oprofile: adding cpu_buffer_entries()
[deliverable/linux.git] / drivers / oprofile / buffer_sync.c
CommitLineData
1da177e4
LT
1/**
2 * @file buffer_sync.c
3 *
4 * @remark Copyright 2002 OProfile authors
5 * @remark Read the file COPYING
6 *
7 * @author John Levon <levon@movementarian.org>
345c2573 8 * @author Barry Kasindorf
1da177e4
LT
9 *
10 * This is the core of the buffer management. Each
11 * CPU buffer is processed and entered into the
12 * global event buffer. Such processing is necessary
13 * in several circumstances, mentioned below.
14 *
15 * The processing does the job of converting the
16 * transitory EIP value into a persistent dentry/offset
17 * value that the profiler can record at its leisure.
18 *
19 * See fs/dcookies.c for a description of the dentry/offset
20 * objects.
21 */
22
23#include <linux/mm.h>
24#include <linux/workqueue.h>
25#include <linux/notifier.h>
26#include <linux/dcookies.h>
27#include <linux/profile.h>
28#include <linux/module.h>
29#include <linux/fs.h>
1474855d 30#include <linux/oprofile.h>
e8edc6e0 31#include <linux/sched.h>
1474855d 32
1da177e4
LT
33#include "oprofile_stats.h"
34#include "event_buffer.h"
35#include "cpu_buffer.h"
36#include "buffer_sync.h"
73185e0a 37
1da177e4
LT
38static LIST_HEAD(dying_tasks);
39static LIST_HEAD(dead_tasks);
40static cpumask_t marked_cpus = CPU_MASK_NONE;
41static DEFINE_SPINLOCK(task_mortuary);
42static void process_task_mortuary(void);
43
1da177e4
LT
44/* Take ownership of the task struct and place it on the
45 * list for processing. Only after two full buffer syncs
46 * does the task eventually get freed, because by then
47 * we are sure we will not reference it again.
4369ef3c
PM
48 * Can be invoked from softirq via RCU callback due to
49 * call_rcu() of the task struct, hence the _irqsave.
1da177e4 50 */
73185e0a
RR
51static int
52task_free_notify(struct notifier_block *self, unsigned long val, void *data)
1da177e4 53{
4369ef3c 54 unsigned long flags;
73185e0a 55 struct task_struct *task = data;
4369ef3c 56 spin_lock_irqsave(&task_mortuary, flags);
1da177e4 57 list_add(&task->tasks, &dying_tasks);
4369ef3c 58 spin_unlock_irqrestore(&task_mortuary, flags);
1da177e4
LT
59 return NOTIFY_OK;
60}
61
62
63/* The task is on its way out. A sync of the buffer means we can catch
64 * any remaining samples for this task.
65 */
73185e0a
RR
66static int
67task_exit_notify(struct notifier_block *self, unsigned long val, void *data)
1da177e4
LT
68{
69 /* To avoid latency problems, we only process the current CPU,
70 * hoping that most samples for the task are on this CPU
71 */
39c715b7 72 sync_buffer(raw_smp_processor_id());
73185e0a 73 return 0;
1da177e4
LT
74}
75
76
77/* The task is about to try a do_munmap(). We peek at what it's going to
78 * do, and if it's an executable region, process the samples first, so
79 * we don't lose any. This does not have to be exact, it's a QoI issue
80 * only.
81 */
73185e0a
RR
82static int
83munmap_notify(struct notifier_block *self, unsigned long val, void *data)
1da177e4
LT
84{
85 unsigned long addr = (unsigned long)data;
73185e0a
RR
86 struct mm_struct *mm = current->mm;
87 struct vm_area_struct *mpnt;
1da177e4
LT
88
89 down_read(&mm->mmap_sem);
90
91 mpnt = find_vma(mm, addr);
92 if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) {
93 up_read(&mm->mmap_sem);
94 /* To avoid latency problems, we only process the current CPU,
95 * hoping that most samples for the task are on this CPU
96 */
39c715b7 97 sync_buffer(raw_smp_processor_id());
1da177e4
LT
98 return 0;
99 }
100
101 up_read(&mm->mmap_sem);
102 return 0;
103}
104
73185e0a 105
1da177e4
LT
106/* We need to be told about new modules so we don't attribute to a previously
107 * loaded module, or drop the samples on the floor.
