IB/hfi1: Change QSFP functions to use resource reservation
[deliverable/linux.git] / drivers / staging / rdma / hfi1 / chip.c
CommitLineData
77241056 1/*
05d6ac1d 2 * Copyright(c) 2015, 2016 Intel Corporation.
77241056
MM
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
77241056
MM
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
77241056
MM
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48/*
49 * This file contains all of the code that is specific to the HFI chip
50 */
51
52#include <linux/pci.h>
53#include <linux/delay.h>
54#include <linux/interrupt.h>
55#include <linux/module.h>
56
57#include "hfi.h"
58#include "trace.h"
59#include "mad.h"
60#include "pio.h"
61#include "sdma.h"
62#include "eprom.h"
5d9157aa 63#include "efivar.h"
8ebd4cf1 64#include "platform.h"
affa48de 65#include "aspm.h"
77241056
MM
66
67#define NUM_IB_PORTS 1
68
69uint kdeth_qp;
70module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
71MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
72
73uint num_vls = HFI1_MAX_VLS_SUPPORTED;
74module_param(num_vls, uint, S_IRUGO);
75MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
76
77/*
78 * Default time to aggregate two 10K packets from the idle state
79 * (timer not running). The timer starts at the end of the first packet,
80 * so only the time for one 10K packet and header plus a bit extra is needed.
81 * 10 * 1024 + 64 header byte = 10304 byte
82 * 10304 byte / 12.5 GB/s = 824.32ns
83 */
84uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
85module_param(rcv_intr_timeout, uint, S_IRUGO);
86MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
87
88uint rcv_intr_count = 16; /* same as qib */
89module_param(rcv_intr_count, uint, S_IRUGO);
90MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
91
92ushort link_crc_mask = SUPPORTED_CRCS;
93module_param(link_crc_mask, ushort, S_IRUGO);
94MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
95
96uint loopback;
97module_param_named(loopback, loopback, uint, S_IRUGO);
98MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
99
100/* Other driver tunables */
101uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
102static ushort crc_14b_sideband = 1;
103static uint use_flr = 1;
104uint quick_linkup; /* skip LNI */
105
106struct flag_table {
107 u64 flag; /* the flag */
108 char *str; /* description string */
109 u16 extra; /* extra information */
110 u16 unused0;
111 u32 unused1;
112};
113
114/* str must be a string constant */
115#define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
116#define FLAG_ENTRY0(str, flag) {flag, str, 0}
117
118/* Send Error Consequences */
119#define SEC_WRITE_DROPPED 0x1
120#define SEC_PACKET_DROPPED 0x2
121#define SEC_SC_HALTED 0x4 /* per-context only */
122#define SEC_SPC_FREEZE 0x8 /* per-HFI only */
123
77241056 124#define MIN_KERNEL_KCTXTS 2
82c2611d 125#define FIRST_KERNEL_KCTXT 1
77241056
MM
126#define NUM_MAP_REGS 32
127
128/* Bit offset into the GUID which carries HFI id information */
129#define GUID_HFI_INDEX_SHIFT 39
130
131/* extract the emulation revision */
132#define emulator_rev(dd) ((dd)->irev >> 8)
133/* parallel and serial emulation versions are 3 and 4 respectively */
134#define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
135#define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
136
137/* RSM fields */
138
139/* packet type */
140#define IB_PACKET_TYPE 2ull
141#define QW_SHIFT 6ull
142/* QPN[7..1] */
143#define QPN_WIDTH 7ull
144
145/* LRH.BTH: QW 0, OFFSET 48 - for match */
146#define LRH_BTH_QW 0ull
147#define LRH_BTH_BIT_OFFSET 48ull
148#define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off))
149#define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
150#define LRH_BTH_SELECT
151#define LRH_BTH_MASK 3ull
152#define LRH_BTH_VALUE 2ull
153
154/* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
155#define LRH_SC_QW 0ull
156#define LRH_SC_BIT_OFFSET 56ull
157#define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off))
158#define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
159#define LRH_SC_MASK 128ull
160#define LRH_SC_VALUE 0ull
161
162/* SC[n..0] QW 0, OFFSET 60 - for select */
163#define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull))
164
165/* QPN[m+n:1] QW 1, OFFSET 1 */
166#define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull))
167
168/* defines to build power on SC2VL table */
169#define SC2VL_VAL( \
170 num, \
171 sc0, sc0val, \
172 sc1, sc1val, \
173 sc2, sc2val, \
174 sc3, sc3val, \
175 sc4, sc4val, \
176 sc5, sc5val, \
177 sc6, sc6val, \
178 sc7, sc7val) \
179( \
180 ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
181 ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
182 ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
183 ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
184 ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
185 ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
186 ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
187 ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \
188)
189
190#define DC_SC_VL_VAL( \
191 range, \
192 e0, e0val, \
193 e1, e1val, \
194 e2, e2val, \
195 e3, e3val, \
196 e4, e4val, \
197 e5, e5val, \
198 e6, e6val, \
199 e7, e7val, \
200 e8, e8val, \
201 e9, e9val, \
202 e10, e10val, \
203 e11, e11val, \
204 e12, e12val, \
205 e13, e13val, \
206 e14, e14val, \
207 e15, e15val) \
208( \
209 ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
210 ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
211 ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
212 ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
213 ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
214 ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
215 ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
216 ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
217 ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
218 ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
219 ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
220 ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
221 ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
222 ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
223 ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
224 ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
225)
226
227/* all CceStatus sub-block freeze bits */
228#define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
229 | CCE_STATUS_RXE_FROZE_SMASK \
230 | CCE_STATUS_TXE_FROZE_SMASK \
231 | CCE_STATUS_TXE_PIO_FROZE_SMASK)
232/* all CceStatus sub-block TXE pause bits */
233#define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
234 | CCE_STATUS_TXE_PAUSED_SMASK \
235 | CCE_STATUS_SDMA_PAUSED_SMASK)
236/* all CceStatus sub-block RXE pause bits */
237#define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
238
239/*
240 * CCE Error flags.
