Merge tag 'v3.19-rc3' into spi-sh-msiof
[deliverable/linux.git] / drivers / spi / spi-sh-msiof.c
CommitLineData
8051effc
MD
1/*
2 * SuperH MSIOF SPI Master Interface
3 *
4 * Copyright (c) 2009 Magnus Damm
b0d0ce8b 5 * Copyright (C) 2014 Glider bvba
8051effc
MD
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 */
12
e2dbf5eb
GL
13#include <linux/bitmap.h>
14#include <linux/clk.h>
15#include <linux/completion.h>
8051effc 16#include <linux/delay.h>
b0d0ce8b
GU
17#include <linux/dma-mapping.h>
18#include <linux/dmaengine.h>
e2dbf5eb
GL
19#include <linux/err.h>
20#include <linux/gpio.h>
8051effc 21#include <linux/interrupt.h>
e2dbf5eb
GL
22#include <linux/io.h>
23#include <linux/kernel.h>
d7614de4 24#include <linux/module.h>
cf9c86ef 25#include <linux/of.h>
50a7e23f 26#include <linux/of_device.h>
8051effc 27#include <linux/platform_device.h>
8051effc 28#include <linux/pm_runtime.h>
b0d0ce8b 29#include <linux/sh_dma.h>
8051effc 30
e2dbf5eb 31#include <linux/spi/sh_msiof.h>
8051effc 32#include <linux/spi/spi.h>
8051effc 33
8051effc
MD
34#include <asm/unaligned.h>
35
50a7e23f
GU
36
37struct sh_msiof_chipdata {
38 u16 tx_fifo_size;
39 u16 rx_fifo_size;
beb74bb0 40 u16 master_flags;
50a7e23f
GU
41};
42
8051effc 43struct sh_msiof_spi_priv {
b0d0ce8b 44 struct spi_master *master;
8051effc
MD
45 void __iomem *mapbase;
46 struct clk *clk;
47 struct platform_device *pdev;
50a7e23f 48 const struct sh_msiof_chipdata *chipdata;
8051effc
MD
49 struct sh_msiof_spi_info *info;
50 struct completion done;
8051effc
MD
51 int tx_fifo_size;
52 int rx_fifo_size;
b0d0ce8b
GU
53 void *tx_dma_page;
54 void *rx_dma_page;
55 dma_addr_t tx_dma_addr;
56 dma_addr_t rx_dma_addr;
8051effc
MD
57};
58
01cfef57
GU
59#define TMDR1 0x00 /* Transmit Mode Register 1 */
60#define TMDR2 0x04 /* Transmit Mode Register 2 */
61#define TMDR3 0x08 /* Transmit Mode Register 3 */
62#define RMDR1 0x10 /* Receive Mode Register 1 */
63#define RMDR2 0x14 /* Receive Mode Register 2 */
64#define RMDR3 0x18 /* Receive Mode Register 3 */
65#define TSCR 0x20 /* Transmit Clock Select Register */
66#define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
67#define CTR 0x28 /* Control Register */
68#define FCTR 0x30 /* FIFO Control Register */
69#define STR 0x40 /* Status Register */
70#define IER 0x44 /* Interrupt Enable Register */
71#define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
72#define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
73#define TFDR 0x50 /* Transmit FIFO Data Register */
74#define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
75#define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
76#define RFDR 0x60 /* Receive FIFO Data Register */
77
78/* TMDR1 and RMDR1 */
79#define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */
80#define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
81#define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */
82#define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */
83#define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
84#define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
3110628d
YS
85#define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
86#define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
6d40530e 87#define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */
01cfef57
GU
88#define MDR1_FLD_SHIFT 2
89#define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */
90/* TMDR1 */
91#define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */
92
93/* TMDR2 and RMDR2 */
94#define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
95#define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
96#define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */
97
b0d0ce8b
GU
98#define MAX_WDLEN 256U
99
01cfef57
GU
100/* TSCR and RSCR */
101#define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */
102#define SCR_BRPS(i) (((i) - 1) << 8)
103#define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */
104#define SCR_BRDV_DIV_2 0x0000
105#define SCR_BRDV_DIV_4 0x0001
106#define SCR_BRDV_DIV_8 0x0002
107#define SCR_BRDV_DIV_16 0x0003
108#define SCR_BRDV_DIV_32 0x0004
109#define SCR_BRDV_DIV_1 0x0007
110
111/* CTR */
112#define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
113#define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */
114#define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
115#define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
116#define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */
117#define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
118#define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
119#define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
120#define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */
121#define CTR_TXDIZ_LOW 0x00000000 /* 0 */
122#define CTR_TXDIZ_HIGH 0x00400000 /* 1 */
123#define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */
124#define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */
125#define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */
126#define CTR_TXE 0x00000200 /* Transmit Enable */
127#define CTR_RXE 0x00000100 /* Receive Enable */
128
2e2b3687
GU
129/* FCTR */
130#define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */
131#define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */
132#define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */
133#define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */
134#define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */
135#define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */
136#define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */
137#define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */
138#define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */
139#define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */
140#define FCTR_TFUA_SHIFT 20
141#define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
142#define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */
143#define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */
144#define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */
145#define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */
146#define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */
147#define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */
148#define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */
149#define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */
150#define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */
151#define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
152#define FCTR_RFUA_SHIFT 4
153#define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
154
155/* STR */
156#define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */
157#define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */
01cfef57 158#define STR_TEOF 0x00800000 /* Frame Transmission End */
2e2b3687
GU
159#define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */
160#define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */
161#define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */
162#define STR_RFFUL 0x00002000 /* Receive FIFO Full */
163#define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */
01cfef57 164#define STR_REOF 0x00000080 /* Frame Reception End */
2e2b3687
GU
165#define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */
166#define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */
167#define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */
168
169/* IER */
170#define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */
171#define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */
172#define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */
173#define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */
174#define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */
175#define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */
176#define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */
177#define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */
178#define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */
179#define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */
180#define IER_REOFE 0x00000080 /* Frame Reception End Enable */
181#define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */
182#define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */
183#define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */
01cfef57 184
8051effc 185
e2dbf5eb 186static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
8051effc
MD
187{
188 switch (reg_offs) {
189 case TSCR:
190 case RSCR:
191 return ioread16(p->mapbase + reg_offs);
192 default:
193 return ioread32(p->mapbase + reg_offs);
194 }
195}
196
197static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
e2dbf5eb 198 u32 value)
8051effc
MD
199{
200 switch (reg_offs) {
201 case TSCR:
202 case RSCR:
203 iowrite16(value, p->mapbase + reg_offs);
204 break;
205 default:
206 iowrite32(value, p->mapbase + reg_offs);
207 break;
208 }
209}
210
211static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
e2dbf5eb 212 u32 clr, u32 set)
8051effc 213{
e2dbf5eb
GL
214 u32 mask = clr | set;
215 u32 data;
8051effc
MD
216 int k;
217
218 data = sh_msiof_read(p, CTR);
219 data &= ~clr;
220 data |= set;
221 sh_msiof_write(p, CTR, data);
222
223 for (k = 100; k > 0; k--) {
224 if ((sh_msiof_read(p, CTR) & mask) == set)
225 break;
226
227 udelay(10);
228 }
229
230 return k > 0 ? 0 : -ETIMEDOUT;
231}
232
233static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
234{
235 struct sh_msiof_spi_priv *p = data;
236
237 /* just disable the interrupt and wake up */
238 sh_msiof_write(p, IER, 0);
239 complete(&p->done);
240
241 return IRQ_HANDLED;
242}
243
244static struct {
245 unsigned short div;
246 unsigned short scr;
247} const sh_msiof_spi_clk_table[] = {
01cfef57
GU
248 { 1, SCR_BRPS( 1) | SCR_BRDV_DIV_1 },
249 { 2, SCR_BRPS( 1) | SCR_BRDV_DIV_2 },
250 { 4, SCR_BRPS( 1) | SCR_BRDV_DIV_4 },
251 { 8, SCR_BRPS( 1) | SCR_BRDV_DIV_8 },
252 { 16, SCR_BRPS( 1) | SCR_BRDV_DIV_16 },
253 { 32, SCR_BRPS( 1) | SCR_BRDV_DIV_32 },
254 { 64, SCR_BRPS(32) | SCR_BRDV_DIV_2 },
255 { 128, SCR_BRPS(32) | SCR_BRDV_DIV_4 },
256 { 256, SCR_BRPS(32) | SCR_BRDV_DIV_8 },
257 { 512, SCR_BRPS(32) | SCR_BRDV_DIV_16 },
258 { 1024, SCR_BRPS(32) | SCR_BRDV_DIV_32 },
8051effc
MD
259};
260
261static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
6a85fc5a 262 unsigned long parent_rate, u32 spi_hz)
8051effc
MD
263{
264 unsigned long div = 1024;
265 size_t k;
266
267 if (!WARN_ON(!spi_hz || !parent_rate))
e4d313ff 268 div = DIV_ROUND_UP(parent_rate, spi_hz);
8051effc
MD
269
270 /* TODO: make more fine grained */
271
272 for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_clk_table); k++) {
273 if (sh_msiof_spi_clk_table[k].div >= div)
274 break;
275 }
276
277 k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_clk_table) - 1);
278
279 sh_msiof_write(p, TSCR, sh_msiof_spi_clk_table[k].scr);
beb74bb0
GU
