Merge remote-tracking branch 'rpmsg/for-next'
[deliverable/linux.git] / drivers / remoteproc / remoteproc_core.c
CommitLineData
400e64df
OBC
1/*
2 * Remote Processor Framework
3 *
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
6 *
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25#define pr_fmt(fmt) "%s: " fmt, __func__
26
27#include <linux/kernel.h>
28#include <linux/module.h>
29#include <linux/device.h>
30#include <linux/slab.h>
31#include <linux/mutex.h>
32#include <linux/dma-mapping.h>
33#include <linux/firmware.h>
34#include <linux/string.h>
35#include <linux/debugfs.h>
36#include <linux/remoteproc.h>
37#include <linux/iommu.h>
b5ab5e24 38#include <linux/idr.h>
400e64df 39#include <linux/elf.h>
a2b950ac 40#include <linux/crc32.h>
400e64df
OBC
41#include <linux/virtio_ids.h>
42#include <linux/virtio_ring.h>
cf59d3e9 43#include <asm/byteorder.h>
400e64df
OBC
44
45#include "remoteproc_internal.h"
46
fec47d86
DG
47static DEFINE_MUTEX(rproc_list_mutex);
48static LIST_HEAD(rproc_list);
49
400e64df 50typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
fd2c15ec 51 struct resource_table *table, int len);
a2b950ac
OBC
52typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
53 void *, int offset, int avail);
400e64df 54
b5ab5e24
OBC
55/* Unique indices for remoteproc devices */
56static DEFINE_IDA(rproc_dev_index);
57
8afd519c
FGL
58static const char * const rproc_crash_names[] = {
59 [RPROC_MMUFAULT] = "mmufault",
b3d39032
BA
60 [RPROC_WATCHDOG] = "watchdog",
61 [RPROC_FATAL_ERROR] = "fatal error",
8afd519c
FGL
62};
63
64/* translate rproc_crash_type to string */
65static const char *rproc_crash_to_string(enum rproc_crash_type type)
66{
67 if (type < ARRAY_SIZE(rproc_crash_names))
68 return rproc_crash_names[type];
b23f7a09 69 return "unknown";
8afd519c
FGL
70}
71
400e64df
OBC
72/*
73 * This is the IOMMU fault handler we register with the IOMMU API
74 * (when relevant; not all remote processors access memory through
75 * an IOMMU).
76 *
77 * IOMMU core will invoke this handler whenever the remote processor
78 * will try to access an unmapped device address.
400e64df
OBC
79 */
80static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
730f84ce 81 unsigned long iova, int flags, void *token)
400e64df 82{
8afd519c
FGL
83 struct rproc *rproc = token;
84
400e64df
OBC
85 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
86
8afd519c
FGL
87 rproc_report_crash(rproc, RPROC_MMUFAULT);
88
400e64df
OBC
89 /*
90 * Let the iommu core know we're not really handling this fault;
8afd519c 91 * we just used it as a recovery trigger.
400e64df
OBC
92 */
93 return -ENOSYS;
94}
95
96static int rproc_enable_iommu(struct rproc *rproc)
97{
98 struct iommu_domain *domain;
b5ab5e24 99 struct device *dev = rproc->dev.parent;
400e64df
OBC
100 int ret;
101
315491e5
SA
102 if (!rproc->has_iommu) {
103 dev_dbg(dev, "iommu not present\n");
0798e1da 104 return 0;
400e64df
OBC
105 }
106
107 domain = iommu_domain_alloc(dev->bus);
108 if (!domain) {
109 dev_err(dev, "can't alloc iommu domain\n");
110 return -ENOMEM;
111 }
112
77ca2332 113 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
400e64df
OBC
114
115 ret = iommu_attach_device(domain, dev);
116 if (ret) {
117 dev_err(dev, "can't attach iommu device: %d\n", ret);
118 goto free_domain;
119 }
120
121 rproc->domain = domain;
122
123 return 0;
124
125free_domain:
126 iommu_domain_free(domain);
127 return ret;
128}
129
130static void rproc_disable_iommu(struct rproc *rproc)
131{
132 struct iommu_domain *domain = rproc->domain;
b5ab5e24 133 struct device *dev = rproc->dev.parent;
400e64df
OBC
134
135 if (!domain)
136 return;
137
138 iommu_detach_device(domain, dev);
139 iommu_domain_free(domain);
400e64df
OBC
140}
141
a01f7cd6
SA
142/**
143 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
144 * @rproc: handle of a remote processor
145 * @da: remoteproc device address to translate
146 * @len: length of the memory region @da is pointing to
147 *
400e64df
OBC
148 * Some remote processors will ask us to allocate them physically contiguous
149 * memory regions (which we call "carveouts"), and map them to specific
a01f7cd6
SA
150 * device addresses (which are hardcoded in the firmware). They may also have
151 * dedicated memory regions internal to the processors, and use them either
152 * exclusively or alongside carveouts.
400e64df
OBC
153 *
154 * They may then ask us to copy objects into specific device addresses (e.g.
155 * code/data sections) or expose us certain symbols in other device address
156 * (e.g. their trace buffer).
157 *
a01f7cd6
SA
158 * This function is a helper function with which we can go over the allocated
159 * carveouts and translate specific device addresses to kernel virtual addresses
160 * so we can access the referenced memory. This function also allows to perform
161 * translations on the internal remoteproc memory regions through a platform
162 * implementation specific da_to_va ops, if present.
163 *
164 * The function returns a valid kernel address on success or NULL on failure.
400e64df
OBC
165 *
166 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
167 * but only on kernel direct mapped RAM memory. Instead, we're just using
a01f7cd6
SA
168 * here the output of the DMA API for the carveouts, which should be more
169 * correct.
