Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[deliverable/linux.git] / drivers / oprofile / buffer_sync.c
CommitLineData
1da177e4
LT
1/**
2 * @file buffer_sync.c
3 *
ae735e99 4 * @remark Copyright 2002-2009 OProfile authors
1da177e4
LT
5 * @remark Read the file COPYING
6 *
7 * @author John Levon <levon@movementarian.org>
345c2573 8 * @author Barry Kasindorf
ae735e99 9 * @author Robert Richter <robert.richter@amd.com>
1da177e4
LT
10 *
11 * This is the core of the buffer management. Each
12 * CPU buffer is processed and entered into the
13 * global event buffer. Such processing is necessary
14 * in several circumstances, mentioned below.
15 *
16 * The processing does the job of converting the
17 * transitory EIP value into a persistent dentry/offset
18 * value that the profiler can record at its leisure.
19 *
20 * See fs/dcookies.c for a description of the dentry/offset
21 * objects.
22 */
23
24#include <linux/mm.h>
25#include <linux/workqueue.h>
26#include <linux/notifier.h>
27#include <linux/dcookies.h>
28#include <linux/profile.h>
29#include <linux/module.h>
30#include <linux/fs.h>
1474855d 31#include <linux/oprofile.h>
e8edc6e0 32#include <linux/sched.h>
5a0e3ad6 33#include <linux/gfp.h>
1474855d 34
1da177e4
LT
35#include "oprofile_stats.h"
36#include "event_buffer.h"
37#include "cpu_buffer.h"
38#include "buffer_sync.h"
73185e0a 39
1da177e4
LT
40static LIST_HEAD(dying_tasks);
41static LIST_HEAD(dead_tasks);
f7df8ed1 42static cpumask_var_t marked_cpus;
1da177e4
LT
43static DEFINE_SPINLOCK(task_mortuary);
44static void process_task_mortuary(void);
45
1da177e4
LT
46/* Take ownership of the task struct and place it on the
47 * list for processing. Only after two full buffer syncs
48 * does the task eventually get freed, because by then
49 * we are sure we will not reference it again.
4369ef3c
PM
50 * Can be invoked from softirq via RCU callback due to
51 * call_rcu() of the task struct, hence the _irqsave.
1da177e4 52 */
73185e0a
RR
53static int
54task_free_notify(struct notifier_block *self, unsigned long val, void *data)
1da177e4 55{
4369ef3c 56 unsigned long flags;
73185e0a 57 struct task_struct *task = data;
4369ef3c 58 spin_lock_irqsave(&task_mortuary, flags);
1da177e4 59 list_add(&task->tasks, &dying_tasks);
4369ef3c 60 spin_unlock_irqrestore(&task_mortuary, flags);
1da177e4
LT
61 return NOTIFY_OK;
62}
63
64
65/* The task is on its way out. A sync of the buffer means we can catch
66 * any remaining samples for this task.
67 */
73185e0a
RR
68static int
69task_exit_notify(struct notifier_block *self, unsigned long val, void *data)
1da177e4
LT
70{
71 /* To avoid latency problems, we only process the current CPU,
72 * hoping that most samples for the task are on this CPU
73 */
39c715b7 74 sync_buffer(raw_smp_processor_id());
73185e0a 75 return 0;
1da177e4
LT
76}
77
78
79/* The task is about to try a do_munmap(). We peek at what it's going to
80 * do, and if it's an executable region, process the samples first, so
81 * we don't lose any. This does not have to be exact, it's a QoI issue
82 * only.
83 */
73185e0a
RR
84static int
85munmap_notify(struct notifier_block *self, unsigned long val, void *data)
1da177e4
LT
86{
87 unsigned long addr = (unsigned long)data;
73185e0a
RR
88 struct mm_struct *mm = current->mm;
89 struct vm_area_struct *mpnt;
1da177e4
LT
90
91 down_read(&mm->mmap_sem);
92
93 mpnt = find_vma(mm, addr);
94 if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) {
95 up_read(&mm->mmap_sem);
96 /* To avoid latency problems, we only process the current CPU,
97 * hoping that most samples for the task are on this CPU
98 */
39c715b7 99 sync_buffer(raw_smp_processor_id());
1da177e4
LT
100 return 0;
101 }
102
103 up_read(&mm->mmap_sem);
104 return 0;
105}
106
73185e0a 107
1da177e4
LT
108/* We need to be told about new modules so we don't attribute to a previously
109 * loaded module, or drop the samples on the floor.
