x86, cpumask: fix tlb flush race
[deliverable/linux.git] / drivers / oprofile / buffer_sync.c
CommitLineData
1da177e4
LT
1/**
2 * @file buffer_sync.c
3 *
ae735e99 4 * @remark Copyright 2002-2009 OProfile authors
1da177e4
LT
5 * @remark Read the file COPYING
6 *
7 * @author John Levon <levon@movementarian.org>
345c2573 8 * @author Barry Kasindorf
ae735e99 9 * @author Robert Richter <robert.richter@amd.com>
1da177e4
LT
10 *
11 * This is the core of the buffer management. Each
12 * CPU buffer is processed and entered into the
13 * global event buffer. Such processing is necessary
14 * in several circumstances, mentioned below.
15 *
16 * The processing does the job of converting the
17 * transitory EIP value into a persistent dentry/offset
18 * value that the profiler can record at its leisure.
19 *
20 * See fs/dcookies.c for a description of the dentry/offset
21 * objects.
22 */
23
24#include <linux/mm.h>
25#include <linux/workqueue.h>
26#include <linux/notifier.h>
27#include <linux/dcookies.h>
28#include <linux/profile.h>
29#include <linux/module.h>
30#include <linux/fs.h>
1474855d 31#include <linux/oprofile.h>
e8edc6e0 32#include <linux/sched.h>
1474855d 33
1da177e4
LT
34#include "oprofile_stats.h"
35#include "event_buffer.h"
36#include "cpu_buffer.h"
37#include "buffer_sync.h"
73185e0a 38
1da177e4
LT
39static LIST_HEAD(dying_tasks);
40static LIST_HEAD(dead_tasks);
f7df8ed1 41static cpumask_var_t marked_cpus;
1da177e4
LT
42static DEFINE_SPINLOCK(task_mortuary);
43static void process_task_mortuary(void);
44
1da177e4
LT
45/* Take ownership of the task struct and place it on the
46 * list for processing. Only after two full buffer syncs
47 * does the task eventually get freed, because by then
48 * we are sure we will not reference it again.
4369ef3c
PM
49 * Can be invoked from softirq via RCU callback due to
50 * call_rcu() of the task struct, hence the _irqsave.
1da177e4 51 */
73185e0a
RR
52static int
53task_free_notify(struct notifier_block *self, unsigned long val, void *data)
1da177e4 54{
4369ef3c 55 unsigned long flags;
73185e0a 56 struct task_struct *task = data;
4369ef3c 57 spin_lock_irqsave(&task_mortuary, flags);
1da177e4 58 list_add(&task->tasks, &dying_tasks);
4369ef3c 59 spin_unlock_irqrestore(&task_mortuary, flags);
1da177e4
LT
60 return NOTIFY_OK;
61}
62
63
64/* The task is on its way out. A sync of the buffer means we can catch
65 * any remaining samples for this task.
66 */
73185e0a
RR
67static int
68task_exit_notify(struct notifier_block *self, unsigned long val, void *data)
1da177e4
LT
69{
70 /* To avoid latency problems, we only process the current CPU,
71 * hoping that most samples for the task are on this CPU
72 */
39c715b7 73 sync_buffer(raw_smp_processor_id());
73185e0a 74 return 0;
1da177e4
LT
75}
76
77
78/* The task is about to try a do_munmap(). We peek at what it's going to
79 * do, and if it's an executable region, process the samples first, so
80 * we don't lose any. This does not have to be exact, it's a QoI issue
81 * only.
82 */
73185e0a
RR
83static int
84munmap_notify(struct notifier_block *self, unsigned long val, void *data)
1da177e4
LT
85{
86 unsigned long addr = (unsigned long)data;
73185e0a
RR
87 struct mm_struct *mm = current->mm;
88 struct vm_area_struct *mpnt;
1da177e4
LT
89
90 down_read(&mm->mmap_sem);
91
92 mpnt = find_vma(mm, addr);
93 if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) {
94 up_read(&mm->mmap_sem);
95 /* To avoid latency problems, we only process the current CPU,
96 * hoping that most samples for the task are on this CPU
97 */
39c715b7 98 sync_buffer(raw_smp_processor_id());
1da177e4
LT
99 return 0;
100 }
101
102 up_read(&mm->mmap_sem);
103 return 0;
104}
105
73185e0a 106
1da177e4
LT
107/* We need to be told about new modules so we don't attribute to a previously
108 * loaded module, or drop the samples on the floor.
