staging/hfi1: Change default krcvqs
[deliverable/linux.git] / drivers / staging / rdma / hfi1 / chip.c
CommitLineData
77241056
MM
1/*
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2015 Intel Corporation.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * BSD LICENSE
20 *
21 * Copyright(c) 2015 Intel Corporation.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 *
27 * - Redistributions of source code must retain the above copyright
28 * notice, this list of conditions and the following disclaimer.
29 * - Redistributions in binary form must reproduce the above copyright
30 * notice, this list of conditions and the following disclaimer in
31 * the documentation and/or other materials provided with the
32 * distribution.
33 * - Neither the name of Intel Corporation nor the names of its
34 * contributors may be used to endorse or promote products derived
35 * from this software without specific prior written permission.
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 *
49 */
50
51/*
52 * This file contains all of the code that is specific to the HFI chip
53 */
54
55#include <linux/pci.h>
56#include <linux/delay.h>
57#include <linux/interrupt.h>
58#include <linux/module.h>
59
60#include "hfi.h"
61#include "trace.h"
62#include "mad.h"
63#include "pio.h"
64#include "sdma.h"
65#include "eprom.h"
5d9157aa 66#include "efivar.h"
77241056
MM
67
68#define NUM_IB_PORTS 1
69
70uint kdeth_qp;
71module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
72MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
73
74uint num_vls = HFI1_MAX_VLS_SUPPORTED;
75module_param(num_vls, uint, S_IRUGO);
76MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
77
78/*
79 * Default time to aggregate two 10K packets from the idle state
80 * (timer not running). The timer starts at the end of the first packet,
81 * so only the time for one 10K packet and header plus a bit extra is needed.
82 * 10 * 1024 + 64 header byte = 10304 byte
83 * 10304 byte / 12.5 GB/s = 824.32ns
84 */
85uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
86module_param(rcv_intr_timeout, uint, S_IRUGO);
87MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
88
89uint rcv_intr_count = 16; /* same as qib */
90module_param(rcv_intr_count, uint, S_IRUGO);
91MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
92
93ushort link_crc_mask = SUPPORTED_CRCS;
94module_param(link_crc_mask, ushort, S_IRUGO);
95MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
96
97uint loopback;
98module_param_named(loopback, loopback, uint, S_IRUGO);
99MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
100
101/* Other driver tunables */
102uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
103static ushort crc_14b_sideband = 1;
104static uint use_flr = 1;
105uint quick_linkup; /* skip LNI */
106
107struct flag_table {
108 u64 flag; /* the flag */
109 char *str; /* description string */
110 u16 extra; /* extra information */
111 u16 unused0;
112 u32 unused1;
113};
114
115/* str must be a string constant */
116#define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
117#define FLAG_ENTRY0(str, flag) {flag, str, 0}
118
119/* Send Error Consequences */
120#define SEC_WRITE_DROPPED 0x1
121#define SEC_PACKET_DROPPED 0x2
122#define SEC_SC_HALTED 0x4 /* per-context only */
123#define SEC_SPC_FREEZE 0x8 /* per-HFI only */
124
77241056 125#define MIN_KERNEL_KCTXTS 2
82c2611d 126#define FIRST_KERNEL_KCTXT 1
77241056
MM
127#define NUM_MAP_REGS 32
128
129/* Bit offset into the GUID which carries HFI id information */
130#define GUID_HFI_INDEX_SHIFT 39
131
132/* extract the emulation revision */
133#define emulator_rev(dd) ((dd)->irev >> 8)
134/* parallel and serial emulation versions are 3 and 4 respectively */
135#define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
136#define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
137
138/* RSM fields */
139
140/* packet type */
141#define IB_PACKET_TYPE 2ull
142#define QW_SHIFT 6ull
143/* QPN[7..1] */
144#define QPN_WIDTH 7ull
145
146/* LRH.BTH: QW 0, OFFSET 48 - for match */
147#define LRH_BTH_QW 0ull
148#define LRH_BTH_BIT_OFFSET 48ull
149#define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off))
150#define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
151#define LRH_BTH_SELECT
152#define LRH_BTH_MASK 3ull
153#define LRH_BTH_VALUE 2ull
154
155/* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
156#define LRH_SC_QW 0ull
157#define LRH_SC_BIT_OFFSET 56ull
158#define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off))
159#define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
160#define LRH_SC_MASK 128ull
161#define LRH_SC_VALUE 0ull
162
163/* SC[n..0] QW 0, OFFSET 60 - for select */
164#define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull))
165
166/* QPN[m+n:1] QW 1, OFFSET 1 */
167#define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull))
168
169/* defines to build power on SC2VL table */
170#define SC2VL_VAL( \
171 num, \
172 sc0, sc0val, \
173 sc1, sc1val, \
174 sc2, sc2val, \
175 sc3, sc3val, \
176 sc4, sc4val, \
177 sc5, sc5val, \
178 sc6, sc6val, \
179 sc7, sc7val) \
180( \
181 ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
182 ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
183 ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
184 ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
185 ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
186 ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
187 ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
188 ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \
189)
190
191#define DC_SC_VL_VAL( \
192 range, \
193 e0, e0val, \
194 e1, e1val, \
195 e2, e2val, \
196 e3, e3val, \
197 e4, e4val, \
198 e5, e5val, \
199 e6, e6val, \
200 e7, e7val, \
201 e8, e8val, \
202 e9, e9val, \
203 e10, e10val, \
204 e11, e11val, \
205 e12, e12val, \
206 e13, e13val, \
207 e14, e14val, \
208 e15, e15val) \
209( \
210 ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
211 ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
212 ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
213 ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
214 ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
215 ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
216 ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
217 ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
218 ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
219 ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
220 ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
221 ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
222 ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
223 ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
224 ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
225 ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
226)
227
228/* all CceStatus sub-block freeze bits */
229#define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
230 | CCE_STATUS_RXE_FROZE_SMASK \
231 | CCE_STATUS_TXE_FROZE_SMASK \
232 | CCE_STATUS_TXE_PIO_FROZE_SMASK)
233/* all CceStatus sub-block TXE pause bits */
234#define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
235 | CCE_STATUS_TXE_PAUSED_SMASK \
236 | CCE_STATUS_SDMA_PAUSED_SMASK)
237/* all CceStatus sub-block RXE pause bits */
238#define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
239
240/*
241 * CCE Error flags.
242 */
243static struct flag_table cce_err_status_flags[] = {
244/* 0*/ FLAG_ENTRY0("CceCsrParityErr",
245 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
246/* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr",
247 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
248/* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr",
249 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
250/* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
251 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
252/* 4*/ FLAG_ENTRY0("CceTrgtAccessErr",
253 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
254/* 5*/ FLAG_ENTRY0("CceRspdDataParityErr",
255 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
256/* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
257 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
258/* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr",
259 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
260/* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
261 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
262/* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
263 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
264/*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
265 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
266/*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
267 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
268/*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
269 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
270/*13*/ FLAG_ENTRY0("PcicRetryMemCorErr",
271 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
272/*14*/ FLAG_ENTRY0("PcicRetryMemCorErr",
273 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
274/*15*/ FLAG_ENTRY0("PcicPostHdQCorErr",
275 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
276/*16*/ FLAG_ENTRY0("PcicPostHdQCorErr",
277 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
278/*17*/ FLAG_ENTRY0("PcicPostHdQCorErr",
279 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
280/*18*/ FLAG_ENTRY0("PcicCplDatQCorErr",
281 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
282/*19*/ FLAG_ENTRY0("PcicNPostHQParityErr",
283 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
284/*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr",
285 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
286/*21*/ FLAG_ENTRY0("PcicRetryMemUncErr",
287 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
288/*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr",
289 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
290/*23*/ FLAG_ENTRY0("PcicPostHdQUncErr",
291 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
292/*24*/ FLAG_ENTRY0("PcicPostDatQUncErr",
293 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
294/*25*/ FLAG_ENTRY0("PcicCplHdQUncErr",
295 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
296/*26*/ FLAG_ENTRY0("PcicCplDatQUncErr",
297 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
298/*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr",
299 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
300/*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr",
301 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
302/*29*/ FLAG_ENTRY0("PcicReceiveParityErr",
303 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
304/*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr",
305 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
306/*31*/ FLAG_ENTRY0("LATriggered",
307 CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
308/*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr",
309 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
310/*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr",
311 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
312/*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
313 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
314/*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
315 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
316/*36*/ FLAG_ENTRY0("CceMsixTableCorErr",
317 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
318/*37*/ FLAG_ENTRY0("CceMsixTableUncErr",
319 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
320/*38*/ FLAG_ENTRY0("CceIntMapCorErr",
321 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
322/*39*/ FLAG_ENTRY0("CceIntMapUncErr",
323 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
324/*40*/ FLAG_ENTRY0("CceMsixCsrParityErr",
325 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
326/*41-63 reserved*/
327};
328
329/*
330 * Misc Error flags
331 */
332#define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
333static struct flag_table misc_err_status_flags[] = {
334/* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
335/* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
336/* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
337/* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
338/* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
339/* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
340/* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
341/* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
342/* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
343/* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
344/*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
345/*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
346/*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
347};
348
349/*
350 * TXE PIO Error flags and consequences
351 */
352static struct flag_table pio_err_status_flags[] = {
353/* 0*/ FLAG_ENTRY("PioWriteBadCtxt",
354 SEC_WRITE_DROPPED,
355 SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
356/* 1*/ FLAG_ENTRY("PioWriteAddrParity",
357 SEC_SPC_FREEZE,
358 SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
359/* 2*/ FLAG_ENTRY("PioCsrParity",
360 SEC_SPC_FREEZE,
361 SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
362/* 3*/ FLAG_ENTRY("PioSbMemFifo0",
363 SEC_SPC_FREEZE,
364 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
365/* 4*/ FLAG_ENTRY("PioSbMemFifo1",
366 SEC_SPC_FREEZE,
367 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
368/* 5*/ FLAG_ENTRY("PioPccFifoParity",
369 SEC_SPC_FREEZE,
370 SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
371/* 6*/ FLAG_ENTRY("PioPecFifoParity",
372 SEC_SPC_FREEZE,
373 SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
374/* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity",
375 SEC_SPC_FREEZE,
376 SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
377/* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
378 SEC_SPC_FREEZE,
379 SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
380/* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr",
381 SEC_SPC_FREEZE,
382 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
383/*10*/ FLAG_ENTRY("PioSmPktResetParity",
384 SEC_SPC_FREEZE,
385 SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
386/*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc",
387 SEC_SPC_FREEZE,
388 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
389/*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc",
390 SEC_SPC_FREEZE,
391 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
392/*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor",
393 0,
394 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
395/*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor",
396 0,
397 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
398/*15*/ FLAG_ENTRY("PioCreditRetFifoParity",
399 SEC_SPC_FREEZE,
400 SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
401/*16*/ FLAG_ENTRY("PioPpmcPblFifo",
402 SEC_SPC_FREEZE,
403 SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
404/*17*/ FLAG_ENTRY("PioInitSmIn",
405 0,
406 SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
407/*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm",
408 SEC_SPC_FREEZE,
409 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
410/*19*/ FLAG_ENTRY("PioHostAddrMemUnc",
411 SEC_SPC_FREEZE,
412 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
413/*20*/ FLAG_ENTRY("PioHostAddrMemCor",
414 0,
415 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
416/*21*/ FLAG_ENTRY("PioWriteDataParity",
417 SEC_SPC_FREEZE,
418 SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
419/*22*/ FLAG_ENTRY("PioStateMachine",
420 SEC_SPC_FREEZE,
421 SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
422/*23*/ FLAG_ENTRY("PioWriteQwValidParity",
423 SEC_WRITE_DROPPED|SEC_SPC_FREEZE,
424 SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
425/*24*/ FLAG_ENTRY("PioBlockQwCountParity",
426 SEC_WRITE_DROPPED|SEC_SPC_FREEZE,
427 SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
428/*25*/ FLAG_ENTRY("PioVlfVlLenParity",
429 SEC_SPC_FREEZE,
430 SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
431/*26*/ FLAG_ENTRY("PioVlfSopParity",
432 SEC_SPC_FREEZE,
433 SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
434/*27*/ FLAG_ENTRY("PioVlFifoParity",
435 SEC_SPC_FREEZE,
436 SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
437/*28*/ FLAG_ENTRY("PioPpmcBqcMemParity",
438 SEC_SPC_FREEZE,
439 SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
440/*29*/ FLAG_ENTRY("PioPpmcSopLen",
441 SEC_SPC_FREEZE,
442 SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
443/*30-31 reserved*/
444/*32*/ FLAG_ENTRY("PioCurrentFreeCntParity",
445 SEC_SPC_FREEZE,
446 SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
447/*33*/ FLAG_ENTRY("PioLastReturnedCntParity",
448 SEC_SPC_FREEZE,
449 SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
450/*34*/ FLAG_ENTRY("PioPccSopHeadParity",
451 SEC_SPC_FREEZE,
452 SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
453/*35*/ FLAG_ENTRY("PioPecSopHeadParityErr",
454 SEC_SPC_FREEZE,
455 SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
456/*36-63 reserved*/
457};
458
459/* TXE PIO errors that cause an SPC freeze */
460#define ALL_PIO_FREEZE_ERR \
461 (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
462 | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
463 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
464 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
465 | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
466 | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
467 | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
468 | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
469 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
470 | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
471 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
472 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
473 | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
474 | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
475 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
476 | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
477 | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
478 | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
479 | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
480 | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
481 | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
482 | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
483 | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
484 | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
485 | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
486 | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
487 | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
488 | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
489 | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
490
491/*
492 * TXE SDMA Error flags
493 */
494static struct flag_table sdma_err_status_flags[] = {
495/* 0*/ FLAG_ENTRY0("SDmaRpyTagErr",
496 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
497/* 1*/ FLAG_ENTRY0("SDmaCsrParityErr",
498 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
499/* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
500 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
501/* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
502 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
503/*04-63 reserved*/
504};
505
506/* TXE SDMA errors that cause an SPC freeze */
507#define ALL_SDMA_FREEZE_ERR \
508 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
509 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
510 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
511
512/*
513 * TXE Egress Error flags
514 */
515#define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
516static struct flag_table egress_err_status_flags[] = {
517/* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
518/* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
519/* 2 reserved */
520/* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
521 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
522/* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
523/* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
524/* 6 reserved */
525/* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr",
526 SEES(TX_PIO_LAUNCH_INTF_PARITY)),
527/* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
528 SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
529/* 9-10 reserved */
530/*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
531 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
532/*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
533/*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
534/*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
535/*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
536/*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
537 SEES(TX_SDMA0_DISALLOWED_PACKET)),
538/*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
539 SEES(TX_SDMA1_DISALLOWED_PACKET)),
540/*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
541 SEES(TX_SDMA2_DISALLOWED_PACKET)),
542/*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
543 SEES(TX_SDMA3_DISALLOWED_PACKET)),
544/*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
545 SEES(TX_SDMA4_DISALLOWED_PACKET)),
546/*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
547 SEES(TX_SDMA5_DISALLOWED_PACKET)),
548/*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
549 SEES(TX_SDMA6_DISALLOWED_PACKET)),
550/*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
551 SEES(TX_SDMA7_DISALLOWED_PACKET)),
552/*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
553 SEES(TX_SDMA8_DISALLOWED_PACKET)),
554/*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
555 SEES(TX_SDMA9_DISALLOWED_PACKET)),
556/*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
557 SEES(TX_SDMA10_DISALLOWED_PACKET)),
558/*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
559 SEES(TX_SDMA11_DISALLOWED_PACKET)),
560/*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
561 SEES(TX_SDMA12_DISALLOWED_PACKET)),
562/*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
563 SEES(TX_SDMA13_DISALLOWED_PACKET)),
564/*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
565 SEES(TX_SDMA14_DISALLOWED_PACKET)),
566/*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
567 SEES(TX_SDMA15_DISALLOWED_PACKET)),
568/*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
569 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
570/*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
571 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
572/*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
573 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
574/*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
575 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
576/*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
577 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
578/*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
579 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
580/*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
581 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
582/*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
583 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
584/*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
585 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
586/*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
587/*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
588/*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
589/*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
590/*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
591/*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
592/*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
593/*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
594/*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
595/*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
596/*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
597/*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
598/*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
599/*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
600/*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
601/*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
602/*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
603/*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
604/*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
605/*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
606/*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
607/*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
608 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
609/*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
610 SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
611};
612
613/*
614 * TXE Egress Error Info flags
615 */
616#define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
617static struct flag_table egress_err_info_flags[] = {
618/* 0*/ FLAG_ENTRY0("Reserved", 0ull),
619/* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL)),
620/* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
621/* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
622/* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
623/* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
624/* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
625/* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
626/* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW)),
627/* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
628/*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH)),
629/*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
630/*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
631/*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
632/*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
633/*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
634/*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
635/*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
636/*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
637/*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
638/*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
639/*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
640};
641
642/* TXE Egress errors that cause an SPC freeze */
643#define ALL_TXE_EGRESS_FREEZE_ERR \
644 (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
645 | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
646 | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
647 | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
648 | SEES(TX_LAUNCH_CSR_PARITY) \
649 | SEES(TX_SBRD_CTL_CSR_PARITY) \
650 | SEES(TX_CONFIG_PARITY) \
651 | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
652 | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
653 | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
654 | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
655 | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
656 | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
657 | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
658 | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
659 | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
660 | SEES(TX_CREDIT_RETURN_PARITY))
661
662/*
663 * TXE Send error flags
664 */
665#define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
666static struct flag_table send_err_status_flags[] = {
2c5b521a 667/* 0*/ FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
77241056
MM
668/* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
669/* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
670};
671
672/*
673 * TXE Send Context Error flags and consequences
674 */
675static struct flag_table sc_err_status_flags[] = {
676/* 0*/ FLAG_ENTRY("InconsistentSop",
677 SEC_PACKET_DROPPED | SEC_SC_HALTED,
678 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
679/* 1*/ FLAG_ENTRY("DisallowedPacket",
680 SEC_PACKET_DROPPED | SEC_SC_HALTED,
681 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
682/* 2*/ FLAG_ENTRY("WriteCrossesBoundary",
683 SEC_WRITE_DROPPED | SEC_SC_HALTED,
684 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
685/* 3*/ FLAG_ENTRY("WriteOverflow",
686 SEC_WRITE_DROPPED | SEC_SC_HALTED,
687 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
688/* 4*/ FLAG_ENTRY("WriteOutOfBounds",
689 SEC_WRITE_DROPPED | SEC_SC_HALTED,
690 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
691/* 5-63 reserved*/
692};
693
694/*
695 * RXE Receive Error flags
696 */
697#define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
698static struct flag_table rxe_err_status_flags[] = {
699/* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
700/* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
701/* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
702/* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
703/* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
704/* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
705/* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
706/* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
707/* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
708/* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
709/*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
710/*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
711/*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
712/*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
713/*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
714/*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
715/*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
716 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
717/*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
718/*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
719/*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr",
720 RXES(RBUF_BLOCK_LIST_READ_UNC)),
721/*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr",
722 RXES(RBUF_BLOCK_LIST_READ_COR)),
723/*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
724 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
725/*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
726 RXES(RBUF_CSR_QENT_CNT_PARITY)),
727/*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
728 RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
729/*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
730 RXES(RBUF_CSR_QVLD_BIT_PARITY)),
731/*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
732/*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
733/*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
734 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
735/*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
736/*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
737/*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
738/*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
739/*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
740/*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
741/*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
742/*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
743 RXES(RBUF_FL_INITDONE_PARITY)),
744/*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
745 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
746/*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
747/*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
748/*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
749/*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
750 RXES(LOOKUP_DES_PART1_UNC_COR)),
751/*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr",
752 RXES(LOOKUP_DES_PART2_PARITY)),
753/*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
754/*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
755/*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
756/*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
757/*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
758/*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
759/*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
760/*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
761/*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
762/*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
763/*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
764/*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
765/*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
766/*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
767/*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
768/*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
769/*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
770/*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
771/*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
772/*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
773/*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
774/*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
775};
776
777/* RXE errors that will trigger an SPC freeze */
778#define ALL_RXE_FREEZE_ERR \
779 (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
780 | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
781 | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
782 | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
783 | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
784 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
785 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
786 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
787 | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
788 | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
789 | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
790 | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
791 | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
792 | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
793 | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
794 | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
795 | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
796 | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
797 | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
798 | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
799 | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
800 | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
801 | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
802 | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
803 | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
804 | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
805 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
806 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
807 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
808 | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
809 | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
810 | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
811 | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
812 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
813 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
814 | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
815 | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
816 | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
817 | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
818 | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
819 | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
820 | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
821 | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
822 | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
823
824#define RXE_FREEZE_ABORT_MASK \
825 (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
826 RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
827 RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
828
829/*
830 * DCC Error Flags
831 */
832#define DCCE(name) DCC_ERR_FLG_##name##_SMASK
833static struct flag_table dcc_err_flags[] = {
834 FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
835 FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
836 FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
837 FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
838 FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
839 FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
840 FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
841 FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
842 FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
843 FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
844 FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
845 FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
846 FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
847 FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
848 FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
849 FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
850 FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
851 FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
852 FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
853 FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
854 FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
855 FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
856 FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
857 FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
858 FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
859 FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
860 FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
861 FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
862 FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
863 FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
864 FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
865 FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
866 FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
867 FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
868 FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
869 FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
870 FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
871 FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
872 FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
873 FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
874 FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
875 FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
876 FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
877 FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
878 FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
879 FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
880};
881
882/*
883 * LCB error flags
884 */
885#define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
886static struct flag_table lcb_err_flags[] = {
887/* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
888/* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
889/* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
890/* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
891 LCBE(ALL_LNS_FAILED_REINIT_TEST)),
892/* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
893/* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
894/* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
895/* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
896/* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
897/* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
898/*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
899/*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
900/*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
901/*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
902 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
903/*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
904/*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
905/*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
906/*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
907/*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
908/*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
909 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
910/*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
911/*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
912/*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
913/*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
914/*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
915/*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
916/*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
917 LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
918/*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
919/*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
920 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
921/*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
922 LCBE(REDUNDANT_FLIT_PARITY_ERR))
923};
924
925/*
926 * DC8051 Error Flags
927 */
928#define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
929static struct flag_table dc8051_err_flags[] = {
930 FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
931 FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
932 FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
933 FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
934 FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
935 FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
936 FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
937 FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
938 FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
939 D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
940 FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
941};
942
943/*
944 * DC8051 Information Error flags
945 *
946 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
947 */
948static struct flag_table dc8051_info_err_flags[] = {
949 FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED),
950 FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME),
951 FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET),
952 FLAG_ENTRY0("Serdes internal loopback failure",
953 FAILED_SERDES_INTERNAL_LOOPBACK),
954 FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT),
955 FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING),
956 FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE),
957 FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM),
958 FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ),
959 FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
960 FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
961 FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT)
962};
963
964/*
965 * DC8051 Information Host Information flags
966 *
967 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
968 */
969static struct flag_table dc8051_info_host_msg_flags[] = {
970 FLAG_ENTRY0("Host request done", 0x0001),
971 FLAG_ENTRY0("BC SMA message", 0x0002),
972 FLAG_ENTRY0("BC PWR_MGM message", 0x0004),
973 FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
974 FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
975 FLAG_ENTRY0("External device config request", 0x0020),
976 FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
977 FLAG_ENTRY0("LinkUp achieved", 0x0080),
978 FLAG_ENTRY0("Link going down", 0x0100),
979};
980
981
982static u32 encoded_size(u32 size);
983static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
984static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
985static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
986 u8 *continuous);
987static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
988 u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
989static void read_vc_remote_link_width(struct hfi1_devdata *dd,
990 u8 *remote_tx_rate, u16 *link_widths);
991static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
992 u8 *flag_bits, u16 *link_widths);
993static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
994 u8 *device_rev);
995static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
996static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
997static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
998 u8 *tx_polarity_inversion,
999 u8 *rx_polarity_inversion, u8 *max_rate);
1000static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1001 unsigned int context, u64 err_status);
1002static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1003static void handle_dcc_err(struct hfi1_devdata *dd,
1004 unsigned int context, u64 err_status);
1005static void handle_lcb_err(struct hfi1_devdata *dd,
1006 unsigned int context, u64 err_status);
1007static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1008static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1009static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1010static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1011static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1012static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1013static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1014static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1015static void set_partition_keys(struct hfi1_pportdata *);
1016static const char *link_state_name(u32 state);
1017static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1018 u32 state);
1019static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1020 u64 *out_data);
1021static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1022static int thermal_init(struct hfi1_devdata *dd);
1023
1024static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1025 int msecs);
1026static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1027static void handle_temp_err(struct hfi1_devdata *);
1028static void dc_shutdown(struct hfi1_devdata *);
1029static void dc_start(struct hfi1_devdata *);
1030
1031/*
1032 * Error interrupt table entry. This is used as input to the interrupt
1033 * "clear down" routine used for all second tier error interrupt register.
1034 * Second tier interrupt registers have a single bit representing them
1035 * in the top-level CceIntStatus.
1036 */
1037struct err_reg_info {
1038 u32 status; /* status CSR offset */
1039 u32 clear; /* clear CSR offset */
1040 u32 mask; /* mask CSR offset */
1041 void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1042 const char *desc;
1043};
1044
1045#define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1046#define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1047#define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1048
1049/*
1050 * Helpers for building HFI and DC error interrupt table entries. Different
1051 * helpers are needed because of inconsistent register names.
1052 */
1053#define EE(reg, handler, desc) \
1054 { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1055 handler, desc }
1056#define DC_EE1(reg, handler, desc) \
1057 { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1058#define DC_EE2(reg, handler, desc) \
1059 { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1060
1061/*
1062 * Table of the "misc" grouping of error interrupts. Each entry refers to
1063 * another register containing more information.
1064 */
1065static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1066/* 0*/ EE(CCE_ERR, handle_cce_err, "CceErr"),
1067/* 1*/ EE(RCV_ERR, handle_rxe_err, "RxeErr"),
1068/* 2*/ EE(MISC_ERR, handle_misc_err, "MiscErr"),
1069/* 3*/ { 0, 0, 0, NULL }, /* reserved */
1070/* 4*/ EE(SEND_PIO_ERR, handle_pio_err, "PioErr"),
1071/* 5*/ EE(SEND_DMA_ERR, handle_sdma_err, "SDmaErr"),
1072/* 6*/ EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1073/* 7*/ EE(SEND_ERR, handle_txe_err, "TxeErr")
1074 /* the rest are reserved */
1075};
1076
1077/*
1078 * Index into the Various section of the interrupt sources
1079 * corresponding to the Critical Temperature interrupt.
1080 */
1081#define TCRIT_INT_SOURCE 4
1082
1083/*
1084 * SDMA error interrupt entry - refers to another register containing more
1085 * information.
1086 */
1087static const struct err_reg_info sdma_eng_err =
1088 EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1089
1090static const struct err_reg_info various_err[NUM_VARIOUS] = {
1091/* 0*/ { 0, 0, 0, NULL }, /* PbcInt */
1092/* 1*/ { 0, 0, 0, NULL }, /* GpioAssertInt */
1093/* 2*/ EE(ASIC_QSFP1, handle_qsfp_int, "QSFP1"),
1094/* 3*/ EE(ASIC_QSFP2, handle_qsfp_int, "QSFP2"),
1095/* 4*/ { 0, 0, 0, NULL }, /* TCritInt */
1096 /* rest are reserved */
1097};
1098
1099/*
1100 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1101 * register can not be derived from the MTU value because 10K is not
1102 * a power of 2. Therefore, we need a constant. Everything else can
1103 * be calculated.
1104 */
1105#define DCC_CFG_PORT_MTU_CAP_10240 7
1106
1107/*
1108 * Table of the DC grouping of error interrupts. Each entry refers to
1109 * another register containing more information.
1110 */
1111static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1112/* 0*/ DC_EE1(DCC_ERR, handle_dcc_err, "DCC Err"),
1113/* 1*/ DC_EE2(DC_LCB_ERR, handle_lcb_err, "LCB Err"),
1114/* 2*/ DC_EE2(DC_DC8051_ERR, handle_8051_interrupt, "DC8051 Interrupt"),
1115/* 3*/ /* dc_lbm_int - special, see is_dc_int() */
1116 /* the rest are reserved */
1117};
1118
1119struct cntr_entry {
1120 /*
1121 * counter name
1122 */
1123 char *name;
1124
1125 /*
1126 * csr to read for name (if applicable)
1127 */
1128 u64 csr;
1129
1130 /*
1131 * offset into dd or ppd to store the counter's value
1132 */
1133 int offset;
1134
1135 /*
1136 * flags
1137 */
1138 u8 flags;
1139
1140 /*
1141 * accessor for stat element, context either dd or ppd
1142 */
1143 u64 (*rw_cntr)(const struct cntr_entry *,
1144 void *context,
1145 int vl,
1146 int mode,
1147 u64 data);
1148};
1149
1150#define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1151#define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1152
1153#define CNTR_ELEM(name, csr, offset, flags, accessor) \
1154{ \
1155 name, \
1156 csr, \
1157 offset, \
1158 flags, \
1159 accessor \
1160}
1161
1162/* 32bit RXE */
1163#define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1164CNTR_ELEM(#name, \
1165 (counter * 8 + RCV_COUNTER_ARRAY32), \
1166 0, flags | CNTR_32BIT, \
1167 port_access_u32_csr)
1168
1169#define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1170CNTR_ELEM(#name, \
1171 (counter * 8 + RCV_COUNTER_ARRAY32), \
1172 0, flags | CNTR_32BIT, \
1173 dev_access_u32_csr)
1174
1175/* 64bit RXE */
1176#define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1177CNTR_ELEM(#name, \
1178 (counter * 8 + RCV_COUNTER_ARRAY64), \
1179 0, flags, \
1180 port_access_u64_csr)
1181
1182#define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1183CNTR_ELEM(#name, \
1184 (counter * 8 + RCV_COUNTER_ARRAY64), \
1185 0, flags, \
1186 dev_access_u64_csr)
1187
1188#define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1189#define OVR_ELM(ctx) \
1190CNTR_ELEM("RcvHdrOvr" #ctx, \
1191 (RCV_HDR_OVFL_CNT + ctx*0x100), \
1192 0, CNTR_NORMAL, port_access_u64_csr)
1193
1194/* 32bit TXE */
1195#define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1196CNTR_ELEM(#name, \
1197 (counter * 8 + SEND_COUNTER_ARRAY32), \
1198 0, flags | CNTR_32BIT, \
1199 port_access_u32_csr)
1200
1201/* 64bit TXE */
1202#define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1203CNTR_ELEM(#name, \
1204 (counter * 8 + SEND_COUNTER_ARRAY64), \
1205 0, flags, \
1206 port_access_u64_csr)
1207
1208# define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1209CNTR_ELEM(#name,\
1210 counter * 8 + SEND_COUNTER_ARRAY64, \
1211 0, \
1212 flags, \
1213 dev_access_u64_csr)
1214
1215/* CCE */
1216#define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1217CNTR_ELEM(#name, \
1218 (counter * 8 + CCE_COUNTER_ARRAY32), \
1219 0, flags | CNTR_32BIT, \
1220 dev_access_u32_csr)
1221
1222#define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1223CNTR_ELEM(#name, \
1224 (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1225 0, flags | CNTR_32BIT, \
1226 dev_access_u32_csr)
1227
1228/* DC */
1229#define DC_PERF_CNTR(name, counter, flags) \
1230CNTR_ELEM(#name, \
1231 counter, \
1232 0, \
1233 flags, \
1234 dev_access_u64_csr)
1235
1236#define DC_PERF_CNTR_LCB(name, counter, flags) \
1237CNTR_ELEM(#name, \
1238 counter, \
1239 0, \
1240 flags, \
1241 dc_access_lcb_cntr)
1242
1243/* ibp counters */
1244#define SW_IBP_CNTR(name, cntr) \
1245CNTR_ELEM(#name, \
1246 0, \
1247 0, \
1248 CNTR_SYNTH, \
1249 access_ibp_##cntr)
1250
1251u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1252{
1253 u64 val;
1254
1255 if (dd->flags & HFI1_PRESENT) {
1256 val = readq((void __iomem *)dd->kregbase + offset);
1257 return val;
1258 }
1259 return -1;
1260}
1261
1262void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1263{
1264 if (dd->flags & HFI1_PRESENT)
1265 writeq(value, (void __iomem *)dd->kregbase + offset);
1266}
1267
1268void __iomem *get_csr_addr(
1269 struct hfi1_devdata *dd,
1270 u32 offset)
1271{
1272 return (void __iomem *)dd->kregbase + offset;
1273}
1274
1275static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1276 int mode, u64 value)
1277{
1278 u64 ret;
1279
1280
1281 if (mode == CNTR_MODE_R) {
1282 ret = read_csr(dd, csr);
1283 } else if (mode == CNTR_MODE_W) {
1284 write_csr(dd, csr, value);
1285 ret = value;
1286 } else {
1287 dd_dev_err(dd, "Invalid cntr register access mode");
1288 return 0;
1289 }
1290
1291 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1292 return ret;
1293}
1294
1295/* Dev Access */
1296static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1297 void *context, int vl, int mode, u64 data)
1298{
a787bde8 1299 struct hfi1_devdata *dd = context;
77241056
MM
1300
1301 if (vl != CNTR_INVALID_VL)
1302 return 0;
1303 return read_write_csr(dd, entry->csr, mode, data);
1304}
1305
1306static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1307 int vl, int mode, u64 data)
1308{
a787bde8 1309 struct hfi1_devdata *dd = context;
77241056
MM
1310
1311 u64 val = 0;
1312 u64 csr = entry->csr;
1313
1314 if (entry->flags & CNTR_VL) {
1315 if (vl == CNTR_INVALID_VL)
1316 return 0;
1317 csr += 8 * vl;
1318 } else {
1319 if (vl != CNTR_INVALID_VL)
1320 return 0;
1321 }
1322
1323 val = read_write_csr(dd, csr, mode, data);
1324 return val;
1325}
1326
1327static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1328 int vl, int mode, u64 data)
1329{
a787bde8 1330 struct hfi1_devdata *dd = context;
77241056
MM
1331 u32 csr = entry->csr;
1332 int ret = 0;
1333
1334 if (vl != CNTR_INVALID_VL)
1335 return 0;
1336 if (mode == CNTR_MODE_R)
1337 ret = read_lcb_csr(dd, csr, &data);
1338 else if (mode == CNTR_MODE_W)
1339 ret = write_lcb_csr(dd, csr, data);
1340
1341 if (ret) {
1342 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1343 return 0;
1344 }
1345
1346 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1347 return data;
1348}
1349
1350/* Port Access */
1351static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1352 int vl, int mode, u64 data)
1353{
a787bde8 1354 struct hfi1_pportdata *ppd = context;
77241056
MM
1355
1356 if (vl != CNTR_INVALID_VL)
1357 return 0;
1358 return read_write_csr(ppd->dd, entry->csr, mode, data);
1359}
1360
1361static u64 port_access_u64_csr(const struct cntr_entry *entry,
1362 void *context, int vl, int mode, u64 data)
1363{
a787bde8 1364 struct hfi1_pportdata *ppd = context;
77241056
MM
1365 u64 val;
1366 u64 csr = entry->csr;
1367
1368 if (entry->flags & CNTR_VL) {
1369 if (vl == CNTR_INVALID_VL)
1370 return 0;
1371 csr += 8 * vl;
1372 } else {
1373 if (vl != CNTR_INVALID_VL)
1374 return 0;
1375 }
1376 val = read_write_csr(ppd->dd, csr, mode, data);
1377 return val;
1378}
1379
1380/* Software defined */
1381static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1382 u64 data)
1383{
1384 u64 ret;
1385
1386 if (mode == CNTR_MODE_R) {
1387 ret = *cntr;
1388 } else if (mode == CNTR_MODE_W) {
1389 *cntr = data;
1390 ret = data;
1391 } else {
1392 dd_dev_err(dd, "Invalid cntr sw access mode");
1393 return 0;
1394 }
1395
1396 hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1397
1398 return ret;
1399}
1400
1401static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1402 int vl, int mode, u64 data)
1403{
a787bde8 1404 struct hfi1_pportdata *ppd = context;
77241056
MM
1405
1406 if (vl != CNTR_INVALID_VL)
1407 return 0;
1408 return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1409}
1410
1411static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1412 int vl, int mode, u64 data)
1413{
a787bde8 1414 struct hfi1_pportdata *ppd = context;
77241056
MM
1415
1416 if (vl != CNTR_INVALID_VL)
1417 return 0;
1418 return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1419}
1420
6d014530
DL
1421static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1422 void *context, int vl, int mode,
1423 u64 data)
1424{
1425 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1426
1427 if (vl != CNTR_INVALID_VL)
1428 return 0;
1429 return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1430}
1431
77241056
MM
1432static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1433 void *context, int vl, int mode, u64 data)
1434{
a787bde8 1435 struct hfi1_pportdata *ppd = context;
77241056
MM
1436
1437 if (vl != CNTR_INVALID_VL)
1438 return 0;
1439
1440 return read_write_sw(ppd->dd, &ppd->port_xmit_discards, mode, data);
1441}
1442
1443static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1444 void *context, int vl, int mode, u64 data)
1445{
a787bde8 1446 struct hfi1_pportdata *ppd = context;
77241056
MM
1447
1448 if (vl != CNTR_INVALID_VL)
1449 return 0;
1450
1451 return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1452 mode, data);
1453}
1454
1455static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1456 void *context, int vl, int mode, u64 data)
1457{
a787bde8 1458 struct hfi1_pportdata *ppd = context;
77241056
MM
1459
1460 if (vl != CNTR_INVALID_VL)
1461 return 0;
1462
1463 return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1464 mode, data);
1465}
1466
1467u64 get_all_cpu_total(u64 __percpu *cntr)
1468{
1469 int cpu;
1470 u64 counter = 0;
1471
1472 for_each_possible_cpu(cpu)
1473 counter += *per_cpu_ptr(cntr, cpu);
1474 return counter;
1475}
1476
1477static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1478 u64 __percpu *cntr,
1479 int vl, int mode, u64 data)
1480{
1481
1482 u64 ret = 0;
1483
1484 if (vl != CNTR_INVALID_VL)
1485 return 0;
1486
1487 if (mode == CNTR_MODE_R) {
1488 ret = get_all_cpu_total(cntr) - *z_val;
1489 } else if (mode == CNTR_MODE_W) {
1490 /* A write can only zero the counter */
1491 if (data == 0)
1492 *z_val = get_all_cpu_total(cntr);
1493 else
1494 dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1495 } else {
1496 dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1497 return 0;
1498 }
1499
1500 return ret;
1501}
1502
1503static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1504 void *context, int vl, int mode, u64 data)
1505{
a787bde8 1506 struct hfi1_devdata *dd = context;
77241056
MM
1507
1508 return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1509 mode, data);
1510}
1511
1512static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1513 void *context, int vl, int mode, u64 data)
1514{
a787bde8 1515 struct hfi1_devdata *dd = context;
77241056
MM
1516
1517 return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1518 mode, data);
1519}
1520
1521static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1522 void *context, int vl, int mode, u64 data)
1523{
a787bde8 1524 struct hfi1_devdata *dd = context;
77241056
MM
1525
1526 return dd->verbs_dev.n_piowait;
1527}
1528
1529static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1530 void *context, int vl, int mode, u64 data)
1531{
a787bde8 1532 struct hfi1_devdata *dd = context;
77241056
MM
1533
1534 return dd->verbs_dev.n_txwait;
1535}
1536
1537static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1538 void *context, int vl, int mode, u64 data)
1539{
a787bde8 1540 struct hfi1_devdata *dd = context;
77241056
MM
1541
1542 return dd->verbs_dev.n_kmem_wait;
1543}
1544
b421922e
DL
1545static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1546 void *context, int vl, int mode, u64 data)
1547{
1548 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1549
1550 return dd->verbs_dev.n_send_schedule;
1551}
1552
2c5b521a
JR
1553/* Software counters for the error status bits within MISC_ERR_STATUS */
1554static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1555 void *context, int vl, int mode,
1556 u64 data)
1557{
1558 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1559
1560 return dd->misc_err_status_cnt[12];
1561}
1562
1563static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1564 void *context, int vl, int mode,
1565 u64 data)
1566{
1567 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1568
1569 return dd->misc_err_status_cnt[11];
1570}
1571
1572static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1573 void *context, int vl, int mode,
1574 u64 data)
1575{
1576 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1577
1578 return dd->misc_err_status_cnt[10];
1579}
1580
1581static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1582 void *context, int vl,
1583 int mode, u64 data)
1584{
1585 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1586
1587 return dd->misc_err_status_cnt[9];
1588}
1589
1590static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1591 void *context, int vl, int mode,
1592 u64 data)
1593{
1594 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1595
1596 return dd->misc_err_status_cnt[8];
1597}
1598
1599static u64 access_misc_efuse_read_bad_addr_err_cnt(
1600 const struct cntr_entry *entry,
1601 void *context, int vl, int mode, u64 data)
1602{
1603 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1604
1605 return dd->misc_err_status_cnt[7];
1606}
1607
1608static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1609 void *context, int vl,
1610 int mode, u64 data)
1611{
1612 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1613
1614 return dd->misc_err_status_cnt[6];
1615}
1616
1617static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1618 void *context, int vl, int mode,
1619 u64 data)
1620{
1621 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1622
1623 return dd->misc_err_status_cnt[5];
1624}
1625
1626static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1627 void *context, int vl, int mode,
1628 u64 data)
1629{
1630 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1631
1632 return dd->misc_err_status_cnt[4];
1633}
1634
1635static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1636 void *context, int vl,
1637 int mode, u64 data)
1638{
1639 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1640
1641 return dd->misc_err_status_cnt[3];
1642}
1643
1644static u64 access_misc_csr_write_bad_addr_err_cnt(
1645 const struct cntr_entry *entry,
1646 void *context, int vl, int mode, u64 data)
1647{
1648 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1649
1650 return dd->misc_err_status_cnt[2];
1651}
1652
1653static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1654 void *context, int vl,
1655 int mode, u64 data)
1656{
1657 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1658
1659 return dd->misc_err_status_cnt[1];
1660}
1661
1662static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1663 void *context, int vl, int mode,
1664 u64 data)
1665{
1666 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1667
1668 return dd->misc_err_status_cnt[0];
1669}
1670
1671/*
1672 * Software counter for the aggregate of
1673 * individual CceErrStatus counters
1674 */
1675static u64 access_sw_cce_err_status_aggregated_cnt(
1676 const struct cntr_entry *entry,
1677 void *context, int vl, int mode, u64 data)
1678{
1679 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1680
1681 return dd->sw_cce_err_status_aggregate;
1682}
1683
1684/*
1685 * Software counters corresponding to each of the
1686 * error status bits within CceErrStatus
1687 */
1688static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1689 void *context, int vl, int mode,
1690 u64 data)
1691{
1692 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1693
1694 return dd->cce_err_status_cnt[40];
1695}
1696
1697static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1698 void *context, int vl, int mode,
1699 u64 data)
1700{
1701 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1702
1703 return dd->cce_err_status_cnt[39];
1704}
1705
1706static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1707 void *context, int vl, int mode,
1708 u64 data)
1709{
1710 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1711
1712 return dd->cce_err_status_cnt[38];
1713}
1714
1715static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1716 void *context, int vl, int mode,
1717 u64 data)
1718{
1719 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1720
1721 return dd->cce_err_status_cnt[37];
1722}
1723
1724static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1725 void *context, int vl, int mode,
1726 u64 data)
1727{
1728 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1729
1730 return dd->cce_err_status_cnt[36];
1731}
1732
1733static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1734 const struct cntr_entry *entry,
1735 void *context, int vl, int mode, u64 data)
1736{
1737 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1738
1739 return dd->cce_err_status_cnt[35];
1740}
1741
1742static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1743 const struct cntr_entry *entry,
1744 void *context, int vl, int mode, u64 data)
1745{
1746 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1747
1748 return dd->cce_err_status_cnt[34];
1749}
1750
1751static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1752 void *context, int vl,
1753 int mode, u64 data)
1754{
1755 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1756
1757 return dd->cce_err_status_cnt[33];
1758}
1759
1760static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1761 void *context, int vl, int mode,
1762 u64 data)
1763{
1764 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1765
1766 return dd->cce_err_status_cnt[32];
1767}
1768
1769static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1770 void *context, int vl, int mode, u64 data)
1771{
1772 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1773
1774 return dd->cce_err_status_cnt[31];
1775}
1776
1777static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1778 void *context, int vl, int mode,
1779 u64 data)
1780{
1781 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1782
1783 return dd->cce_err_status_cnt[30];
1784}
1785
1786static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1787 void *context, int vl, int mode,
1788 u64 data)
1789{
1790 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1791
1792 return dd->cce_err_status_cnt[29];
1793}
1794
1795static u64 access_pcic_transmit_back_parity_err_cnt(
1796 const struct cntr_entry *entry,
1797 void *context, int vl, int mode, u64 data)
1798{
1799 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1800
1801 return dd->cce_err_status_cnt[28];
1802}
1803
1804static u64 access_pcic_transmit_front_parity_err_cnt(
1805 const struct cntr_entry *entry,
1806 void *context, int vl, int mode, u64 data)
1807{
1808 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1809
1810 return dd->cce_err_status_cnt[27];