110 */
73185e0a
RR
111static int
112module_load_notify(struct notifier_block *self, unsigned long val, void *data)
1da177e4
LT
113{
114#ifdef CONFIG_MODULES
115 if (val != MODULE_STATE_COMING)
116 return 0;
117
118 /* FIXME: should we process all CPU buffers ? */
59cc185a 119 mutex_lock(&buffer_mutex);
1da177e4
LT
120 add_event_entry(ESCAPE_CODE);
121 add_event_entry(MODULE_LOADED_CODE);
59cc185a 122 mutex_unlock(&buffer_mutex);
1da177e4
LT
123#endif
124 return 0;
125}
126
73185e0a 127
1da177e4
LT
128static struct notifier_block task_free_nb = {
129 .notifier_call = task_free_notify,
130};
131
132static struct notifier_block task_exit_nb = {
133 .notifier_call = task_exit_notify,
134};
135
136static struct notifier_block munmap_nb = {
137 .notifier_call = munmap_notify,
138};
139
140static struct notifier_block module_load_nb = {
141 .notifier_call = module_load_notify,
142};
143
6ac6519b
RR
144static void free_all_tasks(void)
145{
146 /* make sure we don't leak task structs */
147 process_task_mortuary();
148 process_task_mortuary();
149}
150
1da177e4
LT
151int sync_start(void)
152{
153 int err;
154
79f55997 155 if (!zalloc_cpumask_var(&marked_cpus, GFP_KERNEL))
4c50d9ea 156 return -ENOMEM;
4c50d9ea 157
1da177e4
LT
158 err = task_handoff_register(&task_free_nb);
159 if (err)
160 goto out1;
161 err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb);
162 if (err)
163 goto out2;
164 err = profile_event_register(PROFILE_MUNMAP, &munmap_nb);
165 if (err)
166 goto out3;
167 err = register_module_notifier(&module_load_nb);
168 if (err)
169 goto out4;
170
750d857c
RR
171 start_cpu_work();
172
1da177e4
LT
173out:
174 return err;
175out4:
176 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
177out3:
178 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
179out2:
180 task_handoff_unregister(&task_free_nb);
6ac6519b 181 free_all_tasks();
1da177e4 182out1:
4c50d9ea 183 free_cpumask_var(marked_cpus);
1da177e4
LT
184 goto out;
185}
186
187
188void sync_stop(void)
189{
750d857c 190 end_cpu_work();
1da177e4
LT
191 unregister_module_notifier(&module_load_nb);
192 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
193 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
194 task_handoff_unregister(&task_free_nb);
130c5ce7
RR
195 barrier(); /* do all of the above first */
196
3d7851b3 197 flush_cpu_work();
750d857c 198
6ac6519b 199 free_all_tasks();
4c50d9ea 200 free_cpumask_var(marked_cpus);
1da177e4
LT
201}
202
448678a0 203
1da177e4
LT
204/* Optimisation. We can manage without taking the dcookie sem
205 * because we cannot reach this code without at least one
206 * dcookie user still being registered (namely, the reader
207 * of the event buffer). */
448678a0 208static inline unsigned long fast_get_dcookie(struct path *path)
1da177e4
LT
209{
210 unsigned long cookie;
448678a0 211
c2452f32 212 if (path->dentry->d_flags & DCACHE_COOKIE)
448678a0
JB
213 return (unsigned long)path->dentry;
214 get_dcookie(path, &cookie);
1da177e4
LT
215 return cookie;
216}
217
448678a0 218
1da177e4
LT
219/* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
220 * which corresponds loosely to "application name". This is
221 * not strictly necessary but allows oprofile to associate
222 * shared-library samples with particular applications
223 */
73185e0a 224static unsigned long get_exec_dcookie(struct mm_struct *mm)
1da177e4 225{
0c0a400d 226 unsigned long cookie = NO_COOKIE;
73185e0a
RR
227 struct vm_area_struct *vma;
228
1da177e4
LT
229 if (!mm)
230 goto out;
73185e0a 231
1da177e4
LT
232 for (vma = mm->mmap; vma; vma = vma->vm_next) {
233 if (!vma->vm_file)
234 continue;
235 if (!(vma->vm_flags & VM_EXECUTABLE))
236 continue;
448678a0 237 cookie = fast_get_dcookie(&vma->vm_file->f_path);
1da177e4
LT
238 break;
239 }
240
241out:
242 return cookie;
243}
244
245
246/* Convert the EIP value of a sample into a persistent dentry/offset
247 * pair that can then be added to the global event buffer. We make
248 * sure to do this lookup before a mm->mmap modification happens so
249 * we don't lose track.