400e64df 170 */
72854fb0 171void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
400e64df
OBC
172{
173 struct rproc_mem_entry *carveout;
174 void *ptr = NULL;
175
a01f7cd6
SA
176 if (rproc->ops->da_to_va) {
177 ptr = rproc->ops->da_to_va(rproc, da, len);
178 if (ptr)
179 goto out;
180 }
181
400e64df
OBC
182 list_for_each_entry(carveout, &rproc->carveouts, node) {
183 int offset = da - carveout->da;
184
185 /* try next carveout if da is too small */
186 if (offset < 0)
187 continue;
188
189 /* try next carveout if da is too large */
190 if (offset + len > carveout->len)
191 continue;
192
193 ptr = carveout->va + offset;
194
195 break;
196 }
197
a01f7cd6 198out:
400e64df
OBC
199 return ptr;
200}
4afc89d6 201EXPORT_SYMBOL(rproc_da_to_va);
400e64df 202
6db20ea8 203int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
400e64df 204{
7a186941 205 struct rproc *rproc = rvdev->rproc;
b5ab5e24 206 struct device *dev = &rproc->dev;
6db20ea8 207 struct rproc_vring *rvring = &rvdev->vring[i];
c0d63157 208 struct fw_rsc_vdev *rsc;
7a186941
OBC
209 dma_addr_t dma;
210 void *va;
211 int ret, size, notifyid;
400e64df 212
7a186941 213 /* actual size of vring (in bytes) */
6db20ea8 214 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
7a186941 215
7a186941
OBC
216 /*
217 * Allocate non-cacheable memory for the vring. In the future
218 * this call will also configure the IOMMU for us
219 */
b5ab5e24 220 va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
7a186941 221 if (!va) {
b5ab5e24 222 dev_err(dev->parent, "dma_alloc_coherent failed\n");
400e64df
OBC
223 return -EINVAL;
224 }
225
6db20ea8
OBC
226 /*
227 * Assign an rproc-wide unique index for this vring
228 * TODO: assign a notifyid for rvdev updates as well
6db20ea8
OBC
229 * TODO: support predefined notifyids (via resource table)
230 */
15fc6110 231 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
b39599b7 232 if (ret < 0) {
15fc6110 233 dev_err(dev, "idr_alloc failed: %d\n", ret);
b5ab5e24 234 dma_free_coherent(dev->parent, size, va, dma);
7a186941
OBC
235 return ret;
236 }
15fc6110 237 notifyid = ret;
400e64df 238
9d7814a9 239 dev_dbg(dev, "vring%d: va %p dma %pad size 0x%x idr %d\n",
b605ed8b 240 i, va, &dma, size, notifyid);
7a186941 241
6db20ea8
OBC
242 rvring->va = va;
243 rvring->dma = dma;
244 rvring->notifyid = notifyid;
400e64df 245
c0d63157
SB
246 /*
247 * Let the rproc know the notifyid and da of this vring.
248 * Not all platforms use dma_alloc_coherent to automatically
249 * set up the iommu. In this case the device address (da) will
250 * hold the physical address and not the device address.
251 */
252 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
253 rsc->vring[i].da = dma;
254 rsc->vring[i].notifyid = notifyid;
400e64df
OBC
255 return 0;
256}
257
6db20ea8
OBC
258static int
259rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
7a186941
OBC
260{
261 struct rproc *rproc = rvdev->rproc;
b5ab5e24 262 struct device *dev = &rproc->dev;
6db20ea8
OBC
263 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
264 struct rproc_vring *rvring = &rvdev->vring[i];
7a186941 265
9d7814a9 266 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
730f84ce 267 i, vring->da, vring->num, vring->align);
7a186941 268
6db20ea8
OBC
269 /* verify queue size and vring alignment are sane */
270 if (!vring->num || !vring->align) {
271 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
730f84ce 272 vring->num, vring->align);
6db20ea8 273 return -EINVAL;
7a186941 274 }
6db20ea8
OBC
275
276 rvring->len = vring->num;
277 rvring->align = vring->align;
278 rvring->rvdev = rvdev;
279
280 return 0;
281}
282
283void rproc_free_vring(struct rproc_vring *rvring)
284{
285 int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
286 struct rproc *rproc = rvring->rvdev->rproc;
c0d63157
SB
287 int idx = rvring->rvdev->vring - rvring;
288 struct fw_rsc_vdev *rsc;
6db20ea8 289
b5ab5e24 290 dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
6db20ea8 291 idr_remove(&rproc->notifyids, rvring->notifyid);
099a3f33 292
c0d63157
SB
293 /* reset resource entry info */
294 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
295 rsc->vring[idx].da = 0;
296 rsc->vring[idx].notifyid = -1;
7a186941
OBC
297}
298
400e64df 299/**
fd2c15ec 300 * rproc_handle_vdev() - handle a vdev fw resource
400e64df
OBC
301 * @rproc: the remote processor
302 * @rsc: the vring resource descriptor
fd2c15ec 303 * @avail: size of available data (for sanity checking the image)
400e64df 304 *
7a186941
OBC
305 * This resource entry requests the host to statically register a virtio
306 * device (vdev), and setup everything needed to support it. It contains
307 * everything needed to make it possible: the virtio device id, virtio
308 * device features, vrings information, virtio config space, etc...
309 *
310 * Before registering the vdev, the vrings are allocated from non-cacheable
311 * physically contiguous memory. Currently we only support two vrings per
312 * remote processor (temporary limitation). We might also want to consider
313 * doing the vring allocation only later when ->find_vqs() is invoked, and
314 * then release them upon ->del_vqs().
315 *
316 * Note: @da is currently not really handled correctly: we dynamically
317 * allocate it using the DMA API, ignoring requested hard coded addresses,
318 * and we don't take care of any required IOMMU programming. This is all
319 * going to be taken care of when the generic iommu-based DMA API will be
320 * merged. Meanwhile, statically-addressed iommu-based firmware images should
321 * use RSC_DEVMEM resource entries to map their required @da to the physical
322 * address of their base CMA region (ouch, hacky!).
400e64df
OBC
323 *
324 * Returns 0 on success, or an appropriate error code otherwise
325 */
fd2c15ec 326static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
730f84ce 327 int offset, int avail)
400e64df 328{
b5ab5e24 329 struct device *dev = &rproc->dev;
7a186941
OBC
330 struct rproc_vdev *rvdev;
331 int i, ret;
400e64df 332
fd2c15ec
OBC
333 /* make sure resource isn't truncated */
334 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
335 + rsc->config_len > avail) {
b5ab5e24 336 dev_err(dev, "vdev rsc is truncated\n");
400e64df
OBC
337 return -EINVAL;
338 }
339
fd2c15ec
OBC
340 /* make sure reserved bytes are zeroes */
341 if (rsc->reserved[0] || rsc->reserved[1]) {
342 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
400e64df
OBC
343 return -EINVAL;
344 }
345
9d7814a9 346 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
fd2c15ec
OBC
347 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
348
7a186941
OBC
349 /* we currently support only two vrings per rvdev */
350 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
fd2c15ec 351 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
400e64df
OBC
352 return -EINVAL;
353 }
354
899585ad 355 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
7a186941
OBC
356 if (!rvdev)
357 return -ENOMEM;
400e64df 358
7a186941 359 rvdev->rproc = rproc;
400e64df 360
6db20ea8 361 /* parse the vrings */
7a186941 362 for (i = 0; i < rsc->num_of_vrings; i++) {
6db20ea8 363 ret = rproc_parse_vring(rvdev, rsc, i);
7a186941 364 if (ret)
6db20ea8 365 goto free_rvdev;
7a186941 366 }
400e64df 367
a2b950ac
OBC
368 /* remember the resource offset*/
369 rvdev->rsc_offset = offset;
fd2c15ec 370
7a186941 371 list_add_tail(&rvdev->node, &rproc->rvdevs);
fd2c15ec 372
7a186941
OBC
373 /* it is now safe to add the virtio device */
374 ret = rproc_add_virtio_dev(rvdev, rsc->id);
375 if (ret)
cde42e07 376 goto remove_rvdev;
400e64df
OBC
377
378 return 0;
7a186941 379
cde42e07
SB
380remove_rvdev:
381 list_del(&rvdev->node);
6db20ea8 382free_rvdev:
7a186941
OBC
383 kfree(rvdev);
384 return ret;
400e64df
OBC
385}
386
387/**
388 * rproc_handle_trace() - handle a shared trace buffer resource
389 * @rproc: the remote processor
390 * @rsc: the trace resource descriptor
fd2c15ec 391 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
392 *
393 * In case the remote processor dumps trace logs into memory,
394 * export it via debugfs.