109 */
73185e0a
RR
110static int
111module_load_notify(struct notifier_block *self, unsigned long val, void *data)
1da177e4
LT
112{
113#ifdef CONFIG_MODULES
114 if (val != MODULE_STATE_COMING)
115 return 0;
116
117 /* FIXME: should we process all CPU buffers ? */
59cc185a 118 mutex_lock(&buffer_mutex);
1da177e4
LT
119 add_event_entry(ESCAPE_CODE);
120 add_event_entry(MODULE_LOADED_CODE);
59cc185a 121 mutex_unlock(&buffer_mutex);
1da177e4
LT
122#endif
123 return 0;
124}
125
73185e0a 126
1da177e4
LT
127static struct notifier_block task_free_nb = {
128 .notifier_call = task_free_notify,
129};
130
131static struct notifier_block task_exit_nb = {
132 .notifier_call = task_exit_notify,
133};
134
135static struct notifier_block munmap_nb = {
136 .notifier_call = munmap_notify,
137};
138
139static struct notifier_block module_load_nb = {
140 .notifier_call = module_load_notify,
141};
142
73185e0a 143
1da177e4
LT
144static void end_sync(void)
145{
146 end_cpu_work();
147 /* make sure we don't leak task structs */
148 process_task_mortuary();
149 process_task_mortuary();
150}
151
152
153int sync_start(void)
154{
155 int err;
156
157 start_cpu_work();
158
159 err = task_handoff_register(&task_free_nb);
160 if (err)
161 goto out1;
162 err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb);
163 if (err)
164 goto out2;
165 err = profile_event_register(PROFILE_MUNMAP, &munmap_nb);
166 if (err)
167 goto out3;
168 err = register_module_notifier(&module_load_nb);
169 if (err)
170 goto out4;
171
172out:
173 return err;
174out4:
175 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
176out3:
177 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
178out2:
179 task_handoff_unregister(&task_free_nb);
180out1:
181 end_sync();
182 goto out;
183}
184
185
186void sync_stop(void)
187{
188 unregister_module_notifier(&module_load_nb);
189 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
190 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
191 task_handoff_unregister(&task_free_nb);
192 end_sync();
193}
194
448678a0 195
1da177e4
LT
196/* Optimisation. We can manage without taking the dcookie sem
197 * because we cannot reach this code without at least one
198 * dcookie user still being registered (namely, the reader
199 * of the event buffer). */
448678a0 200static inline unsigned long fast_get_dcookie(struct path *path)
1da177e4
LT
201{
202 unsigned long cookie;
448678a0 203
c2452f32 204 if (path->dentry->d_flags & DCACHE_COOKIE)
448678a0
JB
205 return (unsigned long)path->dentry;
206 get_dcookie(path, &cookie);
1da177e4
LT
207 return cookie;
208}
209
448678a0 210
1da177e4
LT
211/* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
212 * which corresponds loosely to "application name". This is
213 * not strictly necessary but allows oprofile to associate
214 * shared-library samples with particular applications
215 */
73185e0a 216static unsigned long get_exec_dcookie(struct mm_struct *mm)
1da177e4 217{
0c0a400d 218 unsigned long cookie = NO_COOKIE;
73185e0a
RR
219 struct vm_area_struct *vma;
220
1da177e4
LT
221 if (!mm)
222 goto out;
73185e0a 223
1da177e4
LT
224 for (vma = mm->mmap; vma; vma = vma->vm_next) {
225 if (!vma->vm_file)
226 continue;
227 if (!(vma->vm_flags & VM_EXECUTABLE))
228 continue;
448678a0 229 cookie = fast_get_dcookie(&vma->vm_file->f_path);
1da177e4
LT
230 break;
231 }
232
233out:
234 return cookie;
235}
236
237
238/* Convert the EIP value of a sample into a persistent dentry/offset
239 * pair that can then be added to the global event buffer. We make
240 * sure to do this lookup before a mm->mmap modification happens so
241 * we don't lose track.
