Merge tag 'linux-kselftest-4.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / nvmem / core.c
CommitLineData
eace75cf
SK
1/*
2 * nvmem framework core.
3 *
4 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
5 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 and
9 * only version 2 as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
17#include <linux/device.h>
18#include <linux/export.h>
19#include <linux/fs.h>
20#include <linux/idr.h>
21#include <linux/init.h>
22#include <linux/module.h>
23#include <linux/nvmem-consumer.h>
24#include <linux/nvmem-provider.h>
25#include <linux/of.h>
26#include <linux/regmap.h>
27#include <linux/slab.h>
28
29struct nvmem_device {
30 const char *name;
31 struct regmap *regmap;
32 struct module *owner;
33 struct device dev;
34 int stride;
35 int word_size;
36 int ncells;
37 int id;
38 int users;
39 size_t size;
40 bool read_only;
41};
42
43struct nvmem_cell {
44 const char *name;
45 int offset;
46 int bytes;
47 int bit_offset;
48 int nbits;
49 struct nvmem_device *nvmem;
50 struct list_head node;
51};
52
53static DEFINE_MUTEX(nvmem_mutex);
54static DEFINE_IDA(nvmem_ida);
55
56static LIST_HEAD(nvmem_cells);
57static DEFINE_MUTEX(nvmem_cells_mutex);
58
59#define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
60
61static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
62 struct bin_attribute *attr,
63 char *buf, loff_t pos, size_t count)
64{
65 struct device *dev = container_of(kobj, struct device, kobj);
66 struct nvmem_device *nvmem = to_nvmem_device(dev);
67 int rc;
68
69 /* Stop the user from reading */
70 if (pos > nvmem->size)
71 return 0;
72
73 if (pos + count > nvmem->size)
74 count = nvmem->size - pos;
75
76 count = round_down(count, nvmem->word_size);
77
78 rc = regmap_raw_read(nvmem->regmap, pos, buf, count);
79
80 if (IS_ERR_VALUE(rc))
81 return rc;
82
83 return count;
84}
85
86static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
87 struct bin_attribute *attr,
88 char *buf, loff_t pos, size_t count)
89{
90 struct device *dev = container_of(kobj, struct device, kobj);
91 struct nvmem_device *nvmem = to_nvmem_device(dev);
92 int rc;
93
94 /* Stop the user from writing */
95 if (pos > nvmem->size)
96 return 0;
97
98 if (pos + count > nvmem->size)
99 count = nvmem->size - pos;
100
101 count = round_down(count, nvmem->word_size);
102
103 rc = regmap_raw_write(nvmem->regmap, pos, buf, count);
104
105 if (IS_ERR_VALUE(rc))
106 return rc;
107
108 return count;
109}
110
111/* default read/write permissions */
112static struct bin_attribute bin_attr_rw_nvmem = {
113 .attr = {
114 .name = "nvmem",
115 .mode = S_IWUSR | S_IRUGO,
116 },
117 .read = bin_attr_nvmem_read,
118 .write = bin_attr_nvmem_write,
119};
120
121static struct bin_attribute *nvmem_bin_rw_attributes[] = {
122 &bin_attr_rw_nvmem,
123 NULL,
124};
125
126static const struct attribute_group nvmem_bin_rw_group = {
127 .bin_attrs = nvmem_bin_rw_attributes,
128};
129
130static const struct attribute_group *nvmem_rw_dev_groups[] = {
131 &nvmem_bin_rw_group,
132 NULL,
133};
134
135/* read only permission */
136static struct bin_attribute bin_attr_ro_nvmem = {
137 .attr = {
138 .name = "nvmem",
139 .mode = S_IRUGO,
140 },
141 .read = bin_attr_nvmem_read,
142};
143
144static struct bin_attribute *nvmem_bin_ro_attributes[] = {
145 &bin_attr_ro_nvmem,
146 NULL,
147};
148
149static const struct attribute_group nvmem_bin_ro_group = {
