Merge branch 'akpm-current/current'
[deliverable/linux.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
a0a3408e 15#include <linux/aer.h>
8de05535 16#include <linux/bitops.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
42f61420 19#include <linux/cpu.h>
fd63e9ce 20#include <linux/delay.h>
b60503ba
MW
21#include <linux/errno.h>
22#include <linux/fs.h>
23#include <linux/genhd.h>
4cc09e2d 24#include <linux/hdreg.h>
5aff9382 25#include <linux/idr.h>
b60503ba
MW
26#include <linux/init.h>
27#include <linux/interrupt.h>
28#include <linux/io.h>
29#include <linux/kdev_t.h>
30#include <linux/kernel.h>
31#include <linux/mm.h>
32#include <linux/module.h>
33#include <linux/moduleparam.h>
77bf25ea 34#include <linux/mutex.h>
b60503ba 35#include <linux/pci.h>
be7b6275 36#include <linux/poison.h>
c3bfe717 37#include <linux/ptrace.h>
b60503ba
MW
38#include <linux/sched.h>
39#include <linux/slab.h>
e1e5e564 40#include <linux/t10-pi.h>
2d55cd5f 41#include <linux/timer.h>
b60503ba 42#include <linux/types.h>
2f8e2c87 43#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 44#include <asm/unaligned.h>
797a796a 45
f11bb3e2
CH
46#include "nvme.h"
47
9d43cf64 48#define NVME_Q_DEPTH 1024
d31af0a3 49#define NVME_AQ_DEPTH 256
b60503ba
MW
50#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
51#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
adf68f21
CH
52
53/*
54 * We handle AEN commands ourselves and don't even let the
55 * block layer know about them.
56 */
f866fc42 57#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
9d43cf64 58
58ffacb5
MW
59static int use_threaded_interrupts;
60module_param(use_threaded_interrupts, int, 0);
61
8ffaadf7
JD
62static bool use_cmb_sqes = true;
63module_param(use_cmb_sqes, bool, 0644);
64MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
65
9a6b9458 66static struct workqueue_struct *nvme_workq;
1fa6aead 67
1c63dc66
CH
68struct nvme_dev;
69struct nvme_queue;
b3fffdef 70
4cc06521 71static int nvme_reset(struct nvme_dev *dev);
a0fa9647 72static void nvme_process_cq(struct nvme_queue *nvmeq);
a5cdb68c 73static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
d4b4ff8e 74
1c63dc66
CH
75/*
76 * Represents an NVM Express device. Each nvme_dev is a PCI function.
77 */
78struct nvme_dev {
1c63dc66
CH
79 struct nvme_queue **queues;
80 struct blk_mq_tag_set tagset;
81 struct blk_mq_tag_set admin_tagset;
82 u32 __iomem *dbs;
83 struct device *dev;
84 struct dma_pool *prp_page_pool;
85 struct dma_pool *prp_small_pool;
86 unsigned queue_count;
87 unsigned online_queues;
88 unsigned max_qid;
89 int q_depth;
90 u32 db_stride;
1c63dc66
CH
91 struct msix_entry *entry;
92 void __iomem *bar;
1c63dc66 93 struct work_struct reset_work;
5c8809e6 94 struct work_struct remove_work;
2d55cd5f 95 struct timer_list watchdog_timer;
77bf25ea 96 struct mutex shutdown_lock;
1c63dc66 97 bool subsystem;
1c63dc66
CH
98 void __iomem *cmb;
99 dma_addr_t cmb_dma_addr;
100 u64 cmb_size;
101 u32 cmbsz;
1c63dc66 102 struct nvme_ctrl ctrl;
db3cbfff 103 struct completion ioq_wait;
4d115420 104};
1fa6aead 105
1c63dc66
CH
106static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
107{
108 return container_of(ctrl, struct nvme_dev, ctrl);
109}
110
b60503ba
MW
111/*
112 * An NVM Express queue. Each device has at least two (one for admin
113 * commands and one for I/O commands).
114 */
115struct nvme_queue {
116 struct device *q_dmadev;
091b6092 117 struct nvme_dev *dev;
3193f07b 118 char irqname[24]; /* nvme4294967295-65535\0 */
b60503ba
MW
119 spinlock_t q_lock;
120 struct nvme_command *sq_cmds;
8ffaadf7 121 struct nvme_command __iomem *sq_cmds_io;
b60503ba 122 volatile struct nvme_completion *cqes;
42483228 123 struct blk_mq_tags **tags;
b60503ba
MW
124 dma_addr_t sq_dma_addr;
125 dma_addr_t cq_dma_addr;
b60503ba
MW
126 u32 __iomem *q_db;
127 u16 q_depth;
6222d172 128 s16 cq_vector;
b60503ba
MW
129 u16 sq_tail;
130 u16 cq_head;
c30341dc 131 u16 qid;
e9539f47
MW
132 u8 cq_phase;
133 u8 cqe_seen;
b60503ba
MW
134};
135
71bd150c
CH
136/*
137 * The nvme_iod describes the data in an I/O, including the list of PRP
138 * entries. You can't see it in this data structure because C doesn't let
f4800d6d 139 * me express that. Use nvme_init_iod to ensure there's enough space
71bd150c
CH
140 * allocated to store the PRP list.
141 */
142struct nvme_iod {
f4800d6d
CH
143 struct nvme_queue *nvmeq;
144 int aborted;
71bd150c 145 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c
CH
146 int nents; /* Used in scatterlist */
147 int length; /* Of data, in bytes */
148 dma_addr_t first_dma;
bf684057 149 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
f4800d6d
CH
150 struct scatterlist *sg;
151 struct scatterlist inline_sg[0];
b60503ba
MW
152};
153
154/*
155 * Check we didin't inadvertently grow the command struct
156 */
157static inline void _nvme_check_size(void)
158{
159 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
160 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
161 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
162 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
163 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 164 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 165 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
166 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
167 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
168 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
169 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 170 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
171}
172
ac3dd5bd
JA
173/*
174 * Max size of iod being embedded in the request payload
175 */
176#define NVME_INT_PAGES 2
5fd4ce1b 177#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
ac3dd5bd
JA
178
179/*
180 * Will slightly overestimate the number of pages needed. This is OK
181 * as it only leads to a small amount of wasted memory for the lifetime of
182 * the I/O.
183 */
184static int nvme_npages(unsigned size, struct nvme_dev *dev)
185{
5fd4ce1b
CH
186 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
187 dev->ctrl.page_size);
ac3dd5bd
JA
188 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
189}
190
f4800d6d
CH
191static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
192 unsigned int size, unsigned int nseg)
ac3dd5bd 193{
f4800d6d
CH
194 return sizeof(__le64 *) * nvme_npages(size, dev) +
195 sizeof(struct scatterlist) * nseg;
196}
ac3dd5bd 197
f4800d6d
CH
198static unsigned int nvme_cmd_size(struct nvme_dev *dev)
199{
200 return sizeof(struct nvme_iod) +
201 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
ac3dd5bd
JA
202}
203
a4aea562
MB
204static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
205 unsigned int hctx_idx)
e85248e5 206{
a4aea562
MB
207 struct nvme_dev *dev = data;
208 struct nvme_queue *nvmeq = dev->queues[0];
209
42483228
KB
210 WARN_ON(hctx_idx != 0);
211 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
212 WARN_ON(nvmeq->tags);
213
a4aea562 214 hctx->driver_data = nvmeq;
42483228 215 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 216 return 0;
e85248e5
MW
217}
218
4af0e21c
KB
219static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
220{
221 struct nvme_queue *nvmeq = hctx->driver_data;
222
223 nvmeq->tags = NULL;
224}
225
a4aea562
MB
226static int nvme_admin_init_request(void *data, struct request *req,
227 unsigned int hctx_idx, unsigned int rq_idx,
228 unsigned int numa_node)
22404274 229{
a4aea562 230 struct nvme_dev *dev = data;
f4800d6d 231 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
232 struct nvme_queue *nvmeq = dev->queues[0];
233
234 BUG_ON(!nvmeq);
f4800d6d 235 iod->nvmeq = nvmeq;
a4aea562 236 return 0;
22404274
KB
237}
238
a4aea562
MB
239static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
240 unsigned int hctx_idx)
b60503ba 241{
a4aea562 242 struct nvme_dev *dev = data;
42483228 243 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 244
42483228
KB
245 if (!nvmeq->tags)
246 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 247
42483228 248 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
249 hctx->driver_data = nvmeq;
250 return 0;
b60503ba
MW
251}
252
a4aea562
MB
253static int nvme_init_request(void *data, struct request *req,
254 unsigned int hctx_idx, unsigned int rq_idx,
255 unsigned int numa_node)
b60503ba 256{
a4aea562 257 struct nvme_dev *dev = data;
f4800d6d 258 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
259 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
260
261 BUG_ON(!nvmeq);
f4800d6d 262 iod->nvmeq = nvmeq;
a4aea562
MB
263 return 0;
264}
265
b60503ba 266/**
adf68f21 267 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
268 * @nvmeq: The queue to use
269 * @cmd: The command to send
270 *
271 * Safe to use from interrupt context
272 */
e3f879bf
SB
273static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
274 struct nvme_command *cmd)
b60503ba 275{
a4aea562
MB
276 u16 tail = nvmeq->sq_tail;
277
8ffaadf7
JD
278 if (nvmeq->sq_cmds_io)
279 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
280 else
281 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
282
b60503ba
MW
283 if (++tail == nvmeq->q_depth)
284 tail = 0;
7547881d 285 writel(tail, nvmeq->q_db);
b60503ba 286 nvmeq->sq_tail = tail;
b60503ba
MW
287}
288
f4800d6d 289static __le64 **iod_list(struct request *req)
b60503ba 290{
f4800d6d
CH
291 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
292 return (__le64 **)(iod->sg + req->nr_phys_segments);
b60503ba
MW
293}
294
58b45602
ML
295static int nvme_init_iod(struct request *rq, unsigned size,
296 struct nvme_dev *dev)
ac3dd5bd 297{
f4800d6d
CH
298 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
299 int nseg = rq->nr_phys_segments;
ac3dd5bd 300
f4800d6d
CH
301 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
302 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
303 if (!iod->sg)
304 return BLK_MQ_RQ_QUEUE_BUSY;
305 } else {
306 iod->sg = iod->inline_sg;
ac3dd5bd
JA
307 }
308
f4800d6d
CH
309 iod->aborted = 0;
310 iod->npages = -1;
311 iod->nents = 0;
312 iod->length = size;
f80ec966
KB
313
314 if (!(rq->cmd_flags & REQ_DONTPREP)) {
315 rq->retries = 0;
316 rq->cmd_flags |= REQ_DONTPREP;
317 }
f4800d6d 318 return 0;
ac3dd5bd
JA
319}
320
f4800d6d 321static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
b60503ba 322{
f4800d6d 323 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
5fd4ce1b 324 const int last_prp = dev->ctrl.page_size / 8 - 1;
eca18b23 325 int i;
f4800d6d 326 __le64 **list = iod_list(req);
eca18b23
MW
327 dma_addr_t prp_dma = iod->first_dma;
328
6904242d 329 nvme_cleanup_cmd(req);
03b5929e 330
eca18b23
MW
331 if (iod->npages == 0)
332 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
333 for (i = 0; i < iod->npages; i++) {
334 __le64 *prp_list = list[i];
335 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
336 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
337 prp_dma = next_prp_dma;
338 }
ac3dd5bd 339
f4800d6d
CH
340 if (iod->sg != iod->inline_sg)
341 kfree(iod->sg);
b4ff9c8d
KB
342}
343
52b68d7e 344#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
345static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
346{
347 if (be32_to_cpu(pi->ref_tag) == v)
348 pi->ref_tag = cpu_to_be32(p);
349}
350
351static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
352{
353 if (be32_to_cpu(pi->ref_tag) == p)
354 pi->ref_tag = cpu_to_be32(v);
355}
356
357/**
358 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
359 *
360 * The virtual start sector is the one that was originally submitted by the
361 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
362 * start sector may be different. Remap protection information to match the
363 * physical LBA on writes, and back to the original seed on reads.