395 *
396 * Currently, the 'da' member of @rsc should contain the device address
397 * where the remote processor is dumping the traces. Later we could also
398 * support dynamically allocating this address using the generic
399 * DMA API (but currently there isn't a use case for that).
400 *
401 * Returns 0 on success, or an appropriate error code otherwise
402 */
fd2c15ec 403static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
730f84ce 404 int offset, int avail)
400e64df
OBC
405{
406 struct rproc_mem_entry *trace;
b5ab5e24 407 struct device *dev = &rproc->dev;
400e64df
OBC
408 void *ptr;
409 char name[15];
410
fd2c15ec 411 if (sizeof(*rsc) > avail) {
b5ab5e24 412 dev_err(dev, "trace rsc is truncated\n");
fd2c15ec
OBC
413 return -EINVAL;
414 }
415
416 /* make sure reserved bytes are zeroes */
417 if (rsc->reserved) {
418 dev_err(dev, "trace rsc has non zero reserved bytes\n");
419 return -EINVAL;
420 }
421
400e64df
OBC
422 /* what's the kernel address of this resource ? */
423 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
424 if (!ptr) {
425 dev_err(dev, "erroneous trace resource entry\n");
426 return -EINVAL;
427 }
428
429 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
172e6ab1 430 if (!trace)
400e64df 431 return -ENOMEM;
400e64df
OBC
432
433 /* set the trace buffer dma properties */
434 trace->len = rsc->len;
435 trace->va = ptr;
436
437 /* make sure snprintf always null terminates, even if truncating */
438 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
439
440 /* create the debugfs entry */
441 trace->priv = rproc_create_trace_file(name, rproc, trace);
442 if (!trace->priv) {
443 trace->va = NULL;
444 kfree(trace);
445 return -EINVAL;
446 }
447
448 list_add_tail(&trace->node, &rproc->traces);
449
450 rproc->num_traces++;
451
35386166
LJ
452 dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n",
453 name, ptr, rsc->da, rsc->len);
400e64df
OBC
454
455 return 0;
456}
457
458/**
459 * rproc_handle_devmem() - handle devmem resource entry
460 * @rproc: remote processor handle
461 * @rsc: the devmem resource entry
fd2c15ec 462 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
463 *
464 * Remote processors commonly need to access certain on-chip peripherals.
465 *
466 * Some of these remote processors access memory via an iommu device,
467 * and might require us to configure their iommu before they can access
468 * the on-chip peripherals they need.
469 *
470 * This resource entry is a request to map such a peripheral device.
471 *
472 * These devmem entries will contain the physical address of the device in
473 * the 'pa' member. If a specific device address is expected, then 'da' will
474 * contain it (currently this is the only use case supported). 'len' will
475 * contain the size of the physical region we need to map.
476 *
477 * Currently we just "trust" those devmem entries to contain valid physical
478 * addresses, but this is going to change: we want the implementations to
479 * tell us ranges of physical addresses the firmware is allowed to request,
480 * and not allow firmwares to request access to physical addresses that
481 * are outside those ranges.
482 */
fd2c15ec 483static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
730f84ce 484 int offset, int avail)
400e64df
OBC
485{
486 struct rproc_mem_entry *mapping;
b5ab5e24 487 struct device *dev = &rproc->dev;
400e64df
OBC
488 int ret;
489
490 /* no point in handling this resource without a valid iommu domain */
491 if (!rproc->domain)
492 return -EINVAL;
493
fd2c15ec 494 if (sizeof(*rsc) > avail) {
b5ab5e24 495 dev_err(dev, "devmem rsc is truncated\n");
fd2c15ec
OBC
496 return -EINVAL;
497 }
498
499 /* make sure reserved bytes are zeroes */
500 if (rsc->reserved) {
b5ab5e24 501 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
fd2c15ec
OBC
502 return -EINVAL;
503 }
504
400e64df 505 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
172e6ab1 506 if (!mapping)
400e64df 507 return -ENOMEM;
400e64df
OBC
508
509 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
510 if (ret) {
b5ab5e24 511 dev_err(dev, "failed to map devmem: %d\n", ret);
400e64df
OBC
512 goto out;
513 }
514
515 /*
516 * We'll need this info later when we'll want to unmap everything
517 * (e.g. on shutdown).
518 *
519 * We can't trust the remote processor not to change the resource
520 * table, so we must maintain this info independently.
521 */
522 mapping->da = rsc->da;
523 mapping->len = rsc->len;
524 list_add_tail(&mapping->node, &rproc->mappings);
525
b5ab5e24 526 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
730f84ce 527 rsc->pa, rsc->da, rsc->len);
400e64df
OBC
528
529 return 0;
530
531out:
532 kfree(mapping);
533 return ret;
534}
535
536/**
537 * rproc_handle_carveout() - handle phys contig memory allocation requests
538 * @rproc: rproc handle
539 * @rsc: the resource entry
fd2c15ec 540 * @avail: size of available data (for image validation)
400e64df
OBC
541 *
542 * This function will handle firmware requests for allocation of physically
543 * contiguous memory regions.
544 *
545 * These request entries should come first in the firmware's resource table,
546 * as other firmware entries might request placing other data objects inside
547 * these memory regions (e.g. data/code segments, trace resource entries, ...).
548 *
549 * Allocating memory this way helps utilizing the reserved physical memory
550 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
551 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
552 * pressure is important; it may have a substantial impact on performance.
