remoteproc: remove the hardcoded vring alignment
[deliverable/linux.git] / drivers / remoteproc / remoteproc_core.c
CommitLineData
400e64df
OBC
1/*
2 * Remote Processor Framework
3 *
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
6 *
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25#define pr_fmt(fmt) "%s: " fmt, __func__
26
27#include <linux/kernel.h>
28#include <linux/module.h>
29#include <linux/device.h>
30#include <linux/slab.h>
31#include <linux/mutex.h>
32#include <linux/dma-mapping.h>
33#include <linux/firmware.h>
34#include <linux/string.h>
35#include <linux/debugfs.h>
36#include <linux/remoteproc.h>
37#include <linux/iommu.h>
38#include <linux/klist.h>
39#include <linux/elf.h>
40#include <linux/virtio_ids.h>
41#include <linux/virtio_ring.h>
cf59d3e9 42#include <asm/byteorder.h>
400e64df
OBC
43
44#include "remoteproc_internal.h"
45
46static void klist_rproc_get(struct klist_node *n);
47static void klist_rproc_put(struct klist_node *n);
48
49/*
50 * klist of the available remote processors.
51 *
52 * We need this in order to support name-based lookups (needed by the
53 * rproc_get_by_name()).
54 *
7a186941
OBC
55 * That said, we don't use rproc_get_by_name() at this point.
56 * The use cases that do require its existence should be
400e64df
OBC
57 * scrutinized, and hopefully migrated to rproc_boot() using device-based
58 * binding.
59 *
60 * If/when this materializes, we could drop the klist (and the by_name
61 * API).
62 */
63static DEFINE_KLIST(rprocs, klist_rproc_get, klist_rproc_put);
64
65typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
fd2c15ec
OBC
66 struct resource_table *table, int len);
67typedef int (*rproc_handle_resource_t)(struct rproc *rproc, void *, int avail);
400e64df
OBC
68
69/*
70 * This is the IOMMU fault handler we register with the IOMMU API
71 * (when relevant; not all remote processors access memory through
72 * an IOMMU).
73 *
74 * IOMMU core will invoke this handler whenever the remote processor
75 * will try to access an unmapped device address.
76 *
77 * Currently this is mostly a stub, but it will be later used to trigger
78 * the recovery of the remote processor.
79 */
80static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
81 unsigned long iova, int flags)
82{
83 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
84
85 /*
86 * Let the iommu core know we're not really handling this fault;
87 * we just plan to use this as a recovery trigger.
88 */
89 return -ENOSYS;
90}
91
92static int rproc_enable_iommu(struct rproc *rproc)
93{
94 struct iommu_domain *domain;
95 struct device *dev = rproc->dev;
96 int ret;
97
98 /*
99 * We currently use iommu_present() to decide if an IOMMU
100 * setup is needed.
101 *
102 * This works for simple cases, but will easily fail with
103 * platforms that do have an IOMMU, but not for this specific
104 * rproc.
105 *
106 * This will be easily solved by introducing hw capabilities
107 * that will be set by the remoteproc driver.
108 */
109 if (!iommu_present(dev->bus)) {
0798e1da
MG
110 dev_dbg(dev, "iommu not found\n");
111 return 0;
400e64df
OBC
112 }
113
114 domain = iommu_domain_alloc(dev->bus);
115 if (!domain) {
116 dev_err(dev, "can't alloc iommu domain\n");
117 return -ENOMEM;
118 }
119
120 iommu_set_fault_handler(domain, rproc_iommu_fault);
121
122 ret = iommu_attach_device(domain, dev);
123 if (ret) {
124 dev_err(dev, "can't attach iommu device: %d\n", ret);
125 goto free_domain;
126 }
127
128 rproc->domain = domain;
129
130 return 0;
131
132free_domain:
133 iommu_domain_free(domain);
134 return ret;
135}
136
137static void rproc_disable_iommu(struct rproc *rproc)
138{
139 struct iommu_domain *domain = rproc->domain;
140 struct device *dev = rproc->dev;
141
142 if (!domain)
143 return;
144
145 iommu_detach_device(domain, dev);
146 iommu_domain_free(domain);
147
148 return;
149}
150
151/*
152 * Some remote processors will ask us to allocate them physically contiguous
153 * memory regions (which we call "carveouts"), and map them to specific
154 * device addresses (which are hardcoded in the firmware).
155 *
156 * They may then ask us to copy objects into specific device addresses (e.g.
157 * code/data sections) or expose us certain symbols in other device address
158 * (e.g. their trace buffer).
159 *
160 * This function is an internal helper with which we can go over the allocated
161 * carveouts and translate specific device address to kernel virtual addresses
162 * so we can access the referenced memory.
163 *
164 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
165 * but only on kernel direct mapped RAM memory. Instead, we're just using
166 * here the output of the DMA API, which should be more correct.
167 */
168static void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
169{
170 struct rproc_mem_entry *carveout;
171 void *ptr = NULL;
172
173 list_for_each_entry(carveout, &rproc->carveouts, node) {
174 int offset = da - carveout->da;
175
176 /* try next carveout if da is too small */
177 if (offset < 0)
178 continue;
179
180 /* try next carveout if da is too large */
181 if (offset + len > carveout->len)
182 continue;
183
184 ptr = carveout->va + offset;
185
186 break;
187 }
188
189 return ptr;
190}
191
192/**
193 * rproc_load_segments() - load firmware segments to memory
194 * @rproc: remote processor which will be booted using these fw segments
195 * @elf_data: the content of the ELF firmware image
9bc91231 196 * @len: firmware size (in bytes)
400e64df
OBC
197 *
198 * This function loads the firmware segments to memory, where the remote
199 * processor expects them.
200 *
201 * Some remote processors will expect their code and data to be placed
202 * in specific device addresses, and can't have them dynamically assigned.
203 *
204 * We currently support only those kind of remote processors, and expect
205 * the program header's paddr member to contain those addresses. We then go
206 * through the physically contiguous "carveout" memory regions which we
207 * allocated (and mapped) earlier on behalf of the remote processor,
208 * and "translate" device address to kernel addresses, so we can copy the
209 * segments where they are expected.
210 *
211 * Currently we only support remote processors that required carveout
212 * allocations and got them mapped onto their iommus. Some processors
213 * might be different: they might not have iommus, and would prefer to
214 * directly allocate memory for every segment/resource. This is not yet
215 * supported, though.