364 *
365 * Type 0 and 3 do not have a ref tag, so no remapping required.
366 */
367static void nvme_dif_remap(struct request *req,
368 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
369{
370 struct nvme_ns *ns = req->rq_disk->private_data;
371 struct bio_integrity_payload *bip;
372 struct t10_pi_tuple *pi;
373 void *p, *pmap;
374 u32 i, nlb, ts, phys, virt;
375
376 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
377 return;
378
379 bip = bio_integrity(req->bio);
380 if (!bip)
381 return;
382
383 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
384
385 p = pmap;
386 virt = bip_get_seed(bip);
387 phys = nvme_block_nr(ns, blk_rq_pos(req));
388 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 389 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
390
391 for (i = 0; i < nlb; i++, virt++, phys++) {
392 pi = (struct t10_pi_tuple *)p;
393 dif_swap(phys, virt, pi);
394 p += ts;
395 }
396 kunmap_atomic(pmap);
397}
52b68d7e
KB
398#else /* CONFIG_BLK_DEV_INTEGRITY */
399static void nvme_dif_remap(struct request *req,
400 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
401{
402}
403static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
404{
405}
406static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
407{
408}
52b68d7e
KB
409#endif
410
f4800d6d 411static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
69d2b571 412 int total_len)
ff22b54f 413{
f4800d6d 414 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 415 struct dma_pool *pool;
eca18b23
MW
416 int length = total_len;
417 struct scatterlist *sg = iod->sg;
ff22b54f
MW
418 int dma_len = sg_dma_len(sg);
419 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 420 u32 page_size = dev->ctrl.page_size;
f137e0f1 421 int offset = dma_addr & (page_size - 1);
e025344c 422 __le64 *prp_list;
f4800d6d 423 __le64 **list = iod_list(req);
e025344c 424 dma_addr_t prp_dma;
eca18b23 425 int nprps, i;
ff22b54f 426
1d090624 427 length -= (page_size - offset);
ff22b54f 428 if (length <= 0)
69d2b571 429 return true;
ff22b54f 430
1d090624 431 dma_len -= (page_size - offset);
ff22b54f 432 if (dma_len) {
1d090624 433 dma_addr += (page_size - offset);
ff22b54f
MW
434 } else {
435 sg = sg_next(sg);
436 dma_addr = sg_dma_address(sg);
437 dma_len = sg_dma_len(sg);
438 }
439
1d090624 440 if (length <= page_size) {
edd10d33 441 iod->first_dma = dma_addr;
69d2b571 442 return true;
e025344c
SMM
443 }
444
1d090624 445 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
446 if (nprps <= (256 / 8)) {
447 pool = dev->prp_small_pool;
eca18b23 448 iod->npages = 0;
99802a7a
MW
449 } else {
450 pool = dev->prp_page_pool;
eca18b23 451 iod->npages = 1;
99802a7a
MW
452 }
453
69d2b571 454 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 455 if (!prp_list) {
edd10d33 456 iod->first_dma = dma_addr;
eca18b23 457 iod->npages = -1;
69d2b571 458 return false;
b77954cb 459 }
eca18b23
MW
460 list[0] = prp_list;
461 iod->first_dma = prp_dma;
e025344c
SMM
462 i = 0;
463 for (;;) {
1d090624 464 if (i == page_size >> 3) {
e025344c 465 __le64 *old_prp_list = prp_list;
69d2b571 466 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 467 if (!prp_list)
69d2b571 468 return false;
eca18b23 469 list[iod->npages++] = prp_list;
7523d834
MW
470 prp_list[0] = old_prp_list[i - 1];
471 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
472 i = 1;
e025344c
SMM
473 }
474 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
475 dma_len -= page_size;
476 dma_addr += page_size;
477 length -= page_size;
e025344c
SMM
478 if (length <= 0)
479 break;
480 if (dma_len > 0)
481 continue;
482 BUG_ON(dma_len < 0);
483 sg = sg_next(sg);
484 dma_addr = sg_dma_address(sg);
485 dma_len = sg_dma_len(sg);
ff22b54f
MW
486 }
487
69d2b571 488 return true;
ff22b54f
MW
489}
490
f4800d6d 491static int nvme_map_data(struct nvme_dev *dev, struct request *req,
03b5929e 492 unsigned size, struct nvme_command *cmnd)
d29ec824 493{
f4800d6d 494 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e
CH
495 struct request_queue *q = req->q;
496 enum dma_data_direction dma_dir = rq_data_dir(req) ?
497 DMA_TO_DEVICE : DMA_FROM_DEVICE;
498 int ret = BLK_MQ_RQ_QUEUE_ERROR;
d29ec824 499
ba1ca37e
CH
500 sg_init_table(iod->sg, req->nr_phys_segments);
501 iod->nents = blk_rq_map_sg(q, req, iod->sg);
502 if (!iod->nents)
503 goto out;
d29ec824 504
ba1ca37e 505 ret = BLK_MQ_RQ_QUEUE_BUSY;
0e0b71f3
MFO
506 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
507 DMA_ATTR_NO_WARN))
ba1ca37e 508 goto out;
d29ec824 509
03b5929e 510 if (!nvme_setup_prps(dev, req, size))
ba1ca37e 511 goto out_unmap;
0e5e4f0e 512
ba1ca37e
CH
513 ret = BLK_MQ_RQ_QUEUE_ERROR;
514 if (blk_integrity_rq(req)) {
515 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
516 goto out_unmap;
0e5e4f0e 517
bf684057
CH
518 sg_init_table(&iod->meta_sg, 1);
519 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
ba1ca37e 520 goto out_unmap;
0e5e4f0e 521
ba1ca37e
CH
522 if (rq_data_dir(req))
523 nvme_dif_remap(req, nvme_dif_prep);
0e5e4f0e 524
bf684057 525 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
ba1ca37e 526 goto out_unmap;
d29ec824 527 }
00df5cb4 528
eb793e2c
CH
529 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
530 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
ba1ca37e 531 if (blk_integrity_rq(req))
bf684057 532 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
ba1ca37e 533 return BLK_MQ_RQ_QUEUE_OK;
00df5cb4 534
ba1ca37e
CH
535out_unmap:
536 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
537out:
538 return ret;
00df5cb4
MW
539}
540
f4800d6d 541static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
b60503ba 542{
f4800d6d 543 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
d4f6c3ab
CH
544 enum dma_data_direction dma_dir = rq_data_dir(req) ?
545 DMA_TO_DEVICE : DMA_FROM_DEVICE;
546
547 if (iod->nents) {
548 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
549 if (blk_integrity_rq(req)) {
550 if (!rq_data_dir(req))
551 nvme_dif_remap(req, nvme_dif_complete);
bf684057 552 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
e1e5e564 553 }
e19b127f 554 }
e1e5e564 555
f4800d6d 556 nvme_free_iod(dev, req);
d4f6c3ab 557}
b60503ba 558
d29ec824
CH
559/*
560 * NOTE: ns is NULL when called on the admin queue.