241 */
242static struct flag_table cce_err_status_flags[] = {
243/* 0*/ FLAG_ENTRY0("CceCsrParityErr",
244 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
245/* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr",
246 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
247/* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr",
248 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
249/* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
250 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
251/* 4*/ FLAG_ENTRY0("CceTrgtAccessErr",
252 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
253/* 5*/ FLAG_ENTRY0("CceRspdDataParityErr",
254 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
255/* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
256 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
257/* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr",
258 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
259/* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
260 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
261/* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
262 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
263/*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
264 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
265/*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
266 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
267/*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
268 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
269/*13*/ FLAG_ENTRY0("PcicRetryMemCorErr",
270 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
271/*14*/ FLAG_ENTRY0("PcicRetryMemCorErr",
272 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
273/*15*/ FLAG_ENTRY0("PcicPostHdQCorErr",
274 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
275/*16*/ FLAG_ENTRY0("PcicPostHdQCorErr",
276 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
277/*17*/ FLAG_ENTRY0("PcicPostHdQCorErr",
278 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
279/*18*/ FLAG_ENTRY0("PcicCplDatQCorErr",
280 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
281/*19*/ FLAG_ENTRY0("PcicNPostHQParityErr",
282 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
283/*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr",
284 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
285/*21*/ FLAG_ENTRY0("PcicRetryMemUncErr",
286 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
287/*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr",
288 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
289/*23*/ FLAG_ENTRY0("PcicPostHdQUncErr",
290 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
291/*24*/ FLAG_ENTRY0("PcicPostDatQUncErr",
292 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
293/*25*/ FLAG_ENTRY0("PcicCplHdQUncErr",
294 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
295/*26*/ FLAG_ENTRY0("PcicCplDatQUncErr",
296 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
297/*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr",
298 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
299/*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr",
300 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
301/*29*/ FLAG_ENTRY0("PcicReceiveParityErr",
302 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
303/*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr",
304 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
305/*31*/ FLAG_ENTRY0("LATriggered",
306 CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
307/*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr",
308 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
309/*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr",
310 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
311/*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
312 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
313/*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
314 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
315/*36*/ FLAG_ENTRY0("CceMsixTableCorErr",
316 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
317/*37*/ FLAG_ENTRY0("CceMsixTableUncErr",
318 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
319/*38*/ FLAG_ENTRY0("CceIntMapCorErr",
320 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
321/*39*/ FLAG_ENTRY0("CceIntMapUncErr",
322 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
323/*40*/ FLAG_ENTRY0("CceMsixCsrParityErr",
324 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
325/*41-63 reserved*/
326};
327
328/*
329 * Misc Error flags
330 */
331#define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
332static struct flag_table misc_err_status_flags[] = {
333/* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
334/* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
335/* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
336/* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
337/* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
338/* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
339/* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
340/* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
341/* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
342/* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
343/*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
344/*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
345/*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
346};
347
348/*
349 * TXE PIO Error flags and consequences
350 */
351static struct flag_table pio_err_status_flags[] = {
352/* 0*/ FLAG_ENTRY("PioWriteBadCtxt",
353 SEC_WRITE_DROPPED,
354 SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
355/* 1*/ FLAG_ENTRY("PioWriteAddrParity",
356 SEC_SPC_FREEZE,
357 SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
358/* 2*/ FLAG_ENTRY("PioCsrParity",
359 SEC_SPC_FREEZE,
360 SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
361/* 3*/ FLAG_ENTRY("PioSbMemFifo0",
362 SEC_SPC_FREEZE,
363 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
364/* 4*/ FLAG_ENTRY("PioSbMemFifo1",
365 SEC_SPC_FREEZE,
366 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
367/* 5*/ FLAG_ENTRY("PioPccFifoParity",
368 SEC_SPC_FREEZE,
369 SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
370/* 6*/ FLAG_ENTRY("PioPecFifoParity",
371 SEC_SPC_FREEZE,
372 SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
373/* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity",
374 SEC_SPC_FREEZE,
375 SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
376/* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
377 SEC_SPC_FREEZE,
378 SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
379/* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr",
380 SEC_SPC_FREEZE,
381 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
382/*10*/ FLAG_ENTRY("PioSmPktResetParity",
383 SEC_SPC_FREEZE,
384 SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
385/*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc",
386 SEC_SPC_FREEZE,
387 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
388/*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc",
389 SEC_SPC_FREEZE,
390 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
391/*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor",
392 0,
393 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
394/*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor",
395 0,
396 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
397/*15*/ FLAG_ENTRY("PioCreditRetFifoParity",
398 SEC_SPC_FREEZE,
399 SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
400/*16*/ FLAG_ENTRY("PioPpmcPblFifo",
401 SEC_SPC_FREEZE,
402 SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
403/*17*/ FLAG_ENTRY("PioInitSmIn",
404 0,
405 SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
406/*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm",
407 SEC_SPC_FREEZE,
408 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
409/*19*/ FLAG_ENTRY("PioHostAddrMemUnc",
410 SEC_SPC_FREEZE,
411 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
412/*20*/ FLAG_ENTRY("PioHostAddrMemCor",
413 0,
414 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
415/*21*/ FLAG_ENTRY("PioWriteDataParity",
416 SEC_SPC_FREEZE,
417 SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
418/*22*/ FLAG_ENTRY("PioStateMachine",
419 SEC_SPC_FREEZE,
420 SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
421/*23*/ FLAG_ENTRY("PioWriteQwValidParity",
8638b77f 422 SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
77241056
MM
423 SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
424/*24*/ FLAG_ENTRY("PioBlockQwCountParity",
8638b77f 425 SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
77241056
MM
426 SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
427/*25*/ FLAG_ENTRY("PioVlfVlLenParity",
428 SEC_SPC_FREEZE,
429 SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
430/*26*/ FLAG_ENTRY("PioVlfSopParity",
431 SEC_SPC_FREEZE,
432 SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
433/*27*/ FLAG_ENTRY("PioVlFifoParity",
434 SEC_SPC_FREEZE,
435 SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
436/*28*/ FLAG_ENTRY("PioPpmcBqcMemParity",
437 SEC_SPC_FREEZE,
438 SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
439/*29*/ FLAG_ENTRY("PioPpmcSopLen",
440 SEC_SPC_FREEZE,
441 SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
442/*30-31 reserved*/
443/*32*/ FLAG_ENTRY("PioCurrentFreeCntParity",
444 SEC_SPC_FREEZE,
445 SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
446/*33*/ FLAG_ENTRY("PioLastReturnedCntParity",
447 SEC_SPC_FREEZE,
448 SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
449/*34*/ FLAG_ENTRY("PioPccSopHeadParity",
450 SEC_SPC_FREEZE,
451 SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
452/*35*/ FLAG_ENTRY("PioPecSopHeadParityErr",
453 SEC_SPC_FREEZE,
454 SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
455/*36-63 reserved*/
456};
457
458/* TXE PIO errors that cause an SPC freeze */
459#define ALL_PIO_FREEZE_ERR \
460 (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
461 | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
462 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
463 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
464 | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
465 | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
466 | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
467 | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
468 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
469 | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
470 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
471 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
472 | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
473 | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
474 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
475 | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
476 | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
477 | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
478 | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
479 | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
480 | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
481 | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
482 | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
483 | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
484 | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
485 | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
486 | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
487 | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
488 | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
489
490/*
491 * TXE SDMA Error flags
492 */
493static struct flag_table sdma_err_status_flags[] = {
494/* 0*/ FLAG_ENTRY0("SDmaRpyTagErr",
495 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
496/* 1*/ FLAG_ENTRY0("SDmaCsrParityErr",
497 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
498/* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
499 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
500/* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
501 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
502/*04-63 reserved*/
503};
504
505/* TXE SDMA errors that cause an SPC freeze */
506#define ALL_SDMA_FREEZE_ERR \
507 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
508 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
509 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
510
69a00b8e
MM
511/* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
512#define PORT_DISCARD_EGRESS_ERRS \
513 (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
514 | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
515 | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
516
77241056
MM
517/*
518 * TXE Egress Error flags
519 */
520#define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
521static struct flag_table egress_err_status_flags[] = {
522/* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
523/* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
524/* 2 reserved */
525/* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
526 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
527/* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