1811}
1812
1813static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1814 void *context, int vl, int mode,
1815 u64 data)
1816{
1817 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1818
1819 return dd->cce_err_status_cnt[26];
1820}
1821
1822static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1823 void *context, int vl, int mode,
1824 u64 data)
1825{
1826 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1827
1828 return dd->cce_err_status_cnt[25];
1829}
1830
1831static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1832 void *context, int vl, int mode,
1833 u64 data)
1834{
1835 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1836
1837 return dd->cce_err_status_cnt[24];
1838}
1839
1840static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1841 void *context, int vl, int mode,
1842 u64 data)
1843{
1844 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1845
1846 return dd->cce_err_status_cnt[23];
1847}
1848
1849static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
1850 void *context, int vl,
1851 int mode, u64 data)
1852{
1853 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1854
1855 return dd->cce_err_status_cnt[22];
1856}
1857
1858static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
1859 void *context, int vl, int mode,
1860 u64 data)
1861{
1862 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1863
1864 return dd->cce_err_status_cnt[21];
1865}
1866
1867static u64 access_pcic_n_post_dat_q_parity_err_cnt(
1868 const struct cntr_entry *entry,
1869 void *context, int vl, int mode, u64 data)
1870{
1871 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1872
1873 return dd->cce_err_status_cnt[20];
1874}
1875
1876static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
1877 void *context, int vl,
1878 int mode, u64 data)
1879{
1880 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1881
1882 return dd->cce_err_status_cnt[19];
1883}
1884
1885static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1886 void *context, int vl, int mode,
1887 u64 data)
1888{
1889 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1890
1891 return dd->cce_err_status_cnt[18];
1892}
1893
1894static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
1895 void *context, int vl, int mode,
1896 u64 data)
1897{
1898 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1899
1900 return dd->cce_err_status_cnt[17];
1901}
1902
1903static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1904 void *context, int vl, int mode,
1905 u64 data)
1906{
1907 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1908
1909 return dd->cce_err_status_cnt[16];
1910}
1911
1912static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
1913 void *context, int vl, int mode,
1914 u64 data)
1915{
1916 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1917
1918 return dd->cce_err_status_cnt[15];
1919}
1920
1921static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
1922 void *context, int vl,
1923 int mode, u64 data)
1924{
1925 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1926
1927 return dd->cce_err_status_cnt[14];
1928}
1929
1930static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
1931 void *context, int vl, int mode,
1932 u64 data)
1933{
1934 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1935
1936 return dd->cce_err_status_cnt[13];
1937}
1938
1939static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
1940 const struct cntr_entry *entry,
1941 void *context, int vl, int mode, u64 data)
1942{
1943 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1944
1945 return dd->cce_err_status_cnt[12];
1946}
1947
1948static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
1949 const struct cntr_entry *entry,
1950 void *context, int vl, int mode, u64 data)
1951{
1952 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1953
1954 return dd->cce_err_status_cnt[11];
1955}
1956
1957static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
1958 const struct cntr_entry *entry,
1959 void *context, int vl, int mode, u64 data)
1960{
1961 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1962
1963 return dd->cce_err_status_cnt[10];
1964}
1965
1966static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
1967 const struct cntr_entry *entry,
1968 void *context, int vl, int mode, u64 data)
1969{
1970 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1971
1972 return dd->cce_err_status_cnt[9];
1973}
1974
1975static u64 access_cce_cli2_async_fifo_parity_err_cnt(
1976 const struct cntr_entry *entry,
1977 void *context, int vl, int mode, u64 data)
1978{
1979 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1980
1981 return dd->cce_err_status_cnt[8];
1982}
1983
1984static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
1985 void *context, int vl,
1986 int mode, u64 data)
1987{
1988 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1989
1990 return dd->cce_err_status_cnt[7];
1991}
1992
1993static u64 access_cce_cli0_async_fifo_parity_err_cnt(
1994 const struct cntr_entry *entry,
1995 void *context, int vl, int mode, u64 data)
1996{
1997 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1998
1999 return dd->cce_err_status_cnt[6];
2000}
2001
2002static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2003 void *context, int vl, int mode,
2004 u64 data)
2005{
2006 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2007
2008 return dd->cce_err_status_cnt[5];
2009}
2010
2011static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2012 void *context, int vl, int mode,
2013 u64 data)
2014{
2015 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2016
2017 return dd->cce_err_status_cnt[4];
2018}
2019
2020static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2021 const struct cntr_entry *entry,
2022 void *context, int vl, int mode, u64 data)
2023{
2024 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2025
2026 return dd->cce_err_status_cnt[3];
2027}
2028
2029static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2030 void *context, int vl,
2031 int mode, u64 data)
2032{
2033 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2034
2035 return dd->cce_err_status_cnt[2];
2036}
2037
2038static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2039 void *context, int vl,
2040 int mode, u64 data)
2041{
2042 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2043
2044 return dd->cce_err_status_cnt[1];
2045}
2046
2047static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2048 void *context, int vl, int mode,
2049 u64 data)
2050{
2051 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2052
2053 return dd->cce_err_status_cnt[0];
2054}
2055
2056/*
2057 * Software counters corresponding to each of the
2058 * error status bits within RcvErrStatus
2059 */
2060static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2061 void *context, int vl, int mode,
2062 u64 data)
2063{
2064 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2065
2066 return dd->rcv_err_status_cnt[63];
2067}
2068
2069static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2070 void *context, int vl,
2071 int mode, u64 data)
2072{
2073 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2074
2075 return dd->rcv_err_status_cnt[62];
2076}
2077
2078static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2079 void *context, int vl, int mode,
2080 u64 data)
2081{
2082 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2083
2084 return dd->rcv_err_status_cnt[61];
2085}
2086
2087static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2088 void *context, int vl, int mode,
2089 u64 data)
2090{
2091 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2092
2093 return dd->rcv_err_status_cnt[60];
2094}
2095
2096static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2097 void *context, int vl,
2098 int mode, u64 data)
2099{
2100 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2101
2102 return dd->rcv_err_status_cnt[59];
2103}
2104
2105static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2106 void *context, int vl,
2107 int mode, u64 data)
2108{
2109 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2110
2111 return dd->rcv_err_status_cnt[58];
2112}
2113
2114static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2115 void *context, int vl, int mode,
2116 u64 data)
2117{
2118 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2119
2120 return dd->rcv_err_status_cnt[57];
2121}
2122
2123static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2124 void *context, int vl, int mode,
2125 u64 data)
2126{
2127 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2128
2129 return dd->rcv_err_status_cnt[56];
2130}
2131
2132static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2133 void *context, int vl, int mode,
2134 u64 data)
2135{
2136 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2137
2138 return dd->rcv_err_status_cnt[55];
2139}
2140
2141static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2142 const struct cntr_entry *entry,
2143 void *context, int vl, int mode, u64 data)
2144{
2145 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2146
2147 return dd->rcv_err_status_cnt[54];
2148}
2149
2150static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2151 const struct cntr_entry *entry,
2152 void *context, int vl, int mode, u64 data)
2153{
2154 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2155
2156 return dd->rcv_err_status_cnt[53];
2157}
2158
2159static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2160 void *context, int vl,
2161 int mode, u64 data)
2162{
2163 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2164
2165 return dd->rcv_err_status_cnt[52];
2166}
2167
2168static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2169 void *context, int vl,
2170 int mode, u64 data)
2171{
2172 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2173
2174 return dd->rcv_err_status_cnt[51];
2175}
2176
2177static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2178 void *context, int vl,
2179 int mode, u64 data)
2180{
2181 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2182
2183 return dd->rcv_err_status_cnt[50];
2184}
2185
2186static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2187 void *context, int vl,
2188 int mode, u64 data)
2189{
2190 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2191
2192 return dd->rcv_err_status_cnt[49];
2193}
2194
2195static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2196 void *context, int vl,
2197 int mode, u64 data)
2198{
2199 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2200
2201 return dd->rcv_err_status_cnt[48];
2202}
2203
2204static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2205 void *context, int vl,
2206 int mode, u64 data)
2207{
2208 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2209
2210 return dd->rcv_err_status_cnt[47];
2211}
2212
2213static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2214 void *context, int vl, int mode,
2215 u64 data)
2216{
2217 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2218
2219 return dd->rcv_err_status_cnt[46];
2220}
2221
2222static u64 access_rx_hq_intr_csr_parity_err_cnt(
2223 const struct cntr_entry *entry,
2224 void *context, int vl, int mode, u64 data)
2225{
2226 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2227
2228 return dd->rcv_err_status_cnt[45];
2229}
2230
2231static u64 access_rx_lookup_csr_parity_err_cnt(
2232 const struct cntr_entry *entry,
2233 void *context, int vl, int mode, u64 data)
2234{
2235 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2236
2237 return dd->rcv_err_status_cnt[44];
2238}
2239
2240static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2241 const struct cntr_entry *entry,
2242 void *context, int vl, int mode, u64 data)
2243{
2244 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2245
2246 return dd->rcv_err_status_cnt[43];
2247}
2248
2249static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2250 const struct cntr_entry *entry,
2251 void *context, int vl, int mode, u64 data)
2252{
2253 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2254
2255 return dd->rcv_err_status_cnt[42];
2256}
2257
2258static u64 access_rx_lookup_des_part2_parity_err_cnt(
2259 const struct cntr_entry *entry,
2260 void *context, int vl, int mode, u64 data)
2261{
2262 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2263
2264 return dd->rcv_err_status_cnt[41];
2265}
2266
2267static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2268 const struct cntr_entry *entry,
2269 void *context, int vl, int mode, u64 data)
2270{
2271 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2272
2273 return dd->rcv_err_status_cnt[40];
2274}
2275
2276static u64 access_rx_lookup_des_part1_unc_err_cnt(
2277 const struct cntr_entry *entry,
2278 void *context, int vl, int mode, u64 data)
2279{
2280 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2281
2282 return dd->rcv_err_status_cnt[39];
2283}
2284
2285static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2286 const struct cntr_entry *entry,
2287 void *context, int vl, int mode, u64 data)
2288{
2289 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2290
2291 return dd->rcv_err_status_cnt[38];
2292}
2293
2294static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2295 const struct cntr_entry *entry,
2296 void *context, int vl, int mode, u64 data)
2297{
2298 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2299
2300 return dd->rcv_err_status_cnt[37];
2301}
2302
2303static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2304 const struct cntr_entry *entry,
2305 void *context, int vl, int mode, u64 data)
2306{
2307 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2308
2309 return dd->rcv_err_status_cnt[36];
2310}
2311
2312static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2313 const struct cntr_entry *entry,
2314 void *context, int vl, int mode, u64 data)
2315{
2316 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2317
2318 return dd->rcv_err_status_cnt[35];
2319}
2320
2321static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2322 const struct cntr_entry *entry,
2323 void *context, int vl, int mode, u64 data)
2324{
2325 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2326
2327 return dd->rcv_err_status_cnt[34];
2328}
2329
2330static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2331 const struct cntr_entry *entry,
2332 void *context, int vl, int mode, u64 data)
2333{
2334 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2335
2336 return dd->rcv_err_status_cnt[33];
2337}
2338
2339static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2340 void *context, int vl, int mode,
2341 u64 data)
2342{
2343 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2344
2345 return dd->rcv_err_status_cnt[32];
2346}
2347
2348static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2349 void *context, int vl, int mode,
2350 u64 data)
2351{
2352 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2353
2354 return dd->rcv_err_status_cnt[31];
2355}
2356
2357static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2358 void *context, int vl, int mode,
2359 u64 data)
2360{
2361 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2362
2363 return dd->rcv_err_status_cnt[30];
2364}
2365
2366static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2367 void *context, int vl, int mode,
2368 u64 data)
2369{
2370 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2371
2372 return dd->rcv_err_status_cnt[29];
2373}
2374
2375static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2376 void *context, int vl,
2377 int mode, u64 data)
2378{
2379 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2380
2381 return dd->rcv_err_status_cnt[28];
2382}
2383
2384static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2385 const struct cntr_entry *entry,
2386 void *context, int vl, int mode, u64 data)
2387{
2388 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2389
2390 return dd->rcv_err_status_cnt[27];
2391}
2392
2393static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2394 const struct cntr_entry *entry,
2395 void *context, int vl, int mode, u64 data)
2396{
2397 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2398
2399 return dd->rcv_err_status_cnt[26];
2400}
2401
2402static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2403 const struct cntr_entry *entry,
2404 void *context, int vl, int mode, u64 data)
2405{
2406 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2407
2408 return dd->rcv_err_status_cnt[25];
2409}
2410
2411static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2412 const struct cntr_entry *entry,
2413 void *context, int vl, int mode, u64 data)
2414{
2415 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2416
2417 return dd->rcv_err_status_cnt[24];
2418}
2419
2420static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2421 const struct cntr_entry *entry,
2422 void *context, int vl, int mode, u64 data)
2423{
2424 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2425
2426 return dd->rcv_err_status_cnt[23];
2427}
2428
2429static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2430 const struct cntr_entry *entry,
2431 void *context, int vl, int mode, u64 data)
2432{
2433 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2434
2435 return dd->rcv_err_status_cnt[22];
2436}
2437
2438static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2439 const struct cntr_entry *entry,
2440 void *context, int vl, int mode, u64 data)
2441{
2442 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2443
2444 return dd->rcv_err_status_cnt[21];
2445}
2446
2447static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2448 const struct cntr_entry *entry,
2449 void *context, int vl, int mode, u64 data)
2450{
2451 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2452
2453 return dd->rcv_err_status_cnt[20];
2454}
2455
2456static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2457 const struct cntr_entry *entry,
2458 void *context, int vl, int mode, u64 data)
2459{
2460 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2461
2462 return dd->rcv_err_status_cnt[19];
2463}
2464
2465static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2466 void *context, int vl,
2467 int mode, u64 data)
2468{
2469 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2470
2471 return dd->rcv_err_status_cnt[18];
2472}
2473
2474static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2475 void *context, int vl,
2476 int mode, u64 data)
2477{
2478 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2479
2480 return dd->rcv_err_status_cnt[17];
2481}
2482
2483static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2484 const struct cntr_entry *entry,
2485 void *context, int vl, int mode, u64 data)
2486{
2487 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2488
2489 return dd->rcv_err_status_cnt[16];
2490}
2491
2492static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2493 const struct cntr_entry *entry,
2494 void *context, int vl, int mode, u64 data)
2495{
2496 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2497
2498 return dd->rcv_err_status_cnt[15];
2499}
2500
2501static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2502 void *context, int vl,
2503 int mode, u64 data)
2504{
2505 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2506
2507 return dd->rcv_err_status_cnt[14];
2508}
2509
2510static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2511 void *context, int vl,
2512 int mode, u64 data)
2513{
2514 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2515
2516 return dd->rcv_err_status_cnt[13];
2517}
2518
2519static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2520 void *context, int vl, int mode,
2521 u64 data)
2522{
2523 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2524
2525 return dd->rcv_err_status_cnt[12];
2526}
2527
2528static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2529 void *context, int vl, int mode,
2530 u64 data)
2531{
2532 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2533
2534 return dd->rcv_err_status_cnt[11];
2535}
2536
2537static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2538 void *context, int vl, int mode,
2539 u64 data)
2540{
2541 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2542
2543 return dd->rcv_err_status_cnt[10];
2544}
2545
2546static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2547 void *context, int vl, int mode,
2548 u64 data)
2549{
2550 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2551
2552 return dd->rcv_err_status_cnt[9];
2553}
2554
2555static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2556 void *context, int vl, int mode,
2557 u64 data)
2558{
2559 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2560
2561 return dd->rcv_err_status_cnt[8];
2562}
2563
2564static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2565 const struct cntr_entry *entry,
2566 void *context, int vl, int mode, u64 data)
2567{
2568 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2569
2570 return dd->rcv_err_status_cnt[7];
2571}
2572
2573static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2574 const struct cntr_entry *entry,
2575 void *context, int vl, int mode, u64 data)
2576{
2577 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2578
2579 return dd->rcv_err_status_cnt[6];
2580}
2581
2582static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2583 void *context, int vl, int mode,
2584 u64 data)
2585{
2586 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2587
2588 return dd->rcv_err_status_cnt[5];
2589}
2590
2591static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2592 void *context, int vl, int mode,
2593 u64 data)
2594{
2595 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2596
2597 return dd->rcv_err_status_cnt[4];
2598}
2599
2600static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2601 void *context, int vl, int mode,
2602 u64 data)
2603{
2604 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2605
2606 return dd->rcv_err_status_cnt[3];
2607}
2608
2609static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2610 void *context, int vl, int mode,
2611 u64 data)
2612{
2613 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2614
2615 return dd->rcv_err_status_cnt[2];
2616}
2617
2618static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2619 void *context, int vl, int mode,
2620 u64 data)
2621{
2622 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2623
2624 return dd->rcv_err_status_cnt[1];
2625}
2626
2627static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2628 void *context, int vl, int mode,
2629 u64 data)
2630{
2631 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2632
2633 return dd->rcv_err_status_cnt[0];
2634}
2635
2636/*
2637 * Software counters corresponding to each of the
2638 * error status bits within SendPioErrStatus
2639 */
2640static u64 access_pio_pec_sop_head_parity_err_cnt(
2641 const struct cntr_entry *entry,
2642 void *context, int vl, int mode, u64 data)
2643{
2644 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2645
2646 return dd->send_pio_err_status_cnt[35];
2647}
2648
2649static u64 access_pio_pcc_sop_head_parity_err_cnt(
2650 const struct cntr_entry *entry,
2651 void *context, int vl, int mode, u64 data)
2652{
2653 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2654
2655 return dd->send_pio_err_status_cnt[34];
2656}
2657
2658static u64 access_pio_last_returned_cnt_parity_err_cnt(
2659 const struct cntr_entry *entry,
2660 void *context, int vl, int mode, u64 data)
2661{
2662 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2663
2664 return dd->send_pio_err_status_cnt[33];
2665}
2666
2667static u64 access_pio_current_free_cnt_parity_err_cnt(
2668 const struct cntr_entry *entry,
2669 void *context, int vl, int mode, u64 data)
2670{
2671 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2672
2673 return dd->send_pio_err_status_cnt[32];
2674}
2675
2676static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2677 void *context, int vl, int mode,
2678 u64 data)
2679{
2680 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2681
2682 return dd->send_pio_err_status_cnt[31];
2683}
2684
2685static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2686 void *context, int vl, int mode,
2687 u64 data)
2688{
2689 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2690
2691 return dd->send_pio_err_status_cnt[30];
2692}
2693
2694static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2695 void *context, int vl, int mode,
2696 u64 data)
2697{
2698 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2699
2700 return dd->send_pio_err_status_cnt[29];
2701}
2702
2703static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2704 const struct cntr_entry *entry,
2705 void *context, int vl, int mode, u64 data)
2706{
2707 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2708
2709 return dd->send_pio_err_status_cnt[28];
2710}
2711
2712static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2713 void *context, int vl, int mode,
2714 u64 data)
2715{
2716 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2717
2718 return dd->send_pio_err_status_cnt[27];
2719}
2720
2721static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2722 void *context, int vl, int mode,
2723 u64 data)
2724{
2725 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2726
2727 return dd->send_pio_err_status_cnt[26];
2728}
2729
2730static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2731 void *context, int vl,
2732 int mode, u64 data)
2733{
2734 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2735
2736 return dd->send_pio_err_status_cnt[25];
2737}
2738
2739static u64 access_pio_block_qw_count_parity_err_cnt(
2740 const struct cntr_entry *entry,
2741 void *context, int vl, int mode, u64 data)
2742{
2743 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2744
2745 return dd->send_pio_err_status_cnt[24];
2746}
2747
2748static u64 access_pio_write_qw_valid_parity_err_cnt(
2749 const struct cntr_entry *entry,
2750 void *context, int vl, int mode, u64 data)
2751{
2752 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2753
2754 return dd->send_pio_err_status_cnt[23];
2755}
2756
2757static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2758 void *context, int vl, int mode,
2759 u64 data)
2760{
2761 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2762
2763 return dd->send_pio_err_status_cnt[22];
2764}
2765
2766static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2767 void *context, int vl,
2768 int mode, u64 data)
2769{
2770 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2771
2772 return dd->send_pio_err_status_cnt[21];
2773}
2774
2775static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2776 void *context, int vl,
2777 int mode, u64 data)
2778{
2779 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2780
2781 return dd->send_pio_err_status_cnt[20];
2782}
2783
2784static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2785 void *context, int vl,
2786 int mode, u64 data)
2787{
2788 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2789
2790 return dd->send_pio_err_status_cnt[19];
2791}
2792
2793static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2794 const struct cntr_entry *entry,
2795 void *context, int vl, int mode, u64 data)
2796{
2797 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2798
2799 return dd->send_pio_err_status_cnt[18];
2800}
2801
2802static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2803 void *context, int vl, int mode,
2804 u64 data)
2805{
2806 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2807
2808 return dd->send_pio_err_status_cnt[17];
2809}
2810
2811static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2812 void *context, int vl, int mode,
2813 u64 data)
2814{
2815 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2816
2817 return dd->send_pio_err_status_cnt[16];
2818}
2819
2820static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2821 const struct cntr_entry *entry,
2822 void *context, int vl, int mode, u64 data)
2823{
2824 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2825
2826 return dd->send_pio_err_status_cnt[15];
2827}
2828
2829static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2830 const struct cntr_entry *entry,
2831 void *context, int vl, int mode, u64 data)
2832{
2833 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2834
2835 return dd->send_pio_err_status_cnt[14];
2836}
2837
2838static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2839 const struct cntr_entry *entry,
2840 void *context, int vl, int mode, u64 data)
2841{
2842 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2843
2844 return dd->send_pio_err_status_cnt[13];
2845}
2846
2847static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
2848 const struct cntr_entry *entry,
2849 void *context, int vl, int mode, u64 data)
2850{
2851 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2852
2853 return dd->send_pio_err_status_cnt[12];
2854}
2855
2856static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
2857 const struct cntr_entry *entry,
2858 void *context, int vl, int mode, u64 data)
2859{
2860 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2861
2862 return dd->send_pio_err_status_cnt[11];
2863}
2864
2865static u64 access_pio_sm_pkt_reset_parity_err_cnt(
2866 const struct cntr_entry *entry,
2867 void *context, int vl, int mode, u64 data)
2868{
2869 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2870
2871 return dd->send_pio_err_status_cnt[10];
2872}
2873
2874static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
2875 const struct cntr_entry *entry,
2876 void *context, int vl, int mode, u64 data)
2877{
2878 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2879
2880 return dd->send_pio_err_status_cnt[9];
2881}
2882
2883static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
2884 const struct cntr_entry *entry,
2885 void *context, int vl, int mode, u64 data)
2886{
2887 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2888
2889 return dd->send_pio_err_status_cnt[8];
2890}
2891
2892static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
2893 const struct cntr_entry *entry,
2894 void *context, int vl, int mode, u64 data)
2895{
2896 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2897
2898 return dd->send_pio_err_status_cnt[7];
2899}
2900
2901static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
2902 void *context, int vl, int mode,
2903 u64 data)
2904{
2905 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2906
2907 return dd->send_pio_err_status_cnt[6];
2908}
2909
2910static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
2911 void *context, int vl, int mode,
2912 u64 data)
2913{
2914 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2915
2916 return dd->send_pio_err_status_cnt[5];
2917}
2918
2919static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
2920 void *context, int vl, int mode,
2921 u64 data)
2922{
2923 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2924
2925 return dd->send_pio_err_status_cnt[4];
2926}
2927
2928static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
2929 void *context, int vl, int mode,
2930 u64 data)
2931{
2932 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2933
2934 return dd->send_pio_err_status_cnt[3];
2935}
2936
2937static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
2938 void *context, int vl, int mode,
2939 u64 data)
2940{
2941 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2942
2943 return dd->send_pio_err_status_cnt[2];
2944}
2945
2946static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
2947 void *context, int vl,
2948 int mode, u64 data)
2949{
2950 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2951
2952 return dd->send_pio_err_status_cnt[1];
2953}
2954
2955static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
2956 void *context, int vl, int mode,
2957 u64 data)
2958{
2959 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2960
2961 return dd->send_pio_err_status_cnt[0];
2962}
2963
2964/*
2965 * Software counters corresponding to each of the
2966 * error status bits within SendDmaErrStatus
2967 */
2968static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
2969 const struct cntr_entry *entry,
2970 void *context, int vl, int mode, u64 data)
2971{
2972 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2973
2974 return dd->send_dma_err_status_cnt[3];
2975}
2976
2977static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
2978 const struct cntr_entry *entry,
2979 void *context, int vl, int mode, u64 data)
2980{
2981 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2982
2983 return dd->send_dma_err_status_cnt[2];
2984}
2985
2986static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
2987 void *context, int vl, int mode,
2988 u64 data)
2989{
2990 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2991
2992 return dd->send_dma_err_status_cnt[1];
2993}
2994
2995static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
2996 void *context, int vl, int mode,
2997 u64 data)
2998{
2999 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3000
3001 return dd->send_dma_err_status_cnt[0];
3002}
3003
3004/*
3005 * Software counters corresponding to each of the
3006 * error status bits within SendEgressErrStatus
3007 */
3008static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3009 const struct cntr_entry *entry,
3010 void *context, int vl, int mode, u64 data)
3011{
3012 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3013
3014 return dd->send_egress_err_status_cnt[63];
3015}
3016
3017static u64 access_tx_read_sdma_memory_csr_err_cnt(
3018 const struct cntr_entry *entry,
3019 void *context, int vl, int mode, u64 data)
3020{
3021 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3022
3023 return dd->send_egress_err_status_cnt[62];
3024}
3025
3026static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3027 void *context, int vl, int mode,
3028 u64 data)
3029{
3030 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3031
3032 return dd->send_egress_err_status_cnt[61];
3033}
3034
3035static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3036 void *context, int vl,
3037 int mode, u64 data)
3038{
3039 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3040
3041 return dd->send_egress_err_status_cnt[60];
3042}
3043
3044static u64 access_tx_read_sdma_memory_cor_err_cnt(
3045 const struct cntr_entry *entry,
3046 void *context, int vl, int mode, u64 data)
3047{
3048 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3049
3050 return dd->send_egress_err_status_cnt[59];
3051}
3052
3053static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3054 void *context, int vl, int mode,
3055 u64 data)
3056{
3057 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3058
3059 return dd->send_egress_err_status_cnt[58];
3060}
3061
3062static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3063 void *context, int vl, int mode,
3064 u64 data)
3065{
3066 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3067
3068 return dd->send_egress_err_status_cnt[57];
3069}
3070
3071static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3072 void *context, int vl, int mode,
3073 u64 data)
3074{
3075 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3076
3077 return dd->send_egress_err_status_cnt[56];
3078}
3079
3080static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3081 void *context, int vl, int mode,
3082 u64 data)
3083{
3084 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3085
3086 return dd->send_egress_err_status_cnt[55];
3087}
3088
3089static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3090 void *context, int vl, int mode,
3091 u64 data)
3092{
3093 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3094
3095 return dd->send_egress_err_status_cnt[54];
3096}
3097
3098static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3099 void *context, int vl, int mode,
3100 u64 data)
3101{
3102 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3103
3104 return dd->send_egress_err_status_cnt[53];
3105}
3106
3107static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3108 void *context, int vl, int mode,
3109 u64 data)
3110{
3111 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3112
3113 return dd->send_egress_err_status_cnt[52];
3114}
3115
3116static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3117 void *context, int vl, int mode,
3118 u64 data)
3119{
3120 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3121
3122 return dd->send_egress_err_status_cnt[51];
3123}
3124
3125static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3126 void *context, int vl, int mode,
3127 u64 data)
3128{
3129 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3130
3131 return dd->send_egress_err_status_cnt[50];
3132}
3133
3134static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3135 void *context, int vl, int mode,
3136 u64 data)
3137{
3138 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3139
3140 return dd->send_egress_err_status_cnt[49];
3141}
3142
3143static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3144 void *context, int vl, int mode,
3145 u64 data)
3146{
3147 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3148
3149 return dd->send_egress_err_status_cnt[48];
3150}
3151
3152static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3153 void *context, int vl, int mode,
3154 u64 data)
3155{
3156 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3157
3158 return dd->send_egress_err_status_cnt[47];
3159}
3160
3161static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3162 void *context, int vl, int mode,
3163 u64 data)
3164{
3165 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3166
3167 return dd->send_egress_err_status_cnt[46];
3168}
3169
3170static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3171 void *context, int vl, int mode,
3172 u64 data)
3173{
3174 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3175
3176 return dd->send_egress_err_status_cnt[45];
3177}
3178
3179static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3180 void *context, int vl,
3181 int mode, u64 data)
3182{
3183 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3184
3185 return dd->send_egress_err_status_cnt[44];
3186}
3187
3188static u64 access_tx_read_sdma_memory_unc_err_cnt(
3189 const struct cntr_entry *entry,
3190 void *context, int vl, int mode, u64 data)
3191{
3192 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3193
3194 return dd->send_egress_err_status_cnt[43];
3195}
3196
3197static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3198 void *context, int vl, int mode,
3199 u64 data)
3200{
3201 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3202
3203 return dd->send_egress_err_status_cnt[42];
3204}
3205
3206static u64 access_tx_credit_return_partiy_err_cnt(
3207 const struct cntr_entry *entry,
3208 void *context, int vl, int mode, u64 data)
3209{
3210 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3211
3212 return dd->send_egress_err_status_cnt[41];
3213}
3214
3215static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3216 const struct cntr_entry *entry,
3217 void *context, int vl, int mode, u64 data)
3218{
3219 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3220
3221 return dd->send_egress_err_status_cnt[40];
3222}
3223
3224static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3225 const struct cntr_entry *entry,
3226 void *context, int vl, int mode, u64 data)
3227{
3228 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3229
3230 return dd->send_egress_err_status_cnt[39];
3231}
3232
3233static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3234 const struct cntr_entry *entry,
3235 void *context, int vl, int mode, u64 data)
3236{
3237 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3238
3239 return dd->send_egress_err_status_cnt[38];
3240}
3241
3242static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3243 const struct cntr_entry *entry,
3244 void *context, int vl, int mode, u64 data)
3245{
3246 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3247
3248 return dd->send_egress_err_status_cnt[37];
3249}
3250
3251static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3252 const struct cntr_entry *entry,
3253 void *context, int vl, int mode, u64 data)
3254{
3255 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3256
3257 return dd->send_egress_err_status_cnt[36];
3258}
3259
3260static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3261 const struct cntr_entry *entry,
3262 void *context, int vl, int mode, u64 data)
3263{
3264 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3265
3266 return dd->send_egress_err_status_cnt[35];
3267}
3268
3269static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3270 const struct cntr_entry *entry,
3271 void *context, int vl, int mode, u64 data)
3272{
3273 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3274
3275 return dd->send_egress_err_status_cnt[34];
3276}
3277
3278static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3279 const struct cntr_entry *entry,
3280 void *context, int vl, int mode, u64 data)
3281{
3282 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3283
3284 return dd->send_egress_err_status_cnt[33];
3285}
3286
3287static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3288 const struct cntr_entry *entry,
3289 void *context, int vl, int mode, u64 data)
3290{
3291 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3292
3293 return dd->send_egress_err_status_cnt[32];
3294}
3295
3296static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3297 const struct cntr_entry *entry,
3298 void *context, int vl, int mode, u64 data)
3299{
3300 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3301
3302 return dd->send_egress_err_status_cnt[31];
3303}
3304
3305static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3306 const struct cntr_entry *entry,
3307 void *context, int vl, int mode, u64 data)
3308{
3309 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3310
3311 return dd->send_egress_err_status_cnt[30];
3312}
3313
3314static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3315 const struct cntr_entry *entry,
3316 void *context, int vl, int mode, u64 data)
3317{
3318 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3319
3320 return dd->send_egress_err_status_cnt[29];
3321}
3322
3323static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3324 const struct cntr_entry *entry,
3325 void *context, int vl, int mode, u64 data)
3326{
3327 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3328
3329 return dd->send_egress_err_status_cnt[28];
3330}
3331
3332static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3333 const struct cntr_entry *entry,
3334 void *context, int vl, int mode, u64 data)
3335{
3336 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3337
3338 return dd->send_egress_err_status_cnt[27];
3339}
3340
3341static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3342 const struct cntr_entry *entry,
3343 void *context, int vl, int mode, u64 data)
3344{
3345 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3346
3347 return dd->send_egress_err_status_cnt[26];
3348}
3349
3350static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3351 const struct cntr_entry *entry,
3352 void *context, int vl, int mode, u64 data)
3353{
3354 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3355
3356 return dd->send_egress_err_status_cnt[25];
3357}
3358
3359static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3360 const struct cntr_entry *entry,
3361 void *context, int vl, int mode, u64 data)
3362{
3363 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3364
3365 return dd->send_egress_err_status_cnt[24];
3366}
3367
3368static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3369 const struct cntr_entry *entry,
3370 void *context, int vl, int mode, u64 data)
3371{
3372 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3373
3374 return dd->send_egress_err_status_cnt[23];
3375}
3376
3377static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3378 const struct cntr_entry *entry,
3379 void *context, int vl, int mode, u64 data)
3380{
3381 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3382
3383 return dd->send_egress_err_status_cnt[22];
3384}
3385
3386static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3387 const struct cntr_entry *entry,
3388 void *context, int vl, int mode, u64 data)
3389{
3390 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3391
3392 return dd->send_egress_err_status_cnt[21];
3393}
3394
3395static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3396 const struct cntr_entry *entry,
3397 void *context, int vl, int mode, u64 data)
3398{
3399 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3400
3401 return dd->send_egress_err_status_cnt[20];
3402}
3403
3404static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3405 const struct cntr_entry *entry,
3406 void *context, int vl, int mode, u64 data)
3407{
3408 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3409
3410 return dd->send_egress_err_status_cnt[19];
3411}
3412
3413static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3414 const struct cntr_entry *entry,
3415 void *context, int vl, int mode, u64 data)
3416{
3417 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3418
3419 return dd->send_egress_err_status_cnt[18];
3420}
3421
3422static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3423 const struct cntr_entry *entry,
3424 void *context, int vl, int mode, u64 data)
3425{
3426 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3427
3428 return dd->send_egress_err_status_cnt[17];
3429}
3430
3431static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3432 const struct cntr_entry *entry,
3433 void *context, int vl, int mode, u64 data)
3434{
3435 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3436
3437 return dd->send_egress_err_status_cnt[16];
3438}
3439
3440static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3441 void *context, int vl, int mode,
3442 u64 data)
3443{
3444 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3445
3446 return dd->send_egress_err_status_cnt[15];
3447}
3448
3449static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3450 void *context, int vl,
3451 int mode, u64 data)
3452{
3453 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3454
3455 return dd->send_egress_err_status_cnt[14];
3456}
3457
3458static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3459 void *context, int vl, int mode,
3460 u64 data)
3461{
3462 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3463
3464 return dd->send_egress_err_status_cnt[13];
3465}
3466
3467static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3468 void *context, int vl, int mode,
3469 u64 data)
3470{
3471 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3472
3473 return dd->send_egress_err_status_cnt[12];
3474}
3475
3476static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3477 const struct cntr_entry *entry,
3478 void *context, int vl, int mode, u64 data)
3479{
3480 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3481
3482 return dd->send_egress_err_status_cnt[11];
3483}
3484
3485static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3486 void *context, int vl, int mode,
3487 u64 data)
3488{
3489 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3490
3491 return dd->send_egress_err_status_cnt[10];
3492}
3493
3494static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3495 void *context, int vl, int mode,
3496 u64 data)
3497{
3498 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3499
3500 return dd->send_egress_err_status_cnt[9];
3501}
3502
3503static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3504 const struct cntr_entry *entry,
3505 void *context, int vl, int mode, u64 data)
3506{
3507 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3508
3509 return dd->send_egress_err_status_cnt[8];
3510}
3511
3512static u64 access_tx_pio_launch_intf_parity_err_cnt(
3513 const struct cntr_entry *entry,
3514 void *context, int vl, int mode, u64 data)
3515{
3516 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3517
3518 return dd->send_egress_err_status_cnt[7];
3519}
3520
3521static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3522 void *context, int vl, int mode,
3523 u64 data)
3524{
3525 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3526
3527 return dd->send_egress_err_status_cnt[6];
3528}
3529
3530static u64 access_tx_incorrect_link_state_err_cnt(
3531 const struct cntr_entry *entry,
3532 void *context, int vl, int mode, u64 data)
3533{
3534 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3535
3536 return dd->send_egress_err_status_cnt[5];
3537}
3538
3539static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3540 void *context, int vl, int mode,
3541 u64 data)
3542{
3543 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3544
3545 return dd->send_egress_err_status_cnt[4];
3546}
3547
3548static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3549 const struct cntr_entry *entry,
3550 void *context, int vl, int mode, u64 data)
3551{
3552 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3553
3554 return dd->send_egress_err_status_cnt[3];
3555}
3556
3557static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3558 void *context, int vl, int mode,
3559 u64 data)
3560{
3561 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3562
3563 return dd->send_egress_err_status_cnt[2];
3564}
3565
3566static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3567 const struct cntr_entry *entry,
3568 void *context, int vl, int mode, u64 data)
3569{
3570 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3571
3572 return dd->send_egress_err_status_cnt[1];
3573}
3574
3575static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3576 const struct cntr_entry *entry,
3577 void *context, int vl, int mode, u64 data)
3578{
3579 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3580
3581 return dd->send_egress_err_status_cnt[0];
3582}
3583
3584/*
3585 * Software counters corresponding to each of the
3586 * error status bits within SendErrStatus
3587 */
3588static u64 access_send_csr_write_bad_addr_err_cnt(
3589 const struct cntr_entry *entry,
3590 void *context, int vl, int mode, u64 data)
3591{
3592 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3593
3594 return dd->send_err_status_cnt[2];
3595}
3596
3597static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3598 void *context, int vl,
3599 int mode, u64 data)
3600{
3601 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3602
3603 return dd->send_err_status_cnt[1];
3604}
3605
3606static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3607 void *context, int vl, int mode,
3608 u64 data)
3609{
3610 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3611
3612 return dd->send_err_status_cnt[0];
3613}
3614
3615/*
3616 * Software counters corresponding to each of the
3617 * error status bits within SendCtxtErrStatus
3618 */
3619static u64 access_pio_write_out_of_bounds_err_cnt(
3620 const struct cntr_entry *entry,
3621 void *context, int vl, int mode, u64 data)
3622{
3623 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3624
3625 return dd->sw_ctxt_err_status_cnt[4];
3626}
3627
3628static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3629 void *context, int vl, int mode,
3630 u64 data)
3631{
3632 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3633
3634 return dd->sw_ctxt_err_status_cnt[3];
3635}
3636
3637static u64 access_pio_write_crosses_boundary_err_cnt(
3638 const struct cntr_entry *entry,
3639 void *context, int vl, int mode, u64 data)
3640{
3641 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3642
3643 return dd->sw_ctxt_err_status_cnt[2];
3644}
3645
3646static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3647 void *context, int vl,
3648 int mode, u64 data)
3649{
3650 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3651
3652 return dd->sw_ctxt_err_status_cnt[1];
3653}
3654
3655static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3656 void *context, int vl, int mode,
3657 u64 data)
3658{
3659 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3660
3661 return dd->sw_ctxt_err_status_cnt[0];
3662}
3663
3664/*
3665 * Software counters corresponding to each of the
3666 * error status bits within SendDmaEngErrStatus
3667 */
3668static u64 access_sdma_header_request_fifo_cor_err_cnt(
3669 const struct cntr_entry *entry,
3670 void *context, int vl, int mode, u64 data)
3671{
3672 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3673
3674 return dd->sw_send_dma_eng_err_status_cnt[23];
3675}
3676
3677static u64 access_sdma_header_storage_cor_err_cnt(
3678 const struct cntr_entry *entry,
3679 void *context, int vl, int mode, u64 data)
3680{
3681 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3682
3683 return dd->sw_send_dma_eng_err_status_cnt[22];
3684}
3685
3686static u64 access_sdma_packet_tracking_cor_err_cnt(
3687 const struct cntr_entry *entry,
3688 void *context, int vl, int mode, u64 data)
3689{
3690 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3691
3692 return dd->sw_send_dma_eng_err_status_cnt[21];
3693}
3694
3695static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3696 void *context, int vl, int mode,
3697 u64 data)
3698{
3699 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3700
3701 return dd->sw_send_dma_eng_err_status_cnt[20];
3702}
3703
3704static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3705 void *context, int vl, int mode,
3706 u64 data)
3707{
3708 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3709
3710 return dd->sw_send_dma_eng_err_status_cnt[19];
3711}
3712
3713static u64 access_sdma_header_request_fifo_unc_err_cnt(
3714 const struct cntr_entry *entry,
3715 void *context, int vl, int mode, u64 data)
3716{
3717 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3718
3719 return dd->sw_send_dma_eng_err_status_cnt[18];
3720}
3721
3722static u64 access_sdma_header_storage_unc_err_cnt(
3723 const struct cntr_entry *entry,
3724 void *context, int vl, int mode, u64 data)
3725{
3726 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3727
3728 return dd->sw_send_dma_eng_err_status_cnt[17];
3729}
3730
3731static u64 access_sdma_packet_tracking_unc_err_cnt(
3732 const struct cntr_entry *entry,
3733 void *context, int vl, int mode, u64 data)
3734{
3735 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3736
3737 return dd->sw_send_dma_eng_err_status_cnt[16];
3738}
3739
3740static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3741 void *context, int vl, int mode,
3742 u64 data)
3743{
3744 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3745
3746 return dd->sw_send_dma_eng_err_status_cnt[15];
3747}
3748
3749static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3750 void *context, int vl, int mode,
3751 u64 data)
3752{
3753 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3754
3755 return dd->sw_send_dma_eng_err_status_cnt[14];
3756}
3757
3758static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3759 void *context, int vl, int mode,
3760 u64 data)
3761{
3762 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3763
3764 return dd->sw_send_dma_eng_err_status_cnt[13];
3765}
3766
3767static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3768 void *context, int vl, int mode,
3769 u64 data)
3770{
3771 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3772
3773 return dd->sw_send_dma_eng_err_status_cnt[12];
3774}
3775
3776static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3777 void *context, int vl, int mode,
3778 u64 data)
3779{
3780 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3781
3782 return dd->sw_send_dma_eng_err_status_cnt[11];
3783}
3784
3785static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3786 void *context, int vl, int mode,
3787 u64 data)
3788{
3789 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3790
3791 return dd->sw_send_dma_eng_err_status_cnt[10];
3792}
3793
3794static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3795 void *context, int vl, int mode,
3796 u64 data)
3797{
3798 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3799
3800 return dd->sw_send_dma_eng_err_status_cnt[9];
3801}
3802
3803static u64 access_sdma_packet_desc_overflow_err_cnt(
3804 const struct cntr_entry *entry,
3805 void *context, int vl, int mode, u64 data)
3806{
3807 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3808
3809 return dd->sw_send_dma_eng_err_status_cnt[8];
3810}
3811
3812static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3813 void *context, int vl,
3814 int mode, u64 data)
3815{
3816 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3817
3818 return dd->sw_send_dma_eng_err_status_cnt[7];
3819}
3820
3821static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3822 void *context, int vl, int mode, u64 data)
3823{
3824 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3825
3826 return dd->sw_send_dma_eng_err_status_cnt[6];
3827}
3828
3829static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3830 void *context, int vl, int mode,
3831 u64 data)
3832{
3833 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3834
3835 return dd->sw_send_dma_eng_err_status_cnt[5];
3836}
3837
3838static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3839 void *context, int vl, int mode,
3840 u64 data)
3841{
3842 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3843
3844 return dd->sw_send_dma_eng_err_status_cnt[4];
3845}
3846
3847static u64 access_sdma_tail_out_of_bounds_err_cnt(
3848 const struct cntr_entry *entry,
3849 void *context, int vl, int mode, u64 data)
3850{
3851 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3852
3853 return dd->sw_send_dma_eng_err_status_cnt[3];
3854}
3855
3856static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
3857 void *context, int vl, int mode,
3858 u64 data)
3859{
3860 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3861
3862 return dd->sw_send_dma_eng_err_status_cnt[2];
3863}
3864
3865static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
3866 void *context, int vl, int mode,
3867 u64 data)
3868{
3869 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3870
3871 return dd->sw_send_dma_eng_err_status_cnt[1];
3872}
3873
3874static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
3875 void *context, int vl, int mode,
3876 u64 data)
3877{
3878 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3879
3880 return dd->sw_send_dma_eng_err_status_cnt[0];
3881}
3882
77241056
MM
3883#define def_access_sw_cpu(cntr) \
3884static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \
3885 void *context, int vl, int mode, u64 data) \
3886{ \
3887 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
3888 return read_write_cpu(ppd->dd, &ppd->ibport_data.z_ ##cntr, \
3889 ppd->ibport_data.cntr, vl, \
3890 mode, data); \
3891}
3892
3893def_access_sw_cpu(rc_acks);
3894def_access_sw_cpu(rc_qacks);
3895def_access_sw_cpu(rc_delayed_comp);
3896
3897#define def_access_ibp_counter(cntr) \
3898static u64 access_ibp_##cntr(const struct cntr_entry *entry, \
3899 void *context, int vl, int mode, u64 data) \
3900{ \
3901 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
3902 \
3903 if (vl != CNTR_INVALID_VL) \
3904 return 0; \
3905 \
3906 return read_write_sw(ppd->dd, &ppd->ibport_data.n_ ##cntr, \
3907 mode, data); \
3908}
3909
3910def_access_ibp_counter(loop_pkts);
3911def_access_ibp_counter(rc_resends);
3912def_access_ibp_counter(rnr_naks);
3913def_access_ibp_counter(other_naks);
3914def_access_ibp_counter(rc_timeouts);
3915def_access_ibp_counter(pkt_drops);
3916def_access_ibp_counter(dmawait);
3917def_access_ibp_counter(rc_seqnak);
3918def_access_ibp_counter(rc_dupreq);
3919def_access_ibp_counter(rdma_seq);
3920def_access_ibp_counter(unaligned);
3921def_access_ibp_counter(seq_naks);
3922
3923static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
3924[C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
3925[C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
3926 CNTR_NORMAL),
3927[C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
3928 CNTR_NORMAL),
3929[C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
3930 RCV_TID_FLOW_GEN_MISMATCH_CNT,
3931 CNTR_NORMAL),
77241056
MM
3932[C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
3933 CNTR_NORMAL),
3934[C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
3935 RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
3936[C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
3937 CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
3938[C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
3939 CNTR_NORMAL),
3940[C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
3941 CNTR_NORMAL),
3942[C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
3943 CNTR_NORMAL),
3944[C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
3945 CNTR_NORMAL),
3946[C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
3947 CNTR_NORMAL),
3948[C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
3949 CNTR_NORMAL),
3950[C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
3951 CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
3952[C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
3953 CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
3954[C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
3955 CNTR_SYNTH),
3956[C_DC_RCV_ERR] = DC_PERF_CNTR(DcRecvErr, DCC_ERR_PORTRCV_ERR_CNT, CNTR_SYNTH),
3957[C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
3958 CNTR_SYNTH),
3959[C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
3960 CNTR_SYNTH),
3961[C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
3962 CNTR_SYNTH),
3963[C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
3964 DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
3965[C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
3966 DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
3967 CNTR_SYNTH),
3968[C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
3969 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
3970[C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
3971 CNTR_SYNTH),
3972[C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
3973 CNTR_SYNTH),
3974[C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
3975 CNTR_SYNTH),
3976[C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
3977 CNTR_SYNTH),
3978[C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
3979 CNTR_SYNTH),
3980[C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
3981 CNTR_SYNTH),
3982[C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
3983 CNTR_SYNTH),
3984[C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
3985 CNTR_SYNTH | CNTR_VL),
3986[C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
3987 CNTR_SYNTH | CNTR_VL),
3988[C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
3989[C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
3990 CNTR_SYNTH | CNTR_VL),
3991[C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
3992[C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
3993 CNTR_SYNTH | CNTR_VL),
3994[C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
3995 CNTR_SYNTH),
3996[C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
3997 CNTR_SYNTH | CNTR_VL),
3998[C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
3999 CNTR_SYNTH),
4000[C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4001 CNTR_SYNTH | CNTR_VL),
4002[C_DC_TOTAL_CRC] =
4003 DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4004 CNTR_SYNTH),
4005[C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4006 CNTR_SYNTH),
4007[C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4008 CNTR_SYNTH),
4009[C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4010 CNTR_SYNTH),
4011[C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4012 CNTR_SYNTH),
4013[C_DC_CRC_MULT_LN] =
4014 DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4015 CNTR_SYNTH),
4016[C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4017 CNTR_SYNTH),
4018[C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4019 CNTR_SYNTH),
4020[C_DC_SEQ_CRC_CNT] =
4021 DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4022 CNTR_SYNTH),
4023[C_DC_ESC0_ONLY_CNT] =
4024 DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4025 CNTR_SYNTH),
4026[C_DC_ESC0_PLUS1_CNT] =
4027 DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4028 CNTR_SYNTH),
4029[C_DC_ESC0_PLUS2_CNT] =
4030 DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4031 CNTR_SYNTH),
4032[C_DC_REINIT_FROM_PEER_CNT] =
4033 DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4034 CNTR_SYNTH),
4035[C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4036 CNTR_SYNTH),
4037[C_DC_MISC_FLG_CNT] =
4038 DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4039 CNTR_SYNTH),
4040[C_DC_PRF_GOOD_LTP_CNT] =
4041 DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4042[C_DC_PRF_ACCEPTED_LTP_CNT] =
4043 DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4044 CNTR_SYNTH),
4045[C_DC_PRF_RX_FLIT_CNT] =
4046 DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4047[C_DC_PRF_TX_FLIT_CNT] =
4048 DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4049[C_DC_PRF_CLK_CNTR] =
4050 DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4051[C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4052 DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4053[C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4054 DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4055 CNTR_SYNTH),
4056[C_DC_PG_STS_TX_SBE_CNT] =
4057 DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4058[C_DC_PG_STS_TX_MBE_CNT] =
4059 DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4060 CNTR_SYNTH),
4061[C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4062 access_sw_cpu_intr),
4063[C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4064 access_sw_cpu_rcv_limit),
4065[C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4066 access_sw_vtx_wait),
4067[C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4068 access_sw_pio_wait),
4069[C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4070 access_sw_kmem_wait),
b421922e
DL
4071[C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4072 access_sw_send_schedule),
2c5b521a
JR
4073/* MISC_ERR_STATUS */
4074[C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4075 CNTR_NORMAL,
4076 access_misc_pll_lock_fail_err_cnt),
4077[C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4078 CNTR_NORMAL,
4079 access_misc_mbist_fail_err_cnt),
4080[C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4081 CNTR_NORMAL,
4082 access_misc_invalid_eep_cmd_err_cnt),
4083[C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4084 CNTR_NORMAL,
4085 access_misc_efuse_done_parity_err_cnt),
4086[C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4087 CNTR_NORMAL,
4088 access_misc_efuse_write_err_cnt),
4089[C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4090 0, CNTR_NORMAL,
4091 access_misc_efuse_read_bad_addr_err_cnt),
4092[C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4093 CNTR_NORMAL,
4094 access_misc_efuse_csr_parity_err_cnt),
4095[C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4096 CNTR_NORMAL,
4097 access_misc_fw_auth_failed_err_cnt),
4098[C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4099 CNTR_NORMAL,
4100 access_misc_key_mismatch_err_cnt),
4101[C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4102 CNTR_NORMAL,
4103 access_misc_sbus_write_failed_err_cnt),
4104[C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4105 CNTR_NORMAL,
4106 access_misc_csr_write_bad_addr_err_cnt),
4107[C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4108 CNTR_NORMAL,
4109 access_misc_csr_read_bad_addr_err_cnt),
4110[C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4111 CNTR_NORMAL,
4112 access_misc_csr_parity_err_cnt),
4113/* CceErrStatus */
4114[C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4115 CNTR_NORMAL,