280 if (!(p->chipdata->master_flags & SPI_MASTER_MUST_TX))
281 sh_msiof_write(p, RSCR, sh_msiof_spi_clk_table[k].scr);
8051effc
MD
282}
283
3110628d
YS
284static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
285{
286 /*
287 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
288 * b'000 : 0
289 * b'001 : 100
290 * b'010 : 200
291 * b'011 (SYNCDL only) : 300
292 * b'101 : 50
293 * b'110 : 150
294 */
295 if (dtdl_or_syncdl % 100)
296 return dtdl_or_syncdl / 100 + 5;
297 else
298 return dtdl_or_syncdl / 100;
299}
300
301static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
302{
303 u32 val;
304
305 if (!p->info)
306 return 0;
307
308 /* check if DTDL and SYNCDL is allowed value */
309 if (p->info->dtdl > 200 || p->info->syncdl > 300) {
310 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
311 return 0;
312 }
313
314 /* check if the sum of DTDL and SYNCDL becomes an integer value */
315 if ((p->info->dtdl + p->info->syncdl) % 100) {
316 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
317 return 0;
318 }
319
320 val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
321 val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
322
323 return val;
324}
325
8051effc 326static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
e2dbf5eb 327 u32 cpol, u32 cpha,
50a77998 328 u32 tx_hi_z, u32 lsb_first, u32 cs_high)
8051effc 329{
e2dbf5eb 330 u32 tmp;
8051effc
MD
331 int edge;
332
333 /*
e8708ef7
MP
334 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
335 * 0 0 10 10 1 1
336 * 0 1 10 10 0 0
337 * 1 0 11 11 0 0
338 * 1 1 11 11 1 1
8051effc 339 */
01cfef57
GU
340 tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
341 tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
342 tmp |= lsb_first << MDR1_BITLSB_SHIFT;
3110628d 343 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
01cfef57 344 sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
beb74bb0
GU
345 if (p->chipdata->master_flags & SPI_MASTER_MUST_TX) {
346 /* These bits are reserved if RX needs TX */
347 tmp &= ~0x0000ffff;
348 }
01cfef57 349 sh_msiof_write(p, RMDR1, tmp);
8051effc 350
01cfef57
GU
351 tmp = 0;
352 tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
353 tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
8051effc 354
e2dbf5eb 355 edge = cpol ^ !cpha;
8051effc 356
01cfef57
GU
357 tmp |= edge << CTR_TEDG_SHIFT;
358 tmp |= edge << CTR_REDG_SHIFT;
359 tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
8051effc
MD
360 sh_msiof_write(p, CTR, tmp);
361}
362
363static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
364 const void *tx_buf, void *rx_buf,
e2dbf5eb 365 u32 bits, u32 words)
8051effc 366{
01cfef57 367 u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
8051effc 368
beb74bb0 369 if (tx_buf || (p->chipdata->master_flags & SPI_MASTER_MUST_TX))
8051effc
MD
370 sh_msiof_write(p, TMDR2, dr2);
371 else
01cfef57 372 sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
8051effc
MD
373
374 if (rx_buf)
375 sh_msiof_write(p, RMDR2, dr2);
8051effc
MD
376}
377
378static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
379{
380 sh_msiof_write(p, STR, sh_msiof_read(p, STR));
381}
382
383static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
384 const void *tx_buf, int words, int fs)
385{
e2dbf5eb 386 const u8 *buf_8 = tx_buf;
8051effc
MD
387 int k;
388
389 for (k = 0; k < words; k++)
390 sh_msiof_write(p, TFDR, buf_8[k] << fs);
391}
392
393static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
394 const void *tx_buf, int words, int fs)
395{
e2dbf5eb 396 const u16 *buf_16 = tx_buf;
8051effc
MD
397 int k;
398
399 for (k = 0; k < words; k++)
400 sh_msiof_write(p, TFDR, buf_16[k] << fs);
401}
402
403static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
404 const void *tx_buf, int words, int fs)
405{
e2dbf5eb 406 const u16 *buf_16 = tx_buf;
8051effc
MD
407 int k;
408
409 for (k = 0; k < words; k++)
410 sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
411}
412
413static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
414 const void *tx_buf, int words, int fs)
415{
e2dbf5eb 416 const u32 *buf_32 = tx_buf;
8051effc
MD
417 int k;
418
419 for (k = 0; k < words; k++)
420 sh_msiof_write(p, TFDR, buf_32[k] << fs);
421}
422
423static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
424 const void *tx_buf, int words, int fs)
425{
e2dbf5eb 426 const u32 *buf_32 = tx_buf;
8051effc
MD
427 int k;
428
429 for (k = 0; k < words; k++)
430 sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
431}
432
9dabb3f3
GL
433static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
434 const void *tx_buf, int words, int fs)
435{
436 const u32 *buf_32 = tx_buf;
437 int k;
438
439 for (k = 0; k < words; k++)
440 sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
441}
442
443static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
444 const void *tx_buf, int words, int fs)
445{
446 const u32 *buf_32 = tx_buf;
447 int k;
448
449 for (k = 0; k < words; k++)
450 sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
451}
452
8051effc
MD
453static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
454 void *rx_buf, int words, int fs)
455{
e2dbf5eb 456 u8 *buf_8 = rx_buf;
8051effc
MD
457 int k;
458
459 for (k = 0; k < words; k++)
460 buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
461}
462
463static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
464 void *rx_buf, int words, int fs)
465{
e2dbf5eb 466 u16 *buf_16 = rx_buf;
8051effc
MD
467 int k;
468
469 for (k = 0; k < words; k++)