528/* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
529/* 6 reserved */
530/* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr",
531 SEES(TX_PIO_LAUNCH_INTF_PARITY)),
532/* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
533 SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
534/* 9-10 reserved */
535/*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
536 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
537/*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
538/*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
539/*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
540/*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
541/*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
542 SEES(TX_SDMA0_DISALLOWED_PACKET)),
543/*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
544 SEES(TX_SDMA1_DISALLOWED_PACKET)),
545/*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
546 SEES(TX_SDMA2_DISALLOWED_PACKET)),
547/*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
548 SEES(TX_SDMA3_DISALLOWED_PACKET)),
549/*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
550 SEES(TX_SDMA4_DISALLOWED_PACKET)),
551/*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
552 SEES(TX_SDMA5_DISALLOWED_PACKET)),
553/*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
554 SEES(TX_SDMA6_DISALLOWED_PACKET)),
555/*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
556 SEES(TX_SDMA7_DISALLOWED_PACKET)),
557/*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
558 SEES(TX_SDMA8_DISALLOWED_PACKET)),
559/*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
560 SEES(TX_SDMA9_DISALLOWED_PACKET)),
561/*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
562 SEES(TX_SDMA10_DISALLOWED_PACKET)),
563/*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
564 SEES(TX_SDMA11_DISALLOWED_PACKET)),
565/*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
566 SEES(TX_SDMA12_DISALLOWED_PACKET)),
567/*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
568 SEES(TX_SDMA13_DISALLOWED_PACKET)),
569/*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
570 SEES(TX_SDMA14_DISALLOWED_PACKET)),
571/*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
572 SEES(TX_SDMA15_DISALLOWED_PACKET)),
573/*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
574 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
575/*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
576 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
577/*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
578 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
579/*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
580 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
581/*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
582 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
583/*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
584 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
585/*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
586 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
587/*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
588 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
589/*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
590 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
591/*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
592/*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
593/*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
594/*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
595/*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
596/*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
597/*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
598/*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
599/*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
600/*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
601/*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
602/*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
603/*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
604/*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
605/*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
606/*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
607/*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
608/*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
609/*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
610/*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
611/*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
612/*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
613 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
614/*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
615 SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
616};
617
618/*
619 * TXE Egress Error Info flags
620 */
621#define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
622static struct flag_table egress_err_info_flags[] = {
623/* 0*/ FLAG_ENTRY0("Reserved", 0ull),
624/* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL)),
625/* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
626/* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
627/* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
628/* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
629/* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
630/* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
631/* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW)),
632/* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
633/*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH)),
634/*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
635/*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
636/*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
637/*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
638/*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
639/*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
640/*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
641/*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
642/*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
643/*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
644/*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
645};
646
647/* TXE Egress errors that cause an SPC freeze */
648#define ALL_TXE_EGRESS_FREEZE_ERR \
649 (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
650 | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
651 | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
652 | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
653 | SEES(TX_LAUNCH_CSR_PARITY) \
654 | SEES(TX_SBRD_CTL_CSR_PARITY) \
655 | SEES(TX_CONFIG_PARITY) \
656 | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
657 | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
658 | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
659 | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
660 | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
661 | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
662 | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
663 | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
664 | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
665 | SEES(TX_CREDIT_RETURN_PARITY))
666
667/*
668 * TXE Send error flags
669 */
670#define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
671static struct flag_table send_err_status_flags[] = {
2c5b521a 672/* 0*/ FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
77241056
MM
673/* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
674/* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
675};
676
677/*
678 * TXE Send Context Error flags and consequences
679 */
680static struct flag_table sc_err_status_flags[] = {
681/* 0*/ FLAG_ENTRY("InconsistentSop",
682 SEC_PACKET_DROPPED | SEC_SC_HALTED,
683 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
684/* 1*/ FLAG_ENTRY("DisallowedPacket",
685 SEC_PACKET_DROPPED | SEC_SC_HALTED,
686 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
687/* 2*/ FLAG_ENTRY("WriteCrossesBoundary",
688 SEC_WRITE_DROPPED | SEC_SC_HALTED,
689 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
690/* 3*/ FLAG_ENTRY("WriteOverflow",
691 SEC_WRITE_DROPPED | SEC_SC_HALTED,
692 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
693/* 4*/ FLAG_ENTRY("WriteOutOfBounds",
694 SEC_WRITE_DROPPED | SEC_SC_HALTED,
695 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
696/* 5-63 reserved*/
697};
698
699/*
700 * RXE Receive Error flags
701 */
702#define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
703static struct flag_table rxe_err_status_flags[] = {
704/* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
705/* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
706/* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
707/* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
708/* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
709/* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
710/* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
711/* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
712/* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
713/* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
714/*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
715/*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
716/*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
717/*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
718/*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
719/*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
720/*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
721 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
722/*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
723/*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
724/*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr",
725 RXES(RBUF_BLOCK_LIST_READ_UNC)),
726/*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr",
727 RXES(RBUF_BLOCK_LIST_READ_COR)),
728/*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
729 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
730/*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
731 RXES(RBUF_CSR_QENT_CNT_PARITY)),
732/*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
733 RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
734/*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
735 RXES(RBUF_CSR_QVLD_BIT_PARITY)),
736/*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
737/*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
738/*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
739 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
740/*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
741/*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
742/*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
743/*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
744/*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
745/*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
746/*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
747/*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
748 RXES(RBUF_FL_INITDONE_PARITY)),
749/*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
750 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
751/*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
752/*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
753/*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
754/*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
755 RXES(LOOKUP_DES_PART1_UNC_COR)),
756/*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr",
757 RXES(LOOKUP_DES_PART2_PARITY)),
758/*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
759/*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
760/*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
761/*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
762/*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
763/*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
764/*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
765/*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
766/*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
767/*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
768/*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
769/*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
770/*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
771/*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
772/*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
773/*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
774/*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
775/*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
776/*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
777/*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
778/*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
779/*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
780};
781
782/* RXE errors that will trigger an SPC freeze */
783#define ALL_RXE_FREEZE_ERR \
784 (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
785 | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
786 | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
787 | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
788 | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
789 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