216 */
9bc91231
OBC
217static int
218rproc_load_segments(struct rproc *rproc, const u8 *elf_data, size_t len)
400e64df
OBC
219{
220 struct device *dev = rproc->dev;
221 struct elf32_hdr *ehdr;
222 struct elf32_phdr *phdr;
223 int i, ret = 0;
224
225 ehdr = (struct elf32_hdr *)elf_data;
226 phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff);
227
228 /* go through the available ELF segments */
229 for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
230 u32 da = phdr->p_paddr;
231 u32 memsz = phdr->p_memsz;
232 u32 filesz = phdr->p_filesz;
9bc91231 233 u32 offset = phdr->p_offset;
400e64df
OBC
234 void *ptr;
235
236 if (phdr->p_type != PT_LOAD)
237 continue;
238
239 dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
240 phdr->p_type, da, memsz, filesz);
241
242 if (filesz > memsz) {
243 dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
244 filesz, memsz);
245 ret = -EINVAL;
246 break;
247 }
248
9bc91231
OBC
249 if (offset + filesz > len) {
250 dev_err(dev, "truncated fw: need 0x%x avail 0x%x\n",
251 offset + filesz, len);
252 ret = -EINVAL;
253 break;
254 }
255
400e64df
OBC
256 /* grab the kernel address for this device address */
257 ptr = rproc_da_to_va(rproc, da, memsz);
258 if (!ptr) {
259 dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
260 ret = -EINVAL;
261 break;
262 }
263
264 /* put the segment where the remote processor expects it */
265 if (phdr->p_filesz)
266 memcpy(ptr, elf_data + phdr->p_offset, filesz);
267
268 /*
269 * Zero out remaining memory for this segment.
270 *
271 * This isn't strictly required since dma_alloc_coherent already
272 * did this for us. albeit harmless, we may consider removing
273 * this.
274 */
275 if (memsz > filesz)
276 memset(ptr + filesz, 0, memsz - filesz);
277 }
278
279 return ret;
280}
281
7a186941
OBC
282static int
283__rproc_handle_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
400e64df 284{
7a186941
OBC
285 struct rproc *rproc = rvdev->rproc;
286 struct device *dev = rproc->dev;
287 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
288 dma_addr_t dma;
289 void *va;
290 int ret, size, notifyid;
400e64df 291
7a186941
OBC
292 dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
293 i, vring->da, vring->num, vring->align);
294
295 /* make sure reserved bytes are zeroes */
296 if (vring->reserved) {
297 dev_err(dev, "vring rsc has non zero reserved bytes\n");
fd2c15ec
OBC
298 return -EINVAL;
299 }
300
63140e0e
OBC
301 /* verify queue size and vring alignment are sane */
302 if (!vring->num || !vring->align) {
303 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
304 vring->num, vring->align);
400e64df
OBC
305 return -EINVAL;
306 }
307
7a186941 308 /* actual size of vring (in bytes) */
63140e0e 309 size = PAGE_ALIGN(vring_size(vring->num, vring->align));
7a186941
OBC
310
311 if (!idr_pre_get(&rproc->notifyids, GFP_KERNEL)) {
312 dev_err(dev, "idr_pre_get failed\n");
313 return -ENOMEM;
314 }
315
316 /*
317 * Allocate non-cacheable memory for the vring. In the future
318 * this call will also configure the IOMMU for us
319 */
320 va = dma_alloc_coherent(dev, size, &dma, GFP_KERNEL);
321 if (!va) {
322 dev_err(dev, "dma_alloc_coherent failed\n");
400e64df
OBC
323 return -EINVAL;
324 }
325
7a186941
OBC
326 /* assign an rproc-wide unique index for this vring */
327 /* TODO: assign a notifyid for rvdev updates as well */
328 ret = idr_get_new(&rproc->notifyids, &rvdev->vring[i], &notifyid);
329 if (ret) {
330 dev_err(dev, "idr_get_new failed: %d\n", ret);
331 dma_free_coherent(dev, size, va, dma);
332 return ret;
333 }
400e64df 334
7a186941
OBC
335 /* let the rproc know the da and notifyid of this vring */
336 /* TODO: expose this to remote processor */
337 vring->da = dma;
338 vring->notifyid = notifyid;
400e64df 339
7a186941
OBC
340 dev_dbg(dev, "vring%d: va %p dma %x size %x idr %d\n", i, va,
341 dma, size, notifyid);
342
343 rvdev->vring[i].len = vring->num;
63140e0e 344 rvdev->vring[i].align = vring->align;
7a186941
OBC
345 rvdev->vring[i].va = va;
346 rvdev->vring[i].dma = dma;
347 rvdev->vring[i].notifyid = notifyid;
348 rvdev->vring[i].rvdev = rvdev;
400e64df
OBC
349
350 return 0;
351}
352
7a186941
OBC
353static void __rproc_free_vrings(struct rproc_vdev *rvdev, int i)
354{
355 struct rproc *rproc = rvdev->rproc;
356
357 for (i--; i > 0; i--) {
358 struct rproc_vring *rvring = &rvdev->vring[i];
63140e0e 359 int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
7a186941
OBC
360
361 dma_free_coherent(rproc->dev, size, rvring->va, rvring->dma);
362 idr_remove(&rproc->notifyids, rvring->notifyid);
363 }
364}
365
400e64df 366/**
fd2c15ec 367 * rproc_handle_vdev() - handle a vdev fw resource
400e64df
OBC
368 * @rproc: the remote processor
369 * @rsc: the vring resource descriptor
fd2c15ec 370 * @avail: size of available data (for sanity checking the image)
400e64df 371 *
7a186941
OBC
372 * This resource entry requests the host to statically register a virtio
373 * device (vdev), and setup everything needed to support it. It contains
374 * everything needed to make it possible: the virtio device id, virtio
375 * device features, vrings information, virtio config space, etc...
376 *
377 * Before registering the vdev, the vrings are allocated from non-cacheable
378 * physically contiguous memory. Currently we only support two vrings per
379 * remote processor (temporary limitation). We might also want to consider
380 * doing the vring allocation only later when ->find_vqs() is invoked, and
381 * then release them upon ->del_vqs().
382 *
383 * Note: @da is currently not really handled correctly: we dynamically
384 * allocate it using the DMA API, ignoring requested hard coded addresses,
385 * and we don't take care of any required IOMMU programming. This is all
386 * going to be taken care of when the generic iommu-based DMA API will be
387 * merged. Meanwhile, statically-addressed iommu-based firmware images should
388 * use RSC_DEVMEM resource entries to map their required @da to the physical
389 * address of their base CMA region (ouch, hacky!).
