ARM, clocksource/drivers: Provide read_boot_clock64() and read_persistent_clock64...
[deliverable/linux.git] / drivers / rtc / interface.c
CommitLineData
0c86edc0
AZ
1/*
2 * RTC subsystem, interface functions
3 *
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
6 *
7 * based on arch/arm/common/rtctime.c
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12*/
13
14#include <linux/rtc.h>
d43c36dc 15#include <linux/sched.h>
2113852b 16#include <linux/module.h>
97144c67 17#include <linux/log2.h>
6610e089 18#include <linux/workqueue.h>
0c86edc0 19
aa0be0f4
JS
20static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22
6610e089 23static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
0c86edc0
AZ
24{
25 int err;
0c86edc0
AZ
26 if (!rtc->ops)
27 err = -ENODEV;
28 else if (!rtc->ops->read_time)
29 err = -EINVAL;
30 else {
31 memset(tm, 0, sizeof(struct rtc_time));
cd966209 32 err = rtc->ops->read_time(rtc->dev.parent, tm);
16682c86
HG
33 if (err < 0) {
34 dev_err(&rtc->dev, "read_time: fail to read\n");
35 return err;
36 }
37
38 err = rtc_valid_tm(tm);
39 if (err < 0)
40 dev_err(&rtc->dev, "read_time: rtc_time isn't valid\n");
0c86edc0 41 }
6610e089
JS
42 return err;
43}
44
45int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
46{
47 int err;
0c86edc0 48
6610e089
JS
49 err = mutex_lock_interruptible(&rtc->ops_lock);
50 if (err)
51 return err;
52
53 err = __rtc_read_time(rtc, tm);
0c86edc0
AZ
54 mutex_unlock(&rtc->ops_lock);
55 return err;
56}
57EXPORT_SYMBOL_GPL(rtc_read_time);
58
ab6a2d70 59int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
0c86edc0
AZ
60{
61 int err;
0c86edc0
AZ
62
63 err = rtc_valid_tm(tm);
64 if (err != 0)
65 return err;
66
67 err = mutex_lock_interruptible(&rtc->ops_lock);
68 if (err)
b68bb263 69 return err;
0c86edc0
AZ
70
71 if (!rtc->ops)
72 err = -ENODEV;
bbccf83f 73 else if (rtc->ops->set_time)
cd966209 74 err = rtc->ops->set_time(rtc->dev.parent, tm);
bbccf83f 75 else if (rtc->ops->set_mmss) {
bc10aa93
XP
76 time64_t secs64 = rtc_tm_to_time64(tm);
77 err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
bbccf83f
AZ
78 } else
79 err = -EINVAL;
0c86edc0 80
14d0e347 81 pm_stay_awake(rtc->dev.parent);
0c86edc0 82 mutex_unlock(&rtc->ops_lock);
5f9679d2
N
83 /* A timer might have just expired */
84 schedule_work(&rtc->irqwork);
0c86edc0
AZ
85 return err;
86}
87EXPORT_SYMBOL_GPL(rtc_set_time);
88
ab6a2d70 89int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
0c86edc0
AZ
90{
91 int err;
0c86edc0
AZ
92
93 err = mutex_lock_interruptible(&rtc->ops_lock);
94 if (err)
b68bb263 95 return err;
0c86edc0
AZ
96
97 if (!rtc->ops)
98 err = -ENODEV;
99 else if (rtc->ops->set_mmss)
cd966209 100 err = rtc->ops->set_mmss(rtc->dev.parent, secs);
0c86edc0
AZ
101 else if (rtc->ops->read_time && rtc->ops->set_time) {
102 struct rtc_time new, old;
103
cd966209 104 err = rtc->ops->read_time(rtc->dev.parent, &old);
0c86edc0 105 if (err == 0) {
bc10aa93 106 rtc_time64_to_tm(secs, &new);
0c86edc0
AZ
107
108 /*
109 * avoid writing when we're going to change the day of
110 * the month. We will retry in the next minute. This
111 * basically means that if the RTC must not drift
112 * by more than 1 minute in 11 minutes.
