revert "ocfs2/dlm: use list_for_each_entry instead of list_for_each"
[deliverable/linux.git] / drivers / parisc / ccio-dma.c
CommitLineData
1da177e4
LT
1/*
2** ccio-dma.c:
3** DMA management routines for first generation cache-coherent machines.
4** Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
5**
6** (c) Copyright 2000 Grant Grundler
7** (c) Copyright 2000 Ryan Bradetich
8** (c) Copyright 2000 Hewlett-Packard Company
9**
10** This program is free software; you can redistribute it and/or modify
11** it under the terms of the GNU General Public License as published by
12** the Free Software Foundation; either version 2 of the License, or
13** (at your option) any later version.
14**
15**
16** "Real Mode" operation refers to U2/Uturn chip operation.
17** U2/Uturn were designed to perform coherency checks w/o using
18** the I/O MMU - basically what x86 does.
19**
20** Philipp Rumpf has a "Real Mode" driver for PCX-W machines at:
21** CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc
22** cvs -z3 co linux/arch/parisc/kernel/dma-rm.c
23**
24** I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c.
25**
26** Drawbacks of using Real Mode are:
27** o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
28** o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
29** o Ability to do scatter/gather in HW is lost.
30** o Doesn't work under PCX-U/U+ machines since they didn't follow
31** the coherency design originally worked out. Only PCX-W does.
32*/
33
1da177e4 34#include <linux/types.h>
3cb1d958 35#include <linux/kernel.h>
1da177e4
LT
36#include <linux/init.h>
37#include <linux/mm.h>
38#include <linux/spinlock.h>
39#include <linux/slab.h>
40#include <linux/string.h>
41#include <linux/pci.h>
42#include <linux/reboot.h>
f823bcae
KM
43#include <linux/proc_fs.h>
44#include <linux/seq_file.h>
b61e8f48 45#include <linux/scatterlist.h>
46663448 46#include <linux/iommu-helper.h>
a87df54e 47#include <linux/export.h>
1da177e4
LT
48
49#include <asm/byteorder.h>
50#include <asm/cache.h> /* for L1_CACHE_BYTES */
51#include <asm/uaccess.h>
52#include <asm/page.h>
53#include <asm/dma.h>
54#include <asm/io.h>
55#include <asm/hardware.h> /* for register_module() */
56#include <asm/parisc-device.h>
57
58/*
59** Choose "ccio" since that's what HP-UX calls it.
60** Make it easier for folks to migrate from one to the other :^)
61*/
62#define MODULE_NAME "ccio"
63
64#undef DEBUG_CCIO_RES
65#undef DEBUG_CCIO_RUN
66#undef DEBUG_CCIO_INIT
67#undef DEBUG_CCIO_RUN_SG
68
69#ifdef CONFIG_PROC_FS
1e22166c
KM
70/* depends on proc fs support. But costs CPU performance. */
71#undef CCIO_COLLECT_STATS
1da177e4
LT
72#endif
73
1da177e4
LT
74#include <asm/runway.h> /* for proc_runway_root */
75
76#ifdef DEBUG_CCIO_INIT
77#define DBG_INIT(x...) printk(x)
78#else
79#define DBG_INIT(x...)
80#endif
81
82#ifdef DEBUG_CCIO_RUN
83#define DBG_RUN(x...) printk(x)
84#else
85#define DBG_RUN(x...)
86#endif
87
88#ifdef DEBUG_CCIO_RES
89#define DBG_RES(x...) printk(x)
90#else
91#define DBG_RES(x...)
92#endif
93
94#ifdef DEBUG_CCIO_RUN_SG
95#define DBG_RUN_SG(x...) printk(x)
96#else
97#define DBG_RUN_SG(x...)
98#endif
99
86a61ee9
GG
100#define CCIO_INLINE inline
101#define WRITE_U32(value, addr) __raw_writel(value, addr)
102#define READ_U32(addr) __raw_readl(addr)
1da177e4
LT
103
104#define U2_IOA_RUNWAY 0x580
105#define U2_BC_GSC 0x501
106#define UTURN_IOA_RUNWAY 0x581
107#define UTURN_BC_GSC 0x502
108
109#define IOA_NORMAL_MODE 0x00020080 /* IO_CONTROL to turn on CCIO */
110#define CMD_TLB_DIRECT_WRITE 35 /* IO_COMMAND for I/O TLB Writes */
111#define CMD_TLB_PURGE 33 /* IO_COMMAND to Purge I/O TLB entry */
112
113struct ioa_registers {
114 /* Runway Supervisory Set */
86a61ee9
GG
115 int32_t unused1[12];
116 uint32_t io_command; /* Offset 12 */
117 uint32_t io_status; /* Offset 13 */
118 uint32_t io_control; /* Offset 14 */
119 int32_t unused2[1];
1da177e4
LT
120
121 /* Runway Auxiliary Register Set */
86a61ee9
GG
122 uint32_t io_err_resp; /* Offset 0 */
123 uint32_t io_err_info; /* Offset 1 */
124 uint32_t io_err_req; /* Offset 2 */
125 uint32_t io_err_resp_hi; /* Offset 3 */
126 uint32_t io_tlb_entry_m; /* Offset 4 */
127 uint32_t io_tlb_entry_l; /* Offset 5 */
128 uint32_t unused3[1];
129 uint32_t io_pdir_base; /* Offset 7 */
130 uint32_t io_io_low_hv; /* Offset 8 */
131 uint32_t io_io_high_hv; /* Offset 9 */
132 uint32_t unused4[1];
133 uint32_t io_chain_id_mask; /* Offset 11 */
134 uint32_t unused5[2];
135 uint32_t io_io_low; /* Offset 14 */
136 uint32_t io_io_high; /* Offset 15 */
1da177e4
LT
137};
138
139/*
140** IOA Registers
141** -------------
142**
143** Runway IO_CONTROL Register (+0x38)
144**
145** The Runway IO_CONTROL register controls the forwarding of transactions.
146**
147** | 0 ... 13 | 14 15 | 16 ... 21 | 22 | 23 24 | 25 ... 31 |
148** | HV | TLB | reserved | HV | mode | reserved |
149**
150** o mode field indicates the address translation of transactions
151** forwarded from Runway to GSC+:
152** Mode Name Value Definition
153** Off (default) 0 Opaque to matching addresses.
154** Include 1 Transparent for matching addresses.
155** Peek 3 Map matching addresses.
156**
157** + "Off" mode: Runway transactions which match the I/O range
158** specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
159** + "Include" mode: all addresses within the I/O range specified
160** by the IO_IO_LOW and IO_IO_HIGH registers are transparently
161** forwarded. This is the I/O Adapter's normal operating mode.
162** + "Peek" mode: used during system configuration to initialize the
163** GSC+ bus. Runway Write_Shorts in the address range specified by
164** IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
165** *AND* the GSC+ address is remapped to the Broadcast Physical
166** Address space by setting the 14 high order address bits of the
167** 32 bit GSC+ address to ones.
168**
169** o TLB field affects transactions which are forwarded from GSC+ to Runway.
170** "Real" mode is the poweron default.
171**
172** TLB Mode Value Description
173** Real 0 No TLB translation. Address is directly mapped and the
174** virtual address is composed of selected physical bits.
175** Error 1 Software fills the TLB manually.
176** Normal 2 IOA fetches IO TLB misses from IO PDIR (in host memory).