400e64df
OBC
390 *
391 * Returns 0 on success, or an appropriate error code otherwise
392 */
fd2c15ec
OBC
393static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
394 int avail)
400e64df
OBC
395{
396 struct device *dev = rproc->dev;
7a186941
OBC
397 struct rproc_vdev *rvdev;
398 int i, ret;
400e64df 399
fd2c15ec
OBC
400 /* make sure resource isn't truncated */
401 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
402 + rsc->config_len > avail) {
403 dev_err(rproc->dev, "vdev rsc is truncated\n");
400e64df
OBC
404 return -EINVAL;
405 }
406
fd2c15ec
OBC
407 /* make sure reserved bytes are zeroes */
408 if (rsc->reserved[0] || rsc->reserved[1]) {
409 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
400e64df
OBC
410 return -EINVAL;
411 }
412
fd2c15ec
OBC
413 dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
414 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
415
7a186941
OBC
416 /* we currently support only two vrings per rvdev */
417 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
fd2c15ec 418 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
400e64df
OBC
419 return -EINVAL;
420 }
421
7a186941
OBC
422 rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
423 if (!rvdev)
424 return -ENOMEM;
400e64df 425
7a186941 426 rvdev->rproc = rproc;
400e64df 427
7a186941
OBC
428 /* allocate the vrings */
429 for (i = 0; i < rsc->num_of_vrings; i++) {
430 ret = __rproc_handle_vring(rvdev, rsc, i);
431 if (ret)
432 goto free_vrings;
433 }
400e64df 434
7a186941
OBC
435 /* remember the device features */
436 rvdev->dfeatures = rsc->dfeatures;
fd2c15ec 437
7a186941 438 list_add_tail(&rvdev->node, &rproc->rvdevs);
fd2c15ec 439
7a186941
OBC
440 /* it is now safe to add the virtio device */
441 ret = rproc_add_virtio_dev(rvdev, rsc->id);
442 if (ret)
443 goto free_vrings;
400e64df
OBC
444
445 return 0;
7a186941
OBC
446
447free_vrings:
448 __rproc_free_vrings(rvdev, i);
449 kfree(rvdev);
450 return ret;
400e64df
OBC
451}
452
453/**
454 * rproc_handle_trace() - handle a shared trace buffer resource
455 * @rproc: the remote processor
456 * @rsc: the trace resource descriptor
fd2c15ec 457 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
458 *
459 * In case the remote processor dumps trace logs into memory,
460 * export it via debugfs.
461 *
462 * Currently, the 'da' member of @rsc should contain the device address
463 * where the remote processor is dumping the traces. Later we could also
464 * support dynamically allocating this address using the generic
465 * DMA API (but currently there isn't a use case for that).
466 *
467 * Returns 0 on success, or an appropriate error code otherwise
468 */
fd2c15ec
OBC
469static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
470 int avail)
400e64df
OBC
471{
472 struct rproc_mem_entry *trace;
473 struct device *dev = rproc->dev;
474 void *ptr;
475 char name[15];
476
fd2c15ec
OBC
477 if (sizeof(*rsc) > avail) {
478 dev_err(rproc->dev, "trace rsc is truncated\n");
479 return -EINVAL;
480 }
481
482 /* make sure reserved bytes are zeroes */
483 if (rsc->reserved) {
484 dev_err(dev, "trace rsc has non zero reserved bytes\n");
485 return -EINVAL;
486 }
487
400e64df
OBC
488 /* what's the kernel address of this resource ? */
489 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
490 if (!ptr) {
491 dev_err(dev, "erroneous trace resource entry\n");
492 return -EINVAL;
493 }
494
495 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
496 if (!trace) {
497 dev_err(dev, "kzalloc trace failed\n");
498 return -ENOMEM;
499 }
500
501 /* set the trace buffer dma properties */
502 trace->len = rsc->len;
503 trace->va = ptr;
504
505 /* make sure snprintf always null terminates, even if truncating */
506 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
507
508 /* create the debugfs entry */
509 trace->priv = rproc_create_trace_file(name, rproc, trace);
510 if (!trace->priv) {
511 trace->va = NULL;
512 kfree(trace);
513 return -EINVAL;
514 }
515
516 list_add_tail(&trace->node, &rproc->traces);
517
518 rproc->num_traces++;
519
fd2c15ec 520 dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
400e64df
OBC
521 rsc->da, rsc->len);
522
523 return 0;
524}
525
526/**
527 * rproc_handle_devmem() - handle devmem resource entry
528 * @rproc: remote processor handle
529 * @rsc: the devmem resource entry
fd2c15ec 530 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
531 *
532 * Remote processors commonly need to access certain on-chip peripherals.
533 *
534 * Some of these remote processors access memory via an iommu device,
535 * and might require us to configure their iommu before they can access
536 * the on-chip peripherals they need.
537 *
538 * This resource entry is a request to map such a peripheral device.
539 *
540 * These devmem entries will contain the physical address of the device in
541 * the 'pa' member. If a specific device address is expected, then 'da' will
542 * contain it (currently this is the only use case supported). 'len' will
543 * contain the size of the physical region we need to map.
544 *
545 * Currently we just "trust" those devmem entries to contain valid physical
546 * addresses, but this is going to change: we want the implementations to
547 * tell us ranges of physical addresses the firmware is allowed to request,
548 * and not allow firmwares to request access to physical addresses that
549 * are outside those ranges.
550 */
fd2c15ec
OBC
551static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
552 int avail)
400e64df
OBC
553{
554 struct rproc_mem_entry *mapping;
555 int ret;
556
557 /* no point in handling this resource without a valid iommu domain */
558 if (!rproc->domain)
559 return -EINVAL;
560
fd2c15ec
OBC
561 if (sizeof(*rsc) > avail) {
562 dev_err(rproc->dev, "devmem rsc is truncated\n");
563 return -EINVAL;
564 }
565
566 /* make sure reserved bytes are zeroes */
567 if (rsc->reserved) {
568 dev_err(rproc->dev, "devmem rsc has non zero reserved bytes\n");
569 return -EINVAL;
570 }
571
400e64df
OBC
572 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
573 if (!mapping) {
574 dev_err(rproc->dev, "kzalloc mapping failed\n");
575 return -ENOMEM;
576 }
577
578 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
579 if (ret) {
580 dev_err(rproc->dev, "failed to map devmem: %d\n", ret);
581 goto out;
582 }
583
584 /*
585 * We'll need this info later when we'll want to unmap everything
586 * (e.g. on shutdown).
587 *
588 * We can't trust the remote processor not to change the resource
589 * table, so we must maintain this info independently.
590 */
591 mapping->da = rsc->da;
592 mapping->len = rsc->len;
593 list_add_tail(&mapping->node, &rproc->mappings);
594
fd2c15ec 595 dev_dbg(rproc->dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
400e64df
OBC
596 rsc->pa, rsc->da, rsc->len);
597
598 return 0;
599
600out:
601 kfree(mapping);
602 return ret;
603}
604
605/**
606 * rproc_handle_carveout() - handle phys contig memory allocation requests
607 * @rproc: rproc handle
608 * @rsc: the resource entry
fd2c15ec 609 * @avail: size of available data (for image validation)
400e64df
OBC
610 *
611 * This function will handle firmware requests for allocation of physically
612 * contiguous memory regions.