150 .bin_attrs = nvmem_bin_ro_attributes,
151};
152
153static const struct attribute_group *nvmem_ro_dev_groups[] = {
154 &nvmem_bin_ro_group,
155 NULL,
156};
157
158static void nvmem_release(struct device *dev)
159{
160 struct nvmem_device *nvmem = to_nvmem_device(dev);
161
162 ida_simple_remove(&nvmem_ida, nvmem->id);
163 kfree(nvmem);
164}
165
166static const struct device_type nvmem_provider_type = {
167 .release = nvmem_release,
168};
169
170static struct bus_type nvmem_bus_type = {
171 .name = "nvmem",
172};
173
174static int of_nvmem_match(struct device *dev, void *nvmem_np)
175{
176 return dev->of_node == nvmem_np;
177}
178
179static struct nvmem_device *of_nvmem_find(struct device_node *nvmem_np)
180{
181 struct device *d;
182
183 if (!nvmem_np)
184 return NULL;
185
186 d = bus_find_device(&nvmem_bus_type, NULL, nvmem_np, of_nvmem_match);
187
188 if (!d)
189 return NULL;
190
191 return to_nvmem_device(d);
192}
193
194static struct nvmem_cell *nvmem_find_cell(const char *cell_id)
195{
196 struct nvmem_cell *p;
197
198 list_for_each_entry(p, &nvmem_cells, node)
199 if (p && !strcmp(p->name, cell_id))
200 return p;
201
202 return NULL;
203}
204
205static void nvmem_cell_drop(struct nvmem_cell *cell)
206{
207 mutex_lock(&nvmem_cells_mutex);
208 list_del(&cell->node);
209 mutex_unlock(&nvmem_cells_mutex);
210 kfree(cell);
211}
212
213static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
214{
215 struct nvmem_cell *cell;
216 struct list_head *p, *n;
217
218 list_for_each_safe(p, n, &nvmem_cells) {
219 cell = list_entry(p, struct nvmem_cell, node);
220 if (cell->nvmem == nvmem)
221 nvmem_cell_drop(cell);
222 }
223}
224
225static void nvmem_cell_add(struct nvmem_cell *cell)
226{
227 mutex_lock(&nvmem_cells_mutex);
228 list_add_tail(&cell->node, &nvmem_cells);
229 mutex_unlock(&nvmem_cells_mutex);
230}
231
232static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
233 const struct nvmem_cell_info *info,
234 struct nvmem_cell *cell)
235{
236 cell->nvmem = nvmem;
237 cell->offset = info->offset;
238 cell->bytes = info->bytes;
239 cell->name = info->name;
240
241 cell->bit_offset = info->bit_offset;
242 cell->nbits = info->nbits;
243
244 if (cell->nbits)
245 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
246 BITS_PER_BYTE);
247
248 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
249 dev_err(&nvmem->dev,
250 "cell %s unaligned to nvmem stride %d\n",
251 cell->name, nvmem->stride);
252 return -EINVAL;
253 }
254
255 return 0;
256}
257
258static int nvmem_add_cells(struct nvmem_device *nvmem,
259 const struct nvmem_config *cfg)
260{
261 struct nvmem_cell **cells;
262 const struct nvmem_cell_info *info = cfg->cells;
263 int i, rval;
264
265 cells = kcalloc(cfg->ncells, sizeof(*cells), GFP_KERNEL);
266 if (!cells)
267 return -ENOMEM;
268
269 for (i = 0; i < cfg->ncells; i++) {
270 cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
271 if (!cells[i]) {
272 rval = -ENOMEM;
273 goto err;
274 }
275
276 rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
277 if (IS_ERR_VALUE(rval)) {
278 kfree(cells[i]);
279 goto err;
280 }
281
282 nvmem_cell_add(cells[i]);
283 }
284
285 nvmem->ncells = cfg->ncells;
286 /* remove tmp array */
287 kfree(cells);
288
289 return 0;
290err:
291 while (--i)
292 nvmem_cell_drop(cells[i]);
293
294 return rval;
295}
296
297/**
298 * nvmem_register() - Register a nvmem device for given nvmem_config.