177**
178**
179** IO_IO_LOW_HV +0x60 (HV dependent)
180** IO_IO_HIGH_HV +0x64 (HV dependent)
181** IO_IO_LOW +0x78 (Architected register)
182** IO_IO_HIGH +0x7c (Architected register)
183**
184** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
185** I/O Adapter address space, respectively.
186**
187** 0 ... 7 | 8 ... 15 | 16 ... 31 |
188** 11111111 | 11111111 | address |
189**
190** Each LOW/HIGH pair describes a disjoint address space region.
191** (2 per GSC+ port). Each incoming Runway transaction address is compared
192** with both sets of LOW/HIGH registers. If the address is in the range
193** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
194** for forwarded to the respective GSC+ bus.
195** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
196** an address space region.
197**
198** In order for a Runway address to reside within GSC+ extended address space:
199** Runway Address [0:7] must identically compare to 8'b11111111
200** Runway Address [8:11] must be equal to IO_IO_LOW(_HV)[16:19]
201** Runway Address [12:23] must be greater than or equal to
202** IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
203** Runway Address [24:39] is not used in the comparison.
204**
205** When the Runway transaction is forwarded to GSC+, the GSC+ address is
206** as follows:
207** GSC+ Address[0:3] 4'b1111
208** GSC+ Address[4:29] Runway Address[12:37]
209** GSC+ Address[30:31] 2'b00
210**
211** All 4 Low/High registers must be initialized (by PDC) once the lower bus
212** is interrogated and address space is defined. The operating system will
213** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
214** the PDC initialization. However, the hardware version dependent IO_IO_LOW
215** and IO_IO_HIGH registers should not be subsequently altered by the OS.
216**
217** Writes to both sets of registers will take effect immediately, bypassing
218** the queues, which ensures that subsequent Runway transactions are checked
219** against the updated bounds values. However reads are queued, introducing
220** the possibility of a read being bypassed by a subsequent write to the same
221** register. This sequence can be avoided by having software wait for read
222** returns before issuing subsequent writes.
223*/
224
225struct ioc {
86a61ee9 226 struct ioa_registers __iomem *ioc_regs; /* I/O MMU base address */
1da177e4
LT
227 u8 *res_map; /* resource map, bit == pdir entry */
228 u64 *pdir_base; /* physical base address */
229 u32 pdir_size; /* bytes, function of IOV Space size */
230 u32 res_hint; /* next available IOVP -
231 circular search */
232 u32 res_size; /* size of resource map in bytes */
233 spinlock_t res_lock;
234
1e22166c 235#ifdef CCIO_COLLECT_STATS
1da177e4
LT
236#define CCIO_SEARCH_SAMPLE 0x100
237 unsigned long avg_search[CCIO_SEARCH_SAMPLE];
238 unsigned long avg_idx; /* current index into avg_search */
1da177e4
LT
239 unsigned long used_pages;
240 unsigned long msingle_calls;
241 unsigned long msingle_pages;
242 unsigned long msg_calls;
243 unsigned long msg_pages;
244 unsigned long usingle_calls;
245 unsigned long usingle_pages;
246 unsigned long usg_calls;
247 unsigned long usg_pages;
248#endif
249 unsigned short cujo20_bug;
250
251 /* STUFF We don't need in performance path */
252 u32 chainid_shift; /* specify bit location of chain_id */
253 struct ioc *next; /* Linked list of discovered iocs */
254 const char *name; /* device name from firmware */
255 unsigned int hw_path; /* the hardware path this ioc is associatd with */
256 struct pci_dev *fake_pci_dev; /* the fake pci_dev for non-pci devs */
257 struct resource mmio_region[2]; /* The "routed" MMIO regions */
258};
259
260static struct ioc *ioc_list;
261static int ioc_count;
262
263/**************************************************************
264*
265* I/O Pdir Resource Management
266*
267* Bits set in the resource map are in use.
268* Each bit can represent a number of pages.
269* LSbs represent lower addresses (IOVA's).
270*
271* This was was copied from sba_iommu.c. Don't try to unify
272* the two resource managers unless a way to have different
273* allocation policies is also adjusted. We'd like to avoid
274* I/O TLB thrashing by having resource allocation policy
275* match the I/O TLB replacement policy.
276*
277***************************************************************/
278#define IOVP_SIZE PAGE_SIZE
279#define IOVP_SHIFT PAGE_SHIFT
280#define IOVP_MASK PAGE_MASK
281
282/* Convert from IOVP to IOVA and vice versa. */
283#define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
284#define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
285
286#define PDIR_INDEX(iovp) ((iovp)>>IOVP_SHIFT)
287#define MKIOVP(pdir_idx) ((long)(pdir_idx) << IOVP_SHIFT)
288#define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
1da177e4
LT
289
290/*
291** Don't worry about the 150% average search length on a miss.
292** If the search wraps around, and passes the res_hint, it will
293** cause the kernel to panic anyhow.
294*/
295#define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size) \
296 for(; res_ptr < res_end; ++res_ptr) { \
46663448
FT
297 int ret;\
298 unsigned int idx;\
299 idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
300 ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\
301 if ((0 == (*res_ptr & mask)) && !ret) { \
302 *res_ptr |= mask; \
303 res_idx = idx;\
304 ioc->res_hint = res_idx + (size >> 3); \
305 goto resource_found; \
306 } \
307 }
1da177e4
LT
308
309#define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
310 u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
311 u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
312 CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
313 res_ptr = (u##size *)&(ioc)->res_map[0]; \
314 CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
315
316/*
317** Find available bit in this ioa's resource map.
318** Use a "circular" search:
319** o Most IOVA's are "temporary" - avg search time should be small.
320** o keep a history of what happened for debugging
321** o KISS.
322**
323** Perf optimizations:
324** o search for log2(size) bits at a time.
325** o search for available resource bits using byte/word/whatever.
326** o use different search for "large" (eg > 4 pages) or "very large"
327** (eg > 16 pages) mappings.
328*/
329
330/**
331 * ccio_alloc_range - Allocate pages in the ioc's resource map.
332 * @ioc: The I/O Controller.
333 * @pages_needed: The requested number of pages to be mapped into the
334 * I/O Pdir...
335 *
336 * This function searches the resource map of the ioc to locate a range
337 * of available pages for the requested size.
338 */
339static int
7c8cda62 340ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
1da177e4
LT
341{
342 unsigned int pages_needed = size >> IOVP_SHIFT;
343 unsigned int res_idx;
46663448 344 unsigned long boundary_size;
1e22166c 345#ifdef CCIO_COLLECT_STATS
1da177e4
LT
346 unsigned long cr_start = mfctl(16);
347#endif
348
349 BUG_ON(pages_needed == 0);
350 BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE);
351
352 DBG_RES("%s() size: %d pages_needed %d\n",
a8043ecb 353 __func__, size, pages_needed);
1da177e4
LT
354
355 /*
356 ** "seek and ye shall find"...praying never hurts either...
357 ** ggg sacrifices another 710 to the computer gods.
358 */
359
4a0d3f3a
FT
360 boundary_size = ALIGN((unsigned long long)dma_get_seg_boundary(dev) + 1,
361 1ULL << IOVP_SHIFT) >> IOVP_SHIFT;
46663448 362
1da177e4
LT
363 if (pages_needed <= 8) {
364 /*
365 * LAN traffic will not thrash the TLB IFF the same NIC
4f63ba17 366 * uses 8 adjacent pages to map separate payload data.
1da177e4
LT
367 * ie the same byte in the resource bit map.