561 */
a4aea562
MB
562static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
563 const struct blk_mq_queue_data *bd)
edd10d33 564{
a4aea562
MB
565 struct nvme_ns *ns = hctx->queue->queuedata;
566 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 567 struct nvme_dev *dev = nvmeq->dev;
a4aea562 568 struct request *req = bd->rq;
ba1ca37e 569 struct nvme_command cmnd;
58b45602 570 unsigned map_len;
ba1ca37e 571 int ret = BLK_MQ_RQ_QUEUE_OK;
edd10d33 572
e1e5e564
KB
573 /*
574 * If formated with metadata, require the block layer provide a buffer
575 * unless this namespace is formated such that the metadata can be
576 * stripped/generated by the controller with PRACT=1.
577 */
d29ec824 578 if (ns && ns->ms && !blk_integrity_rq(req)) {
71feb364
KB
579 if (!(ns->pi_type && ns->ms == 8) &&
580 req->cmd_type != REQ_TYPE_DRV_PRIV) {
eee417b0 581 blk_mq_end_request(req, -EFAULT);
e1e5e564
KB
582 return BLK_MQ_RQ_QUEUE_OK;
583 }
584 }
585
58b45602
ML
586 map_len = nvme_map_len(req);
587 ret = nvme_init_iod(req, map_len, dev);
f4800d6d
CH
588 if (ret)
589 return ret;
a4aea562 590
8093f7ca 591 ret = nvme_setup_cmd(ns, req, &cmnd);
03b5929e
ML
592 if (ret)
593 goto out;
a4aea562 594
03b5929e
ML
595 if (req->nr_phys_segments)
596 ret = nvme_map_data(dev, req, map_len, &cmnd);
a4aea562 597
ba1ca37e
CH
598 if (ret)
599 goto out;
a4aea562 600
ba1ca37e 601 cmnd.common.command_id = req->tag;
aae239e1 602 blk_mq_start_request(req);
a4aea562 603
ba1ca37e 604 spin_lock_irq(&nvmeq->q_lock);
ae1fba20 605 if (unlikely(nvmeq->cq_vector < 0)) {
69d9a99c
KB
606 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
607 ret = BLK_MQ_RQ_QUEUE_BUSY;
608 else
609 ret = BLK_MQ_RQ_QUEUE_ERROR;
ae1fba20
KB
610 spin_unlock_irq(&nvmeq->q_lock);
611 goto out;
612 }
ba1ca37e 613 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
614 nvme_process_cq(nvmeq);
615 spin_unlock_irq(&nvmeq->q_lock);
616 return BLK_MQ_RQ_QUEUE_OK;
ba1ca37e 617out:
f4800d6d 618 nvme_free_iod(dev, req);
ba1ca37e 619 return ret;
b60503ba 620}
e1e5e564 621
eee417b0
CH
622static void nvme_complete_rq(struct request *req)
623{
f4800d6d
CH
624 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
625 struct nvme_dev *dev = iod->nvmeq->dev;
eee417b0 626 int error = 0;
e1e5e564 627
f4800d6d 628 nvme_unmap_data(dev, req);
e1e5e564 629
eee417b0
CH
630 if (unlikely(req->errors)) {
631 if (nvme_req_needs_retry(req, req->errors)) {
f80ec966 632 req->retries++;
eee417b0
CH
633 nvme_requeue_req(req);
634 return;
e1e5e564 635 }
1974b1ae 636
eee417b0
CH
637 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
638 error = req->errors;
639 else
640 error = nvme_error_status(req->errors);
641 }
a4aea562 642
f4800d6d 643 if (unlikely(iod->aborted)) {
1b3c47c1 644 dev_warn(dev->ctrl.device,
eee417b0
CH
645 "completing aborted command with status: %04x\n",
646 req->errors);
647 }
a4aea562 648
eee417b0 649 blk_mq_end_request(req, error);
b60503ba
MW
650}
651
d783e0bd
MR
652/* We read the CQE phase first to check if the rest of the entry is valid */
653static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
654 u16 phase)
655{
656 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
657}
658
a0fa9647 659static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
b60503ba 660{
82123460 661 u16 head, phase;
b60503ba 662
b60503ba 663 head = nvmeq->cq_head;
82123460 664 phase = nvmeq->cq_phase;
b60503ba 665
d783e0bd 666 while (nvme_cqe_valid(nvmeq, head, phase)) {
b60503ba 667 struct nvme_completion cqe = nvmeq->cqes[head];
eee417b0 668 struct request *req;
adf68f21 669
b60503ba
MW
670 if (++head == nvmeq->q_depth) {
671 head = 0;
82123460 672 phase = !phase;
b60503ba 673 }
adf68f21 674
a0fa9647
JA
675 if (tag && *tag == cqe.command_id)
676 *tag = -1;
adf68f21 677
aae239e1 678 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
1b3c47c1 679 dev_warn(nvmeq->dev->ctrl.device,
aae239e1
CH
680 "invalid id %d completed on queue %d\n",
681 cqe.command_id, le16_to_cpu(cqe.sq_id));
682 continue;
683 }
684
adf68f21
CH
685 /*
686 * AEN requests are special as they don't time out and can
687 * survive any kind of queue freeze and often don't respond to
688 * aborts. We don't even bother to allocate a struct request
689 * for them but rather special case them here.
690 */
691 if (unlikely(nvmeq->qid == 0 &&
692 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
f866fc42 693 nvme_complete_async_event(&nvmeq->dev->ctrl, &cqe);
adf68f21
CH
694 continue;
695 }
696
eee417b0 697 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
1cb3cce5
CH
698 if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
699 memcpy(req->special, &cqe, sizeof(cqe));
d783e0bd 700 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
eee417b0 701
b60503ba
MW
702 }
703
704 /* If the controller ignores the cq head doorbell and continuously
705 * writes to the queue, it is theoretically possible to wrap around
706 * the queue twice and mistakenly return IRQ_NONE. Linux only
707 * requires that 0.1% of your interrupts are handled, so this isn't
708 * a big problem.
709 */
82123460 710 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
a0fa9647 711 return;
b60503ba 712
604e8c8d
KB
713 if (likely(nvmeq->cq_vector >= 0))
714 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 715 nvmeq->cq_head = head;
82123460 716 nvmeq->cq_phase = phase;
b60503ba 717
e9539f47 718 nvmeq->cqe_seen = 1;
a0fa9647
JA
719}
720
721static void nvme_process_cq(struct nvme_queue *nvmeq)
722{
723 __nvme_process_cq(nvmeq, NULL);
b60503ba
MW
724}
725
726static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
727{
728 irqreturn_t result;
729 struct nvme_queue *nvmeq = data;
730 spin_lock(&nvmeq->q_lock);
e9539f47
MW
731 nvme_process_cq(nvmeq);
732 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
733 nvmeq->cqe_seen = 0;
58ffacb5
MW
734 spin_unlock(&nvmeq->q_lock);
735 return result;
736}
737
738static irqreturn_t nvme_irq_check(int irq, void *data)
739{
740 struct nvme_queue *nvmeq = data;
d783e0bd
MR
741 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
742 return IRQ_WAKE_THREAD;
743 return IRQ_NONE;
58ffacb5
MW
744}
745
a0fa9647
JA
746static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
747{
748 struct nvme_queue *nvmeq = hctx->driver_data;
749
d783e0bd 750 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
a0fa9647
JA
751 spin_lock_irq(&nvmeq->q_lock);
752 __nvme_process_cq(nvmeq, &tag);
753 spin_unlock_irq(&nvmeq->q_lock);
754
755 if (tag == -1)
756 return 1;
757 }
758
759 return 0;
760}
761
f866fc42 762static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
b60503ba 763{
f866fc42 764 struct nvme_dev *dev = to_nvme_dev(ctrl);
9396dec9 765 struct nvme_queue *nvmeq = dev->queues[0];
a4aea562 766 struct nvme_command c;
b60503ba 767
a4aea562
MB
768 memset(&c, 0, sizeof(c));
769 c.common.opcode = nvme_admin_async_event;
f866fc42 770 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
3c0cf138 771
9396dec9 772 spin_lock_irq(&nvmeq->q_lock);
f866fc42 773 __nvme_submit_cmd(nvmeq, &c);
9396dec9 774 spin_unlock_irq(&nvmeq->q_lock);
f705f837
CH
775}
776
b60503ba 777static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 778{
b60503ba
MW
779 struct nvme_command c;
780
781 memset(&c, 0, sizeof(c));
782 c.delete_queue.opcode = opcode;
783 c.delete_queue.qid = cpu_to_le16(id);
784
1c63dc66 785 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
786}
787
b60503ba
MW
788static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
789 struct nvme_queue *nvmeq)
790{
b60503ba
MW
791 struct nvme_command c;
792 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
793
d29ec824
CH
794 /*
795 * Note: we (ab)use the fact the the prp fields survive if no data
796 * is attached to the request.
797 */
b60503ba
MW
798 memset(&c, 0, sizeof(c));
799 c.create_cq.opcode = nvme_admin_create_cq;
800 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
801 c.create_cq.cqid = cpu_to_le16(qid);
802 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
803 c.create_cq.cq_flags = cpu_to_le16(flags);
804 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
805
1c63dc66 806 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
807}
808
809static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
810 struct nvme_queue *nvmeq)
811{
b60503ba
MW
812 struct nvme_command c;
813 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
814
d29ec824
CH
815 /*
816 * Note: we (ab)use the fact the the prp fields survive if no data
817 * is attached to the request.