113 */
114 if (!((old.tm_hour == 23 && old.tm_min == 59) ||
115 (new.tm_hour == 23 && new.tm_min == 59)))
cd966209 116 err = rtc->ops->set_time(rtc->dev.parent,
ab6a2d70 117 &new);
0c86edc0 118 }
3ff2e13c 119 } else {
0c86edc0 120 err = -EINVAL;
3ff2e13c 121 }
0c86edc0 122
14d0e347 123 pm_stay_awake(rtc->dev.parent);
0c86edc0 124 mutex_unlock(&rtc->ops_lock);
5f9679d2
N
125 /* A timer might have just expired */
126 schedule_work(&rtc->irqwork);
0c86edc0
AZ
127
128 return err;
129}
130EXPORT_SYMBOL_GPL(rtc_set_mmss);
131
f44f7f96
JS
132static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
133{
134 int err;
135
136 err = mutex_lock_interruptible(&rtc->ops_lock);
137 if (err)
138 return err;
139
140 if (rtc->ops == NULL)
141 err = -ENODEV;
142 else if (!rtc->ops->read_alarm)
143 err = -EINVAL;
144 else {
145 memset(alarm, 0, sizeof(struct rtc_wkalrm));
146 err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
147 }
148
149 mutex_unlock(&rtc->ops_lock);
150 return err;
151}
152
153int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
154{
155 int err;
156 struct rtc_time before, now;
157 int first_time = 1;
bc10aa93 158 time64_t t_now, t_alm;
f44f7f96
JS
159 enum { none, day, month, year } missing = none;
160 unsigned days;
161
162 /* The lower level RTC driver may return -1 in some fields,
163 * creating invalid alarm->time values, for reasons like:
164 *
165 * - The hardware may not be capable of filling them in;
166 * many alarms match only on time-of-day fields, not
167 * day/month/year calendar data.
168 *
169 * - Some hardware uses illegal values as "wildcard" match
170 * values, which non-Linux firmware (like a BIOS) may try
171 * to set up as e.g. "alarm 15 minutes after each hour".
172 * Linux uses only oneshot alarms.
173 *
174 * When we see that here, we deal with it by using values from
175 * a current RTC timestamp for any missing (-1) values. The
176 * RTC driver prevents "periodic alarm" modes.
177 *
178 * But this can be racey, because some fields of the RTC timestamp
179 * may have wrapped in the interval since we read the RTC alarm,
180 * which would lead to us inserting inconsistent values in place
181 * of the -1 fields.
182 *
183 * Reading the alarm and timestamp in the reverse sequence
184 * would have the same race condition, and not solve the issue.
185 *
186 * So, we must first read the RTC timestamp,
187 * then read the RTC alarm value,
188 * and then read a second RTC timestamp.
189 *
190 * If any fields of the second timestamp have changed
191 * when compared with the first timestamp, then we know
192 * our timestamp may be inconsistent with that used by
193 * the low-level rtc_read_alarm_internal() function.
194 *
195 * So, when the two timestamps disagree, we just loop and do
196 * the process again to get a fully consistent set of values.
197 *
198 * This could all instead be done in the lower level driver,
199 * but since more than one lower level RTC implementation needs it,
200 * then it's probably best best to do it here instead of there..
201 */
202
203 /* Get the "before" timestamp */
204 err = rtc_read_time(rtc, &before);
205 if (err < 0)
206 return err;
207 do {
208 if (!first_time)
209 memcpy(&before, &now, sizeof(struct rtc_time));
210 first_time = 0;
211
212 /* get the RTC alarm values, which may be incomplete */
213 err = rtc_read_alarm_internal(rtc, alarm);
214 if (err)
215 return err;
216
217 /* full-function RTCs won't have such missing fields */
218 if (rtc_valid_tm(&alarm->time) == 0)
219 return 0;
220
221 /* get the "after" timestamp, to detect wrapped fields */
222 err = rtc_read_time(rtc, &now);
223 if (err < 0)
224 return err;
225
226 /* note that tm_sec is a "don't care" value here: */
227 } while ( before.tm_min != now.tm_min
228 || before.tm_hour != now.tm_hour
229 || before.tm_mon != now.tm_mon
230 || before.tm_year != now.tm_year);
231
232 /* Fill in the missing alarm fields using the timestamp; we
233 * know there's at least one since alarm->time is invalid.