368 */
369#if 0
370 /* FIXME: bit search should shift it's way through
371 * an unsigned long - not byte at a time. As it is now,
372 * we effectively allocate this byte to this mapping.
373 */
374 unsigned long mask = ~(~0UL >> pages_needed);
375 CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
376#else
377 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8);
378#endif
379 } else if (pages_needed <= 16) {
380 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16);
381 } else if (pages_needed <= 32) {
382 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32);
383#ifdef __LP64__
384 } else if (pages_needed <= 64) {
385 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64);
386#endif
387 } else {
388 panic("%s: %s() Too many pages to map. pages_needed: %u\n",
a8043ecb 389 __FILE__, __func__, pages_needed);
1da177e4
LT
390 }
391
392 panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__,
a8043ecb 393 __func__);
1da177e4
LT
394
395resource_found:
396
397 DBG_RES("%s() res_idx %d res_hint: %d\n",
a8043ecb 398 __func__, res_idx, ioc->res_hint);
1da177e4 399
1e22166c 400#ifdef CCIO_COLLECT_STATS
1da177e4
LT
401 {
402 unsigned long cr_end = mfctl(16);
403 unsigned long tmp = cr_end - cr_start;
404 /* check for roll over */
405 cr_start = (cr_end < cr_start) ? -(tmp) : (tmp);
406 }
407 ioc->avg_search[ioc->avg_idx++] = cr_start;
408 ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
1da177e4
LT
409 ioc->used_pages += pages_needed;
410#endif
411 /*
412 ** return the bit address.
413 */
414 return res_idx << 3;
415}
416
417#define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
418 u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
419 BUG_ON((*res_ptr & mask) != mask); \
420 *res_ptr &= ~(mask);
421
422/**
423 * ccio_free_range - Free pages from the ioc's resource map.
424 * @ioc: The I/O Controller.
425 * @iova: The I/O Virtual Address.
426 * @pages_mapped: The requested number of pages to be freed from the
427 * I/O Pdir.
428 *
429 * This function frees the resouces allocated for the iova.
430 */
431static void
432ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
433{
434 unsigned long iovp = CCIO_IOVP(iova);
435 unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
436
437 BUG_ON(pages_mapped == 0);
438 BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE);
439 BUG_ON(pages_mapped > BITS_PER_LONG);
440
441 DBG_RES("%s(): res_idx: %d pages_mapped %d\n",
a8043ecb 442 __func__, res_idx, pages_mapped);
1da177e4 443
1e22166c 444#ifdef CCIO_COLLECT_STATS
1da177e4
LT
445 ioc->used_pages -= pages_mapped;
446#endif
447
448 if(pages_mapped <= 8) {
449#if 0
450 /* see matching comments in alloc_range */
451 unsigned long mask = ~(~0UL >> pages_mapped);
452 CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
453#else
c18b4608 454 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffUL, 8);
1da177e4
LT
455#endif
456 } else if(pages_mapped <= 16) {
c18b4608 457 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffffUL, 16);
1da177e4
LT
458 } else if(pages_mapped <= 32) {
459 CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32);
460#ifdef __LP64__
461 } else if(pages_mapped <= 64) {
462 CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64);
463#endif
464 } else {
465 panic("%s:%s() Too many pages to unmap.\n", __FILE__,
a8043ecb 466 __func__);
1da177e4
LT
467 }
468}
469
470/****************************************************************
471**
472** CCIO dma_ops support routines
473**
474*****************************************************************/
475
476typedef unsigned long space_t;
477#define KERNEL_SPACE 0
478
479/*
480** DMA "Page Type" and Hints
481** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
482** set for subcacheline DMA transfers since we don't want to damage the
483** other part of a cacheline.
484** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
485** This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
486** data can avoid this if the mapping covers full cache lines.
487** o STOP_MOST is needed for atomicity across cachelines.
0779bf2d 488** Apparently only "some EISA devices" need this.
1da177e4
LT
489** Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
490** to use this hint iff the EISA devices needs this feature.
491** According to the U2 ERS, STOP_MOST enabled pages hurt performance.
492** o PREFETCH should *not* be set for cases like Multiple PCI devices
493** behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
494** device can be fetched and multiply DMA streams will thrash the
495** prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
496** and Invalidation of Prefetch Entries".
497**
498** FIXME: the default hints need to be per GSC device - not global.
499**
500** HP-UX dorks: linux device driver programming model is totally different
501** than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
502** do special things to work on non-coherent platforms...linux has to
503** be much more careful with this.
504*/
505#define IOPDIR_VALID 0x01UL
506#define HINT_SAFE_DMA 0x02UL /* used for pci_alloc_consistent() pages */
507#ifdef CONFIG_EISA
508#define HINT_STOP_MOST 0x04UL /* LSL support */
509#else
510#define HINT_STOP_MOST 0x00UL /* only needed for "some EISA devices" */
511#endif
512#define HINT_UDPATE_ENB 0x08UL /* not used/supported by U2 */
513#define HINT_PREFETCH 0x10UL /* for outbound pages which are not SAFE */
514
515
516/*
517** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
518** ccio_alloc_consistent() depends on this to get SAFE_DMA
519** when it passes in BIDIRECTIONAL flag.
520*/
521static u32 hint_lookup[] = {
522 [PCI_DMA_BIDIRECTIONAL] = HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
523 [PCI_DMA_TODEVICE] = HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
524 [PCI_DMA_FROMDEVICE] = HINT_STOP_MOST | IOPDIR_VALID,
525};
526
527/**
528 * ccio_io_pdir_entry - Initialize an I/O Pdir.
529 * @pdir_ptr: A pointer into I/O Pdir.
530 * @sid: The Space Identifier.
531 * @vba: The virtual address.
532 * @hints: The DMA Hint.
533 *
534 * Given a virtual address (vba, arg2) and space id, (sid, arg1),
535 * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
536 * entry consists of 8 bytes as shown below (MSB == bit 0):
537 *
538 *
539 * WORD 0:
540 * +------+----------------+-----------------------------------------------+
541 * | Phys | Virtual Index | Phys |
542 * | 0:3 | 0:11 | 4:19 |
543 * |4 bits| 12 bits | 16 bits |
544 * +------+----------------+-----------------------------------------------+
545 * WORD 1:
546 * +-----------------------+-----------------------------------------------+
547 * | Phys | Rsvd | Prefetch |Update |Rsvd |Lock |Safe |Valid |
548 * | 20:39 | | Enable |Enable | |Enable|DMA | |
549 * | 20 bits | 5 bits | 1 bit |1 bit |2 bits|1 bit |1 bit |1 bit |
550 * +-----------------------+-----------------------------------------------+
551 *
552 * The virtual index field is filled with the results of the LCI
553 * (Load Coherence Index) instruction. The 8 bits used for the virtual
554 * index are bits 12:19 of the value returned by LCI.
555 */
df8e5bc6 556static void CCIO_INLINE
1da177e4
LT
557ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba,
558 unsigned long hints)
559{
560 register unsigned long pa;
561 register unsigned long ci; /* coherent index */
562
563 /* We currently only support kernel addresses */
564 BUG_ON(sid != KERNEL_SPACE);
565
566 mtsp(sid,1);
567
568 /*
569 ** WORD 1 - low order word
570 ** "hints" parm includes the VALID bit!
571 ** "dep" clobbers the physical address offset bits as well.