250 */
73185e0a
RR
251static unsigned long
252lookup_dcookie(struct mm_struct *mm, unsigned long addr, off_t *offset)
1da177e4 253{
0c0a400d 254 unsigned long cookie = NO_COOKIE;
73185e0a 255 struct vm_area_struct *vma;
1da177e4
LT
256
257 for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
73185e0a 258
1da177e4
LT
259 if (addr < vma->vm_start || addr >= vma->vm_end)
260 continue;
261
0c0a400d 262 if (vma->vm_file) {
448678a0 263 cookie = fast_get_dcookie(&vma->vm_file->f_path);
0c0a400d
JL
264 *offset = (vma->vm_pgoff << PAGE_SHIFT) + addr -
265 vma->vm_start;
266 } else {
267 /* must be an anonymous map */
268 *offset = addr;
269 }
270
1da177e4
LT
271 break;
272 }
273
0c0a400d
JL
274 if (!vma)
275 cookie = INVALID_COOKIE;
276
1da177e4
LT
277 return cookie;
278}
279
0c0a400d 280static unsigned long last_cookie = INVALID_COOKIE;
73185e0a 281
1da177e4
LT
282static void add_cpu_switch(int i)
283{
284 add_event_entry(ESCAPE_CODE);
285 add_event_entry(CPU_SWITCH_CODE);
286 add_event_entry(i);
0c0a400d 287 last_cookie = INVALID_COOKIE;
1da177e4
LT
288}
289
290static void add_kernel_ctx_switch(unsigned int in_kernel)
291{
292 add_event_entry(ESCAPE_CODE);
293 if (in_kernel)
73185e0a 294 add_event_entry(KERNEL_ENTER_SWITCH_CODE);
1da177e4 295 else
73185e0a 296 add_event_entry(KERNEL_EXIT_SWITCH_CODE);
1da177e4 297}
73185e0a 298
1da177e4 299static void
73185e0a 300add_user_ctx_switch(struct task_struct const *task, unsigned long cookie)
1da177e4
LT
301{
302 add_event_entry(ESCAPE_CODE);
73185e0a 303 add_event_entry(CTX_SWITCH_CODE);
1da177e4
LT
304 add_event_entry(task->pid);
305 add_event_entry(cookie);
306 /* Another code for daemon back-compat */
307 add_event_entry(ESCAPE_CODE);
308 add_event_entry(CTX_TGID_CODE);
309 add_event_entry(task->tgid);
310}
311
73185e0a 312
1da177e4
LT
313static void add_cookie_switch(unsigned long cookie)
314{
315 add_event_entry(ESCAPE_CODE);
316 add_event_entry(COOKIE_SWITCH_CODE);
317 add_event_entry(cookie);
318}
319
73185e0a 320
1da177e4
LT
321static void add_trace_begin(void)
322{
323 add_event_entry(ESCAPE_CODE);
324 add_event_entry(TRACE_BEGIN_CODE);
325}
326
1acda878 327static void add_data(struct op_entry *entry, struct mm_struct *mm)
345c2573 328{
1acda878
RR
329 unsigned long code, pc, val;
330 unsigned long cookie;
345c2573 331 off_t offset;
345c2573 332
1acda878
RR
333 if (!op_cpu_buffer_get_data(entry, &code))
334 return;
335 if (!op_cpu_buffer_get_data(entry, &pc))
336 return;
337 if (!op_cpu_buffer_get_size(entry))
dbe6e283 338 return;
345c2573
BK
339
340 if (mm) {
d358e75f 341 cookie = lookup_dcookie(mm, pc, &offset);
345c2573 342
d358e75f
RR
343 if (cookie == NO_COOKIE)
344 offset = pc;
345 if (cookie == INVALID_COOKIE) {
345c2573 346 atomic_inc(&oprofile_stats.sample_lost_no_mapping);
d358e75f 347 offset = pc;
345c2573 348 }
d358e75f
RR
349 if (cookie != last_cookie) {
350 add_cookie_switch(cookie);
351 last_cookie = cookie;
345c2573
BK
352 }
353 } else
d358e75f 354 offset = pc;
345c2573
BK
355
356 add_event_entry(ESCAPE_CODE);
357 add_event_entry(code);
358 add_event_entry(offset); /* Offset from Dcookie */
359
1acda878
RR
360 while (op_cpu_buffer_get_data(entry, &val))
361 add_event_entry(val);
345c2573 362}
1da177e4 363
6368a1f4 364static inline void add_sample_entry(unsigned long offset, unsigned long event)
1da177e4
LT
365{
366 add_event_entry(offset);
367 add_event_entry(event);
368}
369
370
9741b309
RR
371/*
372 * Add a sample to the global event buffer. If possible the
373 * sample is converted into a persistent dentry/offset pair
374 * for later lookup from userspace. Return 0 on failure.