818 */
b60503ba
MW
819 memset(&c, 0, sizeof(c));
820 c.create_sq.opcode = nvme_admin_create_sq;
821 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
822 c.create_sq.sqid = cpu_to_le16(qid);
823 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
824 c.create_sq.sq_flags = cpu_to_le16(flags);
825 c.create_sq.cqid = cpu_to_le16(qid);
826
1c63dc66 827 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
828}
829
830static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
831{
832 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
833}
834
835static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
836{
837 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
838}
839
e7a2a87d 840static void abort_endio(struct request *req, int error)
bc5fc7e4 841{
f4800d6d
CH
842 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
843 struct nvme_queue *nvmeq = iod->nvmeq;
e7a2a87d 844 u16 status = req->errors;
e44ac588 845
1cb3cce5 846 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
e7a2a87d 847 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 848 blk_mq_free_request(req);
bc5fc7e4
MW
849}
850
31c7c7d2 851static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 852{
f4800d6d
CH
853 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
854 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 855 struct nvme_dev *dev = nvmeq->dev;
a4aea562 856 struct request *abort_req;
a4aea562 857 struct nvme_command cmd;
c30341dc 858
31c7c7d2 859 /*
fd634f41
CH
860 * Shutdown immediately if controller times out while starting. The
861 * reset work will see the pci device disabled when it gets the forced
862 * cancellation error. All outstanding requests are completed on
863 * shutdown, so we return BLK_EH_HANDLED.
864 */
bb8d261e 865 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1b3c47c1 866 dev_warn(dev->ctrl.device,
fd634f41
CH
867 "I/O %d QID %d timeout, disable controller\n",
868 req->tag, nvmeq->qid);
a5cdb68c 869 nvme_dev_disable(dev, false);
fd634f41
CH
870 req->errors = NVME_SC_CANCELLED;
871 return BLK_EH_HANDLED;
c30341dc
KB
872 }
873
fd634f41
CH
874 /*
875 * Shutdown the controller immediately and schedule a reset if the
876 * command was already aborted once before and still hasn't been
877 * returned to the driver, or if this is the admin queue.
31c7c7d2 878 */
f4800d6d 879 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 880 dev_warn(dev->ctrl.device,
e1569a16
KB
881 "I/O %d QID %d timeout, reset controller\n",
882 req->tag, nvmeq->qid);
a5cdb68c 883 nvme_dev_disable(dev, false);
e1569a16 884 queue_work(nvme_workq, &dev->reset_work);
c30341dc 885
e1569a16
KB
886 /*
887 * Mark the request as handled, since the inline shutdown
888 * forces all outstanding requests to complete.
889 */
890 req->errors = NVME_SC_CANCELLED;
891 return BLK_EH_HANDLED;
c30341dc 892 }
c30341dc 893
f4800d6d 894 iod->aborted = 1;
c30341dc 895
e7a2a87d 896 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 897 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 898 return BLK_EH_RESET_TIMER;
6bf25d16 899 }
a4aea562 900
c30341dc
KB
901 memset(&cmd, 0, sizeof(cmd));
902 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 903 cmd.abort.cid = req->tag;
c30341dc 904 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 905
1b3c47c1
SG
906 dev_warn(nvmeq->dev->ctrl.device,
907 "I/O %d QID %d timeout, aborting\n",
908 req->tag, nvmeq->qid);
e7a2a87d
CH
909
910 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
eb71f435 911 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
e7a2a87d
CH
912 if (IS_ERR(abort_req)) {
913 atomic_inc(&dev->ctrl.abort_limit);
914 return BLK_EH_RESET_TIMER;
915 }
916
917 abort_req->timeout = ADMIN_TIMEOUT;
918 abort_req->end_io_data = NULL;
919 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
c30341dc 920
31c7c7d2
CH
921 /*
922 * The aborted req will be completed on receiving the abort req.
923 * We enable the timer again. If hit twice, it'll cause a device reset,
924 * as the device then is in a faulty state.
925 */
926 return BLK_EH_RESET_TIMER;
c30341dc
KB
927}
928
a4aea562
MB
929static void nvme_free_queue(struct nvme_queue *nvmeq)
930{
9e866774
MW
931 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
932 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
933 if (nvmeq->sq_cmds)
934 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
935 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
936 kfree(nvmeq);
937}
938
a1a5ef99 939static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
940{
941 int i;
942
a1a5ef99 943 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 944 struct nvme_queue *nvmeq = dev->queues[i];
22404274 945 dev->queue_count--;
a4aea562 946 dev->queues[i] = NULL;
f435c282 947 nvme_free_queue(nvmeq);
121c7ad4 948 }
22404274
KB
949}
950
4d115420
KB
951/**
952 * nvme_suspend_queue - put queue into suspended state
953 * @nvmeq - queue to suspend
4d115420
KB
954 */
955static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 956{
2b25d981 957 int vector;
b60503ba 958
a09115b2 959 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
960 if (nvmeq->cq_vector == -1) {
961 spin_unlock_irq(&nvmeq->q_lock);
962 return 1;
963 }
964 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
42f61420 965 nvmeq->dev->online_queues--;
2b25d981 966 nvmeq->cq_vector = -1;
a09115b2
MW
967 spin_unlock_irq(&nvmeq->q_lock);
968
1c63dc66 969 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
25646264 970 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
6df3dbc8 971
aba2080f
MW
972 irq_set_affinity_hint(vector, NULL);
973 free_irq(vector, nvmeq);
b60503ba 974
4d115420
KB
975 return 0;
976}
b60503ba 977
a5cdb68c 978static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 979{
a5cdb68c 980 struct nvme_queue *nvmeq = dev->queues[0];
4d115420
KB
981
982 if (!nvmeq)
983 return;
984 if (nvme_suspend_queue(nvmeq))
985 return;
986
a5cdb68c
KB
987 if (shutdown)
988 nvme_shutdown_ctrl(&dev->ctrl);
989 else
990 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
991 dev->bar + NVME_REG_CAP));
07836e65
KB
992
993 spin_lock_irq(&nvmeq->q_lock);
994 nvme_process_cq(nvmeq);
995 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
996}
997
8ffaadf7
JD
998static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
999 int entry_size)
1000{
1001 int q_depth = dev->q_depth;
5fd4ce1b
CH
1002 unsigned q_size_aligned = roundup(q_depth * entry_size,
1003 dev->ctrl.page_size);
8ffaadf7
JD
1004
1005 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1006 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1007 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1008 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1009
1010 /*
1011 * Ensure the reduced q_depth is above some threshold where it
1012 * would be better to map queues in system memory with the
1013 * original depth
1014 */
1015 if (q_depth < 64)
1016 return -ENOMEM;
1017 }
1018
1019 return q_depth;
1020}
1021
1022static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1023 int qid, int depth)
1024{
1025 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
5fd4ce1b
CH
1026 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1027 dev->ctrl.page_size);
8ffaadf7
JD
1028 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1029 nvmeq->sq_cmds_io = dev->cmb + offset;
1030 } else {
1031 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1032 &nvmeq->sq_dma_addr, GFP_KERNEL);
1033 if (!nvmeq->sq_cmds)
1034 return -ENOMEM;
1035 }
1036
1037 return 0;
1038}
1039
b60503ba 1040static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
2b25d981 1041 int depth)
b60503ba 1042{
a4aea562 1043 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
b60503ba
MW
1044 if (!nvmeq)
1045 return NULL;
1046
e75ec752 1047 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1048 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1049 if (!nvmeq->cqes)
1050 goto free_nvmeq;
b60503ba 1051
8ffaadf7 1052 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1053 goto free_cqdma;
1054
e75ec752 1055 nvmeq->q_dmadev = dev->dev;
091b6092 1056 nvmeq->dev = dev;
3193f07b 1057 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1c63dc66 1058 dev->ctrl.instance, qid);
b60503ba
MW
1059 spin_lock_init(&nvmeq->q_lock);
1060 nvmeq->cq_head = 0;
82123460 1061 nvmeq->cq_phase = 1;
b80d5ccc 1062 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1063 nvmeq->q_depth = depth;
c30341dc 1064 nvmeq->qid = qid;
758dd7fd 1065 nvmeq->cq_vector = -1;
a4aea562 1066 dev->queues[qid] = nvmeq;
36a7e993
JD
1067 dev->queue_count++;
1068
b60503ba
MW
1069 return nvmeq;
1070
1071 free_cqdma:
e75ec752 1072 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1073 nvmeq->cq_dma_addr);
1074 free_nvmeq:
1075 kfree(nvmeq);
1076 return NULL;
1077}
1078
3001082c
MW
1079static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1080 const char *name)
1081{
58ffacb5
MW
1082 if (use_threaded_interrupts)
1083 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
481e5bad 1084 nvme_irq_check, nvme_irq, IRQF_SHARED,
58ffacb5 1085 name, nvmeq);
3001082c 1086 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
481e5bad 1087 IRQF_SHARED, name, nvmeq);
3001082c
MW
1088}
1089
22404274 1090static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1091{
22404274 1092 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1093
7be50e93 1094 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1095 nvmeq->sq_tail = 0;
1096 nvmeq->cq_head = 0;
1097 nvmeq->cq_phase = 1;
b80d5ccc 1098 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1099 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
42f61420 1100 dev->online_queues++;
7be50e93 1101 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1102}
1103
1104static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1105{
1106 struct nvme_dev *dev = nvmeq->dev;
1107 int result;
3f85d50b 1108
2b25d981 1109 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1110 result = adapter_alloc_cq(dev, qid, nvmeq);
1111 if (result < 0)
22404274 1112 return result;
b60503ba
MW
1113
1114 result = adapter_alloc_sq(dev, qid, nvmeq);
1115 if (result < 0)
1116 goto release_cq;
1117
3193f07b 1118 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
b60503ba
MW
1119 if (result < 0)
1120 goto release_sq;
1121
22404274 1122 nvme_init_queue(nvmeq, qid);
22404274 1123 return result;
b60503ba
MW
1124
1125 release_sq:
1126 adapter_delete_sq(dev, qid);
1127 release_cq:
1128 adapter_delete_cq(dev, qid);
22404274 1129 return result;
b60503ba
MW
1130}
1131
a4aea562 1132static struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1133 .queue_rq = nvme_queue_rq,
eee417b0 1134 .complete = nvme_complete_rq,
a4aea562
MB
1135 .map_queue = blk_mq_map_queue,
1136 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1137 .exit_hctx = nvme_admin_exit_hctx,
a4aea562
MB
1138 .init_request = nvme_admin_init_request,
1139 .timeout = nvme_timeout,
1140};
1141
1142static struct blk_mq_ops nvme_mq_ops = {
1143 .queue_rq = nvme_queue_rq,
eee417b0 1144 .complete = nvme_complete_rq,
a4aea562
MB
1145 .map_queue = blk_mq_map_queue,
1146 .init_hctx = nvme_init_hctx,
1147 .init_request = nvme_init_request,
1148 .timeout = nvme_timeout,
a0fa9647 1149 .poll = nvme_poll,
a4aea562
MB
1150};
1151
ea191d2f
KB
1152static void nvme_dev_remove_admin(struct nvme_dev *dev)
1153{
1c63dc66 1154 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1155 /*
1156 * If the controller was reset during removal, it's possible
1157 * user requests may be waiting on a stopped queue. Start the
1158 * queue to flush these to completion.