572 */
573 pa = virt_to_phys(vba);
574 asm volatile("depw %1,31,12,%0" : "+r" (pa) : "r" (hints));
575 ((u32 *)pdir_ptr)[1] = (u32) pa;
576
577 /*
578 ** WORD 0 - high order word
579 */
580
581#ifdef __LP64__
582 /*
583 ** get bits 12:15 of physical address
584 ** shift bits 16:31 of physical address
585 ** and deposit them
586 */
587 asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
588 asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
589 asm volatile ("depd %1,35,4,%0" : "+r" (pa) : "r" (ci));
590#else
591 pa = 0;
592#endif
593 /*
594 ** get CPU coherency index bits
595 ** Grab virtual index [0:11]
596 ** Deposit virt_idx bits into I/O PDIR word
597 */
86a61ee9 598 asm volatile ("lci %%r0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba));
1da177e4
LT
599 asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
600 asm volatile ("depw %1,15,12,%0" : "+r" (pa) : "r" (ci));
601
602 ((u32 *)pdir_ptr)[0] = (u32) pa;
603
604
605 /* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
606 ** PCX-U/U+ do. (eg C200/C240)
607 ** PCX-T'? Don't know. (eg C110 or similar K-class)
608 **
609 ** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
610 ** Hopefully we can patch (NOP) these out at boot time somehow.
611 **
612 ** "Since PCX-U employs an offset hash that is incompatible with
613 ** the real mode coherence index generation of U2, the PDIR entry
614 ** must be flushed to memory to retain coherence."
615 */
86a61ee9 616 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr));
1da177e4
LT
617 asm volatile("sync");
618}
619
620/**
621 * ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
622 * @ioc: The I/O Controller.
623 * @iovp: The I/O Virtual Page.
624 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
625 *
626 * Purge invalid I/O PDIR entries from the I/O TLB.
627 *
628 * FIXME: Can we change the byte_cnt to pages_mapped?
629 */
630static CCIO_INLINE void
631ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
632{
633 u32 chain_size = 1 << ioc->chainid_shift;
634
635 iovp &= IOVP_MASK; /* clear offset bits, just want pagenum */
636 byte_cnt += chain_size;
637
638 while(byte_cnt > chain_size) {
86a61ee9 639 WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command);
1da177e4
LT
640 iovp += chain_size;
641 byte_cnt -= chain_size;
642 }
643}
644
645/**
646 * ccio_mark_invalid - Mark the I/O Pdir entries invalid.
647 * @ioc: The I/O Controller.
648 * @iova: The I/O Virtual Address.
649 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
650 *
651 * Mark the I/O Pdir entries invalid and blow away the corresponding I/O
652 * TLB entries.
653 *
af901ca1 654 * FIXME: at some threshold it might be "cheaper" to just blow
1da177e4
LT
655 * away the entire I/O TLB instead of individual entries.
656 *
657 * FIXME: Uturn has 256 TLB entries. We don't need to purge every
658 * PDIR entry - just once for each possible TLB entry.
659 * (We do need to maker I/O PDIR entries invalid regardless).
660 *
661 * FIXME: Can we change byte_cnt to pages_mapped?
662 */
663static CCIO_INLINE void
664ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
665{
666 u32 iovp = (u32)CCIO_IOVP(iova);
667 size_t saved_byte_cnt;
668
669 /* round up to nearest page size */
3cb1d958 670 saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE);
1da177e4
LT
671
672 while(byte_cnt > 0) {
673 /* invalidate one page at a time */
674 unsigned int idx = PDIR_INDEX(iovp);
675 char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
676
677 BUG_ON(idx >= (ioc->pdir_size / sizeof(u64)));
678 pdir_ptr[7] = 0; /* clear only VALID bit */
679 /*
680 ** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
681 ** PCX-U/U+ do. (eg C200/C240)
682 ** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
683 **
684 ** Hopefully someone figures out how to patch (NOP) the
685 ** FDC/SYNC out at boot time.
686 */
86a61ee9 687 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr[7]));
1da177e4
LT
688
689 iovp += IOVP_SIZE;
690 byte_cnt -= IOVP_SIZE;
691 }
692
693 asm volatile("sync");
694 ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
695}
696
697/****************************************************************
698**
699** CCIO dma_ops
700**
701*****************************************************************/
702
703/**
704 * ccio_dma_supported - Verify the IOMMU supports the DMA address range.
705 * @dev: The PCI device.
706 * @mask: A bit mask describing the DMA address range of the device.
707 *
708 * This function implements the pci_dma_supported function.
709 */
710static int
711ccio_dma_supported(struct device *dev, u64 mask)
712{
713 if(dev == NULL) {
714 printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
715 BUG();
716 return 0;
717 }
718
719 /* only support 32-bit devices (ie PCI/GSC) */
720 return (int)(mask == 0xffffffffUL);
721}
722
723/**
724 * ccio_map_single - Map an address range into the IOMMU.
725 * @dev: The PCI device.
726 * @addr: The start address of the DMA region.
727 * @size: The length of the DMA region.
728 * @direction: The direction of the DMA transaction (to/from device).
729 *
730 * This function implements the pci_map_single function.
731 */
732static dma_addr_t
733ccio_map_single(struct device *dev, void *addr, size_t size,
734 enum dma_data_direction direction)
735{
736 int idx;
737 struct ioc *ioc;
738 unsigned long flags;
739 dma_addr_t iovp;
740 dma_addr_t offset;
741 u64 *pdir_start;
742 unsigned long hint = hint_lookup[(int)direction];
743
744 BUG_ON(!dev);
745 ioc = GET_IOC(dev);
746
747 BUG_ON(size <= 0);
748
749 /* save offset bits */
750 offset = ((unsigned long) addr) & ~IOVP_MASK;
751
752 /* round up to nearest IOVP_SIZE */
3cb1d958 753 size = ALIGN(size + offset, IOVP_SIZE);
1da177e4
LT
754 spin_lock_irqsave(&ioc->res_lock, flags);
755
1e22166c 756#ifdef CCIO_COLLECT_STATS
1da177e4
LT
757 ioc->msingle_calls++;
758 ioc->msingle_pages += size >> IOVP_SHIFT;
759#endif
760
7c8cda62 761 idx = ccio_alloc_range(ioc, dev, size);
1da177e4
LT
762 iovp = (dma_addr_t)MKIOVP(idx);
763
764 pdir_start = &(ioc->pdir_base[idx]);
765
766 DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n",
a8043ecb 767 __func__, addr, (long)iovp | offset, size);
1da177e4
LT
768
769 /* If not cacheline aligned, force SAFE_DMA on the whole mess */
770 if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
771 hint |= HINT_SAFE_DMA;
772
773 while(size > 0) {
774 ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint);
775
776 DBG_RUN(" pdir %p %08x%08x\n",
777 pdir_start,
778 (u32) (((u32 *) pdir_start)[0]),
779 (u32) (((u32 *) pdir_start)[1]));
780 ++pdir_start;
781 addr += IOVP_SIZE;
782 size -= IOVP_SIZE;
783 }
784
785 spin_unlock_irqrestore(&ioc->res_lock, flags);
786
787 /* form complete address */
788 return CCIO_IOVA(iovp, offset);
789}
790
791/**
792 * ccio_unmap_single - Unmap an address range from the IOMMU.
793 * @dev: The PCI device.
794 * @addr: The start address of the DMA region.
795 * @size: The length of the DMA region.
796 * @direction: The direction of the DMA transaction (to/from device).
797 *
798 * This function implements the pci_unmap_single function.