470 buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
471}
472
473static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
474 void *rx_buf, int words, int fs)
475{
e2dbf5eb 476 u16 *buf_16 = rx_buf;
8051effc
MD
477 int k;
478
479 for (k = 0; k < words; k++)
480 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
481}
482
483static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
484 void *rx_buf, int words, int fs)
485{
e2dbf5eb 486 u32 *buf_32 = rx_buf;
8051effc
MD
487 int k;
488
489 for (k = 0; k < words; k++)
490 buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
491}
492
493static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
494 void *rx_buf, int words, int fs)
495{
e2dbf5eb 496 u32 *buf_32 = rx_buf;
8051effc
MD
497 int k;
498
499 for (k = 0; k < words; k++)
500 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
501}
502
9dabb3f3
GL
503static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
504 void *rx_buf, int words, int fs)
505{
506 u32 *buf_32 = rx_buf;
507 int k;
508
509 for (k = 0; k < words; k++)
510 buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
511}
512
513static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
514 void *rx_buf, int words, int fs)
515{
516 u32 *buf_32 = rx_buf;
517 int k;
518
519 for (k = 0; k < words; k++)
520 put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
521}
522
8d19534a 523static int sh_msiof_spi_setup(struct spi_device *spi)
8051effc 524{
8d19534a 525 struct device_node *np = spi->master->dev.of_node;
c833ff73 526 struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
8051effc 527
01576056
HN
528 pm_runtime_get_sync(&p->pdev->dev);
529
8d19534a
GU
530 if (!np) {
531 /*
532 * Use spi->controller_data for CS (same strategy as spi_gpio),
533 * if any. otherwise let HW control CS
534 */
535 spi->cs_gpio = (uintptr_t)spi->controller_data;
536 }
8051effc 537
c833ff73
GU
538 /* Configure pins before deasserting CS */
539 sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
540 !!(spi->mode & SPI_CPHA),
541 !!(spi->mode & SPI_3WIRE),
542 !!(spi->mode & SPI_LSB_FIRST),
543 !!(spi->mode & SPI_CS_HIGH));
8051effc 544
1bd6363b
GU
545 if (spi->cs_gpio >= 0)
546 gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
8051effc 547
01576056
HN
548
549 pm_runtime_put_sync(&p->pdev->dev);
550
1bd6363b 551 return 0;
8051effc
MD
552}
553
c833ff73
GU
554static int sh_msiof_prepare_message(struct spi_master *master,
555 struct spi_message *msg)
8051effc 556{
c833ff73
GU
557 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
558 const struct spi_device *spi = msg->spi;
8051effc 559
c833ff73
GU
560 /* Configure pins before asserting CS */
561 sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
562 !!(spi->mode & SPI_CPHA),
563 !!(spi->mode & SPI_3WIRE),
564 !!(spi->mode & SPI_LSB_FIRST),
565 !!(spi->mode & SPI_CS_HIGH));
566 return 0;
8051effc
MD
567}
568
76c02e71
GU
569static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
570{
571 int ret;
572
573 /* setup clock and rx/tx signals */
574 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
575 if (rx_buf && !ret)
576 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
577 if (!ret)
578 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
579
580 /* start by setting frame bit */
581 if (!ret)
582 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
583
584 return ret;
585}
586
587static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
588{
589 int ret;
590
591 /* shut down frame, rx/tx and clock signals */
592 ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
593 if (!ret)
594 ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
595 if (rx_buf && !ret)
596 ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
597 if (!ret)
598 ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
599
600 return ret;
601}
602
8051effc
MD
603static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
604 void (*tx_fifo)(struct sh_msiof_spi_priv *,
605 const void *, int, int),
606 void (*rx_fifo)(struct sh_msiof_spi_priv *,
607 void *, int, int),
608 const void *tx_buf, void *rx_buf,
609 int words, int bits)
610{
611 int fifo_shift;
612 int ret;
613
614 /* limit maximum word transfer to rx/tx fifo size */
615 if (tx_buf)
616 words = min_t(int, words, p->tx_fifo_size);
617 if (rx_buf)
618 words = min_t(int, words, p->rx_fifo_size);
619
620 /* the fifo contents need shifting */
621 fifo_shift = 32 - bits;
622
b0d0ce8b
GU
623 /* default FIFO watermarks for PIO */
624 sh_msiof_write(p, FCTR, 0);
625
8051effc
MD
626 /* setup msiof transfer mode registers */
627 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
b0d0ce8b 628 sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
8051effc
MD
629
630 /* write tx fifo */
631 if (tx_buf)
632 tx_fifo(p, tx_buf, words, fifo_shift);
633
16735d02 634 reinit_completion(&p->done);
76c02e71
GU
635
636 ret = sh_msiof_spi_start(p, rx_buf);
8051effc
MD
637 if (ret) {
638 dev_err(&p->pdev->dev, "failed to start hardware\n");
75b82e23 639 goto stop_ier;
8051effc
MD
640 }
641
642 /* wait for tx fifo to be emptied / rx fifo to be filled */
75b82e23
GU
643 ret = wait_for_completion_timeout(&p->done, HZ);
644 if (!ret) {
645 dev_err(&p->pdev->dev, "PIO timeout\n");
646 ret = -ETIMEDOUT;
647 goto stop_reset;
648 }
8051effc
MD
649
650 /* read rx fifo */
651 if (rx_buf)
652 rx_fifo(p, rx_buf, words, fifo_shift);
653
654 /* clear status bits */
655 sh_msiof_reset_str(p);
656
76c02e71 657 ret = sh_msiof_spi_stop(p, rx_buf);
8051effc
MD
658 if (ret) {
659 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