4116 access_sw_cce_err_status_aggregated_cnt),
4117[C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4118 CNTR_NORMAL,
4119 access_cce_msix_csr_parity_err_cnt),
4120[C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4121 CNTR_NORMAL,
4122 access_cce_int_map_unc_err_cnt),
4123[C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4124 CNTR_NORMAL,
4125 access_cce_int_map_cor_err_cnt),
4126[C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4127 CNTR_NORMAL,
4128 access_cce_msix_table_unc_err_cnt),
4129[C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4130 CNTR_NORMAL,
4131 access_cce_msix_table_cor_err_cnt),
4132[C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4133 0, CNTR_NORMAL,
4134 access_cce_rxdma_conv_fifo_parity_err_cnt),
4135[C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4136 0, CNTR_NORMAL,
4137 access_cce_rcpl_async_fifo_parity_err_cnt),
4138[C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4139 CNTR_NORMAL,
4140 access_cce_seg_write_bad_addr_err_cnt),
4141[C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4142 CNTR_NORMAL,
4143 access_cce_seg_read_bad_addr_err_cnt),
4144[C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4145 CNTR_NORMAL,
4146 access_la_triggered_cnt),
4147[C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4148 CNTR_NORMAL,
4149 access_cce_trgt_cpl_timeout_err_cnt),
4150[C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4151 CNTR_NORMAL,
4152 access_pcic_receive_parity_err_cnt),
4153[C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4154 CNTR_NORMAL,
4155 access_pcic_transmit_back_parity_err_cnt),
4156[C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4157 0, CNTR_NORMAL,
4158 access_pcic_transmit_front_parity_err_cnt),
4159[C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4160 CNTR_NORMAL,
4161 access_pcic_cpl_dat_q_unc_err_cnt),
4162[C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4163 CNTR_NORMAL,
4164 access_pcic_cpl_hd_q_unc_err_cnt),
4165[C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4166 CNTR_NORMAL,
4167 access_pcic_post_dat_q_unc_err_cnt),
4168[C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4169 CNTR_NORMAL,
4170 access_pcic_post_hd_q_unc_err_cnt),
4171[C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4172 CNTR_NORMAL,
4173 access_pcic_retry_sot_mem_unc_err_cnt),
4174[C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4175 CNTR_NORMAL,
4176 access_pcic_retry_mem_unc_err),
4177[C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4178 CNTR_NORMAL,
4179 access_pcic_n_post_dat_q_parity_err_cnt),
4180[C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4181 CNTR_NORMAL,
4182 access_pcic_n_post_h_q_parity_err_cnt),
4183[C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4184 CNTR_NORMAL,
4185 access_pcic_cpl_dat_q_cor_err_cnt),
4186[C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4187 CNTR_NORMAL,
4188 access_pcic_cpl_hd_q_cor_err_cnt),
4189[C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4190 CNTR_NORMAL,
4191 access_pcic_post_dat_q_cor_err_cnt),
4192[C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4193 CNTR_NORMAL,
4194 access_pcic_post_hd_q_cor_err_cnt),
4195[C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4196 CNTR_NORMAL,
4197 access_pcic_retry_sot_mem_cor_err_cnt),
4198[C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4199 CNTR_NORMAL,
4200 access_pcic_retry_mem_cor_err_cnt),
4201[C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4202 "CceCli1AsyncFifoDbgParityError", 0, 0,
4203 CNTR_NORMAL,
4204 access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4205[C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4206 "CceCli1AsyncFifoRxdmaParityError", 0, 0,
4207 CNTR_NORMAL,
4208 access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4209 ),
4210[C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4211 "CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4212 CNTR_NORMAL,
4213 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4214[C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4215 "CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4216 CNTR_NORMAL,
4217 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4218[C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4219 0, CNTR_NORMAL,
4220 access_cce_cli2_async_fifo_parity_err_cnt),
4221[C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4222 CNTR_NORMAL,
4223 access_cce_csr_cfg_bus_parity_err_cnt),
4224[C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4225 0, CNTR_NORMAL,
4226 access_cce_cli0_async_fifo_parity_err_cnt),
4227[C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4228 CNTR_NORMAL,
4229 access_cce_rspd_data_parity_err_cnt),
4230[C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4231 CNTR_NORMAL,
4232 access_cce_trgt_access_err_cnt),
4233[C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4234 0, CNTR_NORMAL,
4235 access_cce_trgt_async_fifo_parity_err_cnt),
4236[C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4237 CNTR_NORMAL,
4238 access_cce_csr_write_bad_addr_err_cnt),
4239[C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4240 CNTR_NORMAL,
4241 access_cce_csr_read_bad_addr_err_cnt),
4242[C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4243 CNTR_NORMAL,
4244 access_ccs_csr_parity_err_cnt),
4245
4246/* RcvErrStatus */
4247[C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4248 CNTR_NORMAL,
4249 access_rx_csr_parity_err_cnt),
4250[C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4251 CNTR_NORMAL,
4252 access_rx_csr_write_bad_addr_err_cnt),
4253[C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4254 CNTR_NORMAL,
4255 access_rx_csr_read_bad_addr_err_cnt),
4256[C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4257 CNTR_NORMAL,
4258 access_rx_dma_csr_unc_err_cnt),
4259[C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4260 CNTR_NORMAL,
4261 access_rx_dma_dq_fsm_encoding_err_cnt),
4262[C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4263 CNTR_NORMAL,
4264 access_rx_dma_eq_fsm_encoding_err_cnt),
4265[C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4266 CNTR_NORMAL,
4267 access_rx_dma_csr_parity_err_cnt),
4268[C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4269 CNTR_NORMAL,
4270 access_rx_rbuf_data_cor_err_cnt),
4271[C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4272 CNTR_NORMAL,
4273 access_rx_rbuf_data_unc_err_cnt),
4274[C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4275 CNTR_NORMAL,
4276 access_rx_dma_data_fifo_rd_cor_err_cnt),
4277[C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4278 CNTR_NORMAL,
4279 access_rx_dma_data_fifo_rd_unc_err_cnt),
4280[C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4281 CNTR_NORMAL,
4282 access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4283[C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4284 CNTR_NORMAL,
4285 access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4286[C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4287 CNTR_NORMAL,
4288 access_rx_rbuf_desc_part2_cor_err_cnt),
4289[C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4290 CNTR_NORMAL,
4291 access_rx_rbuf_desc_part2_unc_err_cnt),
4292[C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4293 CNTR_NORMAL,
4294 access_rx_rbuf_desc_part1_cor_err_cnt),
4295[C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4296 CNTR_NORMAL,
4297 access_rx_rbuf_desc_part1_unc_err_cnt),
4298[C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4299 CNTR_NORMAL,
4300 access_rx_hq_intr_fsm_err_cnt),
4301[C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4302 CNTR_NORMAL,
4303 access_rx_hq_intr_csr_parity_err_cnt),
4304[C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4305 CNTR_NORMAL,
4306 access_rx_lookup_csr_parity_err_cnt),
4307[C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4308 CNTR_NORMAL,
4309 access_rx_lookup_rcv_array_cor_err_cnt),
4310[C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4311 CNTR_NORMAL,
4312 access_rx_lookup_rcv_array_unc_err_cnt),
4313[C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4314 0, CNTR_NORMAL,
4315 access_rx_lookup_des_part2_parity_err_cnt),
4316[C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4317 0, CNTR_NORMAL,
4318 access_rx_lookup_des_part1_unc_cor_err_cnt),
4319[C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4320 CNTR_NORMAL,
4321 access_rx_lookup_des_part1_unc_err_cnt),
4322[C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4323 CNTR_NORMAL,
4324 access_rx_rbuf_next_free_buf_cor_err_cnt),
4325[C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4326 CNTR_NORMAL,
4327 access_rx_rbuf_next_free_buf_unc_err_cnt),
4328[C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4329 "RxRbufFlInitWrAddrParityErr", 0, 0,
4330 CNTR_NORMAL,
4331 access_rbuf_fl_init_wr_addr_parity_err_cnt),
4332[C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4333 0, CNTR_NORMAL,
4334 access_rx_rbuf_fl_initdone_parity_err_cnt),
4335[C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4336 0, CNTR_NORMAL,
4337 access_rx_rbuf_fl_write_addr_parity_err_cnt),
4338[C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4339 CNTR_NORMAL,
4340 access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4341[C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4342 CNTR_NORMAL,
4343 access_rx_rbuf_empty_err_cnt),
4344[C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4345 CNTR_NORMAL,
4346 access_rx_rbuf_full_err_cnt),
4347[C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4348 CNTR_NORMAL,
4349 access_rbuf_bad_lookup_err_cnt),
4350[C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4351 CNTR_NORMAL,
4352 access_rbuf_ctx_id_parity_err_cnt),
4353[C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4354 CNTR_NORMAL,
4355 access_rbuf_csr_qeopdw_parity_err_cnt),
4356[C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4357 "RxRbufCsrQNumOfPktParityErr", 0, 0,
4358 CNTR_NORMAL,
4359 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4360[C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4361 "RxRbufCsrQTlPtrParityErr", 0, 0,
4362 CNTR_NORMAL,
4363 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4364[C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4365 0, CNTR_NORMAL,
4366 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4367[C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4368 0, CNTR_NORMAL,
4369 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4370[C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4371 0, 0, CNTR_NORMAL,
4372 access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4373[C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4374 0, CNTR_NORMAL,
4375 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4376[C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4377 "RxRbufCsrQHeadBufNumParityErr", 0, 0,
4378 CNTR_NORMAL,
4379 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4380[C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4381 0, CNTR_NORMAL,
4382 access_rx_rbuf_block_list_read_cor_err_cnt),
4383[C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4384 0, CNTR_NORMAL,
4385 access_rx_rbuf_block_list_read_unc_err_cnt),
4386[C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4387 CNTR_NORMAL,
4388 access_rx_rbuf_lookup_des_cor_err_cnt),
4389[C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4390 CNTR_NORMAL,
4391 access_rx_rbuf_lookup_des_unc_err_cnt),
4392[C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4393 "RxRbufLookupDesRegUncCorErr", 0, 0,
4394 CNTR_NORMAL,
4395 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4396[C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4397 CNTR_NORMAL,
4398 access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4399[C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4400 CNTR_NORMAL,
4401 access_rx_rbuf_free_list_cor_err_cnt),
4402[C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4403 CNTR_NORMAL,
4404 access_rx_rbuf_free_list_unc_err_cnt),
4405[C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4406 CNTR_NORMAL,
4407 access_rx_rcv_fsm_encoding_err_cnt),
4408[C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4409 CNTR_NORMAL,
4410 access_rx_dma_flag_cor_err_cnt),
4411[C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4412 CNTR_NORMAL,
4413 access_rx_dma_flag_unc_err_cnt),
4414[C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4415 CNTR_NORMAL,
4416 access_rx_dc_sop_eop_parity_err_cnt),
4417[C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4418 CNTR_NORMAL,
4419 access_rx_rcv_csr_parity_err_cnt),
4420[C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4421 CNTR_NORMAL,
4422 access_rx_rcv_qp_map_table_cor_err_cnt),
4423[C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4424 CNTR_NORMAL,
4425 access_rx_rcv_qp_map_table_unc_err_cnt),
4426[C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4427 CNTR_NORMAL,
4428 access_rx_rcv_data_cor_err_cnt),
4429[C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4430 CNTR_NORMAL,
4431 access_rx_rcv_data_unc_err_cnt),
4432[C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4433 CNTR_NORMAL,
4434 access_rx_rcv_hdr_cor_err_cnt),
4435[C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4436 CNTR_NORMAL,
4437 access_rx_rcv_hdr_unc_err_cnt),
4438[C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4439 CNTR_NORMAL,
4440 access_rx_dc_intf_parity_err_cnt),
4441[C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4442 CNTR_NORMAL,
4443 access_rx_dma_csr_cor_err_cnt),
4444/* SendPioErrStatus */
4445[C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4446 CNTR_NORMAL,
4447 access_pio_pec_sop_head_parity_err_cnt),
4448[C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4449 CNTR_NORMAL,
4450 access_pio_pcc_sop_head_parity_err_cnt),
4451[C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4452 0, 0, CNTR_NORMAL,
4453 access_pio_last_returned_cnt_parity_err_cnt),
4454[C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4455 0, CNTR_NORMAL,
4456 access_pio_current_free_cnt_parity_err_cnt),
4457[C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4458 CNTR_NORMAL,
4459 access_pio_reserved_31_err_cnt),
4460[C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4461 CNTR_NORMAL,
4462 access_pio_reserved_30_err_cnt),
4463[C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4464 CNTR_NORMAL,
4465 access_pio_ppmc_sop_len_err_cnt),
4466[C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4467 CNTR_NORMAL,
4468 access_pio_ppmc_bqc_mem_parity_err_cnt),
4469[C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4470 CNTR_NORMAL,
4471 access_pio_vl_fifo_parity_err_cnt),
4472[C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4473 CNTR_NORMAL,
4474 access_pio_vlf_sop_parity_err_cnt),
4475[C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4476 CNTR_NORMAL,
4477 access_pio_vlf_v1_len_parity_err_cnt),
4478[C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4479 CNTR_NORMAL,
4480 access_pio_block_qw_count_parity_err_cnt),
4481[C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4482 CNTR_NORMAL,
4483 access_pio_write_qw_valid_parity_err_cnt),
4484[C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4485 CNTR_NORMAL,
4486 access_pio_state_machine_err_cnt),
4487[C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4488 CNTR_NORMAL,
4489 access_pio_write_data_parity_err_cnt),
4490[C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4491 CNTR_NORMAL,
4492 access_pio_host_addr_mem_cor_err_cnt),
4493[C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4494 CNTR_NORMAL,
4495 access_pio_host_addr_mem_unc_err_cnt),
4496[C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4497 CNTR_NORMAL,
4498 access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4499[C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4500 CNTR_NORMAL,
4501 access_pio_init_sm_in_err_cnt),
4502[C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4503 CNTR_NORMAL,
4504 access_pio_ppmc_pbl_fifo_err_cnt),
4505[C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4506 0, CNTR_NORMAL,
4507 access_pio_credit_ret_fifo_parity_err_cnt),
4508[C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4509 CNTR_NORMAL,
4510 access_pio_v1_len_mem_bank1_cor_err_cnt),
4511[C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4512 CNTR_NORMAL,
4513 access_pio_v1_len_mem_bank0_cor_err_cnt),
4514[C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4515 CNTR_NORMAL,
4516 access_pio_v1_len_mem_bank1_unc_err_cnt),
4517[C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4518 CNTR_NORMAL,
4519 access_pio_v1_len_mem_bank0_unc_err_cnt),
4520[C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4521 CNTR_NORMAL,
4522 access_pio_sm_pkt_reset_parity_err_cnt),
4523[C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4524 CNTR_NORMAL,
4525 access_pio_pkt_evict_fifo_parity_err_cnt),
4526[C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4527 "PioSbrdctrlCrrelFifoParityErr", 0, 0,
4528 CNTR_NORMAL,
4529 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4530[C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4531 CNTR_NORMAL,
4532 access_pio_sbrdctl_crrel_parity_err_cnt),
4533[C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4534 CNTR_NORMAL,
4535 access_pio_pec_fifo_parity_err_cnt),
4536[C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4537 CNTR_NORMAL,
4538 access_pio_pcc_fifo_parity_err_cnt),
4539[C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4540 CNTR_NORMAL,
4541 access_pio_sb_mem_fifo1_err_cnt),
4542[C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4543 CNTR_NORMAL,
4544 access_pio_sb_mem_fifo0_err_cnt),
4545[C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4546 CNTR_NORMAL,
4547 access_pio_csr_parity_err_cnt),
4548[C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4549 CNTR_NORMAL,
4550 access_pio_write_addr_parity_err_cnt),
4551[C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4552 CNTR_NORMAL,
4553 access_pio_write_bad_ctxt_err_cnt),
4554/* SendDmaErrStatus */
4555[C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4556 0, CNTR_NORMAL,
4557 access_sdma_pcie_req_tracking_cor_err_cnt),
4558[C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4559 0, CNTR_NORMAL,
4560 access_sdma_pcie_req_tracking_unc_err_cnt),
4561[C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4562 CNTR_NORMAL,
4563 access_sdma_csr_parity_err_cnt),
4564[C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4565 CNTR_NORMAL,
4566 access_sdma_rpy_tag_err_cnt),
4567/* SendEgressErrStatus */
4568[C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4569 CNTR_NORMAL,
4570 access_tx_read_pio_memory_csr_unc_err_cnt),
4571[C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4572 0, CNTR_NORMAL,
4573 access_tx_read_sdma_memory_csr_err_cnt),
4574[C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4575 CNTR_NORMAL,
4576 access_tx_egress_fifo_cor_err_cnt),
4577[C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4578 CNTR_NORMAL,
4579 access_tx_read_pio_memory_cor_err_cnt),
4580[C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4581 CNTR_NORMAL,
4582 access_tx_read_sdma_memory_cor_err_cnt),
4583[C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4584 CNTR_NORMAL,
4585 access_tx_sb_hdr_cor_err_cnt),
4586[C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4587 CNTR_NORMAL,
4588 access_tx_credit_overrun_err_cnt),
4589[C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4590 CNTR_NORMAL,
4591 access_tx_launch_fifo8_cor_err_cnt),
4592[C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4593 CNTR_NORMAL,
4594 access_tx_launch_fifo7_cor_err_cnt),
4595[C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4596 CNTR_NORMAL,
4597 access_tx_launch_fifo6_cor_err_cnt),
4598[C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4599 CNTR_NORMAL,
4600 access_tx_launch_fifo5_cor_err_cnt),
4601[C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4602 CNTR_NORMAL,
4603 access_tx_launch_fifo4_cor_err_cnt),
4604[C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4605 CNTR_NORMAL,
4606 access_tx_launch_fifo3_cor_err_cnt),
4607[C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4608 CNTR_NORMAL,
4609 access_tx_launch_fifo2_cor_err_cnt),
4610[C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4611 CNTR_NORMAL,
4612 access_tx_launch_fifo1_cor_err_cnt),
4613[C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4614 CNTR_NORMAL,
4615 access_tx_launch_fifo0_cor_err_cnt),
4616[C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4617 CNTR_NORMAL,
4618 access_tx_credit_return_vl_err_cnt),
4619[C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4620 CNTR_NORMAL,
4621 access_tx_hcrc_insertion_err_cnt),
4622[C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4623 CNTR_NORMAL,
4624 access_tx_egress_fifo_unc_err_cnt),
4625[C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4626 CNTR_NORMAL,
4627 access_tx_read_pio_memory_unc_err_cnt),
4628[C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4629 CNTR_NORMAL,
4630 access_tx_read_sdma_memory_unc_err_cnt),
4631[C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4632 CNTR_NORMAL,
4633 access_tx_sb_hdr_unc_err_cnt),
4634[C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4635 CNTR_NORMAL,
4636 access_tx_credit_return_partiy_err_cnt),
4637[C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4638 0, 0, CNTR_NORMAL,
4639 access_tx_launch_fifo8_unc_or_parity_err_cnt),
4640[C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4641 0, 0, CNTR_NORMAL,
4642 access_tx_launch_fifo7_unc_or_parity_err_cnt),
4643[C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4644 0, 0, CNTR_NORMAL,
4645 access_tx_launch_fifo6_unc_or_parity_err_cnt),
4646[C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4647 0, 0, CNTR_NORMAL,
4648 access_tx_launch_fifo5_unc_or_parity_err_cnt),
4649[C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4650 0, 0, CNTR_NORMAL,
4651 access_tx_launch_fifo4_unc_or_parity_err_cnt),
4652[C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4653 0, 0, CNTR_NORMAL,
4654 access_tx_launch_fifo3_unc_or_parity_err_cnt),
4655[C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4656 0, 0, CNTR_NORMAL,
4657 access_tx_launch_fifo2_unc_or_parity_err_cnt),
4658[C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4659 0, 0, CNTR_NORMAL,
4660 access_tx_launch_fifo1_unc_or_parity_err_cnt),
4661[C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4662 0, 0, CNTR_NORMAL,
4663 access_tx_launch_fifo0_unc_or_parity_err_cnt),
4664[C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4665 0, 0, CNTR_NORMAL,
4666 access_tx_sdma15_disallowed_packet_err_cnt),
4667[C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4668 0, 0, CNTR_NORMAL,
4669 access_tx_sdma14_disallowed_packet_err_cnt),
4670[C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4671 0, 0, CNTR_NORMAL,
4672 access_tx_sdma13_disallowed_packet_err_cnt),
4673[C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4674 0, 0, CNTR_NORMAL,
4675 access_tx_sdma12_disallowed_packet_err_cnt),
4676[C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4677 0, 0, CNTR_NORMAL,
4678 access_tx_sdma11_disallowed_packet_err_cnt),
4679[C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4680 0, 0, CNTR_NORMAL,
4681 access_tx_sdma10_disallowed_packet_err_cnt),
4682[C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4683 0, 0, CNTR_NORMAL,
4684 access_tx_sdma9_disallowed_packet_err_cnt),
4685[C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4686 0, 0, CNTR_NORMAL,
4687 access_tx_sdma8_disallowed_packet_err_cnt),
4688[C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4689 0, 0, CNTR_NORMAL,
4690 access_tx_sdma7_disallowed_packet_err_cnt),
4691[C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4692 0, 0, CNTR_NORMAL,
4693 access_tx_sdma6_disallowed_packet_err_cnt),
4694[C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4695 0, 0, CNTR_NORMAL,
4696 access_tx_sdma5_disallowed_packet_err_cnt),
4697[C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4698 0, 0, CNTR_NORMAL,
4699 access_tx_sdma4_disallowed_packet_err_cnt),
4700[C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4701 0, 0, CNTR_NORMAL,
4702 access_tx_sdma3_disallowed_packet_err_cnt),
4703[C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4704 0, 0, CNTR_NORMAL,
4705 access_tx_sdma2_disallowed_packet_err_cnt),
4706[C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4707 0, 0, CNTR_NORMAL,
4708 access_tx_sdma1_disallowed_packet_err_cnt),
4709[C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4710 0, 0, CNTR_NORMAL,
4711 access_tx_sdma0_disallowed_packet_err_cnt),
4712[C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4713 CNTR_NORMAL,
4714 access_tx_config_parity_err_cnt),
4715[C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4716 CNTR_NORMAL,
4717 access_tx_sbrd_ctl_csr_parity_err_cnt),
4718[C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4719 CNTR_NORMAL,
4720 access_tx_launch_csr_parity_err_cnt),
4721[C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4722 CNTR_NORMAL,
4723 access_tx_illegal_vl_err_cnt),
4724[C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4725 "TxSbrdCtlStateMachineParityErr", 0, 0,
4726 CNTR_NORMAL,
4727 access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4728[C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4729 CNTR_NORMAL,
4730 access_egress_reserved_10_err_cnt),
4731[C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4732 CNTR_NORMAL,
4733 access_egress_reserved_9_err_cnt),
4734[C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4735 0, 0, CNTR_NORMAL,
4736 access_tx_sdma_launch_intf_parity_err_cnt),
4737[C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4738 CNTR_NORMAL,
4739 access_tx_pio_launch_intf_parity_err_cnt),
4740[C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4741 CNTR_NORMAL,
4742 access_egress_reserved_6_err_cnt),
4743[C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4744 CNTR_NORMAL,
4745 access_tx_incorrect_link_state_err_cnt),
4746[C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4747 CNTR_NORMAL,
4748 access_tx_linkdown_err_cnt),
4749[C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4750 "EgressFifoUnderrunOrParityErr", 0, 0,
4751 CNTR_NORMAL,
4752 access_tx_egress_fifi_underrun_or_parity_err_cnt),
4753[C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4754 CNTR_NORMAL,
4755 access_egress_reserved_2_err_cnt),
4756[C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4757 CNTR_NORMAL,
4758 access_tx_pkt_integrity_mem_unc_err_cnt),
4759[C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4760 CNTR_NORMAL,
4761 access_tx_pkt_integrity_mem_cor_err_cnt),
4762/* SendErrStatus */
4763[C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4764 CNTR_NORMAL,
4765 access_send_csr_write_bad_addr_err_cnt),
4766[C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4767 CNTR_NORMAL,
4768 access_send_csr_read_bad_addr_err_cnt),
4769[C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4770 CNTR_NORMAL,
4771 access_send_csr_parity_cnt),
4772/* SendCtxtErrStatus */
4773[C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4774 CNTR_NORMAL,
4775 access_pio_write_out_of_bounds_err_cnt),
4776[C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4777 CNTR_NORMAL,
4778 access_pio_write_overflow_err_cnt),
4779[C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4780 0, 0, CNTR_NORMAL,
4781 access_pio_write_crosses_boundary_err_cnt),
4782[C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4783 CNTR_NORMAL,
4784 access_pio_disallowed_packet_err_cnt),
4785[C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4786 CNTR_NORMAL,
4787 access_pio_inconsistent_sop_err_cnt),
4788/* SendDmaEngErrStatus */
4789[C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4790 0, 0, CNTR_NORMAL,
4791 access_sdma_header_request_fifo_cor_err_cnt),
4792[C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4793 CNTR_NORMAL,
4794 access_sdma_header_storage_cor_err_cnt),
4795[C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4796 CNTR_NORMAL,
4797 access_sdma_packet_tracking_cor_err_cnt),
4798[C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4799 CNTR_NORMAL,
4800 access_sdma_assembly_cor_err_cnt),
4801[C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
4802 CNTR_NORMAL,
4803 access_sdma_desc_table_cor_err_cnt),
4804[C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
4805 0, 0, CNTR_NORMAL,
4806 access_sdma_header_request_fifo_unc_err_cnt),
4807[C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
4808 CNTR_NORMAL,
4809 access_sdma_header_storage_unc_err_cnt),
4810[C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
4811 CNTR_NORMAL,
4812 access_sdma_packet_tracking_unc_err_cnt),
4813[C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
4814 CNTR_NORMAL,
4815 access_sdma_assembly_unc_err_cnt),
4816[C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
4817 CNTR_NORMAL,
4818 access_sdma_desc_table_unc_err_cnt),
4819[C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
4820 CNTR_NORMAL,
4821 access_sdma_timeout_err_cnt),
4822[C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
4823 CNTR_NORMAL,
4824 access_sdma_header_length_err_cnt),
4825[C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
4826 CNTR_NORMAL,
4827 access_sdma_header_address_err_cnt),
4828[C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
4829 CNTR_NORMAL,
4830 access_sdma_header_select_err_cnt),
4831[C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
4832 CNTR_NORMAL,
4833 access_sdma_reserved_9_err_cnt),
4834[C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
4835 CNTR_NORMAL,
4836 access_sdma_packet_desc_overflow_err_cnt),
4837[C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
4838 CNTR_NORMAL,
4839 access_sdma_length_mismatch_err_cnt),
4840[C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
4841 CNTR_NORMAL,
4842 access_sdma_halt_err_cnt),
4843[C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
4844 CNTR_NORMAL,
4845 access_sdma_mem_read_err_cnt),
4846[C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
4847 CNTR_NORMAL,
4848 access_sdma_first_desc_err_cnt),
4849[C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
4850 CNTR_NORMAL,
4851 access_sdma_tail_out_of_bounds_err_cnt),
4852[C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
4853 CNTR_NORMAL,
4854 access_sdma_too_long_err_cnt),
4855[C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
4856 CNTR_NORMAL,
4857 access_sdma_gen_mismatch_err_cnt),
4858[C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
4859 CNTR_NORMAL,
4860 access_sdma_wrong_dw_err_cnt),
77241056
MM
4861};
4862
4863static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
4864[C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
4865 CNTR_NORMAL),
4866[C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
4867 CNTR_NORMAL),
4868[C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
4869 CNTR_NORMAL),
4870[C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
4871 CNTR_NORMAL),
4872[C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
4873 CNTR_NORMAL),
4874[C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
4875 CNTR_NORMAL),
4876[C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
4877 CNTR_NORMAL),
4878[C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
4879[C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
4880[C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
4881[C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
4882 CNTR_SYNTH | CNTR_VL),
4883[C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
4884 CNTR_SYNTH | CNTR_VL),
4885[C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
4886 CNTR_SYNTH | CNTR_VL),
4887[C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
4888[C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
4889[C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
4890 access_sw_link_dn_cnt),
4891[C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
4892 access_sw_link_up_cnt),
6d014530
DL
4893[C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
4894 access_sw_unknown_frame_cnt),
77241056
MM
4895[C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
4896 access_sw_xmit_discards),
4897[C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
4898 CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
4899 access_sw_xmit_discards),
4900[C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
4901 access_xmit_constraint_errs),
4902[C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
4903 access_rcv_constraint_errs),
4904[C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
4905[C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
4906[C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
4907[C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
4908[C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
4909[C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
4910[C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
4911[C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
4912[C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
4913[C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
4914[C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
4915[C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
4916[C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
4917 access_sw_cpu_rc_acks),
4918[C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
4919 access_sw_cpu_rc_qacks),
4920[C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
4921 access_sw_cpu_rc_delayed_comp),
4922[OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
4923[OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
4924[OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
4925[OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
4926[OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
4927[OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
4928[OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
4929[OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
4930[OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
4931[OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
4932[OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
4933[OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
4934[OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
4935[OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
4936[OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
4937[OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
4938[OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
4939[OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
4940[OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
4941[OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
4942[OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
4943[OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
4944[OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
4945[OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
4946[OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
4947[OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
4948[OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
4949[OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
4950[OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
4951[OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
4952[OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
4953[OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
4954[OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
4955[OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
4956[OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
4957[OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
4958[OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
4959[OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
4960[OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
4961[OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
4962[OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
4963[OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
4964[OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
4965[OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
4966[OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
4967[OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
4968[OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
4969[OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
4970[OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
4971[OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
4972[OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
4973[OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
4974[OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
4975[OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
4976[OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
4977[OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
4978[OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
4979[OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
4980[OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
4981[OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
4982[OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
4983[OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
4984[OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
4985[OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
4986[OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
4987[OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
4988[OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
4989[OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
4990[OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
4991[OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
4992[OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
4993[OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
4994[OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
4995[OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
4996[OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
4997[OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
4998[OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
4999[OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5000[OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5001[OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5002};
5003
5004/* ======================================================================== */
5005
77241056
MM
5006/* return true if this is chip revision revision a */
5007int is_ax(struct hfi1_devdata *dd)
5008{
5009 u8 chip_rev_minor =
5010 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5011 & CCE_REVISION_CHIP_REV_MINOR_MASK;
5012 return (chip_rev_minor & 0xf0) == 0;
5013}
5014
5015/* return true if this is chip revision revision b */
5016int is_bx(struct hfi1_devdata *dd)
5017{
5018 u8 chip_rev_minor =
5019 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5020 & CCE_REVISION_CHIP_REV_MINOR_MASK;
995deafa 5021 return (chip_rev_minor & 0xF0) == 0x10;
77241056
MM
5022}
5023
5024/*
5025 * Append string s to buffer buf. Arguments curp and len are the current
5026 * position and remaining length, respectively.
5027 *
5028 * return 0 on success, 1 on out of room
5029 */
5030static int append_str(char *buf, char **curp, int *lenp, const char *s)
5031{
5032 char *p = *curp;
5033 int len = *lenp;
5034 int result = 0; /* success */
5035 char c;
5036
5037 /* add a comma, if first in the buffer */
5038 if (p != buf) {
5039 if (len == 0) {
5040 result = 1; /* out of room */
5041 goto done;
5042 }
5043 *p++ = ',';
5044 len--;
5045 }
5046
5047 /* copy the string */
5048 while ((c = *s++) != 0) {
5049 if (len == 0) {
5050 result = 1; /* out of room */
5051 goto done;
5052 }
5053 *p++ = c;
5054 len--;
5055 }
5056
5057done:
5058 /* write return values */
5059 *curp = p;
5060 *lenp = len;
5061
5062 return result;
5063}
5064
5065/*
5066 * Using the given flag table, print a comma separated string into
5067 * the buffer. End in '*' if the buffer is too short.
5068 */
5069static char *flag_string(char *buf, int buf_len, u64 flags,
5070 struct flag_table *table, int table_size)
5071{
5072 char extra[32];
5073 char *p = buf;
5074 int len = buf_len;
5075 int no_room = 0;
5076 int i;
5077
5078 /* make sure there is at least 2 so we can form "*" */
5079 if (len < 2)
5080 return "";
5081
5082 len--; /* leave room for a nul */
5083 for (i = 0; i < table_size; i++) {
5084 if (flags & table[i].flag) {
5085 no_room = append_str(buf, &p, &len, table[i].str);
5086 if (no_room)
5087 break;
5088 flags &= ~table[i].flag;
5089 }
5090 }
5091
5092 /* any undocumented bits left? */
5093 if (!no_room && flags) {
5094 snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5095 no_room = append_str(buf, &p, &len, extra);
5096 }
5097
5098 /* add * if ran out of room */
5099 if (no_room) {
5100 /* may need to back up to add space for a '*' */
5101 if (len == 0)
5102 --p;
5103 *p++ = '*';
5104 }
5105
5106 /* add final nul - space already allocated above */
5107 *p = 0;
5108 return buf;
5109}
5110
5111/* first 8 CCE error interrupt source names */
5112static const char * const cce_misc_names[] = {
5113 "CceErrInt", /* 0 */
5114 "RxeErrInt", /* 1 */
5115 "MiscErrInt", /* 2 */
5116 "Reserved3", /* 3 */
5117 "PioErrInt", /* 4 */
5118 "SDmaErrInt", /* 5 */
5119 "EgressErrInt", /* 6 */
5120 "TxeErrInt" /* 7 */
5121};
5122
5123/*
5124 * Return the miscellaneous error interrupt name.
5125 */
5126static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5127{
5128 if (source < ARRAY_SIZE(cce_misc_names))
5129 strncpy(buf, cce_misc_names[source], bsize);
5130 else
5131 snprintf(buf,
5132 bsize,
5133 "Reserved%u",
5134 source + IS_GENERAL_ERR_START);
5135
5136 return buf;
5137}
5138
5139/*
5140 * Return the SDMA engine error interrupt name.
5141 */
5142static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5143{
5144 snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5145 return buf;
5146}
5147
5148/*
5149 * Return the send context error interrupt name.
5150 */
5151static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5152{
5153 snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5154 return buf;
5155}
5156
5157static const char * const various_names[] = {
5158 "PbcInt",
5159 "GpioAssertInt",
5160 "Qsfp1Int",
5161 "Qsfp2Int",
5162 "TCritInt"
5163};
5164
5165/*
5166 * Return the various interrupt name.
5167 */
5168static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5169{
5170 if (source < ARRAY_SIZE(various_names))
5171 strncpy(buf, various_names[source], bsize);
5172 else
5173 snprintf(buf, bsize, "Reserved%u", source+IS_VARIOUS_START);
5174 return buf;
5175}
5176
5177/*
5178 * Return the DC interrupt name.
5179 */
5180static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5181{
5182 static const char * const dc_int_names[] = {
5183 "common",
5184 "lcb",
5185 "8051",
5186 "lbm" /* local block merge */
5187 };
5188
5189 if (source < ARRAY_SIZE(dc_int_names))
5190 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5191 else
5192 snprintf(buf, bsize, "DCInt%u", source);
5193 return buf;
5194}
5195
5196static const char * const sdma_int_names[] = {
5197 "SDmaInt",
5198 "SdmaIdleInt",
5199 "SdmaProgressInt",
5200};
5201
5202/*
5203 * Return the SDMA engine interrupt name.
5204 */
5205static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5206{
5207 /* what interrupt */
5208 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
5209 /* which engine */
5210 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5211
5212 if (likely(what < 3))
5213 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5214 else
5215 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5216 return buf;
5217}
5218
5219/*
5220 * Return the receive available interrupt name.
5221 */
5222static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5223{
5224 snprintf(buf, bsize, "RcvAvailInt%u", source);
5225 return buf;
5226}
5227
5228/*
5229 * Return the receive urgent interrupt name.
5230 */
5231static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5232{
5233 snprintf(buf, bsize, "RcvUrgentInt%u", source);
5234 return buf;
5235}
5236
5237/*
5238 * Return the send credit interrupt name.
5239 */
5240static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5241{
5242 snprintf(buf, bsize, "SendCreditInt%u", source);
5243 return buf;
5244}
5245
5246/*
5247 * Return the reserved interrupt name.
5248 */
5249static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5250{
5251 snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5252 return buf;
5253}
5254
5255static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5256{
5257 return flag_string(buf, buf_len, flags,
5258 cce_err_status_flags, ARRAY_SIZE(cce_err_status_flags));
5259}
5260
5261static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5262{
5263 return flag_string(buf, buf_len, flags,
5264 rxe_err_status_flags, ARRAY_SIZE(rxe_err_status_flags));
5265}
5266
5267static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5268{
5269 return flag_string(buf, buf_len, flags, misc_err_status_flags,
5270 ARRAY_SIZE(misc_err_status_flags));
5271}
5272
5273static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5274{
5275 return flag_string(buf, buf_len, flags,
5276 pio_err_status_flags, ARRAY_SIZE(pio_err_status_flags));
5277}
5278
5279static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5280{
5281 return flag_string(buf, buf_len, flags,
5282 sdma_err_status_flags,
5283 ARRAY_SIZE(sdma_err_status_flags));
5284}
5285
5286static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5287{
5288 return flag_string(buf, buf_len, flags,
5289 egress_err_status_flags, ARRAY_SIZE(egress_err_status_flags));
5290}
5291
5292static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5293{
5294 return flag_string(buf, buf_len, flags,
5295 egress_err_info_flags, ARRAY_SIZE(egress_err_info_flags));
5296}
5297
5298static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5299{
5300 return flag_string(buf, buf_len, flags,
5301 send_err_status_flags,
5302 ARRAY_SIZE(send_err_status_flags));
5303}
5304
5305static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5306{
5307 char buf[96];
2c5b521a 5308 int i = 0;
77241056
MM
5309
5310 /*
5311 * For most these errors, there is nothing that can be done except
5312 * report or record it.
5313 */
5314 dd_dev_info(dd, "CCE Error: %s\n",
5315 cce_err_status_string(buf, sizeof(buf), reg));
5316
995deafa
MM
5317 if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5318 is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
77241056
MM
5319 /* this error requires a manual drop into SPC freeze mode */
5320 /* then a fix up */
5321 start_freeze_handling(dd->pport, FREEZE_SELF);
5322 }
2c5b521a
JR
5323
5324 for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5325 if (reg & (1ull << i)) {
5326 incr_cntr64(&dd->cce_err_status_cnt[i]);
5327 /* maintain a counter over all cce_err_status errors */
5328 incr_cntr64(&dd->sw_cce_err_status_aggregate);
5329 }
5330 }
77241056
MM
5331}
5332
5333/*
5334 * Check counters for receive errors that do not have an interrupt
5335 * associated with them.
5336 */
5337#define RCVERR_CHECK_TIME 10
5338static void update_rcverr_timer(unsigned long opaque)
5339{
5340 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
5341 struct hfi1_pportdata *ppd = dd->pport;
5342 u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5343
5344 if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5345 ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5346 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5347 set_link_down_reason(ppd,
5348 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5349 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5350 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
5351 }
5352 dd->rcv_ovfl_cnt = (u32) cur_ovfl_cnt;
5353
5354 mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5355}
5356
5357static int init_rcverr(struct hfi1_devdata *dd)
5358{
24523a94 5359 setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
77241056
MM
5360 /* Assume the hardware counter has been reset */
5361 dd->rcv_ovfl_cnt = 0;
5362 return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5363}
5364
5365static void free_rcverr(struct hfi1_devdata *dd)
5366{
5367 if (dd->rcverr_timer.data)
5368 del_timer_sync(&dd->rcverr_timer);
5369 dd->rcverr_timer.data = 0;
5370}
5371
5372static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5373{
5374 char buf[96];
2c5b521a 5375 int i = 0;
77241056
MM
5376
5377 dd_dev_info(dd, "Receive Error: %s\n",
5378 rxe_err_status_string(buf, sizeof(buf), reg));
5379
5380 if (reg & ALL_RXE_FREEZE_ERR) {
5381 int flags = 0;
5382
5383 /*
5384 * Freeze mode recovery is disabled for the errors
5385 * in RXE_FREEZE_ABORT_MASK
5386 */
995deafa 5387 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
77241056
MM
5388 flags = FREEZE_ABORT;
5389
5390 start_freeze_handling(dd->pport, flags);
5391 }
2c5b521a
JR
5392
5393 for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5394 if (reg & (1ull << i))
5395 incr_cntr64(&dd->rcv_err_status_cnt[i]);
5396 }
77241056
MM
5397}
5398
5399static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5400{
5401 char buf[96];
2c5b521a 5402 int i = 0;
77241056
MM
5403
5404 dd_dev_info(dd, "Misc Error: %s",
5405 misc_err_status_string(buf, sizeof(buf), reg));
2c5b521a
JR
5406 for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5407 if (reg & (1ull << i))
5408 incr_cntr64(&dd->misc_err_status_cnt[i]);
5409 }
77241056
MM
5410}
5411
5412static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5413{
5414 char buf[96];
2c5b521a 5415 int i = 0;
77241056
MM
5416
5417 dd_dev_info(dd, "PIO Error: %s\n",
5418 pio_err_status_string(buf, sizeof(buf), reg));
5419
5420 if (reg & ALL_PIO_FREEZE_ERR)
5421 start_freeze_handling(dd->pport, 0);
2c5b521a
JR
5422
5423 for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5424 if (reg & (1ull << i))
5425 incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5426 }
77241056
MM
5427}
5428
5429static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5430{
5431 char buf[96];
2c5b521a 5432 int i = 0;
77241056
MM
5433
5434 dd_dev_info(dd, "SDMA Error: %s\n",
5435 sdma_err_status_string(buf, sizeof(buf), reg));
5436
5437 if (reg & ALL_SDMA_FREEZE_ERR)
5438 start_freeze_handling(dd->pport, 0);
2c5b521a
JR
5439
5440 for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5441 if (reg & (1ull << i))
5442 incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5443 }
77241056
MM
5444}
5445
5446static void count_port_inactive(struct hfi1_devdata *dd)
5447{
5448 struct hfi1_pportdata *ppd = dd->pport;
5449
5450 if (ppd->port_xmit_discards < ~(u64)0)
5451 ppd->port_xmit_discards++;
5452}
5453
5454/*
5455 * We have had a "disallowed packet" error during egress. Determine the
5456 * integrity check which failed, and update relevant error counter, etc.
5457 *
5458 * Note that the SEND_EGRESS_ERR_INFO register has only a single
5459 * bit of state per integrity check, and so we can miss the reason for an
5460 * egress error if more than one packet fails the same integrity check
5461 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5462 */
5463static void handle_send_egress_err_info(struct hfi1_devdata *dd)
5464{
5465 struct hfi1_pportdata *ppd = dd->pport;
5466 u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5467 u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5468 char buf[96];
5469
5470 /* clear down all observed info as quickly as possible after read */
5471 write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5472
5473 dd_dev_info(dd,
5474 "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5475 info, egress_err_info_string(buf, sizeof(buf), info), src);
5476
5477 /* Eventually add other counters for each bit */
5478
5479 if (info & SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK) {
5480 if (ppd->port_xmit_discards < ~(u64)0)
5481 ppd->port_xmit_discards++;
5482 }
5483}
5484
5485/*
5486 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5487 * register. Does it represent a 'port inactive' error?
5488 */
5489static inline int port_inactive_err(u64 posn)
5490{
5491 return (posn >= SEES(TX_LINKDOWN) &&
5492 posn <= SEES(TX_INCORRECT_LINK_STATE));
5493}
5494
5495/*
5496 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5497 * register. Does it represent a 'disallowed packet' error?
5498 */
5499static inline int disallowed_pkt_err(u64 posn)
5500{
5501 return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5502 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5503}
5504
5505static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5506{
5507 u64 reg_copy = reg, handled = 0;
5508 char buf[96];
2c5b521a 5509 int i = 0;
77241056
MM
5510
5511 if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5512 start_freeze_handling(dd->pport, 0);
995deafa 5513 if (is_ax(dd) && (reg &
77241056
MM
5514 SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK)
5515 && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5516 start_freeze_handling(dd->pport, 0);
5517
5518 while (reg_copy) {
5519 int posn = fls64(reg_copy);
5520 /*
5521 * fls64() returns a 1-based offset, but we generally
5522 * want 0-based offsets.
5523 */
5524 int shift = posn - 1;
5525
5526 if (port_inactive_err(shift)) {
5527 count_port_inactive(dd);
5528 handled |= (1ULL << shift);
5529 } else if (disallowed_pkt_err(shift)) {
5530 handle_send_egress_err_info(dd);
5531 handled |= (1ULL << shift);
5532 }
5533 clear_bit(shift, (unsigned long *)&reg_copy);
5534 }
5535
5536 reg &= ~handled;
5537
5538 if (reg)
5539 dd_dev_info(dd, "Egress Error: %s\n",
5540 egress_err_status_string(buf, sizeof(buf), reg));
2c5b521a
JR
5541
5542 for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5543 if (reg & (1ull << i))
5544 incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5545 }
77241056
MM
5546}
5547
5548static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5549{
5550 char buf[96];
2c5b521a 5551 int i = 0;
77241056
MM
5552
5553 dd_dev_info(dd, "Send Error: %s\n",
5554 send_err_status_string(buf, sizeof(buf), reg));
5555
2c5b521a
JR
5556 for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5557 if (reg & (1ull << i))
5558 incr_cntr64(&dd->send_err_status_cnt[i]);
5559 }
77241056
MM
5560}
5561
5562/*
5563 * The maximum number of times the error clear down will loop before
5564 * blocking a repeating error. This value is arbitrary.
5565 */
5566#define MAX_CLEAR_COUNT 20
5567
5568/*
5569 * Clear and handle an error register. All error interrupts are funneled
5570 * through here to have a central location to correctly handle single-
5571 * or multi-shot errors.
5572 *
5573 * For non per-context registers, call this routine with a context value
5574 * of 0 so the per-context offset is zero.
5575 *
5576 * If the handler loops too many times, assume that something is wrong
5577 * and can't be fixed, so mask the error bits.
5578 */
5579static void interrupt_clear_down(struct hfi1_devdata *dd,
5580 u32 context,
5581 const struct err_reg_info *eri)
5582{
5583 u64 reg;
5584 u32 count;
5585
5586 /* read in a loop until no more errors are seen */
5587 count = 0;
5588 while (1) {
5589 reg = read_kctxt_csr(dd, context, eri->status);
5590 if (reg == 0)
5591 break;
5592 write_kctxt_csr(dd, context, eri->clear, reg);
5593 if (likely(eri->handler))
5594 eri->handler(dd, context, reg);
5595 count++;
5596 if (count > MAX_CLEAR_COUNT) {
5597 u64 mask;
5598
5599 dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5600 eri->desc, reg);
5601 /*
5602 * Read-modify-write so any other masked bits
5603 * remain masked.
5604 */
5605 mask = read_kctxt_csr(dd, context, eri->mask);
5606 mask &= ~reg;
5607 write_kctxt_csr(dd, context, eri->mask, mask);
5608 break;
5609 }
5610 }
5611}
5612
5613/*
5614 * CCE block "misc" interrupt. Source is < 16.
5615 */
5616static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5617{
5618 const struct err_reg_info *eri = &misc_errs[source];
5619
5620 if (eri->handler) {
5621 interrupt_clear_down(dd, 0, eri);
5622 } else {
5623 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5624 source);
5625 }
5626}
5627
5628static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5629{
5630 return flag_string(buf, buf_len, flags,
5631 sc_err_status_flags, ARRAY_SIZE(sc_err_status_flags));
5632}
5633
5634/*
5635 * Send context error interrupt. Source (hw_context) is < 160.
5636 *
5637 * All send context errors cause the send context to halt. The normal
5638 * clear-down mechanism cannot be used because we cannot clear the
5639 * error bits until several other long-running items are done first.
5640 * This is OK because with the context halted, nothing else is going
5641 * to happen on it anyway.
5642 */
5643static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5644 unsigned int hw_context)
5645{
5646 struct send_context_info *sci;
5647 struct send_context *sc;
5648 char flags[96];
5649 u64 status;
5650 u32 sw_index;
2c5b521a 5651 int i = 0;
77241056
MM
5652
5653 sw_index = dd->hw_to_sw[hw_context];
5654 if (sw_index >= dd->num_send_contexts) {
5655 dd_dev_err(dd,
5656 "out of range sw index %u for send context %u\n",
5657 sw_index, hw_context);
5658 return;
5659 }
5660 sci = &dd->send_contexts[sw_index];
5661 sc = sci->sc;
5662 if (!sc) {
5663 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5664 sw_index, hw_context);
5665 return;
5666 }
5667
5668 /* tell the software that a halt has begun */
5669 sc_stop(sc, SCF_HALTED);
5670
5671 status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5672
5673 dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5674 send_context_err_status_string(flags, sizeof(flags), status));
5675
5676 if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5677 handle_send_egress_err_info(dd);
5678
5679 /*
5680 * Automatically restart halted kernel contexts out of interrupt
5681 * context. User contexts must ask the driver to restart the context.
5682 */
5683 if (sc->type != SC_USER)
5684 queue_work(dd->pport->hfi1_wq, &sc->halt_work);
2c5b521a
JR
5685
5686 /*
5687 * Update the counters for the corresponding status bits.
5688 * Note that these particular counters are aggregated over all
5689 * 160 contexts.
5690 */
5691 for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5692 if (status & (1ull << i))
5693 incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5694 }
77241056
MM
5695}
5696
5697static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5698 unsigned int source, u64 status)
5699{
5700 struct sdma_engine *sde;
2c5b521a 5701 int i = 0;
77241056
MM
5702
5703 sde = &dd->per_sdma[source];
5704#ifdef CONFIG_SDMA_VERBOSITY
5705 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5706 slashstrip(__FILE__), __LINE__, __func__);
5707 dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
5708 sde->this_idx, source, (unsigned long long)status);
5709#endif
5710 sdma_engine_error(sde, status);
2c5b521a
JR
5711
5712 /*
5713 * Update the counters for the corresponding status bits.
5714 * Note that these particular counters are aggregated over
5715 * all 16 DMA engines.
5716 */
5717 for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
5718 if (status & (1ull << i))
5719 incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
5720 }
77241056
MM
5721}
5722
5723/*
5724 * CCE block SDMA error interrupt. Source is < 16.
5725 */
5726static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
5727{
5728#ifdef CONFIG_SDMA_VERBOSITY
5729 struct sdma_engine *sde = &dd->per_sdma[source];
5730
5731 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5732 slashstrip(__FILE__), __LINE__, __func__);
5733 dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
5734 source);
5735 sdma_dumpstate(sde);
5736#endif
5737 interrupt_clear_down(dd, source, &sdma_eng_err);
5738}
5739
5740/*
5741 * CCE block "various" interrupt. Source is < 8.
5742 */
5743static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
5744{
5745 const struct err_reg_info *eri = &various_err[source];
5746
5747 /*
5748 * TCritInt cannot go through interrupt_clear_down()
5749 * because it is not a second tier interrupt. The handler
5750 * should be called directly.
5751 */
5752 if (source == TCRIT_INT_SOURCE)
5753 handle_temp_err(dd);
5754 else if (eri->handler)
5755 interrupt_clear_down(dd, 0, eri);
5756 else
5757 dd_dev_info(dd,
5758 "%s: Unimplemented/reserved interrupt %d\n",
5759 __func__, source);
5760}
5761
5762static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
5763{
5764 /* source is always zero */
5765 struct hfi1_pportdata *ppd = dd->pport;
5766 unsigned long flags;
5767 u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
5768
5769 if (reg & QSFP_HFI0_MODPRST_N) {
5770
5771 dd_dev_info(dd, "%s: ModPresent triggered QSFP interrupt\n",
5772 __func__);
5773
5774 if (!qsfp_mod_present(ppd)) {
5775 ppd->driver_link_ready = 0;
5776 /*
5777 * Cable removed, reset all our information about the
5778 * cache and cable capabilities
5779 */
5780
5781 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
5782 /*
5783 * We don't set cache_refresh_required here as we expect
5784 * an interrupt when a cable is inserted
5785 */
5786 ppd->qsfp_info.cache_valid = 0;
5787 ppd->qsfp_info.qsfp_interrupt_functional = 0;
5788 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
5789 flags);
5790 write_csr(dd,
5791 dd->hfi1_id ?
5792 ASIC_QSFP2_INVERT :
5793 ASIC_QSFP1_INVERT,
5794 qsfp_int_mgmt);
5795 if (ppd->host_link_state == HLS_DN_POLL) {
5796 /*
5797 * The link is still in POLL. This means
5798 * that the normal link down processing
5799 * will not happen. We have to do it here
5800 * before turning the DC off.
5801 */
5802 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
5803 }
5804 } else {
5805 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
5806 ppd->qsfp_info.cache_valid = 0;
5807 ppd->qsfp_info.cache_refresh_required = 1;
5808 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
5809 flags);
5810
5811 qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
5812 write_csr(dd,
5813 dd->hfi1_id ?
5814 ASIC_QSFP2_INVERT :
5815 ASIC_QSFP1_INVERT,
5816 qsfp_int_mgmt);
5817 }
5818 }
5819
5820 if (reg & QSFP_HFI0_INT_N) {
5821
5822 dd_dev_info(dd, "%s: IntN triggered QSFP interrupt\n",
5823 __func__);
5824 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
5825 ppd->qsfp_info.check_interrupt_flags = 1;
5826 ppd->qsfp_info.qsfp_interrupt_functional = 1;
5827 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
5828 }
5829
5830 /* Schedule the QSFP work only if there is a cable attached. */
5831 if (qsfp_mod_present(ppd))
5832 queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work);
5833}
5834
5835static int request_host_lcb_access(struct hfi1_devdata *dd)
5836{
5837 int ret;
5838
5839 ret = do_8051_command(dd, HCMD_MISC,
5840 (u64)HCMD_MISC_REQUEST_LCB_ACCESS << LOAD_DATA_FIELD_ID_SHIFT,
5841 NULL);
5842 if (ret != HCMD_SUCCESS) {
5843 dd_dev_err(dd, "%s: command failed with error %d\n",
5844 __func__, ret);
5845 }
5846 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
5847}
5848
5849static int request_8051_lcb_access(struct hfi1_devdata *dd)
5850{
5851 int ret;
5852
5853 ret = do_8051_command(dd, HCMD_MISC,
5854 (u64)HCMD_MISC_GRANT_LCB_ACCESS << LOAD_DATA_FIELD_ID_SHIFT,
5855 NULL);
5856 if (ret != HCMD_SUCCESS) {
5857 dd_dev_err(dd, "%s: command failed with error %d\n",
5858 __func__, ret);
5859 }
5860 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
5861}
5862
5863/*
5864 * Set the LCB selector - allow host access. The DCC selector always
5865 * points to the host.
5866 */
5867static inline void set_host_lcb_access(struct hfi1_devdata *dd)
5868{
5869 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
5870 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK
5871 | DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
5872}
5873
5874/*
5875 * Clear the LCB selector - allow 8051 access. The DCC selector always
5876 * points to the host.
5877 */
5878static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
5879{
5880 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
5881 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
5882}
5883
5884/*
5885 * Acquire LCB access from the 8051. If the host already has access,
5886 * just increment a counter. Otherwise, inform the 8051 that the
5887 * host is taking access.
5888 *
5889 * Returns:
5890 * 0 on success
5891 * -EBUSY if the 8051 has control and cannot be disturbed
5892 * -errno if unable to acquire access from the 8051
5893 */
5894int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
5895{
5896 struct hfi1_pportdata *ppd = dd->pport;
5897 int ret = 0;
5898
5899 /*
5900 * Use the host link state lock so the operation of this routine
5901 * { link state check, selector change, count increment } can occur
5902 * as a unit against a link state change. Otherwise there is a
5903 * race between the state change and the count increment.
5904 */
5905 if (sleep_ok) {
5906 mutex_lock(&ppd->hls_lock);
5907 } else {
951842b0 5908 while (!mutex_trylock(&ppd->hls_lock))
77241056
MM
5909 udelay(1);
5910 }
5911
5912 /* this access is valid only when the link is up */
5913 if ((ppd->host_link_state & HLS_UP) == 0) {
5914 dd_dev_info(dd, "%s: link state %s not up\n",
5915 __func__, link_state_name(ppd->host_link_state));
5916 ret = -EBUSY;
5917 goto done;
5918 }
5919
5920 if (dd->lcb_access_count == 0) {
5921 ret = request_host_lcb_access(dd);
5922 if (ret) {
5923 dd_dev_err(dd,
5924 "%s: unable to acquire LCB access, err %d\n",
5925 __func__, ret);
5926 goto done;
5927 }
5928 set_host_lcb_access(dd);
5929 }
5930 dd->lcb_access_count++;
5931done:
5932 mutex_unlock(&ppd->hls_lock);
5933 return ret;
5934}
5935
5936/*
5937 * Release LCB access by decrementing the use count. If the count is moving
5938 * from 1 to 0, inform 8051 that it has control back.
5939 *
5940 * Returns:
5941 * 0 on success
5942 * -errno if unable to release access to the 8051
5943 */
5944int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
5945{
5946 int ret = 0;
5947
5948 /*
5949 * Use the host link state lock because the acquire needed it.
5950 * Here, we only need to keep { selector change, count decrement }
5951 * as a unit.
5952 */
5953 if (sleep_ok) {
5954 mutex_lock(&dd->pport->hls_lock);
5955 } else {
951842b0 5956 while (!mutex_trylock(&dd->pport->hls_lock))
77241056
MM
5957 udelay(1);
5958 }
5959
5960 if (dd->lcb_access_count == 0) {
5961 dd_dev_err(dd, "%s: LCB access count is zero. Skipping.\n",
5962 __func__);
5963 goto done;
5964 }
5965
5966 if (dd->lcb_access_count == 1) {
5967 set_8051_lcb_access(dd);
5968 ret = request_8051_lcb_access(dd);
5969 if (ret) {
5970 dd_dev_err(dd,
5971 "%s: unable to release LCB access, err %d\n",
5972 __func__, ret);
5973 /* restore host access if the grant didn't work */
5974 set_host_lcb_access(dd);
5975 goto done;
5976 }
5977 }
5978 dd->lcb_access_count--;
5979done:
5980 mutex_unlock(&dd->pport->hls_lock);
5981 return ret;
5982}
5983
5984/*
5985 * Initialize LCB access variables and state. Called during driver load,
5986 * after most of the initialization is finished.
5987 *
5988 * The DC default is LCB access on for the host. The driver defaults to
5989 * leaving access to the 8051. Assign access now - this constrains the call
5990 * to this routine to be after all LCB set-up is done. In particular, after
5991 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
5992 */
5993static void init_lcb_access(struct hfi1_devdata *dd)
5994{
5995 dd->lcb_access_count = 0;
5996}
5997
5998/*
5999 * Write a response back to a 8051 request.
6000 */
6001static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6002{
6003 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6004 DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK
6005 | (u64)return_code << DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT
6006 | (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6007}
6008
6009/*
6010 * Handle requests from the 8051.