1159 */
1160 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1c63dc66 1161 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1162 blk_mq_free_tag_set(&dev->admin_tagset);
1163 }
1164}
1165
a4aea562
MB
1166static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1167{
1c63dc66 1168 if (!dev->ctrl.admin_q) {
a4aea562
MB
1169 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1170 dev->admin_tagset.nr_hw_queues = 1;
e3e9d50c
KB
1171
1172 /*
1173 * Subtract one to leave an empty queue entry for 'Full Queue'
1174 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1175 */
1176 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
a4aea562 1177 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1178 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1179 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
a4aea562
MB
1180 dev->admin_tagset.driver_data = dev;
1181
1182 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1183 return -ENOMEM;
1184
1c63dc66
CH
1185 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1186 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1187 blk_mq_free_tag_set(&dev->admin_tagset);
1188 return -ENOMEM;
1189 }
1c63dc66 1190 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1191 nvme_dev_remove_admin(dev);
1c63dc66 1192 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1193 return -ENODEV;
1194 }
0fb59cbc 1195 } else
25646264 1196 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
a4aea562
MB
1197
1198 return 0;
1199}
1200
8d85fce7 1201static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1202{
ba47e386 1203 int result;
b60503ba 1204 u32 aqa;
7a67cbea 1205 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
b60503ba
MW
1206 struct nvme_queue *nvmeq;
1207
7a67cbea 1208 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
dfbac8c7
KB
1209 NVME_CAP_NSSRC(cap) : 0;
1210
7a67cbea
CH
1211 if (dev->subsystem &&
1212 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1213 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1214
5fd4ce1b 1215 result = nvme_disable_ctrl(&dev->ctrl, cap);
ba47e386
MW
1216 if (result < 0)
1217 return result;
b60503ba 1218
a4aea562 1219 nvmeq = dev->queues[0];
cd638946 1220 if (!nvmeq) {
2b25d981 1221 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
cd638946
KB
1222 if (!nvmeq)
1223 return -ENOMEM;
cd638946 1224 }
b60503ba
MW
1225
1226 aqa = nvmeq->q_depth - 1;
1227 aqa |= aqa << 16;
1228
7a67cbea
CH
1229 writel(aqa, dev->bar + NVME_REG_AQA);
1230 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1231 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1232
5fd4ce1b 1233 result = nvme_enable_ctrl(&dev->ctrl, cap);
025c557a 1234 if (result)
a4aea562
MB
1235 goto free_nvmeq;
1236
2b25d981 1237 nvmeq->cq_vector = 0;
3193f07b 1238 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
758dd7fd
JD
1239 if (result) {
1240 nvmeq->cq_vector = -1;
0fb59cbc 1241 goto free_nvmeq;
758dd7fd 1242 }
025c557a 1243
b60503ba 1244 return result;
a4aea562 1245
a4aea562
MB
1246 free_nvmeq:
1247 nvme_free_queues(dev, 0);
1248 return result;
b60503ba
MW
1249}
1250
c875a709
GP
1251static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1252{
1253
1254 /* If true, indicates loss of adapter communication, possibly by a
1255 * NVMe Subsystem reset.
1256 */
1257 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1258
1259 /* If there is a reset ongoing, we shouldn't reset again. */
1260 if (work_busy(&dev->reset_work))
1261 return false;
1262
1263 /* We shouldn't reset unless the controller is on fatal error state
1264 * _or_ if we lost the communication with it.
1265 */
1266 if (!(csts & NVME_CSTS_CFS) && !nssro)
1267 return false;
1268
1269 /* If PCI error recovery process is happening, we cannot reset or
1270 * the recovery mechanism will surely fail.
1271 */
1272 if (pci_channel_offline(to_pci_dev(dev->dev)))
1273 return false;
1274
1275 return true;
1276}
1277
2d55cd5f 1278static void nvme_watchdog_timer(unsigned long data)
1fa6aead 1279{
2d55cd5f
CH
1280 struct nvme_dev *dev = (struct nvme_dev *)data;
1281 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1fa6aead 1282
c875a709
GP
1283 /* Skip controllers under certain specific conditions. */
1284 if (nvme_should_reset(dev, csts)) {
1285 if (queue_work(nvme_workq, &dev->reset_work))
2d55cd5f
CH
1286 dev_warn(dev->dev,
1287 "Failed status: 0x%x, reset controller.\n",
1288 csts);
2d55cd5f 1289 return;
1fa6aead 1290 }
2d55cd5f
CH
1291
1292 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1fa6aead
MW
1293}
1294
749941f2 1295static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1296{
949928c1 1297 unsigned i, max;
749941f2 1298 int ret = 0;
42f61420 1299
749941f2
CH
1300 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1301 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1302 ret = -ENOMEM;
42f61420 1303 break;
749941f2
CH
1304 }
1305 }
42f61420 1306
949928c1
KB
1307 max = min(dev->max_qid, dev->queue_count - 1);
1308 for (i = dev->online_queues; i <= max; i++) {
749941f2
CH
1309 ret = nvme_create_queue(dev->queues[i], i);
1310 if (ret) {
2659e57b 1311 nvme_free_queues(dev, i);
42f61420 1312 break;
2659e57b 1313 }
27e8166c 1314 }
749941f2
CH
1315
1316 /*
1317 * Ignore failing Create SQ/CQ commands, we can continue with less
1318 * than the desired aount of queues, and even a controller without
1319 * I/O queues an still be used to issue admin commands. This might
1320 * be useful to upgrade a buggy firmware for example.
1321 */
1322 return ret >= 0 ? 0 : ret;
b60503ba
MW
1323}
1324
8ffaadf7
JD
1325static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1326{
1327 u64 szu, size, offset;
1328 u32 cmbloc;
1329 resource_size_t bar_size;
1330 struct pci_dev *pdev = to_pci_dev(dev->dev);
1331 void __iomem *cmb;
1332 dma_addr_t dma_addr;
1333
1334 if (!use_cmb_sqes)
1335 return NULL;
1336
7a67cbea 1337 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
1338 if (!(NVME_CMB_SZ(dev->cmbsz)))
1339 return NULL;
1340
7a67cbea 1341 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7
JD
1342
1343 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1344 size = szu * NVME_CMB_SZ(dev->cmbsz);
1345 offset = szu * NVME_CMB_OFST(cmbloc);
1346 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1347
1348 if (offset > bar_size)
1349 return NULL;
1350
1351 /*
1352 * Controllers may support a CMB size larger than their BAR,
1353 * for example, due to being behind a bridge. Reduce the CMB to
1354 * the reported size of the BAR
1355 */
1356 if (size > bar_size - offset)
1357 size = bar_size - offset;
1358
1359 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1360 cmb = ioremap_wc(dma_addr, size);
1361 if (!cmb)
1362 return NULL;
1363
1364 dev->cmb_dma_addr = dma_addr;
1365 dev->cmb_size = size;
1366 return cmb;
1367}
1368
1369static inline void nvme_release_cmb(struct nvme_dev *dev)
1370{
1371 if (dev->cmb) {
1372 iounmap(dev->cmb);
1373 dev->cmb = NULL;
1374 }
1375}
1376
9d713c2b
KB
1377static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1378{
b80d5ccc 1379 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
1380}
1381
8d85fce7 1382static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1383{
a4aea562 1384 struct nvme_queue *adminq = dev->queues[0];
e75ec752 1385 struct pci_dev *pdev = to_pci_dev(dev->dev);
42f61420 1386 int result, i, vecs, nr_io_queues, size;
b60503ba 1387
2800b8e7 1388 nr_io_queues = num_online_cpus();
9a0be7ab
CH
1389 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1390 if (result < 0)
1b23484b 1391 return result;
9a0be7ab 1392
f5fa90dc 1393 if (nr_io_queues == 0)
a5229050 1394 return 0;
b60503ba 1395
8ffaadf7
JD
1396 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1397 result = nvme_cmb_qdepth(dev, nr_io_queues,
1398 sizeof(struct nvme_command));
1399 if (result > 0)
1400 dev->q_depth = result;
1401 else
1402 nvme_release_cmb(dev);
1403 }
1404
9d713c2b
KB
1405 size = db_bar_size(dev, nr_io_queues);
1406 if (size > 8192) {
f1938f6e 1407 iounmap(dev->bar);
9d713c2b
KB
1408 do {
1409 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1410 if (dev->bar)
1411 break;
1412 if (!--nr_io_queues)
1413 return -ENOMEM;
1414 size = db_bar_size(dev, nr_io_queues);
1415 } while (1);
7a67cbea 1416 dev->dbs = dev->bar + 4096;
5a92e700 1417 adminq->q_db = dev->dbs;
f1938f6e
MW
1418 }
1419
9d713c2b 1420 /* Deregister the admin queue's interrupt */
3193f07b 1421 free_irq(dev->entry[0].vector, adminq);
9d713c2b 1422
e32efbfc
JA
1423 /*
1424 * If we enable msix early due to not intx, disable it again before
1425 * setting up the full range we need.