613 *
614 * These request entries should come first in the firmware's resource table,
615 * as other firmware entries might request placing other data objects inside
616 * these memory regions (e.g. data/code segments, trace resource entries, ...).
617 *
618 * Allocating memory this way helps utilizing the reserved physical memory
619 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
620 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
621 * pressure is important; it may have a substantial impact on performance.
622 */
fd2c15ec
OBC
623static int rproc_handle_carveout(struct rproc *rproc,
624 struct fw_rsc_carveout *rsc, int avail)
400e64df
OBC
625{
626 struct rproc_mem_entry *carveout, *mapping;
627 struct device *dev = rproc->dev;
628 dma_addr_t dma;
629 void *va;
630 int ret;
631
fd2c15ec
OBC
632 if (sizeof(*rsc) > avail) {
633 dev_err(rproc->dev, "carveout rsc is truncated\n");
634 return -EINVAL;
635 }
636
637 /* make sure reserved bytes are zeroes */
638 if (rsc->reserved) {
639 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
640 return -EINVAL;
641 }
642
643 dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
644 rsc->da, rsc->pa, rsc->len, rsc->flags);
645
400e64df
OBC
646 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
647 if (!mapping) {
648 dev_err(dev, "kzalloc mapping failed\n");
649 return -ENOMEM;
650 }
651
652 carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
653 if (!carveout) {
654 dev_err(dev, "kzalloc carveout failed\n");
655 ret = -ENOMEM;
656 goto free_mapping;
657 }
658
659 va = dma_alloc_coherent(dev, rsc->len, &dma, GFP_KERNEL);
660 if (!va) {
661 dev_err(dev, "failed to dma alloc carveout: %d\n", rsc->len);
662 ret = -ENOMEM;
663 goto free_carv;
664 }
665
666 dev_dbg(dev, "carveout va %p, dma %x, len 0x%x\n", va, dma, rsc->len);
667
668 /*
669 * Ok, this is non-standard.
670 *
671 * Sometimes we can't rely on the generic iommu-based DMA API
672 * to dynamically allocate the device address and then set the IOMMU
673 * tables accordingly, because some remote processors might
674 * _require_ us to use hard coded device addresses that their
675 * firmware was compiled with.
676 *
677 * In this case, we must use the IOMMU API directly and map
678 * the memory to the device address as expected by the remote
679 * processor.
680 *
681 * Obviously such remote processor devices should not be configured
682 * to use the iommu-based DMA API: we expect 'dma' to contain the
683 * physical address in this case.
684 */
685 if (rproc->domain) {
686 ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
687 rsc->flags);
688 if (ret) {
689 dev_err(dev, "iommu_map failed: %d\n", ret);
690 goto dma_free;
691 }
692
693 /*
694 * We'll need this info later when we'll want to unmap
695 * everything (e.g. on shutdown).
696 *
697 * We can't trust the remote processor not to change the
698 * resource table, so we must maintain this info independently.
699 */
700 mapping->da = rsc->da;
701 mapping->len = rsc->len;
702 list_add_tail(&mapping->node, &rproc->mappings);
703
fd2c15ec 704 dev_dbg(dev, "carveout mapped 0x%x to 0x%x\n", rsc->da, dma);
400e64df
OBC
705
706 /*
707 * Some remote processors might need to know the pa
708 * even though they are behind an IOMMU. E.g., OMAP4's
709 * remote M3 processor needs this so it can control
710 * on-chip hardware accelerators that are not behind
711 * the IOMMU, and therefor must know the pa.
712 *
713 * Generally we don't want to expose physical addresses
714 * if we don't have to (remote processors are generally
715 * _not_ trusted), so we might want to do this only for
716 * remote processor that _must_ have this (e.g. OMAP4's
717 * dual M3 subsystem).
718 */
719 rsc->pa = dma;
720 }
721
722 carveout->va = va;
723 carveout->len = rsc->len;
724 carveout->dma = dma;
725 carveout->da = rsc->da;
726
727 list_add_tail(&carveout->node, &rproc->carveouts);
728
729 return 0;
730
731dma_free:
732 dma_free_coherent(dev, rsc->len, va, dma);
733free_carv:
734 kfree(carveout);
735free_mapping:
736 kfree(mapping);
737 return ret;
738}
739
e12bc14b
OBC
740/*
741 * A lookup table for resource handlers. The indices are defined in
742 * enum fw_resource_type.
743 */
744static rproc_handle_resource_t rproc_handle_rsc[] = {
fd2c15ec
OBC
745 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
746 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
747 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
7a186941 748 [RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
e12bc14b
OBC
749};
750
400e64df
OBC
751/* handle firmware resource entries before booting the remote processor */
752static int
fd2c15ec 753rproc_handle_boot_rsc(struct rproc *rproc, struct resource_table *table, int len)
400e64df
OBC
754{
755 struct device *dev = rproc->dev;
e12bc14b 756 rproc_handle_resource_t handler;
fd2c15ec
OBC
757 int ret = 0, i;
758
759 for (i = 0; i < table->num; i++) {
760 int offset = table->offset[i];
761 struct fw_rsc_hdr *hdr = (void *)table + offset;
762 int avail = len - offset - sizeof(*hdr);
763 void *rsc = (void *)hdr + sizeof(*hdr);
764
765 /* make sure table isn't truncated */
766 if (avail < 0) {
767 dev_err(dev, "rsc table is truncated\n");
768 return -EINVAL;
769 }
400e64df 770
fd2c15ec 771 dev_dbg(dev, "rsc: type %d\n", hdr->type);
400e64df 772
fd2c15ec
OBC
773 if (hdr->type >= RSC_LAST) {
774 dev_warn(dev, "unsupported resource %d\n", hdr->type);
e12bc14b 775 continue;
400e64df
OBC
776 }
777
fd2c15ec 778 handler = rproc_handle_rsc[hdr->type];
e12bc14b
OBC
779 if (!handler)
780 continue;
781
fd2c15ec 782 ret = handler(rproc, rsc, avail);
400e64df
OBC
783 if (ret)
784 break;
400e64df
OBC
785 }
786
787 return ret;
788}
789
790/* handle firmware resource entries while registering the remote processor */
791static int
fd2c15ec 792rproc_handle_virtio_rsc(struct rproc *rproc, struct resource_table *table, int len)
400e64df
OBC
793{
794 struct device *dev = rproc->dev;
fd2c15ec
OBC
795 int ret = 0, i;
796
797 for (i = 0; i < table->num; i++) {
798 int offset = table->offset[i];
799 struct fw_rsc_hdr *hdr = (void *)table + offset;
800 int avail = len - offset - sizeof(*hdr);
7a186941 801 struct fw_rsc_vdev *vrsc;
400e64df 802
fd2c15ec
OBC
803 /* make sure table isn't truncated */
804 if (avail < 0) {
805 dev_err(dev, "rsc table is truncated\n");
806 return -EINVAL;
807 }
808
809 dev_dbg(dev, "%s: rsc type %d\n", __func__, hdr->type);
810
7a186941
OBC
811 if (hdr->type != RSC_VDEV)
812 continue;
813
814 vrsc = (struct fw_rsc_vdev *)hdr->data;
815
816 ret = rproc_handle_vdev(rproc, vrsc, avail);
817 if (ret)
400e64df 818 break;
fd2c15ec 819 }
400e64df
OBC
820
821 return ret;
822}
823
824/**
825 * rproc_handle_resources() - find and handle the resource table
826 * @rproc: the rproc handle
827 * @elf_data: the content of the ELF firmware image
9bc91231 828 * @len: firmware size (in bytes)
400e64df
OBC
829 * @handler: function that should be used to handle the resource table
830 *
831 * This function finds the resource table inside the remote processor's
832 * firmware, and invoke a user-supplied handler with it (we have two
833 * possible handlers: one is invoked upon registration of @rproc,
834 * in order to register the supported virito devices, and the other is
835 * invoked when @rproc is actually booted).