553 */
fd2c15ec 554static int rproc_handle_carveout(struct rproc *rproc,
730f84ce
AS
555 struct fw_rsc_carveout *rsc,
556 int offset, int avail)
400e64df
OBC
557{
558 struct rproc_mem_entry *carveout, *mapping;
b5ab5e24 559 struct device *dev = &rproc->dev;
400e64df
OBC
560 dma_addr_t dma;
561 void *va;
562 int ret;
563
fd2c15ec 564 if (sizeof(*rsc) > avail) {
b5ab5e24 565 dev_err(dev, "carveout rsc is truncated\n");
fd2c15ec
OBC
566 return -EINVAL;
567 }
568
569 /* make sure reserved bytes are zeroes */
570 if (rsc->reserved) {
571 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
572 return -EINVAL;
573 }
574
9d7814a9 575 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
35386166 576 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
fd2c15ec 577
400e64df 578 carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
172e6ab1 579 if (!carveout)
7168d914 580 return -ENOMEM;
400e64df 581
b5ab5e24 582 va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
400e64df 583 if (!va) {
9c219b23
LJ
584 dev_err(dev->parent,
585 "failed to allocate dma memory: len 0x%x\n", rsc->len);
400e64df
OBC
586 ret = -ENOMEM;
587 goto free_carv;
588 }
589
b605ed8b
AS
590 dev_dbg(dev, "carveout va %p, dma %pad, len 0x%x\n",
591 va, &dma, rsc->len);
400e64df
OBC
592
593 /*
594 * Ok, this is non-standard.
595 *
596 * Sometimes we can't rely on the generic iommu-based DMA API
597 * to dynamically allocate the device address and then set the IOMMU
598 * tables accordingly, because some remote processors might
599 * _require_ us to use hard coded device addresses that their
600 * firmware was compiled with.
601 *
602 * In this case, we must use the IOMMU API directly and map
603 * the memory to the device address as expected by the remote
604 * processor.
605 *
606 * Obviously such remote processor devices should not be configured
607 * to use the iommu-based DMA API: we expect 'dma' to contain the
608 * physical address in this case.
609 */
610 if (rproc->domain) {
7168d914
DC
611 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
612 if (!mapping) {
7168d914
DC
613 ret = -ENOMEM;
614 goto dma_free;
615 }
616
400e64df 617 ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
730f84ce 618 rsc->flags);
400e64df
OBC
619 if (ret) {
620 dev_err(dev, "iommu_map failed: %d\n", ret);
7168d914 621 goto free_mapping;
400e64df
OBC
622 }
623
624 /*
625 * We'll need this info later when we'll want to unmap
626 * everything (e.g. on shutdown).
627 *
628 * We can't trust the remote processor not to change the
629 * resource table, so we must maintain this info independently.
630 */
631 mapping->da = rsc->da;
632 mapping->len = rsc->len;
633 list_add_tail(&mapping->node, &rproc->mappings);
634
b605ed8b
AS
635 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
636 rsc->da, &dma);
400e64df
OBC
637 }
638
0e49b72c
OBC
639 /*
640 * Some remote processors might need to know the pa
641 * even though they are behind an IOMMU. E.g., OMAP4's
642 * remote M3 processor needs this so it can control
643 * on-chip hardware accelerators that are not behind
644 * the IOMMU, and therefor must know the pa.
645 *
646 * Generally we don't want to expose physical addresses
647 * if we don't have to (remote processors are generally
648 * _not_ trusted), so we might want to do this only for
649 * remote processor that _must_ have this (e.g. OMAP4's
650 * dual M3 subsystem).
651 *
652 * Non-IOMMU processors might also want to have this info.
653 * In this case, the device address and the physical address
654 * are the same.
655 */
656 rsc->pa = dma;
657
400e64df
OBC
658 carveout->va = va;
659 carveout->len = rsc->len;
660 carveout->dma = dma;
661 carveout->da = rsc->da;
662
663 list_add_tail(&carveout->node, &rproc->carveouts);
664
665 return 0;
666
7168d914
DC
667free_mapping:
668 kfree(mapping);
400e64df 669dma_free:
b5ab5e24 670 dma_free_coherent(dev->parent, rsc->len, va, dma);
400e64df
OBC
671free_carv:
672 kfree(carveout);
400e64df
OBC
673 return ret;
674}
675
ba7290e0 676static int rproc_count_vrings(struct rproc *rproc, struct fw_rsc_vdev *rsc,
a2b950ac 677 int offset, int avail)
ba7290e0
SB
678{
679 /* Summarize the number of notification IDs */
680 rproc->max_notifyid += rsc->num_of_vrings;
681
682 return 0;
683}
684
e12bc14b
OBC
685/*
686 * A lookup table for resource handlers. The indices are defined in
687 * enum fw_resource_type.
688 */
232fcdbb 689static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
fd2c15ec
OBC
690 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
691 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
692 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
b35d7afc 693 [RSC_VDEV] = (rproc_handle_resource_t)rproc_count_vrings,
e12bc14b
OBC
694};
695
232fcdbb
SB
696static rproc_handle_resource_t rproc_vdev_handler[RSC_LAST] = {
697 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
698};
699
400e64df 700/* handle firmware resource entries before booting the remote processor */
a2b950ac 701static int rproc_handle_resources(struct rproc *rproc, int len,
232fcdbb 702 rproc_handle_resource_t handlers[RSC_LAST])
400e64df 703{
b5ab5e24 704 struct device *dev = &rproc->dev;
e12bc14b 705 rproc_handle_resource_t handler;
fd2c15ec
OBC
706 int ret = 0, i;
707
a2b950ac
OBC
708 for (i = 0; i < rproc->table_ptr->num; i++) {
709 int offset = rproc->table_ptr->offset[i];
710 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
fd2c15ec
OBC
711 int avail = len - offset - sizeof(*hdr);
712 void *rsc = (void *)hdr + sizeof(*hdr);
713
714 /* make sure table isn't truncated */
715 if (avail < 0) {
716 dev_err(dev, "rsc table is truncated\n");
717 return -EINVAL;
718 }
400e64df 719
fd2c15ec 720 dev_dbg(dev, "rsc: type %d\n", hdr->type);
400e64df 721
fd2c15ec
OBC
722 if (hdr->type >= RSC_LAST) {
723 dev_warn(dev, "unsupported resource %d\n", hdr->type);
e12bc14b 724 continue;
400e64df
OBC
725 }
726
232fcdbb 727 handler = handlers[hdr->type];
e12bc14b
OBC
728 if (!handler)
729 continue;
730
a2b950ac 731 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
7a186941 732 if (ret)
400e64df 733 break;
fd2c15ec 734 }
400e64df
OBC
735
736 return ret;
737}
738
400e64df
OBC
739/**
740 * rproc_resource_cleanup() - clean up and free all acquired resources
741 * @rproc: rproc handle
742 *
743 * This function will free all resources acquired for @rproc, and it
7a186941 744 * is called whenever @rproc either shuts down or fails to boot.