790 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
791 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
792 | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
793 | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
794 | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
795 | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
796 | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
797 | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
798 | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
799 | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
800 | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
801 | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
802 | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
803 | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
804 | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
805 | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
806 | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
807 | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
808 | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
809 | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
810 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
811 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
812 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
813 | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
814 | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
815 | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
816 | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
817 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
818 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
819 | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
820 | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
821 | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
822 | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
823 | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
824 | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
825 | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
826 | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
827 | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
828
829#define RXE_FREEZE_ABORT_MASK \
830 (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
831 RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
832 RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
833
834/*
835 * DCC Error Flags
836 */
837#define DCCE(name) DCC_ERR_FLG_##name##_SMASK
838static struct flag_table dcc_err_flags[] = {
839 FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
840 FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
841 FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
842 FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
843 FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
844 FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
845 FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
846 FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
847 FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
848 FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
849 FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
850 FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
851 FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
852 FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
853 FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
854 FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
855 FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
856 FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
857 FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
858 FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
859 FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
860 FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
861 FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
862 FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
863 FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
864 FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
865 FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
866 FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
867 FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
868 FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
869 FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
870 FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
871 FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
872 FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
873 FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
874 FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
875 FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
876 FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
877 FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
878 FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
879 FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
880 FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
881 FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
882 FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
883 FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
884 FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
885};
886
887/*
888 * LCB error flags
889 */
890#define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
891static struct flag_table lcb_err_flags[] = {
892/* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
893/* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
894/* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
895/* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
896 LCBE(ALL_LNS_FAILED_REINIT_TEST)),
897/* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
898/* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
899/* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
900/* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
901/* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
902/* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
903/*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
904/*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
905/*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
906/*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
907 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
908/*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
909/*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
910/*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
911/*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
912/*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
913/*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
914 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
915/*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
916/*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
917/*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
918/*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
919/*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
920/*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
921/*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
922 LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
923/*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
924/*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
925 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
926/*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
927 LCBE(REDUNDANT_FLIT_PARITY_ERR))
928};
929
930/*
931 * DC8051 Error Flags
932 */
933#define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
934static struct flag_table dc8051_err_flags[] = {
935 FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
936 FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
937 FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
938 FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
939 FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
940 FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
941 FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
942 FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
943 FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
17fb4f29 944 D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
77241056
MM
945 FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
946};
947
948/*
949 * DC8051 Information Error flags
950 *
951 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
952 */
953static struct flag_table dc8051_info_err_flags[] = {
954 FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED),
955 FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME),
956 FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET),
957 FLAG_ENTRY0("Serdes internal loopback failure",
17fb4f29 958 FAILED_SERDES_INTERNAL_LOOPBACK),
77241056
MM
959 FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT),
960 FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING),
961 FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE),
962 FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM),
963 FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ),
964 FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
965 FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
966 FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT)
967};
968
969/*
970 * DC8051 Information Host Information flags
971 *
972 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
973 */
974static struct flag_table dc8051_info_host_msg_flags[] = {
975 FLAG_ENTRY0("Host request done", 0x0001),
976 FLAG_ENTRY0("BC SMA message", 0x0002),
977 FLAG_ENTRY0("BC PWR_MGM message", 0x0004),
978 FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
979 FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
980 FLAG_ENTRY0("External device config request", 0x0020),
981 FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
982 FLAG_ENTRY0("LinkUp achieved", 0x0080),
983 FLAG_ENTRY0("Link going down", 0x0100),
984};
985
77241056
MM
986static u32 encoded_size(u32 size);
987static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
988static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
989static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
990 u8 *continuous);
991static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
992 u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
993static void read_vc_remote_link_width(struct hfi1_devdata *dd,
994 u8 *remote_tx_rate, u16 *link_widths);
995static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
996 u8 *flag_bits, u16 *link_widths);
997static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
998 u8 *device_rev);
999static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
1000static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1001static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1002 u8 *tx_polarity_inversion,
1003 u8 *rx_polarity_inversion, u8 *max_rate);
1004static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1005 unsigned int context, u64 err_status);
1006static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1007static void handle_dcc_err(struct hfi1_devdata *dd,
1008 unsigned int context, u64 err_status);
1009static void handle_lcb_err(struct hfi1_devdata *dd,
1010 unsigned int context, u64 err_status);
1011static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1012static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1013static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1014static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1015static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1016static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1017static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1018static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1019static void set_partition_keys(struct hfi1_pportdata *);
1020static const char *link_state_name(u32 state);
1021static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1022 u32 state);
1023static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1024 u64 *out_data);
1025static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1026static int thermal_init(struct hfi1_devdata *dd);
1027
1028static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1029 int msecs);
1030static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1031static void handle_temp_err(struct hfi1_devdata *);
1032static void dc_shutdown(struct hfi1_devdata *);
1033static void dc_start(struct hfi1_devdata *);
1034
1035/*
1036 * Error interrupt table entry. This is used as input to the interrupt
1037 * "clear down" routine used for all second tier error interrupt register.
1038 * Second tier interrupt registers have a single bit representing them
1039 * in the top-level CceIntStatus.
1040 */
1041struct err_reg_info {
1042 u32 status; /* status CSR offset */
1043 u32 clear; /* clear CSR offset */
1044 u32 mask; /* mask CSR offset */
1045 void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1046 const char *desc;
1047};
1048
1049#define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1050#define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1051#define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1052
1053/*
1054 * Helpers for building HFI and DC error interrupt table entries. Different
1055 * helpers are needed because of inconsistent register names.
