remoteproc/omap: remove the mbox_callback limitation
[deliverable/linux.git] / drivers / remoteproc / remoteproc_core.c
CommitLineData
400e64df
OBC
1/*
2 * Remote Processor Framework
3 *
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
6 *
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25#define pr_fmt(fmt) "%s: " fmt, __func__
26
27#include <linux/kernel.h>
28#include <linux/module.h>
29#include <linux/device.h>
30#include <linux/slab.h>
31#include <linux/mutex.h>
32#include <linux/dma-mapping.h>
33#include <linux/firmware.h>
34#include <linux/string.h>
35#include <linux/debugfs.h>
36#include <linux/remoteproc.h>
37#include <linux/iommu.h>
38#include <linux/klist.h>
39#include <linux/elf.h>
40#include <linux/virtio_ids.h>
41#include <linux/virtio_ring.h>
cf59d3e9 42#include <asm/byteorder.h>
400e64df
OBC
43
44#include "remoteproc_internal.h"
45
46static void klist_rproc_get(struct klist_node *n);
47static void klist_rproc_put(struct klist_node *n);
48
49/*
50 * klist of the available remote processors.
51 *
52 * We need this in order to support name-based lookups (needed by the
53 * rproc_get_by_name()).
54 *
7a186941
OBC
55 * That said, we don't use rproc_get_by_name() at this point.
56 * The use cases that do require its existence should be
400e64df
OBC
57 * scrutinized, and hopefully migrated to rproc_boot() using device-based
58 * binding.
59 *
60 * If/when this materializes, we could drop the klist (and the by_name
61 * API).
62 */
63static DEFINE_KLIST(rprocs, klist_rproc_get, klist_rproc_put);
64
65typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
fd2c15ec
OBC
66 struct resource_table *table, int len);
67typedef int (*rproc_handle_resource_t)(struct rproc *rproc, void *, int avail);
400e64df
OBC
68
69/*
70 * This is the IOMMU fault handler we register with the IOMMU API
71 * (when relevant; not all remote processors access memory through
72 * an IOMMU).
73 *
74 * IOMMU core will invoke this handler whenever the remote processor
75 * will try to access an unmapped device address.
76 *
77 * Currently this is mostly a stub, but it will be later used to trigger
78 * the recovery of the remote processor.
79 */
80static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
81 unsigned long iova, int flags)
82{
83 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
84
85 /*
86 * Let the iommu core know we're not really handling this fault;
87 * we just plan to use this as a recovery trigger.
88 */
89 return -ENOSYS;
90}
91
92static int rproc_enable_iommu(struct rproc *rproc)
93{
94 struct iommu_domain *domain;
95 struct device *dev = rproc->dev;
96 int ret;
97
98 /*
99 * We currently use iommu_present() to decide if an IOMMU
100 * setup is needed.
101 *
102 * This works for simple cases, but will easily fail with
103 * platforms that do have an IOMMU, but not for this specific
104 * rproc.
105 *
106 * This will be easily solved by introducing hw capabilities
107 * that will be set by the remoteproc driver.
108 */
109 if (!iommu_present(dev->bus)) {
0798e1da
MG
110 dev_dbg(dev, "iommu not found\n");
111 return 0;
400e64df
OBC
112 }
113
114 domain = iommu_domain_alloc(dev->bus);
115 if (!domain) {
116 dev_err(dev, "can't alloc iommu domain\n");
117 return -ENOMEM;
118 }
119
120 iommu_set_fault_handler(domain, rproc_iommu_fault);
121
122 ret = iommu_attach_device(domain, dev);
123 if (ret) {
124 dev_err(dev, "can't attach iommu device: %d\n", ret);
125 goto free_domain;
126 }
127
128 rproc->domain = domain;
129
130 return 0;
131
132free_domain:
133 iommu_domain_free(domain);
134 return ret;
135}
136
137static void rproc_disable_iommu(struct rproc *rproc)
138{
139 struct iommu_domain *domain = rproc->domain;
140 struct device *dev = rproc->dev;
141
142 if (!domain)
143 return;
144
145 iommu_detach_device(domain, dev);
146 iommu_domain_free(domain);
147
148 return;
149}
150
151/*
152 * Some remote processors will ask us to allocate them physically contiguous
153 * memory regions (which we call "carveouts"), and map them to specific
154 * device addresses (which are hardcoded in the firmware).
155 *
156 * They may then ask us to copy objects into specific device addresses (e.g.
157 * code/data sections) or expose us certain symbols in other device address
158 * (e.g. their trace buffer).
159 *
160 * This function is an internal helper with which we can go over the allocated
161 * carveouts and translate specific device address to kernel virtual addresses
162 * so we can access the referenced memory.
163 *
164 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
165 * but only on kernel direct mapped RAM memory. Instead, we're just using
166 * here the output of the DMA API, which should be more correct.
167 */
168static void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
169{
170 struct rproc_mem_entry *carveout;
171 void *ptr = NULL;
172
173 list_for_each_entry(carveout, &rproc->carveouts, node) {
174 int offset = da - carveout->da;
175
176 /* try next carveout if da is too small */
177 if (offset < 0)
178 continue;
179
180 /* try next carveout if da is too large */
181 if (offset + len > carveout->len)
182 continue;
183
184 ptr = carveout->va + offset;
185
186 break;
187 }
188
189 return ptr;
190}
191
192/**
193 * rproc_load_segments() - load firmware segments to memory
194 * @rproc: remote processor which will be booted using these fw segments
195 * @elf_data: the content of the ELF firmware image
9bc91231 196 * @len: firmware size (in bytes)
400e64df
OBC
197 *
198 * This function loads the firmware segments to memory, where the remote
199 * processor expects them.
200 *
201 * Some remote processors will expect their code and data to be placed
202 * in specific device addresses, and can't have them dynamically assigned.
203 *
204 * We currently support only those kind of remote processors, and expect
205 * the program header's paddr member to contain those addresses. We then go
206 * through the physically contiguous "carveout" memory regions which we
207 * allocated (and mapped) earlier on behalf of the remote processor,
208 * and "translate" device address to kernel addresses, so we can copy the
209 * segments where they are expected.
210 *
211 * Currently we only support remote processors that required carveout
212 * allocations and got them mapped onto their iommus. Some processors
213 * might be different: they might not have iommus, and would prefer to
214 * directly allocate memory for every segment/resource. This is not yet
215 * supported, though.