6011 */
6012static void handle_8051_request(struct hfi1_devdata *dd)
6013{
6014 u64 reg;
6015 u16 data;
6016 u8 type;
6017
6018 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6019 if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6020 return; /* no request */
6021
6022 /* zero out COMPLETED so the response is seen */
6023 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6024
6025 /* extract request details */
6026 type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6027 & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6028 data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6029 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6030
6031 switch (type) {
6032 case HREQ_LOAD_CONFIG:
6033 case HREQ_SAVE_CONFIG:
6034 case HREQ_READ_CONFIG:
6035 case HREQ_SET_TX_EQ_ABS:
6036 case HREQ_SET_TX_EQ_REL:
6037 case HREQ_ENABLE:
6038 dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6039 type);
6040 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6041 break;
6042
6043 case HREQ_CONFIG_DONE:
6044 hreq_response(dd, HREQ_SUCCESS, 0);
6045 break;
6046
6047 case HREQ_INTERFACE_TEST:
6048 hreq_response(dd, HREQ_SUCCESS, data);
6049 break;
6050
6051 default:
6052 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6053 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6054 break;
6055 }
6056}
6057
6058static void write_global_credit(struct hfi1_devdata *dd,
6059 u8 vau, u16 total, u16 shared)
6060{
6061 write_csr(dd, SEND_CM_GLOBAL_CREDIT,
6062 ((u64)total
6063 << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
6064 | ((u64)shared
6065 << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
6066 | ((u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT));
6067}
6068
6069/*
6070 * Set up initial VL15 credits of the remote. Assumes the rest of
6071 * the CM credit registers are zero from a previous global or credit reset .
6072 */
6073void set_up_vl15(struct hfi1_devdata *dd, u8 vau, u16 vl15buf)
6074{
6075 /* leave shared count at zero for both global and VL15 */
6076 write_global_credit(dd, vau, vl15buf, 0);
6077
6078 /* We may need some credits for another VL when sending packets
6079 * with the snoop interface. Dividing it down the middle for VL15
6080 * and VL0 should suffice.
6081 */
6082 if (unlikely(dd->hfi1_snoop.mode_flag == HFI1_PORT_SNOOP_MODE)) {
6083 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)(vl15buf >> 1)
6084 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6085 write_csr(dd, SEND_CM_CREDIT_VL, (u64)(vl15buf >> 1)
6086 << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT);
6087 } else {
6088 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6089 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6090 }
6091}
6092
6093/*
6094 * Zero all credit details from the previous connection and
6095 * reset the CM manager's internal counters.
6096 */
6097void reset_link_credits(struct hfi1_devdata *dd)
6098{
6099 int i;
6100
6101 /* remove all previous VL credit limits */
6102 for (i = 0; i < TXE_NUM_DATA_VL; i++)
6103 write_csr(dd, SEND_CM_CREDIT_VL + (8*i), 0);
6104 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6105 write_global_credit(dd, 0, 0, 0);
6106 /* reset the CM block */
6107 pio_send_control(dd, PSC_CM_RESET);
6108}
6109
6110/* convert a vCU to a CU */
6111static u32 vcu_to_cu(u8 vcu)
6112{
6113 return 1 << vcu;
6114}
6115
6116/* convert a CU to a vCU */
6117static u8 cu_to_vcu(u32 cu)
6118{
6119 return ilog2(cu);
6120}
6121
6122/* convert a vAU to an AU */
6123static u32 vau_to_au(u8 vau)
6124{
6125 return 8 * (1 << vau);
6126}
6127
6128static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6129{
6130 ppd->sm_trap_qp = 0x0;
6131 ppd->sa_qp = 0x1;
6132}
6133
6134/*
6135 * Graceful LCB shutdown. This leaves the LCB FIFOs in reset.
6136 */
6137static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6138{
6139 u64 reg;
6140
6141 /* clear lcb run: LCB_CFG_RUN.EN = 0 */
6142 write_csr(dd, DC_LCB_CFG_RUN, 0);
6143 /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6144 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6145 1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6146 /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6147 dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6148 reg = read_csr(dd, DCC_CFG_RESET);
6149 write_csr(dd, DCC_CFG_RESET,
6150 reg
6151 | (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT)
6152 | (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
6153 (void) read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6154 if (!abort) {
6155 udelay(1); /* must hold for the longer of 16cclks or 20ns */
6156 write_csr(dd, DCC_CFG_RESET, reg);
6157 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6158 }
6159}
6160
6161/*
6162 * This routine should be called after the link has been transitioned to
6163 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6164 * reset).
6165 *
6166 * The expectation is that the caller of this routine would have taken
6167 * care of properly transitioning the link into the correct state.
6168 */
6169static void dc_shutdown(struct hfi1_devdata *dd)
6170{
6171 unsigned long flags;
6172
6173 spin_lock_irqsave(&dd->dc8051_lock, flags);
6174 if (dd->dc_shutdown) {
6175 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6176 return;
6177 }
6178 dd->dc_shutdown = 1;
6179 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6180 /* Shutdown the LCB */
6181 lcb_shutdown(dd, 1);
6182 /* Going to OFFLINE would have causes the 8051 to put the
6183 * SerDes into reset already. Just need to shut down the 8051,
6184 * itself. */
6185 write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6186}
6187
6188/* Calling this after the DC has been brought out of reset should not
6189 * do any damage. */
6190static void dc_start(struct hfi1_devdata *dd)
6191{
6192 unsigned long flags;
6193 int ret;
6194
6195 spin_lock_irqsave(&dd->dc8051_lock, flags);
6196 if (!dd->dc_shutdown)
6197 goto done;
6198 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6199 /* Take the 8051 out of reset */
6200 write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6201 /* Wait until 8051 is ready */
6202 ret = wait_fm_ready(dd, TIMEOUT_8051_START);
6203 if (ret) {
6204 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6205 __func__);
6206 }
6207 /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6208 write_csr(dd, DCC_CFG_RESET, 0x10);
6209 /* lcb_shutdown() with abort=1 does not restore these */
6210 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6211 spin_lock_irqsave(&dd->dc8051_lock, flags);
6212 dd->dc_shutdown = 0;
6213done:
6214 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6215}
6216
6217/*
6218 * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6219 */
6220static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6221{
6222 u64 rx_radr, tx_radr;
6223 u32 version;
6224
6225 if (dd->icode != ICODE_FPGA_EMULATION)
6226 return;
6227
6228 /*
6229 * These LCB defaults on emulator _s are good, nothing to do here:
6230 * LCB_CFG_TX_FIFOS_RADR
6231 * LCB_CFG_RX_FIFOS_RADR
6232 * LCB_CFG_LN_DCLK
6233 * LCB_CFG_IGNORE_LOST_RCLK
6234 */
6235 if (is_emulator_s(dd))
6236 return;
6237 /* else this is _p */
6238
6239 version = emulator_rev(dd);
995deafa 6240 if (!is_ax(dd))
77241056
MM
6241 version = 0x2d; /* all B0 use 0x2d or higher settings */
6242
6243 if (version <= 0x12) {
6244 /* release 0x12 and below */
6245
6246 /*
6247 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6248 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6249 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6250 */
6251 rx_radr =
6252 0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6253 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6254 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6255 /*
6256 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6257 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6258 */
6259 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6260 } else if (version <= 0x18) {
6261 /* release 0x13 up to 0x18 */
6262 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6263 rx_radr =
6264 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6265 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6266 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6267 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6268 } else if (version == 0x19) {
6269 /* release 0x19 */
6270 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6271 rx_radr =
6272 0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6273 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6274 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6275 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6276 } else if (version == 0x1a) {
6277 /* release 0x1a */
6278 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6279 rx_radr =
6280 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6281 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6282 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6283 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6284 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6285 } else {
6286 /* release 0x1b and higher */
6287 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6288 rx_radr =
6289 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6290 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6291 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6292 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6293 }
6294
6295 write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6296 /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6297 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6298 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6299 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6300}
6301
6302/*
6303 * Handle a SMA idle message
6304 *
6305 * This is a work-queue function outside of the interrupt.
6306 */
6307void handle_sma_message(struct work_struct *work)
6308{
6309 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6310 sma_message_work);
6311 struct hfi1_devdata *dd = ppd->dd;
6312 u64 msg;
6313 int ret;
6314
6315 /* msg is bytes 1-4 of the 40-bit idle message - the command code
6316 is stripped off */
6317 ret = read_idle_sma(dd, &msg);
6318 if (ret)
6319 return;
6320 dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6321 /*
6322 * React to the SMA message. Byte[1] (0 for us) is the command.
6323 */
6324 switch (msg & 0xff) {
6325 case SMA_IDLE_ARM:
6326 /*
6327 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6328 * State Transitions
6329 *
6330 * Only expected in INIT or ARMED, discard otherwise.
6331 */
6332 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6333 ppd->neighbor_normal = 1;
6334 break;
6335 case SMA_IDLE_ACTIVE:
6336 /*
6337 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6338 * State Transitions
6339 *
6340 * Can activate the node. Discard otherwise.
6341 */
6342 if (ppd->host_link_state == HLS_UP_ARMED
6343 && ppd->is_active_optimize_enabled) {
6344 ppd->neighbor_normal = 1;
6345 ret = set_link_state(ppd, HLS_UP_ACTIVE);
6346 if (ret)
6347 dd_dev_err(
6348 dd,
6349 "%s: received Active SMA idle message, couldn't set link to Active\n",
6350 __func__);
6351 }
6352 break;
6353 default:
6354 dd_dev_err(dd,
6355 "%s: received unexpected SMA idle message 0x%llx\n",
6356 __func__, msg);
6357 break;
6358 }
6359}
6360
6361static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6362{
6363 u64 rcvctrl;
6364 unsigned long flags;
6365
6366 spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6367 rcvctrl = read_csr(dd, RCV_CTRL);
6368 rcvctrl |= add;
6369 rcvctrl &= ~clear;
6370 write_csr(dd, RCV_CTRL, rcvctrl);
6371 spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6372}
6373
6374static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6375{
6376 adjust_rcvctrl(dd, add, 0);
6377}
6378
6379static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6380{
6381 adjust_rcvctrl(dd, 0, clear);
6382}
6383
6384/*
6385 * Called from all interrupt handlers to start handling an SPC freeze.
6386 */
6387void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6388{
6389 struct hfi1_devdata *dd = ppd->dd;
6390 struct send_context *sc;
6391 int i;
6392
6393 if (flags & FREEZE_SELF)
6394 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6395
6396 /* enter frozen mode */
6397 dd->flags |= HFI1_FROZEN;
6398
6399 /* notify all SDMA engines that they are going into a freeze */
6400 sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6401
6402 /* do halt pre-handling on all enabled send contexts */
6403 for (i = 0; i < dd->num_send_contexts; i++) {
6404 sc = dd->send_contexts[i].sc;
6405 if (sc && (sc->flags & SCF_ENABLED))
6406 sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6407 }
6408
6409 /* Send context are frozen. Notify user space */
6410 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6411
6412 if (flags & FREEZE_ABORT) {
6413 dd_dev_err(dd,
6414 "Aborted freeze recovery. Please REBOOT system\n");
6415 return;
6416 }
6417 /* queue non-interrupt handler */
6418 queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6419}
6420
6421/*
6422 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6423 * depending on the "freeze" parameter.
6424 *
6425 * No need to return an error if it times out, our only option
6426 * is to proceed anyway.
6427 */
6428static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6429{
6430 unsigned long timeout;
6431 u64 reg;
6432
6433 timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6434 while (1) {
6435 reg = read_csr(dd, CCE_STATUS);
6436 if (freeze) {
6437 /* waiting until all indicators are set */
6438 if ((reg & ALL_FROZE) == ALL_FROZE)
6439 return; /* all done */
6440 } else {
6441 /* waiting until all indicators are clear */
6442 if ((reg & ALL_FROZE) == 0)
6443 return; /* all done */
6444 }
6445
6446 if (time_after(jiffies, timeout)) {
6447 dd_dev_err(dd,
6448 "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6449 freeze ? "" : "un",
6450 reg & ALL_FROZE,
6451 freeze ? ALL_FROZE : 0ull);
6452 return;
6453 }
6454 usleep_range(80, 120);
6455 }
6456}
6457
6458/*
6459 * Do all freeze handling for the RXE block.
6460 */
6461static void rxe_freeze(struct hfi1_devdata *dd)
6462{
6463 int i;
6464
6465 /* disable port */
6466 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6467
6468 /* disable all receive contexts */
6469 for (i = 0; i < dd->num_rcv_contexts; i++)
6470 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i);
6471}
6472
6473/*
6474 * Unfreeze handling for the RXE block - kernel contexts only.
6475 * This will also enable the port. User contexts will do unfreeze
6476 * handling on a per-context basis as they call into the driver.
6477 *
6478 */
6479static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6480{
6481 int i;
6482
6483 /* enable all kernel contexts */
6484 for (i = 0; i < dd->n_krcv_queues; i++)
6485 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, i);
6486
6487 /* enable port */
6488 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6489}
6490
6491/*
6492 * Non-interrupt SPC freeze handling.
6493 *
6494 * This is a work-queue function outside of the triggering interrupt.
6495 */
6496void handle_freeze(struct work_struct *work)
6497{
6498 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6499 freeze_work);
6500 struct hfi1_devdata *dd = ppd->dd;
6501
6502 /* wait for freeze indicators on all affected blocks */
77241056
MM
6503 wait_for_freeze_status(dd, 1);
6504
6505 /* SPC is now frozen */
6506
6507 /* do send PIO freeze steps */
6508 pio_freeze(dd);
6509
6510 /* do send DMA freeze steps */
6511 sdma_freeze(dd);
6512
6513 /* do send egress freeze steps - nothing to do */
6514
6515 /* do receive freeze steps */
6516 rxe_freeze(dd);
6517
6518 /*
6519 * Unfreeze the hardware - clear the freeze, wait for each
6520 * block's frozen bit to clear, then clear the frozen flag.
6521 */
6522 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6523 wait_for_freeze_status(dd, 0);
6524
995deafa 6525 if (is_ax(dd)) {
77241056
MM
6526 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6527 wait_for_freeze_status(dd, 1);
6528 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6529 wait_for_freeze_status(dd, 0);
6530 }
6531
6532 /* do send PIO unfreeze steps for kernel contexts */
6533 pio_kernel_unfreeze(dd);
6534
6535 /* do send DMA unfreeze steps */
6536 sdma_unfreeze(dd);
6537
6538 /* do send egress unfreeze steps - nothing to do */
6539
6540 /* do receive unfreeze steps for kernel contexts */
6541 rxe_kernel_unfreeze(dd);
6542
6543 /*
6544 * The unfreeze procedure touches global device registers when
6545 * it disables and re-enables RXE. Mark the device unfrozen
6546 * after all that is done so other parts of the driver waiting
6547 * for the device to unfreeze don't do things out of order.
6548 *
6549 * The above implies that the meaning of HFI1_FROZEN flag is
6550 * "Device has gone into freeze mode and freeze mode handling
6551 * is still in progress."
6552 *
6553 * The flag will be removed when freeze mode processing has
6554 * completed.
6555 */
6556 dd->flags &= ~HFI1_FROZEN;
6557 wake_up(&dd->event_queue);
6558
6559 /* no longer frozen */
77241056
MM
6560}
6561
6562/*
6563 * Handle a link up interrupt from the 8051.
6564 *
6565 * This is a work-queue function outside of the interrupt.
6566 */
6567void handle_link_up(struct work_struct *work)
6568{
6569 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6570 link_up_work);
6571 set_link_state(ppd, HLS_UP_INIT);
6572
6573 /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6574 read_ltp_rtt(ppd->dd);
6575 /*
6576 * OPA specifies that certain counters are cleared on a transition
6577 * to link up, so do that.
6578 */
6579 clear_linkup_counters(ppd->dd);
6580 /*
6581 * And (re)set link up default values.
6582 */
6583 set_linkup_defaults(ppd);
6584
6585 /* enforce link speed enabled */
6586 if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6587 /* oops - current speed is not enabled, bounce */
6588 dd_dev_err(ppd->dd,
6589 "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6590 ppd->link_speed_active, ppd->link_speed_enabled);
6591 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6592 OPA_LINKDOWN_REASON_SPEED_POLICY);
6593 set_link_state(ppd, HLS_DN_OFFLINE);
6594 start_link(ppd);
6595 }
6596}
6597
6598/* Several pieces of LNI information were cached for SMA in ppd.
6599 * Reset these on link down */
6600static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6601{
6602 ppd->neighbor_guid = 0;
6603 ppd->neighbor_port_number = 0;
6604 ppd->neighbor_type = 0;
6605 ppd->neighbor_fm_security = 0;
6606}
6607
6608/*
6609 * Handle a link down interrupt from the 8051.
6610 *
6611 * This is a work-queue function outside of the interrupt.
6612 */
6613void handle_link_down(struct work_struct *work)
6614{
6615 u8 lcl_reason, neigh_reason = 0;
6616 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6617 link_down_work);
6618
6619 /* go offline first, then deal with reasons */
6620 set_link_state(ppd, HLS_DN_OFFLINE);
6621
6622 lcl_reason = 0;
6623 read_planned_down_reason_code(ppd->dd, &neigh_reason);
6624
6625 /*
6626 * If no reason, assume peer-initiated but missed
6627 * LinkGoingDown idle flits.
6628 */
6629 if (neigh_reason == 0)
6630 lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
6631
6632 set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
6633
6634 reset_neighbor_info(ppd);
6635
6636 /* disable the port */
6637 clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6638
6639 /* If there is no cable attached, turn the DC off. Otherwise,
6640 * start the link bring up. */
6641 if (!qsfp_mod_present(ppd))
6642 dc_shutdown(ppd->dd);
6643 else
6644 start_link(ppd);
6645}
6646
6647void handle_link_bounce(struct work_struct *work)
6648{
6649 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6650 link_bounce_work);
6651
6652 /*
6653 * Only do something if the link is currently up.
6654 */
6655 if (ppd->host_link_state & HLS_UP) {
6656 set_link_state(ppd, HLS_DN_OFFLINE);
6657 start_link(ppd);
6658 } else {
6659 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
6660 __func__, link_state_name(ppd->host_link_state));
6661 }
6662}
6663
6664/*
6665 * Mask conversion: Capability exchange to Port LTP. The capability
6666 * exchange has an implicit 16b CRC that is mandatory.
6667 */
6668static int cap_to_port_ltp(int cap)
6669{
6670 int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
6671
6672 if (cap & CAP_CRC_14B)
6673 port_ltp |= PORT_LTP_CRC_MODE_14;
6674 if (cap & CAP_CRC_48B)
6675 port_ltp |= PORT_LTP_CRC_MODE_48;
6676 if (cap & CAP_CRC_12B_16B_PER_LANE)
6677 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
6678
6679 return port_ltp;
6680}
6681
6682/*
6683 * Convert an OPA Port LTP mask to capability mask
6684 */
6685int port_ltp_to_cap(int port_ltp)
6686{
6687 int cap_mask = 0;
6688
6689 if (port_ltp & PORT_LTP_CRC_MODE_14)
6690 cap_mask |= CAP_CRC_14B;
6691 if (port_ltp & PORT_LTP_CRC_MODE_48)
6692 cap_mask |= CAP_CRC_48B;
6693 if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
6694 cap_mask |= CAP_CRC_12B_16B_PER_LANE;
6695
6696 return cap_mask;
6697}
6698
6699/*
6700 * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
6701 */
6702static int lcb_to_port_ltp(int lcb_crc)
6703{
6704 int port_ltp = 0;
6705
6706 if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
6707 port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
6708 else if (lcb_crc == LCB_CRC_48B)
6709 port_ltp = PORT_LTP_CRC_MODE_48;
6710 else if (lcb_crc == LCB_CRC_14B)
6711 port_ltp = PORT_LTP_CRC_MODE_14;
6712 else
6713 port_ltp = PORT_LTP_CRC_MODE_16;
6714
6715 return port_ltp;
6716}
6717
6718/*
6719 * Our neighbor has indicated that we are allowed to act as a fabric
6720 * manager, so place the full management partition key in the second
6721 * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
6722 * that we should already have the limited management partition key in
6723 * array element 1, and also that the port is not yet up when
6724 * add_full_mgmt_pkey() is invoked.
6725 */
6726static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
6727{
6728 struct hfi1_devdata *dd = ppd->dd;
6729
8764522e
DL
6730 /* Sanity check - ppd->pkeys[2] should be 0, or already initalized */
6731 if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY)))
6732 dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
6733 __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
77241056
MM
6734 ppd->pkeys[2] = FULL_MGMT_P_KEY;
6735 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
6736}
6737
6738/*
6739 * Convert the given link width to the OPA link width bitmask.
6740 */
6741static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
6742{
6743 switch (width) {
6744 case 0:
6745 /*
6746 * Simulator and quick linkup do not set the width.
6747 * Just set it to 4x without complaint.
6748 */
6749 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
6750 return OPA_LINK_WIDTH_4X;
6751 return 0; /* no lanes up */
6752 case 1: return OPA_LINK_WIDTH_1X;
6753 case 2: return OPA_LINK_WIDTH_2X;
6754 case 3: return OPA_LINK_WIDTH_3X;
6755 default:
6756 dd_dev_info(dd, "%s: invalid width %d, using 4\n",
6757 __func__, width);
6758 /* fall through */
6759 case 4: return OPA_LINK_WIDTH_4X;
6760 }
6761}
6762
6763/*
6764 * Do a population count on the bottom nibble.
6765 */
6766static const u8 bit_counts[16] = {
6767 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
6768};
6769static inline u8 nibble_to_count(u8 nibble)
6770{
6771 return bit_counts[nibble & 0xf];
6772}
6773
6774/*
6775 * Read the active lane information from the 8051 registers and return
6776 * their widths.
6777 *
6778 * Active lane information is found in these 8051 registers:
6779 * enable_lane_tx
6780 * enable_lane_rx
6781 */
6782static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
6783 u16 *rx_width)
6784{
6785 u16 tx, rx;
6786 u8 enable_lane_rx;
6787 u8 enable_lane_tx;
6788 u8 tx_polarity_inversion;
6789 u8 rx_polarity_inversion;
6790 u8 max_rate;
6791
6792 /* read the active lanes */
6793 read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
6794 &rx_polarity_inversion, &max_rate);
6795 read_local_lni(dd, &enable_lane_rx);
6796
6797 /* convert to counts */
6798 tx = nibble_to_count(enable_lane_tx);
6799 rx = nibble_to_count(enable_lane_rx);
6800
6801 /*
6802 * Set link_speed_active here, overriding what was set in
6803 * handle_verify_cap(). The ASIC 8051 firmware does not correctly
6804 * set the max_rate field in handle_verify_cap until v0.19.
6805 */
6806 if ((dd->icode == ICODE_RTL_SILICON)
6807 && (dd->dc8051_ver < dc8051_ver(0, 19))) {
6808 /* max_rate: 0 = 12.5G, 1 = 25G */
6809 switch (max_rate) {
6810 case 0:
6811 dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
6812 break;
6813 default:
6814 dd_dev_err(dd,
6815 "%s: unexpected max rate %d, using 25Gb\n",
6816 __func__, (int)max_rate);
6817 /* fall through */
6818 case 1:
6819 dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
6820 break;
6821 }
6822 }
6823
6824 dd_dev_info(dd,
6825 "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
6826 enable_lane_tx, tx, enable_lane_rx, rx);
6827 *tx_width = link_width_to_bits(dd, tx);
6828 *rx_width = link_width_to_bits(dd, rx);
6829}
6830
6831/*
6832 * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
6833 * Valid after the end of VerifyCap and during LinkUp. Does not change
6834 * after link up. I.e. look elsewhere for downgrade information.
6835 *
6836 * Bits are:
6837 * + bits [7:4] contain the number of active transmitters
6838 * + bits [3:0] contain the number of active receivers
6839 * These are numbers 1 through 4 and can be different values if the
6840 * link is asymmetric.
6841 *
6842 * verify_cap_local_fm_link_width[0] retains its original value.
6843 */
6844static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
6845 u16 *rx_width)
6846{
6847 u16 widths, tx, rx;
6848 u8 misc_bits, local_flags;
6849 u16 active_tx, active_rx;
6850
6851 read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
6852 tx = widths >> 12;
6853 rx = (widths >> 8) & 0xf;
6854
6855 *tx_width = link_width_to_bits(dd, tx);
6856 *rx_width = link_width_to_bits(dd, rx);
6857
6858 /* print the active widths */
6859 get_link_widths(dd, &active_tx, &active_rx);
6860}
6861
6862/*
6863 * Set ppd->link_width_active and ppd->link_width_downgrade_active using
6864 * hardware information when the link first comes up.
6865 *
6866 * The link width is not available until after VerifyCap.AllFramesReceived
6867 * (the trigger for handle_verify_cap), so this is outside that routine
6868 * and should be called when the 8051 signals linkup.
6869 */
6870void get_linkup_link_widths(struct hfi1_pportdata *ppd)
6871{
6872 u16 tx_width, rx_width;
6873
6874 /* get end-of-LNI link widths */
6875 get_linkup_widths(ppd->dd, &tx_width, &rx_width);
6876
6877 /* use tx_width as the link is supposed to be symmetric on link up */
6878 ppd->link_width_active = tx_width;
6879 /* link width downgrade active (LWD.A) starts out matching LW.A */
6880 ppd->link_width_downgrade_tx_active = ppd->link_width_active;
6881 ppd->link_width_downgrade_rx_active = ppd->link_width_active;
6882 /* per OPA spec, on link up LWD.E resets to LWD.S */
6883 ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
6884 /* cache the active egress rate (units {10^6 bits/sec]) */
6885 ppd->current_egress_rate = active_egress_rate(ppd);
6886}
6887
6888/*
6889 * Handle a verify capabilities interrupt from the 8051.
6890 *
6891 * This is a work-queue function outside of the interrupt.
6892 */
6893void handle_verify_cap(struct work_struct *work)
6894{
6895 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6896 link_vc_work);
6897 struct hfi1_devdata *dd = ppd->dd;
6898 u64 reg;
6899 u8 power_management;
6900 u8 continious;
6901 u8 vcu;
6902 u8 vau;
6903 u8 z;
6904 u16 vl15buf;
6905 u16 link_widths;
6906 u16 crc_mask;
6907 u16 crc_val;
6908 u16 device_id;
6909 u16 active_tx, active_rx;
6910 u8 partner_supported_crc;
6911 u8 remote_tx_rate;
6912 u8 device_rev;
6913
6914 set_link_state(ppd, HLS_VERIFY_CAP);
6915
6916 lcb_shutdown(dd, 0);
6917 adjust_lcb_for_fpga_serdes(dd);
6918
6919 /*
6920 * These are now valid:
6921 * remote VerifyCap fields in the general LNI config
6922 * CSR DC8051_STS_REMOTE_GUID
6923 * CSR DC8051_STS_REMOTE_NODE_TYPE
6924 * CSR DC8051_STS_REMOTE_FM_SECURITY
6925 * CSR DC8051_STS_REMOTE_PORT_NO
6926 */
6927
6928 read_vc_remote_phy(dd, &power_management, &continious);
6929 read_vc_remote_fabric(
6930 dd,
6931 &vau,
6932 &z,
6933 &vcu,
6934 &vl15buf,
6935 &partner_supported_crc);
6936 read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
6937 read_remote_device_id(dd, &device_id, &device_rev);
6938 /*
6939 * And the 'MgmtAllowed' information, which is exchanged during
6940 * LNI, is also be available at this point.
6941 */
6942 read_mgmt_allowed(dd, &ppd->mgmt_allowed);
6943 /* print the active widths */
6944 get_link_widths(dd, &active_tx, &active_rx);
6945 dd_dev_info(dd,
6946 "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
6947 (int)power_management, (int)continious);
6948 dd_dev_info(dd,
6949 "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
6950 (int)vau,
6951 (int)z,
6952 (int)vcu,
6953 (int)vl15buf,
6954 (int)partner_supported_crc);
6955 dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
6956 (u32)remote_tx_rate, (u32)link_widths);
6957 dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
6958 (u32)device_id, (u32)device_rev);
6959 /*
6960 * The peer vAU value just read is the peer receiver value. HFI does
6961 * not support a transmit vAU of 0 (AU == 8). We advertised that
6962 * with Z=1 in the fabric capabilities sent to the peer. The peer
6963 * will see our Z=1, and, if it advertised a vAU of 0, will move its
6964 * receive to vAU of 1 (AU == 16). Do the same here. We do not care
6965 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
6966 * subject to the Z value exception.
6967 */
6968 if (vau == 0)
6969 vau = 1;
6970 set_up_vl15(dd, vau, vl15buf);
6971
6972 /* set up the LCB CRC mode */
6973 crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
6974
6975 /* order is important: use the lowest bit in common */
6976 if (crc_mask & CAP_CRC_14B)
6977 crc_val = LCB_CRC_14B;
6978 else if (crc_mask & CAP_CRC_48B)
6979 crc_val = LCB_CRC_48B;
6980 else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
6981 crc_val = LCB_CRC_12B_16B_PER_LANE;
6982 else
6983 crc_val = LCB_CRC_16B;
6984
6985 dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
6986 write_csr(dd, DC_LCB_CFG_CRC_MODE,
6987 (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
6988
6989 /* set (14b only) or clear sideband credit */
6990 reg = read_csr(dd, SEND_CM_CTRL);
6991 if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
6992 write_csr(dd, SEND_CM_CTRL,
6993 reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
6994 } else {
6995 write_csr(dd, SEND_CM_CTRL,
6996 reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
6997 }
6998
6999 ppd->link_speed_active = 0; /* invalid value */
7000 if (dd->dc8051_ver < dc8051_ver(0, 20)) {
7001 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7002 switch (remote_tx_rate) {
7003 case 0:
7004 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7005 break;
7006 case 1:
7007 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7008 break;
7009 }
7010 } else {
7011 /* actual rate is highest bit of the ANDed rates */
7012 u8 rate = remote_tx_rate & ppd->local_tx_rate;
7013
7014 if (rate & 2)
7015 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7016 else if (rate & 1)
7017 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7018 }
7019 if (ppd->link_speed_active == 0) {
7020 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7021 __func__, (int)remote_tx_rate);
7022 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7023 }
7024
7025 /*
7026 * Cache the values of the supported, enabled, and active
7027 * LTP CRC modes to return in 'portinfo' queries. But the bit
7028 * flags that are returned in the portinfo query differ from
7029 * what's in the link_crc_mask, crc_sizes, and crc_val
7030 * variables. Convert these here.
7031 */
7032 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7033 /* supported crc modes */
7034 ppd->port_ltp_crc_mode |=
7035 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7036 /* enabled crc modes */
7037 ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7038 /* active crc mode */
7039
7040 /* set up the remote credit return table */
7041 assign_remote_cm_au_table(dd, vcu);
7042
7043 /*
7044 * The LCB is reset on entry to handle_verify_cap(), so this must
7045 * be applied on every link up.
7046 *
7047 * Adjust LCB error kill enable to kill the link if
7048 * these RBUF errors are seen:
7049 * REPLAY_BUF_MBE_SMASK
7050 * FLIT_INPUT_BUF_MBE_SMASK
7051 */
995deafa 7052 if (is_ax(dd)) { /* fixed in B0 */
77241056
MM
7053 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7054 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7055 | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7056 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7057 }
7058
7059 /* pull LCB fifos out of reset - all fifo clocks must be stable */
7060 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7061
7062 /* give 8051 access to the LCB CSRs */
7063 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7064 set_8051_lcb_access(dd);
7065
7066 ppd->neighbor_guid =
7067 read_csr(dd, DC_DC8051_STS_REMOTE_GUID);
7068 ppd->neighbor_port_number = read_csr(dd, DC_DC8051_STS_REMOTE_PORT_NO) &
7069 DC_DC8051_STS_REMOTE_PORT_NO_VAL_SMASK;
7070 ppd->neighbor_type =
7071 read_csr(dd, DC_DC8051_STS_REMOTE_NODE_TYPE) &
7072 DC_DC8051_STS_REMOTE_NODE_TYPE_VAL_MASK;
7073 ppd->neighbor_fm_security =
7074 read_csr(dd, DC_DC8051_STS_REMOTE_FM_SECURITY) &
7075 DC_DC8051_STS_LOCAL_FM_SECURITY_DISABLED_MASK;
7076 dd_dev_info(dd,
7077 "Neighbor Guid: %llx Neighbor type %d MgmtAllowed %d FM security bypass %d\n",
7078 ppd->neighbor_guid, ppd->neighbor_type,
7079 ppd->mgmt_allowed, ppd->neighbor_fm_security);
7080 if (ppd->mgmt_allowed)
7081 add_full_mgmt_pkey(ppd);
7082
7083 /* tell the 8051 to go to LinkUp */
7084 set_link_state(ppd, HLS_GOING_UP);
7085}
7086
7087/*
7088 * Apply the link width downgrade enabled policy against the current active
7089 * link widths.
7090 *
7091 * Called when the enabled policy changes or the active link widths change.
7092 */
7093void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
7094{
77241056 7095 int do_bounce = 0;
323fd785
DL
7096 int tries;
7097 u16 lwde;
77241056
MM
7098 u16 tx, rx;
7099
323fd785
DL
7100 /* use the hls lock to avoid a race with actual link up */
7101 tries = 0;
7102retry:
77241056
MM
7103 mutex_lock(&ppd->hls_lock);
7104 /* only apply if the link is up */
323fd785
DL
7105 if (!(ppd->host_link_state & HLS_UP)) {
7106 /* still going up..wait and retry */
7107 if (ppd->host_link_state & HLS_GOING_UP) {
7108 if (++tries < 1000) {
7109 mutex_unlock(&ppd->hls_lock);
7110 usleep_range(100, 120); /* arbitrary */
7111 goto retry;
7112 }
7113 dd_dev_err(ppd->dd,
7114 "%s: giving up waiting for link state change\n",
7115 __func__);
7116 }
7117 goto done;
7118 }
7119
7120 lwde = ppd->link_width_downgrade_enabled;
77241056
MM
7121
7122 if (refresh_widths) {
7123 get_link_widths(ppd->dd, &tx, &rx);
7124 ppd->link_width_downgrade_tx_active = tx;
7125 ppd->link_width_downgrade_rx_active = rx;
7126 }
7127
7128 if (lwde == 0) {
7129 /* downgrade is disabled */
7130
7131 /* bounce if not at starting active width */
7132 if ((ppd->link_width_active !=
7133 ppd->link_width_downgrade_tx_active)
7134 || (ppd->link_width_active !=
7135 ppd->link_width_downgrade_rx_active)) {
7136 dd_dev_err(ppd->dd,
7137 "Link downgrade is disabled and link has downgraded, downing link\n");
7138 dd_dev_err(ppd->dd,
7139 " original 0x%x, tx active 0x%x, rx active 0x%x\n",
7140 ppd->link_width_active,
7141 ppd->link_width_downgrade_tx_active,
7142 ppd->link_width_downgrade_rx_active);
7143 do_bounce = 1;
7144 }
7145 } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0
7146 || (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7147 /* Tx or Rx is outside the enabled policy */
7148 dd_dev_err(ppd->dd,
7149 "Link is outside of downgrade allowed, downing link\n");
7150 dd_dev_err(ppd->dd,
7151 " enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7152 lwde,
7153 ppd->link_width_downgrade_tx_active,
7154 ppd->link_width_downgrade_rx_active);
7155 do_bounce = 1;
7156 }
7157
323fd785
DL
7158done:
7159 mutex_unlock(&ppd->hls_lock);
7160
77241056
MM
7161 if (do_bounce) {
7162 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7163 OPA_LINKDOWN_REASON_WIDTH_POLICY);
7164 set_link_state(ppd, HLS_DN_OFFLINE);
7165 start_link(ppd);
7166 }
7167}
7168
7169/*
7170 * Handle a link downgrade interrupt from the 8051.
7171 *
7172 * This is a work-queue function outside of the interrupt.
7173 */
7174void handle_link_downgrade(struct work_struct *work)
7175{
7176 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7177 link_downgrade_work);
7178
7179 dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7180 apply_link_downgrade_policy(ppd, 1);
7181}
7182
7183static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7184{
7185 return flag_string(buf, buf_len, flags, dcc_err_flags,
7186 ARRAY_SIZE(dcc_err_flags));
7187}
7188
7189static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7190{
7191 return flag_string(buf, buf_len, flags, lcb_err_flags,
7192 ARRAY_SIZE(lcb_err_flags));
7193}
7194
7195static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7196{
7197 return flag_string(buf, buf_len, flags, dc8051_err_flags,
7198 ARRAY_SIZE(dc8051_err_flags));
7199}
7200
7201static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7202{
7203 return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7204 ARRAY_SIZE(dc8051_info_err_flags));
7205}
7206
7207static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7208{
7209 return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7210 ARRAY_SIZE(dc8051_info_host_msg_flags));
7211}
7212
7213static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7214{
7215 struct hfi1_pportdata *ppd = dd->pport;
7216 u64 info, err, host_msg;
7217 int queue_link_down = 0;
7218 char buf[96];
7219
7220 /* look at the flags */
7221 if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7222 /* 8051 information set by firmware */
7223 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7224 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7225 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7226 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7227 host_msg = (info >>
7228 DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7229 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7230
7231 /*
7232 * Handle error flags.
7233 */
7234 if (err & FAILED_LNI) {
7235 /*
7236 * LNI error indications are cleared by the 8051
7237 * only when starting polling. Only pay attention
7238 * to them when in the states that occur during
7239 * LNI.
7240 */
7241 if (ppd->host_link_state
7242 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7243 queue_link_down = 1;
7244 dd_dev_info(dd, "Link error: %s\n",
7245 dc8051_info_err_string(buf,
7246 sizeof(buf),
7247 err & FAILED_LNI));
7248 }
7249 err &= ~(u64)FAILED_LNI;
7250 }
6d014530
DL
7251 /* unknown frames can happen durning LNI, just count */
7252 if (err & UNKNOWN_FRAME) {
7253 ppd->unknown_frame_count++;
7254 err &= ~(u64)UNKNOWN_FRAME;
7255 }
77241056
MM
7256 if (err) {
7257 /* report remaining errors, but do not do anything */
7258 dd_dev_err(dd, "8051 info error: %s\n",
7259 dc8051_info_err_string(buf, sizeof(buf), err));
7260 }
7261
7262 /*
7263 * Handle host message flags.
7264 */
7265 if (host_msg & HOST_REQ_DONE) {
7266 /*
7267 * Presently, the driver does a busy wait for
7268 * host requests to complete. This is only an
7269 * informational message.
7270 * NOTE: The 8051 clears the host message
7271 * information *on the next 8051 command*.
7272 * Therefore, when linkup is achieved,
7273 * this flag will still be set.
7274 */
7275 host_msg &= ~(u64)HOST_REQ_DONE;
7276 }
7277 if (host_msg & BC_SMA_MSG) {
7278 queue_work(ppd->hfi1_wq, &ppd->sma_message_work);
7279 host_msg &= ~(u64)BC_SMA_MSG;
7280 }
7281 if (host_msg & LINKUP_ACHIEVED) {
7282 dd_dev_info(dd, "8051: Link up\n");
7283 queue_work(ppd->hfi1_wq, &ppd->link_up_work);
7284 host_msg &= ~(u64)LINKUP_ACHIEVED;
7285 }
7286 if (host_msg & EXT_DEVICE_CFG_REQ) {
7287 handle_8051_request(dd);
7288 host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7289 }
7290 if (host_msg & VERIFY_CAP_FRAME) {
7291 queue_work(ppd->hfi1_wq, &ppd->link_vc_work);
7292 host_msg &= ~(u64)VERIFY_CAP_FRAME;
7293 }
7294 if (host_msg & LINK_GOING_DOWN) {
7295 const char *extra = "";
7296 /* no downgrade action needed if going down */
7297 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7298 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7299 extra = " (ignoring downgrade)";
7300 }
7301 dd_dev_info(dd, "8051: Link down%s\n", extra);
7302 queue_link_down = 1;
7303 host_msg &= ~(u64)LINK_GOING_DOWN;
7304 }
7305 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7306 queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work);
7307 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7308 }
7309 if (host_msg) {
7310 /* report remaining messages, but do not do anything */
7311 dd_dev_info(dd, "8051 info host message: %s\n",
7312 dc8051_info_host_msg_string(buf, sizeof(buf),
7313 host_msg));
7314 }
7315
7316 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7317 }
7318 if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7319 /*
7320 * Lost the 8051 heartbeat. If this happens, we
7321 * receive constant interrupts about it. Disable
7322 * the interrupt after the first.
7323 */
7324 dd_dev_err(dd, "Lost 8051 heartbeat\n");
7325 write_csr(dd, DC_DC8051_ERR_EN,
7326 read_csr(dd, DC_DC8051_ERR_EN)
7327 & ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7328
7329 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7330 }
7331 if (reg) {
7332 /* report the error, but do not do anything */
7333 dd_dev_err(dd, "8051 error: %s\n",
7334 dc8051_err_string(buf, sizeof(buf), reg));
7335 }
7336
7337 if (queue_link_down) {
7338 /* if the link is already going down or disabled, do not
7339 * queue another */
7340 if ((ppd->host_link_state
7341 & (HLS_GOING_OFFLINE|HLS_LINK_COOLDOWN))
7342 || ppd->link_enabled == 0) {
7343 dd_dev_info(dd, "%s: not queuing link down\n",
7344 __func__);
7345 } else {
7346 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
7347 }
7348 }
7349}
7350
7351static const char * const fm_config_txt[] = {
7352[0] =
7353 "BadHeadDist: Distance violation between two head flits",
7354[1] =
7355 "BadTailDist: Distance violation between two tail flits",
7356[2] =
7357 "BadCtrlDist: Distance violation between two credit control flits",
7358[3] =
7359 "BadCrdAck: Credits return for unsupported VL",
7360[4] =
7361 "UnsupportedVLMarker: Received VL Marker",
7362[5] =
7363 "BadPreempt: Exceeded the preemption nesting level",
7364[6] =
7365 "BadControlFlit: Received unsupported control flit",
7366/* no 7 */
7367[8] =
7368 "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7369};
7370
7371static const char * const port_rcv_txt[] = {
7372[1] =
7373 "BadPktLen: Illegal PktLen",
7374[2] =
7375 "PktLenTooLong: Packet longer than PktLen",
7376[3] =
7377 "PktLenTooShort: Packet shorter than PktLen",
7378[4] =
7379 "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7380[5] =
7381 "BadDLID: Illegal DLID (0, doesn't match HFI)",
7382[6] =
7383 "BadL2: Illegal L2 opcode",
7384[7] =
7385 "BadSC: Unsupported SC",
7386[9] =
7387 "BadRC: Illegal RC",
7388[11] =
7389 "PreemptError: Preempting with same VL",
7390[12] =
7391 "PreemptVL15: Preempting a VL15 packet",
7392};
7393
7394#define OPA_LDR_FMCONFIG_OFFSET 16
7395#define OPA_LDR_PORTRCV_OFFSET 0
7396static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7397{
7398 u64 info, hdr0, hdr1;
7399 const char *extra;
7400 char buf[96];
7401 struct hfi1_pportdata *ppd = dd->pport;
7402 u8 lcl_reason = 0;
7403 int do_bounce = 0;
7404
7405 if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7406 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7407 info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7408 dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7409 /* set status bit */
7410 dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7411 }
7412 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7413 }
7414
7415 if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7416 struct hfi1_pportdata *ppd = dd->pport;
7417 /* this counter saturates at (2^32) - 1 */
7418 if (ppd->link_downed < (u32)UINT_MAX)
7419 ppd->link_downed++;
7420 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7421 }
7422
7423 if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7424 u8 reason_valid = 1;
7425
7426 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7427 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7428 dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7429 /* set status bit */
7430 dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7431 }
7432 switch (info) {
7433 case 0:
7434 case 1:
7435 case 2:
7436 case 3:
7437 case 4:
7438 case 5:
7439 case 6:
7440 extra = fm_config_txt[info];
7441 break;
7442 case 8:
7443 extra = fm_config_txt[info];
7444 if (ppd->port_error_action &
7445 OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7446 do_bounce = 1;
7447 /*
7448 * lcl_reason cannot be derived from info
7449 * for this error
7450 */
7451 lcl_reason =
7452 OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7453 }
7454 break;
7455 default:
7456 reason_valid = 0;
7457 snprintf(buf, sizeof(buf), "reserved%lld", info);
7458 extra = buf;
7459 break;
7460 }
7461
7462 if (reason_valid && !do_bounce) {
7463 do_bounce = ppd->port_error_action &
7464 (1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7465 lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7466 }
7467
7468 /* just report this */
7469 dd_dev_info(dd, "DCC Error: fmconfig error: %s\n", extra);
7470 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7471 }
7472
7473 if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7474 u8 reason_valid = 1;
7475
7476 info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7477 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7478 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7479 if (!(dd->err_info_rcvport.status_and_code &
7480 OPA_EI_STATUS_SMASK)) {
7481 dd->err_info_rcvport.status_and_code =
7482 info & OPA_EI_CODE_SMASK;
7483 /* set status bit */
7484 dd->err_info_rcvport.status_and_code |=
7485 OPA_EI_STATUS_SMASK;
7486 /* save first 2 flits in the packet that caused
7487 * the error */
7488 dd->err_info_rcvport.packet_flit1 = hdr0;
7489 dd->err_info_rcvport.packet_flit2 = hdr1;
7490 }
7491 switch (info) {
7492 case 1:
7493 case 2:
7494 case 3:
7495 case 4:
7496 case 5:
7497 case 6:
7498 case 7:
7499 case 9:
7500 case 11:
7501 case 12:
7502 extra = port_rcv_txt[info];
7503 break;
7504 default:
7505 reason_valid = 0;
7506 snprintf(buf, sizeof(buf), "reserved%lld", info);
7507 extra = buf;
7508 break;
7509 }
7510
7511 if (reason_valid && !do_bounce) {
7512 do_bounce = ppd->port_error_action &
7513 (1 << (OPA_LDR_PORTRCV_OFFSET + info));
7514 lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
7515 }
7516
7517 /* just report this */
7518 dd_dev_info(dd, "DCC Error: PortRcv error: %s\n", extra);
7519 dd_dev_info(dd, " hdr0 0x%llx, hdr1 0x%llx\n",
7520 hdr0, hdr1);
7521
7522 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
7523 }
7524
7525 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
7526 /* informative only */
7527 dd_dev_info(dd, "8051 access to LCB blocked\n");
7528 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
7529 }
7530 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
7531 /* informative only */
7532 dd_dev_info(dd, "host access to LCB blocked\n");
7533 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
7534 }
7535
7536 /* report any remaining errors */
7537 if (reg)
7538 dd_dev_info(dd, "DCC Error: %s\n",
7539 dcc_err_string(buf, sizeof(buf), reg));
7540
7541 if (lcl_reason == 0)
7542 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
7543
7544 if (do_bounce) {
7545 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
7546 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
7547 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
7548 }
7549}
7550
7551static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7552{
7553 char buf[96];
7554
7555 dd_dev_info(dd, "LCB Error: %s\n",
7556 lcb_err_string(buf, sizeof(buf), reg));
7557}
7558
7559/*
7560 * CCE block DC interrupt. Source is < 8.
7561 */
7562static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
7563{
7564 const struct err_reg_info *eri = &dc_errs[source];
7565
7566 if (eri->handler) {
7567 interrupt_clear_down(dd, 0, eri);
7568 } else if (source == 3 /* dc_lbm_int */) {
7569 /*
7570 * This indicates that a parity error has occurred on the
7571 * address/control lines presented to the LBM. The error
7572 * is a single pulse, there is no associated error flag,
7573 * and it is non-maskable. This is because if a parity
7574 * error occurs on the request the request is dropped.
7575 * This should never occur, but it is nice to know if it
7576 * ever does.
7577 */
7578 dd_dev_err(dd, "Parity error in DC LBM block\n");
7579 } else {
7580 dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
7581 }
7582}
7583
7584/*
7585 * TX block send credit interrupt. Source is < 160.
7586 */
7587static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
7588{
7589 sc_group_release_update(dd, source);
7590}
7591
7592/*
7593 * TX block SDMA interrupt. Source is < 48.
7594 *
7595 * SDMA interrupts are grouped by type:
7596 *
7597 * 0 - N-1 = SDma
7598 * N - 2N-1 = SDmaProgress
7599 * 2N - 3N-1 = SDmaIdle
7600 */
7601static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
7602{
7603 /* what interrupt */
7604 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
7605 /* which engine */
7606 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
7607
7608#ifdef CONFIG_SDMA_VERBOSITY
7609 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
7610 slashstrip(__FILE__), __LINE__, __func__);
7611 sdma_dumpstate(&dd->per_sdma[which]);
7612#endif
7613
7614 if (likely(what < 3 && which < dd->num_sdma)) {
7615 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
7616 } else {
7617 /* should not happen */
7618 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
7619 }
7620}
7621
7622/*
7623 * RX block receive available interrupt. Source is < 160.
7624 */
7625static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
7626{
7627 struct hfi1_ctxtdata *rcd;
7628 char *err_detail;
7629
7630 if (likely(source < dd->num_rcv_contexts)) {
7631 rcd = dd->rcd[source];
7632 if (rcd) {
7633 if (source < dd->first_user_ctxt)
f4f30031 7634 rcd->do_interrupt(rcd, 0);
77241056
MM
7635 else
7636 handle_user_interrupt(rcd);
7637 return; /* OK */
7638 }
7639 /* received an interrupt, but no rcd */
7640 err_detail = "dataless";
7641 } else {
7642 /* received an interrupt, but are not using that context */
7643 err_detail = "out of range";
7644 }
7645 dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
7646 err_detail, source);
7647}
7648
7649/*
7650 * RX block receive urgent interrupt. Source is < 160.
7651 */
7652static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
7653{
7654 struct hfi1_ctxtdata *rcd;
7655 char *err_detail;
7656
7657 if (likely(source < dd->num_rcv_contexts)) {
7658 rcd = dd->rcd[source];
7659 if (rcd) {
7660 /* only pay attention to user urgent interrupts */
7661 if (source >= dd->first_user_ctxt)
7662 handle_user_interrupt(rcd);
7663 return; /* OK */
7664 }
7665 /* received an interrupt, but no rcd */
7666 err_detail = "dataless";
7667 } else {
7668 /* received an interrupt, but are not using that context */
7669 err_detail = "out of range";
7670 }
7671 dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
7672 err_detail, source);
7673}
7674
7675/*
7676 * Reserved range interrupt. Should not be called in normal operation.
7677 */
7678static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
7679{
7680 char name[64];
7681
7682 dd_dev_err(dd, "unexpected %s interrupt\n",
7683 is_reserved_name(name, sizeof(name), source));
7684}
7685
7686static const struct is_table is_table[] = {
7687/* start end
7688 name func interrupt func */
7689{ IS_GENERAL_ERR_START, IS_GENERAL_ERR_END,
7690 is_misc_err_name, is_misc_err_int },
7691{ IS_SDMAENG_ERR_START, IS_SDMAENG_ERR_END,
7692 is_sdma_eng_err_name, is_sdma_eng_err_int },
7693{ IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
7694 is_sendctxt_err_name, is_sendctxt_err_int },
7695{ IS_SDMA_START, IS_SDMA_END,
7696 is_sdma_eng_name, is_sdma_eng_int },
7697{ IS_VARIOUS_START, IS_VARIOUS_END,
7698 is_various_name, is_various_int },
7699{ IS_DC_START, IS_DC_END,
7700 is_dc_name, is_dc_int },
7701{ IS_RCVAVAIL_START, IS_RCVAVAIL_END,
7702 is_rcv_avail_name, is_rcv_avail_int },
7703{ IS_RCVURGENT_START, IS_RCVURGENT_END,
7704 is_rcv_urgent_name, is_rcv_urgent_int },
7705{ IS_SENDCREDIT_START, IS_SENDCREDIT_END,
7706 is_send_credit_name, is_send_credit_int},
7707{ IS_RESERVED_START, IS_RESERVED_END,
7708 is_reserved_name, is_reserved_int},
7709};
7710
7711/*
7712 * Interrupt source interrupt - called when the given source has an interrupt.
7713 * Source is a bit index into an array of 64-bit integers.
7714 */
7715static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
7716{
7717 const struct is_table *entry;
7718
7719 /* avoids a double compare by walking the table in-order */
7720 for (entry = &is_table[0]; entry->is_name; entry++) {
7721 if (source < entry->end) {
7722 trace_hfi1_interrupt(dd, entry, source);
7723 entry->is_int(dd, source - entry->start);
7724 return;
7725 }
7726 }
7727 /* fell off the end */
7728 dd_dev_err(dd, "invalid interrupt source %u\n", source);
7729}
7730
7731/*
7732 * General interrupt handler. This is able to correctly handle
7733 * all interrupts in case INTx is used.