75b82e23 660 return ret;
8051effc
MD
661 }
662
663 return words;
664
75b82e23
GU
665stop_reset:
666 sh_msiof_reset_str(p);
667 sh_msiof_spi_stop(p, rx_buf);
668stop_ier:
8051effc
MD
669 sh_msiof_write(p, IER, 0);
670 return ret;
671}
672
b0d0ce8b
GU
673static void sh_msiof_dma_complete(void *arg)
674{
675 struct sh_msiof_spi_priv *p = arg;
676
677 sh_msiof_write(p, IER, 0);
678 complete(&p->done);
679}
680
681static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
682 void *rx, unsigned int len)
683{
684 u32 ier_bits = 0;
685 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
686 dma_cookie_t cookie;
687 int ret;
688
3e81b592 689 /* First prepare and submit the DMA request(s), as this may fail */
b0d0ce8b
GU
690 if (rx) {
691 ier_bits |= IER_RDREQE | IER_RDMAE;
692 desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
693 p->rx_dma_addr, len, DMA_FROM_DEVICE,
694 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
a5e7c719
GU
695 if (!desc_rx)
696 return -EAGAIN;
b0d0ce8b 697
b0d0ce8b
GU
698 desc_rx->callback = sh_msiof_dma_complete;
699 desc_rx->callback_param = p;
700 cookie = dmaengine_submit(desc_rx);
a5e7c719
GU
701 if (dma_submit_error(cookie))
702 return cookie;
b0d0ce8b
GU
703 }
704
705 if (tx) {
3e81b592
GU
706 ier_bits |= IER_TDREQE | IER_TDMAE;
707 dma_sync_single_for_device(p->master->dma_tx->device->dev,
708 p->tx_dma_addr, len, DMA_TO_DEVICE);
709 desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
710 p->tx_dma_addr, len, DMA_TO_DEVICE,
711 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
712 if (!desc_tx) {
713 ret = -EAGAIN;
714 goto no_dma_tx;
715 }
716
b0d0ce8b
GU
717 if (rx) {
718 /* No callback */
719 desc_tx->callback = NULL;
720 } else {
721 desc_tx->callback = sh_msiof_dma_complete;
722 desc_tx->callback_param = p;
723 }
724 cookie = dmaengine_submit(desc_tx);
725 if (dma_submit_error(cookie)) {
726 ret = cookie;
3e81b592 727 goto no_dma_tx;
b0d0ce8b 728 }
b0d0ce8b
GU
729 }
730
3e81b592
GU
731 /* 1 stage FIFO watermarks for DMA */
732 sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
733
734 /* setup msiof transfer mode registers (32-bit words) */
735 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
736
737 sh_msiof_write(p, IER, ier_bits);
738
739 reinit_completion(&p->done);
740
741 /* Now start DMA */
3e81b592 742 if (rx)
7a9f957b
GU
743 dma_async_issue_pending(p->master->dma_rx);
744 if (tx)
3e81b592
GU
745 dma_async_issue_pending(p->master->dma_tx);
746
b0d0ce8b
GU
747 ret = sh_msiof_spi_start(p, rx);
748 if (ret) {
749 dev_err(&p->pdev->dev, "failed to start hardware\n");
3e81b592 750 goto stop_dma;
b0d0ce8b
GU
751 }
752
753 /* wait for tx fifo to be emptied / rx fifo to be filled */
754 ret = wait_for_completion_timeout(&p->done, HZ);
755 if (!ret) {
756 dev_err(&p->pdev->dev, "DMA timeout\n");
757 ret = -ETIMEDOUT;
758 goto stop_reset;
759 }
760
761 /* clear status bits */
762 sh_msiof_reset_str(p);
763
764 ret = sh_msiof_spi_stop(p, rx);
765 if (ret) {
766 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
767 return ret;
768 }
769
770 if (rx)
5dabcf2f
GU
771 dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
772 p->rx_dma_addr, len,
b0d0ce8b
GU
773 DMA_FROM_DEVICE);
774
775 return 0;
776
777stop_reset:
778 sh_msiof_reset_str(p);
779 sh_msiof_spi_stop(p, rx);
3e81b592 780stop_dma:
b0d0ce8b
GU
781 if (tx)
782 dmaengine_terminate_all(p->master->dma_tx);
3e81b592 783no_dma_tx:
b0d0ce8b
GU
784 if (rx)
785 dmaengine_terminate_all(p->master->dma_rx);
b0d0ce8b
GU
786 sh_msiof_write(p, IER, 0);
787 return ret;
788}
789
790static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
791{
792 /* src or dst can be unaligned, but not both */
793 if ((unsigned long)src & 3) {
794 while (words--) {
795 *dst++ = swab32(get_unaligned(src));
796 src++;
797 }
798 } else if ((unsigned long)dst & 3) {
799 while (words--) {
800 put_unaligned(swab32(*src++), dst);
801 dst++;
802 }
803 } else {
804 while (words--)
805 *dst++ = swab32(*src++);
806 }
807}
808
809static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
810{
811 /* src or dst can be unaligned, but not both */
812 if ((unsigned long)src & 3) {
813 while (words--) {
814 *dst++ = swahw32(get_unaligned(src));
815 src++;
816 }
817 } else if ((unsigned long)dst & 3) {
818 while (words--) {
819 put_unaligned(swahw32(*src++), dst);
820 dst++;
821 }
822 } else {
823 while (words--)
824 *dst++ = swahw32(*src++);
825 }
826}
827
828static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
829{
830 memcpy(dst, src, words * 4);
831}
832
1bd6363b
GU
833static int sh_msiof_transfer_one(struct spi_master *master,
834 struct spi_device *spi,
835 struct spi_transfer *t)
8051effc 836{
1bd6363b 837 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
b0d0ce8b 838 void (*copy32)(u32 *, const u32 *, unsigned int);
8051effc
MD
839 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
840 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
0312d591
GU
841 const void *tx_buf = t->tx_buf;
842 void *rx_buf = t->rx_buf;
843 unsigned int len = t->len;
844 unsigned int bits = t->bits_per_word;
845 unsigned int bytes_per_word;
846 unsigned int words;
8051effc 847 int n;
9dabb3f3 848 bool swab;
b0d0ce8b
GU
849 int ret;
850
851 /* setup clocks (clock already enabled in chipselect()) */
852 sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
853
854 while (master->dma_tx && len > 15) {
855 /*
856 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
857 * words, with byte resp. word swapping.
