INFO
3858 "%s: wavelan_interrupt(): RU not ready -- restarting\n",
3859 dev->name);
3860#endif
3861 wv_hw_reset(dev);
3862 }
3863
3864 /* Release spinlock */
3865 spin_unlock (&lp->spinlock);
3866
3867#ifdef DEBUG_INTERRUPT_TRACE
3868 printk(KERN_DEBUG "%s: <-wavelan_interrupt()\n", dev->name);
3869#endif
3870 return IRQ_HANDLED;
3871}
3872
3873/*------------------------------------------------------------------*/
3874/*
3875 * Watchdog: when we start a transmission, a timer is set for us in the
3876 * kernel. If the transmission completes, this timer is disabled. If
3877 * the timer expires, we are called and we try to unlock the hardware.
3878 */
3879static void wavelan_watchdog(struct net_device * dev)
3880{
524ad0a7 3881 net_local *lp = netdev_priv(dev);
1da177e4
LT
3882 u_long ioaddr = dev->base_addr;
3883 unsigned long flags;
3884 unsigned int nreaped;
3885
3886#ifdef DEBUG_INTERRUPT_TRACE
3887 printk(KERN_DEBUG "%s: ->wavelan_watchdog()\n", dev->name);
3888#endif
3889
3890#ifdef DEBUG_INTERRUPT_ERROR
3891 printk(KERN_INFO "%s: wavelan_watchdog: watchdog timer expired\n",
3892 dev->name);
3893#endif
3894
3895 /* Check that we came here for something */
3896 if (lp->tx_n_in_use <= 0) {
3897 return;
3898 }
3899
3900 spin_lock_irqsave(&lp->spinlock, flags);
3901
3902 /* Try to see if some buffers are not free (in case we missed
3903 * an interrupt */
3904 nreaped = wv_complete(dev, ioaddr, lp);
3905
3906#ifdef DEBUG_INTERRUPT_INFO
3907 printk(KERN_DEBUG
3908 "%s: wavelan_watchdog(): %d reaped, %d remain.\n",
3909 dev->name, nreaped, lp->tx_n_in_use);
3910#endif
3911
3912#ifdef DEBUG_PSA_SHOW
3913 {
3914 psa_t psa;
3915 psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa));
3916 wv_psa_show(&psa);
3917 }
3918#endif
3919#ifdef DEBUG_MMC_SHOW
3920 wv_mmc_show(dev);
3921#endif
3922#ifdef DEBUG_I82586_SHOW
3923 wv_cu_show(dev);
3924#endif
3925
3926 /* If no buffer has been freed */
3927 if (nreaped == 0) {
3928#ifdef DEBUG_INTERRUPT_ERROR
3929 printk(KERN_INFO
3930 "%s: wavelan_watchdog(): cleanup failed, trying reset\n",
3931 dev->name);
3932#endif
3933 wv_hw_reset(dev);
3934 }
3935
3936 /* At this point, we should have some free Tx buffer ;-) */
3937 if (lp->tx_n_in_use < NTXBLOCKS - 1)
3938 netif_wake_queue(dev);
3939
3940 spin_unlock_irqrestore(&lp->spinlock, flags);
3941
3942#ifdef DEBUG_INTERRUPT_TRACE
3943 printk(KERN_DEBUG "%s: <-wavelan_watchdog()\n", dev->name);
3944#endif
3945}
3946
3947/********************* CONFIGURATION CALLBACKS *********************/
3948/*
3949 * Here are the functions called by the Linux networking code (NET3)
3950 * for initialization, configuration and deinstallations of the
3951 * WaveLAN ISA hardware.
3952 */
3953
3954/*------------------------------------------------------------------*/
3955/*
3956 * Configure and start up the WaveLAN PCMCIA adaptor.
3957 * Called by NET3 when it "opens" the device.