7734 */
7735static irqreturn_t general_interrupt(int irq, void *data)
7736{
7737 struct hfi1_devdata *dd = data;
7738 u64 regs[CCE_NUM_INT_CSRS];
7739 u32 bit;
7740 int i;
7741
7742 this_cpu_inc(*dd->int_counter);
7743
7744 /* phase 1: scan and clear all handled interrupts */
7745 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
7746 if (dd->gi_mask[i] == 0) {
7747 regs[i] = 0; /* used later */
7748 continue;
7749 }
7750 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
7751 dd->gi_mask[i];
7752 /* only clear if anything is set */
7753 if (regs[i])
7754 write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
7755 }
7756
7757 /* phase 2: call the appropriate handler */
7758 for_each_set_bit(bit, (unsigned long *)&regs[0],
7759 CCE_NUM_INT_CSRS*64) {
7760 is_interrupt(dd, bit);
7761 }
7762
7763 return IRQ_HANDLED;
7764}
7765
7766static irqreturn_t sdma_interrupt(int irq, void *data)
7767{
7768 struct sdma_engine *sde = data;
7769 struct hfi1_devdata *dd = sde->dd;
7770 u64 status;
7771
7772#ifdef CONFIG_SDMA_VERBOSITY
7773 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
7774 slashstrip(__FILE__), __LINE__, __func__);
7775 sdma_dumpstate(sde);
7776#endif
7777
7778 this_cpu_inc(*dd->int_counter);
7779
7780 /* This read_csr is really bad in the hot path */
7781 status = read_csr(dd,
7782 CCE_INT_STATUS + (8*(IS_SDMA_START/64)))
7783 & sde->imask;
7784 if (likely(status)) {
7785 /* clear the interrupt(s) */
7786 write_csr(dd,
7787 CCE_INT_CLEAR + (8*(IS_SDMA_START/64)),
7788 status);
7789
7790 /* handle the interrupt(s) */
7791 sdma_engine_interrupt(sde, status);
7792 } else
7793 dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n",
7794 sde->this_idx);
7795
7796 return IRQ_HANDLED;
7797}
7798
7799/*
f4f30031
DL
7800 * Clear the receive interrupt, forcing the write and making sure
7801 * we have data from the chip, pushing everything in front of it
7802 * back to the host.
7803 */
7804static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
7805{
7806 struct hfi1_devdata *dd = rcd->dd;
7807 u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
7808
7809 mmiowb(); /* make sure everything before is written */
7810 write_csr(dd, addr, rcd->imask);
7811 /* force the above write on the chip and get a value back */
7812 (void)read_csr(dd, addr);
7813}
7814
7815/* force the receive interrupt */
7816static inline void force_recv_intr(struct hfi1_ctxtdata *rcd)
7817{
7818 write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
7819}
7820
7821/* return non-zero if a packet is present */
7822static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
7823{
7824 if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
7825 return (rcd->seq_cnt ==
7826 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
7827
7828 /* else is RDMA rtail */
7829 return (rcd->head != get_rcvhdrtail(rcd));
7830}
7831
7832/*
7833 * Receive packet IRQ handler. This routine expects to be on its own IRQ.
7834 * This routine will try to handle packets immediately (latency), but if
7835 * it finds too many, it will invoke the thread handler (bandwitdh). The
7836 * chip receive interupt is *not* cleared down until this or the thread (if
7837 * invoked) is finished. The intent is to avoid extra interrupts while we
7838 * are processing packets anyway.
77241056
MM
7839 */
7840static irqreturn_t receive_context_interrupt(int irq, void *data)
7841{
7842 struct hfi1_ctxtdata *rcd = data;
7843 struct hfi1_devdata *dd = rcd->dd;
f4f30031
DL
7844 int disposition;
7845 int present;
77241056
MM
7846
7847 trace_hfi1_receive_interrupt(dd, rcd->ctxt);
7848 this_cpu_inc(*dd->int_counter);
7849
f4f30031
DL
7850 /* receive interrupt remains blocked while processing packets */
7851 disposition = rcd->do_interrupt(rcd, 0);
77241056 7852
f4f30031
DL
7853 /*
7854 * Too many packets were seen while processing packets in this
7855 * IRQ handler. Invoke the handler thread. The receive interrupt
7856 * remains blocked.
7857 */
7858 if (disposition == RCV_PKT_LIMIT)
7859 return IRQ_WAKE_THREAD;
7860
7861 /*
7862 * The packet processor detected no more packets. Clear the receive
7863 * interrupt and recheck for a packet packet that may have arrived
7864 * after the previous check and interrupt clear. If a packet arrived,
7865 * force another interrupt.
7866 */
7867 clear_recv_intr(rcd);
7868 present = check_packet_present(rcd);
7869 if (present)
7870 force_recv_intr(rcd);
7871
7872 return IRQ_HANDLED;
7873}
7874
7875/*
7876 * Receive packet thread handler. This expects to be invoked with the
7877 * receive interrupt still blocked.
7878 */
7879static irqreturn_t receive_context_thread(int irq, void *data)
7880{
7881 struct hfi1_ctxtdata *rcd = data;
7882 int present;
7883
7884 /* receive interrupt is still blocked from the IRQ handler */
7885 (void)rcd->do_interrupt(rcd, 1);
7886
7887 /*
7888 * The packet processor will only return if it detected no more
7889 * packets. Hold IRQs here so we can safely clear the interrupt and
7890 * recheck for a packet that may have arrived after the previous
7891 * check and the interrupt clear. If a packet arrived, force another
7892 * interrupt.
7893 */
7894 local_irq_disable();
7895 clear_recv_intr(rcd);
7896 present = check_packet_present(rcd);
7897 if (present)
7898 force_recv_intr(rcd);
7899 local_irq_enable();
77241056
MM
7900
7901 return IRQ_HANDLED;
7902}
7903
7904/* ========================================================================= */
7905
7906u32 read_physical_state(struct hfi1_devdata *dd)
7907{
7908 u64 reg;
7909
7910 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
7911 return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
7912 & DC_DC8051_STS_CUR_STATE_PORT_MASK;
7913}
7914
7915static u32 read_logical_state(struct hfi1_devdata *dd)
7916{
7917 u64 reg;
7918
7919 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
7920 return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
7921 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
7922}
7923
7924static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
7925{
7926 u64 reg;
7927
7928 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
7929 /* clear current state, set new state */
7930 reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
7931 reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
7932 write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
7933}
7934
7935/*
7936 * Use the 8051 to read a LCB CSR.
7937 */
7938static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
7939{
7940 u32 regno;
7941 int ret;
7942
7943 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
7944 if (acquire_lcb_access(dd, 0) == 0) {
7945 *data = read_csr(dd, addr);
7946 release_lcb_access(dd, 0);
7947 return 0;
7948 }
7949 return -EBUSY;
7950 }
7951
7952 /* register is an index of LCB registers: (offset - base) / 8 */
7953 regno = (addr - DC_LCB_CFG_RUN) >> 3;
7954 ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
7955 if (ret != HCMD_SUCCESS)
7956 return -EBUSY;
7957 return 0;
7958}
7959
7960/*
7961 * Read an LCB CSR. Access may not be in host control, so check.
7962 * Return 0 on success, -EBUSY on failure.
7963 */
7964int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
7965{
7966 struct hfi1_pportdata *ppd = dd->pport;
7967
7968 /* if up, go through the 8051 for the value */
7969 if (ppd->host_link_state & HLS_UP)
7970 return read_lcb_via_8051(dd, addr, data);
7971 /* if going up or down, no access */
7972 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
7973 return -EBUSY;
7974 /* otherwise, host has access */
7975 *data = read_csr(dd, addr);
7976 return 0;
7977}
7978
7979/*
7980 * Use the 8051 to write a LCB CSR.
7981 */
7982static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
7983{
3bf40d65
DL
7984 u32 regno;
7985 int ret;
77241056 7986
3bf40d65
DL
7987 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
7988 (dd->dc8051_ver < dc8051_ver(0, 20))) {
7989 if (acquire_lcb_access(dd, 0) == 0) {
7990 write_csr(dd, addr, data);
7991 release_lcb_access(dd, 0);
7992 return 0;
7993 }
7994 return -EBUSY;
77241056 7995 }
3bf40d65
DL
7996
7997 /* register is an index of LCB registers: (offset - base) / 8 */
7998 regno = (addr - DC_LCB_CFG_RUN) >> 3;
7999 ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8000 if (ret != HCMD_SUCCESS)
8001 return -EBUSY;
8002 return 0;
77241056
MM
8003}
8004
8005/*
8006 * Write an LCB CSR. Access may not be in host control, so check.
8007 * Return 0 on success, -EBUSY on failure.
8008 */
8009int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8010{
8011 struct hfi1_pportdata *ppd = dd->pport;
8012
8013 /* if up, go through the 8051 for the value */
8014 if (ppd->host_link_state & HLS_UP)
8015 return write_lcb_via_8051(dd, addr, data);
8016 /* if going up or down, no access */
8017 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8018 return -EBUSY;
8019 /* otherwise, host has access */
8020 write_csr(dd, addr, data);
8021 return 0;
8022}
8023
8024/*
8025 * Returns:
8026 * < 0 = Linux error, not able to get access
8027 * > 0 = 8051 command RETURN_CODE
8028 */
8029static int do_8051_command(
8030 struct hfi1_devdata *dd,
8031 u32 type,
8032 u64 in_data,
8033 u64 *out_data)
8034{
8035 u64 reg, completed;
8036 int return_code;
8037 unsigned long flags;
8038 unsigned long timeout;
8039
8040 hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8041
8042 /*
8043 * Alternative to holding the lock for a long time:
8044 * - keep busy wait - have other users bounce off
8045 */
8046 spin_lock_irqsave(&dd->dc8051_lock, flags);
8047
8048 /* We can't send any commands to the 8051 if it's in reset */
8049 if (dd->dc_shutdown) {
8050 return_code = -ENODEV;
8051 goto fail;
8052 }
8053
8054 /*
8055 * If an 8051 host command timed out previously, then the 8051 is
8056 * stuck.
8057 *
8058 * On first timeout, attempt to reset and restart the entire DC
8059 * block (including 8051). (Is this too big of a hammer?)
8060 *
8061 * If the 8051 times out a second time, the reset did not bring it
8062 * back to healthy life. In that case, fail any subsequent commands.
8063 */
8064 if (dd->dc8051_timed_out) {
8065 if (dd->dc8051_timed_out > 1) {
8066 dd_dev_err(dd,
8067 "Previous 8051 host command timed out, skipping command %u\n",
8068 type);
8069 return_code = -ENXIO;
8070 goto fail;
8071 }
8072 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
8073 dc_shutdown(dd);
8074 dc_start(dd);
8075 spin_lock_irqsave(&dd->dc8051_lock, flags);
8076 }
8077
8078 /*
8079 * If there is no timeout, then the 8051 command interface is
8080 * waiting for a command.
8081 */
8082
3bf40d65
DL
8083 /*
8084 * When writing a LCB CSR, out_data contains the full value to
8085 * to be written, while in_data contains the relative LCB
8086 * address in 7:0. Do the work here, rather than the caller,
8087 * of distrubting the write data to where it needs to go:
8088 *
8089 * Write data
8090 * 39:00 -> in_data[47:8]
8091 * 47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8092 * 63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8093 */
8094 if (type == HCMD_WRITE_LCB_CSR) {
8095 in_data |= ((*out_data) & 0xffffffffffull) << 8;
8096 reg = ((((*out_data) >> 40) & 0xff) <<
8097 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8098 | ((((*out_data) >> 48) & 0xffff) <<
8099 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8100 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8101 }
8102
77241056
MM
8103 /*
8104 * Do two writes: the first to stabilize the type and req_data, the
8105 * second to activate.
8106 */
8107 reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8108 << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8109 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8110 << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8111 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8112 reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8113 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8114
8115 /* wait for completion, alternate: interrupt */
8116 timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8117 while (1) {
8118 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8119 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8120 if (completed)
8121 break;
8122 if (time_after(jiffies, timeout)) {
8123 dd->dc8051_timed_out++;
8124 dd_dev_err(dd, "8051 host command %u timeout\n", type);
8125 if (out_data)
8126 *out_data = 0;
8127 return_code = -ETIMEDOUT;
8128 goto fail;
8129 }
8130 udelay(2);
8131 }
8132
8133 if (out_data) {
8134 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8135 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8136 if (type == HCMD_READ_LCB_CSR) {
8137 /* top 16 bits are in a different register */
8138 *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8139 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8140 << (48
8141 - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8142 }
8143 }
8144 return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8145 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8146 dd->dc8051_timed_out = 0;
8147 /*
8148 * Clear command for next user.
8149 */
8150 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8151
8152fail:
8153 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
8154
8155 return return_code;
8156}
8157
8158static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8159{
8160 return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8161}
8162
8163static int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8164 u8 lane_id, u32 config_data)
8165{
8166 u64 data;
8167 int ret;
8168
8169 data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8170 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8171 | (u64)config_data << LOAD_DATA_DATA_SHIFT;
8172 ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8173 if (ret != HCMD_SUCCESS) {
8174 dd_dev_err(dd,
8175 "load 8051 config: field id %d, lane %d, err %d\n",
8176 (int)field_id, (int)lane_id, ret);
8177 }
8178 return ret;
8179}
8180
8181/*
8182 * Read the 8051 firmware "registers". Use the RAM directly. Always
8183 * set the result, even on error.
8184 * Return 0 on success, -errno on failure
8185 */
8186static int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8187 u32 *result)
8188{
8189 u64 big_data;
8190 u32 addr;
8191 int ret;
8192
8193 /* address start depends on the lane_id */
8194 if (lane_id < 4)
8195 addr = (4 * NUM_GENERAL_FIELDS)
8196 + (lane_id * 4 * NUM_LANE_FIELDS);
8197 else
8198 addr = 0;
8199 addr += field_id * 4;
8200
8201 /* read is in 8-byte chunks, hardware will truncate the address down */
8202 ret = read_8051_data(dd, addr, 8, &big_data);
8203
8204 if (ret == 0) {
8205 /* extract the 4 bytes we want */
8206 if (addr & 0x4)
8207 *result = (u32)(big_data >> 32);
8208 else
8209 *result = (u32)big_data;
8210 } else {
8211 *result = 0;
8212 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8213 __func__, lane_id, field_id);
8214 }
8215
8216 return ret;
8217}
8218
8219static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8220 u8 continuous)
8221{
8222 u32 frame;
8223
8224 frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8225 | power_management << POWER_MANAGEMENT_SHIFT;
8226 return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8227 GENERAL_CONFIG, frame);
8228}
8229
8230static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8231 u16 vl15buf, u8 crc_sizes)
8232{
8233 u32 frame;
8234
8235 frame = (u32)vau << VAU_SHIFT
8236 | (u32)z << Z_SHIFT
8237 | (u32)vcu << VCU_SHIFT
8238 | (u32)vl15buf << VL15BUF_SHIFT
8239 | (u32)crc_sizes << CRC_SIZES_SHIFT;
8240 return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8241 GENERAL_CONFIG, frame);
8242}
8243
8244static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8245 u8 *flag_bits, u16 *link_widths)
8246{
8247 u32 frame;
8248
8249 read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8250 &frame);
8251 *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8252 *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8253 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8254}
8255
8256static int write_vc_local_link_width(struct hfi1_devdata *dd,
8257 u8 misc_bits,
8258 u8 flag_bits,
8259 u16 link_widths)
8260{
8261 u32 frame;
8262
8263 frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8264 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8265 | (u32)link_widths << LINK_WIDTH_SHIFT;
8266 return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8267 frame);
8268}
8269
8270static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8271 u8 device_rev)
8272{
8273 u32 frame;
8274
8275 frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8276 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8277 return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8278}
8279
8280static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8281 u8 *device_rev)
8282{
8283 u32 frame;
8284
8285 read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8286 *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8287 *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8288 & REMOTE_DEVICE_REV_MASK;
8289}
8290
8291void read_misc_status(struct hfi1_devdata *dd, u8 *ver_a, u8 *ver_b)
8292{
8293 u32 frame;
8294
8295 read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8296 *ver_a = (frame >> STS_FM_VERSION_A_SHIFT) & STS_FM_VERSION_A_MASK;
8297 *ver_b = (frame >> STS_FM_VERSION_B_SHIFT) & STS_FM_VERSION_B_MASK;
8298}
8299
8300static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8301 u8 *continuous)
8302{
8303 u32 frame;
8304
8305 read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8306 *power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8307 & POWER_MANAGEMENT_MASK;
8308 *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8309 & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8310}
8311
8312static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8313 u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8314{
8315 u32 frame;
8316
8317 read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8318 *vau = (frame >> VAU_SHIFT) & VAU_MASK;
8319 *z = (frame >> Z_SHIFT) & Z_MASK;
8320 *vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8321 *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8322 *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8323}
8324
8325static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8326 u8 *remote_tx_rate,
8327 u16 *link_widths)
8328{
8329 u32 frame;
8330
8331 read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8332 &frame);
8333 *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8334 & REMOTE_TX_RATE_MASK;
8335 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8336}
8337
8338static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8339{
8340 u32 frame;
8341
8342 read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8343 *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8344}
8345
8346static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
8347{
8348 u32 frame;
8349
8350 read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
8351 *mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
8352}
8353
8354static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8355{
8356 read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8357}
8358
8359static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8360{
8361 read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8362}
8363
8364void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8365{
8366 u32 frame;
8367 int ret;
8368
8369 *link_quality = 0;
8370 if (dd->pport->host_link_state & HLS_UP) {
8371 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8372 &frame);
8373 if (ret == 0)
8374 *link_quality = (frame >> LINK_QUALITY_SHIFT)
8375 & LINK_QUALITY_MASK;
8376 }
8377}
8378
8379static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8380{
8381 u32 frame;
8382
8383 read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8384 *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8385}
8386
8387static int read_tx_settings(struct hfi1_devdata *dd,
8388 u8 *enable_lane_tx,
8389 u8 *tx_polarity_inversion,
8390 u8 *rx_polarity_inversion,
8391 u8 *max_rate)
8392{
8393 u32 frame;
8394 int ret;
8395
8396 ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
8397 *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
8398 & ENABLE_LANE_TX_MASK;
8399 *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
8400 & TX_POLARITY_INVERSION_MASK;
8401 *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
8402 & RX_POLARITY_INVERSION_MASK;
8403 *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
8404 return ret;
8405}
8406
8407static int write_tx_settings(struct hfi1_devdata *dd,
8408 u8 enable_lane_tx,
8409 u8 tx_polarity_inversion,
8410 u8 rx_polarity_inversion,
8411 u8 max_rate)
8412{
8413 u32 frame;
8414
8415 /* no need to mask, all variable sizes match field widths */
8416 frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
8417 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
8418 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
8419 | max_rate << MAX_RATE_SHIFT;
8420 return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
8421}
8422
8423static void check_fabric_firmware_versions(struct hfi1_devdata *dd)
8424{
8425 u32 frame, version, prod_id;
8426 int ret, lane;
8427
8428 /* 4 lanes */
8429 for (lane = 0; lane < 4; lane++) {
8430 ret = read_8051_config(dd, SPICO_FW_VERSION, lane, &frame);
8431 if (ret) {
8432 dd_dev_err(
8433 dd,
8434 "Unable to read lane %d firmware details\n",
8435 lane);
8436 continue;
8437 }
8438 version = (frame >> SPICO_ROM_VERSION_SHIFT)
8439 & SPICO_ROM_VERSION_MASK;
8440 prod_id = (frame >> SPICO_ROM_PROD_ID_SHIFT)
8441 & SPICO_ROM_PROD_ID_MASK;
8442 dd_dev_info(dd,
8443 "Lane %d firmware: version 0x%04x, prod_id 0x%04x\n",
8444 lane, version, prod_id);
8445 }
8446}
8447
8448/*
8449 * Read an idle LCB message.
8450 *
8451 * Returns 0 on success, -EINVAL on error
8452 */
8453static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
8454{
8455 int ret;
8456
8457 ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG,
8458 type, data_out);
8459 if (ret != HCMD_SUCCESS) {
8460 dd_dev_err(dd, "read idle message: type %d, err %d\n",
8461 (u32)type, ret);
8462 return -EINVAL;
8463 }
8464 dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
8465 /* return only the payload as we already know the type */
8466 *data_out >>= IDLE_PAYLOAD_SHIFT;
8467 return 0;
8468}
8469
8470/*
8471 * Read an idle SMA message. To be done in response to a notification from
8472 * the 8051.
8473 *
8474 * Returns 0 on success, -EINVAL on error
8475 */
8476static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
8477{
8478 return read_idle_message(dd,
8479 (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT, data);
8480}
8481
8482/*
8483 * Send an idle LCB message.
8484 *
8485 * Returns 0 on success, -EINVAL on error
8486 */
8487static int send_idle_message(struct hfi1_devdata *dd, u64 data)
8488{
8489 int ret;
8490
8491 dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
8492 ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
8493 if (ret != HCMD_SUCCESS) {
8494 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
8495 data, ret);
8496 return -EINVAL;
8497 }
8498 return 0;
8499}
8500
8501/*
8502 * Send an idle SMA message.
8503 *
8504 * Returns 0 on success, -EINVAL on error
8505 */
8506int send_idle_sma(struct hfi1_devdata *dd, u64 message)
8507{
8508 u64 data;
8509
8510 data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT)
8511 | ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
8512 return send_idle_message(dd, data);
8513}
8514
8515/*
8516 * Initialize the LCB then do a quick link up. This may or may not be
8517 * in loopback.
8518 *
8519 * return 0 on success, -errno on error
8520 */
8521static int do_quick_linkup(struct hfi1_devdata *dd)
8522{
8523 u64 reg;
8524 unsigned long timeout;
8525 int ret;
8526
8527 lcb_shutdown(dd, 0);
8528
8529 if (loopback) {
8530 /* LCB_CFG_LOOPBACK.VAL = 2 */
8531 /* LCB_CFG_LANE_WIDTH.VAL = 0 */
8532 write_csr(dd, DC_LCB_CFG_LOOPBACK,
8533 IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
8534 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
8535 }
8536
8537 /* start the LCBs */
8538 /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
8539 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
8540
8541 /* simulator only loopback steps */
8542 if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8543 /* LCB_CFG_RUN.EN = 1 */
8544 write_csr(dd, DC_LCB_CFG_RUN,
8545 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
8546
8547 /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
8548 timeout = jiffies + msecs_to_jiffies(10);
8549 while (1) {
8550 reg = read_csr(dd,
8551 DC_LCB_STS_LINK_TRANSFER_ACTIVE);
8552 if (reg)
8553 break;
8554 if (time_after(jiffies, timeout)) {
8555 dd_dev_err(dd,
8556 "timeout waiting for LINK_TRANSFER_ACTIVE\n");
8557 return -ETIMEDOUT;
8558 }
8559 udelay(2);
8560 }
8561
8562 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
8563 1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
8564 }
8565
8566 if (!loopback) {
8567 /*
8568 * When doing quick linkup and not in loopback, both
8569 * sides must be done with LCB set-up before either
8570 * starts the quick linkup. Put a delay here so that
8571 * both sides can be started and have a chance to be
8572 * done with LCB set up before resuming.
8573 */
8574 dd_dev_err(dd,
8575 "Pausing for peer to be finished with LCB set up\n");
8576 msleep(5000);
8577 dd_dev_err(dd,
8578 "Continuing with quick linkup\n");
8579 }
8580
8581 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
8582 set_8051_lcb_access(dd);
8583
8584 /*
8585 * State "quick" LinkUp request sets the physical link state to
8586 * LinkUp without a verify capability sequence.
8587 * This state is in simulator v37 and later.
8588 */
8589 ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
8590 if (ret != HCMD_SUCCESS) {
8591 dd_dev_err(dd,
8592 "%s: set physical link state to quick LinkUp failed with return %d\n",
8593 __func__, ret);
8594
8595 set_host_lcb_access(dd);
8596 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
8597
8598 if (ret >= 0)
8599 ret = -EINVAL;
8600 return ret;
8601 }
8602
8603 return 0; /* success */
8604}
8605
8606/*
8607 * Set the SerDes to internal loopback mode.
8608 * Returns 0 on success, -errno on error.
8609 */
8610static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
8611{
8612 int ret;
8613
8614 ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
8615 if (ret == HCMD_SUCCESS)
8616 return 0;
8617 dd_dev_err(dd,
8618 "Set physical link state to SerDes Loopback failed with return %d\n",
8619 ret);
8620 if (ret >= 0)
8621 ret = -EINVAL;
8622 return ret;
8623}
8624
8625/*
8626 * Do all special steps to set up loopback.
8627 */
8628static int init_loopback(struct hfi1_devdata *dd)
8629{
8630 dd_dev_info(dd, "Entering loopback mode\n");
8631
8632 /* all loopbacks should disable self GUID check */
8633 write_csr(dd, DC_DC8051_CFG_MODE,
8634 (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
8635
8636 /*
8637 * The simulator has only one loopback option - LCB. Switch
8638 * to that option, which includes quick link up.
8639 *
8640 * Accept all valid loopback values.
8641 */
8642 if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
8643 && (loopback == LOOPBACK_SERDES
8644 || loopback == LOOPBACK_LCB
8645 || loopback == LOOPBACK_CABLE)) {
8646 loopback = LOOPBACK_LCB;
8647 quick_linkup = 1;
8648 return 0;
8649 }
8650
8651 /* handle serdes loopback */
8652 if (loopback == LOOPBACK_SERDES) {
8653 /* internal serdes loopack needs quick linkup on RTL */
8654 if (dd->icode == ICODE_RTL_SILICON)
8655 quick_linkup = 1;
8656 return set_serdes_loopback_mode(dd);
8657 }
8658
8659 /* LCB loopback - handled at poll time */
8660 if (loopback == LOOPBACK_LCB) {
8661 quick_linkup = 1; /* LCB is always quick linkup */
8662
8663 /* not supported in emulation due to emulation RTL changes */
8664 if (dd->icode == ICODE_FPGA_EMULATION) {
8665 dd_dev_err(dd,
8666 "LCB loopback not supported in emulation\n");
8667 return -EINVAL;
8668 }
8669 return 0;
8670 }
8671
8672 /* external cable loopback requires no extra steps */
8673 if (loopback == LOOPBACK_CABLE)
8674 return 0;
8675
8676 dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
8677 return -EINVAL;
8678}
8679
8680/*
8681 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
8682 * used in the Verify Capability link width attribute.
8683 */
8684static u16 opa_to_vc_link_widths(u16 opa_widths)
8685{
8686 int i;
8687 u16 result = 0;
8688
8689 static const struct link_bits {
8690 u16 from;
8691 u16 to;
8692 } opa_link_xlate[] = {
8693 { OPA_LINK_WIDTH_1X, 1 << (1-1) },
8694 { OPA_LINK_WIDTH_2X, 1 << (2-1) },
8695 { OPA_LINK_WIDTH_3X, 1 << (3-1) },
8696 { OPA_LINK_WIDTH_4X, 1 << (4-1) },
8697 };
8698
8699 for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
8700 if (opa_widths & opa_link_xlate[i].from)
8701 result |= opa_link_xlate[i].to;
8702 }
8703 return result;
8704}
8705
8706/*
8707 * Set link attributes before moving to polling.
8708 */
8709static int set_local_link_attributes(struct hfi1_pportdata *ppd)
8710{
8711 struct hfi1_devdata *dd = ppd->dd;
8712 u8 enable_lane_tx;
8713 u8 tx_polarity_inversion;
8714 u8 rx_polarity_inversion;
8715 int ret;
8716
8717 /* reset our fabric serdes to clear any lingering problems */
8718 fabric_serdes_reset(dd);
8719
8720 /* set the local tx rate - need to read-modify-write */
8721 ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
8722 &rx_polarity_inversion, &ppd->local_tx_rate);
8723 if (ret)
8724 goto set_local_link_attributes_fail;
8725
8726 if (dd->dc8051_ver < dc8051_ver(0, 20)) {
8727 /* set the tx rate to the fastest enabled */
8728 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
8729 ppd->local_tx_rate = 1;
8730 else
8731 ppd->local_tx_rate = 0;
8732 } else {
8733 /* set the tx rate to all enabled */
8734 ppd->local_tx_rate = 0;
8735 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
8736 ppd->local_tx_rate |= 2;
8737 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
8738 ppd->local_tx_rate |= 1;
8739 }
febffe2c
EH
8740
8741 enable_lane_tx = 0xF; /* enable all four lanes */
77241056
MM
8742 ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
8743 rx_polarity_inversion, ppd->local_tx_rate);
8744 if (ret != HCMD_SUCCESS)
8745 goto set_local_link_attributes_fail;
8746
8747 /*
8748 * DC supports continuous updates.
8749 */
8750 ret = write_vc_local_phy(dd, 0 /* no power management */,
8751 1 /* continuous updates */);
8752 if (ret != HCMD_SUCCESS)
8753 goto set_local_link_attributes_fail;
8754
8755 /* z=1 in the next call: AU of 0 is not supported by the hardware */
8756 ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
8757 ppd->port_crc_mode_enabled);
8758 if (ret != HCMD_SUCCESS)
8759 goto set_local_link_attributes_fail;
8760
8761 ret = write_vc_local_link_width(dd, 0, 0,
8762 opa_to_vc_link_widths(ppd->link_width_enabled));
8763 if (ret != HCMD_SUCCESS)
8764 goto set_local_link_attributes_fail;
8765
8766 /* let peer know who we are */
8767 ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
8768 if (ret == HCMD_SUCCESS)
8769 return 0;
8770
8771set_local_link_attributes_fail:
8772 dd_dev_err(dd,
8773 "Failed to set local link attributes, return 0x%x\n",
8774 ret);
8775 return ret;
8776}
8777
8778/*
8779 * Call this to start the link. Schedule a retry if the cable is not
8780 * present or if unable to start polling. Do not do anything if the
8781 * link is disabled. Returns 0 if link is disabled or moved to polling
8782 */
8783int start_link(struct hfi1_pportdata *ppd)
8784{
8785 if (!ppd->link_enabled) {
8786 dd_dev_info(ppd->dd,
8787 "%s: stopping link start because link is disabled\n",
8788 __func__);
8789 return 0;
8790 }
8791 if (!ppd->driver_link_ready) {
8792 dd_dev_info(ppd->dd,
8793 "%s: stopping link start because driver is not ready\n",
8794 __func__);
8795 return 0;
8796 }
8797
8798 if (qsfp_mod_present(ppd) || loopback == LOOPBACK_SERDES ||
8799 loopback == LOOPBACK_LCB ||
8800 ppd->dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
8801 return set_link_state(ppd, HLS_DN_POLL);
8802
8803 dd_dev_info(ppd->dd,
8804 "%s: stopping link start because no cable is present\n",
8805 __func__);
8806 return -EAGAIN;
8807}
8808
8809static void reset_qsfp(struct hfi1_pportdata *ppd)
8810{
8811 struct hfi1_devdata *dd = ppd->dd;
8812 u64 mask, qsfp_mask;
8813
8814 mask = (u64)QSFP_HFI0_RESET_N;
8815 qsfp_mask = read_csr(dd,
8816 dd->hfi1_id ? ASIC_QSFP2_OE : ASIC_QSFP1_OE);
8817 qsfp_mask |= mask;
8818 write_csr(dd,
8819 dd->hfi1_id ? ASIC_QSFP2_OE : ASIC_QSFP1_OE,
8820 qsfp_mask);
8821
8822 qsfp_mask = read_csr(dd,
8823 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
8824 qsfp_mask &= ~mask;
8825 write_csr(dd,
8826 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT,
8827 qsfp_mask);
8828
8829 udelay(10);
8830
8831 qsfp_mask |= mask;
8832 write_csr(dd,
8833 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT,
8834 qsfp_mask);
8835}
8836
8837static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
8838 u8 *qsfp_interrupt_status)
8839{
8840 struct hfi1_devdata *dd = ppd->dd;
8841
8842 if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
8843 (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
8844 dd_dev_info(dd,
8845 "%s: QSFP cable on fire\n",
8846 __func__);
8847
8848 if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
8849 (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
8850 dd_dev_info(dd,
8851 "%s: QSFP cable temperature too low\n",
8852 __func__);
8853
8854 if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
8855 (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
8856 dd_dev_info(dd,
8857 "%s: QSFP supply voltage too high\n",
8858 __func__);
8859
8860 if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
8861 (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
8862 dd_dev_info(dd,
8863 "%s: QSFP supply voltage too low\n",
8864 __func__);
8865
8866 /* Byte 2 is vendor specific */
8867
8868 if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
8869 (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
8870 dd_dev_info(dd,
8871 "%s: Cable RX channel 1/2 power too high\n",
8872 __func__);
8873
8874 if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
8875 (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
8876 dd_dev_info(dd,
8877 "%s: Cable RX channel 1/2 power too low\n",
8878 __func__);
8879
8880 if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
8881 (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
8882 dd_dev_info(dd,
8883 "%s: Cable RX channel 3/4 power too high\n",
8884 __func__);
8885
8886 if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
8887 (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
8888 dd_dev_info(dd,
8889 "%s: Cable RX channel 3/4 power too low\n",
8890 __func__);
8891
8892 if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
8893 (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
8894 dd_dev_info(dd,
8895 "%s: Cable TX channel 1/2 bias too high\n",
8896 __func__);
8897
8898 if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
8899 (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
8900 dd_dev_info(dd,
8901 "%s: Cable TX channel 1/2 bias too low\n",
8902 __func__);
8903
8904 if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
8905 (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
8906 dd_dev_info(dd,
8907 "%s: Cable TX channel 3/4 bias too high\n",
8908 __func__);
8909
8910 if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
8911 (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
8912 dd_dev_info(dd,
8913 "%s: Cable TX channel 3/4 bias too low\n",
8914 __func__);
8915
8916 if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
8917 (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
8918 dd_dev_info(dd,
8919 "%s: Cable TX channel 1/2 power too high\n",
8920 __func__);
8921
8922 if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
8923 (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
8924 dd_dev_info(dd,
8925 "%s: Cable TX channel 1/2 power too low\n",
8926 __func__);
8927
8928 if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
8929 (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
8930 dd_dev_info(dd,
8931 "%s: Cable TX channel 3/4 power too high\n",
8932 __func__);
8933
8934 if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
8935 (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
8936 dd_dev_info(dd,
8937 "%s: Cable TX channel 3/4 power too low\n",
8938 __func__);
8939
8940 /* Bytes 9-10 and 11-12 are reserved */
8941 /* Bytes 13-15 are vendor specific */
8942
8943 return 0;
8944}
8945
8946static int do_pre_lni_host_behaviors(struct hfi1_pportdata *ppd)
8947{
8948 refresh_qsfp_cache(ppd, &ppd->qsfp_info);
8949
8950 return 0;
8951}
8952
8953static int do_qsfp_intr_fallback(struct hfi1_pportdata *ppd)
8954{
8955 struct hfi1_devdata *dd = ppd->dd;
8956 u8 qsfp_interrupt_status = 0;
8957
8958 if (qsfp_read(ppd, dd->hfi1_id, 2, &qsfp_interrupt_status, 1)
8959 != 1) {
8960 dd_dev_info(dd,
8961 "%s: Failed to read status of QSFP module\n",
8962 __func__);
8963 return -EIO;
8964 }
8965
8966 /* We don't care about alarms & warnings with a non-functional INT_N */
8967 if (!(qsfp_interrupt_status & QSFP_DATA_NOT_READY))
8968 do_pre_lni_host_behaviors(ppd);
8969
8970 return 0;
8971}
8972
8973/* This routine will only be scheduled if the QSFP module is present */
8974static void qsfp_event(struct work_struct *work)
8975{
8976 struct qsfp_data *qd;
8977 struct hfi1_pportdata *ppd;
8978 struct hfi1_devdata *dd;
8979
8980 qd = container_of(work, struct qsfp_data, qsfp_work);
8981 ppd = qd->ppd;
8982 dd = ppd->dd;
8983
8984 /* Sanity check */
8985 if (!qsfp_mod_present(ppd))
8986 return;
8987
8988 /*
8989 * Turn DC back on after cables has been
8990 * re-inserted. Up until now, the DC has been in
8991 * reset to save power.
8992 */
8993 dc_start(dd);
8994
8995 if (qd->cache_refresh_required) {
8996 msleep(3000);
8997 reset_qsfp(ppd);
8998
8999 /* Check for QSFP interrupt after t_init (SFF 8679)
9000 * + extra
9001 */
9002 msleep(3000);
9003 if (!qd->qsfp_interrupt_functional) {
9004 if (do_qsfp_intr_fallback(ppd) < 0)
9005 dd_dev_info(dd, "%s: QSFP fallback failed\n",
9006 __func__);
9007 ppd->driver_link_ready = 1;
9008 start_link(ppd);
9009 }
9010 }
9011
9012 if (qd->check_interrupt_flags) {
9013 u8 qsfp_interrupt_status[16] = {0,};
9014
9015 if (qsfp_read(ppd, dd->hfi1_id, 6,
9016 &qsfp_interrupt_status[0], 16) != 16) {
9017 dd_dev_info(dd,
9018 "%s: Failed to read status of QSFP module\n",
9019 __func__);
9020 } else {
9021 unsigned long flags;
9022 u8 data_status;
9023
9024 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9025 ppd->qsfp_info.check_interrupt_flags = 0;
9026 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9027 flags);
9028
9029 if (qsfp_read(ppd, dd->hfi1_id, 2, &data_status, 1)
9030 != 1) {
9031 dd_dev_info(dd,
9032 "%s: Failed to read status of QSFP module\n",
9033 __func__);
9034 }
9035 if (!(data_status & QSFP_DATA_NOT_READY)) {
9036 do_pre_lni_host_behaviors(ppd);
9037 start_link(ppd);
9038 } else
9039 handle_qsfp_error_conditions(ppd,
9040 qsfp_interrupt_status);
9041 }
9042 }
9043}
9044
9045void init_qsfp(struct hfi1_pportdata *ppd)
9046{
9047 struct hfi1_devdata *dd = ppd->dd;
9048 u64 qsfp_mask;
9049
9050 if (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
3c2f85b8 9051 ppd->dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
77241056
MM
9052 ppd->driver_link_ready = 1;
9053 return;
9054 }
9055
9056 ppd->qsfp_info.ppd = ppd;
9057 INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
9058
9059 qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9060 /* Clear current status to avoid spurious interrupts */
9061 write_csr(dd,
9062 dd->hfi1_id ?
9063 ASIC_QSFP2_CLEAR :
9064 ASIC_QSFP1_CLEAR,
9065 qsfp_mask);
9066
9067 /* Handle active low nature of INT_N and MODPRST_N pins */
9068 if (qsfp_mod_present(ppd))
9069 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9070 write_csr(dd,
9071 dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9072 qsfp_mask);
9073
9074 /* Allow only INT_N and MODPRST_N to trigger QSFP interrupts */
9075 qsfp_mask |= (u64)QSFP_HFI0_MODPRST_N;
9076 write_csr(dd,
9077 dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9078 qsfp_mask);
9079
9080 if (qsfp_mod_present(ppd)) {
9081 msleep(3000);
9082 reset_qsfp(ppd);
9083
9084 /* Check for QSFP interrupt after t_init (SFF 8679)
9085 * + extra
9086 */
9087 msleep(3000);
9088 if (!ppd->qsfp_info.qsfp_interrupt_functional) {
9089 if (do_qsfp_intr_fallback(ppd) < 0)
9090 dd_dev_info(dd,
9091 "%s: QSFP fallback failed\n",
9092 __func__);
9093 ppd->driver_link_ready = 1;
9094 }
9095 }
9096}
9097
bbdeb33d
DL
9098/*
9099 * Do a one-time initialize of the LCB block.
9100 */
9101static void init_lcb(struct hfi1_devdata *dd)
9102{
9103 /* the DC has been reset earlier in the driver load */
9104
9105 /* set LCB for cclk loopback on the port */
9106 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9107 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9108 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9109 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9110 write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9111 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9112 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9113}
9114
77241056
MM
9115int bringup_serdes(struct hfi1_pportdata *ppd)
9116{
9117 struct hfi1_devdata *dd = ppd->dd;
9118 u64 guid;
9119 int ret;
9120
9121 if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9122 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9123
9124 guid = ppd->guid;
9125 if (!guid) {
9126 if (dd->base_guid)
9127 guid = dd->base_guid + ppd->port - 1;
9128 ppd->guid = guid;
9129 }
9130
9131 /* the link defaults to enabled */
9132 ppd->link_enabled = 1;
9133 /* Set linkinit_reason on power up per OPA spec */
9134 ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9135
bbdeb33d
DL
9136 /* one-time init of the LCB */
9137 init_lcb(dd);
9138
77241056
MM
9139 if (loopback) {
9140 ret = init_loopback(dd);
9141 if (ret < 0)
9142 return ret;
9143 }
9144
9145 return start_link(ppd);
9146}
9147
9148void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9149{
9150 struct hfi1_devdata *dd = ppd->dd;
9151
9152 /*
9153 * Shut down the link and keep it down. First turn off that the
9154 * driver wants to allow the link to be up (driver_link_ready).
9155 * Then make sure the link is not automatically restarted
9156 * (link_enabled). Cancel any pending restart. And finally
9157 * go offline.
9158 */
9159 ppd->driver_link_ready = 0;
9160 ppd->link_enabled = 0;
9161
9162 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
9163 OPA_LINKDOWN_REASON_SMA_DISABLED);
9164 set_link_state(ppd, HLS_DN_OFFLINE);
9165
9166 /* disable the port */
9167 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9168}
9169
9170static inline int init_cpu_counters(struct hfi1_devdata *dd)
9171{
9172 struct hfi1_pportdata *ppd;
9173 int i;
9174
9175 ppd = (struct hfi1_pportdata *)(dd + 1);
9176 for (i = 0; i < dd->num_pports; i++, ppd++) {
9177 ppd->ibport_data.rc_acks = NULL;
9178 ppd->ibport_data.rc_qacks = NULL;
9179 ppd->ibport_data.rc_acks = alloc_percpu(u64);
9180 ppd->ibport_data.rc_qacks = alloc_percpu(u64);
9181 ppd->ibport_data.rc_delayed_comp = alloc_percpu(u64);
9182 if ((ppd->ibport_data.rc_acks == NULL) ||
9183 (ppd->ibport_data.rc_delayed_comp == NULL) ||
9184 (ppd->ibport_data.rc_qacks == NULL))
9185 return -ENOMEM;
9186 }
9187
9188 return 0;
9189}
9190
9191static const char * const pt_names[] = {
9192 "expected",
9193 "eager",
9194 "invalid"
9195};
9196
9197static const char *pt_name(u32 type)
9198{
9199 return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type];
9200}
9201
9202/*
9203 * index is the index into the receive array
9204 */
9205void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9206 u32 type, unsigned long pa, u16 order)
9207{
9208 u64 reg;
9209 void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc :
9210 (dd->kregbase + RCV_ARRAY));
9211
9212 if (!(dd->flags & HFI1_PRESENT))
9213 goto done;
9214
9215 if (type == PT_INVALID) {
9216 pa = 0;
9217 } else if (type > PT_INVALID) {
9218 dd_dev_err(dd,
9219 "unexpected receive array type %u for index %u, not handled\n",
9220 type, index);
9221 goto done;
9222 }
9223
9224 hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx",
9225 pt_name(type), index, pa, (unsigned long)order);
9226
9227#define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */
9228 reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9229 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9230 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9231 << RCV_ARRAY_RT_ADDR_SHIFT;
9232 writeq(reg, base + (index * 8));
9233
9234 if (type == PT_EAGER)
9235 /*
9236 * Eager entries are written one-by-one so we have to push them
9237 * after we write the entry.
9238 */
9239 flush_wc();
9240done:
9241 return;
9242}
9243
9244void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9245{
9246 struct hfi1_devdata *dd = rcd->dd;
9247 u32 i;
9248
9249 /* this could be optimized */
9250 for (i = rcd->eager_base; i < rcd->eager_base +
9251 rcd->egrbufs.alloced; i++)
9252 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9253
9254 for (i = rcd->expected_base;
9255 i < rcd->expected_base + rcd->expected_count; i++)
9256 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9257}
9258
9259int hfi1_get_base_kinfo(struct hfi1_ctxtdata *rcd,
9260 struct hfi1_ctxt_info *kinfo)
9261{
9262 kinfo->runtime_flags = (HFI1_MISC_GET() << HFI1_CAP_USER_SHIFT) |
9263 HFI1_CAP_UGET(MASK) | HFI1_CAP_KGET(K2U);
9264 return 0;
9265}
9266
9267struct hfi1_message_header *hfi1_get_msgheader(
9268 struct hfi1_devdata *dd, __le32 *rhf_addr)
9269{
9270 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
9271
9272 return (struct hfi1_message_header *)
9273 (rhf_addr - dd->rhf_offset + offset);
9274}
9275
9276static const char * const ib_cfg_name_strings[] = {
9277 "HFI1_IB_CFG_LIDLMC",
9278 "HFI1_IB_CFG_LWID_DG_ENB",
9279 "HFI1_IB_CFG_LWID_ENB",
9280 "HFI1_IB_CFG_LWID",
9281 "HFI1_IB_CFG_SPD_ENB",
9282 "HFI1_IB_CFG_SPD",
9283 "HFI1_IB_CFG_RXPOL_ENB",
9284 "HFI1_IB_CFG_LREV_ENB",
9285 "HFI1_IB_CFG_LINKLATENCY",
9286 "HFI1_IB_CFG_HRTBT",
9287 "HFI1_IB_CFG_OP_VLS",
9288 "HFI1_IB_CFG_VL_HIGH_CAP",
9289 "HFI1_IB_CFG_VL_LOW_CAP",
9290 "HFI1_IB_CFG_OVERRUN_THRESH",
9291 "HFI1_IB_CFG_PHYERR_THRESH",
9292 "HFI1_IB_CFG_LINKDEFAULT",
9293 "HFI1_IB_CFG_PKEYS",
9294 "HFI1_IB_CFG_MTU",
9295 "HFI1_IB_CFG_LSTATE",
9296 "HFI1_IB_CFG_VL_HIGH_LIMIT",
9297 "HFI1_IB_CFG_PMA_TICKS",
9298 "HFI1_IB_CFG_PORT"
9299};
9300
9301static const char *ib_cfg_name(int which)
9302{
9303 if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9304 return "invalid";
9305 return ib_cfg_name_strings[which];
9306}
9307
9308int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9309{
9310 struct hfi1_devdata *dd = ppd->dd;
9311 int val = 0;
9312
9313 switch (which) {
9314 case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9315 val = ppd->link_width_enabled;
9316 break;
9317 case HFI1_IB_CFG_LWID: /* currently active Link-width */
9318 val = ppd->link_width_active;
9319 break;
9320 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9321 val = ppd->link_speed_enabled;
9322 break;
9323 case HFI1_IB_CFG_SPD: /* current Link speed */
9324 val = ppd->link_speed_active;
9325 break;
9326
9327 case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9328 case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9329 case HFI1_IB_CFG_LINKLATENCY:
9330 goto unimplemented;
9331
9332 case HFI1_IB_CFG_OP_VLS:
9333 val = ppd->vls_operational;
9334 break;
9335 case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9336 val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9337 break;
9338 case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9339 val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9340 break;
9341 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9342 val = ppd->overrun_threshold;
9343 break;
9344 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9345 val = ppd->phy_error_threshold;
9346 break;
9347 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9348 val = dd->link_default;
9349 break;
9350
9351 case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9352 case HFI1_IB_CFG_PMA_TICKS:
9353 default:
9354unimplemented:
9355 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9356 dd_dev_info(
9357 dd,
9358 "%s: which %s: not implemented\n",
9359 __func__,
9360 ib_cfg_name(which));
9361 break;
9362 }
9363
9364 return val;
9365}
9366
9367/*
9368 * The largest MAD packet size.
9369 */
9370#define MAX_MAD_PACKET 2048
9371
9372/*
9373 * Return the maximum header bytes that can go on the _wire_
9374 * for this device. This count includes the ICRC which is
9375 * not part of the packet held in memory but it is appended
9376 * by the HW.
9377 * This is dependent on the device's receive header entry size.
9378 * HFI allows this to be set per-receive context, but the
9379 * driver presently enforces a global value.
9380 */
9381u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
9382{
9383 /*
9384 * The maximum non-payload (MTU) bytes in LRH.PktLen are
9385 * the Receive Header Entry Size minus the PBC (or RHF) size
9386 * plus one DW for the ICRC appended by HW.
9387 *
9388 * dd->rcd[0].rcvhdrqentsize is in DW.
9389 * We use rcd[0] as all context will have the same value. Also,
9390 * the first kernel context would have been allocated by now so
9391 * we are guaranteed a valid value.
9392 */
9393 return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
9394}
9395
9396/*
9397 * Set Send Length
9398 * @ppd - per port data
9399 *
9400 * Set the MTU by limiting how many DWs may be sent. The SendLenCheck*
9401 * registers compare against LRH.PktLen, so use the max bytes included
9402 * in the LRH.
9403 *
9404 * This routine changes all VL values except VL15, which it maintains at
9405 * the same value.
9406 */
9407static void set_send_length(struct hfi1_pportdata *ppd)
9408{
9409 struct hfi1_devdata *dd = ppd->dd;
6cc6ad2e
HC
9410 u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
9411 u32 maxvlmtu = dd->vld[15].mtu;
77241056
MM
9412 u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
9413 & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
9414 SEND_LEN_CHECK1_LEN_VL15_SHIFT;
9415 int i;
9416
9417 for (i = 0; i < ppd->vls_supported; i++) {
9418 if (dd->vld[i].mtu > maxvlmtu)
9419 maxvlmtu = dd->vld[i].mtu;
9420 if (i <= 3)
9421 len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
9422 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
9423 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
9424 else
9425 len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
9426 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
9427 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
9428 }
9429 write_csr(dd, SEND_LEN_CHECK0, len1);
9430 write_csr(dd, SEND_LEN_CHECK1, len2);
9431 /* adjust kernel credit return thresholds based on new MTUs */
9432 /* all kernel receive contexts have the same hdrqentsize */
9433 for (i = 0; i < ppd->vls_supported; i++) {
9434 sc_set_cr_threshold(dd->vld[i].sc,
9435 sc_mtu_to_threshold(dd->vld[i].sc, dd->vld[i].mtu,
9436 dd->rcd[0]->rcvhdrqentsize));
9437 }
9438 sc_set_cr_threshold(dd->vld[15].sc,
9439 sc_mtu_to_threshold(dd->vld[15].sc, dd->vld[15].mtu,
9440 dd->rcd[0]->rcvhdrqentsize));
9441
9442 /* Adjust maximum MTU for the port in DC */
9443 dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
9444 (ilog2(maxvlmtu >> 8) + 1);
9445 len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
9446 len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
9447 len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
9448 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
9449 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
9450}
9451
9452static void set_lidlmc(struct hfi1_pportdata *ppd)
9453{
9454 int i;
9455 u64 sreg = 0;
9456 struct hfi1_devdata *dd = ppd->dd;
9457 u32 mask = ~((1U << ppd->lmc) - 1);
9458 u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
9459
9460 if (dd->hfi1_snoop.mode_flag)
9461 dd_dev_info(dd, "Set lid/lmc while snooping");
9462
9463 c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
9464 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
9465 c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
9466 << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT)|
9467 ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
9468 << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
9469 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
9470
9471 /*
9472 * Iterate over all the send contexts and set their SLID check
9473 */
9474 sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
9475 SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
9476 (((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
9477 SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
9478
9479 for (i = 0; i < dd->chip_send_contexts; i++) {
9480 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
9481 i, (u32)sreg);
9482 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
9483 }
9484
9485 /* Now we have to do the same thing for the sdma engines */
9486 sdma_update_lmc(dd, mask, ppd->lid);
9487}
9488
9489static int wait_phy_linkstate(struct hfi1_devdata *dd, u32 state, u32 msecs)
9490{
9491 unsigned long timeout;
9492 u32 curr_state;
9493
9494 timeout = jiffies + msecs_to_jiffies(msecs);
9495 while (1) {
9496 curr_state = read_physical_state(dd);
9497 if (curr_state == state)
9498 break;
9499 if (time_after(jiffies, timeout)) {
9500 dd_dev_err(dd,
9501 "timeout waiting for phy link state 0x%x, current state is 0x%x\n",
9502 state, curr_state);
9503 return -ETIMEDOUT;
9504 }
9505 usleep_range(1950, 2050); /* sleep 2ms-ish */
9506 }
9507
9508 return 0;
9509}
9510
9511/*
9512 * Helper for set_link_state(). Do not call except from that routine.