299 * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
300 *
301 * @config: nvmem device configuration with which nvmem device is created.
302 *
303 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
304 * on success.
305 */
306
307struct nvmem_device *nvmem_register(const struct nvmem_config *config)
308{
309 struct nvmem_device *nvmem;
310 struct device_node *np;
311 struct regmap *rm;
312 int rval;
313
314 if (!config->dev)
315 return ERR_PTR(-EINVAL);
316
317 rm = dev_get_regmap(config->dev, NULL);
318 if (!rm) {
319 dev_err(config->dev, "Regmap not found\n");
320 return ERR_PTR(-EINVAL);
321 }
322
323 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
324 if (!nvmem)
325 return ERR_PTR(-ENOMEM);
326
327 rval = ida_simple_get(&nvmem_ida, 0, 0, GFP_KERNEL);
328 if (rval < 0) {
329 kfree(nvmem);
330 return ERR_PTR(rval);
331 }
332
333 nvmem->id = rval;
334 nvmem->regmap = rm;
335 nvmem->owner = config->owner;
336 nvmem->stride = regmap_get_reg_stride(rm);
337 nvmem->word_size = regmap_get_val_bytes(rm);
338 nvmem->size = regmap_get_max_register(rm) + nvmem->stride;
339 nvmem->dev.type = &nvmem_provider_type;
340 nvmem->dev.bus = &nvmem_bus_type;
341 nvmem->dev.parent = config->dev;
342 np = config->dev->of_node;
343 nvmem->dev.of_node = np;
344 dev_set_name(&nvmem->dev, "%s%d",
345 config->name ? : "nvmem", config->id);
346
347 nvmem->read_only = of_property_read_bool(np, "read-only") |
348 config->read_only;
349
350 nvmem->dev.groups = nvmem->read_only ? nvmem_ro_dev_groups :
351 nvmem_rw_dev_groups;
352
353 device_initialize(&nvmem->dev);
354
355 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
356
357 rval = device_add(&nvmem->dev);
358 if (rval) {
359 ida_simple_remove(&nvmem_ida, nvmem->id);
360 kfree(nvmem);
361 return ERR_PTR(rval);
362 }
363
364 if (config->cells)
365 nvmem_add_cells(nvmem, config);
366
367 return nvmem;
368}
369EXPORT_SYMBOL_GPL(nvmem_register);
370
371/**
372 * nvmem_unregister() - Unregister previously registered nvmem device
373 *
374 * @nvmem: Pointer to previously registered nvmem device.
375 *
376 * Return: Will be an negative on error or a zero on success.
377 */
378int nvmem_unregister(struct nvmem_device *nvmem)
379{
69aba794
SK
380 mutex_lock(&nvmem_mutex);
381 if (nvmem->users) {
382 mutex_unlock(&nvmem_mutex);
eace75cf 383 return -EBUSY;
69aba794
SK
384 }
385 mutex_unlock(&nvmem_mutex);
eace75cf
SK
386
387 nvmem_device_remove_all_cells(nvmem);
388 device_del(&nvmem->dev);
389
390 return 0;
391}
392EXPORT_SYMBOL_GPL(nvmem_unregister);
393
69aba794
SK
394static struct nvmem_device *__nvmem_device_get(struct device_node *np,
395 struct nvmem_cell **cellp,
396 const char *cell_id)
397{
398 struct nvmem_device *nvmem = NULL;
399
400 mutex_lock(&nvmem_mutex);
401
402 if (np) {
403 nvmem = of_nvmem_find(np);
404 if (!nvmem) {
405 mutex_unlock(&nvmem_mutex);
406 return ERR_PTR(-EPROBE_DEFER);
407 }
408 } else {
409 struct nvmem_cell *cell = nvmem_find_cell(cell_id);
410
411 if (cell) {
412 nvmem = cell->nvmem;
413 *cellp = cell;
414 }
415
416 if (!nvmem) {
417 mutex_unlock(&nvmem_mutex);
418 return ERR_PTR(-ENOENT);
419 }
420 }
421
422 nvmem->users++;
423 mutex_unlock(&nvmem_mutex);
424
425 if (!try_module_get(nvmem->owner)) {
426 dev_err(&nvmem->dev,
427 "could not increase module refcount for cell %s\n",
428 nvmem->name);