799 */
800static void
801ccio_unmap_single(struct device *dev, dma_addr_t iova, size_t size,
802 enum dma_data_direction direction)
803{
804 struct ioc *ioc;
805 unsigned long flags;
806 dma_addr_t offset = iova & ~IOVP_MASK;
807
808 BUG_ON(!dev);
809 ioc = GET_IOC(dev);
810
811 DBG_RUN("%s() iovp 0x%lx/%x\n",
a8043ecb 812 __func__, (long)iova, size);
1da177e4
LT
813
814 iova ^= offset; /* clear offset bits */
815 size += offset;
3cb1d958 816 size = ALIGN(size, IOVP_SIZE);
1da177e4
LT
817
818 spin_lock_irqsave(&ioc->res_lock, flags);
819
1e22166c 820#ifdef CCIO_COLLECT_STATS
1da177e4
LT
821 ioc->usingle_calls++;
822 ioc->usingle_pages += size >> IOVP_SHIFT;
823#endif
824
825 ccio_mark_invalid(ioc, iova, size);
826 ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
827 spin_unlock_irqrestore(&ioc->res_lock, flags);
828}
829
830/**
831 * ccio_alloc_consistent - Allocate a consistent DMA mapping.
832 * @dev: The PCI device.
833 * @size: The length of the DMA region.
834 * @dma_handle: The DMA address handed back to the device (not the cpu).
835 *
836 * This function implements the pci_alloc_consistent function.
837 */
838static void *
5c1fb41f 839ccio_alloc_consistent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag)
1da177e4
LT
840{
841 void *ret;
842#if 0
843/* GRANT Need to establish hierarchy for non-PCI devs as well
844** and then provide matching gsc_map_xxx() functions for them as well.
845*/
846 if(!hwdev) {
847 /* only support PCI */
848 *dma_handle = 0;
849 return 0;
850 }
851#endif
852 ret = (void *) __get_free_pages(flag, get_order(size));
853
854 if (ret) {
855 memset(ret, 0, size);
856 *dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL);
857 }
858
859 return ret;
860}
861
862/**
863 * ccio_free_consistent - Free a consistent DMA mapping.
864 * @dev: The PCI device.
865 * @size: The length of the DMA region.
866 * @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
867 * @dma_handle: The device address returned from the ccio_alloc_consistent.
868 *
869 * This function implements the pci_free_consistent function.
870 */
871static void
872ccio_free_consistent(struct device *dev, size_t size, void *cpu_addr,
873 dma_addr_t dma_handle)
874{
875 ccio_unmap_single(dev, dma_handle, size, 0);
876 free_pages((unsigned long)cpu_addr, get_order(size));
877}
878
879/*
880** Since 0 is a valid pdir_base index value, can't use that
881** to determine if a value is valid or not. Use a flag to indicate
882** the SG list entry contains a valid pdir index.
883*/
884#define PIDE_FLAG 0x80000000UL
885
1e22166c 886#ifdef CCIO_COLLECT_STATS
1da177e4
LT
887#define IOMMU_MAP_STATS
888#endif
889#include "iommu-helpers.h"
890
891/**
892 * ccio_map_sg - Map the scatter/gather list into the IOMMU.
893 * @dev: The PCI device.
894 * @sglist: The scatter/gather list to be mapped in the IOMMU.
895 * @nents: The number of entries in the scatter/gather list.
896 * @direction: The direction of the DMA transaction (to/from device).
897 *
898 * This function implements the pci_map_sg function.
899 */
900static int
901ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
902 enum dma_data_direction direction)
903{
904 struct ioc *ioc;
905 int coalesced, filled = 0;
906 unsigned long flags;
907 unsigned long hint = hint_lookup[(int)direction];
908 unsigned long prev_len = 0, current_len = 0;
909 int i;
910
911 BUG_ON(!dev);
912 ioc = GET_IOC(dev);
913
a8043ecb 914 DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
1da177e4
LT
915
916 /* Fast path single entry scatterlists. */
917 if (nents == 1) {
918 sg_dma_address(sglist) = ccio_map_single(dev,
8bf8a1d1 919 sg_virt(sglist), sglist->length,
1da177e4
LT
920 direction);
921 sg_dma_len(sglist) = sglist->length;
922 return 1;
923 }
924
925 for(i = 0; i < nents; i++)
926 prev_len += sglist[i].length;
927
928 spin_lock_irqsave(&ioc->res_lock, flags);
929
1e22166c 930#ifdef CCIO_COLLECT_STATS
1da177e4
LT
931 ioc->msg_calls++;
932#endif
933
934 /*
935 ** First coalesce the chunks and allocate I/O pdir space
936 **
937 ** If this is one DMA stream, we can properly map using the
938 ** correct virtual address associated with each DMA page.
939 ** w/o this association, we wouldn't have coherent DMA!
940 ** Access to the virtual address is what forces a two pass algorithm.
941 */
d1b51632 942 coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range);
1da177e4
LT
943
944 /*
945 ** Program the I/O Pdir
946 **
947 ** map the virtual addresses to the I/O Pdir
948 ** o dma_address will contain the pdir index
949 ** o dma_len will contain the number of bytes to map
950 ** o page/offset contain the virtual address.
951 */
952 filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry);
953
954 spin_unlock_irqrestore(&ioc->res_lock, flags);
955
956 BUG_ON(coalesced != filled);
957
a8043ecb 958 DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
1da177e4
LT
959
960 for (i = 0; i < filled; i++)
961 current_len += sg_dma_len(sglist + i);
962
963 BUG_ON(current_len != prev_len);
964
965 return filled;
966}
967
968/**
969 * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
970 * @dev: The PCI device.
971 * @sglist: The scatter/gather list to be unmapped from the IOMMU.
972 * @nents: The number of entries in the scatter/gather list.
973 * @direction: The direction of the DMA transaction (to/from device).
974 *
975 * This function implements the pci_unmap_sg function.