9513 * Expects ppd->hls_mutex to be held.
9514 *
9515 * @rem_reason value to be sent to the neighbor
9516 *
9517 * LinkDownReasons only set if transition succeeds.
9518 */
9519static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
9520{
9521 struct hfi1_devdata *dd = ppd->dd;
9522 u32 pstate, previous_state;
9523 u32 last_local_state;
9524 u32 last_remote_state;
9525 int ret;
9526 int do_transition;
9527 int do_wait;
9528
9529 previous_state = ppd->host_link_state;
9530 ppd->host_link_state = HLS_GOING_OFFLINE;
9531 pstate = read_physical_state(dd);
9532 if (pstate == PLS_OFFLINE) {
9533 do_transition = 0; /* in right state */
9534 do_wait = 0; /* ...no need to wait */
9535 } else if ((pstate & 0xff) == PLS_OFFLINE) {
9536 do_transition = 0; /* in an offline transient state */
9537 do_wait = 1; /* ...wait for it to settle */
9538 } else {
9539 do_transition = 1; /* need to move to offline */
9540 do_wait = 1; /* ...will need to wait */
9541 }
9542
9543 if (do_transition) {
9544 ret = set_physical_link_state(dd,
9545 PLS_OFFLINE | (rem_reason << 8));
9546
9547 if (ret != HCMD_SUCCESS) {
9548 dd_dev_err(dd,
9549 "Failed to transition to Offline link state, return %d\n",
9550 ret);
9551 return -EINVAL;
9552 }
9553 if (ppd->offline_disabled_reason == OPA_LINKDOWN_REASON_NONE)
9554 ppd->offline_disabled_reason =
9555 OPA_LINKDOWN_REASON_TRANSIENT;
9556 }
9557
9558 if (do_wait) {
9559 /* it can take a while for the link to go down */
dc060245 9560 ret = wait_phy_linkstate(dd, PLS_OFFLINE, 10000);
77241056
MM
9561 if (ret < 0)
9562 return ret;
9563 }
9564
9565 /* make sure the logical state is also down */
9566 wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
9567
9568 /*
9569 * Now in charge of LCB - must be after the physical state is
9570 * offline.quiet and before host_link_state is changed.
9571 */
9572 set_host_lcb_access(dd);
9573 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9574 ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
9575
9576 /*
9577 * The LNI has a mandatory wait time after the physical state
9578 * moves to Offline.Quiet. The wait time may be different
9579 * depending on how the link went down. The 8051 firmware
9580 * will observe the needed wait time and only move to ready
9581 * when that is completed. The largest of the quiet timeouts
05087f3b
DL
9582 * is 6s, so wait that long and then at least 0.5s more for
9583 * other transitions, and another 0.5s for a buffer.
77241056 9584 */
05087f3b 9585 ret = wait_fm_ready(dd, 7000);
77241056
MM
9586 if (ret) {
9587 dd_dev_err(dd,
9588 "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
9589 /* state is really offline, so make it so */
9590 ppd->host_link_state = HLS_DN_OFFLINE;
9591 return ret;
9592 }
9593
9594 /*
9595 * The state is now offline and the 8051 is ready to accept host
9596 * requests.
9597 * - change our state
9598 * - notify others if we were previously in a linkup state
9599 */
9600 ppd->host_link_state = HLS_DN_OFFLINE;
9601 if (previous_state & HLS_UP) {
9602 /* went down while link was up */
9603 handle_linkup_change(dd, 0);
9604 } else if (previous_state
9605 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
9606 /* went down while attempting link up */
9607 /* byte 1 of last_*_state is the failure reason */
9608 read_last_local_state(dd, &last_local_state);
9609 read_last_remote_state(dd, &last_remote_state);
9610 dd_dev_err(dd,
9611 "LNI failure last states: local 0x%08x, remote 0x%08x\n",
9612 last_local_state, last_remote_state);
9613 }
9614
9615 /* the active link width (downgrade) is 0 on link down */
9616 ppd->link_width_active = 0;
9617 ppd->link_width_downgrade_tx_active = 0;
9618 ppd->link_width_downgrade_rx_active = 0;
9619 ppd->current_egress_rate = 0;
9620 return 0;
9621}
9622
9623/* return the link state name */
9624static const char *link_state_name(u32 state)
9625{
9626 const char *name;
9627 int n = ilog2(state);
9628 static const char * const names[] = {
9629 [__HLS_UP_INIT_BP] = "INIT",
9630 [__HLS_UP_ARMED_BP] = "ARMED",
9631 [__HLS_UP_ACTIVE_BP] = "ACTIVE",
9632 [__HLS_DN_DOWNDEF_BP] = "DOWNDEF",
9633 [__HLS_DN_POLL_BP] = "POLL",
9634 [__HLS_DN_DISABLE_BP] = "DISABLE",
9635 [__HLS_DN_OFFLINE_BP] = "OFFLINE",
9636 [__HLS_VERIFY_CAP_BP] = "VERIFY_CAP",
9637 [__HLS_GOING_UP_BP] = "GOING_UP",
9638 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
9639 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
9640 };
9641
9642 name = n < ARRAY_SIZE(names) ? names[n] : NULL;
9643 return name ? name : "unknown";
9644}
9645
9646/* return the link state reason name */
9647static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
9648{
9649 if (state == HLS_UP_INIT) {
9650 switch (ppd->linkinit_reason) {
9651 case OPA_LINKINIT_REASON_LINKUP:
9652 return "(LINKUP)";
9653 case OPA_LINKINIT_REASON_FLAPPING:
9654 return "(FLAPPING)";
9655 case OPA_LINKINIT_OUTSIDE_POLICY:
9656 return "(OUTSIDE_POLICY)";
9657 case OPA_LINKINIT_QUARANTINED:
9658 return "(QUARANTINED)";
9659 case OPA_LINKINIT_INSUFIC_CAPABILITY:
9660 return "(INSUFIC_CAPABILITY)";
9661 default:
9662 break;
9663 }
9664 }
9665 return "";
9666}
9667
9668/*
9669 * driver_physical_state - convert the driver's notion of a port's
9670 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
9671 * Return -1 (converted to a u32) to indicate error.
9672 */
9673u32 driver_physical_state(struct hfi1_pportdata *ppd)
9674{
9675 switch (ppd->host_link_state) {
9676 case HLS_UP_INIT:
9677 case HLS_UP_ARMED:
9678 case HLS_UP_ACTIVE:
9679 return IB_PORTPHYSSTATE_LINKUP;
9680 case HLS_DN_POLL:
9681 return IB_PORTPHYSSTATE_POLLING;
9682 case HLS_DN_DISABLE:
9683 return IB_PORTPHYSSTATE_DISABLED;
9684 case HLS_DN_OFFLINE:
9685 return OPA_PORTPHYSSTATE_OFFLINE;
9686 case HLS_VERIFY_CAP:
9687 return IB_PORTPHYSSTATE_POLLING;
9688 case HLS_GOING_UP:
9689 return IB_PORTPHYSSTATE_POLLING;
9690 case HLS_GOING_OFFLINE:
9691 return OPA_PORTPHYSSTATE_OFFLINE;
9692 case HLS_LINK_COOLDOWN:
9693 return OPA_PORTPHYSSTATE_OFFLINE;
9694 case HLS_DN_DOWNDEF:
9695 default:
9696 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
9697 ppd->host_link_state);
9698 return -1;
9699 }
9700}
9701
9702/*
9703 * driver_logical_state - convert the driver's notion of a port's
9704 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
9705 * (converted to a u32) to indicate error.
9706 */
9707u32 driver_logical_state(struct hfi1_pportdata *ppd)
9708{
9709 if (ppd->host_link_state && !(ppd->host_link_state & HLS_UP))
9710 return IB_PORT_DOWN;
9711
9712 switch (ppd->host_link_state & HLS_UP) {
9713 case HLS_UP_INIT:
9714 return IB_PORT_INIT;
9715 case HLS_UP_ARMED:
9716 return IB_PORT_ARMED;
9717 case HLS_UP_ACTIVE:
9718 return IB_PORT_ACTIVE;
9719 default:
9720 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
9721 ppd->host_link_state);
9722 return -1;
9723 }
9724}
9725
9726void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
9727 u8 neigh_reason, u8 rem_reason)
9728{
9729 if (ppd->local_link_down_reason.latest == 0 &&
9730 ppd->neigh_link_down_reason.latest == 0) {
9731 ppd->local_link_down_reason.latest = lcl_reason;
9732 ppd->neigh_link_down_reason.latest = neigh_reason;
9733 ppd->remote_link_down_reason = rem_reason;
9734 }
9735}
9736
9737/*
9738 * Change the physical and/or logical link state.
9739 *
9740 * Do not call this routine while inside an interrupt. It contains
9741 * calls to routines that can take multiple seconds to finish.
9742 *
9743 * Returns 0 on success, -errno on failure.
9744 */
9745int set_link_state(struct hfi1_pportdata *ppd, u32 state)
9746{
9747 struct hfi1_devdata *dd = ppd->dd;
9748 struct ib_event event = {.device = NULL};
9749 int ret1, ret = 0;
9750 int was_up, is_down;
9751 int orig_new_state, poll_bounce;
9752
9753 mutex_lock(&ppd->hls_lock);
9754
9755 orig_new_state = state;
9756 if (state == HLS_DN_DOWNDEF)
9757 state = dd->link_default;
9758
9759 /* interpret poll -> poll as a link bounce */
9760 poll_bounce = ppd->host_link_state == HLS_DN_POLL
9761 && state == HLS_DN_POLL;
9762
9763 dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
9764 link_state_name(ppd->host_link_state),
9765 link_state_name(orig_new_state),
9766 poll_bounce ? "(bounce) " : "",
9767 link_state_reason_name(ppd, state));
9768
9769 was_up = !!(ppd->host_link_state & HLS_UP);
9770
9771 /*
9772 * If we're going to a (HLS_*) link state that implies the logical
9773 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
9774 * reset is_sm_config_started to 0.
9775 */
9776 if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
9777 ppd->is_sm_config_started = 0;
9778
9779 /*
9780 * Do nothing if the states match. Let a poll to poll link bounce
9781 * go through.
9782 */
9783 if (ppd->host_link_state == state && !poll_bounce)
9784 goto done;
9785
9786 switch (state) {
9787 case HLS_UP_INIT:
9788 if (ppd->host_link_state == HLS_DN_POLL && (quick_linkup
9789 || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
9790 /*
9791 * Quick link up jumps from polling to here.
9792 *
9793 * Whether in normal or loopback mode, the
9794 * simulator jumps from polling to link up.
9795 * Accept that here.
9796 */
9797 /* OK */;
9798 } else if (ppd->host_link_state != HLS_GOING_UP) {
9799 goto unexpected;
9800 }
9801
9802 ppd->host_link_state = HLS_UP_INIT;
9803 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
9804 if (ret) {
9805 /* logical state didn't change, stay at going_up */
9806 ppd->host_link_state = HLS_GOING_UP;
9807 dd_dev_err(dd,
9808 "%s: logical state did not change to INIT\n",
9809 __func__);
9810 } else {
9811 /* clear old transient LINKINIT_REASON code */
9812 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
9813 ppd->linkinit_reason =
9814 OPA_LINKINIT_REASON_LINKUP;
9815
9816 /* enable the port */
9817 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9818
9819 handle_linkup_change(dd, 1);
9820 }
9821 break;
9822 case HLS_UP_ARMED:
9823 if (ppd->host_link_state != HLS_UP_INIT)
9824 goto unexpected;
9825
9826 ppd->host_link_state = HLS_UP_ARMED;
9827 set_logical_state(dd, LSTATE_ARMED);
9828 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
9829 if (ret) {
9830 /* logical state didn't change, stay at init */
9831 ppd->host_link_state = HLS_UP_INIT;
9832 dd_dev_err(dd,
9833 "%s: logical state did not change to ARMED\n",
9834 __func__);
9835 }
9836 /*
9837 * The simulator does not currently implement SMA messages,
9838 * so neighbor_normal is not set. Set it here when we first
9839 * move to Armed.
9840 */
9841 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9842 ppd->neighbor_normal = 1;
9843 break;
9844 case HLS_UP_ACTIVE:
9845 if (ppd->host_link_state != HLS_UP_ARMED)
9846 goto unexpected;
9847
9848 ppd->host_link_state = HLS_UP_ACTIVE;
9849 set_logical_state(dd, LSTATE_ACTIVE);
9850 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
9851 if (ret) {
9852 /* logical state didn't change, stay at armed */
9853 ppd->host_link_state = HLS_UP_ARMED;
9854 dd_dev_err(dd,
9855 "%s: logical state did not change to ACTIVE\n",
9856 __func__);
9857 } else {
9858
9859 /* tell all engines to go running */
9860 sdma_all_running(dd);
9861
9862 /* Signal the IB layer that the port has went active */
9863 event.device = &dd->verbs_dev.ibdev;
9864 event.element.port_num = ppd->port;
9865 event.event = IB_EVENT_PORT_ACTIVE;
9866 }
9867 break;
9868 case HLS_DN_POLL:
9869 if ((ppd->host_link_state == HLS_DN_DISABLE ||
9870 ppd->host_link_state == HLS_DN_OFFLINE) &&
9871 dd->dc_shutdown)
9872 dc_start(dd);
9873 /* Hand LED control to the DC */
9874 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
9875
9876 if (ppd->host_link_state != HLS_DN_OFFLINE) {
9877 u8 tmp = ppd->link_enabled;
9878
9879 ret = goto_offline(ppd, ppd->remote_link_down_reason);
9880 if (ret) {
9881 ppd->link_enabled = tmp;
9882 break;
9883 }
9884 ppd->remote_link_down_reason = 0;
9885
9886 if (ppd->driver_link_ready)
9887 ppd->link_enabled = 1;
9888 }
9889
9890 ret = set_local_link_attributes(ppd);
9891 if (ret)
9892 break;
9893
9894 ppd->port_error_action = 0;
9895 ppd->host_link_state = HLS_DN_POLL;
9896
9897 if (quick_linkup) {
9898 /* quick linkup does not go into polling */
9899 ret = do_quick_linkup(dd);
9900 } else {
9901 ret1 = set_physical_link_state(dd, PLS_POLLING);
9902 if (ret1 != HCMD_SUCCESS) {
9903 dd_dev_err(dd,
9904 "Failed to transition to Polling link state, return 0x%x\n",
9905 ret1);
9906 ret = -EINVAL;
9907 }
9908 }
9909 ppd->offline_disabled_reason = OPA_LINKDOWN_REASON_NONE;
9910 /*
9911 * If an error occurred above, go back to offline. The
9912 * caller may reschedule another attempt.
9913 */
9914 if (ret)
9915 goto_offline(ppd, 0);
9916 break;
9917 case HLS_DN_DISABLE:
9918 /* link is disabled */
9919 ppd->link_enabled = 0;
9920
9921 /* allow any state to transition to disabled */
9922
9923 /* must transition to offline first */
9924 if (ppd->host_link_state != HLS_DN_OFFLINE) {
9925 ret = goto_offline(ppd, ppd->remote_link_down_reason);
9926 if (ret)
9927 break;
9928 ppd->remote_link_down_reason = 0;
9929 }
9930
9931 ret1 = set_physical_link_state(dd, PLS_DISABLED);
9932 if (ret1 != HCMD_SUCCESS) {
9933 dd_dev_err(dd,
9934 "Failed to transition to Disabled link state, return 0x%x\n",
9935 ret1);
9936 ret = -EINVAL;
9937 break;
9938 }
9939 ppd->host_link_state = HLS_DN_DISABLE;
9940 dc_shutdown(dd);
9941 break;
9942 case HLS_DN_OFFLINE:
9943 if (ppd->host_link_state == HLS_DN_DISABLE)
9944 dc_start(dd);
9945
9946 /* allow any state to transition to offline */
9947 ret = goto_offline(ppd, ppd->remote_link_down_reason);
9948 if (!ret)
9949 ppd->remote_link_down_reason = 0;
9950 break;
9951 case HLS_VERIFY_CAP:
9952 if (ppd->host_link_state != HLS_DN_POLL)
9953 goto unexpected;
9954 ppd->host_link_state = HLS_VERIFY_CAP;
9955 break;
9956 case HLS_GOING_UP:
9957 if (ppd->host_link_state != HLS_VERIFY_CAP)
9958 goto unexpected;
9959
9960 ret1 = set_physical_link_state(dd, PLS_LINKUP);
9961 if (ret1 != HCMD_SUCCESS) {
9962 dd_dev_err(dd,
9963 "Failed to transition to link up state, return 0x%x\n",
9964 ret1);
9965 ret = -EINVAL;
9966 break;
9967 }
9968 ppd->host_link_state = HLS_GOING_UP;
9969 break;
9970
9971 case HLS_GOING_OFFLINE: /* transient within goto_offline() */
9972 case HLS_LINK_COOLDOWN: /* transient within goto_offline() */
9973 default:
9974 dd_dev_info(dd, "%s: state 0x%x: not supported\n",
9975 __func__, state);
9976 ret = -EINVAL;
9977 break;
9978 }
9979
9980 is_down = !!(ppd->host_link_state & (HLS_DN_POLL |
9981 HLS_DN_DISABLE | HLS_DN_OFFLINE));
9982
9983 if (was_up && is_down && ppd->local_link_down_reason.sma == 0 &&
9984 ppd->neigh_link_down_reason.sma == 0) {
9985 ppd->local_link_down_reason.sma =
9986 ppd->local_link_down_reason.latest;
9987 ppd->neigh_link_down_reason.sma =
9988 ppd->neigh_link_down_reason.latest;
9989 }
9990
9991 goto done;
9992
9993unexpected:
9994 dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
9995 __func__, link_state_name(ppd->host_link_state),
9996 link_state_name(state));
9997 ret = -EINVAL;
9998
9999done:
10000 mutex_unlock(&ppd->hls_lock);
10001
10002 if (event.device)
10003 ib_dispatch_event(&event);
10004
10005 return ret;
10006}
10007
10008int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10009{
10010 u64 reg;
10011 int ret = 0;
10012
10013 switch (which) {
10014 case HFI1_IB_CFG_LIDLMC:
10015 set_lidlmc(ppd);
10016 break;
10017 case HFI1_IB_CFG_VL_HIGH_LIMIT:
10018 /*
10019 * The VL Arbitrator high limit is sent in units of 4k
10020 * bytes, while HFI stores it in units of 64 bytes.
10021 */
10022 val *= 4096/64;
10023 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10024 << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10025 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10026 break;
10027 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10028 /* HFI only supports POLL as the default link down state */
10029 if (val != HLS_DN_POLL)
10030 ret = -EINVAL;
10031 break;
10032 case HFI1_IB_CFG_OP_VLS:
10033 if (ppd->vls_operational != val) {
10034 ppd->vls_operational = val;
10035 if (!ppd->port)
10036 ret = -EINVAL;
10037 else
10038 ret = sdma_map_init(
10039 ppd->dd,
10040 ppd->port - 1,
10041 val,
10042 NULL);
10043 }
10044 break;
10045 /*
10046 * For link width, link width downgrade, and speed enable, always AND
10047 * the setting with what is actually supported. This has two benefits.
10048 * First, enabled can't have unsupported values, no matter what the
10049 * SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean
10050 * "fill in with your supported value" have all the bits in the
10051 * field set, so simply ANDing with supported has the desired result.
10052 */
10053 case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10054 ppd->link_width_enabled = val & ppd->link_width_supported;
10055 break;
10056 case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10057 ppd->link_width_downgrade_enabled =
10058 val & ppd->link_width_downgrade_supported;
10059 break;
10060 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10061 ppd->link_speed_enabled = val & ppd->link_speed_supported;
10062 break;
10063 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10064 /*
10065 * HFI does not follow IB specs, save this value
10066 * so we can report it, if asked.
10067 */
10068 ppd->overrun_threshold = val;
10069 break;
10070 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10071 /*
10072 * HFI does not follow IB specs, save this value
10073 * so we can report it, if asked.
10074 */
10075 ppd->phy_error_threshold = val;
10076 break;
10077
10078 case HFI1_IB_CFG_MTU:
10079 set_send_length(ppd);
10080 break;
10081
10082 case HFI1_IB_CFG_PKEYS:
10083 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10084 set_partition_keys(ppd);
10085 break;
10086
10087 default:
10088 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10089 dd_dev_info(ppd->dd,
10090 "%s: which %s, val 0x%x: not implemented\n",
10091 __func__, ib_cfg_name(which), val);
10092 break;
10093 }
10094 return ret;
10095}
10096
10097/* begin functions related to vl arbitration table caching */
10098static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10099{
10100 int i;
10101
10102 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10103 VL_ARB_LOW_PRIO_TABLE_SIZE);
10104 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10105 VL_ARB_HIGH_PRIO_TABLE_SIZE);
10106
10107 /*
10108 * Note that we always return values directly from the
10109 * 'vl_arb_cache' (and do no CSR reads) in response to a
10110 * 'Get(VLArbTable)'. This is obviously correct after a
10111 * 'Set(VLArbTable)', since the cache will then be up to
10112 * date. But it's also correct prior to any 'Set(VLArbTable)'
10113 * since then both the cache, and the relevant h/w registers
10114 * will be zeroed.
10115 */
10116
10117 for (i = 0; i < MAX_PRIO_TABLE; i++)
10118 spin_lock_init(&ppd->vl_arb_cache[i].lock);
10119}
10120
10121/*
10122 * vl_arb_lock_cache
10123 *
10124 * All other vl_arb_* functions should be called only after locking
10125 * the cache.
10126 */
10127static inline struct vl_arb_cache *
10128vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10129{
10130 if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10131 return NULL;
10132 spin_lock(&ppd->vl_arb_cache[idx].lock);
10133 return &ppd->vl_arb_cache[idx];
10134}
10135
10136static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
10137{
10138 spin_unlock(&ppd->vl_arb_cache[idx].lock);
10139}
10140
10141static void vl_arb_get_cache(struct vl_arb_cache *cache,
10142 struct ib_vl_weight_elem *vl)
10143{
10144 memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
10145}
10146
10147static void vl_arb_set_cache(struct vl_arb_cache *cache,
10148 struct ib_vl_weight_elem *vl)
10149{
10150 memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10151}
10152
10153static int vl_arb_match_cache(struct vl_arb_cache *cache,
10154 struct ib_vl_weight_elem *vl)
10155{
10156 return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10157}
10158/* end functions related to vl arbitration table caching */
10159
10160static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
10161 u32 size, struct ib_vl_weight_elem *vl)
10162{
10163 struct hfi1_devdata *dd = ppd->dd;
10164 u64 reg;
10165 unsigned int i, is_up = 0;
10166 int drain, ret = 0;
10167
10168 mutex_lock(&ppd->hls_lock);
10169
10170 if (ppd->host_link_state & HLS_UP)
10171 is_up = 1;
10172
10173 drain = !is_ax(dd) && is_up;
10174
10175 if (drain)
10176 /*
10177 * Before adjusting VL arbitration weights, empty per-VL
10178 * FIFOs, otherwise a packet whose VL weight is being
10179 * set to 0 could get stuck in a FIFO with no chance to
10180 * egress.
10181 */
10182 ret = stop_drain_data_vls(dd);
10183
10184 if (ret) {
10185 dd_dev_err(
10186 dd,
10187 "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
10188 __func__);
10189 goto err;
10190 }
10191
10192 for (i = 0; i < size; i++, vl++) {
10193 /*
10194 * NOTE: The low priority shift and mask are used here, but
10195 * they are the same for both the low and high registers.
10196 */
10197 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
10198 << SEND_LOW_PRIORITY_LIST_VL_SHIFT)
10199 | (((u64)vl->weight
10200 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
10201 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
10202 write_csr(dd, target + (i * 8), reg);
10203 }
10204 pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
10205
10206 if (drain)
10207 open_fill_data_vls(dd); /* reopen all VLs */
10208
10209err:
10210 mutex_unlock(&ppd->hls_lock);
10211
10212 return ret;
10213}
10214
10215/*
10216 * Read one credit merge VL register.
10217 */
10218static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
10219 struct vl_limit *vll)
10220{
10221 u64 reg = read_csr(dd, csr);
10222
10223 vll->dedicated = cpu_to_be16(
10224 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
10225 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
10226 vll->shared = cpu_to_be16(
10227 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
10228 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
10229}
10230
10231/*
10232 * Read the current credit merge limits.
10233 */
10234static int get_buffer_control(struct hfi1_devdata *dd,
10235 struct buffer_control *bc, u16 *overall_limit)
10236{
10237 u64 reg;
10238 int i;
10239
10240 /* not all entries are filled in */
10241 memset(bc, 0, sizeof(*bc));
10242
10243 /* OPA and HFI have a 1-1 mapping */
10244 for (i = 0; i < TXE_NUM_DATA_VL; i++)
10245 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8*i), &bc->vl[i]);
10246
10247 /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
10248 read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
10249
10250 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10251 bc->overall_shared_limit = cpu_to_be16(
10252 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
10253 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
10254 if (overall_limit)
10255 *overall_limit = (reg
10256 >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
10257 & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
10258 return sizeof(struct buffer_control);
10259}
10260
10261static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10262{
10263 u64 reg;
10264 int i;
10265
10266 /* each register contains 16 SC->VLnt mappings, 4 bits each */
10267 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
10268 for (i = 0; i < sizeof(u64); i++) {
10269 u8 byte = *(((u8 *)&reg) + i);
10270
10271 dp->vlnt[2 * i] = byte & 0xf;
10272 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
10273 }
10274
10275 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
10276 for (i = 0; i < sizeof(u64); i++) {
10277 u8 byte = *(((u8 *)&reg) + i);
10278
10279 dp->vlnt[16 + (2 * i)] = byte & 0xf;
10280 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
10281 }
10282 return sizeof(struct sc2vlnt);
10283}
10284
10285static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
10286 struct ib_vl_weight_elem *vl)
10287{
10288 unsigned int i;
10289
10290 for (i = 0; i < nelems; i++, vl++) {
10291 vl->vl = 0xf;
10292 vl->weight = 0;
10293 }
10294}
10295
10296static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10297{
10298 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
10299 DC_SC_VL_VAL(15_0,
10300 0, dp->vlnt[0] & 0xf,
10301 1, dp->vlnt[1] & 0xf,
10302 2, dp->vlnt[2] & 0xf,
10303 3, dp->vlnt[3] & 0xf,
10304 4, dp->vlnt[4] & 0xf,
10305 5, dp->vlnt[5] & 0xf,
10306 6, dp->vlnt[6] & 0xf,
10307 7, dp->vlnt[7] & 0xf,
10308 8, dp->vlnt[8] & 0xf,
10309 9, dp->vlnt[9] & 0xf,
10310 10, dp->vlnt[10] & 0xf,
10311 11, dp->vlnt[11] & 0xf,
10312 12, dp->vlnt[12] & 0xf,
10313 13, dp->vlnt[13] & 0xf,
10314 14, dp->vlnt[14] & 0xf,
10315 15, dp->vlnt[15] & 0xf));
10316 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
10317 DC_SC_VL_VAL(31_16,
10318 16, dp->vlnt[16] & 0xf,
10319 17, dp->vlnt[17] & 0xf,
10320 18, dp->vlnt[18] & 0xf,
10321 19, dp->vlnt[19] & 0xf,
10322 20, dp->vlnt[20] & 0xf,
10323 21, dp->vlnt[21] & 0xf,
10324 22, dp->vlnt[22] & 0xf,
10325 23, dp->vlnt[23] & 0xf,
10326 24, dp->vlnt[24] & 0xf,
10327 25, dp->vlnt[25] & 0xf,
10328 26, dp->vlnt[26] & 0xf,
10329 27, dp->vlnt[27] & 0xf,
10330 28, dp->vlnt[28] & 0xf,
10331 29, dp->vlnt[29] & 0xf,
10332 30, dp->vlnt[30] & 0xf,
10333 31, dp->vlnt[31] & 0xf));
10334}
10335
10336static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
10337 u16 limit)
10338{
10339 if (limit != 0)
10340 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
10341 what, (int)limit, idx);
10342}
10343
10344/* change only the shared limit portion of SendCmGLobalCredit */
10345static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
10346{
10347 u64 reg;
10348
10349 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10350 reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
10351 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
10352 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
10353}
10354
10355/* change only the total credit limit portion of SendCmGLobalCredit */
10356static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
10357{
10358 u64 reg;
10359
10360 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10361 reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
10362 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
10363 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
10364}
10365
10366/* set the given per-VL shared limit */
10367static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
10368{
10369 u64 reg;
10370 u32 addr;
10371
10372 if (vl < TXE_NUM_DATA_VL)
10373 addr = SEND_CM_CREDIT_VL + (8 * vl);
10374 else
10375 addr = SEND_CM_CREDIT_VL15;
10376
10377 reg = read_csr(dd, addr);
10378 reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
10379 reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
10380 write_csr(dd, addr, reg);
10381}
10382
10383/* set the given per-VL dedicated limit */
10384static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
10385{
10386 u64 reg;
10387 u32 addr;
10388
10389 if (vl < TXE_NUM_DATA_VL)
10390 addr = SEND_CM_CREDIT_VL + (8 * vl);
10391 else
10392 addr = SEND_CM_CREDIT_VL15;
10393
10394 reg = read_csr(dd, addr);
10395 reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
10396 reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
10397 write_csr(dd, addr, reg);
10398}
10399
10400/* spin until the given per-VL status mask bits clear */
10401static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
10402 const char *which)
10403{
10404 unsigned long timeout;
10405 u64 reg;
10406
10407 timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
10408 while (1) {
10409 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
10410
10411 if (reg == 0)
10412 return; /* success */
10413 if (time_after(jiffies, timeout))
10414 break; /* timed out */
10415 udelay(1);
10416 }
10417
10418 dd_dev_err(dd,
10419 "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
10420 which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
10421 /*
10422 * If this occurs, it is likely there was a credit loss on the link.
10423 * The only recovery from that is a link bounce.
10424 */
10425 dd_dev_err(dd,
10426 "Continuing anyway. A credit loss may occur. Suggest a link bounce\n");
10427}
10428
10429/*
10430 * The number of credits on the VLs may be changed while everything
10431 * is "live", but the following algorithm must be followed due to
10432 * how the hardware is actually implemented. In particular,
10433 * Return_Credit_Status[] is the only correct status check.
10434 *
10435 * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
10436 * set Global_Shared_Credit_Limit = 0
10437 * use_all_vl = 1
10438 * mask0 = all VLs that are changing either dedicated or shared limits
10439 * set Shared_Limit[mask0] = 0
10440 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
10441 * if (changing any dedicated limit)
10442 * mask1 = all VLs that are lowering dedicated limits
10443 * lower Dedicated_Limit[mask1]
10444 * spin until Return_Credit_Status[mask1] == 0
10445 * raise Dedicated_Limits
10446 * raise Shared_Limits
10447 * raise Global_Shared_Credit_Limit
10448 *
10449 * lower = if the new limit is lower, set the limit to the new value
10450 * raise = if the new limit is higher than the current value (may be changed
10451 * earlier in the algorithm), set the new limit to the new value
10452 */
10453static int set_buffer_control(struct hfi1_devdata *dd,
10454 struct buffer_control *new_bc)
10455{
10456 u64 changing_mask, ld_mask, stat_mask;
10457 int change_count;
10458 int i, use_all_mask;
10459 int this_shared_changing;
10460 /*
10461 * A0: add the variable any_shared_limit_changing below and in the
10462 * algorithm above. If removing A0 support, it can be removed.
10463 */
10464 int any_shared_limit_changing;
10465 struct buffer_control cur_bc;
10466 u8 changing[OPA_MAX_VLS];
10467 u8 lowering_dedicated[OPA_MAX_VLS];
10468 u16 cur_total;
10469 u32 new_total = 0;
10470 const u64 all_mask =
10471 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
10472 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
10473 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
10474 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
10475 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
10476 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
10477 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
10478 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
10479 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
10480
10481#define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
10482#define NUM_USABLE_VLS 16 /* look at VL15 and less */
10483
10484
10485 /* find the new total credits, do sanity check on unused VLs */
10486 for (i = 0; i < OPA_MAX_VLS; i++) {
10487 if (valid_vl(i)) {
10488 new_total += be16_to_cpu(new_bc->vl[i].dedicated);
10489 continue;
10490 }
10491 nonzero_msg(dd, i, "dedicated",
10492 be16_to_cpu(new_bc->vl[i].dedicated));
10493 nonzero_msg(dd, i, "shared",
10494 be16_to_cpu(new_bc->vl[i].shared));
10495 new_bc->vl[i].dedicated = 0;
10496 new_bc->vl[i].shared = 0;
10497 }
10498 new_total += be16_to_cpu(new_bc->overall_shared_limit);
bff14bb6 10499
77241056
MM
10500 /* fetch the current values */
10501 get_buffer_control(dd, &cur_bc, &cur_total);
10502
10503 /*
10504 * Create the masks we will use.
10505 */
10506 memset(changing, 0, sizeof(changing));
10507 memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
10508 /* NOTE: Assumes that the individual VL bits are adjacent and in
10509 increasing order */
10510 stat_mask =
10511 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
10512 changing_mask = 0;
10513 ld_mask = 0;
10514 change_count = 0;
10515 any_shared_limit_changing = 0;
10516 for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
10517 if (!valid_vl(i))
10518 continue;
10519 this_shared_changing = new_bc->vl[i].shared
10520 != cur_bc.vl[i].shared;
10521 if (this_shared_changing)
10522 any_shared_limit_changing = 1;
10523 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated
10524 || this_shared_changing) {
10525 changing[i] = 1;
10526 changing_mask |= stat_mask;
10527 change_count++;
10528 }
10529 if (be16_to_cpu(new_bc->vl[i].dedicated) <
10530 be16_to_cpu(cur_bc.vl[i].dedicated)) {
10531 lowering_dedicated[i] = 1;
10532 ld_mask |= stat_mask;
10533 }
10534 }
10535
10536 /* bracket the credit change with a total adjustment */
10537 if (new_total > cur_total)
10538 set_global_limit(dd, new_total);
10539
10540 /*
10541 * Start the credit change algorithm.
10542 */
10543 use_all_mask = 0;
10544 if ((be16_to_cpu(new_bc->overall_shared_limit) <
995deafa
MM
10545 be16_to_cpu(cur_bc.overall_shared_limit)) ||
10546 (is_ax(dd) && any_shared_limit_changing)) {
77241056
MM
10547 set_global_shared(dd, 0);
10548 cur_bc.overall_shared_limit = 0;
10549 use_all_mask = 1;
10550 }
10551
10552 for (i = 0; i < NUM_USABLE_VLS; i++) {
10553 if (!valid_vl(i))
10554 continue;
10555
10556 if (changing[i]) {
10557 set_vl_shared(dd, i, 0);
10558 cur_bc.vl[i].shared = 0;
10559 }
10560 }
10561
10562 wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
10563 "shared");
10564
10565 if (change_count > 0) {
10566 for (i = 0; i < NUM_USABLE_VLS; i++) {
10567 if (!valid_vl(i))
10568 continue;
10569
10570 if (lowering_dedicated[i]) {
10571 set_vl_dedicated(dd, i,
10572 be16_to_cpu(new_bc->vl[i].dedicated));
10573 cur_bc.vl[i].dedicated =
10574 new_bc->vl[i].dedicated;
10575 }
10576 }
10577
10578 wait_for_vl_status_clear(dd, ld_mask, "dedicated");
10579
10580 /* now raise all dedicated that are going up */
10581 for (i = 0; i < NUM_USABLE_VLS; i++) {
10582 if (!valid_vl(i))
10583 continue;
10584
10585 if (be16_to_cpu(new_bc->vl[i].dedicated) >
10586 be16_to_cpu(cur_bc.vl[i].dedicated))
10587 set_vl_dedicated(dd, i,
10588 be16_to_cpu(new_bc->vl[i].dedicated));
10589 }
10590 }
10591
10592 /* next raise all shared that are going up */
10593 for (i = 0; i < NUM_USABLE_VLS; i++) {
10594 if (!valid_vl(i))
10595 continue;
10596
10597 if (be16_to_cpu(new_bc->vl[i].shared) >
10598 be16_to_cpu(cur_bc.vl[i].shared))
10599 set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
10600 }
10601
10602 /* finally raise the global shared */
10603 if (be16_to_cpu(new_bc->overall_shared_limit) >
10604 be16_to_cpu(cur_bc.overall_shared_limit))
10605 set_global_shared(dd,
10606 be16_to_cpu(new_bc->overall_shared_limit));
10607
10608 /* bracket the credit change with a total adjustment */
10609 if (new_total < cur_total)
10610 set_global_limit(dd, new_total);
10611 return 0;
10612}
10613
10614/*
10615 * Read the given fabric manager table. Return the size of the
10616 * table (in bytes) on success, and a negative error code on
10617 * failure.
10618 */
10619int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
10620
10621{
10622 int size;
10623 struct vl_arb_cache *vlc;
10624
10625 switch (which) {
10626 case FM_TBL_VL_HIGH_ARB:
10627 size = 256;
10628 /*
10629 * OPA specifies 128 elements (of 2 bytes each), though
10630 * HFI supports only 16 elements in h/w.
10631 */
10632 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
10633 vl_arb_get_cache(vlc, t);
10634 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
10635 break;
10636 case FM_TBL_VL_LOW_ARB:
10637 size = 256;
10638 /*
10639 * OPA specifies 128 elements (of 2 bytes each), though
10640 * HFI supports only 16 elements in h/w.
10641 */
10642 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
10643 vl_arb_get_cache(vlc, t);
10644 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
10645 break;
10646 case FM_TBL_BUFFER_CONTROL:
10647 size = get_buffer_control(ppd->dd, t, NULL);
10648 break;
10649 case FM_TBL_SC2VLNT:
10650 size = get_sc2vlnt(ppd->dd, t);
10651 break;
10652 case FM_TBL_VL_PREEMPT_ELEMS:
10653 size = 256;
10654 /* OPA specifies 128 elements, of 2 bytes each */
10655 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
10656 break;
10657 case FM_TBL_VL_PREEMPT_MATRIX:
10658 size = 256;
10659 /*
10660 * OPA specifies that this is the same size as the VL
10661 * arbitration tables (i.e., 256 bytes).
10662 */
10663 break;
10664 default:
10665 return -EINVAL;
10666 }
10667 return size;
10668}
10669
10670/*
10671 * Write the given fabric manager table.
10672 */
10673int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
10674{
10675 int ret = 0;
10676 struct vl_arb_cache *vlc;
10677
10678 switch (which) {
10679 case FM_TBL_VL_HIGH_ARB:
10680 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
10681 if (vl_arb_match_cache(vlc, t)) {
10682 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
10683 break;
10684 }
10685 vl_arb_set_cache(vlc, t);
10686 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
10687 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
10688 VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
10689 break;
10690 case FM_TBL_VL_LOW_ARB:
10691 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
10692 if (vl_arb_match_cache(vlc, t)) {
10693 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
10694 break;
10695 }
10696 vl_arb_set_cache(vlc, t);
10697 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
10698 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
10699 VL_ARB_LOW_PRIO_TABLE_SIZE, t);
10700 break;
10701 case FM_TBL_BUFFER_CONTROL:
10702 ret = set_buffer_control(ppd->dd, t);
10703 break;
10704 case FM_TBL_SC2VLNT:
10705 set_sc2vlnt(ppd->dd, t);
10706 break;
10707 default:
10708 ret = -EINVAL;
10709 }
10710 return ret;
10711}
10712
10713/*
10714 * Disable all data VLs.
10715 *
10716 * Return 0 if disabled, non-zero if the VLs cannot be disabled.
10717 */
10718static int disable_data_vls(struct hfi1_devdata *dd)
10719{
995deafa 10720 if (is_ax(dd))
77241056
MM
10721 return 1;
10722
10723 pio_send_control(dd, PSC_DATA_VL_DISABLE);
10724
10725 return 0;
10726}
10727
10728/*
10729 * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
10730 * Just re-enables all data VLs (the "fill" part happens
10731 * automatically - the name was chosen for symmetry with
10732 * stop_drain_data_vls()).
10733 *
10734 * Return 0 if successful, non-zero if the VLs cannot be enabled.
10735 */
10736int open_fill_data_vls(struct hfi1_devdata *dd)
10737{
995deafa 10738 if (is_ax(dd))
77241056
MM
10739 return 1;
10740
10741 pio_send_control(dd, PSC_DATA_VL_ENABLE);
10742
10743 return 0;
10744}
10745
10746/*
10747 * drain_data_vls() - assumes that disable_data_vls() has been called,
10748 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
10749 * engines to drop to 0.
10750 */
10751static void drain_data_vls(struct hfi1_devdata *dd)
10752{
10753 sc_wait(dd);
10754 sdma_wait(dd);
10755 pause_for_credit_return(dd);
10756}
10757
10758/*
10759 * stop_drain_data_vls() - disable, then drain all per-VL fifos.
10760 *
10761 * Use open_fill_data_vls() to resume using data VLs. This pair is
10762 * meant to be used like this:
10763 *
10764 * stop_drain_data_vls(dd);
10765 * // do things with per-VL resources
10766 * open_fill_data_vls(dd);
10767 */
10768int stop_drain_data_vls(struct hfi1_devdata *dd)
10769{
10770 int ret;
10771
10772 ret = disable_data_vls(dd);
10773 if (ret == 0)
10774 drain_data_vls(dd);
10775
10776 return ret;
10777}
10778
10779/*
10780 * Convert a nanosecond time to a cclock count. No matter how slow
10781 * the cclock, a non-zero ns will always have a non-zero result.
10782 */
10783u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
10784{
10785 u32 cclocks;
10786
10787 if (dd->icode == ICODE_FPGA_EMULATION)
10788 cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
10789 else /* simulation pretends to be ASIC */
10790 cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
10791 if (ns && !cclocks) /* if ns nonzero, must be at least 1 */
10792 cclocks = 1;
10793 return cclocks;
10794}
10795
10796/*
10797 * Convert a cclock count to nanoseconds. Not matter how slow
10798 * the cclock, a non-zero cclocks will always have a non-zero result.
10799 */
10800u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
10801{
10802 u32 ns;
10803
10804 if (dd->icode == ICODE_FPGA_EMULATION)
10805 ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
10806 else /* simulation pretends to be ASIC */
10807 ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
10808 if (cclocks && !ns)
10809 ns = 1;
10810 return ns;
10811}
10812
10813/*
10814 * Dynamically adjust the receive interrupt timeout for a context based on
10815 * incoming packet rate.
10816 *
10817 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
10818 */
10819static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
10820{
10821 struct hfi1_devdata *dd = rcd->dd;
10822 u32 timeout = rcd->rcvavail_timeout;
10823
10824 /*
10825 * This algorithm doubles or halves the timeout depending on whether
10826 * the number of packets received in this interrupt were less than or
10827 * greater equal the interrupt count.
10828 *
10829 * The calculations below do not allow a steady state to be achieved.
10830 * Only at the endpoints it is possible to have an unchanging
10831 * timeout.
10832 */
10833 if (npkts < rcv_intr_count) {
10834 /*
10835 * Not enough packets arrived before the timeout, adjust
10836 * timeout downward.
10837 */
10838 if (timeout < 2) /* already at minimum? */
10839 return;
10840 timeout >>= 1;
10841 } else {
10842 /*
10843 * More than enough packets arrived before the timeout, adjust
10844 * timeout upward.
10845 */
10846 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
10847 return;
10848 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
10849 }
10850
10851 rcd->rcvavail_timeout = timeout;
10852 /* timeout cannot be larger than rcv_intr_timeout_csr which has already
10853 been verified to be in range */
10854 write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
10855 (u64)timeout << RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
10856}
10857
10858void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
10859 u32 intr_adjust, u32 npkts)
10860{
10861 struct hfi1_devdata *dd = rcd->dd;
10862 u64 reg;
10863 u32 ctxt = rcd->ctxt;
10864
10865 /*
10866 * Need to write timeout register before updating RcvHdrHead to ensure
10867 * that a new value is used when the HW decides to restart counting.
10868 */
10869 if (intr_adjust)
10870 adjust_rcv_timeout(rcd, npkts);
10871 if (updegr) {
10872 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
10873 << RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
10874 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
10875 }
10876 mmiowb();
10877 reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
10878 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
10879 << RCV_HDR_HEAD_HEAD_SHIFT);
10880 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
10881 mmiowb();
10882}
10883
10884u32 hdrqempty(struct hfi1_ctxtdata *rcd)
10885{
10886 u32 head, tail;
10887
10888 head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
10889 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
10890
10891 if (rcd->rcvhdrtail_kvaddr)
10892 tail = get_rcvhdrtail(rcd);
10893 else
10894 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
10895
10896 return head == tail;
10897}
10898
10899/*
10900 * Context Control and Receive Array encoding for buffer size:
10901 * 0x0 invalid
10902 * 0x1 4 KB
10903 * 0x2 8 KB
10904 * 0x3 16 KB
10905 * 0x4 32 KB
10906 * 0x5 64 KB
10907 * 0x6 128 KB
10908 * 0x7 256 KB
10909 * 0x8 512 KB (Receive Array only)
10910 * 0x9 1 MB (Receive Array only)
10911 * 0xa 2 MB (Receive Array only)
10912 *
10913 * 0xB-0xF - reserved (Receive Array only)
10914 *
10915 *
10916 * This routine assumes that the value has already been sanity checked.
10917 */
10918static u32 encoded_size(u32 size)
10919{
10920 switch (size) {
10921 case 4*1024: return 0x1;
10922 case 8*1024: return 0x2;
10923 case 16*1024: return 0x3;
10924 case 32*1024: return 0x4;
10925 case 64*1024: return 0x5;
10926 case 128*1024: return 0x6;
10927 case 256*1024: return 0x7;
10928 case 512*1024: return 0x8;
10929 case 1*1024*1024: return 0x9;
10930 case 2*1024*1024: return 0xa;
10931 }
10932 return 0x1; /* if invalid, go with the minimum size */
10933}
10934
10935void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt)
10936{
10937 struct hfi1_ctxtdata *rcd;
10938 u64 rcvctrl, reg;
10939 int did_enable = 0;
10940
10941 rcd = dd->rcd[ctxt];
10942 if (!rcd)
10943 return;
10944
10945 hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
10946
10947 rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
10948 /* if the context already enabled, don't do the extra steps */
10949 if ((op & HFI1_RCVCTRL_CTXT_ENB)
10950 && !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
10951 /* reset the tail and hdr addresses, and sequence count */
10952 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
10953 rcd->rcvhdrq_phys);
10954 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
10955 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
10956 rcd->rcvhdrqtailaddr_phys);
10957 rcd->seq_cnt = 1;
10958
10959 /* reset the cached receive header queue head value */
10960 rcd->head = 0;
10961
10962 /*
10963 * Zero the receive header queue so we don't get false
10964 * positives when checking the sequence number. The
10965 * sequence numbers could land exactly on the same spot.
10966 * E.g. a rcd restart before the receive header wrapped.
10967 */
10968 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
10969
10970 /* starting timeout */
10971 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
10972
10973 /* enable the context */
10974 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
10975
10976 /* clean the egr buffer size first */
10977 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
10978 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
10979 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
10980 << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
10981
10982 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
10983 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
10984 did_enable = 1;
10985
10986 /* zero RcvEgrIndexHead */
10987 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
10988
10989 /* set eager count and base index */
10990 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
10991 & RCV_EGR_CTRL_EGR_CNT_MASK)
10992 << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
10993 (((rcd->eager_base >> RCV_SHIFT)
10994 & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
10995 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
10996 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
10997
10998 /*
10999 * Set TID (expected) count and base index.
11000 * rcd->expected_count is set to individual RcvArray entries,
11001 * not pairs, and the CSR takes a pair-count in groups of
11002 * four, so divide by 8.
11003 */
11004 reg = (((rcd->expected_count >> RCV_SHIFT)
11005 & RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11006 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11007 (((rcd->expected_base >> RCV_SHIFT)
11008 & RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11009 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11010 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
82c2611d
NV
11011 if (ctxt == HFI1_CTRL_CTXT)
11012 write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
77241056
MM
11013 }
11014 if (op & HFI1_RCVCTRL_CTXT_DIS) {
11015 write_csr(dd, RCV_VL15, 0);
46b010d3
MB
11016 /*
11017 * When receive context is being disabled turn on tail
11018 * update with a dummy tail address and then disable
11019 * receive context.
11020 */
11021 if (dd->rcvhdrtail_dummy_physaddr) {
11022 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11023 dd->rcvhdrtail_dummy_physaddr);
11024 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11025 }
11026
77241056
MM
11027 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11028 }
11029 if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11030 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11031 if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11032 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11033 if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_phys)
11034 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11035 if (op & HFI1_RCVCTRL_TAILUPD_DIS)
11036 rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11037 if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11038 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11039 if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11040 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11041 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11042 /* In one-packet-per-eager mode, the size comes from
11043 the RcvArray entry. */
11044 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11045 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11046 }
11047 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11048 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11049 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11050 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11051 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11052 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11053 if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11054 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11055 if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11056 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11057 rcd->rcvctrl = rcvctrl;
11058 hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11059 write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11060
11061 /* work around sticky RcvCtxtStatus.BlockedRHQFull */
11062 if (did_enable
11063 && (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11064 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11065 if (reg != 0) {
11066 dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11067 ctxt, reg);
11068 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11069 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11070 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11071 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11072 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11073 dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11074 ctxt, reg, reg == 0 ? "not" : "still");
11075 }
11076 }
11077
11078 if (did_enable) {
11079 /*
11080 * The interrupt timeout and count must be set after
11081 * the context is enabled to take effect.
11082 */
11083 /* set interrupt timeout */
11084 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11085 (u64)rcd->rcvavail_timeout <<
11086 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11087
11088 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11089 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11090 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11091 }
11092
11093 if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
11094 /*
11095 * If the context has been disabled and the Tail Update has
46b010d3
MB
11096 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11097 * so it doesn't contain an address that is invalid.
77241056 11098 */
46b010d3
MB
11099 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11100 dd->rcvhdrtail_dummy_physaddr);
77241056
MM
11101}
11102
11103u32 hfi1_read_cntrs(struct hfi1_devdata *dd, loff_t pos, char **namep,
11104 u64 **cntrp)
11105{
11106 int ret;
11107 u64 val = 0;
11108
11109 if (namep) {
11110 ret = dd->cntrnameslen;
11111 if (pos != 0) {
11112 dd_dev_err(dd, "read_cntrs does not support indexing");
11113 return 0;
11114 }
11115 *namep = dd->cntrnames;
11116 } else {
11117 const struct cntr_entry *entry;
11118 int i, j;
11119
11120 ret = (dd->ndevcntrs) * sizeof(u64);
11121 if (pos != 0) {
11122 dd_dev_err(dd, "read_cntrs does not support indexing");
11123 return 0;
11124 }
11125
11126 /* Get the start of the block of counters */
11127 *cntrp = dd->cntrs;
11128
11129 /*
11130 * Now go and fill in each counter in the block.