400e64df
OBC
745 */
746static void rproc_resource_cleanup(struct rproc *rproc)
747{
748 struct rproc_mem_entry *entry, *tmp;
d81fb32f 749 struct rproc_vdev *rvdev, *rvtmp;
b5ab5e24 750 struct device *dev = &rproc->dev;
400e64df
OBC
751
752 /* clean up debugfs trace entries */
753 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
754 rproc_remove_trace_file(entry->priv);
755 rproc->num_traces--;
756 list_del(&entry->node);
757 kfree(entry);
758 }
759
400e64df
OBC
760 /* clean up iommu mapping entries */
761 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
762 size_t unmapped;
763
764 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
765 if (unmapped != entry->len) {
766 /* nothing much to do besides complaining */
e981f6d4 767 dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
730f84ce 768 unmapped);
400e64df
OBC
769 }
770
771 list_del(&entry->node);
772 kfree(entry);
773 }
b6356a01
SA
774
775 /* clean up carveout allocations */
776 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
172e6ab1
SA
777 dma_free_coherent(dev->parent, entry->len, entry->va,
778 entry->dma);
b6356a01
SA
779 list_del(&entry->node);
780 kfree(entry);
781 }
d81fb32f
BA
782
783 /* clean up remote vdev entries */
784 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
785 rproc_remove_virtio_dev(rvdev);
400e64df
OBC
786}
787
400e64df
OBC
788/*
789 * take a firmware and boot a remote processor with it.
790 */
791static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
792{
b5ab5e24 793 struct device *dev = &rproc->dev;
400e64df 794 const char *name = rproc->firmware;
a2b950ac 795 struct resource_table *table, *loaded_table;
1e3e2c7c 796 int ret, tablesz;
400e64df
OBC
797
798 ret = rproc_fw_sanity_check(rproc, fw);
799 if (ret)
800 return ret;
801
e981f6d4 802 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
400e64df
OBC
803
804 /*
805 * if enabling an IOMMU isn't relevant for this rproc, this is
806 * just a nop
807 */
808 ret = rproc_enable_iommu(rproc);
809 if (ret) {
810 dev_err(dev, "can't enable iommu: %d\n", ret);
811 return ret;
812 }
813
3e5f9eb5 814 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
89970d28 815 ret = -EINVAL;
400e64df 816
1e3e2c7c 817 /* look for the resource table */
bd484984 818 table = rproc_find_rsc_table(rproc, fw, &tablesz);
a66a5114
SA
819 if (!table) {
820 dev_err(dev, "Failed to find resource table\n");
1e3e2c7c 821 goto clean_up;
a66a5114 822 }
1e3e2c7c 823
988d204c
BA
824 /*
825 * Create a copy of the resource table. When a virtio device starts
826 * and calls vring_new_virtqueue() the address of the allocated vring
827 * will be stored in the cached_table. Before the device is started,
828 * cached_table will be copied into device memory.
829 */
830 rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL);
831 if (!rproc->cached_table)
a2b950ac 832 goto clean_up;
988d204c
BA
833
834 rproc->table_ptr = rproc->cached_table;
a2b950ac 835
b35d7afc
BA
836 /* reset max_notifyid */
837 rproc->max_notifyid = -1;
838
d81fb32f
BA
839 /* look for virtio devices and register them */
840 ret = rproc_handle_resources(rproc, tablesz, rproc_vdev_handler);
841 if (ret) {
842 dev_err(dev, "Failed to handle vdev resources: %d\n", ret);
843 goto clean_up;
844 }
845
400e64df 846 /* handle fw resources which are required to boot rproc */
a2b950ac 847 ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers);
400e64df
OBC
848 if (ret) {
849 dev_err(dev, "Failed to process resources: %d\n", ret);
850 goto clean_up;
851 }
852
853 /* load the ELF segments to memory */
bd484984 854 ret = rproc_load_segments(rproc, fw);
400e64df
OBC
855 if (ret) {
856 dev_err(dev, "Failed to load program segments: %d\n", ret);
857 goto clean_up;
858 }
859
a2b950ac
OBC
860 /*
861 * The starting device has been given the rproc->cached_table as the
862 * resource table. The address of the vring along with the other
863 * allocated resources (carveouts etc) is stored in cached_table.
13c4245b
BA
864 * In order to pass this information to the remote device we must copy
865 * this information to device memory. We also update the table_ptr so
866 * that any subsequent changes will be applied to the loaded version.
a2b950ac
OBC
867 */
868 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
13c4245b 869 if (loaded_table) {
e395f9ce 870 memcpy(loaded_table, rproc->cached_table, tablesz);
13c4245b
BA
871 rproc->table_ptr = loaded_table;
872 }
a2b950ac 873
400e64df
OBC
874 /* power up the remote processor */
875 ret = rproc->ops->start(rproc);
876 if (ret) {
877 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
878 goto clean_up;
879 }
880
881 rproc->state = RPROC_RUNNING;
882
883 dev_info(dev, "remote processor %s is now up\n", rproc->name);
884
885 return 0;
886
887clean_up:
988d204c
BA
888 kfree(rproc->cached_table);
889 rproc->cached_table = NULL;
890 rproc->table_ptr = NULL;
891
400e64df
OBC
892 rproc_resource_cleanup(rproc);
893 rproc_disable_iommu(rproc);
894 return ret;
895}
896
897/*
898 * take a firmware and look for virtio devices to register.
899 *
900 * Note: this function is called asynchronously upon registration of the
901 * remote processor (so we must wait until it completes before we try
902 * to unregister the device. one other option is just to use kref here,
903 * that might be cleaner).
904 */
905static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
906{
907 struct rproc *rproc = context;
a2b950ac 908
ddf71187
BA
909 /* if rproc is marked always-on, request it to boot */
910 if (rproc->auto_boot)
911 rproc_boot_nowait(rproc);
912
3cc6e787 913 release_firmware(fw);
160e7c84 914 /* allow rproc_del() contexts, if any, to proceed */
400e64df
OBC
915 complete_all(&rproc->firmware_loading_complete);
916}
917
70b85ef8
FGL
918static int rproc_add_virtio_devices(struct rproc *rproc)
919{
920 int ret;
921
922 /* rproc_del() calls must wait until async loader completes */
923 init_completion(&rproc->firmware_loading_complete);
924
925 /*
926 * We must retrieve early virtio configuration info from
927 * the firmware (e.g. whether to register a virtio device,
928 * what virtio features does it support, ...).
929 *
930 * We're initiating an asynchronous firmware loading, so we can
931 * be built-in kernel code, without hanging the boot process.
932 */
933 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
934 rproc->firmware, &rproc->dev, GFP_KERNEL,
935 rproc, rproc_fw_config_virtio);
936 if (ret < 0) {
937 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
938 complete_all(&rproc->firmware_loading_complete);
939 }
940
941 return ret;
942}
943
944/**
945 * rproc_trigger_recovery() - recover a remoteproc
946 * @rproc: the remote processor
947 *
56324d7a 948 * The recovery is done by resetting all the virtio devices, that way all the
70b85ef8
FGL
949 * rpmsg drivers will be reseted along with the remote processor making the
950 * remoteproc functional again.