1056 */
1057#define EE(reg, handler, desc) \
1058 { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1059 handler, desc }
1060#define DC_EE1(reg, handler, desc) \
1061 { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1062#define DC_EE2(reg, handler, desc) \
1063 { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1064
1065/*
1066 * Table of the "misc" grouping of error interrupts. Each entry refers to
1067 * another register containing more information.
1068 */
1069static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1070/* 0*/ EE(CCE_ERR, handle_cce_err, "CceErr"),
1071/* 1*/ EE(RCV_ERR, handle_rxe_err, "RxeErr"),
1072/* 2*/ EE(MISC_ERR, handle_misc_err, "MiscErr"),
1073/* 3*/ { 0, 0, 0, NULL }, /* reserved */
1074/* 4*/ EE(SEND_PIO_ERR, handle_pio_err, "PioErr"),
1075/* 5*/ EE(SEND_DMA_ERR, handle_sdma_err, "SDmaErr"),
1076/* 6*/ EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1077/* 7*/ EE(SEND_ERR, handle_txe_err, "TxeErr")
1078 /* the rest are reserved */
1079};
1080
1081/*
1082 * Index into the Various section of the interrupt sources
1083 * corresponding to the Critical Temperature interrupt.
1084 */
1085#define TCRIT_INT_SOURCE 4
1086
1087/*
1088 * SDMA error interrupt entry - refers to another register containing more
1089 * information.
1090 */
1091static const struct err_reg_info sdma_eng_err =
1092 EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1093
1094static const struct err_reg_info various_err[NUM_VARIOUS] = {
1095/* 0*/ { 0, 0, 0, NULL }, /* PbcInt */
1096/* 1*/ { 0, 0, 0, NULL }, /* GpioAssertInt */
1097/* 2*/ EE(ASIC_QSFP1, handle_qsfp_int, "QSFP1"),
1098/* 3*/ EE(ASIC_QSFP2, handle_qsfp_int, "QSFP2"),
1099/* 4*/ { 0, 0, 0, NULL }, /* TCritInt */
1100 /* rest are reserved */
1101};
1102
1103/*
1104 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1105 * register can not be derived from the MTU value because 10K is not
1106 * a power of 2. Therefore, we need a constant. Everything else can
1107 * be calculated.
1108 */
1109#define DCC_CFG_PORT_MTU_CAP_10240 7
1110
1111/*
1112 * Table of the DC grouping of error interrupts. Each entry refers to
1113 * another register containing more information.
1114 */
1115static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1116/* 0*/ DC_EE1(DCC_ERR, handle_dcc_err, "DCC Err"),
1117/* 1*/ DC_EE2(DC_LCB_ERR, handle_lcb_err, "LCB Err"),
1118/* 2*/ DC_EE2(DC_DC8051_ERR, handle_8051_interrupt, "DC8051 Interrupt"),
1119/* 3*/ /* dc_lbm_int - special, see is_dc_int() */
1120 /* the rest are reserved */
1121};
1122
1123struct cntr_entry {
1124 /*
1125 * counter name
1126 */
1127 char *name;
1128
1129 /*
1130 * csr to read for name (if applicable)
1131 */
1132 u64 csr;
1133
1134 /*
1135 * offset into dd or ppd to store the counter's value
1136 */
1137 int offset;
1138
1139 /*
1140 * flags
1141 */
1142 u8 flags;
1143
1144 /*
1145 * accessor for stat element, context either dd or ppd
1146 */
17fb4f29
JJ
1147 u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1148 int mode, u64 data);
77241056
MM
1149};
1150
1151#define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1152#define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1153
1154#define CNTR_ELEM(name, csr, offset, flags, accessor) \
1155{ \
1156 name, \
1157 csr, \
1158 offset, \
1159 flags, \
1160 accessor \
1161}
1162
1163/* 32bit RXE */
1164#define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1165CNTR_ELEM(#name, \
1166 (counter * 8 + RCV_COUNTER_ARRAY32), \
1167 0, flags | CNTR_32BIT, \
1168 port_access_u32_csr)
1169
1170#define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1171CNTR_ELEM(#name, \
1172 (counter * 8 + RCV_COUNTER_ARRAY32), \
1173 0, flags | CNTR_32BIT, \
1174 dev_access_u32_csr)
1175
1176/* 64bit RXE */
1177#define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1178CNTR_ELEM(#name, \
1179 (counter * 8 + RCV_COUNTER_ARRAY64), \
1180 0, flags, \
1181 port_access_u64_csr)
1182
1183#define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1184CNTR_ELEM(#name, \
1185 (counter * 8 + RCV_COUNTER_ARRAY64), \
1186 0, flags, \
1187 dev_access_u64_csr)
1188
1189#define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1190#define OVR_ELM(ctx) \
1191CNTR_ELEM("RcvHdrOvr" #ctx, \
8638b77f 1192 (RCV_HDR_OVFL_CNT + ctx * 0x100), \
77241056
MM
1193 0, CNTR_NORMAL, port_access_u64_csr)
1194
1195/* 32bit TXE */
1196#define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1197CNTR_ELEM(#name, \
1198 (counter * 8 + SEND_COUNTER_ARRAY32), \
1199 0, flags | CNTR_32BIT, \
1200 port_access_u32_csr)
1201
1202/* 64bit TXE */
1203#define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1204CNTR_ELEM(#name, \
1205 (counter * 8 + SEND_COUNTER_ARRAY64), \
1206 0, flags, \
1207 port_access_u64_csr)
1208
1209# define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1210CNTR_ELEM(#name,\
1211 counter * 8 + SEND_COUNTER_ARRAY64, \
1212 0, \
1213 flags, \
1214 dev_access_u64_csr)
1215
1216/* CCE */
1217#define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1218CNTR_ELEM(#name, \
1219 (counter * 8 + CCE_COUNTER_ARRAY32), \
1220 0, flags | CNTR_32BIT, \
1221 dev_access_u32_csr)
1222
1223#define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1224CNTR_ELEM(#name, \
1225 (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1226 0, flags | CNTR_32BIT, \
1227 dev_access_u32_csr)
1228
1229/* DC */
1230#define DC_PERF_CNTR(name, counter, flags) \
1231CNTR_ELEM(#name, \
1232 counter, \
1233 0, \
1234 flags, \
1235 dev_access_u64_csr)
1236
1237#define DC_PERF_CNTR_LCB(name, counter, flags) \
1238CNTR_ELEM(#name, \
1239 counter, \
1240 0, \
1241 flags, \
1242 dc_access_lcb_cntr)
1243
1244/* ibp counters */
1245#define SW_IBP_CNTR(name, cntr) \
1246CNTR_ELEM(#name, \
1247 0, \
1248 0, \
1249 CNTR_SYNTH, \
1250 access_ibp_##cntr)
1251
1252u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1253{
1254 u64 val;
1255
1256 if (dd->flags & HFI1_PRESENT) {
1257 val = readq((void __iomem *)dd->kregbase + offset);
1258 return val;
1259 }
1260 return -1;
1261}
1262
1263void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1264{
1265 if (dd->flags & HFI1_PRESENT)
1266 writeq(value, (void __iomem *)dd->kregbase + offset);
1267}
1268
1269void __iomem *get_csr_addr(
1270 struct hfi1_devdata *dd,
1271 u32 offset)
1272{
1273 return (void __iomem *)dd->kregbase + offset;
1274}
1275
1276static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1277 int mode, u64 value)
1278{
1279 u64 ret;
1280
77241056
MM
1281 if (mode == CNTR_MODE_R) {
1282 ret = read_csr(dd, csr);
1283 } else if (mode == CNTR_MODE_W) {
1284 write_csr(dd, csr, value);
1285 ret = value;
1286 } else {