234 */
235 if (alarm->time.tm_sec == -1)
236 alarm->time.tm_sec = now.tm_sec;
237 if (alarm->time.tm_min == -1)
238 alarm->time.tm_min = now.tm_min;
239 if (alarm->time.tm_hour == -1)
240 alarm->time.tm_hour = now.tm_hour;
241
242 /* For simplicity, only support date rollover for now */
e74a8f2e 243 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
f44f7f96
JS
244 alarm->time.tm_mday = now.tm_mday;
245 missing = day;
246 }
e74a8f2e 247 if ((unsigned)alarm->time.tm_mon >= 12) {
f44f7f96
JS
248 alarm->time.tm_mon = now.tm_mon;
249 if (missing == none)
250 missing = month;
251 }
252 if (alarm->time.tm_year == -1) {
253 alarm->time.tm_year = now.tm_year;
254 if (missing == none)
255 missing = year;
256 }
257
258 /* with luck, no rollover is needed */
bc10aa93
XP
259 t_now = rtc_tm_to_time64(&now);
260 t_alm = rtc_tm_to_time64(&alarm->time);
f44f7f96
JS
261 if (t_now < t_alm)
262 goto done;
263
264 switch (missing) {
265
266 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
267 * that will trigger at 5am will do so at 5am Tuesday, which
268 * could also be in the next month or year. This is a common
269 * case, especially for PCs.
270 */
271 case day:
272 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
273 t_alm += 24 * 60 * 60;
bc10aa93 274 rtc_time64_to_tm(t_alm, &alarm->time);
f44f7f96
JS
275 break;
276
277 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
278 * be next month. An alarm matching on the 30th, 29th, or 28th
279 * may end up in the month after that! Many newer PCs support
280 * this type of alarm.
281 */
282 case month:
283 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
284 do {
285 if (alarm->time.tm_mon < 11)
286 alarm->time.tm_mon++;
287 else {
288 alarm->time.tm_mon = 0;
289 alarm->time.tm_year++;
290 }
291 days = rtc_month_days(alarm->time.tm_mon,
292 alarm->time.tm_year);
293 } while (days < alarm->time.tm_mday);
294 break;
295
296 /* Year rollover ... easy except for leap years! */
297 case year:
298 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
299 do {
300 alarm->time.tm_year++;
ee1d9014
AN
301 } while (!is_leap_year(alarm->time.tm_year + 1900)
302 && rtc_valid_tm(&alarm->time) != 0);
f44f7f96
JS
303 break;
304
305 default:
306 dev_warn(&rtc->dev, "alarm rollover not handled\n");
307 }
308
309done:
ee1d9014
AN
310 err = rtc_valid_tm(&alarm->time);
311
312 if (err) {
313 dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
314 alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
315 alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
316 alarm->time.tm_sec);
317 }
318
319 return err;
f44f7f96
JS
320}
321
6610e089 322int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
0c86edc0
AZ
323{
324 int err;
0c86edc0
AZ
325
326 err = mutex_lock_interruptible(&rtc->ops_lock);
327 if (err)
b68bb263 328 return err;
d5553a55
JS
329 if (rtc->ops == NULL)
330 err = -ENODEV;
331 else if (!rtc->ops->read_alarm)
332 err = -EINVAL;
333 else {
334 memset(alarm, 0, sizeof(struct rtc_wkalrm));
335 alarm->enabled = rtc->aie_timer.enabled;
6610e089 336 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
d5553a55 337 }
0c86edc0 338 mutex_unlock(&rtc->ops_lock);
6610e089 339
d5553a55 340 return err;
0c86edc0 341}
6610e089 342EXPORT_SYMBOL_GPL(rtc_read_alarm);
0e36a9a4 343
d576fe49 344static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
0e36a9a4 345{
6610e089 346 struct rtc_time tm;
bc10aa93 347 time64_t now, scheduled;
0e36a9a4 348 int err;
0e36a9a4 349
6610e089
JS
350 err = rtc_valid_tm(&alarm->time);
351 if (err)
0e36a9a4 352 return err;
bc10aa93 353 scheduled = rtc_tm_to_time64(&alarm->time);
a01cc657 354
6610e089
JS
355 /* Make sure we're not setting alarms in the past */
356 err = __rtc_read_time(rtc, &tm);
ca6dc2da
HG
357 if (err)
358 return err;
bc10aa93 359 now = rtc_tm_to_time64(&tm);
6610e089
JS
360 if (scheduled <= now)
361 return -ETIME;
362 /*
363 * XXX - We just checked to make sure the alarm time is not
364 * in the past, but there is still a race window where if
365 * the is alarm set for the next second and the second ticks
366 * over right here, before we set the alarm.