429
430 mutex_lock(&nvmem_mutex);
431 nvmem->users--;
432 mutex_unlock(&nvmem_mutex);
433
434 return ERR_PTR(-EINVAL);
435 }
436
437 return nvmem;
438}
439
440static void __nvmem_device_put(struct nvmem_device *nvmem)
441{
442 module_put(nvmem->owner);
443 mutex_lock(&nvmem_mutex);
444 nvmem->users--;
445 mutex_unlock(&nvmem_mutex);
446}
447
e2a5402e
SK
448static int nvmem_match(struct device *dev, void *data)
449{
450 return !strcmp(dev_name(dev), data);
451}
452
453static struct nvmem_device *nvmem_find(const char *name)
454{
455 struct device *d;
456
457 d = bus_find_device(&nvmem_bus_type, NULL, (void *)name, nvmem_match);
458
459 if (!d)
460 return NULL;
461
462 return to_nvmem_device(d);
463}
464
465#if IS_ENABLED(CONFIG_NVMEM) && IS_ENABLED(CONFIG_OF)
466/**
467 * of_nvmem_device_get() - Get nvmem device from a given id
468 *
469 * @dev node: Device tree node that uses the nvmem device
470 * @id: nvmem name from nvmem-names property.
471 *
472 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
473 * on success.
474 */
475struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
476{
477
478 struct device_node *nvmem_np;
479 int index;
480
481 index = of_property_match_string(np, "nvmem-names", id);
482
483 nvmem_np = of_parse_phandle(np, "nvmem", index);
484 if (!nvmem_np)
485 return ERR_PTR(-EINVAL);
486
487 return __nvmem_device_get(nvmem_np, NULL, NULL);
488}
489EXPORT_SYMBOL_GPL(of_nvmem_device_get);
490#endif
491
492/**
493 * nvmem_device_get() - Get nvmem device from a given id
494 *
495 * @dev : Device that uses the nvmem device
496 * @id: nvmem name from nvmem-names property.
497 *
498 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
499 * on success.
500 */
501struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
502{
503 if (dev->of_node) { /* try dt first */
504 struct nvmem_device *nvmem;
505
506 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
507
508 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
509 return nvmem;
510
511 }
512
513 return nvmem_find(dev_name);
514}
515EXPORT_SYMBOL_GPL(nvmem_device_get);
516
517static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
518{
519 struct nvmem_device **nvmem = res;
520
521 if (WARN_ON(!nvmem || !*nvmem))
522 return 0;
523
524 return *nvmem == data;
525}
526
527static void devm_nvmem_device_release(struct device *dev, void *res)
528{
529 nvmem_device_put(*(struct nvmem_device **)res);
530}
531
532/**
533 * devm_nvmem_device_put() - put alredy got nvmem device
534 *
535 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
536 * that needs to be released.
537 */
538void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
539{
540 int ret;
541
542 ret = devres_release(dev, devm_nvmem_device_release,
543 devm_nvmem_device_match, nvmem);
544
545 WARN_ON(ret);
546}
547EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
548
549/**
550 * nvmem_device_put() - put alredy got nvmem device
551 *
552 * @nvmem: pointer to nvmem device that needs to be released.
553 */
554void nvmem_device_put(struct nvmem_device *nvmem)
555{
556 __nvmem_device_put(nvmem);
557}
558EXPORT_SYMBOL_GPL(nvmem_device_put);
559
560/**
561 * devm_nvmem_device_get() - Get nvmem cell of device form a given id
562 *
563 * @dev node: Device tree node that uses the nvmem cell
564 * @id: nvmem name in nvmems property.