1426 */
a5229050
KB
1427 if (pdev->msi_enabled)
1428 pci_disable_msi(pdev);
1429 else if (pdev->msix_enabled)
e32efbfc
JA
1430 pci_disable_msix(pdev);
1431
be577fab 1432 for (i = 0; i < nr_io_queues; i++)
1b23484b 1433 dev->entry[i].entry = i;
be577fab
AG
1434 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1435 if (vecs < 0) {
1436 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1437 if (vecs < 0) {
1438 vecs = 1;
1439 } else {
1440 for (i = 0; i < vecs; i++)
1441 dev->entry[i].vector = i + pdev->irq;
fa08a396
RRG
1442 }
1443 }
1444
063a8096
MW
1445 /*
1446 * Should investigate if there's a performance win from allocating
1447 * more queues than interrupt vectors; it might allow the submission
1448 * path to scale better, even if the receive path is limited by the
1449 * number of interrupts.
1450 */
1451 nr_io_queues = vecs;
42f61420 1452 dev->max_qid = nr_io_queues;
063a8096 1453
3193f07b 1454 result = queue_request_irq(dev, adminq, adminq->irqname);
758dd7fd
JD
1455 if (result) {
1456 adminq->cq_vector = -1;
22404274 1457 goto free_queues;
758dd7fd 1458 }
749941f2 1459 return nvme_create_io_queues(dev);
b60503ba 1460
22404274 1461 free_queues:
a1a5ef99 1462 nvme_free_queues(dev, 1);
22404274 1463 return result;
b60503ba
MW
1464}
1465
5955be21 1466static void nvme_pci_post_scan(struct nvme_ctrl *ctrl)
a5768aa8 1467{
5955be21 1468 struct nvme_dev *dev = to_nvme_dev(ctrl);
bda4e0fb
KB
1469 struct nvme_queue *nvmeq;
1470 int i;
a5768aa8 1471
bda4e0fb
KB
1472 for (i = 0; i < dev->online_queues; i++) {
1473 nvmeq = dev->queues[i];
a5768aa8 1474
bda4e0fb
KB
1475 if (!nvmeq->tags || !(*nvmeq->tags))
1476 continue;
a5768aa8 1477
bda4e0fb
KB
1478 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1479 blk_mq_tags_cpumask(*nvmeq->tags));
a5768aa8 1480 }
a5768aa8
KB
1481}
1482
db3cbfff 1483static void nvme_del_queue_end(struct request *req, int error)
a5768aa8 1484{
db3cbfff 1485 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 1486
db3cbfff
KB
1487 blk_mq_free_request(req);
1488 complete(&nvmeq->dev->ioq_wait);
a5768aa8
KB
1489}
1490
db3cbfff 1491static void nvme_del_cq_end(struct request *req, int error)
a5768aa8 1492{
db3cbfff 1493 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 1494
db3cbfff
KB
1495 if (!error) {
1496 unsigned long flags;
1497
2e39e0f6
ML
1498 /*
1499 * We might be called with the AQ q_lock held
1500 * and the I/O queue q_lock should always
1501 * nest inside the AQ one.
1502 */
1503 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1504 SINGLE_DEPTH_NESTING);
db3cbfff
KB
1505 nvme_process_cq(nvmeq);
1506 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a5768aa8 1507 }
db3cbfff
KB
1508
1509 nvme_del_queue_end(req, error);
a5768aa8
KB
1510}
1511
db3cbfff 1512static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 1513{
db3cbfff
KB
1514 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1515 struct request *req;
1516 struct nvme_command cmd;
bda4e0fb 1517
db3cbfff
KB
1518 memset(&cmd, 0, sizeof(cmd));
1519 cmd.delete_queue.opcode = opcode;
1520 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 1521
eb71f435 1522 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
db3cbfff
KB
1523 if (IS_ERR(req))
1524 return PTR_ERR(req);
bda4e0fb 1525
db3cbfff
KB
1526 req->timeout = ADMIN_TIMEOUT;
1527 req->end_io_data = nvmeq;
1528
1529 blk_execute_rq_nowait(q, NULL, req, false,
1530 opcode == nvme_admin_delete_cq ?
1531 nvme_del_cq_end : nvme_del_queue_end);
1532 return 0;
bda4e0fb
KB
1533}
1534
db3cbfff 1535static void nvme_disable_io_queues(struct nvme_dev *dev)
a5768aa8 1536{
014a0d60 1537 int pass, queues = dev->online_queues - 1;
db3cbfff
KB
1538 unsigned long timeout;
1539 u8 opcode = nvme_admin_delete_sq;
a5768aa8 1540
db3cbfff 1541 for (pass = 0; pass < 2; pass++) {
014a0d60 1542 int sent = 0, i = queues;
db3cbfff
KB
1543
1544 reinit_completion(&dev->ioq_wait);
1545 retry:
1546 timeout = ADMIN_TIMEOUT;
c21377f8
GKB
1547 for (; i > 0; i--, sent++)
1548 if (nvme_delete_queue(dev->queues[i], opcode))
db3cbfff 1549 break;
c21377f8 1550
db3cbfff
KB
1551 while (sent--) {
1552 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1553 if (timeout == 0)
1554 return;
1555 if (i)
1556 goto retry;
1557 }
1558 opcode = nvme_admin_delete_cq;
1559 }
a5768aa8
KB
1560}
1561
422ef0c7
MW
1562/*
1563 * Return: error value if an error occurred setting up the queues or calling
1564 * Identify Device. 0 if these succeeded, even if adding some of the
1565 * namespaces failed. At the moment, these failures are silent. TBD which
1566 * failures should be reported.
1567 */
8d85fce7 1568static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1569{
5bae7f73 1570 if (!dev->ctrl.tagset) {
ffe7704d
KB
1571 dev->tagset.ops = &nvme_mq_ops;
1572 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1573 dev->tagset.timeout = NVME_IO_TIMEOUT;
1574 dev->tagset.numa_node = dev_to_node(dev->dev);
1575 dev->tagset.queue_depth =
a4aea562 1576 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
1577 dev->tagset.cmd_size = nvme_cmd_size(dev);
1578 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1579 dev->tagset.driver_data = dev;
b60503ba 1580
ffe7704d
KB
1581 if (blk_mq_alloc_tag_set(&dev->tagset))
1582 return 0;
5bae7f73 1583 dev->ctrl.tagset = &dev->tagset;
949928c1
KB
1584 } else {
1585 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1586
1587 /* Free previously allocated queues that are no longer usable */
1588 nvme_free_queues(dev, dev->online_queues);
ffe7704d 1589 }
949928c1 1590
e1e5e564 1591 return 0;
b60503ba
MW
1592}
1593
b00a726a 1594static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 1595{
42f61420 1596 u64 cap;
b00a726a 1597 int result = -ENOMEM;
e75ec752 1598 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
1599
1600 if (pci_enable_device_mem(pdev))
1601 return result;
1602
0877cb0d 1603 pci_set_master(pdev);
0877cb0d 1604
e75ec752
CH
1605 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1606 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 1607 goto disable;
0877cb0d 1608
7a67cbea 1609 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 1610 result = -ENODEV;
b00a726a 1611 goto disable;
0e53d180 1612 }
e32efbfc
JA
1613
1614 /*
a5229050
KB
1615 * Some devices and/or platforms don't advertise or work with INTx
1616 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1617 * adjust this later.
e32efbfc 1618 */
a5229050
KB
1619 if (pci_enable_msix(pdev, dev->entry, 1)) {
1620 pci_enable_msi(pdev);
1621 dev->entry[0].vector = pdev->irq;
1622 }
1623
1624 if (!dev->entry[0].vector) {
1625 result = -ENODEV;
1626 goto disable;
e32efbfc
JA
1627 }
1628
7a67cbea
CH
1629 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1630
42f61420
KB
1631 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1632 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
7a67cbea 1633 dev->dbs = dev->bar + 4096;
1f390c1f
SG
1634
1635 /*
1636 * Temporary fix for the Apple controller found in the MacBook8,1 and
1637 * some MacBook7,1 to avoid controller resets and data loss.