a01cc657 367 */
a01cc657 368
157e8bf8
LT
369 if (!rtc->ops)
370 err = -ENODEV;
371 else if (!rtc->ops->set_alarm)
372 err = -EINVAL;
373 else
374 err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
375
376 return err;
0e36a9a4 377}
0c86edc0 378
ab6a2d70 379int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
0c86edc0
AZ
380{
381 int err;
0c86edc0 382
f8245c26
DB
383 err = rtc_valid_tm(&alarm->time);
384 if (err != 0)
385 return err;
386
0c86edc0
AZ
387 err = mutex_lock_interruptible(&rtc->ops_lock);
388 if (err)
b68bb263 389 return err;
3ff2e13c 390 if (rtc->aie_timer.enabled)
96c8f06a 391 rtc_timer_remove(rtc, &rtc->aie_timer);
3ff2e13c 392
6610e089
JS
393 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
394 rtc->aie_timer.period = ktime_set(0, 0);
3ff2e13c 395 if (alarm->enabled)
aa0be0f4 396 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
3ff2e13c 397
0c86edc0 398 mutex_unlock(&rtc->ops_lock);
aa0be0f4 399 return err;
0c86edc0
AZ
400}
401EXPORT_SYMBOL_GPL(rtc_set_alarm);
402
f6d5b331
JS
403/* Called once per device from rtc_device_register */
404int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
405{
406 int err;
bd729d72 407 struct rtc_time now;
f6d5b331
JS
408
409 err = rtc_valid_tm(&alarm->time);
410 if (err != 0)
411 return err;
412
bd729d72
JS
413 err = rtc_read_time(rtc, &now);
414 if (err)
415 return err;
416
f6d5b331
JS
417 err = mutex_lock_interruptible(&rtc->ops_lock);
418 if (err)
419 return err;
420
421 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
422 rtc->aie_timer.period = ktime_set(0, 0);
bd729d72
JS
423
424 /* Alarm has to be enabled & in the futrure for us to enqueue it */
425 if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
426 rtc->aie_timer.node.expires.tv64)) {
427
f6d5b331
JS
428 rtc->aie_timer.enabled = 1;
429 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
430 }
431 mutex_unlock(&rtc->ops_lock);
432 return err;
433}
434EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
435
436
437
099e6576
AZ
438int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
439{
440 int err = mutex_lock_interruptible(&rtc->ops_lock);
441 if (err)
442 return err;
443
6610e089 444 if (rtc->aie_timer.enabled != enabled) {
aa0be0f4
JS
445 if (enabled)
446 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
447 else
96c8f06a 448 rtc_timer_remove(rtc, &rtc->aie_timer);
6610e089
JS
449 }
450
aa0be0f4 451 if (err)
516373b8
UKK
452 /* nothing */;
453 else if (!rtc->ops)
099e6576
AZ
454 err = -ENODEV;
455 else if (!rtc->ops->alarm_irq_enable)
456 err = -EINVAL;
457 else
458 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
459
460 mutex_unlock(&rtc->ops_lock);
461 return err;
462}
463EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
464
465int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
466{
467 int err = mutex_lock_interruptible(&rtc->ops_lock);
468 if (err)
469 return err;
470
456d66ec
JS
471#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
472 if (enabled == 0 && rtc->uie_irq_active) {
473 mutex_unlock(&rtc->ops_lock);
474 return rtc_dev_update_irq_enable_emul(rtc, 0);
475 }
476#endif
6610e089
JS
477 /* make sure we're changing state */
478 if (rtc->uie_rtctimer.enabled == enabled)
479 goto out;
480
4a649903
JS
481 if (rtc->uie_unsupported) {
482 err = -EINVAL;
483 goto out;
484 }
485
6610e089
JS
486 if (enabled) {
487 struct rtc_time tm;
488 ktime_t now, onesec;
489
490 __rtc_read_time(rtc, &tm);
491 onesec = ktime_set(1, 0);
492 now = rtc_tm_to_ktime(tm);
493 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
494 rtc->uie_rtctimer.period = ktime_set(1, 0);
aa0be0f4
JS
495 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
496 } else
96c8f06a 497 rtc_timer_remove(rtc, &rtc->uie_rtctimer);
099e6576 498
6610e089 499out:
099e6576 500 mutex_unlock(&rtc->ops_lock);
456d66ec
JS
501#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
502 /*
503 * Enable emulation if the driver did not provide
504 * the update_irq_enable function pointer or if returned
505 * -EINVAL to signal that it has been configured without
506 * interrupts or that are not available at the moment.