976 */
977static void
978ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents,
979 enum dma_data_direction direction)
980{
981 struct ioc *ioc;
982
983 BUG_ON(!dev);
984 ioc = GET_IOC(dev);
985
8bf8a1d1
MW
986 DBG_RUN_SG("%s() START %d entries, %p,%x\n",
987 __func__, nents, sg_virt(sglist), sglist->length);
1da177e4 988
1e22166c 989#ifdef CCIO_COLLECT_STATS
1da177e4
LT
990 ioc->usg_calls++;
991#endif
992
993 while(sg_dma_len(sglist) && nents--) {
994
1e22166c 995#ifdef CCIO_COLLECT_STATS
1da177e4
LT
996 ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
997#endif
998 ccio_unmap_single(dev, sg_dma_address(sglist),
999 sg_dma_len(sglist), direction);
1000 ++sglist;
1001 }
1002
a8043ecb 1003 DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
1da177e4
LT
1004}
1005
1006static struct hppa_dma_ops ccio_ops = {
1007 .dma_supported = ccio_dma_supported,
1008 .alloc_consistent = ccio_alloc_consistent,
1009 .alloc_noncoherent = ccio_alloc_consistent,
1010 .free_consistent = ccio_free_consistent,
1011 .map_single = ccio_map_single,
1012 .unmap_single = ccio_unmap_single,
1013 .map_sg = ccio_map_sg,
1014 .unmap_sg = ccio_unmap_sg,
1015 .dma_sync_single_for_cpu = NULL, /* NOP for U2/Uturn */
1016 .dma_sync_single_for_device = NULL, /* NOP for U2/Uturn */
1017 .dma_sync_sg_for_cpu = NULL, /* ditto */
1018 .dma_sync_sg_for_device = NULL, /* ditto */
1019};
1020
1021#ifdef CONFIG_PROC_FS
f823bcae 1022static int ccio_proc_info(struct seq_file *m, void *p)
1da177e4 1023{
1da177e4
LT
1024 struct ioc *ioc = ioc_list;
1025
1026 while (ioc != NULL) {
1027 unsigned int total_pages = ioc->res_size << 3;
c18b4608 1028#ifdef CCIO_COLLECT_STATS
1da177e4 1029 unsigned long avg = 0, min, max;
f823bcae 1030 int j;
c18b4608 1031#endif
1da177e4 1032
e693d73c 1033 seq_printf(m, "%s\n", ioc->name);
1da177e4 1034
e693d73c
JP
1035 seq_printf(m, "Cujo 2.0 bug : %s\n",
1036 (ioc->cujo20_bug ? "yes" : "no"));
1da177e4 1037
e693d73c
JP
1038 seq_printf(m, "IO PDIR size : %d bytes (%d entries)\n",
1039 total_pages * 8, total_pages);
f823bcae 1040
1e22166c 1041#ifdef CCIO_COLLECT_STATS
e693d73c
JP
1042 seq_printf(m, "IO PDIR entries : %ld free %ld used (%d%%)\n",
1043 total_pages - ioc->used_pages, ioc->used_pages,
1044 (int)(ioc->used_pages * 100 / total_pages));
1da177e4 1045#endif
f823bcae 1046
e693d73c
JP
1047 seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
1048 ioc->res_size, total_pages);
f823bcae 1049
1e22166c 1050#ifdef CCIO_COLLECT_STATS
1da177e4
LT
1051 min = max = ioc->avg_search[0];
1052 for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
1053 avg += ioc->avg_search[j];
1054 if(ioc->avg_search[j] > max)
1055 max = ioc->avg_search[j];
1056 if(ioc->avg_search[j] < min)
1057 min = ioc->avg_search[j];
1058 }
1059 avg /= CCIO_SEARCH_SAMPLE;
e693d73c
JP
1060 seq_printf(m, " Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1061 min, avg, max);
c18b4608 1062
e693d73c
JP
1063 seq_printf(m, "pci_map_single(): %8ld calls %8ld pages (avg %d/1000)\n",
1064 ioc->msingle_calls, ioc->msingle_pages,
1065 (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1da177e4
LT
1066
1067 /* KLUGE - unmap_sg calls unmap_single for each mapped page */
1068 min = ioc->usingle_calls - ioc->usg_calls;
1069 max = ioc->usingle_pages - ioc->usg_pages;
e693d73c
JP
1070 seq_printf(m, "pci_unmap_single: %8ld calls %8ld pages (avg %d/1000)\n",
1071 min, max, (int)((max * 1000)/min));
1da177e4 1072
e693d73c
JP
1073 seq_printf(m, "pci_map_sg() : %8ld calls %8ld pages (avg %d/1000)\n",
1074 ioc->msg_calls, ioc->msg_pages,
1075 (int)((ioc->msg_pages * 1000)/ioc->msg_calls));
f823bcae 1076
e693d73c
JP
1077 seq_printf(m, "pci_unmap_sg() : %8ld calls %8ld pages (avg %d/1000)\n\n\n",
1078 ioc->usg_calls, ioc->usg_pages,
1079 (int)((ioc->usg_pages * 1000)/ioc->usg_calls));
1e22166c 1080#endif /* CCIO_COLLECT_STATS */
f823bcae 1081
1da177e4
LT
1082 ioc = ioc->next;
1083 }
1084
f823bcae
KM
1085 return 0;
1086}
1087
1088static int ccio_proc_info_open(struct inode *inode, struct file *file)
1089{
1090 return single_open(file, &ccio_proc_info, NULL);
1da177e4
LT
1091}
1092
d54b1fdb 1093static const struct file_operations ccio_proc_info_fops = {
f823bcae
KM
1094 .owner = THIS_MODULE,
1095 .open = ccio_proc_info_open,
1096 .read = seq_read,
1097 .llseek = seq_lseek,
1098 .release = single_release,
1099};
1100
1101static int ccio_proc_bitmap_info(struct seq_file *m, void *p)
1da177e4
LT
1102{
1103 struct ioc *ioc = ioc_list;
1104
1da177e4 1105 while (ioc != NULL) {
b342a65d
AS
1106 seq_hex_dump(m, " ", DUMP_PREFIX_NONE, 32, 4, ioc->res_map,
1107 ioc->res_size, false);
1108 seq_putc(m, '\n');
1da177e4
LT
1109 ioc = ioc->next;
1110 break; /* XXX - remove me */
1111 }
1112
f823bcae 1113 return 0;
1da177e4 1114}
f823bcae
KM
1115
1116static int ccio_proc_bitmap_open(struct inode *inode, struct file *file)
1117{
1118 return single_open(file, &ccio_proc_bitmap_info, NULL);
1119}
1120
d54b1fdb 1121static const struct file_operations ccio_proc_bitmap_fops = {
f823bcae
KM
1122 .owner = THIS_MODULE,
1123 .open = ccio_proc_bitmap_open,
1124 .read = seq_read,
1125 .llseek = seq_lseek,
1126 .release = single_release,
1127};
8d2d00dd 1128#endif /* CONFIG_PROC_FS */
1da177e4
LT
1129
1130/**
1131 * ccio_find_ioc - Find the ioc in the ioc_list
1132 * @hw_path: The hardware path of the ioc.
1133 *
1134 * This function searches the ioc_list for an ioc that matches
1135 * the provide hardware path.
1136 */
1137static struct ioc * ccio_find_ioc(int hw_path)
1138{
1139 int i;
1140 struct ioc *ioc;
1141
1142 ioc = ioc_list;
1143 for (i = 0; i < ioc_count; i++) {
1144 if (ioc->hw_path == hw_path)
1145 return ioc;
1146
1147 ioc = ioc->next;
1148 }
1149
1150 return NULL;
1151}
1152
1153/**
1154 * ccio_get_iommu - Find the iommu which controls this device
1155 * @dev: The parisc device.
1156 *
1157 * This function searches through the registered IOMMU's and returns
1158 * the appropriate IOMMU for the device based on its hardware path.
1159 */
1160void * ccio_get_iommu(const struct parisc_device *dev)
1161{
1162 dev = find_pa_parent_type(dev, HPHW_IOA);
1163 if (!dev)
1164 return NULL;
1165
1166 return ccio_find_ioc(dev->hw_path);
1167}
1168
1169#define CUJO_20_STEP 0x10000000 /* inc upper nibble */
1170
1171/* Cujo 2.0 has a bug which will silently corrupt data being transferred
1172 * to/from certain pages. To avoid this happening, we mark these pages
1173 * as `used', and ensure that nothing will try to allocate from them.
1174 */
1175void ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp)
1176{
1177 unsigned int idx;
1178 struct parisc_device *dev = parisc_parent(cujo);
1179 struct ioc *ioc = ccio_get_iommu(dev);
1180 u8 *res_ptr;
1181
1182 ioc->cujo20_bug = 1;
1183 res_ptr = ioc->res_map;
1184 idx = PDIR_INDEX(iovp) >> 3;
1185
1186 while (idx < ioc->res_size) {
1187 res_ptr[idx] |= 0xff;
1188 idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
1189 }
1190}
1191
1192#if 0
1193/* GRANT - is this needed for U2 or not? */
1194
1195/*
1196** Get the size of the I/O TLB for this I/O MMU.