108 */
73185e0a
RR
109static int
110module_load_notify(struct notifier_block *self, unsigned long val, void *data)
1da177e4
LT
111{
112#ifdef CONFIG_MODULES
113 if (val != MODULE_STATE_COMING)
114 return 0;
115
116 /* FIXME: should we process all CPU buffers ? */
59cc185a 117 mutex_lock(&buffer_mutex);
1da177e4
LT
118 add_event_entry(ESCAPE_CODE);
119 add_event_entry(MODULE_LOADED_CODE);
59cc185a 120 mutex_unlock(&buffer_mutex);
1da177e4
LT
121#endif
122 return 0;
123}
124
73185e0a 125
1da177e4
LT
126static struct notifier_block task_free_nb = {
127 .notifier_call = task_free_notify,
128};
129
130static struct notifier_block task_exit_nb = {
131 .notifier_call = task_exit_notify,
132};
133
134static struct notifier_block munmap_nb = {
135 .notifier_call = munmap_notify,
136};
137
138static struct notifier_block module_load_nb = {
139 .notifier_call = module_load_notify,
140};
141
73185e0a 142
1da177e4
LT
143static void end_sync(void)
144{
145 end_cpu_work();
146 /* make sure we don't leak task structs */
147 process_task_mortuary();
148 process_task_mortuary();
149}
150
151
152int sync_start(void)
153{
154 int err;
155
156 start_cpu_work();
157
158 err = task_handoff_register(&task_free_nb);
159 if (err)
160 goto out1;
161 err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb);
162 if (err)
163 goto out2;
164 err = profile_event_register(PROFILE_MUNMAP, &munmap_nb);
165 if (err)
166 goto out3;
167 err = register_module_notifier(&module_load_nb);
168 if (err)
169 goto out4;
170
171out:
172 return err;
173out4:
174 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
175out3:
176 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
177out2:
178 task_handoff_unregister(&task_free_nb);
179out1:
180 end_sync();
181 goto out;
182}
183
184
185void sync_stop(void)
186{
187 unregister_module_notifier(&module_load_nb);
188 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
189 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
190 task_handoff_unregister(&task_free_nb);
191 end_sync();
192}
193
448678a0 194
1da177e4
LT
195/* Optimisation. We can manage without taking the dcookie sem
196 * because we cannot reach this code without at least one
197 * dcookie user still being registered (namely, the reader
198 * of the event buffer). */
448678a0 199static inline unsigned long fast_get_dcookie(struct path *path)
1da177e4
LT
200{
201 unsigned long cookie;
448678a0
JB
202
203 if (path->dentry->d_cookie)
204 return (unsigned long)path->dentry;
205 get_dcookie(path, &cookie);
1da177e4
LT
206 return cookie;
207}
208
448678a0 209
1da177e4
LT
210/* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
211 * which corresponds loosely to "application name". This is
212 * not strictly necessary but allows oprofile to associate
213 * shared-library samples with particular applications
214 */
73185e0a 215static unsigned long get_exec_dcookie(struct mm_struct *mm)
1da177e4 216{
0c0a400d 217 unsigned long cookie = NO_COOKIE;
73185e0a
RR
218 struct vm_area_struct *vma;
219
1da177e4
LT
220 if (!mm)
221 goto out;
73185e0a 222
1da177e4
LT
223 for (vma = mm->mmap; vma; vma = vma->vm_next) {
224 if (!vma->vm_file)
225 continue;
226 if (!(vma->vm_flags & VM_EXECUTABLE))
227 continue;
448678a0 228 cookie = fast_get_dcookie(&vma->vm_file->f_path);
1da177e4
LT
229 break;
230 }
231
232out:
233 return cookie;
234}
235
236
237/* Convert the EIP value of a sample into a persistent dentry/offset
238 * pair that can then be added to the global event buffer. We make
239 * sure to do this lookup before a mm->mmap modification happens so
240 * we don't lose track.