507 */
508 if (err == -EINVAL)
509 err = rtc_dev_update_irq_enable_emul(rtc, enabled);
510#endif
099e6576 511 return err;
6610e089 512
099e6576
AZ
513}
514EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
515
6610e089 516
d728b1e6 517/**
6610e089
JS
518 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
519 * @rtc: pointer to the rtc device
520 *
521 * This function is called when an AIE, UIE or PIE mode interrupt
25985edc 522 * has occurred (or been emulated).
6610e089
JS
523 *
524 * Triggers the registered irq_task function callback.
d728b1e6 525 */
456d66ec 526void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
0c86edc0 527{
e6229bec
AN
528 unsigned long flags;
529
6610e089 530 /* mark one irq of the appropriate mode */
e6229bec 531 spin_lock_irqsave(&rtc->irq_lock, flags);
6610e089 532 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
e6229bec 533 spin_unlock_irqrestore(&rtc->irq_lock, flags);
0c86edc0 534
6610e089 535 /* call the task func */
e6229bec 536 spin_lock_irqsave(&rtc->irq_task_lock, flags);
0c86edc0
AZ
537 if (rtc->irq_task)
538 rtc->irq_task->func(rtc->irq_task->private_data);
e6229bec 539 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
0c86edc0
AZ
540
541 wake_up_interruptible(&rtc->irq_queue);
542 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
543}
6610e089
JS
544
545
546/**
547 * rtc_aie_update_irq - AIE mode rtctimer hook
548 * @private: pointer to the rtc_device
549 *
550 * This functions is called when the aie_timer expires.
551 */
552void rtc_aie_update_irq(void *private)
553{
554 struct rtc_device *rtc = (struct rtc_device *)private;
555 rtc_handle_legacy_irq(rtc, 1, RTC_AF);
556}
557
558
559/**
560 * rtc_uie_update_irq - UIE mode rtctimer hook
561 * @private: pointer to the rtc_device
562 *
563 * This functions is called when the uie_timer expires.
564 */
565void rtc_uie_update_irq(void *private)
566{
567 struct rtc_device *rtc = (struct rtc_device *)private;
568 rtc_handle_legacy_irq(rtc, 1, RTC_UF);
569}
570
571
572/**
573 * rtc_pie_update_irq - PIE mode hrtimer hook
574 * @timer: pointer to the pie mode hrtimer
575 *
576 * This function is used to emulate PIE mode interrupts
577 * using an hrtimer. This function is called when the periodic
578 * hrtimer expires.
579 */
580enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
581{
582 struct rtc_device *rtc;
583 ktime_t period;
584 int count;
585 rtc = container_of(timer, struct rtc_device, pie_timer);
586
587 period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
588 count = hrtimer_forward_now(timer, period);
589
590 rtc_handle_legacy_irq(rtc, count, RTC_PF);
591
592 return HRTIMER_RESTART;
593}
594
595/**
596 * rtc_update_irq - Triggered when a RTC interrupt occurs.