1638 */
1639 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1640 dev->q_depth = 2;
1641 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1642 "queue depth=%u to work around controller resets\n",
1643 dev->q_depth);
1644 }
1645
7a67cbea 1646 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
8ffaadf7 1647 dev->cmb = nvme_map_cmb(dev);
0877cb0d 1648
a0a3408e
KB
1649 pci_enable_pcie_error_reporting(pdev);
1650 pci_save_state(pdev);
0877cb0d
KB
1651 return 0;
1652
1653 disable:
0877cb0d
KB
1654 pci_disable_device(pdev);
1655 return result;
1656}
1657
1658static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
1659{
1660 if (dev->bar)
1661 iounmap(dev->bar);
a1f447b3 1662 pci_release_mem_regions(to_pci_dev(dev->dev));
b00a726a
KB
1663}
1664
1665static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 1666{
e75ec752
CH
1667 struct pci_dev *pdev = to_pci_dev(dev->dev);
1668
1669 if (pdev->msi_enabled)
1670 pci_disable_msi(pdev);
1671 else if (pdev->msix_enabled)
1672 pci_disable_msix(pdev);
0877cb0d 1673
a0a3408e
KB
1674 if (pci_is_enabled(pdev)) {
1675 pci_disable_pcie_error_reporting(pdev);
e75ec752 1676 pci_disable_device(pdev);
4d115420 1677 }
4d115420
KB
1678}
1679
a5cdb68c 1680static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 1681{
22404274 1682 int i;
7c1b2450 1683 u32 csts = -1;
22404274 1684
2d55cd5f 1685 del_timer_sync(&dev->watchdog_timer);
1fa6aead 1686
77bf25ea 1687 mutex_lock(&dev->shutdown_lock);
b00a726a 1688 if (pci_is_enabled(to_pci_dev(dev->dev))) {
25646264 1689 nvme_stop_queues(&dev->ctrl);
7a67cbea 1690 csts = readl(dev->bar + NVME_REG_CSTS);
c9d3bf88 1691 }
c21377f8
GKB
1692
1693 for (i = dev->queue_count - 1; i > 0; i--)
1694 nvme_suspend_queue(dev->queues[i]);
1695
7c1b2450 1696 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
c21377f8 1697 nvme_suspend_queue(dev->queues[0]);
4d115420
KB
1698 } else {
1699 nvme_disable_io_queues(dev);
a5cdb68c 1700 nvme_disable_admin_queue(dev, shutdown);
4d115420 1701 }
b00a726a 1702 nvme_pci_disable(dev);
07836e65 1703
e1958e65
ML
1704 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1705 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
77bf25ea 1706 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
1707}
1708
091b6092
MW
1709static int nvme_setup_prp_pools(struct nvme_dev *dev)
1710{
e75ec752 1711 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
1712 PAGE_SIZE, PAGE_SIZE, 0);
1713 if (!dev->prp_page_pool)
1714 return -ENOMEM;
1715
99802a7a 1716 /* Optimisation for I/Os between 4k and 128k */
e75ec752 1717 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
1718 256, 256, 0);
1719 if (!dev->prp_small_pool) {
1720 dma_pool_destroy(dev->prp_page_pool);
1721 return -ENOMEM;
1722 }
091b6092
MW
1723 return 0;
1724}
1725
1726static void nvme_release_prp_pools(struct nvme_dev *dev)
1727{
1728 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1729 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1730}
1731
1673f1f0 1732static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 1733{
1673f1f0 1734 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 1735
e75ec752 1736 put_device(dev->dev);
4af0e21c
KB
1737 if (dev->tagset.tags)
1738 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
1739 if (dev->ctrl.admin_q)
1740 blk_put_queue(dev->ctrl.admin_q);
5e82e952
KB
1741 kfree(dev->queues);
1742 kfree(dev->entry);
1743 kfree(dev);
1744}
1745
f58944e2
KB
1746static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1747{
237045fc 1748 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
f58944e2
KB
1749
1750 kref_get(&dev->ctrl.kref);
69d9a99c 1751 nvme_dev_disable(dev, false);
f58944e2
KB
1752 if (!schedule_work(&dev->remove_work))
1753 nvme_put_ctrl(&dev->ctrl);
1754}
1755
fd634f41 1756static void nvme_reset_work(struct work_struct *work)
5e82e952 1757{
fd634f41 1758 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
f58944e2 1759 int result = -ENODEV;
5e82e952 1760
bb8d261e 1761 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
fd634f41 1762 goto out;
5e82e952 1763
fd634f41
CH
1764 /*
1765 * If we're called to reset a live controller first shut it down before
1766 * moving on.
1767 */
b00a726a 1768 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 1769 nvme_dev_disable(dev, false);
5e82e952 1770
bb8d261e 1771 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
9bf2b972
KB
1772 goto out;
1773
b00a726a 1774 result = nvme_pci_enable(dev);
f0b50732 1775 if (result)
3cf519b5 1776 goto out;
f0b50732
KB
1777
1778 result = nvme_configure_admin_queue(dev);
1779 if (result)
f58944e2 1780 goto out;
f0b50732 1781
a4aea562 1782 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
1783 result = nvme_alloc_admin_tags(dev);
1784 if (result)
f58944e2 1785 goto out;
b9afca3e 1786
ce4541f4
CH
1787 result = nvme_init_identify(&dev->ctrl);
1788 if (result)
f58944e2 1789 goto out;
ce4541f4 1790
f0b50732 1791 result = nvme_setup_io_queues(dev);
badc34d4 1792 if (result)
f58944e2 1793 goto out;
f0b50732 1794
21f033f7
KB
1795 /*
1796 * A controller that can not execute IO typically requires user
1797 * intervention to correct. For such degraded controllers, the driver
1798 * should not submit commands the user did not request, so skip
1799 * registering for asynchronous event notification on this condition.
1800 */
f866fc42
CH
1801 if (dev->online_queues > 1)
1802 nvme_queue_async_events(&dev->ctrl);
3cf519b5 1803
2d55cd5f 1804 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
3cf519b5 1805
2659e57b
CH
1806 /*
1807 * Keep the controller around but remove all namespaces if we don't have
1808 * any working I/O queue.
1809 */
3cf519b5 1810 if (dev->online_queues < 2) {
1b3c47c1 1811 dev_warn(dev->ctrl.device, "IO queues not created\n");
3b24774e 1812 nvme_kill_queues(&dev->ctrl);
5bae7f73 1813 nvme_remove_namespaces(&dev->ctrl);
3cf519b5 1814 } else {
25646264 1815 nvme_start_queues(&dev->ctrl);
3cf519b5
CH
1816 nvme_dev_add(dev);
1817 }
1818
bb8d261e
CH
1819 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1820 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1821 goto out;
1822 }
92911a55
CH
1823
1824 if (dev->online_queues > 1)
5955be21 1825 nvme_queue_scan(&dev->ctrl);
3cf519b5 1826 return;
f0b50732 1827
3cf519b5 1828 out:
f58944e2 1829 nvme_remove_dead_ctrl(dev, result);
f0b50732
KB
1830}
1831
5c8809e6 1832static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 1833{
5c8809e6 1834 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 1835 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458 1836
69d9a99c 1837 nvme_kill_queues(&dev->ctrl);
9a6b9458 1838 if (pci_get_drvdata(pdev))
921920ab 1839 device_release_driver(&pdev->dev);
1673f1f0 1840 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
1841}
1842
4cc06521 1843static int nvme_reset(struct nvme_dev *dev)
9a6b9458 1844{
1c63dc66 1845 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
4cc06521 1846 return -ENODEV;
ffe7704d 1847
846cc05f
CH
1848 if (!queue_work(nvme_workq, &dev->reset_work))
1849 return -EBUSY;
ffe7704d 1850
846cc05f 1851 flush_work(&dev->reset_work);
846cc05f 1852 return 0;
9a6b9458
KB
1853}
1854
1c63dc66 1855static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 1856{
1c63dc66 1857 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 1858 return 0;
9ca97374
TH
1859}
1860
5fd4ce1b 1861static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 1862{
5fd4ce1b
CH
1863 writel(val, to_nvme_dev(ctrl)->bar + off);
1864 return 0;
1865}
4cc06521 1866
7fd8930f
CH
1867static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1868{
1869 *val = readq(to_nvme_dev(ctrl)->bar + off);
1870 return 0;
4cc06521
KB
1871}
1872
f3ca80fc
CH
1873static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1874{
1875 return nvme_reset(to_nvme_dev(ctrl));
4cc06521 1876}
f3ca80fc 1877
1c63dc66 1878static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1a353d85 1879 .name = "pcie",
e439bb12 1880 .module = THIS_MODULE,
1c63dc66 1881 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 1882 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 1883 .reg_read64 = nvme_pci_reg_read64,
f3ca80fc 1884 .reset_ctrl = nvme_pci_reset_ctrl,
1673f1f0 1885 .free_ctrl = nvme_pci_free_ctrl,
5955be21 1886 .post_scan = nvme_pci_post_scan,
f866fc42 1887 .submit_async_event = nvme_pci_submit_async_event,
1c63dc66 1888};
4cc06521 1889
b00a726a
KB
1890static int nvme_dev_map(struct nvme_dev *dev)
1891{
b00a726a
KB
1892 struct pci_dev *pdev = to_pci_dev(dev->dev);
1893
a1f447b3 1894 if (pci_request_mem_regions(pdev, "nvme"))
b00a726a
KB
1895 return -ENODEV;
1896
1897 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1898 if (!dev->bar)