375 */
376static int
377add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel)
1da177e4
LT
378{
379 unsigned long cookie;
380 off_t offset;
73185e0a 381
9741b309
RR
382 if (in_kernel) {
383 add_sample_entry(s->eip, s->event);
384 return 1;
385 }
386
387 /* add userspace sample */
388
389 if (!mm) {
390 atomic_inc(&oprofile_stats.sample_lost_no_mm);
391 return 0;
392 }
393
73185e0a
RR
394 cookie = lookup_dcookie(mm, s->eip, &offset);
395
0c0a400d 396 if (cookie == INVALID_COOKIE) {
1da177e4
LT
397 atomic_inc(&oprofile_stats.sample_lost_no_mapping);
398 return 0;
399 }
400
401 if (cookie != last_cookie) {
402 add_cookie_switch(cookie);
403 last_cookie = cookie;
404 }
405
406 add_sample_entry(offset, s->event);
407
408 return 1;
409}
410
73185e0a 411
73185e0a 412static void release_mm(struct mm_struct *mm)
1da177e4
LT
413{
414 if (!mm)
415 return;
416 up_read(&mm->mmap_sem);
417 mmput(mm);
418}
419
420
73185e0a 421static struct mm_struct *take_tasks_mm(struct task_struct *task)
1da177e4 422{
73185e0a 423 struct mm_struct *mm = get_task_mm(task);
1da177e4
LT
424 if (mm)
425 down_read(&mm->mmap_sem);
426 return mm;
427}
428
429
430static inline int is_code(unsigned long val)
431{
432 return val == ESCAPE_CODE;
433}
73185e0a 434
1da177e4 435
1da177e4
LT
436/* Move tasks along towards death. Any tasks on dead_tasks
437 * will definitely have no remaining references in any
438 * CPU buffers at this point, because we use two lists,
439 * and to have reached the list, it must have gone through
440 * one full sync already.
441 */
442static void process_task_mortuary(void)
443{
4369ef3c
PM
444 unsigned long flags;
445 LIST_HEAD(local_dead_tasks);
73185e0a
RR
446 struct task_struct *task;
447 struct task_struct *ttask;
1da177e4 448
4369ef3c 449 spin_lock_irqsave(&task_mortuary, flags);
1da177e4 450
4369ef3c
PM
451 list_splice_init(&dead_tasks, &local_dead_tasks);
452 list_splice_init(&dying_tasks, &dead_tasks);
1da177e4 453
4369ef3c
PM
454 spin_unlock_irqrestore(&task_mortuary, flags);
455
456 list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) {
1da177e4 457 list_del(&task->tasks);
4369ef3c 458 free_task(task);
1da177e4 459 }
1da177e4
LT
460}
461
462
463static void mark_done(int cpu)
464{
465 int i;
466
f7df8ed1 467 cpumask_set_cpu(cpu, marked_cpus);
1da177e4
LT
468
469 for_each_online_cpu(i) {
f7df8ed1 470 if (!cpumask_test_cpu(i, marked_cpus))
1da177e4
LT
471 return;
472 }
473
474 /* All CPUs have been processed at least once,
475 * we can process the mortuary once
476 */
477 process_task_mortuary();
478
f7df8ed1 479 cpumask_clear(marked_cpus);
1da177e4
LT
480}
481
482
483/* FIXME: this is not sufficient if we implement syscall barrier backtrace
484 * traversal, the code switch to sb_sample_start at first kernel enter/exit
485 * switch so we need a fifth state and some special handling in sync_buffer()
486 */
487typedef enum {
488 sb_bt_ignore = -2,
489 sb_buffer_start,
490 sb_bt_start,
491 sb_sample_start,
492} sync_buffer_state;
493
494/* Sync one of the CPU's buffers into the global event buffer.