1197**
1198** If spa_shift is non-zero (ie probably U2),
1199** then calculate the I/O TLB size using spa_shift.
1200**
1201** Otherwise we are supposed to get the IODC entry point ENTRY TLB
1202** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
1203** I think only Java (K/D/R-class too?) systems don't do this.
1204*/
1205static int
1206ccio_get_iotlb_size(struct parisc_device *dev)
1207{
1208 if (dev->spa_shift == 0) {
a8043ecb 1209 panic("%s() : Can't determine I/O TLB size.\n", __func__);
1da177e4
LT
1210 }
1211 return (1 << dev->spa_shift);
1212}
1213#else
1214
1215/* Uturn supports 256 TLB entries */
1216#define CCIO_CHAINID_SHIFT 8
1217#define CCIO_CHAINID_MASK 0xff
1218#endif /* 0 */
1219
1220/* We *can't* support JAVA (T600). Venture there at your own risk. */
25971f68 1221static const struct parisc_device_id ccio_tbl[] = {
1da177e4
LT
1222 { HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
1223 { HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
1224 { 0, }
1225};
1226
1227static int ccio_probe(struct parisc_device *dev);
1228
1229static struct parisc_driver ccio_driver = {
bdad1f83 1230 .name = "ccio",
1da177e4
LT
1231 .id_table = ccio_tbl,
1232 .probe = ccio_probe,
1233};
1234
1235/**
421f91d2 1236 * ccio_ioc_init - Initialize the I/O Controller
1da177e4
LT
1237 * @ioc: The I/O Controller.
1238 *
421f91d2 1239 * Initialize the I/O Controller which includes setting up the
1da177e4
LT
1240 * I/O Page Directory, the resource map, and initalizing the
1241 * U2/Uturn chip into virtual mode.
1242 */
1243static void
1244ccio_ioc_init(struct ioc *ioc)
1245{
1246 int i;
1247 unsigned int iov_order;
1248 u32 iova_space_size;
1249
1250 /*
1251 ** Determine IOVA Space size from memory size.
1252 **
1253 ** Ideally, PCI drivers would register the maximum number
1254 ** of DMA they can have outstanding for each device they
1255 ** own. Next best thing would be to guess how much DMA
1256 ** can be outstanding based on PCI Class/sub-class. Both
1257 ** methods still require some "extra" to support PCI
1258 ** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1259 */
1260
4481374c 1261 iova_space_size = (u32) (totalram_pages / count_parisc_driver(&ccio_driver));
1da177e4
LT
1262
1263 /* limit IOVA space size to 1MB-1GB */
1264
1265 if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1266 iova_space_size = 1 << (20 - PAGE_SHIFT);
1267#ifdef __LP64__
1268 } else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1269 iova_space_size = 1 << (30 - PAGE_SHIFT);
1270#endif
1271 }
1272
1273 /*
1274 ** iova space must be log2() in size.
1275 ** thus, pdir/res_map will also be log2().
1276 */
1277
1278 /* We could use larger page sizes in order to *decrease* the number
1279 ** of mappings needed. (ie 8k pages means 1/2 the mappings).
1280 **
1281 ** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
1282 ** since the pages must also be physically contiguous - typically
1283 ** this is the case under linux."
1284 */
1285
1286 iov_order = get_order(iova_space_size << PAGE_SHIFT);
1287
1288 /* iova_space_size is now bytes, not pages */
1289 iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1290
1291 ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1292
86a61ee9 1293 BUG_ON(ioc->pdir_size > 8 * 1024 * 1024); /* max pdir size <= 8MB */
1da177e4
LT
1294
1295 /* Verify it's a power of two */
1296 BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT));
1297
86a61ee9 1298 DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
a8043ecb 1299 __func__, ioc->ioc_regs,
4481374c 1300 (unsigned long) totalram_pages >> (20 - PAGE_SHIFT),
1da177e4
LT
1301 iova_space_size>>20,
1302 iov_order + PAGE_SHIFT);
1303
1304 ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL,
1305 get_order(ioc->pdir_size));
1306 if(NULL == ioc->pdir_base) {
a8043ecb 1307 panic("%s() could not allocate I/O Page Table\n", __func__);
1da177e4
LT
1308 }
1309 memset(ioc->pdir_base, 0, ioc->pdir_size);
1310
1311 BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base);
86a61ee9 1312 DBG_INIT(" base %p\n", ioc->pdir_base);
1da177e4
LT
1313
1314 /* resource map size dictated by pdir_size */
1315 ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
a8043ecb 1316 DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1da177e4
LT
1317
1318 ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL,
1319 get_order(ioc->res_size));
1320 if(NULL == ioc->res_map) {
a8043ecb 1321 panic("%s() could not allocate resource map\n", __func__);
1da177e4
LT
1322 }
1323 memset(ioc->res_map, 0, ioc->res_size);
1324
1325 /* Initialize the res_hint to 16 */
1326 ioc->res_hint = 16;
1327
1328 /* Initialize the spinlock */
1329 spin_lock_init(&ioc->res_lock);
1330
1331 /*
1332 ** Chainid is the upper most bits of an IOVP used to determine
1333 ** which TLB entry an IOVP will use.
1334 */
1335 ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
1336 DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
1337
1338 /*
1339 ** Initialize IOA hardware
1340 */
1341 WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift,
86a61ee9 1342 &ioc->ioc_regs->io_chain_id_mask);
1da177e4
LT
1343
1344 WRITE_U32(virt_to_phys(ioc->pdir_base),
86a61ee9 1345 &ioc->ioc_regs->io_pdir_base);
1da177e4
LT
1346
1347 /*
1348 ** Go to "Virtual Mode"
1349 */
86a61ee9 1350 WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control);
1da177e4
LT
1351
1352 /*
1353 ** Initialize all I/O TLB entries to 0 (Valid bit off).
1354 */
86a61ee9
GG
1355 WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m);
1356 WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l);
1da177e4
LT
1357
1358 for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
1359 WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
86a61ee9 1360 &ioc->ioc_regs->io_command);
1da177e4
LT
1361 }
1362}
1363
25971f68 1364static void __init
86a61ee9 1365ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr)
1da177e4
LT
1366{
1367 int result;
1368
1369 res->parent = NULL;
1370 res->flags = IORESOURCE_MEM;
86a61ee9
GG
1371 /*
1372 * bracing ((signed) ...) are required for 64bit kernel because
1373 * we only want to sign extend the lower 16 bits of the register.
1374 * The upper 16-bits of range registers are hardcoded to 0xffff.
1375 */
1376 res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16);
1377 res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1);
1da177e4 1378 res->name = name;
86a61ee9
GG
1379 /*
1380 * Check if this MMIO range is disable
1381 */
1da177e4
LT
1382 if (res->end + 1 == res->start)
1383 return;
86a61ee9
GG
1384
1385 /* On some platforms (e.g. K-Class), we have already registered
1386 * resources for devices reported by firmware. Some are children
1387 * of ccio.