951 *
952 * This function can sleep, so it cannot be called from atomic context.
953 */
954int rproc_trigger_recovery(struct rproc *rproc)
955{
70b85ef8
FGL
956 dev_err(&rproc->dev, "recovering %s\n", rproc->name);
957
958 init_completion(&rproc->crash_comp);
959
ddf71187
BA
960 /* shut down the remote */
961 /* TODO: make sure this works with rproc->power > 1 */
962 rproc_shutdown(rproc);
963
70b85ef8
FGL
964 /* wait until there is no more rproc users */
965 wait_for_completion(&rproc->crash_comp);
966
ddf71187 967 /*
d81fb32f 968 * boot the remote processor up again
ddf71187 969 */
d81fb32f 970 rproc_boot(rproc);
ddf71187
BA
971
972 return 0;
70b85ef8
FGL
973}
974
8afd519c
FGL
975/**
976 * rproc_crash_handler_work() - handle a crash
977 *
978 * This function needs to handle everything related to a crash, like cpu
979 * registers and stack dump, information to help to debug the fatal error, etc.
980 */
981static void rproc_crash_handler_work(struct work_struct *work)
982{
983 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
984 struct device *dev = &rproc->dev;
985
986 dev_dbg(dev, "enter %s\n", __func__);
987
988 mutex_lock(&rproc->lock);
989
990 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
991 /* handle only the first crash detected */
992 mutex_unlock(&rproc->lock);
993 return;
994 }
995
996 rproc->state = RPROC_CRASHED;
997 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
998 rproc->name);
999
1000 mutex_unlock(&rproc->lock);
1001
2e37abb8
FGL
1002 if (!rproc->recovery_disabled)
1003 rproc_trigger_recovery(rproc);
8afd519c
FGL
1004}
1005
400e64df 1006/**
3d87fa1d 1007 * __rproc_boot() - boot a remote processor
400e64df 1008 * @rproc: handle of a remote processor
3d87fa1d 1009 * @wait: wait for rproc registration completion
400e64df
OBC
1010 *
1011 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1012 *
1013 * If the remote processor is already powered on, this function immediately
1014 * returns (successfully).
1015 *
1016 * Returns 0 on success, and an appropriate error value otherwise.
1017 */
3d87fa1d 1018static int __rproc_boot(struct rproc *rproc, bool wait)
400e64df
OBC
1019{
1020 const struct firmware *firmware_p;
1021 struct device *dev;
1022 int ret;
1023
1024 if (!rproc) {
1025 pr_err("invalid rproc handle\n");
1026 return -EINVAL;
1027 }
1028
b5ab5e24 1029 dev = &rproc->dev;
400e64df
OBC
1030
1031 ret = mutex_lock_interruptible(&rproc->lock);
1032 if (ret) {
1033 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1034 return ret;
1035 }
1036
1037 /* loading a firmware is required */
1038 if (!rproc->firmware) {
1039 dev_err(dev, "%s: no firmware to load\n", __func__);
1040 ret = -EINVAL;
1041 goto unlock_mutex;
1042 }
1043
1044 /* prevent underlying implementation from being removed */
b5ab5e24 1045 if (!try_module_get(dev->parent->driver->owner)) {
400e64df
OBC
1046 dev_err(dev, "%s: can't get owner\n", __func__);
1047 ret = -EINVAL;
1048 goto unlock_mutex;
1049 }
1050
1051 /* skip the boot process if rproc is already powered up */
1052 if (atomic_inc_return(&rproc->power) > 1) {
1053 ret = 0;
1054 goto unlock_mutex;
1055 }
1056
1057 dev_info(dev, "powering up %s\n", rproc->name);
1058
1059 /* load firmware */
1060 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1061 if (ret < 0) {
1062 dev_err(dev, "request_firmware failed: %d\n", ret);
1063 goto downref_rproc;
1064 }
1065
3d87fa1d
LJ
1066 /* if rproc virtio is not yet configured, wait */
1067 if (wait)
1068 wait_for_completion(&rproc->firmware_loading_complete);
1069
400e64df
OBC
1070 ret = rproc_fw_boot(rproc, firmware_p);
1071
1072 release_firmware(firmware_p);
1073
1074downref_rproc:
1075 if (ret) {
b5ab5e24 1076 module_put(dev->parent->driver->owner);
400e64df
OBC
1077 atomic_dec(&rproc->power);
1078 }
1079unlock_mutex:
1080 mutex_unlock(&rproc->lock);
1081 return ret;
1082}
3d87fa1d
LJ
1083
1084/**
1085 * rproc_boot() - boot a remote processor
1086 * @rproc: handle of a remote processor
1087 */
1088int rproc_boot(struct rproc *rproc)
1089{
1090 return __rproc_boot(rproc, true);
1091}
400e64df
OBC
1092EXPORT_SYMBOL(rproc_boot);
1093
3d87fa1d
LJ
1094/**
1095 * rproc_boot_nowait() - boot a remote processor
1096 * @rproc: handle of a remote processor
1097 *
1098 * Same as rproc_boot() but don't wait for rproc registration completion
1099 */
1100int rproc_boot_nowait(struct rproc *rproc)
1101{
1102 return __rproc_boot(rproc, false);
1103}
1104
400e64df
OBC
1105/**
1106 * rproc_shutdown() - power off the remote processor
1107 * @rproc: the remote processor
1108 *
1109 * Power off a remote processor (previously booted with rproc_boot()).
1110 *
1111 * In case @rproc is still being used by an additional user(s), then
1112 * this function will just decrement the power refcount and exit,
1113 * without really powering off the device.
1114 *
1115 * Every call to rproc_boot() must (eventually) be accompanied by a call
1116 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1117 *
1118 * Notes:
1119 * - we're not decrementing the rproc's refcount, only the power refcount.
1120 * which means that the @rproc handle stays valid even after rproc_shutdown()
1121 * returns, and users can still use it with a subsequent rproc_boot(), if
1122 * needed.