597 * @rtc: the rtc device
598 * @num: how many irqs are being reported (usually one)
599 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
600 * Context: any
601 */
602void rtc_update_irq(struct rtc_device *rtc,
603 unsigned long num, unsigned long events)
604{
131c9cc8
AZ
605 if (unlikely(IS_ERR_OR_NULL(rtc)))
606 return;
607
7523ceed 608 pm_stay_awake(rtc->dev.parent);
6610e089
JS
609 schedule_work(&rtc->irqwork);
610}
0c86edc0
AZ
611EXPORT_SYMBOL_GPL(rtc_update_irq);
612
9f3b795a 613static int __rtc_match(struct device *dev, const void *data)
71da8905 614{
9f3b795a 615 const char *name = data;
71da8905 616
d4afc76c 617 if (strcmp(dev_name(dev), name) == 0)
71da8905
DY
618 return 1;
619 return 0;
620}
621
9f3b795a 622struct rtc_device *rtc_class_open(const char *name)
0c86edc0 623{
cd966209 624 struct device *dev;
ab6a2d70 625 struct rtc_device *rtc = NULL;
0c86edc0 626
695794ae 627 dev = class_find_device(rtc_class, NULL, name, __rtc_match);
71da8905
DY
628 if (dev)
629 rtc = to_rtc_device(dev);
0c86edc0 630
ab6a2d70
DB
631 if (rtc) {
632 if (!try_module_get(rtc->owner)) {
cd966209 633 put_device(dev);
ab6a2d70
DB
634 rtc = NULL;
635 }
0c86edc0 636 }
0c86edc0 637
ab6a2d70 638 return rtc;
0c86edc0
AZ
639}
640EXPORT_SYMBOL_GPL(rtc_class_open);
641
ab6a2d70 642void rtc_class_close(struct rtc_device *rtc)
0c86edc0 643{
ab6a2d70 644 module_put(rtc->owner);
cd966209 645 put_device(&rtc->dev);
0c86edc0
AZ
646}
647EXPORT_SYMBOL_GPL(rtc_class_close);
648
ab6a2d70 649int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
0c86edc0
AZ
650{
651 int retval = -EBUSY;
0c86edc0
AZ
652
653 if (task == NULL || task->func == NULL)
654 return -EINVAL;
655
d691eb90 656 /* Cannot register while the char dev is in use */
372a302e 657 if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
d691eb90
AZ
658 return -EBUSY;
659
d728b1e6 660 spin_lock_irq(&rtc->irq_task_lock);
0c86edc0
AZ
661 if (rtc->irq_task == NULL) {
662 rtc->irq_task = task;
663 retval = 0;
664 }
d728b1e6 665 spin_unlock_irq(&rtc->irq_task_lock);
0c86edc0 666
372a302e 667 clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
d691eb90 668
0c86edc0
AZ
669 return retval;
670}
671EXPORT_SYMBOL_GPL(rtc_irq_register);
672
ab6a2d70 673void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
0c86edc0 674{
d728b1e6 675 spin_lock_irq(&rtc->irq_task_lock);
0c86edc0
AZ
676 if (rtc->irq_task == task)
677 rtc->irq_task = NULL;
d728b1e6 678 spin_unlock_irq(&rtc->irq_task_lock);
0c86edc0
AZ
679}
680EXPORT_SYMBOL_GPL(rtc_irq_unregister);
681
3c8bb90e
TG
682static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
683{
684 /*
685 * We always cancel the timer here first, because otherwise
686 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
687 * when we manage to start the timer before the callback
688 * returns HRTIMER_RESTART.
689 *
690 * We cannot use hrtimer_cancel() here as a running callback
691 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
692 * would spin forever.
693 */
694 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
695 return -1;
696
697 if (enabled) {
698 ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
699
700 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
701 }
702 return 0;
703}
704
97144c67
DB
705/**
706 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
707 * @rtc: the rtc device
708 * @task: currently registered with rtc_irq_register()
709 * @enabled: true to enable periodic IRQs
710 * Context: any
711 *
712 * Note that rtc_irq_set_freq() should previously have been used to
713 * specify the desired frequency of periodic IRQ task->func() callbacks.
714 */
ab6a2d70 715int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
0c86edc0
AZ
716{
717 int err = 0;
718 unsigned long flags;
0c86edc0 719
3c8bb90e 720retry:
0c86edc0 721 spin_lock_irqsave(&rtc->irq_task_lock, flags);
d691eb90
AZ
722 if (rtc->irq_task != NULL && task == NULL)
723 err = -EBUSY;
0734e27f 724 else if (rtc->irq_task != task)
d691eb90 725 err = -EACCES;
0734e27f 726 else {
3c8bb90e
TG
727 if (rtc_update_hrtimer(rtc, enabled) < 0) {
728 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
729 cpu_relax();
730 goto retry;
731 }
732 rtc->pie_enabled = enabled;
6610e089 733 }
6610e089 734 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
0c86edc0
AZ
735 return err;
736}
737EXPORT_SYMBOL_GPL(rtc_irq_set_state);
738
97144c67
DB
739/**
740 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
741 * @rtc: the rtc device
742 * @task: currently registered with rtc_irq_register()
743 * @freq: positive frequency with which task->func() will be called
744 * Context: any
745 *
746 * Note that rtc_irq_set_state() is used to enable or disable the
747 * periodic IRQs.