565 *
566 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
567 * on success. The nvmem_cell will be freed by the automatically once the
568 * device is freed.
569 */
570struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
571{
572 struct nvmem_device **ptr, *nvmem;
573
574 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
575 if (!ptr)
576 return ERR_PTR(-ENOMEM);
577
578 nvmem = nvmem_device_get(dev, id);
579 if (!IS_ERR(nvmem)) {
580 *ptr = nvmem;
581 devres_add(dev, ptr);
582 } else {
583 devres_free(ptr);
584 }
585
586 return nvmem;
587}
588EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
589
69aba794
SK
590static struct nvmem_cell *nvmem_cell_get_from_list(const char *cell_id)
591{
592 struct nvmem_cell *cell = NULL;
593 struct nvmem_device *nvmem;
594
595 nvmem = __nvmem_device_get(NULL, &cell, cell_id);
596 if (IS_ERR(nvmem))
597 return ERR_CAST(nvmem);
598
599 return cell;
600}
601
602#if IS_ENABLED(CONFIG_NVMEM) && IS_ENABLED(CONFIG_OF)
603/**
604 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
605 *
606 * @dev node: Device tree node that uses the nvmem cell
607 * @id: nvmem cell name from nvmem-cell-names property.
608 *
609 * Return: Will be an ERR_PTR() on error or a valid pointer
610 * to a struct nvmem_cell. The nvmem_cell will be freed by the
611 * nvmem_cell_put().
612 */
613struct nvmem_cell *of_nvmem_cell_get(struct device_node *np,
614 const char *name)
615{
616 struct device_node *cell_np, *nvmem_np;
617 struct nvmem_cell *cell;
618 struct nvmem_device *nvmem;
619 const __be32 *addr;
620 int rval, len, index;
621
622 index = of_property_match_string(np, "nvmem-cell-names", name);
623
624 cell_np = of_parse_phandle(np, "nvmem-cells", index);
625 if (!cell_np)
626 return ERR_PTR(-EINVAL);
627
628 nvmem_np = of_get_next_parent(cell_np);
629 if (!nvmem_np)
630 return ERR_PTR(-EINVAL);
631
632 nvmem = __nvmem_device_get(nvmem_np, NULL, NULL);
633 if (IS_ERR(nvmem))
634 return ERR_CAST(nvmem);
635
636 addr = of_get_property(cell_np, "reg", &len);
637 if (!addr || (len < 2 * sizeof(u32))) {
638 dev_err(&nvmem->dev, "nvmem: invalid reg on %s\n",
639 cell_np->full_name);
640 rval = -EINVAL;
641 goto err_mem;
642 }
643
644 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
645 if (!cell) {
646 rval = -ENOMEM;
647 goto err_mem;
648 }
649
650 cell->nvmem = nvmem;
651 cell->offset = be32_to_cpup(addr++);
652 cell->bytes = be32_to_cpup(addr);
653 cell->name = cell_np->name;
654
655 addr = of_get_property(cell_np, "bits", &len);
656 if (addr && len == (2 * sizeof(u32))) {
657 cell->bit_offset = be32_to_cpup(addr++);
658 cell->nbits = be32_to_cpup(addr);
659 }
660
661 if (cell->nbits)
662 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
663 BITS_PER_BYTE);
664
665 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
666 dev_err(&nvmem->dev,
667 "cell %s unaligned to nvmem stride %d\n",
668 cell->name, nvmem->stride);
669 rval = -EINVAL;
670 goto err_sanity;
671 }
672
673 nvmem_cell_add(cell);
674
675 return cell;
676
677err_sanity:
678 kfree(cell);
679
680err_mem:
681 __nvmem_device_put(nvmem);
682
683 return ERR_PTR(rval);
684}
685EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
686#endif
687
688/**
689 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
690 *
691 * @dev node: Device tree node that uses the nvmem cell
692 * @id: nvmem cell name to get.