216 */
9bc91231
OBC
217static int
218rproc_load_segments(struct rproc *rproc, const u8 *elf_data, size_t len)
400e64df
OBC
219{
220 struct device *dev = rproc->dev;
221 struct elf32_hdr *ehdr;
222 struct elf32_phdr *phdr;
223 int i, ret = 0;
224
225 ehdr = (struct elf32_hdr *)elf_data;
226 phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff);
227
228 /* go through the available ELF segments */
229 for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
230 u32 da = phdr->p_paddr;
231 u32 memsz = phdr->p_memsz;
232 u32 filesz = phdr->p_filesz;
9bc91231 233 u32 offset = phdr->p_offset;
400e64df
OBC
234 void *ptr;
235
236 if (phdr->p_type != PT_LOAD)
237 continue;
238
239 dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
240 phdr->p_type, da, memsz, filesz);
241
242 if (filesz > memsz) {
243 dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
244 filesz, memsz);
245 ret = -EINVAL;
246 break;
247 }
248
9bc91231
OBC
249 if (offset + filesz > len) {
250 dev_err(dev, "truncated fw: need 0x%x avail 0x%x\n",
251 offset + filesz, len);
252 ret = -EINVAL;
253 break;
254 }
255
400e64df
OBC
256 /* grab the kernel address for this device address */
257 ptr = rproc_da_to_va(rproc, da, memsz);
258 if (!ptr) {
259 dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
260 ret = -EINVAL;
261 break;
262 }
263
264 /* put the segment where the remote processor expects it */
265 if (phdr->p_filesz)
266 memcpy(ptr, elf_data + phdr->p_offset, filesz);
267
268 /*
269 * Zero out remaining memory for this segment.
270 *
271 * This isn't strictly required since dma_alloc_coherent already
272 * did this for us. albeit harmless, we may consider removing
273 * this.
274 */
275 if (memsz > filesz)
276 memset(ptr + filesz, 0, memsz - filesz);
277 }
278
279 return ret;
280}
281
7a186941
OBC
282static int
283__rproc_handle_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
400e64df 284{
7a186941
OBC
285 struct rproc *rproc = rvdev->rproc;
286 struct device *dev = rproc->dev;
287 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
288 dma_addr_t dma;
289 void *va;
290 int ret, size, notifyid;
400e64df 291
7a186941
OBC
292 dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
293 i, vring->da, vring->num, vring->align);
294
295 /* make sure reserved bytes are zeroes */
296 if (vring->reserved) {
297 dev_err(dev, "vring rsc has non zero reserved bytes\n");
fd2c15ec
OBC
298 return -EINVAL;
299 }
300
7a186941
OBC
301 /* the firmware must provide the expected queue size */
302 if (!vring->num) {
303 dev_err(dev, "invalid qsz (%d)\n", vring->num);
400e64df
OBC
304 return -EINVAL;
305 }
306
7a186941
OBC
307 /* actual size of vring (in bytes) */
308 size = PAGE_ALIGN(vring_size(vring->num, AMP_VRING_ALIGN));
309
310 if (!idr_pre_get(&rproc->notifyids, GFP_KERNEL)) {
311 dev_err(dev, "idr_pre_get failed\n");
312 return -ENOMEM;
313 }
314
315 /*
316 * Allocate non-cacheable memory for the vring. In the future
317 * this call will also configure the IOMMU for us
318 */
319 va = dma_alloc_coherent(dev, size, &dma, GFP_KERNEL);
320 if (!va) {
321 dev_err(dev, "dma_alloc_coherent failed\n");
400e64df
OBC
322 return -EINVAL;
323 }
324
7a186941
OBC
325 /* assign an rproc-wide unique index for this vring */
326 /* TODO: assign a notifyid for rvdev updates as well */
327 ret = idr_get_new(&rproc->notifyids, &rvdev->vring[i], &notifyid);
328 if (ret) {
329 dev_err(dev, "idr_get_new failed: %d\n", ret);
330 dma_free_coherent(dev, size, va, dma);
331 return ret;
332 }
400e64df 333
7a186941
OBC
334 /* let the rproc know the da and notifyid of this vring */
335 /* TODO: expose this to remote processor */
336 vring->da = dma;
337 vring->notifyid = notifyid;
400e64df 338
7a186941
OBC
339 dev_dbg(dev, "vring%d: va %p dma %x size %x idr %d\n", i, va,
340 dma, size, notifyid);
341
342 rvdev->vring[i].len = vring->num;
343 rvdev->vring[i].va = va;
344 rvdev->vring[i].dma = dma;
345 rvdev->vring[i].notifyid = notifyid;
346 rvdev->vring[i].rvdev = rvdev;
400e64df
OBC
347
348 return 0;
349}
350
7a186941
OBC
351static void __rproc_free_vrings(struct rproc_vdev *rvdev, int i)
352{
353 struct rproc *rproc = rvdev->rproc;
354
355 for (i--; i > 0; i--) {
356 struct rproc_vring *rvring = &rvdev->vring[i];
357 int size = PAGE_ALIGN(vring_size(rvring->len, AMP_VRING_ALIGN));
358
359 dma_free_coherent(rproc->dev, size, rvring->va, rvring->dma);
360 idr_remove(&rproc->notifyids, rvring->notifyid);
361 }
362}
363
400e64df 364/**
fd2c15ec 365 * rproc_handle_vdev() - handle a vdev fw resource
400e64df
OBC
366 * @rproc: the remote processor
367 * @rsc: the vring resource descriptor
fd2c15ec 368 * @avail: size of available data (for sanity checking the image)
400e64df 369 *
7a186941
OBC
370 * This resource entry requests the host to statically register a virtio
371 * device (vdev), and setup everything needed to support it. It contains
372 * everything needed to make it possible: the virtio device id, virtio
373 * device features, vrings information, virtio config space, etc...
374 *
375 * Before registering the vdev, the vrings are allocated from non-cacheable
376 * physically contiguous memory. Currently we only support two vrings per
377 * remote processor (temporary limitation). We might also want to consider
378 * doing the vring allocation only later when ->find_vqs() is invoked, and
379 * then release them upon ->del_vqs().
380 *
381 * Note: @da is currently not really handled correctly: we dynamically
382 * allocate it using the DMA API, ignoring requested hard coded addresses,
383 * and we don't take care of any required IOMMU programming. This is all
384 * going to be taken care of when the generic iommu-based DMA API will be
385 * merged. Meanwhile, statically-addressed iommu-based firmware images should
386 * use RSC_DEVMEM resource entries to map their required @da to the physical
387 * address of their base CMA region (ouch, hacky!).