241 */
73185e0a
RR
242static unsigned long
243lookup_dcookie(struct mm_struct *mm, unsigned long addr, off_t *offset)
1da177e4 244{
0c0a400d 245 unsigned long cookie = NO_COOKIE;
73185e0a 246 struct vm_area_struct *vma;
1da177e4
LT
247
248 for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
73185e0a 249
1da177e4
LT
250 if (addr < vma->vm_start || addr >= vma->vm_end)
251 continue;
252
0c0a400d 253 if (vma->vm_file) {
448678a0 254 cookie = fast_get_dcookie(&vma->vm_file->f_path);
0c0a400d
JL
255 *offset = (vma->vm_pgoff << PAGE_SHIFT) + addr -
256 vma->vm_start;
257 } else {
258 /* must be an anonymous map */
259 *offset = addr;
260 }
261
1da177e4
LT
262 break;
263 }
264
0c0a400d
JL
265 if (!vma)
266 cookie = INVALID_COOKIE;
267
1da177e4
LT
268 return cookie;
269}
270
5e11f98d
RR
271static void increment_tail(struct oprofile_cpu_buffer *b)
272{
273 unsigned long new_tail = b->tail_pos + 1;
274
8dbc50c3 275 rmb(); /* be sure fifo pointers are synchronized */
5e11f98d
RR
276
277 if (new_tail < b->buffer_size)
278 b->tail_pos = new_tail;
279 else
280 b->tail_pos = 0;
281}
1da177e4 282
0c0a400d 283static unsigned long last_cookie = INVALID_COOKIE;
73185e0a 284
1da177e4
LT
285static void add_cpu_switch(int i)
286{
287 add_event_entry(ESCAPE_CODE);
288 add_event_entry(CPU_SWITCH_CODE);
289 add_event_entry(i);
0c0a400d 290 last_cookie = INVALID_COOKIE;
1da177e4
LT
291}
292
293static void add_kernel_ctx_switch(unsigned int in_kernel)
294{
295 add_event_entry(ESCAPE_CODE);
296 if (in_kernel)
73185e0a 297 add_event_entry(KERNEL_ENTER_SWITCH_CODE);
1da177e4 298 else
73185e0a 299 add_event_entry(KERNEL_EXIT_SWITCH_CODE);
1da177e4 300}
73185e0a 301
1da177e4 302static void
73185e0a 303add_user_ctx_switch(struct task_struct const *task, unsigned long cookie)
1da177e4
LT
304{
305 add_event_entry(ESCAPE_CODE);
73185e0a 306 add_event_entry(CTX_SWITCH_CODE);
1da177e4
LT
307 add_event_entry(task->pid);
308 add_event_entry(cookie);
309 /* Another code for daemon back-compat */
310 add_event_entry(ESCAPE_CODE);
311 add_event_entry(CTX_TGID_CODE);
312 add_event_entry(task->tgid);
313}
314
73185e0a 315
1da177e4
LT
316static void add_cookie_switch(unsigned long cookie)
317{
318 add_event_entry(ESCAPE_CODE);
319 add_event_entry(COOKIE_SWITCH_CODE);
320 add_event_entry(cookie);
321}
322
73185e0a 323
1da177e4
LT
324static void add_trace_begin(void)
325{
326 add_event_entry(ESCAPE_CODE);
327 add_event_entry(TRACE_BEGIN_CODE);
328}
329
852402cc
RR
330#ifdef CONFIG_OPROFILE_IBS
331
345c2573
BK
332#define IBS_FETCH_CODE_SIZE 2
333#define IBS_OP_CODE_SIZE 5
7d468abe
RR
334#define IBS_EIP(cpu_buf) ((cpu_buffer_read_entry(cpu_buf))->eip)
335#define IBS_EVENT(cpu_buf) ((cpu_buffer_read_entry(cpu_buf))->event)
345c2573
BK
336
337/*
338 * Add IBS fetch and op entries to event buffer
339 */
340static void add_ibs_begin(struct oprofile_cpu_buffer *cpu_buf, int code,
8655a3b8 341 struct mm_struct *mm)
345c2573
BK
342{
343 unsigned long rip;
344 int i, count;
345 unsigned long ibs_cookie = 0;
346 off_t offset;
347
348 increment_tail(cpu_buf); /* move to RIP entry */
349
7d468abe 350 rip = IBS_EIP(cpu_buf);
345c2573
BK
351
352#ifdef __LP64__
7d468abe 353 rip += IBS_EVENT(cpu_buf) << 32;
345c2573
BK
354#endif
355
356 if (mm) {
357 ibs_cookie = lookup_dcookie(mm, rip, &offset);
358
359 if (ibs_cookie == NO_COOKIE)
360 offset = rip;
361 if (ibs_cookie == INVALID_COOKIE) {
362 atomic_inc(&oprofile_stats.sample_lost_no_mapping);
363 offset = rip;
364 }
365 if (ibs_cookie != last_cookie) {
366 add_cookie_switch(ibs_cookie);
367 last_cookie = ibs_cookie;
368 }
369 } else
370 offset = rip;
371
372 add_event_entry(ESCAPE_CODE);
373 add_event_entry(code);
374 add_event_entry(offset); /* Offset from Dcookie */
375
376 /* we send the Dcookie offset, but send the raw Linear Add also*/
7d468abe
RR
377 add_event_entry(IBS_EIP(cpu_buf));