3958 */
3959static int wavelan_open(struct net_device * dev)
3960{
524ad0a7 3961 net_local *lp = netdev_priv(dev);
1da177e4
LT
3962 unsigned long flags;
3963
3964#ifdef DEBUG_CALLBACK_TRACE
3965 printk(KERN_DEBUG "%s: ->wavelan_open(dev=0x%x)\n", dev->name,
3966 (unsigned int) dev);
3967#endif
3968
3969 /* Check irq */
3970 if (dev->irq == 0) {
3971#ifdef DEBUG_CONFIG_ERROR
3972 printk(KERN_WARNING "%s: wavelan_open(): no IRQ\n",
3973 dev->name);
3974#endif
3975 return -ENXIO;
3976 }
3977
3978 if (request_irq(dev->irq, &wavelan_interrupt, 0, "WaveLAN", dev) != 0)
3979 {
3980#ifdef DEBUG_CONFIG_ERROR
3981 printk(KERN_WARNING "%s: wavelan_open(): invalid IRQ\n",
3982 dev->name);
3983#endif
3984 return -EAGAIN;
3985 }
3986
3987 spin_lock_irqsave(&lp->spinlock, flags);
3988
3989 if (wv_hw_reset(dev) != -1) {
3990 netif_start_queue(dev);
3991 } else {
3992 free_irq(dev->irq, dev);
3993#ifdef DEBUG_CONFIG_ERROR
3994 printk(KERN_INFO
3995 "%s: wavelan_open(): impossible to start the card\n",
3996 dev->name);
3997#endif
3998 spin_unlock_irqrestore(&lp->spinlock, flags);
3999 return -EAGAIN;
4000 }
4001 spin_unlock_irqrestore(&lp->spinlock, flags);
4002
4003#ifdef DEBUG_CALLBACK_TRACE
4004 printk(KERN_DEBUG "%s: <-wavelan_open()\n", dev->name);
4005#endif
4006 return 0;
4007}
4008
4009/*------------------------------------------------------------------*/
4010/*
4011 * Shut down the WaveLAN ISA card.
4012 * Called by NET3 when it "closes" the device.
4013 */
4014static int wavelan_close(struct net_device * dev)
4015{
524ad0a7 4016 net_local *lp = netdev_priv(dev);
1da177e4
LT
4017 unsigned long flags;
4018
4019#ifdef DEBUG_CALLBACK_TRACE
4020 printk(KERN_DEBUG "%s: ->wavelan_close(dev=0x%x)\n", dev->name,
4021 (unsigned int) dev);
4022#endif
4023
4024 netif_stop_queue(dev);
4025
4026 /*
4027 * Flush the Tx and disable Rx.
4028 */
4029 spin_lock_irqsave(&lp->spinlock, flags);
4030 wv_82586_stop(dev);
4031 spin_unlock_irqrestore(&lp->spinlock, flags);
4032
4033 free_irq(dev->irq, dev);
4034
4035#ifdef DEBUG_CALLBACK_TRACE
4036 printk(KERN_DEBUG "%s: <-wavelan_close()\n", dev->name);
4037#endif
4038 return 0;
4039}
4040
4041/*------------------------------------------------------------------*/
4042/*
4043 * Probe an I/O address, and if the WaveLAN is there configure the
4044 * device structure
4045 * (called by wavelan_probe() and via init_module()).
4046 */
4047static int __init wavelan_config(struct net_device *dev, unsigned short ioaddr)
4048{
4049 u8 irq_mask;
4050 int irq;
4051 net_local *lp;
4052 mac_addr mac;
4053 int err;
4054
4055 if (!request_region(ioaddr, sizeof(ha_t), "wavelan"))
4056 return -EADDRINUSE;
4057
4058 err = wv_check_ioaddr(ioaddr, mac);
4059 if (err)
4060 goto out;
4061
4062 memcpy(dev->dev_addr, mac, 6);
4063
4064 dev->base_addr = ioaddr;
4065
4066#ifdef DEBUG_CALLBACK_TRACE
4067 printk(KERN_DEBUG "%s: ->wavelan_config(dev=0x%x, ioaddr=0x%lx)\n",