748 */
ab6a2d70 749int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
0c86edc0 750{
56f10c63 751 int err = 0;
0c86edc0 752 unsigned long flags;
0c86edc0 753
6e7a333e 754 if (freq <= 0 || freq > RTC_MAX_FREQ)
83a06bf5 755 return -EINVAL;
3c8bb90e 756retry:
0c86edc0 757 spin_lock_irqsave(&rtc->irq_task_lock, flags);
d691eb90
AZ
758 if (rtc->irq_task != NULL && task == NULL)
759 err = -EBUSY;
0734e27f 760 else if (rtc->irq_task != task)
d691eb90 761 err = -EACCES;
0734e27f 762 else {
6610e089 763 rtc->irq_freq = freq;
3c8bb90e
TG
764 if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
765 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
766 cpu_relax();
767 goto retry;
6610e089 768 }
0c86edc0 769 }
6610e089 770 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
0c86edc0
AZ
771 return err;
772}
2601a464 773EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
6610e089
JS
774
775/**
96c8f06a 776 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
6610e089
JS
777 * @rtc rtc device
778 * @timer timer being added.
779 *
780 * Enqueues a timer onto the rtc devices timerqueue and sets
781 * the next alarm event appropriately.
782 *
aa0be0f4
JS
783 * Sets the enabled bit on the added timer.
784 *
6610e089
JS
785 * Must hold ops_lock for proper serialization of timerqueue
786 */
aa0be0f4 787static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
6610e089 788{
aa0be0f4 789 timer->enabled = 1;
6610e089
JS
790 timerqueue_add(&rtc->timerqueue, &timer->node);
791 if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
792 struct rtc_wkalrm alarm;
793 int err;
794 alarm.time = rtc_ktime_to_tm(timer->node.expires);
795 alarm.enabled = 1;
796 err = __rtc_set_alarm(rtc, &alarm);
14d0e347
ZM
797 if (err == -ETIME) {
798 pm_stay_awake(rtc->dev.parent);
6610e089 799 schedule_work(&rtc->irqwork);
14d0e347 800 } else if (err) {
aa0be0f4
JS
801 timerqueue_del(&rtc->timerqueue, &timer->node);
802 timer->enabled = 0;
803 return err;
804 }
6610e089 805 }
aa0be0f4 806 return 0;
6610e089
JS
807}
808
41c7f742
RV
809static void rtc_alarm_disable(struct rtc_device *rtc)
810{
811 if (!rtc->ops || !rtc->ops->alarm_irq_enable)
812 return;
813
814 rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
815}
816
6610e089 817/**
96c8f06a 818 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
6610e089
JS
819 * @rtc rtc device
820 * @timer timer being removed.
821 *
822 * Removes a timer onto the rtc devices timerqueue and sets
823 * the next alarm event appropriately.
824 *
aa0be0f4
JS
825 * Clears the enabled bit on the removed timer.
826 *
6610e089
JS
827 * Must hold ops_lock for proper serialization of timerqueue
828 */
aa0be0f4 829static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
6610e089
JS
830{
831 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
832 timerqueue_del(&rtc->timerqueue, &timer->node);
aa0be0f4 833 timer->enabled = 0;
6610e089
JS
834 if (next == &timer->node) {
835 struct rtc_wkalrm alarm;
836 int err;
837 next = timerqueue_getnext(&rtc->timerqueue);
41c7f742
RV
838 if (!next) {
839 rtc_alarm_disable(rtc);
6610e089 840 return;
41c7f742 841 }
6610e089
JS
842 alarm.time = rtc_ktime_to_tm(next->expires);
843 alarm.enabled = 1;
844 err = __rtc_set_alarm(rtc, &alarm);
14d0e347
ZM
845 if (err == -ETIME) {
846 pm_stay_awake(rtc->dev.parent);
6610e089 847 schedule_work(&rtc->irqwork);
14d0e347 848 }
6610e089
JS
849 }
850}
851
852/**
96c8f06a 853 * rtc_timer_do_work - Expires rtc timers
6610e089
JS
854 * @rtc rtc device
855 * @timer timer being removed.
856 *
857 * Expires rtc timers. Reprograms next alarm event if needed.
858 * Called via worktask.