378 add_event_entry(IBS_EVENT(cpu_buf));
345c2573
BK
379
380 if (code == IBS_FETCH_CODE)
381 count = IBS_FETCH_CODE_SIZE; /*IBS FETCH is 2 int64s*/
382 else
383 count = IBS_OP_CODE_SIZE; /*IBS OP is 5 int64s*/
384
385 for (i = 0; i < count; i++) {
386 increment_tail(cpu_buf);
7d468abe
RR
387 add_event_entry(IBS_EIP(cpu_buf));
388 add_event_entry(IBS_EVENT(cpu_buf));
345c2573
BK
389 }
390}
1da177e4 391
852402cc
RR
392#endif
393
1da177e4
LT
394static void add_sample_entry(unsigned long offset, unsigned long event)
395{
396 add_event_entry(offset);
397 add_event_entry(event);
398}
399
400
73185e0a 401static int add_us_sample(struct mm_struct *mm, struct op_sample *s)
1da177e4
LT
402{
403 unsigned long cookie;
404 off_t offset;
73185e0a
RR
405
406 cookie = lookup_dcookie(mm, s->eip, &offset);
407
0c0a400d 408 if (cookie == INVALID_COOKIE) {
1da177e4
LT
409 atomic_inc(&oprofile_stats.sample_lost_no_mapping);
410 return 0;
411 }
412
413 if (cookie != last_cookie) {
414 add_cookie_switch(cookie);
415 last_cookie = cookie;
416 }
417
418 add_sample_entry(offset, s->event);
419
420 return 1;
421}
422
73185e0a 423
1da177e4
LT
424/* Add a sample to the global event buffer. If possible the
425 * sample is converted into a persistent dentry/offset pair
426 * for later lookup from userspace.
427 */
428static int
73185e0a 429add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel)
1da177e4
LT
430{
431 if (in_kernel) {
432 add_sample_entry(s->eip, s->event);
433 return 1;
434 } else if (mm) {
435 return add_us_sample(mm, s);
436 } else {
437 atomic_inc(&oprofile_stats.sample_lost_no_mm);
438 }
439 return 0;
440}
1da177e4 441
73185e0a
RR
442
443static void release_mm(struct mm_struct *mm)
1da177e4
LT
444{
445 if (!mm)
446 return;
447 up_read(&mm->mmap_sem);
448 mmput(mm);
449}
450
451
73185e0a 452static struct mm_struct *take_tasks_mm(struct task_struct *task)
1da177e4 453{
73185e0a 454 struct mm_struct *mm = get_task_mm(task);
1da177e4
LT
455 if (mm)
456 down_read(&mm->mmap_sem);
457 return mm;
458}
459
460
461static inline int is_code(unsigned long val)
462{
463 return val == ESCAPE_CODE;
464}
73185e0a 465
1da177e4 466
1da177e4
LT
467/* Move tasks along towards death. Any tasks on dead_tasks
468 * will definitely have no remaining references in any
469 * CPU buffers at this point, because we use two lists,
470 * and to have reached the list, it must have gone through
471 * one full sync already.
472 */
473static void process_task_mortuary(void)
474{
4369ef3c
PM
475 unsigned long flags;
476 LIST_HEAD(local_dead_tasks);
73185e0a
RR
477 struct task_struct *task;
478 struct task_struct *ttask;
1da177e4 479
4369ef3c 480 spin_lock_irqsave(&task_mortuary, flags);
1da177e4 481
4369ef3c
PM
482 list_splice_init(&dead_tasks, &local_dead_tasks);
483 list_splice_init(&dying_tasks, &dead_tasks);
1da177e4 484
4369ef3c
PM
485 spin_unlock_irqrestore(&task_mortuary, flags);
486
487 list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) {
1da177e4 488 list_del(&task->tasks);
4369ef3c 489 free_task(task);
1da177e4 490 }
1da177e4
LT
491}
492
493
494static void mark_done(int cpu)
495{
496 int i;
497
498 cpu_set(cpu, marked_cpus);
499
500 for_each_online_cpu(i) {
501 if (!cpu_isset(i, marked_cpus))
502 return;
503 }
504
505 /* All CPUs have been processed at least once,
506 * we can process the mortuary once
507 */
508 process_task_mortuary();
509
510 cpus_clear(marked_cpus);
511}
512
513
514/* FIXME: this is not sufficient if we implement syscall barrier backtrace
515 * traversal, the code switch to sb_sample_start at first kernel enter/exit
516 * switch so we need a fifth state and some special handling in sync_buffer()
517 */
518typedef enum {
519 sb_bt_ignore = -2,
520 sb_buffer_start,
521 sb_bt_start,
522 sb_sample_start,
523} sync_buffer_state;
524
525/* Sync one of the CPU's buffers into the global event buffer.