4068 dev->name, (unsigned int) dev, ioaddr);
4069#endif
4070
4071 /* Check IRQ argument on command line. */
4072 if (dev->irq != 0) {
4073 irq_mask = wv_irq_to_psa(dev->irq);
4074
4075 if (irq_mask == 0) {
4076#ifdef DEBUG_CONFIG_ERROR
4077 printk(KERN_WARNING
4078 "%s: wavelan_config(): invalid IRQ %d ignored.\n",
4079 dev->name, dev->irq);
4080#endif
4081 dev->irq = 0;
4082 } else {
4083#ifdef DEBUG_CONFIG_INFO
4084 printk(KERN_DEBUG
4085 "%s: wavelan_config(): changing IRQ to %d\n",
4086 dev->name, dev->irq);
4087#endif
4088 psa_write(ioaddr, HACR_DEFAULT,
4089 psaoff(0, psa_int_req_no), &irq_mask, 1);
4090 /* update the Wavelan checksum */
4091 update_psa_checksum(dev, ioaddr, HACR_DEFAULT);
4092 wv_hacr_reset(ioaddr);
4093 }
4094 }
4095
4096 psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_int_req_no),
4097 &irq_mask, 1);
4098 if ((irq = wv_psa_to_irq(irq_mask)) == -1) {
4099#ifdef DEBUG_CONFIG_ERROR
4100 printk(KERN_INFO
4101 "%s: wavelan_config(): could not wavelan_map_irq(%d).\n",
4102 dev->name, irq_mask);
4103#endif
4104 err = -EAGAIN;
4105 goto out;
4106 }
4107
4108 dev->irq = irq;
4109
4110 dev->mem_start = 0x0000;
4111 dev->mem_end = 0x0000;
4112 dev->if_port = 0;
4113
4114 /* Initialize device structures */
524ad0a7
WC
4115 memset(netdev_priv(dev), 0, sizeof(net_local));
4116 lp = netdev_priv(dev);
1da177e4
LT
4117
4118 /* Back link to the device structure. */
4119 lp->dev = dev;
4120 /* Add the device at the beginning of the linked list. */
4121 lp->next = wavelan_list;
4122 wavelan_list = lp;
4123
4124 lp->hacr = HACR_DEFAULT;
4125
4126 /* Multicast stuff */
4127 lp->promiscuous = 0;
4128 lp->mc_count = 0;
4129
4130 /* Init spinlock */
4131 spin_lock_init(&lp->spinlock);
4132
1da177e4
LT
4133 dev->open = wavelan_open;
4134 dev->stop = wavelan_close;
4135 dev->hard_start_xmit = wavelan_packet_xmit;
4136 dev->get_stats = wavelan_get_stats;
4137 dev->set_multicast_list = &wavelan_set_multicast_list;
4138 dev->tx_timeout = &wavelan_watchdog;
4139 dev->watchdog_timeo = WATCHDOG_JIFFIES;
4140#ifdef SET_MAC_ADDRESS
4141 dev->set_mac_address = &wavelan_set_mac_address;
4142#endif /* SET_MAC_ADDRESS */
4143
1da177e4
LT
4144 dev->wireless_handlers = &wavelan_handler_def;
4145 lp->wireless_data.spy_data = &lp->spy_data;
4146 dev->wireless_data = &lp->wireless_data;
1da177e4
LT
4147
4148 dev->mtu = WAVELAN_MTU;
4149
4150 /* Display nice information. */
4151 wv_init_info(dev);
4152
4153#ifdef DEBUG_CALLBACK_TRACE
4154 printk(KERN_DEBUG "%s: <-wavelan_config()\n", dev->name);
4155#endif
4156 return 0;
4157out:
4158 release_region(ioaddr, sizeof(ha_t));
4159 return err;
4160}
4161
4162/*------------------------------------------------------------------*/
4163/*
4164 * Check for a network adaptor of this type. Return '0' iff one
4165 * exists. There seem to be different interpretations of
4166 * the initial value of dev->base_addr.
4167 * We follow the example in drivers/net/ne.c.