836 *
837 * Currently this function fails if a resource table doesn't exist.
838 * This restriction will be removed when we'll start supporting remote
839 * processors that don't need a resource table.
840 */
841static int rproc_handle_resources(struct rproc *rproc, const u8 *elf_data,
9bc91231 842 size_t len, rproc_handle_resources_t handler)
400e64df
OBC
843
844{
845 struct elf32_hdr *ehdr;
846 struct elf32_shdr *shdr;
847 const char *name_table;
fd2c15ec 848 struct device *dev = rproc->dev;
400e64df 849 int i, ret = -EINVAL;
fd2c15ec 850 struct resource_table *table;
400e64df
OBC
851
852 ehdr = (struct elf32_hdr *)elf_data;
853 shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff);
854 name_table = elf_data + shdr[ehdr->e_shstrndx].sh_offset;
855
856 /* look for the resource table and handle it */
857 for (i = 0; i < ehdr->e_shnum; i++, shdr++) {
fd2c15ec
OBC
858 int size = shdr->sh_size;
859 int offset = shdr->sh_offset;
400e64df 860
fd2c15ec
OBC
861 if (strcmp(name_table + shdr->sh_name, ".resource_table"))
862 continue;
9bc91231 863
fd2c15ec 864 table = (struct resource_table *)(elf_data + offset);
400e64df 865
fd2c15ec
OBC
866 /* make sure we have the entire table */
867 if (offset + size > len) {
868 dev_err(dev, "resource table truncated\n");
869 return -EINVAL;
870 }
871
872 /* make sure table has at least the header */
873 if (sizeof(struct resource_table) > size) {
874 dev_err(dev, "header-less resource table\n");
875 return -EINVAL;
400e64df 876 }
fd2c15ec
OBC
877
878 /* we don't support any version beyond the first */
879 if (table->ver != 1) {
880 dev_err(dev, "unsupported fw ver: %d\n", table->ver);
881 return -EINVAL;
882 }
883
884 /* make sure reserved bytes are zeroes */
885 if (table->reserved[0] || table->reserved[1]) {
886 dev_err(dev, "non zero reserved bytes\n");
887 return -EINVAL;
888 }
889
890 /* make sure the offsets array isn't truncated */
891 if (table->num * sizeof(table->offset[0]) +
892 sizeof(struct resource_table) > size) {
893 dev_err(dev, "resource table incomplete\n");
894 return -EINVAL;
895 }
896
897 ret = handler(rproc, table, shdr->sh_size);
898 break;
400e64df
OBC
899 }
900
901 return ret;
902}
903
904/**
905 * rproc_resource_cleanup() - clean up and free all acquired resources
906 * @rproc: rproc handle
907 *
908 * This function will free all resources acquired for @rproc, and it
7a186941 909 * is called whenever @rproc either shuts down or fails to boot.
400e64df
OBC
910 */
911static void rproc_resource_cleanup(struct rproc *rproc)
912{
913 struct rproc_mem_entry *entry, *tmp;
914 struct device *dev = rproc->dev;
400e64df
OBC
915
916 /* clean up debugfs trace entries */
917 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
918 rproc_remove_trace_file(entry->priv);
919 rproc->num_traces--;
920 list_del(&entry->node);
921 kfree(entry);
922 }
923
400e64df
OBC
924 /* clean up carveout allocations */
925 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
926 dma_free_coherent(dev, entry->len, entry->va, entry->dma);
927 list_del(&entry->node);
928 kfree(entry);
929 }
930
931 /* clean up iommu mapping entries */
932 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
933 size_t unmapped;
934
935 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
936 if (unmapped != entry->len) {
937 /* nothing much to do besides complaining */
938 dev_err(dev, "failed to unmap %u/%u\n", entry->len,
939 unmapped);
940 }
941
942 list_del(&entry->node);
943 kfree(entry);
944 }
945}
946
947/* make sure this fw image is sane */
948static int rproc_fw_sanity_check(struct rproc *rproc, const struct firmware *fw)
949{
950 const char *name = rproc->firmware;
951 struct device *dev = rproc->dev;
952 struct elf32_hdr *ehdr;
40b78b2c 953 char class;
400e64df
OBC
954
955 if (!fw) {
956 dev_err(dev, "failed to load %s\n", name);
957 return -EINVAL;
958 }
959
960 if (fw->size < sizeof(struct elf32_hdr)) {
961 dev_err(dev, "Image is too small\n");
962 return -EINVAL;
963 }
964
965 ehdr = (struct elf32_hdr *)fw->data;
966
40b78b2c
OBC
967 /* We only support ELF32 at this point */
968 class = ehdr->e_ident[EI_CLASS];
969 if (class != ELFCLASS32) {
970 dev_err(dev, "Unsupported class: %d\n", class);
971 return -EINVAL;
972 }
973
cf59d3e9
OBC
974 /* We assume the firmware has the same endianess as the host */
975# ifdef __LITTLE_ENDIAN
976 if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB) {
977# else /* BIG ENDIAN */
978 if (ehdr->e_ident[EI_DATA] != ELFDATA2MSB) {
979# endif
980 dev_err(dev, "Unsupported firmware endianess\n");
981 return -EINVAL;
982 }
983
9bc91231
OBC
984 if (fw->size < ehdr->e_shoff + sizeof(struct elf32_shdr)) {
985 dev_err(dev, "Image is too small\n");
986 return -EINVAL;
987 }
988
400e64df
OBC
989 if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG)) {
990 dev_err(dev, "Image is corrupted (bad magic)\n");
991 return -EINVAL;
992 }
993
994 if (ehdr->e_phnum == 0) {
995 dev_err(dev, "No loadable segments\n");
996 return -EINVAL;
997 }
998
999 if (ehdr->e_phoff > fw->size) {
1000 dev_err(dev, "Firmware size is too small\n");
1001 return -EINVAL;
1002 }
1003
1004 return 0;
1005}
1006
1007/*
1008 * take a firmware and boot a remote processor with it.