242 */
73185e0a
RR
243static unsigned long
244lookup_dcookie(struct mm_struct *mm, unsigned long addr, off_t *offset)
1da177e4 245{
0c0a400d 246 unsigned long cookie = NO_COOKIE;
73185e0a 247 struct vm_area_struct *vma;
1da177e4
LT
248
249 for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
73185e0a 250
1da177e4
LT
251 if (addr < vma->vm_start || addr >= vma->vm_end)
252 continue;
253
0c0a400d 254 if (vma->vm_file) {
448678a0 255 cookie = fast_get_dcookie(&vma->vm_file->f_path);
0c0a400d
JL
256 *offset = (vma->vm_pgoff << PAGE_SHIFT) + addr -
257 vma->vm_start;
258 } else {
259 /* must be an anonymous map */
260 *offset = addr;
261 }
262
1da177e4
LT
263 break;
264 }
265
0c0a400d
JL
266 if (!vma)
267 cookie = INVALID_COOKIE;
268
1da177e4
LT
269 return cookie;
270}
271
0c0a400d 272static unsigned long last_cookie = INVALID_COOKIE;
73185e0a 273
1da177e4
LT
274static void add_cpu_switch(int i)
275{
276 add_event_entry(ESCAPE_CODE);
277 add_event_entry(CPU_SWITCH_CODE);
278 add_event_entry(i);
0c0a400d 279 last_cookie = INVALID_COOKIE;
1da177e4
LT
280}
281
282static void add_kernel_ctx_switch(unsigned int in_kernel)
283{
284 add_event_entry(ESCAPE_CODE);
285 if (in_kernel)
73185e0a 286 add_event_entry(KERNEL_ENTER_SWITCH_CODE);
1da177e4 287 else
73185e0a 288 add_event_entry(KERNEL_EXIT_SWITCH_CODE);
1da177e4 289}
73185e0a 290
1da177e4 291static void
73185e0a 292add_user_ctx_switch(struct task_struct const *task, unsigned long cookie)
1da177e4
LT
293{
294 add_event_entry(ESCAPE_CODE);
73185e0a 295 add_event_entry(CTX_SWITCH_CODE);
1da177e4
LT
296 add_event_entry(task->pid);
297 add_event_entry(cookie);
298 /* Another code for daemon back-compat */
299 add_event_entry(ESCAPE_CODE);
300 add_event_entry(CTX_TGID_CODE);
301 add_event_entry(task->tgid);
302}
303
73185e0a 304
1da177e4
LT
305static void add_cookie_switch(unsigned long cookie)
306{
307 add_event_entry(ESCAPE_CODE);
308 add_event_entry(COOKIE_SWITCH_CODE);
309 add_event_entry(cookie);
310}
311
73185e0a 312
1da177e4
LT
313static void add_trace_begin(void)
314{
315 add_event_entry(ESCAPE_CODE);
316 add_event_entry(TRACE_BEGIN_CODE);
317}
318
1acda878 319static void add_data(struct op_entry *entry, struct mm_struct *mm)
345c2573 320{
1acda878
RR
321 unsigned long code, pc, val;
322 unsigned long cookie;
345c2573 323 off_t offset;
345c2573 324
1acda878
RR
325 if (!op_cpu_buffer_get_data(entry, &code))
326 return;
327 if (!op_cpu_buffer_get_data(entry, &pc))
328 return;
329 if (!op_cpu_buffer_get_size(entry))
dbe6e283 330 return;
345c2573
BK
331
332 if (mm) {
d358e75f 333 cookie = lookup_dcookie(mm, pc, &offset);
345c2573 334
d358e75f
RR
335 if (cookie == NO_COOKIE)
336 offset = pc;
337 if (cookie == INVALID_COOKIE) {
345c2573 338 atomic_inc(&oprofile_stats.sample_lost_no_mapping);
d358e75f 339 offset = pc;
345c2573 340 }
d358e75f
RR
341 if (cookie != last_cookie) {
342 add_cookie_switch(cookie);
343 last_cookie = cookie;
345c2573
BK
344 }
345 } else
d358e75f 346 offset = pc;
345c2573
BK
347
348 add_event_entry(ESCAPE_CODE);
349 add_event_entry(code);
350 add_event_entry(offset); /* Offset from Dcookie */
351
1acda878
RR
352 while (op_cpu_buffer_get_data(entry, &val))
353 add_event_entry(val);
345c2573 354}
1da177e4 355
6368a1f4 356static inline void add_sample_entry(unsigned long offset, unsigned long event)
1da177e4
LT
357{
358 add_event_entry(offset);
359 add_event_entry(event);
360}
361
362
9741b309
RR
363/*
364 * Add a sample to the global event buffer. If possible the
365 * sample is converted into a persistent dentry/offset pair
366 * for later lookup from userspace. Return 0 on failure.