858 */
859 unsigned int l = min(len, MAX_WDLEN * 4);
860
861 if (bits <= 8) {
862 if (l & 3)
863 break;
864 copy32 = copy_bswap32;
865 } else if (bits <= 16) {
866 if (l & 1)
867 break;
868 copy32 = copy_wswap32;
869 } else {
870 copy32 = copy_plain32;
871 }
872
873 if (tx_buf)
874 copy32(p->tx_dma_page, tx_buf, l / 4);
8051effc 875
b0d0ce8b 876 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
279d2378
GU
877 if (ret == -EAGAIN) {
878 pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
879 dev_driver_string(&p->pdev->dev),
880 dev_name(&p->pdev->dev));
881 break;
882 }
b0d0ce8b
GU
883 if (ret)
884 return ret;
885
886 if (rx_buf) {
887 copy32(rx_buf, p->rx_dma_page, l / 4);
888 rx_buf += l;
889 }
890 if (tx_buf)
891 tx_buf += l;
892
893 len -= l;
894 if (!len)
895 return 0;
896 }
8051effc 897
0312d591 898 if (bits <= 8 && len > 15 && !(len & 3)) {
9dabb3f3
GL
899 bits = 32;
900 swab = true;
901 } else {
902 swab = false;
903 }
904
8051effc
MD
905 /* setup bytes per word and fifo read/write functions */
906 if (bits <= 8) {
907 bytes_per_word = 1;
908 tx_fifo = sh_msiof_spi_write_fifo_8;
909 rx_fifo = sh_msiof_spi_read_fifo_8;
910 } else if (bits <= 16) {
911 bytes_per_word = 2;
0312d591 912 if ((unsigned long)tx_buf & 0x01)
8051effc
MD
913 tx_fifo = sh_msiof_spi_write_fifo_16u;
914 else
915 tx_fifo = sh_msiof_spi_write_fifo_16;
916
0312d591 917 if ((unsigned long)rx_buf & 0x01)
8051effc
MD
918 rx_fifo = sh_msiof_spi_read_fifo_16u;
919 else
920 rx_fifo = sh_msiof_spi_read_fifo_16;
9dabb3f3
GL
921 } else if (swab) {
922 bytes_per_word = 4;
0312d591 923 if ((unsigned long)tx_buf & 0x03)
9dabb3f3
GL
924 tx_fifo = sh_msiof_spi_write_fifo_s32u;
925 else
926 tx_fifo = sh_msiof_spi_write_fifo_s32;
927
0312d591 928 if ((unsigned long)rx_buf & 0x03)
9dabb3f3
GL
929 rx_fifo = sh_msiof_spi_read_fifo_s32u;
930 else
931 rx_fifo = sh_msiof_spi_read_fifo_s32;
8051effc
MD
932 } else {
933 bytes_per_word = 4;
0312d591 934 if ((unsigned long)tx_buf & 0x03)
8051effc
MD
935 tx_fifo = sh_msiof_spi_write_fifo_32u;
936 else
937 tx_fifo = sh_msiof_spi_write_fifo_32;
938
0312d591 939 if ((unsigned long)rx_buf & 0x03)
8051effc
MD
940 rx_fifo = sh_msiof_spi_read_fifo_32u;
941 else
942 rx_fifo = sh_msiof_spi_read_fifo_32;
943 }
944
8051effc 945 /* transfer in fifo sized chunks */
0312d591
GU
946 words = len / bytes_per_word;
947
948 while (words > 0) {
949 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
8051effc
MD
950 words, bits);
951 if (n < 0)
75b82e23 952 return n;
8051effc 953
0312d591
GU
954 if (tx_buf)
955 tx_buf += n * bytes_per_word;
956 if (rx_buf)
957 rx_buf += n * bytes_per_word;
8051effc
MD
958 words -= n;
959 }
960
8051effc
MD
961 return 0;
962}
963
50a7e23f
GU
964static const struct sh_msiof_chipdata sh_data = {
965 .tx_fifo_size = 64,
966 .rx_fifo_size = 64,
beb74bb0
GU
967 .master_flags = 0,
968};
969
970static const struct sh_msiof_chipdata r8a779x_data = {
971 .tx_fifo_size = 64,
972 .rx_fifo_size = 256,
973 .master_flags = SPI_MASTER_MUST_TX,
50a7e23f
GU
974};
975
976static const struct of_device_id sh_msiof_match[] = {
977 { .compatible = "renesas,sh-msiof", .data = &sh_data },
978 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
beb74bb0
GU
979 { .compatible = "renesas,msiof-r8a7790", .data = &r8a779x_data },
980 { .compatible = "renesas,msiof-r8a7791", .data = &r8a779x_data },
e221cc99
GU
981 { .compatible = "renesas,msiof-r8a7792", .data = &r8a779x_data },
982 { .compatible = "renesas,msiof-r8a7793", .data = &r8a779x_data },
983 { .compatible = "renesas,msiof-r8a7794", .data = &r8a779x_data },
50a7e23f
GU
984 {},
985};
986MODULE_DEVICE_TABLE(of, sh_msiof_match);
987
cf9c86ef
BH
988#ifdef CONFIG_OF
989static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
990{
991 struct sh_msiof_spi_info *info;
992 struct device_node *np = dev->of_node;
32d3b2d1 993 u32 num_cs = 1;
cf9c86ef
BH
994
995 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1e8231b7 996 if (!info)
cf9c86ef 997 return NULL;
cf9c86ef
BH
998
999 /* Parse the MSIOF properties */
1000 of_property_read_u32(np, "num-cs", &num_cs);
1001 of_property_read_u32(np, "renesas,tx-fifo-size",
1002 &info->tx_fifo_override);
1003 of_property_read_u32(np, "renesas,rx-fifo-size",
1004 &info->rx_fifo_override);
3110628d
YS
1005 of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1006 of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
cf9c86ef
BH
1007
1008 info->num_chipselect = num_cs;
1009
1010 return info;
1011}
1012#else
1013static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1014{
1015 return NULL;
1016}
1017#endif
1018
b0d0ce8b
GU
1019static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1020 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1021{