1287 dd_dev_err(dd, "Invalid cntr register access mode");
1288 return 0;
1289 }
1290
1291 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1292 return ret;
1293}
1294
1295/* Dev Access */
1296static u64 dev_access_u32_csr(const struct cntr_entry *entry,
17fb4f29 1297 void *context, int vl, int mode, u64 data)
77241056 1298{
a787bde8 1299 struct hfi1_devdata *dd = context;
a699c6c2 1300 u64 csr = entry->csr;
77241056 1301
a699c6c2
VM
1302 if (entry->flags & CNTR_SDMA) {
1303 if (vl == CNTR_INVALID_VL)
1304 return 0;
1305 csr += 0x100 * vl;
1306 } else {
1307 if (vl != CNTR_INVALID_VL)
1308 return 0;
1309 }
1310 return read_write_csr(dd, csr, mode, data);
1311}
1312
1313static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1314 void *context, int idx, int mode, u64 data)
1315{
1316 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1317
1318 if (dd->per_sdma && idx < dd->num_sdma)
1319 return dd->per_sdma[idx].err_cnt;
1320 return 0;
1321}
1322
1323static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1324 void *context, int idx, int mode, u64 data)
1325{
1326 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1327
1328 if (dd->per_sdma && idx < dd->num_sdma)
1329 return dd->per_sdma[idx].sdma_int_cnt;
1330 return 0;
1331}
1332
1333static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1334 void *context, int idx, int mode, u64 data)
1335{
1336 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1337
1338 if (dd->per_sdma && idx < dd->num_sdma)
1339 return dd->per_sdma[idx].idle_int_cnt;
1340 return 0;
1341}
1342
1343static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1344 void *context, int idx, int mode,
1345 u64 data)
1346{
1347 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1348
1349 if (dd->per_sdma && idx < dd->num_sdma)
1350 return dd->per_sdma[idx].progress_int_cnt;
1351 return 0;
77241056
MM
1352}
1353
1354static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
17fb4f29 1355 int vl, int mode, u64 data)
77241056 1356{
a787bde8 1357 struct hfi1_devdata *dd = context;
77241056
MM
1358
1359 u64 val = 0;
1360 u64 csr = entry->csr;
1361
1362 if (entry->flags & CNTR_VL) {
1363 if (vl == CNTR_INVALID_VL)
1364 return 0;
1365 csr += 8 * vl;
1366 } else {
1367 if (vl != CNTR_INVALID_VL)
1368 return 0;
1369 }
1370
1371 val = read_write_csr(dd, csr, mode, data);
1372 return val;
1373}
1374
1375static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
17fb4f29 1376 int vl, int mode, u64 data)
77241056 1377{
a787bde8 1378 struct hfi1_devdata *dd = context;
77241056
MM
1379 u32 csr = entry->csr;
1380 int ret = 0;
1381
1382 if (vl != CNTR_INVALID_VL)
1383 return 0;
1384 if (mode == CNTR_MODE_R)
1385 ret = read_lcb_csr(dd, csr, &data);
1386 else if (mode == CNTR_MODE_W)
1387 ret = write_lcb_csr(dd, csr, data);
1388
1389 if (ret) {
1390 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1391 return 0;
1392 }
1393
1394 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1395 return data;
1396}
1397
1398/* Port Access */
1399static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
17fb4f29 1400 int vl, int mode, u64 data)
77241056 1401{
a787bde8 1402 struct hfi1_pportdata *ppd = context;
77241056
MM
1403
1404 if (vl != CNTR_INVALID_VL)
1405 return 0;
1406 return read_write_csr(ppd->dd, entry->csr, mode, data);
1407}
1408
1409static u64 port_access_u64_csr(const struct cntr_entry *entry,
17fb4f29 1410 void *context, int vl, int mode, u64 data)
77241056 1411{
a787bde8 1412 struct hfi1_pportdata *ppd = context;
77241056
MM
1413 u64 val;
1414 u64 csr = entry->csr;
1415
1416 if (entry->flags & CNTR_VL) {
1417 if (vl == CNTR_INVALID_VL)
1418 return 0;
1419 csr += 8 * vl;
1420 } else {
1421 if (vl != CNTR_INVALID_VL)
1422 return 0;
1423 }
1424 val = read_write_csr(ppd->dd, csr, mode, data);
1425 return val;
1426}
1427
1428/* Software defined */
1429static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1430 u64 data)
1431{
1432 u64 ret;
1433
1434 if (mode == CNTR_MODE_R) {
1435 ret = *cntr;
1436 } else if (mode == CNTR_MODE_W) {
1437 *cntr = data;
1438 ret = data;
1439 } else {
1440 dd_dev_err(dd, "Invalid cntr sw access mode");
1441 return 0;
1442 }
1443
1444 hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1445
1446 return ret;
1447}
1448
1449static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
17fb4f29 1450 int vl, int mode, u64 data)
77241056 1451{
a787bde8 1452 struct hfi1_pportdata *ppd = context;
77241056
MM
1453
1454 if (vl != CNTR_INVALID_VL)
1455 return 0;
1456 return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1457}
1458
1459static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
17fb4f29 1460 int vl, int mode, u64 data)
77241056 1461{
a787bde8 1462 struct hfi1_pportdata *ppd = context;
77241056
MM
1463
1464 if (vl != CNTR_INVALID_VL)
1465 return 0;
1466 return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1467}
1468
6d014530
DL
1469static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1470 void *context, int vl, int mode,
1471 u64 data)
1472{
1473 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1474
1475 if (vl != CNTR_INVALID_VL)
1476 return 0;
1477 return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1478}
1479
77241056 1480static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
17fb4f29 1481 void *context, int vl, int mode, u64 data)
77241056 1482{
69a00b8e
MM
1483 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1484 u64 zero = 0;
1485 u64 *counter;
77241056 1486
69a00b8e
MM
1487 if (vl == CNTR_INVALID_VL)
1488 counter = &ppd->port_xmit_discards;
1489 else if (vl >= 0 && vl < C_VL_COUNT)
1490 counter = &ppd->port_xmit_discards_vl[vl];
1491 else
1492 counter = &zero;
77241056 1493
69a00b8e 1494 return read_write_sw(ppd->dd, counter, mode, data);
77241056
MM
1495}
1496
1497static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
17fb4f29
JJ
1498 void *context, int vl, int mode,
1499 u64 data)
77241056 1500{
a787bde8 1501 struct hfi1_pportdata *ppd = context;
77241056
MM
1502
1503 if (vl != CNTR_INVALID_VL)
1504 return 0;
1505
1506 return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1507 mode, data);
1508}
1509
1510static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
17fb4f29 1511 void *context, int vl, int mode, u64 data)
77241056 1512{
a787bde8 1513 struct hfi1_pportdata *ppd = context;
77241056
MM
1514
1515 if (vl != CNTR_INVALID_VL)
1516 return 0;
1517
1518 return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1519 mode, data);
1520}
1521
1522u64 get_all_cpu_total(u64 __percpu *cntr)
1523{
1524 int cpu;
1525 u64 counter = 0;
1526
1527 for_each_possible_cpu(cpu)
1528 counter += *per_cpu_ptr(cntr, cpu);