693 *
694 * Return: Will be an ERR_PTR() on error or a valid pointer
695 * to a struct nvmem_cell. The nvmem_cell will be freed by the
696 * nvmem_cell_put().
697 */
698struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *cell_id)
699{
700 struct nvmem_cell *cell;
701
702 if (dev->of_node) { /* try dt first */
703 cell = of_nvmem_cell_get(dev->of_node, cell_id);
704 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
705 return cell;
706 }
707
708 return nvmem_cell_get_from_list(cell_id);
709}
710EXPORT_SYMBOL_GPL(nvmem_cell_get);
711
712static void devm_nvmem_cell_release(struct device *dev, void *res)
713{
714 nvmem_cell_put(*(struct nvmem_cell **)res);
715}
716
717/**
718 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
719 *
720 * @dev node: Device tree node that uses the nvmem cell
721 * @id: nvmem id in nvmem-names property.
722 *
723 * Return: Will be an ERR_PTR() on error or a valid pointer
724 * to a struct nvmem_cell. The nvmem_cell will be freed by the
725 * automatically once the device is freed.
726 */
727struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
728{
729 struct nvmem_cell **ptr, *cell;
730
731 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
732 if (!ptr)
733 return ERR_PTR(-ENOMEM);
734
735 cell = nvmem_cell_get(dev, id);
736 if (!IS_ERR(cell)) {
737 *ptr = cell;
738 devres_add(dev, ptr);
739 } else {
740 devres_free(ptr);
741 }
742
743 return cell;
744}
745EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
746
747static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
748{
749 struct nvmem_cell **c = res;
750
751 if (WARN_ON(!c || !*c))
752 return 0;
753
754 return *c == data;
755}
756
757/**
758 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
759 * from devm_nvmem_cell_get.
760 *
761 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get()
762 */
763void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
764{
765 int ret;
766
767 ret = devres_release(dev, devm_nvmem_cell_release,
768 devm_nvmem_cell_match, cell);
769
770 WARN_ON(ret);
771}
772EXPORT_SYMBOL(devm_nvmem_cell_put);
773
774/**
775 * nvmem_cell_put() - Release previously allocated nvmem cell.
776 *
777 * @cell: Previously allocated nvmem cell by nvmem_cell_get()
778 */
779void nvmem_cell_put(struct nvmem_cell *cell)
780{
781 struct nvmem_device *nvmem = cell->nvmem;
782
783 __nvmem_device_put(nvmem);
784 nvmem_cell_drop(cell);
785}
786EXPORT_SYMBOL_GPL(nvmem_cell_put);
787
788static inline void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell,
789 void *buf)
790{
791 u8 *p, *b;
792 int i, bit_offset = cell->bit_offset;
793
794 p = b = buf;
795 if (bit_offset) {
796 /* First shift */
797 *b++ >>= bit_offset;
798
799 /* setup rest of the bytes if any */
800 for (i = 1; i < cell->bytes; i++) {
801 /* Get bits from next byte and shift them towards msb */
802 *p |= *b << (BITS_PER_BYTE - bit_offset);
803
804 p = b;
805 *b++ >>= bit_offset;
806 }
807
808 /* result fits in less bytes */
809 if (cell->bytes != DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE))
810 *p-- = 0;
811 }
812 /* clear msb bits if any leftover in the last byte */
813 *p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
814}
815
816static int __nvmem_cell_read(struct nvmem_device *nvmem,
817 struct nvmem_cell *cell,
818 void *buf, size_t *len)
819{
820 int rc;
821
822 rc = regmap_raw_read(nvmem->regmap, cell->offset, buf, cell->bytes);
823
824 if (IS_ERR_VALUE(rc))
825 return rc;
826
827 /* shift bits in-place */
828 if (cell->bit_offset || cell->bit_offset)
829 nvmem_shift_read_buffer_in_place(cell, buf);
830
831 *len = cell->bytes;
832
833 return 0;
834}
835
836/**
837 * nvmem_cell_read() - Read a given nvmem cell
838 *
839 * @cell: nvmem cell to be read.