1022 dma_cap_mask_t mask;
1023 struct dma_chan *chan;
1024 struct dma_slave_config cfg;
1025 int ret;
1026
1027 dma_cap_zero(mask);
1028 dma_cap_set(DMA_SLAVE, mask);
1029
a6be4de6
GU
1030 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1031 (void *)(unsigned long)id, dev,
1032 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
b0d0ce8b 1033 if (!chan) {
a6be4de6 1034 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
b0d0ce8b
GU
1035 return NULL;
1036 }
1037
1038 memset(&cfg, 0, sizeof(cfg));
1039 cfg.slave_id = id;
1040 cfg.direction = dir;
52fba2b8 1041 if (dir == DMA_MEM_TO_DEV) {
b0d0ce8b 1042 cfg.dst_addr = port_addr;
52fba2b8
GU
1043 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1044 } else {
b0d0ce8b 1045 cfg.src_addr = port_addr;
52fba2b8
GU
1046 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1047 }
b0d0ce8b
GU
1048
1049 ret = dmaengine_slave_config(chan, &cfg);
1050 if (ret) {
1051 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1052 dma_release_channel(chan);
1053 return NULL;
1054 }
1055
1056 return chan;
1057}
1058
1059static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1060{
1061 struct platform_device *pdev = p->pdev;
1062 struct device *dev = &pdev->dev;
1063 const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
a6be4de6 1064 unsigned int dma_tx_id, dma_rx_id;
b0d0ce8b
GU
1065 const struct resource *res;
1066 struct spi_master *master;
5dabcf2f 1067 struct device *tx_dev, *rx_dev;
b0d0ce8b 1068
a6be4de6
GU
1069 if (dev->of_node) {
1070 /* In the OF case we will get the slave IDs from the DT */
1071 dma_tx_id = 0;
1072 dma_rx_id = 0;
1073 } else if (info && info->dma_tx_id && info->dma_rx_id) {
1074 dma_tx_id = info->dma_tx_id;
1075 dma_rx_id = info->dma_rx_id;
1076 } else {
1077 /* The driver assumes no error */
1078 return 0;
1079 }
b0d0ce8b
GU
1080
1081 /* The DMA engine uses the second register set, if present */
1082 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1083 if (!res)
1084 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1085
1086 master = p->master;
1087 master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
a6be4de6 1088 dma_tx_id,
b0d0ce8b
GU
1089 res->start + TFDR);
1090 if (!master->dma_tx)
1091 return -ENODEV;
1092
1093 master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
a6be4de6 1094 dma_rx_id,
b0d0ce8b
GU
1095 res->start + RFDR);
1096 if (!master->dma_rx)
1097 goto free_tx_chan;
1098
1099 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1100 if (!p->tx_dma_page)
1101 goto free_rx_chan;
1102
1103 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1104 if (!p->rx_dma_page)
1105 goto free_tx_page;
1106
5dabcf2f
GU
1107 tx_dev = master->dma_tx->device->dev;
1108 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
b0d0ce8b 1109 DMA_TO_DEVICE);
5dabcf2f 1110 if (dma_mapping_error(tx_dev, p->tx_dma_addr))
b0d0ce8b
GU
1111 goto free_rx_page;
1112
5dabcf2f
GU
1113 rx_dev = master->dma_rx->device->dev;
1114 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
b0d0ce8b 1115 DMA_FROM_DEVICE);
5dabcf2f 1116 if (dma_mapping_error(rx_dev, p->rx_dma_addr))
b0d0ce8b
GU
1117 goto unmap_tx_page;
1118
1119 dev_info(dev, "DMA available");
1120 return 0;
1121
1122unmap_tx_page:
5dabcf2f 1123 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
b0d0ce8b
GU
1124free_rx_page:
1125 free_page((unsigned long)p->rx_dma_page);
1126free_tx_page:
1127 free_page((unsigned long)p->tx_dma_page);
1128free_rx_chan:
1129 dma_release_channel(master->dma_rx);
1130free_tx_chan:
1131 dma_release_channel(master->dma_tx);
1132 master->dma_tx = NULL;
1133 return -ENODEV;
1134}
1135
1136static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1137{
1138 struct spi_master *master = p->master;
1139 struct device *dev;
1140
1141 if (!master->dma_tx)
1142 return;
1143
1144 dev = &p->pdev->dev;
5dabcf2f
GU
1145 dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1146 PAGE_SIZE, DMA_FROM_DEVICE);
1147 dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1148 PAGE_SIZE, DMA_TO_DEVICE);
b0d0ce8b
GU
1149 free_page((unsigned long)p->rx_dma_page);
1150 free_page((unsigned long)p->tx_dma_page);
1151 dma_release_channel(master->dma_rx);
1152 dma_release_channel(master->dma_tx);
1153}
1154
8051effc
MD
1155static int sh_msiof_spi_probe(struct platform_device *pdev)
1156{
1157 struct resource *r;
1158 struct spi_master *master;
50a7e23f 1159 const struct of_device_id *of_id;
8051effc 1160 struct sh_msiof_spi_priv *p;
8051effc
MD
1161 int i;
1162 int ret;
1163
1164 master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv));
1165 if (master == NULL) {
1166 dev_err(&pdev->dev, "failed to allocate spi master\n");