859 *
860 * Serializes access to timerqueue via ops_lock mutex
861 */
96c8f06a 862void rtc_timer_do_work(struct work_struct *work)
6610e089
JS
863{
864 struct rtc_timer *timer;
865 struct timerqueue_node *next;
866 ktime_t now;
867 struct rtc_time tm;
868
869 struct rtc_device *rtc =
870 container_of(work, struct rtc_device, irqwork);
871
872 mutex_lock(&rtc->ops_lock);
873again:
874 __rtc_read_time(rtc, &tm);
875 now = rtc_tm_to_ktime(tm);
876 while ((next = timerqueue_getnext(&rtc->timerqueue))) {
877 if (next->expires.tv64 > now.tv64)
878 break;
879
880 /* expire timer */
881 timer = container_of(next, struct rtc_timer, node);
882 timerqueue_del(&rtc->timerqueue, &timer->node);
883 timer->enabled = 0;
884 if (timer->task.func)
885 timer->task.func(timer->task.private_data);
886
887 /* Re-add/fwd periodic timers */
888 if (ktime_to_ns(timer->period)) {
889 timer->node.expires = ktime_add(timer->node.expires,
890 timer->period);
891 timer->enabled = 1;
892 timerqueue_add(&rtc->timerqueue, &timer->node);
893 }
894 }
895
896 /* Set next alarm */
897 if (next) {
898 struct rtc_wkalrm alarm;
899 int err;
6528b889
XP
900 int retry = 3;
901
6610e089
JS
902 alarm.time = rtc_ktime_to_tm(next->expires);
903 alarm.enabled = 1;
6528b889 904reprogram:
6610e089
JS
905 err = __rtc_set_alarm(rtc, &alarm);
906 if (err == -ETIME)
907 goto again;
6528b889
XP
908 else if (err) {
909 if (retry-- > 0)
910 goto reprogram;
911
912 timer = container_of(next, struct rtc_timer, node);
913 timerqueue_del(&rtc->timerqueue, &timer->node);
914 timer->enabled = 0;
915 dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
916 goto again;
917 }
41c7f742
RV
918 } else
919 rtc_alarm_disable(rtc);
6610e089 920
14d0e347 921 pm_relax(rtc->dev.parent);
6610e089
JS
922 mutex_unlock(&rtc->ops_lock);
923}
924
925
96c8f06a 926/* rtc_timer_init - Initializes an rtc_timer
6610e089
JS
927 * @timer: timer to be intiialized
928 * @f: function pointer to be called when timer fires
929 * @data: private data passed to function pointer
930 *
931 * Kernel interface to initializing an rtc_timer.
932 */
3ff2e13c 933void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
6610e089
JS
934{
935 timerqueue_init(&timer->node);
936 timer->enabled = 0;
937 timer->task.func = f;
938 timer->task.private_data = data;
939}
940
96c8f06a 941/* rtc_timer_start - Sets an rtc_timer to fire in the future
6610e089
JS
942 * @ rtc: rtc device to be used
943 * @ timer: timer being set
944 * @ expires: time at which to expire the timer
945 * @ period: period that the timer will recur
946 *
947 * Kernel interface to set an rtc_timer
948 */
3ff2e13c 949int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
6610e089
JS
950 ktime_t expires, ktime_t period)
951{
952 int ret = 0;
953 mutex_lock(&rtc->ops_lock);
954 if (timer->enabled)
96c8f06a 955 rtc_timer_remove(rtc, timer);
6610e089
JS
956
957 timer->node.expires = expires;
958 timer->period = period;
959
aa0be0f4 960 ret = rtc_timer_enqueue(rtc, timer);
6610e089
JS
961
962 mutex_unlock(&rtc->ops_lock);
963 return ret;
964}
965
96c8f06a 966/* rtc_timer_cancel - Stops an rtc_timer
6610e089
JS
967 * @ rtc: rtc device to be used
968 * @ timer: timer being set
969 *
970 * Kernel interface to cancel an rtc_timer
971 */
3ff2e13c 972int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
6610e089
JS
973{
974 int ret = 0;
975 mutex_lock(&rtc->ops_lock);
976 if (timer->enabled)
96c8f06a 977 rtc_timer_remove(rtc, timer);
6610e089
JS
978 mutex_unlock(&rtc->ops_lock);
979 return ret;
980}
981
982
This page took 1.006888 seconds and 5 git commands to generate.