840 * @len: pointer to length of cell which will be populated on successful read.
841 *
842 * Return: ERR_PTR() on error or a valid pointer to a char * buffer on success.
843 * The buffer should be freed by the consumer with a kfree().
844 */
845void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
846{
847 struct nvmem_device *nvmem = cell->nvmem;
848 u8 *buf;
849 int rc;
850
851 if (!nvmem || !nvmem->regmap)
852 return ERR_PTR(-EINVAL);
853
854 buf = kzalloc(cell->bytes, GFP_KERNEL);
855 if (!buf)
856 return ERR_PTR(-ENOMEM);
857
858 rc = __nvmem_cell_read(nvmem, cell, buf, len);
859 if (IS_ERR_VALUE(rc)) {
860 kfree(buf);
861 return ERR_PTR(rc);
862 }
863
864 return buf;
865}
866EXPORT_SYMBOL_GPL(nvmem_cell_read);
867
868static inline void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
869 u8 *_buf, int len)
870{
871 struct nvmem_device *nvmem = cell->nvmem;
872 int i, rc, nbits, bit_offset = cell->bit_offset;
873 u8 v, *p, *buf, *b, pbyte, pbits;
874
875 nbits = cell->nbits;
876 buf = kzalloc(cell->bytes, GFP_KERNEL);
877 if (!buf)
878 return ERR_PTR(-ENOMEM);
879
880 memcpy(buf, _buf, len);
881 p = b = buf;
882
883 if (bit_offset) {
884 pbyte = *b;
885 *b <<= bit_offset;
886
887 /* setup the first byte with lsb bits from nvmem */
888 rc = regmap_raw_read(nvmem->regmap, cell->offset, &v, 1);
889 *b++ |= GENMASK(bit_offset - 1, 0) & v;
890
891 /* setup rest of the byte if any */
892 for (i = 1; i < cell->bytes; i++) {
893 /* Get last byte bits and shift them towards lsb */
894 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
895 pbyte = *b;
896 p = b;
897 *b <<= bit_offset;
898 *b++ |= pbits;
899 }
900 }
901
902 /* if it's not end on byte boundary */
903 if ((nbits + bit_offset) % BITS_PER_BYTE) {
904 /* setup the last byte with msb bits from nvmem */
905 rc = regmap_raw_read(nvmem->regmap,
906 cell->offset + cell->bytes - 1, &v, 1);
907 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
908
909 }
910
911 return buf;
912}
913
914/**
915 * nvmem_cell_write() - Write to a given nvmem cell
916 *
917 * @cell: nvmem cell to be written.
918 * @buf: Buffer to be written.
919 * @len: length of buffer to be written to nvmem cell.
920 *
921 * Return: length of bytes written or negative on failure.
922 */
923int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
924{
925 struct nvmem_device *nvmem = cell->nvmem;
926 int rc;
927
928 if (!nvmem || !nvmem->regmap || nvmem->read_only ||
929 (cell->bit_offset == 0 && len != cell->bytes))
930 return -EINVAL;
931
932 if (cell->bit_offset || cell->nbits) {
933 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
934 if (IS_ERR(buf))
935 return PTR_ERR(buf);
936 }
937
938 rc = regmap_raw_write(nvmem->regmap, cell->offset, buf, cell->bytes);
939
940 /* free the tmp buffer */
941 if (cell->bit_offset)
942 kfree(buf);
943
944 if (IS_ERR_VALUE(rc))
945 return rc;
946
947 return len;
948}
949EXPORT_SYMBOL_GPL(nvmem_cell_write);
950
e2a5402e
SK
951/**
952 * nvmem_device_cell_read() - Read a given nvmem device and cell
953 *
954 * @nvmem: nvmem device to read from.