400e64df
OBC
388 *
389 * Returns 0 on success, or an appropriate error code otherwise
390 */
fd2c15ec
OBC
391static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
392 int avail)
400e64df
OBC
393{
394 struct device *dev = rproc->dev;
7a186941
OBC
395 struct rproc_vdev *rvdev;
396 int i, ret;
400e64df 397
fd2c15ec
OBC
398 /* make sure resource isn't truncated */
399 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
400 + rsc->config_len > avail) {
401 dev_err(rproc->dev, "vdev rsc is truncated\n");
400e64df
OBC
402 return -EINVAL;
403 }
404
fd2c15ec
OBC
405 /* make sure reserved bytes are zeroes */
406 if (rsc->reserved[0] || rsc->reserved[1]) {
407 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
400e64df
OBC
408 return -EINVAL;
409 }
410
fd2c15ec
OBC
411 dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
412 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
413
7a186941
OBC
414 /* we currently support only two vrings per rvdev */
415 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
fd2c15ec 416 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
400e64df
OBC
417 return -EINVAL;
418 }
419
7a186941
OBC
420 rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
421 if (!rvdev)
422 return -ENOMEM;
400e64df 423
7a186941 424 rvdev->rproc = rproc;
400e64df 425
7a186941
OBC
426 /* allocate the vrings */
427 for (i = 0; i < rsc->num_of_vrings; i++) {
428 ret = __rproc_handle_vring(rvdev, rsc, i);
429 if (ret)
430 goto free_vrings;
431 }
400e64df 432
7a186941
OBC
433 /* remember the device features */
434 rvdev->dfeatures = rsc->dfeatures;
fd2c15ec 435
7a186941 436 list_add_tail(&rvdev->node, &rproc->rvdevs);
fd2c15ec 437
7a186941
OBC
438 /* it is now safe to add the virtio device */
439 ret = rproc_add_virtio_dev(rvdev, rsc->id);
440 if (ret)
441 goto free_vrings;
400e64df
OBC
442
443 return 0;
7a186941
OBC
444
445free_vrings:
446 __rproc_free_vrings(rvdev, i);
447 kfree(rvdev);
448 return ret;
400e64df
OBC
449}
450
451/**
452 * rproc_handle_trace() - handle a shared trace buffer resource
453 * @rproc: the remote processor
454 * @rsc: the trace resource descriptor
fd2c15ec 455 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
456 *
457 * In case the remote processor dumps trace logs into memory,
458 * export it via debugfs.
459 *
460 * Currently, the 'da' member of @rsc should contain the device address
461 * where the remote processor is dumping the traces. Later we could also
462 * support dynamically allocating this address using the generic
463 * DMA API (but currently there isn't a use case for that).
464 *
465 * Returns 0 on success, or an appropriate error code otherwise
466 */
fd2c15ec
OBC
467static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
468 int avail)
400e64df
OBC
469{
470 struct rproc_mem_entry *trace;
471 struct device *dev = rproc->dev;
472 void *ptr;
473 char name[15];
474
fd2c15ec
OBC
475 if (sizeof(*rsc) > avail) {
476 dev_err(rproc->dev, "trace rsc is truncated\n");
477 return -EINVAL;
478 }
479
480 /* make sure reserved bytes are zeroes */
481 if (rsc->reserved) {
482 dev_err(dev, "trace rsc has non zero reserved bytes\n");
483 return -EINVAL;
484 }
485
400e64df
OBC
486 /* what's the kernel address of this resource ? */
487 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
488 if (!ptr) {
489 dev_err(dev, "erroneous trace resource entry\n");
490 return -EINVAL;
491 }
492
493 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
494 if (!trace) {
495 dev_err(dev, "kzalloc trace failed\n");
496 return -ENOMEM;
497 }
498
499 /* set the trace buffer dma properties */
500 trace->len = rsc->len;
501 trace->va = ptr;
502
503 /* make sure snprintf always null terminates, even if truncating */
504 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
505
506 /* create the debugfs entry */
507 trace->priv = rproc_create_trace_file(name, rproc, trace);
508 if (!trace->priv) {
509 trace->va = NULL;
510 kfree(trace);
511 return -EINVAL;
512 }
513
514 list_add_tail(&trace->node, &rproc->traces);
515
516 rproc->num_traces++;
517
fd2c15ec 518 dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
400e64df
OBC
519 rsc->da, rsc->len);
520
521 return 0;
522}
523
524/**
525 * rproc_handle_devmem() - handle devmem resource entry
526 * @rproc: remote processor handle
527 * @rsc: the devmem resource entry
fd2c15ec 528 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
529 *
530 * Remote processors commonly need to access certain on-chip peripherals.
531 *
532 * Some of these remote processors access memory via an iommu device,
533 * and might require us to configure their iommu before they can access
534 * the on-chip peripherals they need.
535 *
536 * This resource entry is a request to map such a peripheral device.
537 *
538 * These devmem entries will contain the physical address of the device in
539 * the 'pa' member. If a specific device address is expected, then 'da' will
540 * contain it (currently this is the only use case supported). 'len' will
541 * contain the size of the physical region we need to map.
542 *
543 * Currently we just "trust" those devmem entries to contain valid physical
544 * addresses, but this is going to change: we want the implementations to
545 * tell us ranges of physical addresses the firmware is allowed to request,
546 * and not allow firmwares to request access to physical addresses that
547 * are outside those ranges.
548 */
fd2c15ec
OBC
549static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
550 int avail)
400e64df
OBC
551{
552 struct rproc_mem_entry *mapping;
553 int ret;
554
555 /* no point in handling this resource without a valid iommu domain */
556 if (!rproc->domain)
557 return -EINVAL;
558
fd2c15ec
OBC
559 if (sizeof(*rsc) > avail) {
560 dev_err(rproc->dev, "devmem rsc is truncated\n");
561 return -EINVAL;
562 }
563
564 /* make sure reserved bytes are zeroes */
565 if (rsc->reserved) {
566 dev_err(rproc->dev, "devmem rsc has non zero reserved bytes\n");
567 return -EINVAL;
568 }
569
400e64df
OBC
570 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
571 if (!mapping) {
572 dev_err(rproc->dev, "kzalloc mapping failed\n");
573 return -ENOMEM;
574 }
575
576 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
577 if (ret) {
578 dev_err(rproc->dev, "failed to map devmem: %d\n", ret);
579 goto out;
580 }
581
582 /*
583 * We'll need this info later when we'll want to unmap everything
584 * (e.g. on shutdown).
585 *
586 * We can't trust the remote processor not to change the resource
587 * table, so we must maintain this info independently.
588 */
589 mapping->da = rsc->da;
590 mapping->len = rsc->len;
591 list_add_tail(&mapping->node, &rproc->mappings);
592
fd2c15ec 593 dev_dbg(rproc->dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
400e64df
OBC
594 rsc->pa, rsc->da, rsc->len);
595
596 return 0;
597
598out:
599 kfree(mapping);
600 return ret;
601}
602
603/**
604 * rproc_handle_carveout() - handle phys contig memory allocation requests
605 * @rproc: rproc handle
606 * @rsc: the resource entry
fd2c15ec 607 * @avail: size of available data (for image validation)
400e64df
OBC
608 *
609 * This function will handle firmware requests for allocation of physically
610 * contiguous memory regions.