1009 */
1010static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1011{
1012 struct device *dev = rproc->dev;
1013 const char *name = rproc->firmware;
1014 struct elf32_hdr *ehdr;
1015 int ret;
1016
1017 ret = rproc_fw_sanity_check(rproc, fw);
1018 if (ret)
1019 return ret;
1020
1021 ehdr = (struct elf32_hdr *)fw->data;
1022
1023 dev_info(dev, "Booting fw image %s, size %d\n", name, fw->size);
1024
1025 /*
1026 * if enabling an IOMMU isn't relevant for this rproc, this is
1027 * just a nop
1028 */
1029 ret = rproc_enable_iommu(rproc);
1030 if (ret) {
1031 dev_err(dev, "can't enable iommu: %d\n", ret);
1032 return ret;
1033 }
1034
1035 /*
1036 * The ELF entry point is the rproc's boot addr (though this is not
1037 * a configurable property of all remote processors: some will always
1038 * boot at a specific hardcoded address).
1039 */
1040 rproc->bootaddr = ehdr->e_entry;
1041
1042 /* handle fw resources which are required to boot rproc */
9bc91231
OBC
1043 ret = rproc_handle_resources(rproc, fw->data, fw->size,
1044 rproc_handle_boot_rsc);
400e64df
OBC
1045 if (ret) {
1046 dev_err(dev, "Failed to process resources: %d\n", ret);
1047 goto clean_up;
1048 }
1049
1050 /* load the ELF segments to memory */
9bc91231 1051 ret = rproc_load_segments(rproc, fw->data, fw->size);
400e64df
OBC
1052 if (ret) {
1053 dev_err(dev, "Failed to load program segments: %d\n", ret);
1054 goto clean_up;
1055 }
1056
1057 /* power up the remote processor */
1058 ret = rproc->ops->start(rproc);
1059 if (ret) {
1060 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1061 goto clean_up;
1062 }
1063
1064 rproc->state = RPROC_RUNNING;
1065
1066 dev_info(dev, "remote processor %s is now up\n", rproc->name);
1067
1068 return 0;
1069
1070clean_up:
1071 rproc_resource_cleanup(rproc);
1072 rproc_disable_iommu(rproc);
1073 return ret;
1074}
1075
1076/*
1077 * take a firmware and look for virtio devices to register.
1078 *
1079 * Note: this function is called asynchronously upon registration of the
1080 * remote processor (so we must wait until it completes before we try
1081 * to unregister the device. one other option is just to use kref here,
1082 * that might be cleaner).
1083 */
1084static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
1085{
1086 struct rproc *rproc = context;
1087 struct device *dev = rproc->dev;
1088 int ret;
1089
1090 if (rproc_fw_sanity_check(rproc, fw) < 0)
1091 goto out;
1092
fd2c15ec 1093 /* does the fw support any virtio devices ? */
9bc91231
OBC
1094 ret = rproc_handle_resources(rproc, fw->data, fw->size,
1095 rproc_handle_virtio_rsc);
400e64df
OBC
1096 if (ret) {
1097 dev_info(dev, "No fw virtio device was found\n");
1098 goto out;
1099 }
1100
400e64df
OBC
1101out:
1102 if (fw)
1103 release_firmware(fw);
1104 /* allow rproc_unregister() contexts, if any, to proceed */
1105 complete_all(&rproc->firmware_loading_complete);
1106}
1107
1108/**
1109 * rproc_boot() - boot a remote processor
1110 * @rproc: handle of a remote processor
1111 *
1112 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1113 *
1114 * If the remote processor is already powered on, this function immediately
1115 * returns (successfully).
1116 *
1117 * Returns 0 on success, and an appropriate error value otherwise.
1118 */
1119int rproc_boot(struct rproc *rproc)
1120{
1121 const struct firmware *firmware_p;
1122 struct device *dev;
1123 int ret;
1124
1125 if (!rproc) {
1126 pr_err("invalid rproc handle\n");
1127 return -EINVAL;
1128 }
1129
1130 dev = rproc->dev;
1131
1132 ret = mutex_lock_interruptible(&rproc->lock);
1133 if (ret) {
1134 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1135 return ret;
1136 }
1137
1138 /* loading a firmware is required */
1139 if (!rproc->firmware) {
1140 dev_err(dev, "%s: no firmware to load\n", __func__);
1141 ret = -EINVAL;
1142 goto unlock_mutex;
1143 }
1144
1145 /* prevent underlying implementation from being removed */
1146 if (!try_module_get(dev->driver->owner)) {
1147 dev_err(dev, "%s: can't get owner\n", __func__);
1148 ret = -EINVAL;
1149 goto unlock_mutex;
1150 }
1151
1152 /* skip the boot process if rproc is already powered up */
1153 if (atomic_inc_return(&rproc->power) > 1) {
1154 ret = 0;
1155 goto unlock_mutex;
1156 }
1157
1158 dev_info(dev, "powering up %s\n", rproc->name);
1159
1160 /* load firmware */
1161 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1162 if (ret < 0) {
1163 dev_err(dev, "request_firmware failed: %d\n", ret);
1164 goto downref_rproc;
1165 }
1166
1167 ret = rproc_fw_boot(rproc, firmware_p);
1168
1169 release_firmware(firmware_p);
1170
1171downref_rproc:
1172 if (ret) {
1173 module_put(dev->driver->owner);
1174 atomic_dec(&rproc->power);
1175 }
1176unlock_mutex:
1177 mutex_unlock(&rproc->lock);
1178 return ret;
1179}
1180EXPORT_SYMBOL(rproc_boot);
1181
1182/**
1183 * rproc_shutdown() - power off the remote processor
1184 * @rproc: the remote processor
1185 *
1186 * Power off a remote processor (previously booted with rproc_boot()).
1187 *
1188 * In case @rproc is still being used by an additional user(s), then
1189 * this function will just decrement the power refcount and exit,
1190 * without really powering off the device.
1191 *
1192 * Every call to rproc_boot() must (eventually) be accompanied by a call
1193 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1194 *
1195 * Notes:
1196 * - we're not decrementing the rproc's refcount, only the power refcount.
1197 * which means that the @rproc handle stays valid even after rproc_shutdown()
1198 * returns, and users can still use it with a subsequent rproc_boot(), if
1199 * needed.
1200 * - don't call rproc_shutdown() to unroll rproc_get_by_name(), exactly
1201 * because rproc_shutdown() _does not_ decrement the refcount of @rproc.