11131 */
11132 for (i = 0; i < DEV_CNTR_LAST; i++) {
11133 entry = &dev_cntrs[i];
11134 hfi1_cdbg(CNTR, "reading %s", entry->name);
11135 if (entry->flags & CNTR_DISABLED) {
11136 /* Nothing */
11137 hfi1_cdbg(CNTR, "\tDisabled\n");
11138 } else {
11139 if (entry->flags & CNTR_VL) {
11140 hfi1_cdbg(CNTR, "\tPer VL\n");
11141 for (j = 0; j < C_VL_COUNT; j++) {
11142 val = entry->rw_cntr(entry,
11143 dd, j,
11144 CNTR_MODE_R,
11145 0);
11146 hfi1_cdbg(
11147 CNTR,
11148 "\t\tRead 0x%llx for %d\n",
11149 val, j);
11150 dd->cntrs[entry->offset + j] =
11151 val;
11152 }
11153 } else {
11154 val = entry->rw_cntr(entry, dd,
11155 CNTR_INVALID_VL,
11156 CNTR_MODE_R, 0);
11157 dd->cntrs[entry->offset] = val;
11158 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11159 }
11160 }
11161 }
11162 }
11163 return ret;
11164}
11165
11166/*
11167 * Used by sysfs to create files for hfi stats to read
11168 */
11169u32 hfi1_read_portcntrs(struct hfi1_devdata *dd, loff_t pos, u32 port,
11170 char **namep, u64 **cntrp)
11171{
11172 int ret;
11173 u64 val = 0;
11174
11175 if (namep) {
11176 ret = dd->portcntrnameslen;
11177 if (pos != 0) {
11178 dd_dev_err(dd, "index not supported");
11179 return 0;
11180 }
11181 *namep = dd->portcntrnames;
11182 } else {
11183 const struct cntr_entry *entry;
11184 struct hfi1_pportdata *ppd;
11185 int i, j;
11186
11187 ret = (dd->nportcntrs) * sizeof(u64);
11188 if (pos != 0) {
11189 dd_dev_err(dd, "indexing not supported");
11190 return 0;
11191 }
11192 ppd = (struct hfi1_pportdata *)(dd + 1 + port);
11193 *cntrp = ppd->cntrs;
11194
11195 for (i = 0; i < PORT_CNTR_LAST; i++) {
11196 entry = &port_cntrs[i];
11197 hfi1_cdbg(CNTR, "reading %s", entry->name);
11198 if (entry->flags & CNTR_DISABLED) {
11199 /* Nothing */
11200 hfi1_cdbg(CNTR, "\tDisabled\n");
11201 continue;
11202 }
11203
11204 if (entry->flags & CNTR_VL) {
11205 hfi1_cdbg(CNTR, "\tPer VL");
11206 for (j = 0; j < C_VL_COUNT; j++) {
11207 val = entry->rw_cntr(entry, ppd, j,
11208 CNTR_MODE_R,
11209 0);
11210 hfi1_cdbg(
11211 CNTR,
11212 "\t\tRead 0x%llx for %d",
11213 val, j);
11214 ppd->cntrs[entry->offset + j] = val;
11215 }
11216 } else {
11217 val = entry->rw_cntr(entry, ppd,
11218 CNTR_INVALID_VL,
11219 CNTR_MODE_R,
11220 0);
11221 ppd->cntrs[entry->offset] = val;
11222 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11223 }
11224 }
11225 }
11226 return ret;
11227}
11228
11229static void free_cntrs(struct hfi1_devdata *dd)
11230{
11231 struct hfi1_pportdata *ppd;
11232 int i;
11233
11234 if (dd->synth_stats_timer.data)
11235 del_timer_sync(&dd->synth_stats_timer);
11236 dd->synth_stats_timer.data = 0;
11237 ppd = (struct hfi1_pportdata *)(dd + 1);
11238 for (i = 0; i < dd->num_pports; i++, ppd++) {
11239 kfree(ppd->cntrs);
11240 kfree(ppd->scntrs);
11241 free_percpu(ppd->ibport_data.rc_acks);
11242 free_percpu(ppd->ibport_data.rc_qacks);
11243 free_percpu(ppd->ibport_data.rc_delayed_comp);
11244 ppd->cntrs = NULL;
11245 ppd->scntrs = NULL;
11246 ppd->ibport_data.rc_acks = NULL;
11247 ppd->ibport_data.rc_qacks = NULL;
11248 ppd->ibport_data.rc_delayed_comp = NULL;
11249 }
11250 kfree(dd->portcntrnames);
11251 dd->portcntrnames = NULL;
11252 kfree(dd->cntrs);
11253 dd->cntrs = NULL;
11254 kfree(dd->scntrs);
11255 dd->scntrs = NULL;
11256 kfree(dd->cntrnames);
11257 dd->cntrnames = NULL;
11258}
11259
11260#define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
11261#define CNTR_32BIT_MAX 0x00000000FFFFFFFF
11262
11263static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
11264 u64 *psval, void *context, int vl)
11265{
11266 u64 val;
11267 u64 sval = *psval;
11268
11269 if (entry->flags & CNTR_DISABLED) {
11270 dd_dev_err(dd, "Counter %s not enabled", entry->name);
11271 return 0;
11272 }
11273
11274 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
11275
11276 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
11277
11278 /* If its a synthetic counter there is more work we need to do */
11279 if (entry->flags & CNTR_SYNTH) {
11280 if (sval == CNTR_MAX) {
11281 /* No need to read already saturated */
11282 return CNTR_MAX;
11283 }
11284
11285 if (entry->flags & CNTR_32BIT) {
11286 /* 32bit counters can wrap multiple times */
11287 u64 upper = sval >> 32;
11288 u64 lower = (sval << 32) >> 32;
11289
11290 if (lower > val) { /* hw wrapped */
11291 if (upper == CNTR_32BIT_MAX)
11292 val = CNTR_MAX;
11293 else
11294 upper++;
11295 }
11296
11297 if (val != CNTR_MAX)
11298 val = (upper << 32) | val;
11299
11300 } else {
11301 /* If we rolled we are saturated */
11302 if ((val < sval) || (val > CNTR_MAX))
11303 val = CNTR_MAX;
11304 }
11305 }
11306
11307 *psval = val;
11308
11309 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
11310
11311 return val;
11312}
11313
11314static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
11315 struct cntr_entry *entry,
11316 u64 *psval, void *context, int vl, u64 data)
11317{
11318 u64 val;
11319
11320 if (entry->flags & CNTR_DISABLED) {
11321 dd_dev_err(dd, "Counter %s not enabled", entry->name);
11322 return 0;
11323 }
11324
11325 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
11326
11327 if (entry->flags & CNTR_SYNTH) {
11328 *psval = data;
11329 if (entry->flags & CNTR_32BIT) {
11330 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
11331 (data << 32) >> 32);
11332 val = data; /* return the full 64bit value */
11333 } else {
11334 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
11335 data);
11336 }
11337 } else {
11338 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
11339 }
11340
11341 *psval = val;
11342
11343 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
11344
11345 return val;
11346}
11347
11348u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
11349{
11350 struct cntr_entry *entry;
11351 u64 *sval;
11352
11353 entry = &dev_cntrs[index];
11354 sval = dd->scntrs + entry->offset;
11355
11356 if (vl != CNTR_INVALID_VL)
11357 sval += vl;
11358
11359 return read_dev_port_cntr(dd, entry, sval, dd, vl);
11360}
11361
11362u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
11363{
11364 struct cntr_entry *entry;
11365 u64 *sval;
11366
11367 entry = &dev_cntrs[index];
11368 sval = dd->scntrs + entry->offset;
11369
11370 if (vl != CNTR_INVALID_VL)
11371 sval += vl;
11372
11373 return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
11374}
11375
11376u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
11377{
11378 struct cntr_entry *entry;
11379 u64 *sval;
11380
11381 entry = &port_cntrs[index];
11382 sval = ppd->scntrs + entry->offset;
11383
11384 if (vl != CNTR_INVALID_VL)
11385 sval += vl;
11386
11387 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
11388 (index <= C_RCV_HDR_OVF_LAST)) {
11389 /* We do not want to bother for disabled contexts */
11390 return 0;
11391 }
11392
11393 return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
11394}
11395
11396u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
11397{
11398 struct cntr_entry *entry;
11399 u64 *sval;
11400
11401 entry = &port_cntrs[index];
11402 sval = ppd->scntrs + entry->offset;
11403
11404 if (vl != CNTR_INVALID_VL)
11405 sval += vl;
11406
11407 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
11408 (index <= C_RCV_HDR_OVF_LAST)) {
11409 /* We do not want to bother for disabled contexts */
11410 return 0;
11411 }
11412
11413 return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
11414}
11415
11416static void update_synth_timer(unsigned long opaque)
11417{
11418 u64 cur_tx;
11419 u64 cur_rx;
11420 u64 total_flits;
11421 u8 update = 0;
11422 int i, j, vl;
11423 struct hfi1_pportdata *ppd;
11424 struct cntr_entry *entry;
11425
11426 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
11427
11428 /*
11429 * Rather than keep beating on the CSRs pick a minimal set that we can
11430 * check to watch for potential roll over. We can do this by looking at
11431 * the number of flits sent/recv. If the total flits exceeds 32bits then
11432 * we have to iterate all the counters and update.
11433 */
11434 entry = &dev_cntrs[C_DC_RCV_FLITS];
11435 cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
11436
11437 entry = &dev_cntrs[C_DC_XMIT_FLITS];
11438 cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
11439
11440 hfi1_cdbg(
11441 CNTR,
11442 "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
11443 dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
11444
11445 if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
11446 /*
11447 * May not be strictly necessary to update but it won't hurt and
11448 * simplifies the logic here.
11449 */
11450 update = 1;
11451 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
11452 dd->unit);
11453 } else {
11454 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
11455 hfi1_cdbg(CNTR,
11456 "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
11457 total_flits, (u64)CNTR_32BIT_MAX);
11458 if (total_flits >= CNTR_32BIT_MAX) {
11459 hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
11460 dd->unit);
11461 update = 1;
11462 }
11463 }
11464
11465 if (update) {
11466 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
11467 for (i = 0; i < DEV_CNTR_LAST; i++) {
11468 entry = &dev_cntrs[i];
11469 if (entry->flags & CNTR_VL) {
11470 for (vl = 0; vl < C_VL_COUNT; vl++)
11471 read_dev_cntr(dd, i, vl);
11472 } else {
11473 read_dev_cntr(dd, i, CNTR_INVALID_VL);
11474 }
11475 }
11476 ppd = (struct hfi1_pportdata *)(dd + 1);
11477 for (i = 0; i < dd->num_pports; i++, ppd++) {
11478 for (j = 0; j < PORT_CNTR_LAST; j++) {
11479 entry = &port_cntrs[j];
11480 if (entry->flags & CNTR_VL) {
11481 for (vl = 0; vl < C_VL_COUNT; vl++)
11482 read_port_cntr(ppd, j, vl);
11483 } else {
11484 read_port_cntr(ppd, j, CNTR_INVALID_VL);
11485 }
11486 }
11487 }
11488
11489 /*
11490 * We want the value in the register. The goal is to keep track
11491 * of the number of "ticks" not the counter value. In other
11492 * words if the register rolls we want to notice it and go ahead
11493 * and force an update.
11494 */
11495 entry = &dev_cntrs[C_DC_XMIT_FLITS];
11496 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
11497 CNTR_MODE_R, 0);
11498
11499 entry = &dev_cntrs[C_DC_RCV_FLITS];
11500 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
11501 CNTR_MODE_R, 0);
11502
11503 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
11504 dd->unit, dd->last_tx, dd->last_rx);
11505
11506 } else {
11507 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
11508 }
11509
11510mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
11511}
11512
11513#define C_MAX_NAME 13 /* 12 chars + one for /0 */
11514static int init_cntrs(struct hfi1_devdata *dd)
11515{
11516 int i, rcv_ctxts, index, j;
11517 size_t sz;
11518 char *p;
11519 char name[C_MAX_NAME];
11520 struct hfi1_pportdata *ppd;
11521
11522 /* set up the stats timer; the add_timer is done at the end */
24523a94
MFW
11523 setup_timer(&dd->synth_stats_timer, update_synth_timer,
11524 (unsigned long)dd);
77241056
MM
11525
11526 /***********************/
11527 /* per device counters */
11528 /***********************/
11529
11530 /* size names and determine how many we have*/
11531 dd->ndevcntrs = 0;
11532 sz = 0;
11533 index = 0;
11534
11535 for (i = 0; i < DEV_CNTR_LAST; i++) {
11536 hfi1_dbg_early("Init cntr %s\n", dev_cntrs[i].name);
11537 if (dev_cntrs[i].flags & CNTR_DISABLED) {
11538 hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
11539 continue;
11540 }
11541
11542 if (dev_cntrs[i].flags & CNTR_VL) {
11543 hfi1_dbg_early("\tProcessing VL cntr\n");
11544 dev_cntrs[i].offset = index;
11545 for (j = 0; j < C_VL_COUNT; j++) {
11546 memset(name, '\0', C_MAX_NAME);
11547 snprintf(name, C_MAX_NAME, "%s%d",
11548 dev_cntrs[i].name,
11549 vl_from_idx(j));
11550 sz += strlen(name);
11551 sz++;
11552 hfi1_dbg_early("\t\t%s\n", name);
11553 dd->ndevcntrs++;
11554 index++;
11555 }
11556 } else {
11557 /* +1 for newline */
11558 sz += strlen(dev_cntrs[i].name) + 1;
11559 dd->ndevcntrs++;
11560 dev_cntrs[i].offset = index;
11561 index++;
11562 hfi1_dbg_early("\tAdding %s\n", dev_cntrs[i].name);
11563 }
11564 }
11565
11566 /* allocate space for the counter values */
11567 dd->cntrs = kcalloc(index, sizeof(u64), GFP_KERNEL);
11568 if (!dd->cntrs)
11569 goto bail;
11570
11571 dd->scntrs = kcalloc(index, sizeof(u64), GFP_KERNEL);
11572 if (!dd->scntrs)
11573 goto bail;
11574
11575
11576 /* allocate space for the counter names */
11577 dd->cntrnameslen = sz;
11578 dd->cntrnames = kmalloc(sz, GFP_KERNEL);
11579 if (!dd->cntrnames)
11580 goto bail;
11581
11582 /* fill in the names */
11583 for (p = dd->cntrnames, i = 0, index = 0; i < DEV_CNTR_LAST; i++) {
11584 if (dev_cntrs[i].flags & CNTR_DISABLED) {
11585 /* Nothing */
11586 } else {
11587 if (dev_cntrs[i].flags & CNTR_VL) {
11588 for (j = 0; j < C_VL_COUNT; j++) {
11589 memset(name, '\0', C_MAX_NAME);
11590 snprintf(name, C_MAX_NAME, "%s%d",
11591 dev_cntrs[i].name,
11592 vl_from_idx(j));
11593 memcpy(p, name, strlen(name));
11594 p += strlen(name);
11595 *p++ = '\n';
11596 }
11597 } else {
11598 memcpy(p, dev_cntrs[i].name,
11599 strlen(dev_cntrs[i].name));
11600 p += strlen(dev_cntrs[i].name);
11601 *p++ = '\n';
11602 }
11603 index++;
11604 }
11605 }
11606
11607 /*********************/
11608 /* per port counters */
11609 /*********************/
11610
11611 /*
11612 * Go through the counters for the overflows and disable the ones we
11613 * don't need. This varies based on platform so we need to do it
11614 * dynamically here.
11615 */
11616 rcv_ctxts = dd->num_rcv_contexts;
11617 for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
11618 i <= C_RCV_HDR_OVF_LAST; i++) {
11619 port_cntrs[i].flags |= CNTR_DISABLED;
11620 }
11621
11622 /* size port counter names and determine how many we have*/
11623 sz = 0;
11624 dd->nportcntrs = 0;
11625 for (i = 0; i < PORT_CNTR_LAST; i++) {
11626 hfi1_dbg_early("Init pcntr %s\n", port_cntrs[i].name);
11627 if (port_cntrs[i].flags & CNTR_DISABLED) {
11628 hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
11629 continue;
11630 }
11631
11632 if (port_cntrs[i].flags & CNTR_VL) {
11633 hfi1_dbg_early("\tProcessing VL cntr\n");
11634 port_cntrs[i].offset = dd->nportcntrs;
11635 for (j = 0; j < C_VL_COUNT; j++) {
11636 memset(name, '\0', C_MAX_NAME);
11637 snprintf(name, C_MAX_NAME, "%s%d",
11638 port_cntrs[i].name,
11639 vl_from_idx(j));
11640 sz += strlen(name);
11641 sz++;
11642 hfi1_dbg_early("\t\t%s\n", name);
11643 dd->nportcntrs++;
11644 }
11645 } else {
11646 /* +1 for newline */
11647 sz += strlen(port_cntrs[i].name) + 1;
11648 port_cntrs[i].offset = dd->nportcntrs;
11649 dd->nportcntrs++;
11650 hfi1_dbg_early("\tAdding %s\n", port_cntrs[i].name);
11651 }
11652 }
11653
11654 /* allocate space for the counter names */
11655 dd->portcntrnameslen = sz;
11656 dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
11657 if (!dd->portcntrnames)
11658 goto bail;
11659
11660 /* fill in port cntr names */
11661 for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
11662 if (port_cntrs[i].flags & CNTR_DISABLED)
11663 continue;
11664
11665 if (port_cntrs[i].flags & CNTR_VL) {
11666 for (j = 0; j < C_VL_COUNT; j++) {
11667 memset(name, '\0', C_MAX_NAME);
11668 snprintf(name, C_MAX_NAME, "%s%d",
11669 port_cntrs[i].name,
11670 vl_from_idx(j));
11671 memcpy(p, name, strlen(name));
11672 p += strlen(name);
11673 *p++ = '\n';
11674 }
11675 } else {
11676 memcpy(p, port_cntrs[i].name,
11677 strlen(port_cntrs[i].name));
11678 p += strlen(port_cntrs[i].name);
11679 *p++ = '\n';
11680 }
11681 }
11682
11683 /* allocate per port storage for counter values */
11684 ppd = (struct hfi1_pportdata *)(dd + 1);
11685 for (i = 0; i < dd->num_pports; i++, ppd++) {
11686 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
11687 if (!ppd->cntrs)
11688 goto bail;
11689
11690 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
11691 if (!ppd->scntrs)
11692 goto bail;
11693 }
11694
11695 /* CPU counters need to be allocated and zeroed */
11696 if (init_cpu_counters(dd))
11697 goto bail;
11698
11699 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
11700 return 0;
11701bail:
11702 free_cntrs(dd);
11703 return -ENOMEM;
11704}
11705
11706
11707static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
11708{
11709 switch (chip_lstate) {
11710 default:
11711 dd_dev_err(dd,
11712 "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
11713 chip_lstate);
11714 /* fall through */
11715 case LSTATE_DOWN:
11716 return IB_PORT_DOWN;
11717 case LSTATE_INIT:
11718 return IB_PORT_INIT;
11719 case LSTATE_ARMED:
11720 return IB_PORT_ARMED;
11721 case LSTATE_ACTIVE:
11722 return IB_PORT_ACTIVE;
11723 }
11724}
11725
11726u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
11727{
11728 /* look at the HFI meta-states only */
11729 switch (chip_pstate & 0xf0) {
11730 default:
11731 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
11732 chip_pstate);
11733 /* fall through */
11734 case PLS_DISABLED:
11735 return IB_PORTPHYSSTATE_DISABLED;
11736 case PLS_OFFLINE:
11737 return OPA_PORTPHYSSTATE_OFFLINE;
11738 case PLS_POLLING:
11739 return IB_PORTPHYSSTATE_POLLING;
11740 case PLS_CONFIGPHY:
11741 return IB_PORTPHYSSTATE_TRAINING;
11742 case PLS_LINKUP:
11743 return IB_PORTPHYSSTATE_LINKUP;
11744 case PLS_PHYTEST:
11745 return IB_PORTPHYSSTATE_PHY_TEST;
11746 }
11747}
11748
11749/* return the OPA port logical state name */
11750const char *opa_lstate_name(u32 lstate)
11751{
11752 static const char * const port_logical_names[] = {
11753 "PORT_NOP",
11754 "PORT_DOWN",
11755 "PORT_INIT",
11756 "PORT_ARMED",
11757 "PORT_ACTIVE",
11758 "PORT_ACTIVE_DEFER",
11759 };
11760 if (lstate < ARRAY_SIZE(port_logical_names))
11761 return port_logical_names[lstate];
11762 return "unknown";
11763}
11764
11765/* return the OPA port physical state name */
11766const char *opa_pstate_name(u32 pstate)
11767{
11768 static const char * const port_physical_names[] = {
11769 "PHYS_NOP",
11770 "reserved1",
11771 "PHYS_POLL",
11772 "PHYS_DISABLED",
11773 "PHYS_TRAINING",
11774 "PHYS_LINKUP",
11775 "PHYS_LINK_ERR_RECOVER",
11776 "PHYS_PHY_TEST",
11777 "reserved8",
11778 "PHYS_OFFLINE",
11779 "PHYS_GANGED",
11780 "PHYS_TEST",
11781 };
11782 if (pstate < ARRAY_SIZE(port_physical_names))
11783 return port_physical_names[pstate];
11784 return "unknown";
11785}
11786
11787/*
11788 * Read the hardware link state and set the driver's cached value of it.
11789 * Return the (new) current value.
11790 */
11791u32 get_logical_state(struct hfi1_pportdata *ppd)
11792{
11793 u32 new_state;
11794
11795 new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd));
11796 if (new_state != ppd->lstate) {
11797 dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
11798 opa_lstate_name(new_state), new_state);
11799 ppd->lstate = new_state;
11800 }
11801 /*
11802 * Set port status flags in the page mapped into userspace
11803 * memory. Do it here to ensure a reliable state - this is
11804 * the only function called by all state handling code.
11805 * Always set the flags due to the fact that the cache value
11806 * might have been changed explicitly outside of this
11807 * function.
11808 */
11809 if (ppd->statusp) {
11810 switch (ppd->lstate) {
11811 case IB_PORT_DOWN:
11812 case IB_PORT_INIT:
11813 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
11814 HFI1_STATUS_IB_READY);
11815 break;
11816 case IB_PORT_ARMED:
11817 *ppd->statusp |= HFI1_STATUS_IB_CONF;
11818 break;
11819 case IB_PORT_ACTIVE:
11820 *ppd->statusp |= HFI1_STATUS_IB_READY;
11821 break;
11822 }
11823 }
11824 return ppd->lstate;
11825}
11826
11827/**
11828 * wait_logical_linkstate - wait for an IB link state change to occur
11829 * @ppd: port device
11830 * @state: the state to wait for
11831 * @msecs: the number of milliseconds to wait
11832 *
11833 * Wait up to msecs milliseconds for IB link state change to occur.
11834 * For now, take the easy polling route.
11835 * Returns 0 if state reached, otherwise -ETIMEDOUT.
11836 */
11837static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
11838 int msecs)
11839{
11840 unsigned long timeout;
11841
11842 timeout = jiffies + msecs_to_jiffies(msecs);
11843 while (1) {
11844 if (get_logical_state(ppd) == state)
11845 return 0;
11846 if (time_after(jiffies, timeout))
11847 break;
11848 msleep(20);
11849 }
11850 dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state);
11851
11852 return -ETIMEDOUT;
11853}
11854
11855u8 hfi1_ibphys_portstate(struct hfi1_pportdata *ppd)
11856{
11857 static u32 remembered_state = 0xff;
11858 u32 pstate;
11859 u32 ib_pstate;
11860
11861 pstate = read_physical_state(ppd->dd);
11862 ib_pstate = chip_to_opa_pstate(ppd->dd, pstate);
11863 if (remembered_state != ib_pstate) {
11864 dd_dev_info(ppd->dd,
11865 "%s: physical state changed to %s (0x%x), phy 0x%x\n",
11866 __func__, opa_pstate_name(ib_pstate), ib_pstate,
11867 pstate);
11868 remembered_state = ib_pstate;
11869 }
11870 return ib_pstate;
11871}
11872
11873/*
11874 * Read/modify/write ASIC_QSFP register bits as selected by mask
11875 * data: 0 or 1 in the positions depending on what needs to be written
11876 * dir: 0 for read, 1 for write
11877 * mask: select by setting
11878 * I2CCLK (bit 0)
11879 * I2CDATA (bit 1)
11880 */
11881u64 hfi1_gpio_mod(struct hfi1_devdata *dd, u32 target, u32 data, u32 dir,
11882 u32 mask)
11883{
11884 u64 qsfp_oe, target_oe;
11885
11886 target_oe = target ? ASIC_QSFP2_OE : ASIC_QSFP1_OE;
11887 if (mask) {
11888 /* We are writing register bits, so lock access */
11889 dir &= mask;
11890 data &= mask;
11891
11892 qsfp_oe = read_csr(dd, target_oe);
11893 qsfp_oe = (qsfp_oe & ~(u64)mask) | (u64)dir;
11894 write_csr(dd, target_oe, qsfp_oe);
11895 }
11896 /* We are exclusively reading bits here, but it is unlikely
11897 * we'll get valid data when we set the direction of the pin
11898 * in the same call, so read should call this function again
11899 * to get valid data
11900 */
11901 return read_csr(dd, target ? ASIC_QSFP2_IN : ASIC_QSFP1_IN);
11902}
11903
11904#define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
11905(r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
11906
11907#define SET_STATIC_RATE_CONTROL_SMASK(r) \
11908(r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
11909
11910int hfi1_init_ctxt(struct send_context *sc)
11911{
11912 if (sc != NULL) {
11913 struct hfi1_devdata *dd = sc->dd;
11914 u64 reg;
11915 u8 set = (sc->type == SC_USER ?
11916 HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
11917 HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
11918 reg = read_kctxt_csr(dd, sc->hw_context,
11919 SEND_CTXT_CHECK_ENABLE);
11920 if (set)
11921 CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
11922 else
11923 SET_STATIC_RATE_CONTROL_SMASK(reg);
11924 write_kctxt_csr(dd, sc->hw_context,
11925 SEND_CTXT_CHECK_ENABLE, reg);
11926 }
11927 return 0;
11928}
11929
11930int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
11931{
11932 int ret = 0;
11933 u64 reg;
11934
11935 if (dd->icode != ICODE_RTL_SILICON) {
11936 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
11937 dd_dev_info(dd, "%s: tempsense not supported by HW\n",
11938 __func__);
11939 return -EINVAL;
11940 }
11941 reg = read_csr(dd, ASIC_STS_THERM);
11942 temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
11943 ASIC_STS_THERM_CURR_TEMP_MASK);
11944 temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
11945 ASIC_STS_THERM_LO_TEMP_MASK);
11946 temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
11947 ASIC_STS_THERM_HI_TEMP_MASK);
11948 temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
11949 ASIC_STS_THERM_CRIT_TEMP_MASK);
11950 /* triggers is a 3-bit value - 1 bit per trigger. */
11951 temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
11952
11953 return ret;
11954}
11955
11956/* ========================================================================= */
11957
11958/*
11959 * Enable/disable chip from delivering interrupts.
11960 */
11961void set_intr_state(struct hfi1_devdata *dd, u32 enable)
11962{
11963 int i;
11964
11965 /*
11966 * In HFI, the mask needs to be 1 to allow interrupts.
11967 */
11968 if (enable) {
11969 u64 cce_int_mask;
11970 const int qsfp1_int_smask = QSFP1_INT % 64;
11971 const int qsfp2_int_smask = QSFP2_INT % 64;
11972
11973 /* enable all interrupts */
11974 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
11975 write_csr(dd, CCE_INT_MASK + (8*i), ~(u64)0);
11976
11977 /*
11978 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
11979 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
11980 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
11981 * the index of the appropriate CSR in the CCEIntMask CSR array
11982 */
11983 cce_int_mask = read_csr(dd, CCE_INT_MASK +
11984 (8*(QSFP1_INT/64)));
11985 if (dd->hfi1_id) {
11986 cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
11987 write_csr(dd, CCE_INT_MASK + (8*(QSFP1_INT/64)),
11988 cce_int_mask);
11989 } else {
11990 cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
11991 write_csr(dd, CCE_INT_MASK + (8*(QSFP2_INT/64)),
11992 cce_int_mask);
11993 }
11994 } else {
11995 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
11996 write_csr(dd, CCE_INT_MASK + (8*i), 0ull);
11997 }
11998}
11999
12000/*
12001 * Clear all interrupt sources on the chip.
12002 */
12003static void clear_all_interrupts(struct hfi1_devdata *dd)
12004{
12005 int i;
12006
12007 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12008 write_csr(dd, CCE_INT_CLEAR + (8*i), ~(u64)0);
12009
12010 write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
12011 write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
12012 write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
12013 write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
12014 write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
12015 write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
12016 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
12017 for (i = 0; i < dd->chip_send_contexts; i++)
12018 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
12019 for (i = 0; i < dd->chip_sdma_engines; i++)
12020 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
12021
12022 write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
12023 write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
12024 write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
12025}
12026
12027/* Move to pcie.c? */
12028static void disable_intx(struct pci_dev *pdev)
12029{
12030 pci_intx(pdev, 0);
12031}
12032
12033static void clean_up_interrupts(struct hfi1_devdata *dd)
12034{
12035 int i;
12036
12037 /* remove irqs - must happen before disabling/turning off */
12038 if (dd->num_msix_entries) {
12039 /* MSI-X */
12040 struct hfi1_msix_entry *me = dd->msix_entries;
12041
12042 for (i = 0; i < dd->num_msix_entries; i++, me++) {
12043 if (me->arg == NULL) /* => no irq, no affinity */
12044 break;
12045 irq_set_affinity_hint(dd->msix_entries[i].msix.vector,
12046 NULL);
12047 free_irq(me->msix.vector, me->arg);
12048 }
12049 } else {
12050 /* INTx */
12051 if (dd->requested_intx_irq) {
12052 free_irq(dd->pcidev->irq, dd);
12053 dd->requested_intx_irq = 0;
12054 }
12055 }
12056
12057 /* turn off interrupts */
12058 if (dd->num_msix_entries) {
12059 /* MSI-X */
6e5b6131 12060 pci_disable_msix(dd->pcidev);
77241056
MM
12061 } else {
12062 /* INTx */
12063 disable_intx(dd->pcidev);
12064 }
12065
12066 /* clean structures */
12067 for (i = 0; i < dd->num_msix_entries; i++)
12068 free_cpumask_var(dd->msix_entries[i].mask);
12069 kfree(dd->msix_entries);
12070 dd->msix_entries = NULL;
12071 dd->num_msix_entries = 0;
12072}
12073
12074/*
12075 * Remap the interrupt source from the general handler to the given MSI-X
12076 * interrupt.
12077 */
12078static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
12079{
12080 u64 reg;
12081 int m, n;
12082
12083 /* clear from the handled mask of the general interrupt */
12084 m = isrc / 64;
12085 n = isrc % 64;
12086 dd->gi_mask[m] &= ~((u64)1 << n);
12087
12088 /* direct the chip source to the given MSI-X interrupt */
12089 m = isrc / 8;
12090 n = isrc % 8;
12091 reg = read_csr(dd, CCE_INT_MAP + (8*m));
12092 reg &= ~((u64)0xff << (8*n));
12093 reg |= ((u64)msix_intr & 0xff) << (8*n);
12094 write_csr(dd, CCE_INT_MAP + (8*m), reg);
12095}
12096
12097static void remap_sdma_interrupts(struct hfi1_devdata *dd,
12098 int engine, int msix_intr)
12099{
12100 /*
12101 * SDMA engine interrupt sources grouped by type, rather than
12102 * engine. Per-engine interrupts are as follows:
12103 * SDMA
12104 * SDMAProgress
12105 * SDMAIdle
12106 */
12107 remap_intr(dd, IS_SDMA_START + 0*TXE_NUM_SDMA_ENGINES + engine,
12108 msix_intr);
12109 remap_intr(dd, IS_SDMA_START + 1*TXE_NUM_SDMA_ENGINES + engine,
12110 msix_intr);
12111 remap_intr(dd, IS_SDMA_START + 2*TXE_NUM_SDMA_ENGINES + engine,
12112 msix_intr);
12113}
12114
77241056
MM
12115static int request_intx_irq(struct hfi1_devdata *dd)
12116{
12117 int ret;
12118
9805071e
JJ
12119 snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d",
12120 dd->unit);
77241056
MM
12121 ret = request_irq(dd->pcidev->irq, general_interrupt,
12122 IRQF_SHARED, dd->intx_name, dd);
12123 if (ret)
12124 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
12125 ret);
12126 else
12127 dd->requested_intx_irq = 1;
12128 return ret;
12129}
12130
12131static int request_msix_irqs(struct hfi1_devdata *dd)
12132{
12133 const struct cpumask *local_mask;
12134 cpumask_var_t def, rcv;
12135 bool def_ret, rcv_ret;
12136 int first_general, last_general;
12137 int first_sdma, last_sdma;
12138 int first_rx, last_rx;
82c2611d 12139 int first_cpu, curr_cpu;
77241056
MM
12140 int rcv_cpu, sdma_cpu;
12141 int i, ret = 0, possible;
12142 int ht;
12143
12144 /* calculate the ranges we are going to use */
12145 first_general = 0;
12146 first_sdma = last_general = first_general + 1;
12147 first_rx = last_sdma = first_sdma + dd->num_sdma;
12148 last_rx = first_rx + dd->n_krcv_queues;
12149
12150 /*
12151 * Interrupt affinity.
12152 *
12153 * non-rcv avail gets a default mask that
12154 * starts as possible cpus with threads reset
12155 * and each rcv avail reset.
12156 *
12157 * rcv avail gets node relative 1 wrapping back
12158 * to the node relative 1 as necessary.
12159 *
12160 */
12161 local_mask = cpumask_of_pcibus(dd->pcidev->bus);
12162 /* if first cpu is invalid, use NUMA 0 */
12163 if (cpumask_first(local_mask) >= nr_cpu_ids)
12164 local_mask = topology_core_cpumask(0);
12165
12166 def_ret = zalloc_cpumask_var(&def, GFP_KERNEL);
12167 rcv_ret = zalloc_cpumask_var(&rcv, GFP_KERNEL);
12168 if (!def_ret || !rcv_ret)
12169 goto bail;
12170 /* use local mask as default */
12171 cpumask_copy(def, local_mask);
12172 possible = cpumask_weight(def);
12173 /* disarm threads from default */
12174 ht = cpumask_weight(
12175 topology_sibling_cpumask(cpumask_first(local_mask)));
12176 for (i = possible/ht; i < possible; i++)
12177 cpumask_clear_cpu(i, def);
77241056
MM
12178 /* def now has full cores on chosen node*/
12179 first_cpu = cpumask_first(def);
12180 if (nr_cpu_ids >= first_cpu)
12181 first_cpu++;
82c2611d 12182 curr_cpu = first_cpu;
77241056 12183
82c2611d
NV
12184 /* One context is reserved as control context */
12185 for (i = first_cpu; i < dd->n_krcv_queues + first_cpu - 1; i++) {
77241056
MM
12186 cpumask_clear_cpu(curr_cpu, def);
12187 cpumask_set_cpu(curr_cpu, rcv);
82c2611d
NV
12188 curr_cpu = cpumask_next(curr_cpu, def);
12189 if (curr_cpu >= nr_cpu_ids)
12190 break;
77241056
MM
12191 }
12192 /* def mask has non-rcv, rcv has recv mask */
12193 rcv_cpu = cpumask_first(rcv);
12194 sdma_cpu = cpumask_first(def);
12195
12196 /*
12197 * Sanity check - the code expects all SDMA chip source
12198 * interrupts to be in the same CSR, starting at bit 0. Verify
12199 * that this is true by checking the bit location of the start.
12200 */
12201 BUILD_BUG_ON(IS_SDMA_START % 64);
12202
12203 for (i = 0; i < dd->num_msix_entries; i++) {
12204 struct hfi1_msix_entry *me = &dd->msix_entries[i];
12205 const char *err_info;
12206 irq_handler_t handler;
f4f30031 12207 irq_handler_t thread = NULL;
77241056
MM
12208 void *arg;
12209 int idx;
12210 struct hfi1_ctxtdata *rcd = NULL;
12211 struct sdma_engine *sde = NULL;
12212
12213 /* obtain the arguments to request_irq */
12214 if (first_general <= i && i < last_general) {
12215 idx = i - first_general;
12216 handler = general_interrupt;
12217 arg = dd;
12218 snprintf(me->name, sizeof(me->name),
9805071e 12219 DRIVER_NAME "_%d", dd->unit);
77241056
MM
12220 err_info = "general";
12221 } else if (first_sdma <= i && i < last_sdma) {
12222 idx = i - first_sdma;
12223 sde = &dd->per_sdma[idx];
12224 handler = sdma_interrupt;
12225 arg = sde;
12226 snprintf(me->name, sizeof(me->name),
9805071e 12227 DRIVER_NAME "_%d sdma%d", dd->unit, idx);
77241056
MM
12228 err_info = "sdma";
12229 remap_sdma_interrupts(dd, idx, i);
12230 } else if (first_rx <= i && i < last_rx) {
12231 idx = i - first_rx;
12232 rcd = dd->rcd[idx];
12233 /* no interrupt if no rcd */
12234 if (!rcd)
12235 continue;
12236 /*
12237 * Set the interrupt register and mask for this
12238 * context's interrupt.
12239 */
12240 rcd->ireg = (IS_RCVAVAIL_START+idx) / 64;
12241 rcd->imask = ((u64)1) <<
12242 ((IS_RCVAVAIL_START+idx) % 64);
12243 handler = receive_context_interrupt;
f4f30031 12244 thread = receive_context_thread;
77241056
MM
12245 arg = rcd;
12246 snprintf(me->name, sizeof(me->name),
9805071e 12247 DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
77241056 12248 err_info = "receive context";
66c0933b 12249 remap_intr(dd, IS_RCVAVAIL_START + idx, i);
77241056
MM
12250 } else {
12251 /* not in our expected range - complain, then
12252 ignore it */
12253 dd_dev_err(dd,
12254 "Unexpected extra MSI-X interrupt %d\n", i);
12255 continue;
12256 }
12257 /* no argument, no interrupt */
12258 if (arg == NULL)
12259 continue;
12260 /* make sure the name is terminated */
12261 me->name[sizeof(me->name)-1] = 0;
12262
f4f30031
DL
12263 ret = request_threaded_irq(me->msix.vector, handler, thread, 0,
12264 me->name, arg);
77241056
MM
12265 if (ret) {
12266 dd_dev_err(dd,
12267 "unable to allocate %s interrupt, vector %d, index %d, err %d\n",
12268 err_info, me->msix.vector, idx, ret);
12269 return ret;
12270 }
12271 /*
12272 * assign arg after request_irq call, so it will be
12273 * cleaned up
12274 */
12275 me->arg = arg;
12276
12277 if (!zalloc_cpumask_var(
12278 &dd->msix_entries[i].mask,
12279 GFP_KERNEL))
12280 goto bail;
12281 if (handler == sdma_interrupt) {
12282 dd_dev_info(dd, "sdma engine %d cpu %d\n",
12283 sde->this_idx, sdma_cpu);
0a226edd 12284 sde->cpu = sdma_cpu;
77241056
MM
12285 cpumask_set_cpu(sdma_cpu, dd->msix_entries[i].mask);
12286 sdma_cpu = cpumask_next(sdma_cpu, def);
12287 if (sdma_cpu >= nr_cpu_ids)
12288 sdma_cpu = cpumask_first(def);
12289 } else if (handler == receive_context_interrupt) {
82c2611d
NV
12290 dd_dev_info(dd, "rcv ctxt %d cpu %d\n", rcd->ctxt,
12291 (rcd->ctxt == HFI1_CTRL_CTXT) ?
12292 cpumask_first(def) : rcv_cpu);
12293 if (rcd->ctxt == HFI1_CTRL_CTXT) {
12294 /* map to first default */
12295 cpumask_set_cpu(cpumask_first(def),
12296 dd->msix_entries[i].mask);
12297 } else {
12298 cpumask_set_cpu(rcv_cpu,
12299 dd->msix_entries[i].mask);
12300 rcv_cpu = cpumask_next(rcv_cpu, rcv);
12301 if (rcv_cpu >= nr_cpu_ids)
12302 rcv_cpu = cpumask_first(rcv);
12303 }
77241056
MM
12304 } else {
12305 /* otherwise first def */
12306 dd_dev_info(dd, "%s cpu %d\n",
12307 err_info, cpumask_first(def));
12308 cpumask_set_cpu(
12309 cpumask_first(def), dd->msix_entries[i].mask);
12310 }
12311 irq_set_affinity_hint(
12312 dd->msix_entries[i].msix.vector,
12313 dd->msix_entries[i].mask);
12314 }
12315
12316out:
12317 free_cpumask_var(def);
12318 free_cpumask_var(rcv);
12319 return ret;
12320bail:
12321 ret = -ENOMEM;
12322 goto out;
12323}
12324
12325/*
12326 * Set the general handler to accept all interrupts, remap all
12327 * chip interrupts back to MSI-X 0.
12328 */
12329static void reset_interrupts(struct hfi1_devdata *dd)
12330{
12331 int i;
12332
12333 /* all interrupts handled by the general handler */
12334 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12335 dd->gi_mask[i] = ~(u64)0;
12336
12337 /* all chip interrupts map to MSI-X 0 */
12338 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
12339 write_csr(dd, CCE_INT_MAP + (8*i), 0);
12340}
12341
12342static int set_up_interrupts(struct hfi1_devdata *dd)
12343{
12344 struct hfi1_msix_entry *entries;
12345 u32 total, request;
12346 int i, ret;
12347 int single_interrupt = 0; /* we expect to have all the interrupts */
12348
12349 /*
12350 * Interrupt count:
12351 * 1 general, "slow path" interrupt (includes the SDMA engines
12352 * slow source, SDMACleanupDone)
12353 * N interrupts - one per used SDMA engine
12354 * M interrupt - one per kernel receive context
12355 */
12356 total = 1 + dd->num_sdma + dd->n_krcv_queues;
12357
12358 entries = kcalloc(total, sizeof(*entries), GFP_KERNEL);
12359 if (!entries) {
77241056
MM
12360 ret = -ENOMEM;
12361 goto fail;
12362 }
12363 /* 1-1 MSI-X entry assignment */
12364 for (i = 0; i < total; i++)
12365 entries[i].msix.entry = i;
12366
12367 /* ask for MSI-X interrupts */
12368 request = total;
12369 request_msix(dd, &request, entries);
12370
12371 if (request == 0) {
12372 /* using INTx */
12373 /* dd->num_msix_entries already zero */
12374 kfree(entries);
12375 single_interrupt = 1;
12376 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
12377 } else {
12378 /* using MSI-X */
12379 dd->num_msix_entries = request;
12380 dd->msix_entries = entries;
12381
12382 if (request != total) {
12383 /* using MSI-X, with reduced interrupts */
12384 dd_dev_err(
12385 dd,
12386 "cannot handle reduced interrupt case, want %u, got %u\n",
12387 total, request);
12388 ret = -EINVAL;
12389 goto fail;
12390 }
12391 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
12392 }
12393
12394 /* mask all interrupts */
12395 set_intr_state(dd, 0);
12396 /* clear all pending interrupts */
12397 clear_all_interrupts(dd);
12398
12399 /* reset general handler mask, chip MSI-X mappings */
12400 reset_interrupts(dd);
12401
12402 if (single_interrupt)
12403 ret = request_intx_irq(dd);
12404 else
12405 ret = request_msix_irqs(dd);
12406 if (ret)
12407 goto fail;
12408
12409 return 0;
12410
12411fail:
12412 clean_up_interrupts(dd);
12413 return ret;
12414}
12415
12416/*
12417 * Set up context values in dd. Sets:
12418 *
12419 * num_rcv_contexts - number of contexts being used
12420 * n_krcv_queues - number of kernel contexts
12421 * first_user_ctxt - first non-kernel context in array of contexts
12422 * freectxts - number of free user contexts
12423 * num_send_contexts - number of PIO send contexts being used
12424 */
12425static int set_up_context_variables(struct hfi1_devdata *dd)
12426{
12427 int num_kernel_contexts;
77241056
MM
12428 int total_contexts;
12429 int ret;
12430 unsigned ngroups;
12431
12432 /*
12433 * Kernel contexts: (to be fixed later):
12434 * - min or 2 or 1 context/numa
82c2611d
NV
12435 * - Context 0 - control context (VL15/multicast/error)
12436 * - Context 1 - default context
77241056
MM
12437 */
12438 if (n_krcvqs)
82c2611d
NV
12439 /*
12440 * Don't count context 0 in n_krcvqs since
12441 * is isn't used for normal verbs traffic.
12442 *
12443 * krcvqs will reflect number of kernel
12444 * receive contexts above 0.
12445 */
12446 num_kernel_contexts = n_krcvqs + MIN_KERNEL_KCTXTS - 1;
77241056 12447 else
0edf80ea 12448 num_kernel_contexts = num_online_nodes() + 1;
77241056
MM
12449 num_kernel_contexts =
12450 max_t(int, MIN_KERNEL_KCTXTS, num_kernel_contexts);
12451 /*
12452 * Every kernel receive context needs an ACK send context.
12453 * one send context is allocated for each VL{0-7} and VL15
12454 */
12455 if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
12456 dd_dev_err(dd,
12457 "Reducing # kernel rcv contexts to: %d, from %d\n",
12458 (int)(dd->chip_send_contexts - num_vls - 1),
12459 (int)num_kernel_contexts);
12460 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
12461 }
12462 /*
12463 * User contexts: (to be fixed later)
2ce6bf22
SS
12464 * - default to 1 user context per CPU if num_user_contexts is
12465 * negative
77241056 12466 */
2ce6bf22 12467 if (num_user_contexts < 0)
77241056
MM
12468 num_user_contexts = num_online_cpus();
12469
12470 total_contexts = num_kernel_contexts + num_user_contexts;
12471
12472 /*
12473 * Adjust the counts given a global max.
12474 */
12475 if (total_contexts > dd->chip_rcv_contexts) {
12476 dd_dev_err(dd,
12477 "Reducing # user receive contexts to: %d, from %d\n",
12478 (int)(dd->chip_rcv_contexts - num_kernel_contexts),
12479 (int)num_user_contexts);
12480 num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
12481 /* recalculate */
12482 total_contexts = num_kernel_contexts + num_user_contexts;
12483 }
12484
12485 /* the first N are kernel contexts, the rest are user contexts */
12486 dd->num_rcv_contexts = total_contexts;
12487 dd->n_krcv_queues = num_kernel_contexts;
12488 dd->first_user_ctxt = num_kernel_contexts;
12489 dd->freectxts = num_user_contexts;
12490 dd_dev_info(dd,
12491 "rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
12492 (int)dd->chip_rcv_contexts,
12493 (int)dd->num_rcv_contexts,
12494 (int)dd->n_krcv_queues,
12495 (int)dd->num_rcv_contexts - dd->n_krcv_queues);
12496
12497 /*
12498 * Receive array allocation:
12499 * All RcvArray entries are divided into groups of 8. This
12500 * is required by the hardware and will speed up writes to
12501 * consecutive entries by using write-combining of the entire
12502 * cacheline.
12503 *
12504 * The number of groups are evenly divided among all contexts.
12505 * any left over groups will be given to the first N user
12506 * contexts.
12507 */
12508 dd->rcv_entries.group_size = RCV_INCREMENT;
12509 ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
12510 dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
12511 dd->rcv_entries.nctxt_extra = ngroups -
12512 (dd->num_rcv_contexts * dd->rcv_entries.ngroups);
12513 dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
12514 dd->rcv_entries.ngroups,
12515 dd->rcv_entries.nctxt_extra);
12516 if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
12517 MAX_EAGER_ENTRIES * 2) {
12518 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
12519 dd->rcv_entries.group_size;
12520 dd_dev_info(dd,
12521 "RcvArray group count too high, change to %u\n",
12522 dd->rcv_entries.ngroups);
12523 dd->rcv_entries.nctxt_extra = 0;
12524 }
12525 /*
12526 * PIO send contexts
12527 */
12528 ret = init_sc_pools_and_sizes(dd);
12529 if (ret >= 0) { /* success */
12530 dd->num_send_contexts = ret;
12531 dd_dev_info(
12532 dd,
12533 "send contexts: chip %d, used %d (kernel %d, ack %d, user %d)\n",
12534 dd->chip_send_contexts,
12535 dd->num_send_contexts,
12536 dd->sc_sizes[SC_KERNEL].count,
12537 dd->sc_sizes[SC_ACK].count,
12538 dd->sc_sizes[SC_USER].count);
12539 ret = 0; /* success */
12540 }
12541
12542 return ret;
12543}
12544
12545/*
12546 * Set the device/port partition key table. The MAD code
12547 * will ensure that, at least, the partial management
12548 * partition key is present in the table.
12549 */
12550static void set_partition_keys(struct hfi1_pportdata *ppd)
12551{
12552 struct hfi1_devdata *dd = ppd->dd;
12553 u64 reg = 0;
12554 int i;
12555
12556 dd_dev_info(dd, "Setting partition keys\n");
12557 for (i = 0; i < hfi1_get_npkeys(dd); i++) {
12558 reg |= (ppd->pkeys[i] &
12559 RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
12560 ((i % 4) *
12561 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
12562 /* Each register holds 4 PKey values. */
12563 if ((i % 4) == 3) {
12564 write_csr(dd, RCV_PARTITION_KEY +
12565 ((i - 3) * 2), reg);
12566 reg = 0;
12567 }
12568 }
12569
12570 /* Always enable HW pkeys check when pkeys table is set */
12571 add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
12572}
12573
12574/*
12575 * These CSRs and memories are uninitialized on reset and must be
12576 * written before reading to set the ECC/parity bits.
12577 *
12578 * NOTE: All user context CSRs that are not mmaped write-only
12579 * (e.g. the TID flows) must be initialized even if the driver never
12580 * reads them.
12581 */
12582static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
12583{
12584 int i, j;
12585
12586 /* CceIntMap */
12587 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
12588 write_csr(dd, CCE_INT_MAP+(8*i), 0);
12589
12590 /* SendCtxtCreditReturnAddr */
12591 for (i = 0; i < dd->chip_send_contexts; i++)
12592 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
12593
12594 /* PIO Send buffers */
12595 /* SDMA Send buffers */
12596 /* These are not normally read, and (presently) have no method
12597 to be read, so are not pre-initialized */
12598
12599 /* RcvHdrAddr */
12600 /* RcvHdrTailAddr */
12601 /* RcvTidFlowTable */
12602 for (i = 0; i < dd->chip_rcv_contexts; i++) {
12603 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
12604 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
12605 for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
12606 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE+(8*j), 0);
12607 }
12608
12609 /* RcvArray */
12610 for (i = 0; i < dd->chip_rcv_array_count; i++)
12611 write_csr(dd, RCV_ARRAY + (8*i),
12612 RCV_ARRAY_RT_WRITE_ENABLE_SMASK);
12613
12614 /* RcvQPMapTable */
12615 for (i = 0; i < 32; i++)
12616 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
12617}
12618
12619/*
12620 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
12621 */
12622static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
12623 u64 ctrl_bits)
12624{
12625 unsigned long timeout;
12626 u64 reg;
12627
12628 /* is the condition present? */
12629 reg = read_csr(dd, CCE_STATUS);
12630 if ((reg & status_bits) == 0)
12631 return;
12632
12633 /* clear the condition */
12634 write_csr(dd, CCE_CTRL, ctrl_bits);
12635
12636 /* wait for the condition to clear */
12637 timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
12638 while (1) {
12639 reg = read_csr(dd, CCE_STATUS);
12640 if ((reg & status_bits) == 0)
12641 return;
12642 if (time_after(jiffies, timeout)) {
12643 dd_dev_err(dd,
12644 "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
12645 status_bits, reg & status_bits);
12646 return;
12647 }
12648 udelay(1);
12649 }
12650}
12651
12652/* set CCE CSRs to chip reset defaults */
12653static void reset_cce_csrs(struct hfi1_devdata *dd)
12654{
12655 int i;
12656
12657 /* CCE_REVISION read-only */
12658 /* CCE_REVISION2 read-only */
12659 /* CCE_CTRL - bits clear automatically */
12660 /* CCE_STATUS read-only, use CceCtrl to clear */
12661 clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
12662 clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
12663 clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
12664 for (i = 0; i < CCE_NUM_SCRATCH; i++)
12665 write_csr(dd, CCE_SCRATCH + (8 * i), 0);
12666 /* CCE_ERR_STATUS read-only */
12667 write_csr(dd, CCE_ERR_MASK, 0);
12668 write_csr(dd, CCE_ERR_CLEAR, ~0ull);
12669 /* CCE_ERR_FORCE leave alone */
12670 for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
12671 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
12672 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
12673 /* CCE_PCIE_CTRL leave alone */
12674 for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
12675 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
12676 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
12677 CCE_MSIX_TABLE_UPPER_RESETCSR);
12678 }
12679 for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
12680 /* CCE_MSIX_PBA read-only */
12681 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
12682 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
12683 }
12684 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
12685 write_csr(dd, CCE_INT_MAP, 0);
12686 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
12687 /* CCE_INT_STATUS read-only */
12688 write_csr(dd, CCE_INT_MASK + (8 * i), 0);
12689 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
12690 /* CCE_INT_FORCE leave alone */
12691 /* CCE_INT_BLOCKED read-only */
12692 }
12693 for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
12694 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
12695}
12696
12697/* set ASIC CSRs to chip reset defaults */
12698static void reset_asic_csrs(struct hfi1_devdata *dd)
12699{
77241056
MM
12700 int i;
12701
12702 /*
12703 * If the HFIs are shared between separate nodes or VMs,
12704 * then more will need to be done here. One idea is a module
12705 * parameter that returns early, letting the first power-on or
12706 * a known first load do the reset and blocking all others.