400e64df
OBC
1123 */
1124void rproc_shutdown(struct rproc *rproc)
1125{
b5ab5e24 1126 struct device *dev = &rproc->dev;
400e64df
OBC
1127 int ret;
1128
1129 ret = mutex_lock_interruptible(&rproc->lock);
1130 if (ret) {
1131 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1132 return;
1133 }
1134
1135 /* if the remote proc is still needed, bail out */
1136 if (!atomic_dec_and_test(&rproc->power))
1137 goto out;
1138
1139 /* power off the remote processor */
1140 ret = rproc->ops->stop(rproc);
1141 if (ret) {
1142 atomic_inc(&rproc->power);
1143 dev_err(dev, "can't stop rproc: %d\n", ret);
1144 goto out;
1145 }
1146
1147 /* clean up all acquired resources */
1148 rproc_resource_cleanup(rproc);
1149
1150 rproc_disable_iommu(rproc);
1151
988d204c
BA
1152 /* Free the copy of the resource table */
1153 kfree(rproc->cached_table);
1154 rproc->cached_table = NULL;
1155 rproc->table_ptr = NULL;
a2b950ac 1156
70b85ef8
FGL
1157 /* if in crash state, unlock crash handler */
1158 if (rproc->state == RPROC_CRASHED)
1159 complete_all(&rproc->crash_comp);
1160
400e64df
OBC
1161 rproc->state = RPROC_OFFLINE;
1162
1163 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1164
1165out:
1166 mutex_unlock(&rproc->lock);
1167 if (!ret)
b5ab5e24 1168 module_put(dev->parent->driver->owner);
400e64df
OBC
1169}
1170EXPORT_SYMBOL(rproc_shutdown);
1171
fec47d86
DG
1172/**
1173 * rproc_get_by_phandle() - find a remote processor by phandle
1174 * @phandle: phandle to the rproc
1175 *
1176 * Finds an rproc handle using the remote processor's phandle, and then
1177 * return a handle to the rproc.
1178 *
1179 * This function increments the remote processor's refcount, so always
1180 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1181 *
1182 * Returns the rproc handle on success, and NULL on failure.
1183 */
8de3dbd0 1184#ifdef CONFIG_OF
fec47d86
DG
1185struct rproc *rproc_get_by_phandle(phandle phandle)
1186{
1187 struct rproc *rproc = NULL, *r;
1188 struct device_node *np;
1189
1190 np = of_find_node_by_phandle(phandle);
1191 if (!np)
1192 return NULL;
1193
1194 mutex_lock(&rproc_list_mutex);
1195 list_for_each_entry(r, &rproc_list, node) {
1196 if (r->dev.parent && r->dev.parent->of_node == np) {
1197 rproc = r;
1198 get_device(&rproc->dev);
1199 break;
1200 }
1201 }
1202 mutex_unlock(&rproc_list_mutex);
1203
1204 of_node_put(np);
1205
1206 return rproc;
1207}
8de3dbd0
OBC
1208#else
1209struct rproc *rproc_get_by_phandle(phandle phandle)
1210{
1211 return NULL;
1212}
1213#endif
fec47d86
DG
1214EXPORT_SYMBOL(rproc_get_by_phandle);
1215
400e64df 1216/**
160e7c84 1217 * rproc_add() - register a remote processor
400e64df
OBC
1218 * @rproc: the remote processor handle to register
1219 *
1220 * Registers @rproc with the remoteproc framework, after it has been
1221 * allocated with rproc_alloc().
1222 *
1223 * This is called by the platform-specific rproc implementation, whenever
1224 * a new remote processor device is probed.
1225 *
1226 * Returns 0 on success and an appropriate error code otherwise.
1227 *
1228 * Note: this function initiates an asynchronous firmware loading
1229 * context, which will look for virtio devices supported by the rproc's
1230 * firmware.
1231 *
1232 * If found, those virtio devices will be created and added, so as a result
7a186941 1233 * of registering this remote processor, additional virtio drivers might be
400e64df 1234 * probed.
400e64df 1235 */
160e7c84 1236int rproc_add(struct rproc *rproc)
400e64df 1237{
b5ab5e24 1238 struct device *dev = &rproc->dev;
70b85ef8 1239 int ret;
400e64df 1240
b5ab5e24
OBC
1241 ret = device_add(dev);
1242 if (ret < 0)
1243 return ret;
400e64df 1244
b5ab5e24 1245 dev_info(dev, "%s is available\n", rproc->name);
400e64df 1246
489d129a
OBC
1247 dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
1248 dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1249
400e64df
OBC
1250 /* create debugfs entries */
1251 rproc_create_debug_dir(rproc);
d2e12e66
DG
1252 ret = rproc_add_virtio_devices(rproc);
1253 if (ret < 0)
1254 return ret;
400e64df 1255
d2e12e66
DG
1256 /* expose to rproc_get_by_phandle users */
1257 mutex_lock(&rproc_list_mutex);
1258 list_add(&rproc->node, &rproc_list);
1259 mutex_unlock(&rproc_list_mutex);
1260
1261 return 0;
400e64df 1262}
160e7c84 1263EXPORT_SYMBOL(rproc_add);
400e64df 1264
b5ab5e24
OBC
1265/**
1266 * rproc_type_release() - release a remote processor instance
1267 * @dev: the rproc's device
1268 *
1269 * This function should _never_ be called directly.
1270 *
1271 * It will be called by the driver core when no one holds a valid pointer
1272 * to @dev anymore.
1273 */
1274static void rproc_type_release(struct device *dev)
1275{
1276 struct rproc *rproc = container_of(dev, struct rproc, dev);
1277
7183a2a7
OBC
1278 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1279
1280 rproc_delete_debug_dir(rproc);
1281
b5ab5e24
OBC
1282 idr_destroy(&rproc->notifyids);
1283
1284 if (rproc->index >= 0)
1285 ida_simple_remove(&rproc_dev_index, rproc->index);
1286
1287 kfree(rproc);
1288}
1289
1290static struct device_type rproc_type = {
1291 .name = "remoteproc",
1292 .release = rproc_type_release,
1293};
400e64df
OBC
1294
1295/**
1296 * rproc_alloc() - allocate a remote processor handle
1297 * @dev: the underlying device
1298 * @name: name of this remote processor
1299 * @ops: platform-specific handlers (mainly start/stop)
8b4aec9a 1300 * @firmware: name of firmware file to load, can be NULL
400e64df
OBC
1301 * @len: length of private data needed by the rproc driver (in bytes)
1302 *
1303 * Allocates a new remote processor handle, but does not register
8b4aec9a 1304 * it yet. if @firmware is NULL, a default name is used.
400e64df
OBC
1305 *
1306 * This function should be used by rproc implementations during initialization
1307 * of the remote processor.
1308 *
1309 * After creating an rproc handle using this function, and when ready,
160e7c84 1310 * implementations should then call rproc_add() to complete
400e64df
OBC
1311 * the registration of the remote processor.
1312 *
1313 * On success the new rproc is returned, and on failure, NULL.
1314 *
1315 * Note: _never_ directly deallocate @rproc, even if it was not registered
160e7c84 1316 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put().
400e64df
OBC
1317 */
1318struct rproc *rproc_alloc(struct device *dev, const char *name,
730f84ce
AS
1319 const struct rproc_ops *ops,
1320 const char *firmware, int len)
400e64df
OBC
1321{
1322 struct rproc *rproc;
8b4aec9a
RT
1323 char *p, *template = "rproc-%s-fw";
1324 int name_len = 0;
400e64df
OBC
1325
1326 if (!dev || !name || !ops)
1327 return NULL;
1328
8b4aec9a
RT
1329 if (!firmware)
1330 /*
1331 * Make room for default firmware name (minus %s plus '\0').