1388 * "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
1389 */
1390 result = insert_resource(&iomem_resource, res);
1da177e4 1391 if (result < 0) {
86a61ee9 1392 printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n",
c18b4608 1393 __func__, (unsigned long)res->start, (unsigned long)res->end);
1da177e4
LT
1394 }
1395}
1396
1397static void __init ccio_init_resources(struct ioc *ioc)
1398{
1399 struct resource *res = ioc->mmio_region;
1400 char *name = kmalloc(14, GFP_KERNEL);
1401
cb6fc18e 1402 snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path);
1da177e4 1403
86a61ee9
GG
1404 ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low);
1405 ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv);
1da177e4
LT
1406}
1407
1408static int new_ioc_area(struct resource *res, unsigned long size,
1409 unsigned long min, unsigned long max, unsigned long align)
1410{
1411 if (max <= min)
1412 return -EBUSY;
1413
1414 res->start = (max - size + 1) &~ (align - 1);
1415 res->end = res->start + size;
86a61ee9
GG
1416
1417 /* We might be trying to expand the MMIO range to include
1418 * a child device that has already registered it's MMIO space.
1419 * Use "insert" instead of request_resource().
1420 */
1421 if (!insert_resource(&iomem_resource, res))
1da177e4
LT
1422 return 0;
1423
1424 return new_ioc_area(res, size, min, max - size, align);
1425}
1426
1427static int expand_ioc_area(struct resource *res, unsigned long size,
1428 unsigned long min, unsigned long max, unsigned long align)
1429{
1430 unsigned long start, len;
1431
1432 if (!res->parent)
1433 return new_ioc_area(res, size, min, max, align);
1434
1435 start = (res->start - size) &~ (align - 1);
1436 len = res->end - start + 1;
1437 if (start >= min) {
1438 if (!adjust_resource(res, start, len))
1439 return 0;
1440 }
1441
1442 start = res->start;
1443 len = ((size + res->end + align) &~ (align - 1)) - start;
1444 if (start + len <= max) {
1445 if (!adjust_resource(res, start, len))
1446 return 0;
1447 }
1448
1449 return -EBUSY;
1450}
1451
1452/*
1453 * Dino calls this function. Beware that we may get called on systems
1454 * which have no IOC (725, B180, C160L, etc) but do have a Dino.
1455 * So it's legal to find no parent IOC.
1456 *
1457 * Some other issues: one of the resources in the ioc may be unassigned.
1458 */
1459int ccio_allocate_resource(const struct parisc_device *dev,
1460 struct resource *res, unsigned long size,
1461 unsigned long min, unsigned long max, unsigned long align)
1462{
1463 struct resource *parent = &iomem_resource;
1464 struct ioc *ioc = ccio_get_iommu(dev);
1465 if (!ioc)
1466 goto out;
1467
1468 parent = ioc->mmio_region;
1469 if (parent->parent &&
1470 !allocate_resource(parent, res, size, min, max, align, NULL, NULL))
1471 return 0;
1472
1473 if ((parent + 1)->parent &&
1474 !allocate_resource(parent + 1, res, size, min, max, align,
1475 NULL, NULL))
1476 return 0;
1477
1478 if (!expand_ioc_area(parent, size, min, max, align)) {
1479 __raw_writel(((parent->start)>>16) | 0xffff0000,
86a61ee9 1480 &ioc->ioc_regs->io_io_low);
1da177e4 1481 __raw_writel(((parent->end)>>16) | 0xffff0000,
86a61ee9 1482 &ioc->ioc_regs->io_io_high);
1da177e4
LT
1483 } else if (!expand_ioc_area(parent + 1, size, min, max, align)) {
1484 parent++;
1485 __raw_writel(((parent->start)>>16) | 0xffff0000,
86a61ee9 1486 &ioc->ioc_regs->io_io_low_hv);
1da177e4 1487 __raw_writel(((parent->end)>>16) | 0xffff0000,
86a61ee9 1488 &ioc->ioc_regs->io_io_high_hv);
1da177e4
LT
1489 } else {
1490 return -EBUSY;
1491 }
1492
1493 out:
1494 return allocate_resource(parent, res, size, min, max, align, NULL,NULL);
1495}
1496
1497int ccio_request_resource(const struct parisc_device *dev,
1498 struct resource *res)
1499{
1500 struct resource *parent;
1501 struct ioc *ioc = ccio_get_iommu(dev);
1502
1503 if (!ioc) {
1504 parent = &iomem_resource;
1505 } else if ((ioc->mmio_region->start <= res->start) &&
1506 (res->end <= ioc->mmio_region->end)) {
1507 parent = ioc->mmio_region;
1508 } else if (((ioc->mmio_region + 1)->start <= res->start) &&
1509 (res->end <= (ioc->mmio_region + 1)->end)) {
1510 parent = ioc->mmio_region + 1;
1511 } else {
1512 return -EBUSY;
1513 }
1514
86a61ee9
GG
1515 /* "transparent" bus bridges need to register MMIO resources
1516 * firmware assigned them. e.g. children of hppb.c (e.g. K-class)
1517 * registered their resources in the PDC "bus walk" (See
1518 * arch/parisc/kernel/inventory.c).
1519 */
1520 return insert_resource(parent, res);
1da177e4
LT
1521}
1522
1523/**
1524 * ccio_probe - Determine if ccio should claim this device.
1525 * @dev: The device which has been found
1526 *
1527 * Determine if ccio should claim this chip (return 0) or not (return 1).
1528 * If so, initialize the chip and tell other partners in crime they
1529 * have work to do.
1530 */
25971f68 1531static int __init ccio_probe(struct parisc_device *dev)
1da177e4
LT
1532{
1533 int i;
1534 struct ioc *ioc, **ioc_p = &ioc_list;
0fd68946 1535
cb6fc18e 1536 ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL);
1da177e4
LT
1537 if (ioc == NULL) {
1538 printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
1539 return 1;
1540 }
1da177e4
LT
1541
1542 ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
1543
c18b4608
AB
1544 printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name,
1545 (unsigned long)dev->hpa.start);
1da177e4
LT
1546
1547 for (i = 0; i < ioc_count; i++) {
1548 ioc_p = &(*ioc_p)->next;
1549 }
1550 *ioc_p = ioc;
1551
1552 ioc->hw_path = dev->hw_path;
5076c158 1553 ioc->ioc_regs = ioremap_nocache(dev->hpa.start, 4096);
1da177e4
LT
1554 ccio_ioc_init(ioc);
1555 ccio_init_resources(ioc);
1556 hppa_dma_ops = &ccio_ops;
cb6fc18e 1557 dev->dev.platform_data = kzalloc(sizeof(struct pci_hba_data), GFP_KERNEL);
1da177e4
LT
1558
1559 /* if this fails, no I/O cards will work, so may as well bug */
1560 BUG_ON(dev->dev.platform_data == NULL);
1561 HBA_DATA(dev->dev.platform_data)->iommu = ioc;
8d2d00dd
AB
1562
1563#ifdef CONFIG_PROC_FS
1da177e4 1564 if (ioc_count == 0) {
0fd68946
DL
1565 proc_create(MODULE_NAME, 0, proc_runway_root,
1566 &ccio_proc_info_fops);
1567 proc_create(MODULE_NAME"-bitmap", 0, proc_runway_root,
1568 &ccio_proc_bitmap_fops);
1da177e4 1569 }
8d2d00dd 1570#endif
1da177e4
LT
1571 ioc_count++;
1572
1da177e4
LT
1573 parisc_has_iommu();
1574 return 0;
1575}
1576
1577/**
4f63ba17 1578 * ccio_init - ccio initialization procedure.
1da177e4
LT
1579 *
1580 * Register this driver.
1581 */
1582void __init ccio_init(void)
1583{
1584 register_parisc_driver(&ccio_driver);
1585}
1586
This page took 0.826326 seconds and 5 git commands to generate.