611 *
612 * These request entries should come first in the firmware's resource table,
613 * as other firmware entries might request placing other data objects inside
614 * these memory regions (e.g. data/code segments, trace resource entries, ...).
615 *
616 * Allocating memory this way helps utilizing the reserved physical memory
617 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
618 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
619 * pressure is important; it may have a substantial impact on performance.
620 */
fd2c15ec
OBC
621static int rproc_handle_carveout(struct rproc *rproc,
622 struct fw_rsc_carveout *rsc, int avail)
400e64df
OBC
623{
624 struct rproc_mem_entry *carveout, *mapping;
625 struct device *dev = rproc->dev;
626 dma_addr_t dma;
627 void *va;
628 int ret;
629
fd2c15ec
OBC
630 if (sizeof(*rsc) > avail) {
631 dev_err(rproc->dev, "carveout rsc is truncated\n");
632 return -EINVAL;
633 }
634
635 /* make sure reserved bytes are zeroes */
636 if (rsc->reserved) {
637 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
638 return -EINVAL;
639 }
640
641 dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
642 rsc->da, rsc->pa, rsc->len, rsc->flags);
643
400e64df
OBC
644 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
645 if (!mapping) {
646 dev_err(dev, "kzalloc mapping failed\n");
647 return -ENOMEM;
648 }
649
650 carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
651 if (!carveout) {
652 dev_err(dev, "kzalloc carveout failed\n");
653 ret = -ENOMEM;
654 goto free_mapping;
655 }
656
657 va = dma_alloc_coherent(dev, rsc->len, &dma, GFP_KERNEL);
658 if (!va) {
659 dev_err(dev, "failed to dma alloc carveout: %d\n", rsc->len);
660 ret = -ENOMEM;
661 goto free_carv;
662 }
663
664 dev_dbg(dev, "carveout va %p, dma %x, len 0x%x\n", va, dma, rsc->len);
665
666 /*
667 * Ok, this is non-standard.
668 *
669 * Sometimes we can't rely on the generic iommu-based DMA API
670 * to dynamically allocate the device address and then set the IOMMU
671 * tables accordingly, because some remote processors might
672 * _require_ us to use hard coded device addresses that their
673 * firmware was compiled with.
674 *
675 * In this case, we must use the IOMMU API directly and map
676 * the memory to the device address as expected by the remote
677 * processor.
678 *
679 * Obviously such remote processor devices should not be configured
680 * to use the iommu-based DMA API: we expect 'dma' to contain the
681 * physical address in this case.
682 */
683 if (rproc->domain) {
684 ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
685 rsc->flags);
686 if (ret) {
687 dev_err(dev, "iommu_map failed: %d\n", ret);
688 goto dma_free;
689 }
690
691 /*
692 * We'll need this info later when we'll want to unmap
693 * everything (e.g. on shutdown).
694 *
695 * We can't trust the remote processor not to change the
696 * resource table, so we must maintain this info independently.
697 */
698 mapping->da = rsc->da;
699 mapping->len = rsc->len;
700 list_add_tail(&mapping->node, &rproc->mappings);
701
fd2c15ec 702 dev_dbg(dev, "carveout mapped 0x%x to 0x%x\n", rsc->da, dma);
400e64df
OBC
703
704 /*
705 * Some remote processors might need to know the pa
706 * even though they are behind an IOMMU. E.g., OMAP4's
707 * remote M3 processor needs this so it can control
708 * on-chip hardware accelerators that are not behind
709 * the IOMMU, and therefor must know the pa.
710 *
711 * Generally we don't want to expose physical addresses
712 * if we don't have to (remote processors are generally
713 * _not_ trusted), so we might want to do this only for
714 * remote processor that _must_ have this (e.g. OMAP4's
715 * dual M3 subsystem).
716 */
717 rsc->pa = dma;
718 }
719
720 carveout->va = va;
721 carveout->len = rsc->len;
722 carveout->dma = dma;
723 carveout->da = rsc->da;
724
725 list_add_tail(&carveout->node, &rproc->carveouts);
726
727 return 0;
728
729dma_free:
730 dma_free_coherent(dev, rsc->len, va, dma);
731free_carv:
732 kfree(carveout);
733free_mapping:
734 kfree(mapping);
735 return ret;
736}
737
e12bc14b
OBC
738/*
739 * A lookup table for resource handlers. The indices are defined in
740 * enum fw_resource_type.
741 */
742static rproc_handle_resource_t rproc_handle_rsc[] = {
fd2c15ec
OBC
743 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
744 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
745 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
7a186941 746 [RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
e12bc14b
OBC
747};
748
400e64df
OBC
749/* handle firmware resource entries before booting the remote processor */
750static int
fd2c15ec 751rproc_handle_boot_rsc(struct rproc *rproc, struct resource_table *table, int len)
400e64df
OBC
752{
753 struct device *dev = rproc->dev;
e12bc14b 754 rproc_handle_resource_t handler;
fd2c15ec
OBC
755 int ret = 0, i;
756
757 for (i = 0; i < table->num; i++) {
758 int offset = table->offset[i];
759 struct fw_rsc_hdr *hdr = (void *)table + offset;
760 int avail = len - offset - sizeof(*hdr);
761 void *rsc = (void *)hdr + sizeof(*hdr);
762
763 /* make sure table isn't truncated */
764 if (avail < 0) {
765 dev_err(dev, "rsc table is truncated\n");
766 return -EINVAL;
767 }
400e64df 768
fd2c15ec 769 dev_dbg(dev, "rsc: type %d\n", hdr->type);
400e64df 770
fd2c15ec
OBC
771 if (hdr->type >= RSC_LAST) {
772 dev_warn(dev, "unsupported resource %d\n", hdr->type);
e12bc14b 773 continue;
400e64df
OBC
774 }
775
fd2c15ec 776 handler = rproc_handle_rsc[hdr->type];
e12bc14b
OBC
777 if (!handler)
778 continue;
779
fd2c15ec 780 ret = handler(rproc, rsc, avail);
400e64df
OBC
781 if (ret)
782 break;
400e64df
OBC
783 }
784
785 return ret;
786}
787
788/* handle firmware resource entries while registering the remote processor */
789static int
fd2c15ec 790rproc_handle_virtio_rsc(struct rproc *rproc, struct resource_table *table, int len)
400e64df
OBC
791{
792 struct device *dev = rproc->dev;
fd2c15ec
OBC
793 int ret = 0, i;
794
795 for (i = 0; i < table->num; i++) {
796 int offset = table->offset[i];
797 struct fw_rsc_hdr *hdr = (void *)table + offset;
798 int avail = len - offset - sizeof(*hdr);
7a186941 799 struct fw_rsc_vdev *vrsc;
400e64df 800
fd2c15ec
OBC
801 /* make sure table isn't truncated */
802 if (avail < 0) {
803 dev_err(dev, "rsc table is truncated\n");
804 return -EINVAL;
805 }
806
807 dev_dbg(dev, "%s: rsc type %d\n", __func__, hdr->type);
808
7a186941
OBC
809 if (hdr->type != RSC_VDEV)
810 continue;
811
812 vrsc = (struct fw_rsc_vdev *)hdr->data;
813
814 ret = rproc_handle_vdev(rproc, vrsc, avail);
815 if (ret)
400e64df 816 break;
fd2c15ec 817 }
400e64df
OBC
818
819 return ret;
820}
821
822/**
823 * rproc_handle_resources() - find and handle the resource table
824 * @rproc: the rproc handle
825 * @elf_data: the content of the ELF firmware image
9bc91231 826 * @len: firmware size (in bytes)
400e64df
OBC
827 * @handler: function that should be used to handle the resource table
828 *
829 * This function finds the resource table inside the remote processor's
830 * firmware, and invoke a user-supplied handler with it (we have two
831 * possible handlers: one is invoked upon registration of @rproc,
832 * in order to register the supported virito devices, and the other is
833 * invoked when @rproc is actually booted).