1899 goto release;
1900
1901 return 0;
1902 release:
a1f447b3 1903 pci_release_mem_regions(pdev);
b00a726a
KB
1904 return -ENODEV;
1905}
1906
8d85fce7 1907static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 1908{
a4aea562 1909 int node, result = -ENOMEM;
b60503ba
MW
1910 struct nvme_dev *dev;
1911
a4aea562
MB
1912 node = dev_to_node(&pdev->dev);
1913 if (node == NUMA_NO_NODE)
2fa84351 1914 set_dev_node(&pdev->dev, first_memory_node);
a4aea562
MB
1915
1916 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
1917 if (!dev)
1918 return -ENOMEM;
a4aea562
MB
1919 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
1920 GFP_KERNEL, node);
b60503ba
MW
1921 if (!dev->entry)
1922 goto free;
a4aea562
MB
1923 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1924 GFP_KERNEL, node);
b60503ba
MW
1925 if (!dev->queues)
1926 goto free;
1927
e75ec752 1928 dev->dev = get_device(&pdev->dev);
9a6b9458 1929 pci_set_drvdata(pdev, dev);
1c63dc66 1930
b00a726a
KB
1931 result = nvme_dev_map(dev);
1932 if (result)
1933 goto free;
1934
f3ca80fc 1935 INIT_WORK(&dev->reset_work, nvme_reset_work);
5c8809e6 1936 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2d55cd5f
CH
1937 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1938 (unsigned long)dev);
77bf25ea 1939 mutex_init(&dev->shutdown_lock);
db3cbfff 1940 init_completion(&dev->ioq_wait);
b60503ba 1941
091b6092
MW
1942 result = nvme_setup_prp_pools(dev);
1943 if (result)
a96d4f5c 1944 goto put_pci;
4cc06521 1945
f3ca80fc
CH
1946 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1947 id->driver_data);
4cc06521 1948 if (result)
2e1d8448 1949 goto release_pools;
740216fc 1950
1b3c47c1
SG
1951 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1952
92f7a162 1953 queue_work(nvme_workq, &dev->reset_work);
b60503ba
MW
1954 return 0;
1955
0877cb0d 1956 release_pools:
091b6092 1957 nvme_release_prp_pools(dev);
a96d4f5c 1958 put_pci:
e75ec752 1959 put_device(dev->dev);
b00a726a 1960 nvme_dev_unmap(dev);
b60503ba
MW
1961 free:
1962 kfree(dev->queues);
1963 kfree(dev->entry);
1964 kfree(dev);
1965 return result;
1966}
1967
f0d54a54
KB
1968static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1969{
a6739479 1970 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 1971
a6739479 1972 if (prepare)
a5cdb68c 1973 nvme_dev_disable(dev, false);
a6739479 1974 else
92f7a162 1975 queue_work(nvme_workq, &dev->reset_work);
f0d54a54
KB
1976}
1977
09ece142
KB
1978static void nvme_shutdown(struct pci_dev *pdev)
1979{
1980 struct nvme_dev *dev = pci_get_drvdata(pdev);
a5cdb68c 1981 nvme_dev_disable(dev, true);
09ece142
KB
1982}
1983
f58944e2
KB
1984/*
1985 * The driver's remove may be called on a device in a partially initialized
1986 * state. This function must not have any dependencies on the device state in
1987 * order to proceed.
1988 */
8d85fce7 1989static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
1990{
1991 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 1992
bb8d261e
CH
1993 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1994
9a6b9458 1995 pci_set_drvdata(pdev, NULL);
0ff9d4e1
KB
1996
1997 if (!pci_device_is_present(pdev))
1998 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
1999
9bf2b972 2000 flush_work(&dev->reset_work);
53029b04 2001 nvme_uninit_ctrl(&dev->ctrl);
a5cdb68c 2002 nvme_dev_disable(dev, true);
a4aea562 2003 nvme_dev_remove_admin(dev);
a1a5ef99 2004 nvme_free_queues(dev, 0);
8ffaadf7 2005 nvme_release_cmb(dev);
9a6b9458 2006 nvme_release_prp_pools(dev);
b00a726a 2007 nvme_dev_unmap(dev);
1673f1f0 2008 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2009}
2010
13880f5b
KB
2011static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2012{
2013 int ret = 0;
2014
2015 if (numvfs == 0) {
2016 if (pci_vfs_assigned(pdev)) {
2017 dev_warn(&pdev->dev,
2018 "Cannot disable SR-IOV VFs while assigned\n");
2019 return -EPERM;
2020 }
2021 pci_disable_sriov(pdev);
2022 return 0;
2023 }
2024
2025 ret = pci_enable_sriov(pdev, numvfs);
2026 return ret ? ret : numvfs;
2027}
2028
671a6018 2029#ifdef CONFIG_PM_SLEEP
cd638946
KB
2030static int nvme_suspend(struct device *dev)
2031{
2032 struct pci_dev *pdev = to_pci_dev(dev);
2033 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2034
a5cdb68c 2035 nvme_dev_disable(ndev, true);
cd638946
KB
2036 return 0;
2037}
2038
2039static int nvme_resume(struct device *dev)
2040{
2041 struct pci_dev *pdev = to_pci_dev(dev);
2042 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2043
92f7a162 2044 queue_work(nvme_workq, &ndev->reset_work);
9a6b9458 2045 return 0;
cd638946 2046}
671a6018 2047#endif
cd638946
KB
2048
2049static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2050
a0a3408e
KB
2051static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2052 pci_channel_state_t state)
2053{
2054 struct nvme_dev *dev = pci_get_drvdata(pdev);
2055
2056 /*
2057 * A frozen channel requires a reset. When detected, this method will
2058 * shutdown the controller to quiesce. The controller will be restarted
2059 * after the slot reset through driver's slot_reset callback.
2060 */
a0a3408e
KB
2061 switch (state) {
2062 case pci_channel_io_normal:
2063 return PCI_ERS_RESULT_CAN_RECOVER;
2064 case pci_channel_io_frozen:
d011fb31
KB
2065 dev_warn(dev->ctrl.device,
2066 "frozen state error detected, reset controller\n");
a5cdb68c 2067 nvme_dev_disable(dev, false);
a0a3408e
KB
2068 return PCI_ERS_RESULT_NEED_RESET;
2069 case pci_channel_io_perm_failure:
d011fb31
KB
2070 dev_warn(dev->ctrl.device,
2071 "failure state error detected, request disconnect\n");
a0a3408e
KB
2072 return PCI_ERS_RESULT_DISCONNECT;
2073 }
2074 return PCI_ERS_RESULT_NEED_RESET;
2075}
2076
2077static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2078{
2079 struct nvme_dev *dev = pci_get_drvdata(pdev);
2080
1b3c47c1 2081 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e
KB
2082 pci_restore_state(pdev);
2083 queue_work(nvme_workq, &dev->reset_work);
2084 return PCI_ERS_RESULT_RECOVERED;
2085}
2086
2087static void nvme_error_resume(struct pci_dev *pdev)
2088{
2089 pci_cleanup_aer_uncorrect_error_status(pdev);
2090}
2091
1d352035 2092static const struct pci_error_handlers nvme_err_handler = {
b60503ba 2093 .error_detected = nvme_error_detected,
b60503ba
MW
2094 .slot_reset = nvme_slot_reset,
2095 .resume = nvme_error_resume,
f0d54a54 2096 .reset_notify = nvme_reset_notify,
b60503ba
MW
2097};
2098
2099/* Move to pci_ids.h later */
2100#define PCI_CLASS_STORAGE_EXPRESS 0x010802
2101
6eb0d698 2102static const struct pci_device_id nvme_id_table[] = {
106198ed 2103 { PCI_VDEVICE(INTEL, 0x0953),
08095e70
KB
2104 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2105 NVME_QUIRK_DISCARD_ZEROES, },
99466e70
KB
2106 { PCI_VDEVICE(INTEL, 0x0a53),
2107 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2108 NVME_QUIRK_DISCARD_ZEROES, },
2109 { PCI_VDEVICE(INTEL, 0x0a54),
2110 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2111 NVME_QUIRK_DISCARD_ZEROES, },
540c801c
KB
2112 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2113 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
54adc010
GP
2114 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2115 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
b60503ba 2116 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2117 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
b60503ba
MW
2118 { 0, }
2119};
2120MODULE_DEVICE_TABLE(pci, nvme_id_table);
2121
2122static struct pci_driver nvme_driver = {
2123 .name = "nvme",
2124 .id_table = nvme_id_table,
2125 .probe = nvme_probe,
8d85fce7 2126 .remove = nvme_remove,
09ece142 2127 .shutdown = nvme_shutdown,
cd638946
KB
2128 .driver = {
2129 .pm = &nvme_dev_pm_ops,
2130 },
13880f5b 2131 .sriov_configure = nvme_pci_sriov_configure,
b60503ba
MW
2132 .err_handler = &nvme_err_handler,
2133};
2134
2135static int __init nvme_init(void)
2136{
0ac13140 2137 int result;
1fa6aead 2138
92f7a162 2139 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
9a6b9458 2140 if (!nvme_workq)
b9afca3e 2141 return -ENOMEM;
9a6b9458 2142
f3db22fe
KB
2143 result = pci_register_driver(&nvme_driver);
2144 if (result)
576d55d6 2145 destroy_workqueue(nvme_workq);
b60503ba
MW
2146 return result;
2147}
2148
2149static void __exit nvme_exit(void)
2150{
2151 pci_unregister_driver(&nvme_driver);
9a6b9458 2152 destroy_workqueue(nvme_workq);
21bd78bc 2153 _nvme_check_size();
b60503ba
MW
2154}
2155
2156MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2157MODULE_LICENSE("GPL");
c78b4713 2158MODULE_VERSION("1.0");
b60503ba
MW
2159module_init(nvme_init);
2160module_exit(nvme_exit);
This page took 0.509396 seconds and 5 git commands to generate.