367 */
368static int
369add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel)
1da177e4
LT
370{
371 unsigned long cookie;
372 off_t offset;
73185e0a 373
9741b309
RR
374 if (in_kernel) {
375 add_sample_entry(s->eip, s->event);
376 return 1;
377 }
378
379 /* add userspace sample */
380
381 if (!mm) {
382 atomic_inc(&oprofile_stats.sample_lost_no_mm);
383 return 0;
384 }
385
73185e0a
RR
386 cookie = lookup_dcookie(mm, s->eip, &offset);
387
0c0a400d 388 if (cookie == INVALID_COOKIE) {
1da177e4
LT
389 atomic_inc(&oprofile_stats.sample_lost_no_mapping);
390 return 0;
391 }
392
393 if (cookie != last_cookie) {
394 add_cookie_switch(cookie);
395 last_cookie = cookie;
396 }
397
398 add_sample_entry(offset, s->event);
399
400 return 1;
401}
402
73185e0a 403
73185e0a 404static void release_mm(struct mm_struct *mm)
1da177e4
LT
405{
406 if (!mm)
407 return;
408 up_read(&mm->mmap_sem);
409 mmput(mm);
410}
411
412
73185e0a 413static struct mm_struct *take_tasks_mm(struct task_struct *task)
1da177e4 414{
73185e0a 415 struct mm_struct *mm = get_task_mm(task);
1da177e4
LT
416 if (mm)
417 down_read(&mm->mmap_sem);
418 return mm;
419}
420
421
422static inline int is_code(unsigned long val)
423{
424 return val == ESCAPE_CODE;
425}
73185e0a 426
1da177e4 427
1da177e4
LT
428/* Move tasks along towards death. Any tasks on dead_tasks
429 * will definitely have no remaining references in any
430 * CPU buffers at this point, because we use two lists,
431 * and to have reached the list, it must have gone through
432 * one full sync already.
433 */
434static void process_task_mortuary(void)
435{
4369ef3c
PM
436 unsigned long flags;
437 LIST_HEAD(local_dead_tasks);
73185e0a
RR
438 struct task_struct *task;
439 struct task_struct *ttask;
1da177e4 440
4369ef3c 441 spin_lock_irqsave(&task_mortuary, flags);
1da177e4 442
4369ef3c
PM
443 list_splice_init(&dead_tasks, &local_dead_tasks);
444 list_splice_init(&dying_tasks, &dead_tasks);
1da177e4 445
4369ef3c
PM
446 spin_unlock_irqrestore(&task_mortuary, flags);
447
448 list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) {
1da177e4 449 list_del(&task->tasks);
4369ef3c 450 free_task(task);
1da177e4 451 }
1da177e4
LT
452}
453
454
455static void mark_done(int cpu)
456{
457 int i;
458
f7df8ed1 459 cpumask_set_cpu(cpu, marked_cpus);
1da177e4
LT
460
461 for_each_online_cpu(i) {
f7df8ed1 462 if (!cpumask_test_cpu(i, marked_cpus))
1da177e4
LT
463 return;
464 }
465
466 /* All CPUs have been processed at least once,
467 * we can process the mortuary once
468 */
469 process_task_mortuary();
470
f7df8ed1 471 cpumask_clear(marked_cpus);
1da177e4
LT
472}
473
474
475/* FIXME: this is not sufficient if we implement syscall barrier backtrace
476 * traversal, the code switch to sb_sample_start at first kernel enter/exit
477 * switch so we need a fifth state and some special handling in sync_buffer()
478 */
479typedef enum {
480 sb_bt_ignore = -2,
481 sb_buffer_start,
482 sb_bt_start,
483 sb_sample_start,
484} sync_buffer_state;
485
486/* Sync one of the CPU's buffers into the global event buffer.
487 * Here we need to go through each batch of samples punctuated
488 * by context switch notes, taking the task's mmap_sem and doing
489 * lookup in task->mm->mmap to convert EIP into dcookie/offset
490 * value.