4168 * (called in "Space.c")
4169 */
4170struct net_device * __init wavelan_probe(int unit)
4171{
4172 struct net_device *dev;
4173 short base_addr;
4174 int def_irq;
4175 int i;
4176 int r = 0;
4177
60da481b
HD
4178 /* compile-time check the sizes of structures */
4179 BUILD_BUG_ON(sizeof(psa_t) != PSA_SIZE);
4180 BUILD_BUG_ON(sizeof(mmw_t) != MMW_SIZE);
4181 BUILD_BUG_ON(sizeof(mmr_t) != MMR_SIZE);
4182 BUILD_BUG_ON(sizeof(ha_t) != HA_SIZE);
1da177e4
LT
4183
4184 dev = alloc_etherdev(sizeof(net_local));
4185 if (!dev)
4186 return ERR_PTR(-ENOMEM);
4187
4188 sprintf(dev->name, "eth%d", unit);
4189 netdev_boot_setup_check(dev);
4190 base_addr = dev->base_addr;
4191 def_irq = dev->irq;
4192
4193#ifdef DEBUG_CALLBACK_TRACE
4194 printk(KERN_DEBUG
4195 "%s: ->wavelan_probe(dev=%p (base_addr=0x%x))\n",
4196 dev->name, dev, (unsigned int) dev->base_addr);
4197#endif
4198
4199 /* Don't probe at all. */
4200 if (base_addr < 0) {
4201#ifdef DEBUG_CONFIG_ERROR
4202 printk(KERN_WARNING
4203 "%s: wavelan_probe(): invalid base address\n",
4204 dev->name);
4205#endif
4206 r = -ENXIO;
4207 } else if (base_addr > 0x100) { /* Check a single specified location. */
4208 r = wavelan_config(dev, base_addr);
4209#ifdef DEBUG_CONFIG_INFO
4210 if (r != 0)
4211 printk(KERN_DEBUG
4212 "%s: wavelan_probe(): no device at specified base address (0x%X) or address already in use\n",
4213 dev->name, base_addr);
4214#endif
4215
4216#ifdef DEBUG_CALLBACK_TRACE
4217 printk(KERN_DEBUG "%s: <-wavelan_probe()\n", dev->name);
4218#endif
4219 } else { /* Scan all possible addresses of the WaveLAN hardware. */
0a92dd0a 4220 for (i = 0; i < ARRAY_SIZE(iobase); i++) {
1da177e4
LT
4221 dev->irq = def_irq;
4222 if (wavelan_config(dev, iobase[i]) == 0) {
4223#ifdef DEBUG_CALLBACK_TRACE
4224 printk(KERN_DEBUG
4225 "%s: <-wavelan_probe()\n",
4226 dev->name);
4227#endif
4228 break;
4229 }
4230 }
0a92dd0a 4231 if (i == ARRAY_SIZE(iobase))
1da177e4
LT
4232 r = -ENODEV;
4233 }
4234 if (r)
4235 goto out;
4236 r = register_netdev(dev);
4237 if (r)
4238 goto out1;
4239 return dev;
4240out1:
4241 release_region(dev->base_addr, sizeof(ha_t));
4242 wavelan_list = wavelan_list->next;
4243out:
4244 free_netdev(dev);
4245 return ERR_PTR(r);
4246}
4247
4248/****************************** MODULE ******************************/
4249/*
4250 * Module entry point: insertion and removal
4251 */
4252
4253#ifdef MODULE
4254/*------------------------------------------------------------------*/
4255/*
4256 * Insertion of the module
4257 * I'm now quite proud of the multi-device support.
4258 */
53072d68 4259int __init init_module(void)
1da177e4
LT
4260{
4261 int ret = -EIO; /* Return error if no cards found */
4262 int i;
4263
4264#ifdef DEBUG_MODULE_TRACE
4265 printk(KERN_DEBUG "-> init_module()\n");
4266#endif
4267
4268 /* If probing is asked */
4269 if (io[0] == 0) {
4270#ifdef DEBUG_CONFIG_ERROR
4271 printk(KERN_WARNING
4272 "WaveLAN init_module(): doing device probing (bad !)\n");
4273 printk(KERN_WARNING
4274 "Specify base addresses while loading module to correct the problem\n");
4275#endif
4276
4277 /* Copy the basic set of address to be probed. */
0a92dd0a 4278 for (i = 0; i < ARRAY_SIZE(iobase); i++)
1da177e4
LT
4279 io[i] = iobase[i];
4280 }
4281
4282
4283 /* Loop on all possible base addresses. */
4d8faf69 4284 for (i = 0; i < ARRAY_SIZE(io) && io[i] != 0; i++) {
1da177e4
LT
4285 struct net_device *dev = alloc_etherdev(sizeof(net_local));