1332 * If the caller didn't pass in a firmware name then
1333 * construct a default name. We're already glomming 'len'
1334 * bytes onto the end of the struct rproc allocation, so do
1335 * a few more for the default firmware name (but only if
1336 * the caller doesn't pass one).
1337 */
1338 name_len = strlen(name) + strlen(template) - 2 + 1;
1339
899585ad 1340 rproc = kzalloc(sizeof(*rproc) + len + name_len, GFP_KERNEL);
172e6ab1 1341 if (!rproc)
400e64df 1342 return NULL;
400e64df 1343
8b4aec9a
RT
1344 if (!firmware) {
1345 p = (char *)rproc + sizeof(struct rproc) + len;
1346 snprintf(p, name_len, template, name);
1347 } else {
1348 p = (char *)firmware;
1349 }
1350
1351 rproc->firmware = p;
400e64df
OBC
1352 rproc->name = name;
1353 rproc->ops = ops;
400e64df 1354 rproc->priv = &rproc[1];
ddf71187 1355 rproc->auto_boot = true;
400e64df 1356
b5ab5e24
OBC
1357 device_initialize(&rproc->dev);
1358 rproc->dev.parent = dev;
1359 rproc->dev.type = &rproc_type;
1360
1361 /* Assign a unique device index and name */
1362 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1363 if (rproc->index < 0) {
1364 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1365 put_device(&rproc->dev);
1366 return NULL;
1367 }
1368
1369 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1370
400e64df
OBC
1371 atomic_set(&rproc->power, 0);
1372
4afc89d6
SB
1373 /* Set ELF as the default fw_ops handler */
1374 rproc->fw_ops = &rproc_elf_fw_ops;
400e64df
OBC
1375
1376 mutex_init(&rproc->lock);
1377
7a186941
OBC
1378 idr_init(&rproc->notifyids);
1379
400e64df
OBC
1380 INIT_LIST_HEAD(&rproc->carveouts);
1381 INIT_LIST_HEAD(&rproc->mappings);
1382 INIT_LIST_HEAD(&rproc->traces);
7a186941 1383 INIT_LIST_HEAD(&rproc->rvdevs);
400e64df 1384
8afd519c 1385 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
70b85ef8 1386 init_completion(&rproc->crash_comp);
8afd519c 1387
400e64df
OBC
1388 rproc->state = RPROC_OFFLINE;
1389
1390 return rproc;
1391}
1392EXPORT_SYMBOL(rproc_alloc);
1393
1394/**
160e7c84 1395 * rproc_put() - unroll rproc_alloc()
400e64df
OBC
1396 * @rproc: the remote processor handle
1397 *
c6b5a276 1398 * This function decrements the rproc dev refcount.
400e64df 1399 *
c6b5a276
OBC
1400 * If no one holds any reference to rproc anymore, then its refcount would
1401 * now drop to zero, and it would be freed.
400e64df 1402 */
160e7c84 1403void rproc_put(struct rproc *rproc)
400e64df 1404{
b5ab5e24 1405 put_device(&rproc->dev);
400e64df 1406}
160e7c84 1407EXPORT_SYMBOL(rproc_put);
400e64df
OBC
1408
1409/**
160e7c84 1410 * rproc_del() - unregister a remote processor
400e64df
OBC
1411 * @rproc: rproc handle to unregister
1412 *
400e64df
OBC
1413 * This function should be called when the platform specific rproc
1414 * implementation decides to remove the rproc device. it should
160e7c84 1415 * _only_ be called if a previous invocation of rproc_add()
400e64df
OBC
1416 * has completed successfully.
1417 *
160e7c84 1418 * After rproc_del() returns, @rproc isn't freed yet, because
c6b5a276 1419 * of the outstanding reference created by rproc_alloc. To decrement that
160e7c84 1420 * one last refcount, one still needs to call rproc_put().
400e64df
OBC
1421 *
1422 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1423 */
160e7c84 1424int rproc_del(struct rproc *rproc)
400e64df 1425{
6db20ea8 1426 struct rproc_vdev *rvdev, *tmp;
7a186941 1427
400e64df
OBC
1428 if (!rproc)
1429 return -EINVAL;
1430
1431 /* if rproc is just being registered, wait */
1432 wait_for_completion(&rproc->firmware_loading_complete);
1433
ddf71187
BA
1434 /* if rproc is marked always-on, rproc_add() booted it */
1435 /* TODO: make sure this works with rproc->power > 1 */
1436 if (rproc->auto_boot)
1437 rproc_shutdown(rproc);
1438
7a186941 1439 /* clean up remote vdev entries */
6db20ea8 1440 list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
7a186941 1441 rproc_remove_virtio_dev(rvdev);
400e64df 1442
fec47d86
DG
1443 /* the rproc is downref'ed as soon as it's removed from the klist */
1444 mutex_lock(&rproc_list_mutex);
1445 list_del(&rproc->node);
1446 mutex_unlock(&rproc_list_mutex);
1447
b5ab5e24 1448 device_del(&rproc->dev);
400e64df
OBC
1449
1450 return 0;
1451}
160e7c84 1452EXPORT_SYMBOL(rproc_del);
400e64df 1453
8afd519c
FGL
1454/**
1455 * rproc_report_crash() - rproc crash reporter function
1456 * @rproc: remote processor
1457 * @type: crash type
1458 *
1459 * This function must be called every time a crash is detected by the low-level
1460 * drivers implementing a specific remoteproc. This should not be called from a
1461 * non-remoteproc driver.
1462 *
1463 * This function can be called from atomic/interrupt context.
1464 */
1465void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
1466{
1467 if (!rproc) {
1468 pr_err("NULL rproc pointer\n");
1469 return;
1470 }
1471
1472 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
1473 rproc->name, rproc_crash_to_string(type));
1474
1475 /* create a new task to handle the error */
1476 schedule_work(&rproc->crash_handler);
1477}
1478EXPORT_SYMBOL(rproc_report_crash);
1479
400e64df
OBC
1480static int __init remoteproc_init(void)
1481{
1482 rproc_init_debugfs();
b5ab5e24 1483
400e64df
OBC
1484 return 0;
1485}
1486module_init(remoteproc_init);
1487
1488static void __exit remoteproc_exit(void)
1489{
f42f79af
SA
1490 ida_destroy(&rproc_dev_index);
1491
400e64df
OBC
1492 rproc_exit_debugfs();
1493}
1494module_exit(remoteproc_exit);
1495
1496MODULE_LICENSE("GPL v2");
1497MODULE_DESCRIPTION("Generic Remote Processor Framework");
This page took 0.323011 seconds and 5 git commands to generate.