495 * Here we need to go through each batch of samples punctuated
496 * by context switch notes, taking the task's mmap_sem and doing
497 * lookup in task->mm->mmap to convert EIP into dcookie/offset
498 * value.
499 */
500void sync_buffer(int cpu)
501{
1da177e4 502 struct mm_struct *mm = NULL;
fd7826d5 503 struct mm_struct *oldmm;
bd7dc46f 504 unsigned long val;
73185e0a 505 struct task_struct *new;
1da177e4
LT
506 unsigned long cookie = 0;
507 int in_kernel = 1;
1da177e4 508 sync_buffer_state state = sb_buffer_start;
9b1f2611 509 unsigned int i;
1da177e4 510 unsigned long available;
ae735e99 511 unsigned long flags;
2d87b14c
RR
512 struct op_entry entry;
513 struct op_sample *sample;
1da177e4 514
59cc185a 515 mutex_lock(&buffer_mutex);
73185e0a 516
1da177e4
LT
517 add_cpu_switch(cpu);
518
6d2c53f3
RR
519 op_cpu_buffer_reset(cpu);
520 available = op_cpu_buffer_entries(cpu);
1da177e4
LT
521
522 for (i = 0; i < available; ++i) {
2d87b14c
RR
523 sample = op_cpu_buffer_read_entry(&entry, cpu);
524 if (!sample)
6dad828b 525 break;
73185e0a 526
2d87b14c 527 if (is_code(sample->eip)) {
ae735e99
RR
528 flags = sample->event;
529 if (flags & TRACE_BEGIN) {
530 state = sb_bt_start;
531 add_trace_begin();
532 }
533 if (flags & KERNEL_CTX_SWITCH) {
1da177e4 534 /* kernel/userspace switch */
ae735e99 535 in_kernel = flags & IS_KERNEL;
1da177e4
LT
536 if (state == sb_buffer_start)
537 state = sb_sample_start;
ae735e99
RR
538 add_kernel_ctx_switch(flags & IS_KERNEL);
539 }
bd7dc46f
RR
540 if (flags & USER_CTX_SWITCH
541 && op_cpu_buffer_get_data(&entry, &val)) {
1da177e4 542 /* userspace context switch */
bd7dc46f 543 new = (struct task_struct *)val;
fd7826d5 544 oldmm = mm;
1da177e4
LT
545 release_mm(oldmm);
546 mm = take_tasks_mm(new);
547 if (mm != oldmm)
548 cookie = get_exec_dcookie(mm);
549 add_user_ctx_switch(new, cookie);
1da177e4 550 }
1acda878
RR
551 if (op_cpu_buffer_get_size(&entry))
552 add_data(&entry, mm);
317f33bc
RR
553 continue;
554 }
555
556 if (state < sb_bt_start)
557 /* ignore sample */
558 continue;
559
2d87b14c 560 if (add_sample(mm, sample, in_kernel))
317f33bc
RR
561 continue;
562
563 /* ignore backtraces if failed to add a sample */
564 if (state == sb_bt_start) {
565 state = sb_bt_ignore;
566 atomic_inc(&oprofile_stats.bt_lost_no_mapping);
1da177e4 567 }
1da177e4
LT
568 }
569 release_mm(mm);
570
571 mark_done(cpu);
572
59cc185a 573 mutex_unlock(&buffer_mutex);
1da177e4 574}
a5598ca0
CL
575
576/* The function can be used to add a buffer worth of data directly to
577 * the kernel buffer. The buffer is assumed to be a circular buffer.
578 * Take the entries from index start and end at index end, wrapping
579 * at max_entries.
580 */
581void oprofile_put_buff(unsigned long *buf, unsigned int start,
582 unsigned int stop, unsigned int max)
583{
584 int i;
585
586 i = start;
587
588 mutex_lock(&buffer_mutex);
589 while (i != stop) {
590 add_event_entry(buf[i++]);
591
592 if (i >= max)
593 i = 0;
594 }
595
596 mutex_unlock(&buffer_mutex);
597}
598
This page took 0.622745 seconds and 5 git commands to generate.