4286 if (!dev)
4287 break;
4288 if (name[i])
4289 strcpy(dev->name, name[i]); /* Copy name */
4290 dev->base_addr = io[i];
4291 dev->irq = irq[i];
4292
4293 /* Check if there is something at this base address. */
4294 if (wavelan_config(dev, io[i]) == 0) {
4295 if (register_netdev(dev) != 0) {
4296 release_region(dev->base_addr, sizeof(ha_t));
4297 wavelan_list = wavelan_list->next;
4298 } else {
4299 ret = 0;
4300 continue;
4301 }
4302 }
4303 free_netdev(dev);
4304 }
4305
4306#ifdef DEBUG_CONFIG_ERROR
4307 if (!wavelan_list)
4308 printk(KERN_WARNING
4309 "WaveLAN init_module(): no device found\n");
4310#endif
4311
4312#ifdef DEBUG_MODULE_TRACE
4313 printk(KERN_DEBUG "<- init_module()\n");
4314#endif
4315 return ret;
4316}
4317
4318/*------------------------------------------------------------------*/
4319/*
4320 * Removal of the module
4321 */
4322void cleanup_module(void)
4323{
4324#ifdef DEBUG_MODULE_TRACE
4325 printk(KERN_DEBUG "-> cleanup_module()\n");
4326#endif
4327
4328 /* Loop on all devices and release them. */
4329 while (wavelan_list) {
4330 struct net_device *dev = wavelan_list->dev;
4331
4332#ifdef DEBUG_CONFIG_INFO
4333 printk(KERN_DEBUG
4334 "%s: cleanup_module(): removing device at 0x%x\n",
4335 dev->name, (unsigned int) dev);
4336#endif
4337 unregister_netdev(dev);
4338
4339 release_region(dev->base_addr, sizeof(ha_t));
4340 wavelan_list = wavelan_list->next;
4341
4342 free_netdev(dev);
4343 }
4344
4345#ifdef DEBUG_MODULE_TRACE
4346 printk(KERN_DEBUG "<- cleanup_module()\n");
4347#endif
4348}
4349#endif /* MODULE */
4350MODULE_LICENSE("GPL");
4351
4352/*
4353 * This software may only be used and distributed
4354 * according to the terms of the GNU General Public License.
4355 *
4356 * This software was developed as a component of the
4357 * Linux operating system.
4358 * It is based on other device drivers and information
4359 * either written or supplied by:
4360 * Ajay Bakre (bakre@paul.rutgers.edu),
4361 * Donald Becker (becker@scyld.com),
4362 * Loeke Brederveld (Loeke.Brederveld@Utrecht.NCR.com),
4363 * Anders Klemets (klemets@it.kth.se),
4364 * Vladimir V. Kolpakov (w@stier.koenig.ru),
4365 * Marc Meertens (Marc.Meertens@Utrecht.NCR.com),
4366 * Pauline Middelink (middelin@polyware.iaf.nl),
4367 * Robert Morris (rtm@das.harvard.edu),
4368 * Jean Tourrilhes (jt@hplb.hpl.hp.com),
4369 * Girish Welling (welling@paul.rutgers.edu),
4370 *
4371 * Thanks go also to:
4372 * James Ashton (jaa101@syseng.anu.edu.au),
113aa838 4373 * Alan Cox (alan@lxorguk.ukuu.org.uk),
1da177e4
LT
4374 * Allan Creighton (allanc@cs.usyd.edu.au),
4375 * Matthew Geier (matthew@cs.usyd.edu.au),
4376 * Remo di Giovanni (remo@cs.usyd.edu.au),
4377 * Eckhard Grah (grah@wrcs1.urz.uni-wuppertal.de),
4378 * Vipul Gupta (vgupta@cs.binghamton.edu),
4379 * Mark Hagan (mhagan@wtcpost.daytonoh.NCR.COM),
4380 * Tim Nicholson (tim@cs.usyd.edu.au),
4381 * Ian Parkin (ian@cs.usyd.edu.au),
4382 * John Rosenberg (johnr@cs.usyd.edu.au),
4383 * George Rossi (george@phm.gov.au),
4384 * Arthur Scott (arthur@cs.usyd.edu.au),
4385 * Peter Storey,
4386 * for their assistance and advice.
4387 *
4388 * Please send bug reports, updates, comments to:
4389 *
4390 * Bruce Janson Email: bruce@cs.usyd.edu.au
4391 * Basser Department of Computer Science Phone: +61-2-9351-3423
4392 * University of Sydney, N.S.W., 2006, AUSTRALIA Fax: +61-2-9351-3838
4393 */
This page took 0.697617 seconds and 5 git commands to generate.