1202 * To decrement the refcount of @rproc, use rproc_put() (but _only_ if
1203 * you acquired @rproc using rproc_get_by_name()).
1204 */
1205void rproc_shutdown(struct rproc *rproc)
1206{
1207 struct device *dev = rproc->dev;
1208 int ret;
1209
1210 ret = mutex_lock_interruptible(&rproc->lock);
1211 if (ret) {
1212 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1213 return;
1214 }
1215
1216 /* if the remote proc is still needed, bail out */
1217 if (!atomic_dec_and_test(&rproc->power))
1218 goto out;
1219
1220 /* power off the remote processor */
1221 ret = rproc->ops->stop(rproc);
1222 if (ret) {
1223 atomic_inc(&rproc->power);
1224 dev_err(dev, "can't stop rproc: %d\n", ret);
1225 goto out;
1226 }
1227
1228 /* clean up all acquired resources */
1229 rproc_resource_cleanup(rproc);
1230
1231 rproc_disable_iommu(rproc);
1232
1233 rproc->state = RPROC_OFFLINE;
1234
1235 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1236
1237out:
1238 mutex_unlock(&rproc->lock);
1239 if (!ret)
1240 module_put(dev->driver->owner);
1241}
1242EXPORT_SYMBOL(rproc_shutdown);
1243
1244/**
1245 * rproc_release() - completely deletes the existence of a remote processor
1246 * @kref: the rproc's kref
1247 *
1248 * This function should _never_ be called directly.
1249 *
1250 * The only reasonable location to use it is as an argument when kref_put'ing
1251 * @rproc's refcount.
1252 *
1253 * This way it will be called when no one holds a valid pointer to this @rproc
1254 * anymore (and obviously after it is removed from the rprocs klist).
1255 *
1256 * Note: this function is not static because rproc_vdev_release() needs it when
1257 * it decrements @rproc's refcount.
1258 */
1259void rproc_release(struct kref *kref)
1260{
1261 struct rproc *rproc = container_of(kref, struct rproc, refcount);
7a186941 1262 struct rproc_vdev *rvdev, *rvtmp;
400e64df
OBC
1263
1264 dev_info(rproc->dev, "removing %s\n", rproc->name);
1265
1266 rproc_delete_debug_dir(rproc);
1267
7a186941
OBC
1268 /* clean up remote vdev entries */
1269 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) {
1270 __rproc_free_vrings(rvdev, RVDEV_NUM_VRINGS);
1271 list_del(&rvdev->node);
1272 }
1273
1274 /*
1275 * At this point no one holds a reference to rproc anymore,
1276 * so we can directly unroll rproc_alloc()
1277 */
1278 rproc_free(rproc);
400e64df
OBC
1279}
1280
1281/* will be called when an rproc is added to the rprocs klist */
1282static void klist_rproc_get(struct klist_node *n)
1283{
1284 struct rproc *rproc = container_of(n, struct rproc, node);
1285
1286 kref_get(&rproc->refcount);
1287}
1288
1289/* will be called when an rproc is removed from the rprocs klist */
1290static void klist_rproc_put(struct klist_node *n)
1291{
1292 struct rproc *rproc = container_of(n, struct rproc, node);
1293
1294 kref_put(&rproc->refcount, rproc_release);
1295}
1296
1297static struct rproc *next_rproc(struct klist_iter *i)
1298{
1299 struct klist_node *n;
1300
1301 n = klist_next(i);
1302 if (!n)
1303 return NULL;
1304
1305 return container_of(n, struct rproc, node);
1306}
1307
1308/**
1309 * rproc_get_by_name() - find a remote processor by name and boot it
1310 * @name: name of the remote processor
1311 *
1312 * Finds an rproc handle using the remote processor's name, and then
1313 * boot it. If it's already powered on, then just immediately return
1314 * (successfully).
1315 *
1316 * Returns the rproc handle on success, and NULL on failure.
1317 *
1318 * This function increments the remote processor's refcount, so always
1319 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1320 *
1321 * Note: currently this function (and its counterpart rproc_put()) are not
7a186941 1322 * being used. We need to scrutinize the use cases
400e64df
OBC
1323 * that still need them, and see if we can migrate them to use the non
1324 * name-based boot/shutdown interface.
1325 */
1326struct rproc *rproc_get_by_name(const char *name)
1327{
1328 struct rproc *rproc;
1329 struct klist_iter i;
1330 int ret;
1331
1332 /* find the remote processor, and upref its refcount */
1333 klist_iter_init(&rprocs, &i);
1334 while ((rproc = next_rproc(&i)) != NULL)
1335 if (!strcmp(rproc->name, name)) {
1336 kref_get(&rproc->refcount);
1337 break;
1338 }
1339 klist_iter_exit(&i);
1340
1341 /* can't find this rproc ? */
1342 if (!rproc) {
1343 pr_err("can't find remote processor %s\n", name);
1344 return NULL;
1345 }
1346
1347 ret = rproc_boot(rproc);
1348 if (ret < 0) {
1349 kref_put(&rproc->refcount, rproc_release);
1350 return NULL;
1351 }
1352
1353 return rproc;
1354}
1355EXPORT_SYMBOL(rproc_get_by_name);
1356
1357/**
1358 * rproc_put() - decrement the refcount of a remote processor, and shut it down
1359 * @rproc: the remote processor
1360 *
1361 * This function tries to shutdown @rproc, and it then decrements its
1362 * refcount.
1363 *
1364 * After this function returns, @rproc may _not_ be used anymore, and its
1365 * handle should be considered invalid.
1366 *
1367 * This function should be called _iff_ the @rproc handle was grabbed by
1368 * calling rproc_get_by_name().
1369 */
1370void rproc_put(struct rproc *rproc)
1371{
1372 /* try to power off the remote processor */
1373 rproc_shutdown(rproc);
1374
1375 /* downref rproc's refcount */
1376 kref_put(&rproc->refcount, rproc_release);
1377}
1378EXPORT_SYMBOL(rproc_put);
1379
1380/**
1381 * rproc_register() - register a remote processor
1382 * @rproc: the remote processor handle to register
1383 *
1384 * Registers @rproc with the remoteproc framework, after it has been
1385 * allocated with rproc_alloc().
1386 *
1387 * This is called by the platform-specific rproc implementation, whenever
1388 * a new remote processor device is probed.
1389 *
1390 * Returns 0 on success and an appropriate error code otherwise.
1391 *
1392 * Note: this function initiates an asynchronous firmware loading
1393 * context, which will look for virtio devices supported by the rproc's
1394 * firmware.
1395 *
1396 * If found, those virtio devices will be created and added, so as a result
7a186941 1397 * of registering this remote processor, additional virtio drivers might be
400e64df 1398 * probed.