955 * @info: nvmem cell info to be read.
956 * @buf: buffer pointer which will be populated on successful read.
957 *
958 * Return: length of successful bytes read on success and negative
959 * error code on error.
960 */
961ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
962 struct nvmem_cell_info *info, void *buf)
963{
964 struct nvmem_cell cell;
965 int rc;
966 ssize_t len;
967
968 if (!nvmem || !nvmem->regmap)
969 return -EINVAL;
970
971 rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
972 if (IS_ERR_VALUE(rc))
973 return rc;
974
975 rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
976 if (IS_ERR_VALUE(rc))
977 return rc;
978
979 return len;
980}
981EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
982
983/**
984 * nvmem_device_cell_write() - Write cell to a given nvmem device
985 *
986 * @nvmem: nvmem device to be written to.
987 * @info: nvmem cell info to be written
988 * @buf: buffer to be written to cell.
989 *
990 * Return: length of bytes written or negative error code on failure.
991 * */
992int nvmem_device_cell_write(struct nvmem_device *nvmem,
993 struct nvmem_cell_info *info, void *buf)
994{
995 struct nvmem_cell cell;
996 int rc;
997
998 if (!nvmem || !nvmem->regmap)
999 return -EINVAL;
1000
1001 rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1002 if (IS_ERR_VALUE(rc))
1003 return rc;
1004
1005 return nvmem_cell_write(&cell, buf, cell.bytes);
1006}
1007EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1008
1009/**
1010 * nvmem_device_read() - Read from a given nvmem device
1011 *
1012 * @nvmem: nvmem device to read from.
1013 * @offset: offset in nvmem device.
1014 * @bytes: number of bytes to read.
1015 * @buf: buffer pointer which will be populated on successful read.
1016 *
1017 * Return: length of successful bytes read on success and negative
1018 * error code on error.
1019 */
1020int nvmem_device_read(struct nvmem_device *nvmem,
1021 unsigned int offset,
1022 size_t bytes, void *buf)
1023{
1024 int rc;
1025
1026 if (!nvmem || !nvmem->regmap)
1027 return -EINVAL;
1028
1029 rc = regmap_raw_read(nvmem->regmap, offset, buf, bytes);
1030
1031 if (IS_ERR_VALUE(rc))
1032 return rc;
1033
1034 return bytes;
1035}
1036EXPORT_SYMBOL_GPL(nvmem_device_read);
1037
1038/**
1039 * nvmem_device_write() - Write cell to a given nvmem device
1040 *
1041 * @nvmem: nvmem device to be written to.
1042 * @offset: offset in nvmem device.
1043 * @bytes: number of bytes to write.
1044 * @buf: buffer to be written.
1045 *
1046 * Return: length of bytes written or negative error code on failure.
1047 * */
1048int nvmem_device_write(struct nvmem_device *nvmem,
1049 unsigned int offset,
1050 size_t bytes, void *buf)
1051{
1052 int rc;
1053
1054 if (!nvmem || !nvmem->regmap)
1055 return -EINVAL;
1056
1057 rc = regmap_raw_write(nvmem->regmap, offset, buf, bytes);
1058
1059 if (IS_ERR_VALUE(rc))
1060 return rc;
1061
1062
1063 return bytes;
1064}
1065EXPORT_SYMBOL_GPL(nvmem_device_write);
1066
eace75cf
SK
1067static int __init nvmem_init(void)
1068{
1069 return bus_register(&nvmem_bus_type);
1070}
1071
1072static void __exit nvmem_exit(void)
1073{
1074 bus_unregister(&nvmem_bus_type);
1075}
1076
1077subsys_initcall(nvmem_init);
1078module_exit(nvmem_exit);
1079
1080MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1081MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1082MODULE_DESCRIPTION("nvmem Driver Core");
1083MODULE_LICENSE("GPL v2");
This page took 0.111632 seconds and 5 git commands to generate.