1529 return counter;
1530}
1531
1532static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1533 u64 __percpu *cntr,
1534 int vl, int mode, u64 data)
1535{
77241056
MM
1536 u64 ret = 0;
1537
1538 if (vl != CNTR_INVALID_VL)
1539 return 0;
1540
1541 if (mode == CNTR_MODE_R) {
1542 ret = get_all_cpu_total(cntr) - *z_val;
1543 } else if (mode == CNTR_MODE_W) {
1544 /* A write can only zero the counter */
1545 if (data == 0)
1546 *z_val = get_all_cpu_total(cntr);
1547 else
1548 dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1549 } else {
1550 dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1551 return 0;
1552 }
1553
1554 return ret;
1555}
1556
1557static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1558 void *context, int vl, int mode, u64 data)
1559{
a787bde8 1560 struct hfi1_devdata *dd = context;
77241056
MM
1561
1562 return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1563 mode, data);
1564}
1565
1566static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
17fb4f29 1567 void *context, int vl, int mode, u64 data)
77241056 1568{
a787bde8 1569 struct hfi1_devdata *dd = context;
77241056
MM
1570
1571 return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1572 mode, data);
1573}
1574
1575static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1576 void *context, int vl, int mode, u64 data)
1577{
a787bde8 1578 struct hfi1_devdata *dd = context;
77241056
MM
1579
1580 return dd->verbs_dev.n_piowait;
1581}
1582
14553ca1
MM
1583static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1584 void *context, int vl, int mode, u64 data)
1585{
1586 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1587
1588 return dd->verbs_dev.n_piodrain;
1589}
1590
77241056
MM
1591static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1592 void *context, int vl, int mode, u64 data)
1593{
a787bde8 1594 struct hfi1_devdata *dd = context;
77241056
MM
1595
1596 return dd->verbs_dev.n_txwait;
1597}
1598
1599static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1600 void *context, int vl, int mode, u64 data)
1601{
a787bde8 1602 struct hfi1_devdata *dd = context;
77241056
MM
1603
1604 return dd->verbs_dev.n_kmem_wait;
1605}
1606
b421922e 1607static u64 access_sw_send_schedule(const struct cntr_entry *entry,
17fb4f29 1608 void *context, int vl, int mode, u64 data)
b421922e
DL
1609{
1610 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1611
89abfc8d
VM
1612 return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1613 mode, data);
b421922e
DL
1614}
1615
2c5b521a
JR
1616/* Software counters for the error status bits within MISC_ERR_STATUS */
1617static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1618 void *context, int vl, int mode,
1619 u64 data)
1620{
1621 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1622
1623 return dd->misc_err_status_cnt[12];
1624}
1625
1626static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1627 void *context, int vl, int mode,
1628 u64 data)
1629{
1630 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1631
1632 return dd->misc_err_status_cnt[11];
1633}
1634
1635static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1636 void *context, int vl, int mode,
1637 u64 data)
1638{
1639 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1640
1641 return dd->misc_err_status_cnt[10];
1642}
1643
1644static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1645 void *context, int vl,
1646 int mode, u64 data)
1647{
1648 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1649
1650 return dd->misc_err_status_cnt[9];
1651}
1652
1653static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1654 void *context, int vl, int mode,
1655 u64 data)
1656{
1657 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1658
1659 return dd->misc_err_status_cnt[8];
1660}
1661
1662static u64 access_misc_efuse_read_bad_addr_err_cnt(
1663 const struct cntr_entry *entry,
1664 void *context, int vl, int mode, u64 data)
1665{
1666 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1667
1668 return dd->misc_err_status_cnt[7];
1669}
1670
1671static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1672 void *context, int vl,
1673 int mode, u64 data)
1674{
1675 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1676
1677 return dd->misc_err_status_cnt[6];
1678}
1679
1680static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1681 void *context, int vl, int mode,
1682 u64 data)
1683{
1684 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1685
1686 return dd->misc_err_status_cnt[5];
1687}
1688
1689static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1690 void *context, int vl, int mode,
1691 u64 data)
1692{
1693 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1694
1695 return dd->misc_err_status_cnt[4];
1696}
1697
1698static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1699 void *context, int vl,
1700 int mode, u64 data)
1701{
1702 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1703
1704 return dd->misc_err_status_cnt[3];
1705}
1706
1707static u64 access_misc_csr_write_bad_addr_err_cnt(
1708 const struct cntr_entry *entry,
1709 void *context, int vl, int mode, u64 data)
1710{
1711 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1712
1713 return dd->misc_err_status_cnt[2];
1714}
1715
1716static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1717 void *context, int vl,
1718 int mode, u64 data)
1719{
1720 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1721
1722 return dd->misc_err_status_cnt[1];
1723}
1724
1725static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1726 void *context, int vl, int mode,
1727 u64 data)
1728{
1729 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1730
1731 return dd->misc_err_status_cnt[0];
1732}
1733
1734/*
1735 * Software counter for the aggregate of
1736 * individual CceErrStatus counters
1737 */
1738static u64 access_sw_cce_err_status_aggregated_cnt(
1739 const struct cntr_entry *entry,
1740 void *context, int vl, int mode, u64 data)
1741{
1742 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1743
1744 return dd->sw_cce_err_status_aggregate;
1745}
1746
1747/*
1748 * Software counters corresponding to each of the
1749 * error status bits within CceErrStatus
1750 */
1751static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1752 void *context, int vl, int mode,
1753 u64 data)
1754{
1755 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1756
1757 return dd->cce_err_status_cnt[40];
1758}
1759
1760static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1761 void *context, int vl, int mode,
1762 u64 data)
1763{
1764 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1765
1766 return dd->cce_err_status_cnt[39];