834 *
835 * Currently this function fails if a resource table doesn't exist.
836 * This restriction will be removed when we'll start supporting remote
837 * processors that don't need a resource table.
838 */
839static int rproc_handle_resources(struct rproc *rproc, const u8 *elf_data,
9bc91231 840 size_t len, rproc_handle_resources_t handler)
400e64df
OBC
841
842{
843 struct elf32_hdr *ehdr;
844 struct elf32_shdr *shdr;
845 const char *name_table;
fd2c15ec 846 struct device *dev = rproc->dev;
400e64df 847 int i, ret = -EINVAL;
fd2c15ec 848 struct resource_table *table;
400e64df
OBC
849
850 ehdr = (struct elf32_hdr *)elf_data;
851 shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff);
852 name_table = elf_data + shdr[ehdr->e_shstrndx].sh_offset;
853
854 /* look for the resource table and handle it */
855 for (i = 0; i < ehdr->e_shnum; i++, shdr++) {
fd2c15ec
OBC
856 int size = shdr->sh_size;
857 int offset = shdr->sh_offset;
400e64df 858
fd2c15ec
OBC
859 if (strcmp(name_table + shdr->sh_name, ".resource_table"))
860 continue;
9bc91231 861
fd2c15ec 862 table = (struct resource_table *)(elf_data + offset);
400e64df 863
fd2c15ec
OBC
864 /* make sure we have the entire table */
865 if (offset + size > len) {
866 dev_err(dev, "resource table truncated\n");
867 return -EINVAL;
868 }
869
870 /* make sure table has at least the header */
871 if (sizeof(struct resource_table) > size) {
872 dev_err(dev, "header-less resource table\n");
873 return -EINVAL;
400e64df 874 }
fd2c15ec
OBC
875
876 /* we don't support any version beyond the first */
877 if (table->ver != 1) {
878 dev_err(dev, "unsupported fw ver: %d\n", table->ver);
879 return -EINVAL;
880 }
881
882 /* make sure reserved bytes are zeroes */
883 if (table->reserved[0] || table->reserved[1]) {
884 dev_err(dev, "non zero reserved bytes\n");
885 return -EINVAL;
886 }
887
888 /* make sure the offsets array isn't truncated */
889 if (table->num * sizeof(table->offset[0]) +
890 sizeof(struct resource_table) > size) {
891 dev_err(dev, "resource table incomplete\n");
892 return -EINVAL;
893 }
894
895 ret = handler(rproc, table, shdr->sh_size);
896 break;
400e64df
OBC
897 }
898
899 return ret;
900}
901
902/**
903 * rproc_resource_cleanup() - clean up and free all acquired resources
904 * @rproc: rproc handle
905 *
906 * This function will free all resources acquired for @rproc, and it
7a186941 907 * is called whenever @rproc either shuts down or fails to boot.
400e64df
OBC
908 */
909static void rproc_resource_cleanup(struct rproc *rproc)
910{
911 struct rproc_mem_entry *entry, *tmp;
912 struct device *dev = rproc->dev;
400e64df
OBC
913
914 /* clean up debugfs trace entries */
915 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
916 rproc_remove_trace_file(entry->priv);
917 rproc->num_traces--;
918 list_del(&entry->node);
919 kfree(entry);
920 }
921
400e64df
OBC
922 /* clean up carveout allocations */
923 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
924 dma_free_coherent(dev, entry->len, entry->va, entry->dma);
925 list_del(&entry->node);
926 kfree(entry);
927 }
928
929 /* clean up iommu mapping entries */
930 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
931 size_t unmapped;
932
933 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
934 if (unmapped != entry->len) {
935 /* nothing much to do besides complaining */
936 dev_err(dev, "failed to unmap %u/%u\n", entry->len,
937 unmapped);
938 }
939
940 list_del(&entry->node);
941 kfree(entry);
942 }
943}
944
945/* make sure this fw image is sane */
946static int rproc_fw_sanity_check(struct rproc *rproc, const struct firmware *fw)
947{
948 const char *name = rproc->firmware;
949 struct device *dev = rproc->dev;
950 struct elf32_hdr *ehdr;
40b78b2c 951 char class;
400e64df
OBC
952
953 if (!fw) {
954 dev_err(dev, "failed to load %s\n", name);
955 return -EINVAL;
956 }
957
958 if (fw->size < sizeof(struct elf32_hdr)) {
959 dev_err(dev, "Image is too small\n");
960 return -EINVAL;
961 }
962
963 ehdr = (struct elf32_hdr *)fw->data;
964
40b78b2c
OBC
965 /* We only support ELF32 at this point */
966 class = ehdr->e_ident[EI_CLASS];
967 if (class != ELFCLASS32) {
968 dev_err(dev, "Unsupported class: %d\n", class);
969 return -EINVAL;
970 }
971
cf59d3e9
OBC
972 /* We assume the firmware has the same endianess as the host */
973# ifdef __LITTLE_ENDIAN
974 if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB) {
975# else /* BIG ENDIAN */
976 if (ehdr->e_ident[EI_DATA] != ELFDATA2MSB) {
977# endif
978 dev_err(dev, "Unsupported firmware endianess\n");
979 return -EINVAL;
980 }
981
9bc91231
OBC
982 if (fw->size < ehdr->e_shoff + sizeof(struct elf32_shdr)) {
983 dev_err(dev, "Image is too small\n");
984 return -EINVAL;
985 }
986
400e64df
OBC
987 if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG)) {
988 dev_err(dev, "Image is corrupted (bad magic)\n");
989 return -EINVAL;
990 }
991
992 if (ehdr->e_phnum == 0) {
993 dev_err(dev, "No loadable segments\n");
994 return -EINVAL;
995 }
996
997 if (ehdr->e_phoff > fw->size) {
998 dev_err(dev, "Firmware size is too small\n");
999 return -EINVAL;
1000 }
1001
1002 return 0;
1003}
1004
1005/*
1006 * take a firmware and boot a remote processor with it.