12707 */
12708
7c03ed85
EH
12709 if (!(dd->flags & HFI1_DO_INIT_ASIC))
12710 return;
77241056
MM
12711
12712 if (dd->icode != ICODE_FPGA_EMULATION) {
12713 /* emulation does not have an SBus - leave these alone */
12714 /*
12715 * All writes to ASIC_CFG_SBUS_REQUEST do something.
12716 * Notes:
12717 * o The reset is not zero if aimed at the core. See the
12718 * SBus documentation for details.
12719 * o If the SBus firmware has been updated (e.g. by the BIOS),
12720 * will the reset revert that?
12721 */
12722 /* ASIC_CFG_SBUS_REQUEST leave alone */
12723 write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
12724 }
12725 /* ASIC_SBUS_RESULT read-only */
12726 write_csr(dd, ASIC_STS_SBUS_COUNTERS, 0);
12727 for (i = 0; i < ASIC_NUM_SCRATCH; i++)
12728 write_csr(dd, ASIC_CFG_SCRATCH + (8 * i), 0);
12729 write_csr(dd, ASIC_CFG_MUTEX, 0); /* this will clear it */
7c03ed85
EH
12730
12731 /* We might want to retain this state across FLR if we ever use it */
77241056 12732 write_csr(dd, ASIC_CFG_DRV_STR, 0);
7c03ed85 12733
4ef98989 12734 /* ASIC_CFG_THERM_POLL_EN leave alone */
77241056
MM
12735 /* ASIC_STS_THERM read-only */
12736 /* ASIC_CFG_RESET leave alone */
12737
12738 write_csr(dd, ASIC_PCIE_SD_HOST_CMD, 0);
12739 /* ASIC_PCIE_SD_HOST_STATUS read-only */
12740 write_csr(dd, ASIC_PCIE_SD_INTRPT_DATA_CODE, 0);
12741 write_csr(dd, ASIC_PCIE_SD_INTRPT_ENABLE, 0);
12742 /* ASIC_PCIE_SD_INTRPT_PROGRESS read-only */
12743 write_csr(dd, ASIC_PCIE_SD_INTRPT_STATUS, ~0ull); /* clear */
12744 /* ASIC_HFI0_PCIE_SD_INTRPT_RSPD_DATA read-only */
12745 /* ASIC_HFI1_PCIE_SD_INTRPT_RSPD_DATA read-only */
12746 for (i = 0; i < 16; i++)
12747 write_csr(dd, ASIC_PCIE_SD_INTRPT_LIST + (8 * i), 0);
12748
12749 /* ASIC_GPIO_IN read-only */
12750 write_csr(dd, ASIC_GPIO_OE, 0);
12751 write_csr(dd, ASIC_GPIO_INVERT, 0);
12752 write_csr(dd, ASIC_GPIO_OUT, 0);
12753 write_csr(dd, ASIC_GPIO_MASK, 0);
12754 /* ASIC_GPIO_STATUS read-only */
12755 write_csr(dd, ASIC_GPIO_CLEAR, ~0ull);
12756 /* ASIC_GPIO_FORCE leave alone */
12757
12758 /* ASIC_QSFP1_IN read-only */
12759 write_csr(dd, ASIC_QSFP1_OE, 0);
12760 write_csr(dd, ASIC_QSFP1_INVERT, 0);
12761 write_csr(dd, ASIC_QSFP1_OUT, 0);
12762 write_csr(dd, ASIC_QSFP1_MASK, 0);
12763 /* ASIC_QSFP1_STATUS read-only */
12764 write_csr(dd, ASIC_QSFP1_CLEAR, ~0ull);
12765 /* ASIC_QSFP1_FORCE leave alone */
12766
12767 /* ASIC_QSFP2_IN read-only */
12768 write_csr(dd, ASIC_QSFP2_OE, 0);
12769 write_csr(dd, ASIC_QSFP2_INVERT, 0);
12770 write_csr(dd, ASIC_QSFP2_OUT, 0);
12771 write_csr(dd, ASIC_QSFP2_MASK, 0);
12772 /* ASIC_QSFP2_STATUS read-only */
12773 write_csr(dd, ASIC_QSFP2_CLEAR, ~0ull);
12774 /* ASIC_QSFP2_FORCE leave alone */
12775
12776 write_csr(dd, ASIC_EEP_CTL_STAT, ASIC_EEP_CTL_STAT_RESETCSR);
12777 /* this also writes a NOP command, clearing paging mode */
12778 write_csr(dd, ASIC_EEP_ADDR_CMD, 0);
12779 write_csr(dd, ASIC_EEP_DATA, 0);
77241056
MM
12780}
12781
12782/* set MISC CSRs to chip reset defaults */
12783static void reset_misc_csrs(struct hfi1_devdata *dd)
12784{
12785 int i;
12786
12787 for (i = 0; i < 32; i++) {
12788 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
12789 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
12790 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
12791 }
12792 /* MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
12793 only be written 128-byte chunks */
12794 /* init RSA engine to clear lingering errors */
12795 write_csr(dd, MISC_CFG_RSA_CMD, 1);
12796 write_csr(dd, MISC_CFG_RSA_MU, 0);
12797 write_csr(dd, MISC_CFG_FW_CTRL, 0);
12798 /* MISC_STS_8051_DIGEST read-only */
12799 /* MISC_STS_SBM_DIGEST read-only */
12800 /* MISC_STS_PCIE_DIGEST read-only */
12801 /* MISC_STS_FAB_DIGEST read-only */
12802 /* MISC_ERR_STATUS read-only */
12803 write_csr(dd, MISC_ERR_MASK, 0);
12804 write_csr(dd, MISC_ERR_CLEAR, ~0ull);
12805 /* MISC_ERR_FORCE leave alone */
12806}
12807
12808/* set TXE CSRs to chip reset defaults */
12809static void reset_txe_csrs(struct hfi1_devdata *dd)
12810{
12811 int i;
12812
12813 /*
12814 * TXE Kernel CSRs
12815 */
12816 write_csr(dd, SEND_CTRL, 0);
12817 __cm_reset(dd, 0); /* reset CM internal state */
12818 /* SEND_CONTEXTS read-only */
12819 /* SEND_DMA_ENGINES read-only */
12820 /* SEND_PIO_MEM_SIZE read-only */
12821 /* SEND_DMA_MEM_SIZE read-only */
12822 write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
12823 pio_reset_all(dd); /* SEND_PIO_INIT_CTXT */
12824 /* SEND_PIO_ERR_STATUS read-only */
12825 write_csr(dd, SEND_PIO_ERR_MASK, 0);
12826 write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
12827 /* SEND_PIO_ERR_FORCE leave alone */
12828 /* SEND_DMA_ERR_STATUS read-only */
12829 write_csr(dd, SEND_DMA_ERR_MASK, 0);
12830 write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
12831 /* SEND_DMA_ERR_FORCE leave alone */
12832 /* SEND_EGRESS_ERR_STATUS read-only */
12833 write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
12834 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
12835 /* SEND_EGRESS_ERR_FORCE leave alone */
12836 write_csr(dd, SEND_BTH_QP, 0);
12837 write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
12838 write_csr(dd, SEND_SC2VLT0, 0);
12839 write_csr(dd, SEND_SC2VLT1, 0);
12840 write_csr(dd, SEND_SC2VLT2, 0);
12841 write_csr(dd, SEND_SC2VLT3, 0);
12842 write_csr(dd, SEND_LEN_CHECK0, 0);
12843 write_csr(dd, SEND_LEN_CHECK1, 0);
12844 /* SEND_ERR_STATUS read-only */
12845 write_csr(dd, SEND_ERR_MASK, 0);
12846 write_csr(dd, SEND_ERR_CLEAR, ~0ull);
12847 /* SEND_ERR_FORCE read-only */
12848 for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
12849 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8*i), 0);
12850 for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
12851 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8*i), 0);
12852 for (i = 0; i < dd->chip_send_contexts/NUM_CONTEXTS_PER_SET; i++)
12853 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8*i), 0);
12854 for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
12855 write_csr(dd, SEND_COUNTER_ARRAY32 + (8*i), 0);
12856 for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
12857 write_csr(dd, SEND_COUNTER_ARRAY64 + (8*i), 0);
12858 write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
12859 write_csr(dd, SEND_CM_GLOBAL_CREDIT,
12860 SEND_CM_GLOBAL_CREDIT_RESETCSR);
12861 /* SEND_CM_CREDIT_USED_STATUS read-only */
12862 write_csr(dd, SEND_CM_TIMER_CTRL, 0);
12863 write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
12864 write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
12865 write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
12866 write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
12867 for (i = 0; i < TXE_NUM_DATA_VL; i++)
12868 write_csr(dd, SEND_CM_CREDIT_VL + (8*i), 0);
12869 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
12870 /* SEND_CM_CREDIT_USED_VL read-only */
12871 /* SEND_CM_CREDIT_USED_VL15 read-only */
12872 /* SEND_EGRESS_CTXT_STATUS read-only */
12873 /* SEND_EGRESS_SEND_DMA_STATUS read-only */
12874 write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
12875 /* SEND_EGRESS_ERR_INFO read-only */
12876 /* SEND_EGRESS_ERR_SOURCE read-only */
12877
12878 /*
12879 * TXE Per-Context CSRs
12880 */
12881 for (i = 0; i < dd->chip_send_contexts; i++) {
12882 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
12883 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
12884 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
12885 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
12886 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
12887 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
12888 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
12889 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
12890 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
12891 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
12892 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
12893 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
12894 }
12895
12896 /*
12897 * TXE Per-SDMA CSRs
12898 */
12899 for (i = 0; i < dd->chip_sdma_engines; i++) {
12900 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
12901 /* SEND_DMA_STATUS read-only */
12902 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
12903 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
12904 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
12905 /* SEND_DMA_HEAD read-only */
12906 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
12907 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
12908 /* SEND_DMA_IDLE_CNT read-only */
12909 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
12910 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
12911 /* SEND_DMA_DESC_FETCHED_CNT read-only */
12912 /* SEND_DMA_ENG_ERR_STATUS read-only */
12913 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
12914 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
12915 /* SEND_DMA_ENG_ERR_FORCE leave alone */
12916 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
12917 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
12918 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
12919 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
12920 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
12921 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
12922 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
12923 }
12924}
12925
12926/*
12927 * Expect on entry:
12928 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
12929 */
12930static void init_rbufs(struct hfi1_devdata *dd)
12931{
12932 u64 reg;
12933 int count;
12934
12935 /*
12936 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
12937 * clear.
12938 */
12939 count = 0;
12940 while (1) {
12941 reg = read_csr(dd, RCV_STATUS);
12942 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
12943 | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
12944 break;
12945 /*
12946 * Give up after 1ms - maximum wait time.
12947 *
12948 * RBuf size is 148KiB. Slowest possible is PCIe Gen1 x1 at
12949 * 250MB/s bandwidth. Lower rate to 66% for overhead to get:
12950 * 148 KB / (66% * 250MB/s) = 920us
12951 */
12952 if (count++ > 500) {
12953 dd_dev_err(dd,
12954 "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
12955 __func__, reg);
12956 break;
12957 }
12958 udelay(2); /* do not busy-wait the CSR */
12959 }
12960
12961 /* start the init - expect RcvCtrl to be 0 */
12962 write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
12963
12964 /*
12965 * Read to force the write of Rcvtrl.RxRbufInit. There is a brief
12966 * period after the write before RcvStatus.RxRbufInitDone is valid.
12967 * The delay in the first run through the loop below is sufficient and
12968 * required before the first read of RcvStatus.RxRbufInintDone.
12969 */
12970 read_csr(dd, RCV_CTRL);
12971
12972 /* wait for the init to finish */
12973 count = 0;
12974 while (1) {
12975 /* delay is required first time through - see above */
12976 udelay(2); /* do not busy-wait the CSR */
12977 reg = read_csr(dd, RCV_STATUS);
12978 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
12979 break;
12980
12981 /* give up after 100us - slowest possible at 33MHz is 73us */
12982 if (count++ > 50) {
12983 dd_dev_err(dd,
12984 "%s: RcvStatus.RxRbufInit not set, continuing\n",
12985 __func__);
12986 break;
12987 }
12988 }
12989}
12990
12991/* set RXE CSRs to chip reset defaults */
12992static void reset_rxe_csrs(struct hfi1_devdata *dd)
12993{
12994 int i, j;
12995
12996 /*
12997 * RXE Kernel CSRs
12998 */
12999 write_csr(dd, RCV_CTRL, 0);
13000 init_rbufs(dd);
13001 /* RCV_STATUS read-only */
13002 /* RCV_CONTEXTS read-only */
13003 /* RCV_ARRAY_CNT read-only */
13004 /* RCV_BUF_SIZE read-only */
13005 write_csr(dd, RCV_BTH_QP, 0);
13006 write_csr(dd, RCV_MULTICAST, 0);
13007 write_csr(dd, RCV_BYPASS, 0);
13008 write_csr(dd, RCV_VL15, 0);
13009 /* this is a clear-down */
13010 write_csr(dd, RCV_ERR_INFO,
13011 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13012 /* RCV_ERR_STATUS read-only */
13013 write_csr(dd, RCV_ERR_MASK, 0);
13014 write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13015 /* RCV_ERR_FORCE leave alone */
13016 for (i = 0; i < 32; i++)
13017 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13018 for (i = 0; i < 4; i++)
13019 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13020 for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13021 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13022 for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13023 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13024 for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++) {
13025 write_csr(dd, RCV_RSM_CFG + (8 * i), 0);
13026 write_csr(dd, RCV_RSM_SELECT + (8 * i), 0);
13027 write_csr(dd, RCV_RSM_MATCH + (8 * i), 0);
13028 }
13029 for (i = 0; i < 32; i++)
13030 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13031
13032 /*
13033 * RXE Kernel and User Per-Context CSRs
13034 */
13035 for (i = 0; i < dd->chip_rcv_contexts; i++) {
13036 /* kernel */
13037 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13038 /* RCV_CTXT_STATUS read-only */
13039 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13040 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13041 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13042 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13043 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13044 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13045 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13046 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13047 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13048 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13049
13050 /* user */
13051 /* RCV_HDR_TAIL read-only */
13052 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13053 /* RCV_EGR_INDEX_TAIL read-only */
13054 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13055 /* RCV_EGR_OFFSET_TAIL read-only */
13056 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13057 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j),
13058 0);
13059 }
13060 }
13061}
13062
13063/*
13064 * Set sc2vl tables.
13065 *
13066 * They power on to zeros, so to avoid send context errors
13067 * they need to be set:
13068 *
13069 * SC 0-7 -> VL 0-7 (respectively)
13070 * SC 15 -> VL 15
13071 * otherwise
13072 * -> VL 0
13073 */
13074static void init_sc2vl_tables(struct hfi1_devdata *dd)
13075{
13076 int i;
13077 /* init per architecture spec, constrained by hardware capability */
13078
13079 /* HFI maps sent packets */
13080 write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13081 0,
13082 0, 0, 1, 1,
13083 2, 2, 3, 3,
13084 4, 4, 5, 5,
13085 6, 6, 7, 7));
13086 write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13087 1,
13088 8, 0, 9, 0,
13089 10, 0, 11, 0,
13090 12, 0, 13, 0,
13091 14, 0, 15, 15));
13092 write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13093 2,
13094 16, 0, 17, 0,
13095 18, 0, 19, 0,
13096 20, 0, 21, 0,
13097 22, 0, 23, 0));
13098 write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13099 3,
13100 24, 0, 25, 0,
13101 26, 0, 27, 0,
13102 28, 0, 29, 0,
13103 30, 0, 31, 0));
13104
13105 /* DC maps received packets */
13106 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13107 15_0,
13108 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7,
13109 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13110 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13111 31_16,
13112 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13113 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13114
13115 /* initialize the cached sc2vl values consistently with h/w */
13116 for (i = 0; i < 32; i++) {
13117 if (i < 8 || i == 15)
13118 *((u8 *)(dd->sc2vl) + i) = (u8)i;
13119 else
13120 *((u8 *)(dd->sc2vl) + i) = 0;
13121 }
13122}
13123
13124/*
13125 * Read chip sizes and then reset parts to sane, disabled, values. We cannot
13126 * depend on the chip going through a power-on reset - a driver may be loaded
13127 * and unloaded many times.
13128 *
13129 * Do not write any CSR values to the chip in this routine - there may be
13130 * a reset following the (possible) FLR in this routine.
13131 *
13132 */
13133static void init_chip(struct hfi1_devdata *dd)
13134{
13135 int i;
13136
13137 /*
13138 * Put the HFI CSRs in a known state.
13139 * Combine this with a DC reset.
13140 *
13141 * Stop the device from doing anything while we do a
13142 * reset. We know there are no other active users of
13143 * the device since we are now in charge. Turn off
13144 * off all outbound and inbound traffic and make sure
13145 * the device does not generate any interrupts.
13146 */
13147
13148 /* disable send contexts and SDMA engines */
13149 write_csr(dd, SEND_CTRL, 0);
13150 for (i = 0; i < dd->chip_send_contexts; i++)
13151 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13152 for (i = 0; i < dd->chip_sdma_engines; i++)
13153 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13154 /* disable port (turn off RXE inbound traffic) and contexts */
13155 write_csr(dd, RCV_CTRL, 0);
13156 for (i = 0; i < dd->chip_rcv_contexts; i++)
13157 write_csr(dd, RCV_CTXT_CTRL, 0);
13158 /* mask all interrupt sources */
13159 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13160 write_csr(dd, CCE_INT_MASK + (8*i), 0ull);
13161
13162 /*
13163 * DC Reset: do a full DC reset before the register clear.
13164 * A recommended length of time to hold is one CSR read,
13165 * so reread the CceDcCtrl. Then, hold the DC in reset
13166 * across the clear.
13167 */
13168 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
13169 (void) read_csr(dd, CCE_DC_CTRL);
13170
13171 if (use_flr) {
13172 /*
13173 * A FLR will reset the SPC core and part of the PCIe.
13174 * The parts that need to be restored have already been
13175 * saved.
13176 */
13177 dd_dev_info(dd, "Resetting CSRs with FLR\n");
13178
13179 /* do the FLR, the DC reset will remain */
13180 hfi1_pcie_flr(dd);
13181
13182 /* restore command and BARs */
13183 restore_pci_variables(dd);
13184
995deafa 13185 if (is_ax(dd)) {
77241056
MM
13186 dd_dev_info(dd, "Resetting CSRs with FLR\n");
13187 hfi1_pcie_flr(dd);
13188 restore_pci_variables(dd);
13189 }
13190
7c03ed85 13191 reset_asic_csrs(dd);
77241056
MM
13192 } else {
13193 dd_dev_info(dd, "Resetting CSRs with writes\n");
13194 reset_cce_csrs(dd);
13195 reset_txe_csrs(dd);
13196 reset_rxe_csrs(dd);
13197 reset_asic_csrs(dd);
13198 reset_misc_csrs(dd);
13199 }
13200 /* clear the DC reset */
13201 write_csr(dd, CCE_DC_CTRL, 0);
7c03ed85 13202
77241056 13203 /* Set the LED off */
995deafa 13204 if (is_ax(dd))
77241056
MM
13205 setextled(dd, 0);
13206 /*
13207 * Clear the QSFP reset.
72a67ba2 13208 * An FLR enforces a 0 on all out pins. The driver does not touch
77241056 13209 * ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and
72a67ba2 13210 * anything plugged constantly in reset, if it pays attention
77241056 13211 * to RESET_N.
72a67ba2 13212 * Prime examples of this are optical cables. Set all pins high.
77241056
MM
13213 * I2CCLK and I2CDAT will change per direction, and INT_N and
13214 * MODPRS_N are input only and their value is ignored.
13215 */
72a67ba2
EH
13216 write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
13217 write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
77241056
MM
13218}
13219
13220static void init_early_variables(struct hfi1_devdata *dd)
13221{
13222 int i;
13223
13224 /* assign link credit variables */
13225 dd->vau = CM_VAU;
13226 dd->link_credits = CM_GLOBAL_CREDITS;
995deafa 13227 if (is_ax(dd))
77241056
MM
13228 dd->link_credits--;
13229 dd->vcu = cu_to_vcu(hfi1_cu);
13230 /* enough room for 8 MAD packets plus header - 17K */
13231 dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
13232 if (dd->vl15_init > dd->link_credits)
13233 dd->vl15_init = dd->link_credits;
13234
13235 write_uninitialized_csrs_and_memories(dd);
13236
13237 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
13238 for (i = 0; i < dd->num_pports; i++) {
13239 struct hfi1_pportdata *ppd = &dd->pport[i];
13240
13241 set_partition_keys(ppd);
13242 }
13243 init_sc2vl_tables(dd);
13244}
13245
13246static void init_kdeth_qp(struct hfi1_devdata *dd)
13247{
13248 /* user changed the KDETH_QP */
13249 if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
13250 /* out of range or illegal value */
13251 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
13252 kdeth_qp = 0;
13253 }
13254 if (kdeth_qp == 0) /* not set, or failed range check */
13255 kdeth_qp = DEFAULT_KDETH_QP;
13256
13257 write_csr(dd, SEND_BTH_QP,
13258 (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK)
13259 << SEND_BTH_QP_KDETH_QP_SHIFT);
13260
13261 write_csr(dd, RCV_BTH_QP,
13262 (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK)
13263 << RCV_BTH_QP_KDETH_QP_SHIFT);
13264}
13265
13266/**
13267 * init_qpmap_table
13268 * @dd - device data
13269 * @first_ctxt - first context
13270 * @last_ctxt - first context
13271 *
13272 * This return sets the qpn mapping table that
13273 * is indexed by qpn[8:1].
13274 *
13275 * The routine will round robin the 256 settings
13276 * from first_ctxt to last_ctxt.
13277 *
13278 * The first/last looks ahead to having specialized
13279 * receive contexts for mgmt and bypass. Normal
13280 * verbs traffic will assumed to be on a range
13281 * of receive contexts.
13282 */
13283static void init_qpmap_table(struct hfi1_devdata *dd,
13284 u32 first_ctxt,
13285 u32 last_ctxt)
13286{
13287 u64 reg = 0;
13288 u64 regno = RCV_QP_MAP_TABLE;
13289 int i;
13290 u64 ctxt = first_ctxt;
13291
13292 for (i = 0; i < 256;) {
77241056
MM
13293 reg |= ctxt << (8 * (i % 8));
13294 i++;
13295 ctxt++;
13296 if (ctxt > last_ctxt)
13297 ctxt = first_ctxt;
13298 if (i % 8 == 0) {
13299 write_csr(dd, regno, reg);
13300 reg = 0;
13301 regno += 8;
13302 }
13303 }
13304 if (i % 8)
13305 write_csr(dd, regno, reg);
13306
13307 add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
13308 | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
13309}
13310
13311/**
13312 * init_qos - init RX qos
13313 * @dd - device data
13314 * @first_context
13315 *
13316 * This routine initializes Rule 0 and the
13317 * RSM map table to implement qos.
13318 *
13319 * If all of the limit tests succeed,
13320 * qos is applied based on the array
13321 * interpretation of krcvqs where
13322 * entry 0 is VL0.
13323 *
13324 * The number of vl bits (n) and the number of qpn
13325 * bits (m) are computed to feed both the RSM map table
13326 * and the single rule.
13327 *
13328 */
13329static void init_qos(struct hfi1_devdata *dd, u32 first_ctxt)
13330{
13331 u8 max_by_vl = 0;
13332 unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
13333 u64 *rsmmap;
13334 u64 reg;
995deafa 13335 u8 rxcontext = is_ax(dd) ? 0 : 0xff; /* 0 is default if a0 ver. */
77241056
MM
13336
13337 /* validate */
13338 if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
13339 num_vls == 1 ||
13340 krcvqsset <= 1)
13341 goto bail;
13342 for (i = 0; i < min_t(unsigned, num_vls, krcvqsset); i++)
13343 if (krcvqs[i] > max_by_vl)
13344 max_by_vl = krcvqs[i];
13345 if (max_by_vl > 32)
13346 goto bail;
13347 qpns_per_vl = __roundup_pow_of_two(max_by_vl);
13348 /* determine bits vl */
13349 n = ilog2(num_vls);
13350 /* determine bits for qpn */
13351 m = ilog2(qpns_per_vl);
13352 if ((m + n) > 7)
13353 goto bail;
13354 if (num_vls * qpns_per_vl > dd->chip_rcv_contexts)
13355 goto bail;
13356 rsmmap = kmalloc_array(NUM_MAP_REGS, sizeof(u64), GFP_KERNEL);
859bcad9
EH
13357 if (!rsmmap)
13358 goto bail;
77241056
MM
13359 memset(rsmmap, rxcontext, NUM_MAP_REGS * sizeof(u64));
13360 /* init the local copy of the table */
13361 for (i = 0, ctxt = first_ctxt; i < num_vls; i++) {
13362 unsigned tctxt;
13363
13364 for (qpn = 0, tctxt = ctxt;
13365 krcvqs[i] && qpn < qpns_per_vl; qpn++) {
13366 unsigned idx, regoff, regidx;
13367
13368 /* generate index <= 128 */
13369 idx = (qpn << n) ^ i;
13370 regoff = (idx % 8) * 8;
13371 regidx = idx / 8;
13372 reg = rsmmap[regidx];
13373 /* replace 0xff with context number */
13374 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
13375 << regoff);
13376 reg |= (u64)(tctxt++) << regoff;
13377 rsmmap[regidx] = reg;
13378 if (tctxt == ctxt + krcvqs[i])
13379 tctxt = ctxt;
13380 }
13381 ctxt += krcvqs[i];
13382 }
13383 /* flush cached copies to chip */
13384 for (i = 0; i < NUM_MAP_REGS; i++)
13385 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rsmmap[i]);
13386 /* add rule0 */
13387 write_csr(dd, RCV_RSM_CFG /* + (8 * 0) */,
13388 RCV_RSM_CFG_ENABLE_OR_CHAIN_RSM0_MASK
13389 << RCV_RSM_CFG_ENABLE_OR_CHAIN_RSM0_SHIFT |
13390 2ull << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
13391 write_csr(dd, RCV_RSM_SELECT /* + (8 * 0) */,
13392 LRH_BTH_MATCH_OFFSET
13393 << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
13394 LRH_SC_MATCH_OFFSET << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
13395 LRH_SC_SELECT_OFFSET << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
13396 ((u64)n) << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
13397 QPN_SELECT_OFFSET << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
13398 ((u64)m + (u64)n) << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
13399 write_csr(dd, RCV_RSM_MATCH /* + (8 * 0) */,
13400 LRH_BTH_MASK << RCV_RSM_MATCH_MASK1_SHIFT |
13401 LRH_BTH_VALUE << RCV_RSM_MATCH_VALUE1_SHIFT |
13402 LRH_SC_MASK << RCV_RSM_MATCH_MASK2_SHIFT |
13403 LRH_SC_VALUE << RCV_RSM_MATCH_VALUE2_SHIFT);
13404 /* Enable RSM */
13405 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
13406 kfree(rsmmap);
82c2611d
NV
13407 /* map everything else to first context */
13408 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, MIN_KERNEL_KCTXTS - 1);
77241056
MM
13409 dd->qos_shift = n + 1;
13410 return;
13411bail:
13412 dd->qos_shift = 1;
82c2611d 13413 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
77241056
MM
13414}
13415
13416static void init_rxe(struct hfi1_devdata *dd)
13417{
13418 /* enable all receive errors */
13419 write_csr(dd, RCV_ERR_MASK, ~0ull);
13420 /* setup QPN map table - start where VL15 context leaves off */
13421 init_qos(
13422 dd,
13423 dd->n_krcv_queues > MIN_KERNEL_KCTXTS ? MIN_KERNEL_KCTXTS : 0);
13424 /*
13425 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
13426 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
13427 * space, PciCfgCap2.MaxPayloadSize in HFI). There is only one
13428 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
13429 * Max_PayLoad_Size set to its minimum of 128.
13430 *
13431 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
13432 * (64 bytes). Max_Payload_Size is possibly modified upward in
13433 * tune_pcie_caps() which is called after this routine.
13434 */
13435}
13436
13437static void init_other(struct hfi1_devdata *dd)
13438{
13439 /* enable all CCE errors */
13440 write_csr(dd, CCE_ERR_MASK, ~0ull);
13441 /* enable *some* Misc errors */
13442 write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
13443 /* enable all DC errors, except LCB */
13444 write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
13445 write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
13446}
13447
13448/*
13449 * Fill out the given AU table using the given CU. A CU is defined in terms
13450 * AUs. The table is a an encoding: given the index, how many AUs does that
13451 * represent?
13452 *
13453 * NOTE: Assumes that the register layout is the same for the
13454 * local and remote tables.
13455 */
13456static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
13457 u32 csr0to3, u32 csr4to7)
13458{
13459 write_csr(dd, csr0to3,
13460 0ull <<
13461 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT
13462 | 1ull <<
13463 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT
13464 | 2ull * cu <<
13465 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT
13466 | 4ull * cu <<
13467 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
13468 write_csr(dd, csr4to7,
13469 8ull * cu <<
13470 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT
13471 | 16ull * cu <<
13472 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT
13473 | 32ull * cu <<
13474 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT
13475 | 64ull * cu <<
13476 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
13477
13478}
13479
13480static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
13481{
13482 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
13483 SEND_CM_LOCAL_AU_TABLE4_TO7);
13484}
13485
13486void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
13487{
13488 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
13489 SEND_CM_REMOTE_AU_TABLE4_TO7);
13490}
13491
13492static void init_txe(struct hfi1_devdata *dd)
13493{
13494 int i;
13495
13496 /* enable all PIO, SDMA, general, and Egress errors */
13497 write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
13498 write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
13499 write_csr(dd, SEND_ERR_MASK, ~0ull);
13500 write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
13501
13502 /* enable all per-context and per-SDMA engine errors */
13503 for (i = 0; i < dd->chip_send_contexts; i++)
13504 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
13505 for (i = 0; i < dd->chip_sdma_engines; i++)
13506 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
13507
13508 /* set the local CU to AU mapping */
13509 assign_local_cm_au_table(dd, dd->vcu);
13510
13511 /*
13512 * Set reasonable default for Credit Return Timer
13513 * Don't set on Simulator - causes it to choke.
13514 */
13515 if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
13516 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
13517}
13518
13519int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey)
13520{
13521 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
13522 unsigned sctxt;
13523 int ret = 0;
13524 u64 reg;
13525
13526 if (!rcd || !rcd->sc) {
13527 ret = -EINVAL;
13528 goto done;
13529 }
13530 sctxt = rcd->sc->hw_context;
13531 reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
13532 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
13533 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
13534 /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
13535 if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
13536 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
13537 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
13538 /*
13539 * Enable send-side J_KEY integrity check, unless this is A0 h/w
13540 * (due to A0 erratum).
13541 */
995deafa 13542 if (!is_ax(dd)) {
77241056
MM
13543 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
13544 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
13545 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
13546 }
13547
13548 /* Enable J_KEY check on receive context. */
13549 reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
13550 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
13551 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
13552 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg);
13553done:
13554 return ret;
13555}
13556
13557int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt)
13558{
13559 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
13560 unsigned sctxt;
13561 int ret = 0;
13562 u64 reg;
13563
13564 if (!rcd || !rcd->sc) {
13565 ret = -EINVAL;
13566 goto done;
13567 }
13568 sctxt = rcd->sc->hw_context;
13569 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
13570 /*
13571 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
13572 * This check would not have been enabled for A0 h/w, see
13573 * set_ctxt_jkey().
13574 */
995deafa 13575 if (!is_ax(dd)) {
77241056
MM
13576 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
13577 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
13578 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
13579 }
13580 /* Turn off the J_KEY on the receive side */
13581 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0);
13582done:
13583 return ret;
13584}
13585
13586int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey)
13587{
13588 struct hfi1_ctxtdata *rcd;
13589 unsigned sctxt;
13590 int ret = 0;
13591 u64 reg;
13592
13593 if (ctxt < dd->num_rcv_contexts)
13594 rcd = dd->rcd[ctxt];
13595 else {
13596 ret = -EINVAL;
13597 goto done;
13598 }
13599 if (!rcd || !rcd->sc) {
13600 ret = -EINVAL;
13601 goto done;
13602 }
13603 sctxt = rcd->sc->hw_context;
13604 reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
13605 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
13606 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
13607 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
13608 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
13609 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
13610done:
13611 return ret;
13612}
13613
13614int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt)
13615{
13616 struct hfi1_ctxtdata *rcd;
13617 unsigned sctxt;
13618 int ret = 0;
13619 u64 reg;
13620
13621 if (ctxt < dd->num_rcv_contexts)
13622 rcd = dd->rcd[ctxt];
13623 else {
13624 ret = -EINVAL;
13625 goto done;
13626 }
13627 if (!rcd || !rcd->sc) {
13628 ret = -EINVAL;
13629 goto done;
13630 }
13631 sctxt = rcd->sc->hw_context;
13632 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
13633 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
13634 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
13635 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13636done:
13637 return ret;
13638}
13639
13640/*
13641 * Start doing the clean up the the chip. Our clean up happens in multiple
13642 * stages and this is just the first.
13643 */
13644void hfi1_start_cleanup(struct hfi1_devdata *dd)
13645{
13646 free_cntrs(dd);
13647 free_rcverr(dd);
13648 clean_up_interrupts(dd);
13649}
13650
13651#define HFI_BASE_GUID(dev) \
13652 ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
13653
13654/*
13655 * Certain chip functions need to be initialized only once per asic
13656 * instead of per-device. This function finds the peer device and
13657 * checks whether that chip initialization needs to be done by this
13658 * device.
13659 */
13660static void asic_should_init(struct hfi1_devdata *dd)
13661{
13662 unsigned long flags;
13663 struct hfi1_devdata *tmp, *peer = NULL;
13664
13665 spin_lock_irqsave(&hfi1_devs_lock, flags);
13666 /* Find our peer device */
13667 list_for_each_entry(tmp, &hfi1_dev_list, list) {
13668 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
13669 dd->unit != tmp->unit) {
13670 peer = tmp;
13671 break;
13672 }
13673 }
13674
13675 /*
13676 * "Claim" the ASIC for initialization if it hasn't been
13677 " "claimed" yet.
13678 */
13679 if (!peer || !(peer->flags & HFI1_DO_INIT_ASIC))
13680 dd->flags |= HFI1_DO_INIT_ASIC;
13681 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
13682}
13683
5d9157aa
DL
13684/*
13685 * Set dd->boardname. Use a generic name if a name is not returned from
13686 * EFI variable space.
13687 *
13688 * Return 0 on success, -ENOMEM if space could not be allocated.
13689 */
13690static int obtain_boardname(struct hfi1_devdata *dd)
13691{
13692 /* generic board description */
13693 const char generic[] =
13694 "Intel Omni-Path Host Fabric Interface Adapter 100 Series";
13695 unsigned long size;
13696 int ret;
13697
13698 ret = read_hfi1_efi_var(dd, "description", &size,
13699 (void **)&dd->boardname);
13700 if (ret) {
13701 dd_dev_err(dd, "Board description not found\n");
13702 /* use generic description */
13703 dd->boardname = kstrdup(generic, GFP_KERNEL);
13704 if (!dd->boardname)
13705 return -ENOMEM;
13706 }
13707 return 0;
13708}
13709
77241056 13710/**
7c03ed85 13711 * Allocate and initialize the device structure for the hfi.
77241056
MM
13712 * @dev: the pci_dev for hfi1_ib device
13713 * @ent: pci_device_id struct for this dev
13714 *
13715 * Also allocates, initializes, and returns the devdata struct for this
13716 * device instance
13717 *
13718 * This is global, and is called directly at init to set up the
13719 * chip-specific function pointers for later use.
13720 */
13721struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
13722 const struct pci_device_id *ent)
13723{
13724 struct hfi1_devdata *dd;
13725 struct hfi1_pportdata *ppd;
13726 u64 reg;
13727 int i, ret;
13728 static const char * const inames[] = { /* implementation names */
13729 "RTL silicon",
13730 "RTL VCS simulation",
13731 "RTL FPGA emulation",
13732 "Functional simulator"
13733 };
13734
13735 dd = hfi1_alloc_devdata(pdev,
13736 NUM_IB_PORTS * sizeof(struct hfi1_pportdata));
13737 if (IS_ERR(dd))
13738 goto bail;
13739 ppd = dd->pport;
13740 for (i = 0; i < dd->num_pports; i++, ppd++) {
13741 int vl;
13742 /* init common fields */
13743 hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
13744 /* DC supports 4 link widths */
13745 ppd->link_width_supported =
13746 OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
13747 OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
13748 ppd->link_width_downgrade_supported =
13749 ppd->link_width_supported;
13750 /* start out enabling only 4X */
13751 ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
13752 ppd->link_width_downgrade_enabled =
13753 ppd->link_width_downgrade_supported;
13754 /* link width active is 0 when link is down */
13755 /* link width downgrade active is 0 when link is down */
13756
13757 if (num_vls < HFI1_MIN_VLS_SUPPORTED
13758 || num_vls > HFI1_MAX_VLS_SUPPORTED) {
13759 hfi1_early_err(&pdev->dev,
13760 "Invalid num_vls %u, using %u VLs\n",
13761 num_vls, HFI1_MAX_VLS_SUPPORTED);
13762 num_vls = HFI1_MAX_VLS_SUPPORTED;
13763 }
13764 ppd->vls_supported = num_vls;
13765 ppd->vls_operational = ppd->vls_supported;
13766 /* Set the default MTU. */
13767 for (vl = 0; vl < num_vls; vl++)
13768 dd->vld[vl].mtu = hfi1_max_mtu;
13769 dd->vld[15].mtu = MAX_MAD_PACKET;
13770 /*
13771 * Set the initial values to reasonable default, will be set
13772 * for real when link is up.
13773 */
13774 ppd->lstate = IB_PORT_DOWN;
13775 ppd->overrun_threshold = 0x4;
13776 ppd->phy_error_threshold = 0xf;
13777 ppd->port_crc_mode_enabled = link_crc_mask;
13778 /* initialize supported LTP CRC mode */
13779 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
13780 /* initialize enabled LTP CRC mode */
13781 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
13782 /* start in offline */
13783 ppd->host_link_state = HLS_DN_OFFLINE;
13784 init_vl_arb_caches(ppd);
13785 }
13786
13787 dd->link_default = HLS_DN_POLL;
13788
13789 /*
13790 * Do remaining PCIe setup and save PCIe values in dd.
13791 * Any error printing is already done by the init code.
13792 * On return, we have the chip mapped.
13793 */
13794 ret = hfi1_pcie_ddinit(dd, pdev, ent);
13795 if (ret < 0)
13796 goto bail_free;
13797
13798 /* verify that reads actually work, save revision for reset check */
13799 dd->revision = read_csr(dd, CCE_REVISION);
13800 if (dd->revision == ~(u64)0) {
13801 dd_dev_err(dd, "cannot read chip CSRs\n");
13802 ret = -EINVAL;
13803 goto bail_cleanup;
13804 }
13805 dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
13806 & CCE_REVISION_CHIP_REV_MAJOR_MASK;
13807 dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
13808 & CCE_REVISION_CHIP_REV_MINOR_MASK;
13809
13810 /* obtain the hardware ID - NOT related to unit, which is a
13811 software enumeration */
13812 reg = read_csr(dd, CCE_REVISION2);
13813 dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
13814 & CCE_REVISION2_HFI_ID_MASK;
13815 /* the variable size will remove unwanted bits */
13816 dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
13817 dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
13818 dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
13819 dd->icode < ARRAY_SIZE(inames) ? inames[dd->icode] : "unknown",
13820 (int)dd->irev);
13821
13822 /* speeds the hardware can support */
13823 dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
13824 /* speeds allowed to run at */
13825 dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
13826 /* give a reasonable active value, will be set on link up */
13827 dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
13828
13829 dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
13830 dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
13831 dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
13832 dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
13833 dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
13834 /* fix up link widths for emulation _p */
13835 ppd = dd->pport;
13836 if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
13837 ppd->link_width_supported =
13838 ppd->link_width_enabled =
13839 ppd->link_width_downgrade_supported =
13840 ppd->link_width_downgrade_enabled =
13841 OPA_LINK_WIDTH_1X;
13842 }
13843 /* insure num_vls isn't larger than number of sdma engines */
13844 if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
13845 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
11a5909b
DL
13846 num_vls, dd->chip_sdma_engines);
13847 num_vls = dd->chip_sdma_engines;
13848 ppd->vls_supported = dd->chip_sdma_engines;
77241056
MM
13849 }
13850
13851 /*
13852 * Convert the ns parameter to the 64 * cclocks used in the CSR.
13853 * Limit the max if larger than the field holds. If timeout is
13854 * non-zero, then the calculated field will be at least 1.
13855 *
13856 * Must be after icode is set up - the cclock rate depends
13857 * on knowing the hardware being used.
13858 */
13859 dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
13860 if (dd->rcv_intr_timeout_csr >
13861 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
13862 dd->rcv_intr_timeout_csr =
13863 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
13864 else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
13865 dd->rcv_intr_timeout_csr = 1;
13866
7c03ed85
EH
13867 /* needs to be done before we look for the peer device */
13868 read_guid(dd);
13869
13870 /* should this device init the ASIC block? */
13871 asic_should_init(dd);
13872
77241056
MM
13873 /* obtain chip sizes, reset chip CSRs */
13874 init_chip(dd);
13875
13876 /* read in the PCIe link speed information */
13877 ret = pcie_speeds(dd);
13878 if (ret)
13879 goto bail_cleanup;
13880
77241056
MM
13881 /* read in firmware */
13882 ret = hfi1_firmware_init(dd);
13883 if (ret)
13884 goto bail_cleanup;
13885
13886 /*
13887 * In general, the PCIe Gen3 transition must occur after the
13888 * chip has been idled (so it won't initiate any PCIe transactions
13889 * e.g. an interrupt) and before the driver changes any registers
13890 * (the transition will reset the registers).
13891 *
13892 * In particular, place this call after:
13893 * - init_chip() - the chip will not initiate any PCIe transactions
13894 * - pcie_speeds() - reads the current link speed
13895 * - hfi1_firmware_init() - the needed firmware is ready to be
13896 * downloaded
13897 */
13898 ret = do_pcie_gen3_transition(dd);
13899 if (ret)
13900 goto bail_cleanup;
13901
13902 /* start setting dd values and adjusting CSRs */
13903 init_early_variables(dd);
13904
13905 parse_platform_config(dd);
13906
5d9157aa
DL
13907 ret = obtain_boardname(dd);
13908 if (ret)
77241056 13909 goto bail_cleanup;
77241056
MM
13910
13911 snprintf(dd->boardversion, BOARD_VERS_MAX,
5d9157aa 13912 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
77241056 13913 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
77241056
MM
13914 (u32)dd->majrev,
13915 (u32)dd->minrev,
13916 (dd->revision >> CCE_REVISION_SW_SHIFT)
13917 & CCE_REVISION_SW_MASK);
13918
13919 ret = set_up_context_variables(dd);
13920 if (ret)
13921 goto bail_cleanup;
13922
13923 /* set initial RXE CSRs */
13924 init_rxe(dd);
13925 /* set initial TXE CSRs */
13926 init_txe(dd);
13927 /* set initial non-RXE, non-TXE CSRs */
13928 init_other(dd);
13929 /* set up KDETH QP prefix in both RX and TX CSRs */
13930 init_kdeth_qp(dd);
13931
13932 /* send contexts must be set up before receive contexts */
13933 ret = init_send_contexts(dd);
13934 if (ret)
13935 goto bail_cleanup;
13936
13937 ret = hfi1_create_ctxts(dd);
13938 if (ret)
13939 goto bail_cleanup;
13940
13941 dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
13942 /*
13943 * rcd[0] is guaranteed to be valid by this point. Also, all
13944 * context are using the same value, as per the module parameter.
13945 */
13946 dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
13947
13948 ret = init_pervl_scs(dd);
13949 if (ret)
13950 goto bail_cleanup;
13951
13952 /* sdma init */
13953 for (i = 0; i < dd->num_pports; ++i) {
13954 ret = sdma_init(dd, i);
13955 if (ret)
13956 goto bail_cleanup;
13957 }
13958
13959 /* use contexts created by hfi1_create_ctxts */
13960 ret = set_up_interrupts(dd);
13961 if (ret)
13962 goto bail_cleanup;
13963
13964 /* set up LCB access - must be after set_up_interrupts() */
13965 init_lcb_access(dd);
13966
13967 snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
13968 dd->base_guid & 0xFFFFFF);
13969
13970 dd->oui1 = dd->base_guid >> 56 & 0xFF;
13971 dd->oui2 = dd->base_guid >> 48 & 0xFF;
13972 dd->oui3 = dd->base_guid >> 40 & 0xFF;
13973
13974 ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
13975 if (ret)
13976 goto bail_clear_intr;
13977 check_fabric_firmware_versions(dd);
13978
13979 thermal_init(dd);
13980
13981 ret = init_cntrs(dd);
13982 if (ret)
13983 goto bail_clear_intr;
13984
13985 ret = init_rcverr(dd);
13986 if (ret)
13987 goto bail_free_cntrs;
13988
13989 ret = eprom_init(dd);
13990 if (ret)
13991 goto bail_free_rcverr;
13992
13993 goto bail;
13994
13995bail_free_rcverr:
13996 free_rcverr(dd);
13997bail_free_cntrs:
13998 free_cntrs(dd);
13999bail_clear_intr:
14000 clean_up_interrupts(dd);
14001bail_cleanup:
14002 hfi1_pcie_ddcleanup(dd);
14003bail_free:
14004 hfi1_free_devdata(dd);
14005 dd = ERR_PTR(ret);
14006bail:
14007 return dd;
14008}
14009
14010static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
14011 u32 dw_len)
14012{
14013 u32 delta_cycles;
14014 u32 current_egress_rate = ppd->current_egress_rate;
14015 /* rates here are in units of 10^6 bits/sec */
14016
14017 if (desired_egress_rate == -1)
14018 return 0; /* shouldn't happen */
14019
14020 if (desired_egress_rate >= current_egress_rate)
14021 return 0; /* we can't help go faster, only slower */
14022
14023 delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
14024 egress_cycles(dw_len * 4, current_egress_rate);
14025
14026 return (u16)delta_cycles;
14027}
14028
14029
14030/**
14031 * create_pbc - build a pbc for transmission
14032 * @flags: special case flags or-ed in built pbc
14033 * @srate: static rate
14034 * @vl: vl
14035 * @dwlen: dword length (header words + data words + pbc words)
14036 *
14037 * Create a PBC with the given flags, rate, VL, and length.
14038 *
14039 * NOTE: The PBC created will not insert any HCRC - all callers but one are
14040 * for verbs, which does not use this PSM feature. The lone other caller
14041 * is for the diagnostic interface which calls this if the user does not
14042 * supply their own PBC.
14043 */
14044u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
14045 u32 dw_len)
14046{
14047 u64 pbc, delay = 0;
14048
14049 if (unlikely(srate_mbs))
14050 delay = delay_cycles(ppd, srate_mbs, dw_len);
14051
14052 pbc = flags
14053 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
14054 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
14055 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT
14056 | (dw_len & PBC_LENGTH_DWS_MASK)
14057 << PBC_LENGTH_DWS_SHIFT;
14058
14059 return pbc;
14060}
14061
14062#define SBUS_THERMAL 0x4f
14063#define SBUS_THERM_MONITOR_MODE 0x1
14064
14065#define THERM_FAILURE(dev, ret, reason) \
14066 dd_dev_err((dd), \
14067 "Thermal sensor initialization failed: %s (%d)\n", \
14068 (reason), (ret))
14069
14070/*
14071 * Initialize the Avago Thermal sensor.
14072 *
14073 * After initialization, enable polling of thermal sensor through
14074 * SBus interface. In order for this to work, the SBus Master
14075 * firmware has to be loaded due to the fact that the HW polling
14076 * logic uses SBus interrupts, which are not supported with
14077 * default firmware. Otherwise, no data will be returned through
14078 * the ASIC_STS_THERM CSR.
14079 */
14080static int thermal_init(struct hfi1_devdata *dd)
14081{
14082 int ret = 0;
14083
14084 if (dd->icode != ICODE_RTL_SILICON ||
14085 !(dd->flags & HFI1_DO_INIT_ASIC))
14086 return ret;
14087
14088 acquire_hw_mutex(dd);
14089 dd_dev_info(dd, "Initializing thermal sensor\n");
4ef98989
JAQ
14090 /* Disable polling of thermal readings */
14091 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
14092 msleep(100);
77241056
MM
14093 /* Thermal Sensor Initialization */
14094 /* Step 1: Reset the Thermal SBus Receiver */
14095 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14096 RESET_SBUS_RECEIVER, 0);
14097 if (ret) {
14098 THERM_FAILURE(dd, ret, "Bus Reset");
14099 goto done;
14100 }
14101 /* Step 2: Set Reset bit in Thermal block */
14102 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14103 WRITE_SBUS_RECEIVER, 0x1);
14104 if (ret) {
14105 THERM_FAILURE(dd, ret, "Therm Block Reset");
14106 goto done;
14107 }
14108 /* Step 3: Write clock divider value (100MHz -> 2MHz) */
14109 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
14110 WRITE_SBUS_RECEIVER, 0x32);
14111 if (ret) {
14112 THERM_FAILURE(dd, ret, "Write Clock Div");
14113 goto done;
14114 }
14115 /* Step 4: Select temperature mode */
14116 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
14117 WRITE_SBUS_RECEIVER,
14118 SBUS_THERM_MONITOR_MODE);
14119 if (ret) {
14120 THERM_FAILURE(dd, ret, "Write Mode Sel");
14121 goto done;
14122 }
14123 /* Step 5: De-assert block reset and start conversion */
14124 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14125 WRITE_SBUS_RECEIVER, 0x2);
14126 if (ret) {
14127 THERM_FAILURE(dd, ret, "Write Reset Deassert");
14128 goto done;
14129 }
14130 /* Step 5.1: Wait for first conversion (21.5ms per spec) */
14131 msleep(22);
14132
14133 /* Enable polling of thermal readings */
14134 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
14135done:
14136 release_hw_mutex(dd);
14137 return ret;
14138}
14139
14140static void handle_temp_err(struct hfi1_devdata *dd)
14141{
14142 struct hfi1_pportdata *ppd = &dd->pport[0];
14143 /*
14144 * Thermal Critical Interrupt
14145 * Put the device into forced freeze mode, take link down to
14146 * offline, and put DC into reset.
14147 */
14148 dd_dev_emerg(dd,
14149 "Critical temperature reached! Forcing device into freeze mode!\n");
14150 dd->flags |= HFI1_FORCED_FREEZE;
14151 start_freeze_handling(ppd, FREEZE_SELF|FREEZE_ABORT);
14152 /*
14153 * Shut DC down as much and as quickly as possible.
14154 *
14155 * Step 1: Take the link down to OFFLINE. This will cause the
14156 * 8051 to put the Serdes in reset. However, we don't want to
14157 * go through the entire link state machine since we want to
14158 * shutdown ASAP. Furthermore, this is not a graceful shutdown
14159 * but rather an attempt to save the chip.
14160 * Code below is almost the same as quiet_serdes() but avoids
14161 * all the extra work and the sleeps.
14162 */
14163 ppd->driver_link_ready = 0;
14164 ppd->link_enabled = 0;
14165 set_physical_link_state(dd, PLS_OFFLINE |
14166 (OPA_LINKDOWN_REASON_SMA_DISABLED << 8));
14167 /*
14168 * Step 2: Shutdown LCB and 8051
14169 * After shutdown, do not restore DC_CFG_RESET value.
14170 */
14171 dc_shutdown(dd);
14172}
This page took 0.653596 seconds and 5 git commands to generate.