b4dd05de 1167 return -ENOMEM;
8051effc
MD
1168 }
1169
1170 p = spi_master_get_devdata(master);
1171
1172 platform_set_drvdata(pdev, p);
b0d0ce8b 1173 p->master = master;
50a7e23f
GU
1174
1175 of_id = of_match_device(sh_msiof_match, &pdev->dev);
1176 if (of_id) {
1177 p->chipdata = of_id->data;
cf9c86ef 1178 p->info = sh_msiof_spi_parse_dt(&pdev->dev);
50a7e23f
GU
1179 } else {
1180 p->chipdata = (const void *)pdev->id_entry->driver_data;
8074cf06 1181 p->info = dev_get_platdata(&pdev->dev);
50a7e23f 1182 }
cf9c86ef
BH
1183
1184 if (!p->info) {
1185 dev_err(&pdev->dev, "failed to obtain device info\n");
1186 ret = -ENXIO;
1187 goto err1;
1188 }
1189
8051effc
MD
1190 init_completion(&p->done);
1191
b4dd05de 1192 p->clk = devm_clk_get(&pdev->dev, NULL);
8051effc 1193 if (IS_ERR(p->clk)) {
078b6ead 1194 dev_err(&pdev->dev, "cannot get clock\n");
8051effc
MD
1195 ret = PTR_ERR(p->clk);
1196 goto err1;
1197 }
1198
8051effc 1199 i = platform_get_irq(pdev, 0);
b4dd05de
LP
1200 if (i < 0) {
1201 dev_err(&pdev->dev, "cannot get platform IRQ\n");
8051effc 1202 ret = -ENOENT;
b4dd05de 1203 goto err1;
8051effc 1204 }
b4dd05de
LP
1205
1206 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1207 p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1208 if (IS_ERR(p->mapbase)) {
1209 ret = PTR_ERR(p->mapbase);
1210 goto err1;
8051effc
MD
1211 }
1212
b4dd05de
LP
1213 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1214 dev_name(&pdev->dev), p);
8051effc
MD
1215 if (ret) {
1216 dev_err(&pdev->dev, "unable to request irq\n");
b4dd05de 1217 goto err1;
8051effc
MD
1218 }
1219
1220 p->pdev = pdev;
1221 pm_runtime_enable(&pdev->dev);
1222
8051effc 1223 /* Platform data may override FIFO sizes */
50a7e23f
GU
1224 p->tx_fifo_size = p->chipdata->tx_fifo_size;
1225 p->rx_fifo_size = p->chipdata->rx_fifo_size;
8051effc
MD
1226 if (p->info->tx_fifo_override)
1227 p->tx_fifo_size = p->info->tx_fifo_override;
1228 if (p->info->rx_fifo_override)
1229 p->rx_fifo_size = p->info->rx_fifo_override;
1230
1bd6363b 1231 /* init master code */
8051effc
MD
1232 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1233 master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
beb74bb0 1234 master->flags = p->chipdata->master_flags;
8051effc 1235 master->bus_num = pdev->id;
f7c05e83 1236 master->dev.of_node = pdev->dev.of_node;
8051effc 1237 master->num_chipselect = p->info->num_chipselect;
8d19534a 1238 master->setup = sh_msiof_spi_setup;
c833ff73 1239 master->prepare_message = sh_msiof_prepare_message;
2416289c 1240 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
e2a0ba54 1241 master->auto_runtime_pm = true;
1bd6363b 1242 master->transfer_one = sh_msiof_transfer_one;
8051effc 1243
b0d0ce8b
GU
1244 ret = sh_msiof_request_dma(p);
1245 if (ret < 0)
1246 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1247
1bd6363b
GU
1248 ret = devm_spi_register_master(&pdev->dev, master);
1249 if (ret < 0) {
1250 dev_err(&pdev->dev, "spi_register_master error.\n");
1251 goto err2;
1252 }
8051effc 1253
1bd6363b 1254 return 0;
8051effc 1255
1bd6363b 1256 err2:
b0d0ce8b 1257 sh_msiof_release_dma(p);
8051effc 1258 pm_runtime_disable(&pdev->dev);
8051effc
MD
1259 err1:
1260 spi_master_put(master);
8051effc
MD
1261 return ret;
1262}
1263
1264static int sh_msiof_spi_remove(struct platform_device *pdev)
1265{
b0d0ce8b
GU
1266 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1267
1268 sh_msiof_release_dma(p);
1bd6363b 1269 pm_runtime_disable(&pdev->dev);
1bd6363b 1270 return 0;
8051effc
MD
1271}
1272
50a7e23f
GU
1273static struct platform_device_id spi_driver_ids[] = {
1274 { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
beb74bb0
GU
1275 { "spi_r8a7790_msiof", (kernel_ulong_t)&r8a779x_data },
1276 { "spi_r8a7791_msiof", (kernel_ulong_t)&r8a779x_data },
e221cc99
GU
1277 { "spi_r8a7792_msiof", (kernel_ulong_t)&r8a779x_data },
1278 { "spi_r8a7793_msiof", (kernel_ulong_t)&r8a779x_data },
1279 { "spi_r8a7794_msiof", (kernel_ulong_t)&r8a779x_data },
cf9c86ef
BH
1280 {},
1281};
50a7e23f 1282MODULE_DEVICE_TABLE(platform, spi_driver_ids);
cf9c86ef 1283
8051effc
MD
1284static struct platform_driver sh_msiof_spi_drv = {
1285 .probe = sh_msiof_spi_probe,
1286 .remove = sh_msiof_spi_remove,
50a7e23f 1287 .id_table = spi_driver_ids,
8051effc
MD
1288 .driver = {
1289 .name = "spi_sh_msiof",
691ee4ed 1290 .of_match_table = of_match_ptr(sh_msiof_match),
8051effc
MD
1291 },
1292};
940ab889 1293module_platform_driver(sh_msiof_spi_drv);
8051effc
MD
1294
1295MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1296MODULE_AUTHOR("Magnus Damm");
1297MODULE_LICENSE("GPL v2");
1298MODULE_ALIAS("platform:spi_sh_msiof");
This page took 0.511448 seconds and 5 git commands to generate.