1007 */
1008static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1009{
1010 struct device *dev = rproc->dev;
1011 const char *name = rproc->firmware;
1012 struct elf32_hdr *ehdr;
1013 int ret;
1014
1015 ret = rproc_fw_sanity_check(rproc, fw);
1016 if (ret)
1017 return ret;
1018
1019 ehdr = (struct elf32_hdr *)fw->data;
1020
1021 dev_info(dev, "Booting fw image %s, size %d\n", name, fw->size);
1022
1023 /*
1024 * if enabling an IOMMU isn't relevant for this rproc, this is
1025 * just a nop
1026 */
1027 ret = rproc_enable_iommu(rproc);
1028 if (ret) {
1029 dev_err(dev, "can't enable iommu: %d\n", ret);
1030 return ret;
1031 }
1032
1033 /*
1034 * The ELF entry point is the rproc's boot addr (though this is not
1035 * a configurable property of all remote processors: some will always
1036 * boot at a specific hardcoded address).
1037 */
1038 rproc->bootaddr = ehdr->e_entry;
1039
1040 /* handle fw resources which are required to boot rproc */
9bc91231
OBC
1041 ret = rproc_handle_resources(rproc, fw->data, fw->size,
1042 rproc_handle_boot_rsc);
400e64df
OBC
1043 if (ret) {
1044 dev_err(dev, "Failed to process resources: %d\n", ret);
1045 goto clean_up;
1046 }
1047
1048 /* load the ELF segments to memory */
9bc91231 1049 ret = rproc_load_segments(rproc, fw->data, fw->size);
400e64df
OBC
1050 if (ret) {
1051 dev_err(dev, "Failed to load program segments: %d\n", ret);
1052 goto clean_up;
1053 }
1054
1055 /* power up the remote processor */
1056 ret = rproc->ops->start(rproc);
1057 if (ret) {
1058 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1059 goto clean_up;
1060 }
1061
1062 rproc->state = RPROC_RUNNING;
1063
1064 dev_info(dev, "remote processor %s is now up\n", rproc->name);
1065
1066 return 0;
1067
1068clean_up:
1069 rproc_resource_cleanup(rproc);
1070 rproc_disable_iommu(rproc);
1071 return ret;
1072}
1073
1074/*
1075 * take a firmware and look for virtio devices to register.
1076 *
1077 * Note: this function is called asynchronously upon registration of the
1078 * remote processor (so we must wait until it completes before we try
1079 * to unregister the device. one other option is just to use kref here,
1080 * that might be cleaner).
1081 */
1082static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
1083{
1084 struct rproc *rproc = context;
1085 struct device *dev = rproc->dev;
1086 int ret;
1087
1088 if (rproc_fw_sanity_check(rproc, fw) < 0)
1089 goto out;
1090
fd2c15ec 1091 /* does the fw support any virtio devices ? */
9bc91231
OBC
1092 ret = rproc_handle_resources(rproc, fw->data, fw->size,
1093 rproc_handle_virtio_rsc);
400e64df
OBC
1094 if (ret) {
1095 dev_info(dev, "No fw virtio device was found\n");
1096 goto out;
1097 }
1098
400e64df
OBC
1099out:
1100 if (fw)
1101 release_firmware(fw);
1102 /* allow rproc_unregister() contexts, if any, to proceed */
1103 complete_all(&rproc->firmware_loading_complete);
1104}
1105
1106/**
1107 * rproc_boot() - boot a remote processor
1108 * @rproc: handle of a remote processor
1109 *
1110 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1111 *
1112 * If the remote processor is already powered on, this function immediately
1113 * returns (successfully).
1114 *
1115 * Returns 0 on success, and an appropriate error value otherwise.
1116 */
1117int rproc_boot(struct rproc *rproc)
1118{
1119 const struct firmware *firmware_p;
1120 struct device *dev;
1121 int ret;
1122
1123 if (!rproc) {
1124 pr_err("invalid rproc handle\n");
1125 return -EINVAL;
1126 }
1127
1128 dev = rproc->dev;
1129
1130 ret = mutex_lock_interruptible(&rproc->lock);
1131 if (ret) {
1132 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1133 return ret;
1134 }
1135
1136 /* loading a firmware is required */
1137 if (!rproc->firmware) {
1138 dev_err(dev, "%s: no firmware to load\n", __func__);
1139 ret = -EINVAL;
1140 goto unlock_mutex;
1141 }
1142
1143 /* prevent underlying implementation from being removed */
1144 if (!try_module_get(dev->driver->owner)) {
1145 dev_err(dev, "%s: can't get owner\n", __func__);
1146 ret = -EINVAL;
1147 goto unlock_mutex;
1148 }
1149
1150 /* skip the boot process if rproc is already powered up */
1151 if (atomic_inc_return(&rproc->power) > 1) {
1152 ret = 0;
1153 goto unlock_mutex;
1154 }
1155
1156 dev_info(dev, "powering up %s\n", rproc->name);
1157
1158 /* load firmware */
1159 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1160 if (ret < 0) {
1161 dev_err(dev, "request_firmware failed: %d\n", ret);
1162 goto downref_rproc;
1163 }
1164
1165 ret = rproc_fw_boot(rproc, firmware_p);
1166
1167 release_firmware(firmware_p);
1168
1169downref_rproc:
1170 if (ret) {
1171 module_put(dev->driver->owner);
1172 atomic_dec(&rproc->power);
1173 }
1174unlock_mutex:
1175 mutex_unlock(&rproc->lock);
1176 return ret;
1177}
1178EXPORT_SYMBOL(rproc_boot);
1179
1180/**
1181 * rproc_shutdown() - power off the remote processor
1182 * @rproc: the remote processor
1183 *
1184 * Power off a remote processor (previously booted with rproc_boot()).
1185 *
1186 * In case @rproc is still being used by an additional user(s), then
1187 * this function will just decrement the power refcount and exit,
1188 * without really powering off the device.
1189 *
1190 * Every call to rproc_boot() must (eventually) be accompanied by a call
1191 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1192 *
1193 * Notes:
1194 * - we're not decrementing the rproc's refcount, only the power refcount.
1195 * which means that the @rproc handle stays valid even after rproc_shutdown()
1196 * returns, and users can still use it with a subsequent rproc_boot(), if
1197 * needed.
1198 * - don't call rproc_shutdown() to unroll rproc_get_by_name(), exactly
1199 * because rproc_shutdown() _does not_ decrement the refcount of @rproc.