526 * Here we need to go through each batch of samples punctuated
527 * by context switch notes, taking the task's mmap_sem and doing
528 * lookup in task->mm->mmap to convert EIP into dcookie/offset
529 * value.
530 */
531void sync_buffer(int cpu)
532{
608dfddd 533 struct oprofile_cpu_buffer *cpu_buf = &per_cpu(cpu_buffer, cpu);
1da177e4 534 struct mm_struct *mm = NULL;
fd7826d5 535 struct mm_struct *oldmm;
73185e0a 536 struct task_struct *new;
1da177e4
LT
537 unsigned long cookie = 0;
538 int in_kernel = 1;
1da177e4 539 sync_buffer_state state = sb_buffer_start;
9b1f2611
BK
540#ifndef CONFIG_OPROFILE_IBS
541 unsigned int i;
1da177e4 542 unsigned long available;
9b1f2611 543#endif
1da177e4 544
59cc185a 545 mutex_lock(&buffer_mutex);
73185e0a 546
1da177e4
LT
547 add_cpu_switch(cpu);
548
549 /* Remember, only we can modify tail_pos */
550
9b1f2611 551#ifndef CONFIG_OPROFILE_IBS
bf589e32 552 available = cpu_buffer_entries(cpu_buf);
1da177e4
LT
553
554 for (i = 0; i < available; ++i) {
9b1f2611 555#else
bf589e32 556 while (cpu_buffer_entries(cpu_buf)) {
9b1f2611 557#endif
7d468abe 558 struct op_sample *s = cpu_buffer_read_entry(cpu_buf);
73185e0a 559
1da177e4 560 if (is_code(s->eip)) {
fd7826d5
RR
561 switch (s->event) {
562 case 0:
563 case CPU_IS_KERNEL:
1da177e4
LT
564 /* kernel/userspace switch */
565 in_kernel = s->event;
566 if (state == sb_buffer_start)
567 state = sb_sample_start;
568 add_kernel_ctx_switch(s->event);
fd7826d5
RR
569 break;
570 case CPU_TRACE_BEGIN:
1da177e4
LT
571 state = sb_bt_start;
572 add_trace_begin();
fd7826d5 573 break;
852402cc 574#ifdef CONFIG_OPROFILE_IBS
fd7826d5 575 case IBS_FETCH_BEGIN:
345c2573 576 state = sb_bt_start;
8655a3b8 577 add_ibs_begin(cpu_buf, IBS_FETCH_CODE, mm);
fd7826d5
RR
578 break;
579 case IBS_OP_BEGIN:
345c2573 580 state = sb_bt_start;
8655a3b8 581 add_ibs_begin(cpu_buf, IBS_OP_CODE, mm);
fd7826d5 582 break;
852402cc 583#endif
fd7826d5 584 default:
1da177e4 585 /* userspace context switch */
fd7826d5 586 oldmm = mm;
1da177e4 587 new = (struct task_struct *)s->event;
1da177e4
LT
588 release_mm(oldmm);
589 mm = take_tasks_mm(new);
590 if (mm != oldmm)
591 cookie = get_exec_dcookie(mm);
592 add_user_ctx_switch(new, cookie);
fd7826d5 593 break;
1da177e4 594 }
73185e0a
RR
595 } else if (state >= sb_bt_start &&
596 !add_sample(mm, s, in_kernel)) {
597 if (state == sb_bt_start) {
598 state = sb_bt_ignore;
599 atomic_inc(&oprofile_stats.bt_lost_no_mapping);
1da177e4
LT
600 }
601 }
602
603 increment_tail(cpu_buf);
604 }
605 release_mm(mm);
606
607 mark_done(cpu);
608
59cc185a 609 mutex_unlock(&buffer_mutex);
1da177e4 610}
a5598ca0
CL
611
612/* The function can be used to add a buffer worth of data directly to
613 * the kernel buffer. The buffer is assumed to be a circular buffer.
614 * Take the entries from index start and end at index end, wrapping
615 * at max_entries.
616 */
617void oprofile_put_buff(unsigned long *buf, unsigned int start,
618 unsigned int stop, unsigned int max)
619{
620 int i;
621
622 i = start;
623
624 mutex_lock(&buffer_mutex);
625 while (i != stop) {
626 add_event_entry(buf[i++]);
627
628 if (i >= max)
629 i = 0;
630 }
631
632 mutex_unlock(&buffer_mutex);
633}
634
This page took 0.512135 seconds and 5 git commands to generate.