491 */
492void sync_buffer(int cpu)
493{
1da177e4 494 struct mm_struct *mm = NULL;
fd7826d5 495 struct mm_struct *oldmm;
bd7dc46f 496 unsigned long val;
73185e0a 497 struct task_struct *new;
1da177e4
LT
498 unsigned long cookie = 0;
499 int in_kernel = 1;
1da177e4 500 sync_buffer_state state = sb_buffer_start;
9b1f2611 501 unsigned int i;
1da177e4 502 unsigned long available;
ae735e99 503 unsigned long flags;
2d87b14c
RR
504 struct op_entry entry;
505 struct op_sample *sample;
1da177e4 506
59cc185a 507 mutex_lock(&buffer_mutex);
73185e0a 508
1da177e4
LT
509 add_cpu_switch(cpu);
510
6d2c53f3
RR
511 op_cpu_buffer_reset(cpu);
512 available = op_cpu_buffer_entries(cpu);
1da177e4
LT
513
514 for (i = 0; i < available; ++i) {
2d87b14c
RR
515 sample = op_cpu_buffer_read_entry(&entry, cpu);
516 if (!sample)
6dad828b 517 break;
73185e0a 518
2d87b14c 519 if (is_code(sample->eip)) {
ae735e99
RR
520 flags = sample->event;
521 if (flags & TRACE_BEGIN) {
522 state = sb_bt_start;
523 add_trace_begin();
524 }
525 if (flags & KERNEL_CTX_SWITCH) {
1da177e4 526 /* kernel/userspace switch */
ae735e99 527 in_kernel = flags & IS_KERNEL;
1da177e4
LT
528 if (state == sb_buffer_start)
529 state = sb_sample_start;
ae735e99
RR
530 add_kernel_ctx_switch(flags & IS_KERNEL);
531 }
bd7dc46f
RR
532 if (flags & USER_CTX_SWITCH
533 && op_cpu_buffer_get_data(&entry, &val)) {
1da177e4 534 /* userspace context switch */
bd7dc46f 535 new = (struct task_struct *)val;
fd7826d5 536 oldmm = mm;
1da177e4
LT
537 release_mm(oldmm);
538 mm = take_tasks_mm(new);
539 if (mm != oldmm)
540 cookie = get_exec_dcookie(mm);
541 add_user_ctx_switch(new, cookie);
1da177e4 542 }
1acda878
RR
543 if (op_cpu_buffer_get_size(&entry))
544 add_data(&entry, mm);
317f33bc
RR
545 continue;
546 }
547
548 if (state < sb_bt_start)
549 /* ignore sample */
550 continue;
551
2d87b14c 552 if (add_sample(mm, sample, in_kernel))
317f33bc
RR
553 continue;
554
555 /* ignore backtraces if failed to add a sample */
556 if (state == sb_bt_start) {
557 state = sb_bt_ignore;
558 atomic_inc(&oprofile_stats.bt_lost_no_mapping);
1da177e4 559 }
1da177e4
LT
560 }
561 release_mm(mm);
562
563 mark_done(cpu);
564
59cc185a 565 mutex_unlock(&buffer_mutex);
1da177e4 566}
a5598ca0 567
f7df8ed1
RR
568int __init buffer_sync_init(void)
569{
570 if (!alloc_cpumask_var(&marked_cpus, GFP_KERNEL))
571 return -ENOMEM;
572
573 cpumask_clear(marked_cpus);
574 return 0;
575}
576
577void __exit buffer_sync_cleanup(void)
578{
579 free_cpumask_var(marked_cpus);
580}
581
a5598ca0
CL
582/* The function can be used to add a buffer worth of data directly to
583 * the kernel buffer. The buffer is assumed to be a circular buffer.
584 * Take the entries from index start and end at index end, wrapping
585 * at max_entries.
586 */
587void oprofile_put_buff(unsigned long *buf, unsigned int start,
588 unsigned int stop, unsigned int max)
589{
590 int i;
591
592 i = start;
593
594 mutex_lock(&buffer_mutex);
595 while (i != stop) {
596 add_event_entry(buf[i++]);
597
598 if (i >= max)
599 i = 0;
600 }
601
602 mutex_unlock(&buffer_mutex);
603}
604
This page took 0.68135 seconds and 5 git commands to generate.