1200 * To decrement the refcount of @rproc, use rproc_put() (but _only_ if
1201 * you acquired @rproc using rproc_get_by_name()).
1202 */
1203void rproc_shutdown(struct rproc *rproc)
1204{
1205 struct device *dev = rproc->dev;
1206 int ret;
1207
1208 ret = mutex_lock_interruptible(&rproc->lock);
1209 if (ret) {
1210 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1211 return;
1212 }
1213
1214 /* if the remote proc is still needed, bail out */
1215 if (!atomic_dec_and_test(&rproc->power))
1216 goto out;
1217
1218 /* power off the remote processor */
1219 ret = rproc->ops->stop(rproc);
1220 if (ret) {
1221 atomic_inc(&rproc->power);
1222 dev_err(dev, "can't stop rproc: %d\n", ret);
1223 goto out;
1224 }
1225
1226 /* clean up all acquired resources */
1227 rproc_resource_cleanup(rproc);
1228
1229 rproc_disable_iommu(rproc);
1230
1231 rproc->state = RPROC_OFFLINE;
1232
1233 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1234
1235out:
1236 mutex_unlock(&rproc->lock);
1237 if (!ret)
1238 module_put(dev->driver->owner);
1239}
1240EXPORT_SYMBOL(rproc_shutdown);
1241
1242/**
1243 * rproc_release() - completely deletes the existence of a remote processor
1244 * @kref: the rproc's kref
1245 *
1246 * This function should _never_ be called directly.
1247 *
1248 * The only reasonable location to use it is as an argument when kref_put'ing
1249 * @rproc's refcount.
1250 *
1251 * This way it will be called when no one holds a valid pointer to this @rproc
1252 * anymore (and obviously after it is removed from the rprocs klist).
1253 *
1254 * Note: this function is not static because rproc_vdev_release() needs it when
1255 * it decrements @rproc's refcount.
1256 */
1257void rproc_release(struct kref *kref)
1258{
1259 struct rproc *rproc = container_of(kref, struct rproc, refcount);
7a186941 1260 struct rproc_vdev *rvdev, *rvtmp;
400e64df
OBC
1261
1262 dev_info(rproc->dev, "removing %s\n", rproc->name);
1263
1264 rproc_delete_debug_dir(rproc);
1265
7a186941
OBC
1266 /* clean up remote vdev entries */
1267 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) {
1268 __rproc_free_vrings(rvdev, RVDEV_NUM_VRINGS);
1269 list_del(&rvdev->node);
1270 }
1271
1272 /*
1273 * At this point no one holds a reference to rproc anymore,
1274 * so we can directly unroll rproc_alloc()
1275 */
1276 rproc_free(rproc);
400e64df
OBC
1277}
1278
1279/* will be called when an rproc is added to the rprocs klist */
1280static void klist_rproc_get(struct klist_node *n)
1281{
1282 struct rproc *rproc = container_of(n, struct rproc, node);
1283
1284 kref_get(&rproc->refcount);
1285}
1286
1287/* will be called when an rproc is removed from the rprocs klist */
1288static void klist_rproc_put(struct klist_node *n)
1289{
1290 struct rproc *rproc = container_of(n, struct rproc, node);
1291
1292 kref_put(&rproc->refcount, rproc_release);
1293}
1294
1295static struct rproc *next_rproc(struct klist_iter *i)
1296{
1297 struct klist_node *n;
1298
1299 n = klist_next(i);
1300 if (!n)
1301 return NULL;
1302
1303 return container_of(n, struct rproc, node);
1304}
1305
1306/**
1307 * rproc_get_by_name() - find a remote processor by name and boot it
1308 * @name: name of the remote processor
1309 *
1310 * Finds an rproc handle using the remote processor's name, and then
1311 * boot it. If it's already powered on, then just immediately return
1312 * (successfully).
1313 *
1314 * Returns the rproc handle on success, and NULL on failure.
1315 *
1316 * This function increments the remote processor's refcount, so always
1317 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1318 *
1319 * Note: currently this function (and its counterpart rproc_put()) are not
7a186941 1320 * being used. We need to scrutinize the use cases
400e64df
OBC
1321 * that still need them, and see if we can migrate them to use the non
1322 * name-based boot/shutdown interface.
1323 */
1324struct rproc *rproc_get_by_name(const char *name)
1325{
1326 struct rproc *rproc;
1327 struct klist_iter i;
1328 int ret;
1329
1330 /* find the remote processor, and upref its refcount */
1331 klist_iter_init(&rprocs, &i);
1332 while ((rproc = next_rproc(&i)) != NULL)
1333 if (!strcmp(rproc->name, name)) {
1334 kref_get(&rproc->refcount);
1335 break;
1336 }
1337 klist_iter_exit(&i);
1338
1339 /* can't find this rproc ? */
1340 if (!rproc) {
1341 pr_err("can't find remote processor %s\n", name);
1342 return NULL;
1343 }
1344
1345 ret = rproc_boot(rproc);
1346 if (ret < 0) {
1347 kref_put(&rproc->refcount, rproc_release);
1348 return NULL;
1349 }
1350
1351 return rproc;
1352}
1353EXPORT_SYMBOL(rproc_get_by_name);
1354
1355/**
1356 * rproc_put() - decrement the refcount of a remote processor, and shut it down
1357 * @rproc: the remote processor
1358 *
1359 * This function tries to shutdown @rproc, and it then decrements its
1360 * refcount.
1361 *
1362 * After this function returns, @rproc may _not_ be used anymore, and its
1363 * handle should be considered invalid.
1364 *
1365 * This function should be called _iff_ the @rproc handle was grabbed by
1366 * calling rproc_get_by_name().
1367 */
1368void rproc_put(struct rproc *rproc)
1369{
1370 /* try to power off the remote processor */
1371 rproc_shutdown(rproc);
1372
1373 /* downref rproc's refcount */
1374 kref_put(&rproc->refcount, rproc_release);
1375}
1376EXPORT_SYMBOL(rproc_put);
1377
1378/**
1379 * rproc_register() - register a remote processor
1380 * @rproc: the remote processor handle to register
1381 *
1382 * Registers @rproc with the remoteproc framework, after it has been
1383 * allocated with rproc_alloc().
1384 *
1385 * This is called by the platform-specific rproc implementation, whenever
1386 * a new remote processor device is probed.
1387 *
1388 * Returns 0 on success and an appropriate error code otherwise.
1389 *
1390 * Note: this function initiates an asynchronous firmware loading
1391 * context, which will look for virtio devices supported by the rproc's
1392 * firmware.
1393 *
1394 * If found, those virtio devices will be created and added, so as a result
7a186941 1395 * of registering this remote processor, additional virtio drivers might be
400e64df 1396 * probed.