400e64df
OBC
1399 */
1400int rproc_register(struct rproc *rproc)
1401{
1402 struct device *dev = rproc->dev;
1403 int ret = 0;
1404
1405 /* expose to rproc_get_by_name users */
1406 klist_add_tail(&rproc->node, &rprocs);
1407
1408 dev_info(rproc->dev, "%s is available\n", rproc->name);
1409
489d129a
OBC
1410 dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
1411 dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1412
400e64df
OBC
1413 /* create debugfs entries */
1414 rproc_create_debug_dir(rproc);
1415
1416 /* rproc_unregister() calls must wait until async loader completes */
1417 init_completion(&rproc->firmware_loading_complete);
1418
1419 /*
1420 * We must retrieve early virtio configuration info from
7a186941 1421 * the firmware (e.g. whether to register a virtio device,
400e64df
OBC
1422 * what virtio features does it support, ...).
1423 *
1424 * We're initiating an asynchronous firmware loading, so we can
1425 * be built-in kernel code, without hanging the boot process.
1426 */
1427 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1428 rproc->firmware, dev, GFP_KERNEL,
1429 rproc, rproc_fw_config_virtio);
1430 if (ret < 0) {
1431 dev_err(dev, "request_firmware_nowait failed: %d\n", ret);
1432 complete_all(&rproc->firmware_loading_complete);
1433 klist_remove(&rproc->node);
1434 }
1435
1436 return ret;
1437}
1438EXPORT_SYMBOL(rproc_register);
1439
1440/**
1441 * rproc_alloc() - allocate a remote processor handle
1442 * @dev: the underlying device
1443 * @name: name of this remote processor
1444 * @ops: platform-specific handlers (mainly start/stop)
1445 * @firmware: name of firmware file to load
1446 * @len: length of private data needed by the rproc driver (in bytes)
1447 *
1448 * Allocates a new remote processor handle, but does not register
1449 * it yet.
1450 *
1451 * This function should be used by rproc implementations during initialization
1452 * of the remote processor.
1453 *
1454 * After creating an rproc handle using this function, and when ready,
1455 * implementations should then call rproc_register() to complete
1456 * the registration of the remote processor.
1457 *
1458 * On success the new rproc is returned, and on failure, NULL.
1459 *
1460 * Note: _never_ directly deallocate @rproc, even if it was not registered
1461 * yet. Instead, if you just need to unroll rproc_alloc(), use rproc_free().
1462 */
1463struct rproc *rproc_alloc(struct device *dev, const char *name,
1464 const struct rproc_ops *ops,
1465 const char *firmware, int len)
1466{
1467 struct rproc *rproc;
1468
1469 if (!dev || !name || !ops)
1470 return NULL;
1471
1472 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
1473 if (!rproc) {
1474 dev_err(dev, "%s: kzalloc failed\n", __func__);
1475 return NULL;
1476 }
1477
1478 rproc->dev = dev;
1479 rproc->name = name;
1480 rproc->ops = ops;
1481 rproc->firmware = firmware;
1482 rproc->priv = &rproc[1];
1483
1484 atomic_set(&rproc->power, 0);
1485
1486 kref_init(&rproc->refcount);
1487
1488 mutex_init(&rproc->lock);
1489
7a186941
OBC
1490 idr_init(&rproc->notifyids);
1491
400e64df
OBC
1492 INIT_LIST_HEAD(&rproc->carveouts);
1493 INIT_LIST_HEAD(&rproc->mappings);
1494 INIT_LIST_HEAD(&rproc->traces);
7a186941 1495 INIT_LIST_HEAD(&rproc->rvdevs);
400e64df
OBC
1496
1497 rproc->state = RPROC_OFFLINE;
1498
1499 return rproc;
1500}
1501EXPORT_SYMBOL(rproc_alloc);
1502
1503/**
1504 * rproc_free() - free an rproc handle that was allocated by rproc_alloc
1505 * @rproc: the remote processor handle
1506 *
1507 * This function should _only_ be used if @rproc was only allocated,
1508 * but not registered yet.
1509 *
1510 * If @rproc was already successfully registered (by calling rproc_register()),
1511 * then use rproc_unregister() instead.
1512 */
1513void rproc_free(struct rproc *rproc)
1514{
7a186941
OBC
1515 idr_remove_all(&rproc->notifyids);
1516 idr_destroy(&rproc->notifyids);
1517
400e64df
OBC
1518 kfree(rproc);
1519}
1520EXPORT_SYMBOL(rproc_free);
1521
1522/**
1523 * rproc_unregister() - unregister a remote processor
1524 * @rproc: rproc handle to unregister
1525 *
1526 * Unregisters a remote processor, and decrements its refcount.
1527 * If its refcount drops to zero, then @rproc will be freed. If not,
1528 * it will be freed later once the last reference is dropped.
1529 *
1530 * This function should be called when the platform specific rproc
1531 * implementation decides to remove the rproc device. it should
1532 * _only_ be called if a previous invocation of rproc_register()
1533 * has completed successfully.
1534 *
1535 * After rproc_unregister() returns, @rproc is _not_ valid anymore and
1536 * it shouldn't be used. More specifically, don't call rproc_free()
1537 * or try to directly free @rproc after rproc_unregister() returns;
1538 * none of these are needed, and calling them is a bug.
1539 *
1540 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1541 */
1542int rproc_unregister(struct rproc *rproc)
1543{
7a186941
OBC
1544 struct rproc_vdev *rvdev;
1545
400e64df
OBC
1546 if (!rproc)
1547 return -EINVAL;
1548
1549 /* if rproc is just being registered, wait */
1550 wait_for_completion(&rproc->firmware_loading_complete);
1551
7a186941
OBC
1552 /* clean up remote vdev entries */
1553 list_for_each_entry(rvdev, &rproc->rvdevs, node)
1554 rproc_remove_virtio_dev(rvdev);
400e64df 1555
7a186941
OBC
1556 /* the rproc is downref'ed as soon as it's removed from the klist */
1557 klist_del(&rproc->node);
400e64df 1558
7a186941 1559 /* the rproc will only be released after its refcount drops to zero */
400e64df
OBC
1560 kref_put(&rproc->refcount, rproc_release);
1561
1562 return 0;
1563}
1564EXPORT_SYMBOL(rproc_unregister);
1565
1566static int __init remoteproc_init(void)
1567{
1568 rproc_init_debugfs();
1569 return 0;
1570}
1571module_init(remoteproc_init);
1572
1573static void __exit remoteproc_exit(void)
1574{
1575 rproc_exit_debugfs();
1576}
1577module_exit(remoteproc_exit);
1578
1579MODULE_LICENSE("GPL v2");
1580MODULE_DESCRIPTION("Generic Remote Processor Framework");
This page took 0.089981 seconds and 5 git commands to generate.