400e64df
OBC
1397 */
1398int rproc_register(struct rproc *rproc)
1399{
1400 struct device *dev = rproc->dev;
1401 int ret = 0;
1402
1403 /* expose to rproc_get_by_name users */
1404 klist_add_tail(&rproc->node, &rprocs);
1405
1406 dev_info(rproc->dev, "%s is available\n", rproc->name);
1407
489d129a
OBC
1408 dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
1409 dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1410
400e64df
OBC
1411 /* create debugfs entries */
1412 rproc_create_debug_dir(rproc);
1413
1414 /* rproc_unregister() calls must wait until async loader completes */
1415 init_completion(&rproc->firmware_loading_complete);
1416
1417 /*
1418 * We must retrieve early virtio configuration info from
7a186941 1419 * the firmware (e.g. whether to register a virtio device,
400e64df
OBC
1420 * what virtio features does it support, ...).
1421 *
1422 * We're initiating an asynchronous firmware loading, so we can
1423 * be built-in kernel code, without hanging the boot process.
1424 */
1425 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1426 rproc->firmware, dev, GFP_KERNEL,
1427 rproc, rproc_fw_config_virtio);
1428 if (ret < 0) {
1429 dev_err(dev, "request_firmware_nowait failed: %d\n", ret);
1430 complete_all(&rproc->firmware_loading_complete);
1431 klist_remove(&rproc->node);
1432 }
1433
1434 return ret;
1435}
1436EXPORT_SYMBOL(rproc_register);
1437
1438/**
1439 * rproc_alloc() - allocate a remote processor handle
1440 * @dev: the underlying device
1441 * @name: name of this remote processor
1442 * @ops: platform-specific handlers (mainly start/stop)
1443 * @firmware: name of firmware file to load
1444 * @len: length of private data needed by the rproc driver (in bytes)
1445 *
1446 * Allocates a new remote processor handle, but does not register
1447 * it yet.
1448 *
1449 * This function should be used by rproc implementations during initialization
1450 * of the remote processor.
1451 *
1452 * After creating an rproc handle using this function, and when ready,
1453 * implementations should then call rproc_register() to complete
1454 * the registration of the remote processor.
1455 *
1456 * On success the new rproc is returned, and on failure, NULL.
1457 *
1458 * Note: _never_ directly deallocate @rproc, even if it was not registered
1459 * yet. Instead, if you just need to unroll rproc_alloc(), use rproc_free().
1460 */
1461struct rproc *rproc_alloc(struct device *dev, const char *name,
1462 const struct rproc_ops *ops,
1463 const char *firmware, int len)
1464{
1465 struct rproc *rproc;
1466
1467 if (!dev || !name || !ops)
1468 return NULL;
1469
1470 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
1471 if (!rproc) {
1472 dev_err(dev, "%s: kzalloc failed\n", __func__);
1473 return NULL;
1474 }
1475
1476 rproc->dev = dev;
1477 rproc->name = name;
1478 rproc->ops = ops;
1479 rproc->firmware = firmware;
1480 rproc->priv = &rproc[1];
1481
1482 atomic_set(&rproc->power, 0);
1483
1484 kref_init(&rproc->refcount);
1485
1486 mutex_init(&rproc->lock);
1487
7a186941
OBC
1488 idr_init(&rproc->notifyids);
1489
400e64df
OBC
1490 INIT_LIST_HEAD(&rproc->carveouts);
1491 INIT_LIST_HEAD(&rproc->mappings);
1492 INIT_LIST_HEAD(&rproc->traces);
7a186941 1493 INIT_LIST_HEAD(&rproc->rvdevs);
400e64df
OBC
1494
1495 rproc->state = RPROC_OFFLINE;
1496
1497 return rproc;
1498}
1499EXPORT_SYMBOL(rproc_alloc);
1500
1501/**
1502 * rproc_free() - free an rproc handle that was allocated by rproc_alloc
1503 * @rproc: the remote processor handle
1504 *
1505 * This function should _only_ be used if @rproc was only allocated,
1506 * but not registered yet.
1507 *
1508 * If @rproc was already successfully registered (by calling rproc_register()),
1509 * then use rproc_unregister() instead.
1510 */
1511void rproc_free(struct rproc *rproc)
1512{
7a186941
OBC
1513 idr_remove_all(&rproc->notifyids);
1514 idr_destroy(&rproc->notifyids);
1515
400e64df
OBC
1516 kfree(rproc);
1517}
1518EXPORT_SYMBOL(rproc_free);
1519
1520/**
1521 * rproc_unregister() - unregister a remote processor
1522 * @rproc: rproc handle to unregister
1523 *
1524 * Unregisters a remote processor, and decrements its refcount.
1525 * If its refcount drops to zero, then @rproc will be freed. If not,
1526 * it will be freed later once the last reference is dropped.
1527 *
1528 * This function should be called when the platform specific rproc
1529 * implementation decides to remove the rproc device. it should
1530 * _only_ be called if a previous invocation of rproc_register()
1531 * has completed successfully.
1532 *
1533 * After rproc_unregister() returns, @rproc is _not_ valid anymore and
1534 * it shouldn't be used. More specifically, don't call rproc_free()
1535 * or try to directly free @rproc after rproc_unregister() returns;
1536 * none of these are needed, and calling them is a bug.
1537 *
1538 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1539 */
1540int rproc_unregister(struct rproc *rproc)
1541{
7a186941
OBC
1542 struct rproc_vdev *rvdev;
1543
400e64df
OBC
1544 if (!rproc)
1545 return -EINVAL;
1546
1547 /* if rproc is just being registered, wait */
1548 wait_for_completion(&rproc->firmware_loading_complete);
1549
7a186941
OBC
1550 /* clean up remote vdev entries */
1551 list_for_each_entry(rvdev, &rproc->rvdevs, node)
1552 rproc_remove_virtio_dev(rvdev);
400e64df 1553
7a186941
OBC
1554 /* the rproc is downref'ed as soon as it's removed from the klist */
1555 klist_del(&rproc->node);
400e64df 1556
7a186941 1557 /* the rproc will only be released after its refcount drops to zero */
400e64df
OBC
1558 kref_put(&rproc->refcount, rproc_release);
1559
1560 return 0;
1561}
1562EXPORT_SYMBOL(rproc_unregister);
1563
1564static int __init remoteproc_init(void)
1565{
1566 rproc_init_debugfs();
1567 return 0;
1568}
1569module_init(remoteproc_init);
1570
1571static void __exit remoteproc_exit(void)
1572{
1573 rproc_exit_debugfs();
1574}
1575module_exit(remoteproc_exit);
1576
1577MODULE_LICENSE("GPL v2");
1578MODULE_DESCRIPTION("Generic Remote Processor Framework");
This page took 0.157148 seconds and 5 git commands to generate.