1767}
1768
1769static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1770 void *context, int vl, int mode,
1771 u64 data)
1772{
1773 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1774
1775 return dd->cce_err_status_cnt[38];
1776}
1777
1778static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1779 void *context, int vl, int mode,
1780 u64 data)
1781{
1782 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1783
1784 return dd->cce_err_status_cnt[37];
1785}
1786
1787static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1788 void *context, int vl, int mode,
1789 u64 data)
1790{
1791 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1792
1793 return dd->cce_err_status_cnt[36];
1794}
1795
1796static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1797 const struct cntr_entry *entry,
1798 void *context, int vl, int mode, u64 data)
1799{
1800 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1801
1802 return dd->cce_err_status_cnt[35];
1803}
1804
1805static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1806 const struct cntr_entry *entry,
1807 void *context, int vl, int mode, u64 data)
1808{
1809 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1810
1811 return dd->cce_err_status_cnt[34];
1812}
1813
1814static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1815 void *context, int vl,
1816 int mode, u64 data)
1817{
1818 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1819
1820 return dd->cce_err_status_cnt[33];
1821}
1822
1823static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1824 void *context, int vl, int mode,
1825 u64 data)
1826{
1827 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1828
1829 return dd->cce_err_status_cnt[32];
1830}
1831
1832static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1833 void *context, int vl, int mode, u64 data)
1834{
1835 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1836
1837 return dd->cce_err_status_cnt[31];
1838}
1839
1840static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1841 void *context, int vl, int mode,
1842 u64 data)
1843{
1844 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1845
1846 return dd->cce_err_status_cnt[30];
1847}
1848
1849static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1850 void *context, int vl, int mode,
1851 u64 data)
1852{
1853 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1854
1855 return dd->cce_err_status_cnt[29];
1856}
1857
1858static u64 access_pcic_transmit_back_parity_err_cnt(
1859 const struct cntr_entry *entry,
1860 void *context, int vl, int mode, u64 data)
1861{
1862 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1863
1864 return dd->cce_err_status_cnt[28];
1865}
1866
1867static u64 access_pcic_transmit_front_parity_err_cnt(
1868 const struct cntr_entry *entry,
1869 void *context, int vl, int mode, u64 data)
1870{
1871 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1872
1873 return dd->cce_err_status_cnt[27];
1874}
1875
1876static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1877 void *context, int vl, int mode,
1878 u64 data)
1879{
1880 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1881
1882 return dd->cce_err_status_cnt[26];
1883}
1884
1885static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1886 void *context, int vl, int mode,
1887 u64 data)
1888{
1889 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1890
1891 return dd->cce_err_status_cnt[25];
1892}
1893
1894static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1895 void *context, int vl, int mode,
1896 u64 data)
1897{
1898 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1899
1900 return dd->cce_err_status_cnt[24];
1901}
1902
1903static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1904 void *context, int vl, int mode,
1905 u64 data)
1906{
1907 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1908
1909 return dd->cce_err_status_cnt[23];
1910}
1911
1912static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
1913 void *context, int vl,
1914 int mode, u64 data)
1915{
1916 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1917
1918 return dd->cce_err_status_cnt[22];
1919}
1920
1921static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
1922 void *context, int vl, int mode,
1923 u64 data)
1924{
1925 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1926
1927 return dd->cce_err_status_cnt[21];
1928}
1929
1930static u64 access_pcic_n_post_dat_q_parity_err_cnt(
1931 const struct cntr_entry *entry,
1932 void *context, int vl, int mode, u64 data)
1933{
1934 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1935
1936 return dd->cce_err_status_cnt[20];
1937}
1938
1939static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
1940 void *context, int vl,
1941 int mode, u64 data)
1942{
1943 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1944
1945 return dd->cce_err_status_cnt[19];
1946}
1947
1948static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1949 void *context, int vl, int mode,
1950 u64 data)
1951{
1952 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1953
1954 return dd->cce_err_status_cnt[18];
1955}
1956
1957static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
1958 void *context, int vl, int mode,
1959 u64 data)
1960{
1961 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1962
1963 return dd->cce_err_status_cnt[17];
1964}
1965
1966static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1967 void *context, int vl, int mode,
1968 u64 data)
1969{
1970 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1971
1972 return dd->cce_err_status_cnt[16];
1973}
1974
1975static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
1976 void *context, int vl, int mode,
1977 u64 data)
1978{
1979 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1980
1981 return dd->cce_err_status_cnt[15];
1982}
1983
1984static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
1985 void *context, int vl,
1986 int mode, u64 data)
1987{
1988 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1989
1990 return dd->cce_err_status_cnt[14];
1991}
1992
1993static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
1994 void *context, int vl, int mode,
1995 u64 data)
1996{
1997 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1998
1999 return dd->cce_err_status_cnt[13];
2000}
2001
2002static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2003 const struct cntr_entry *entry,
2004 void *context, int vl, int mode, u64 data)
2005{
2006 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2007
2008 return dd->cce_err_status_cnt[12];
2009}
2010
2011static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2012 const struct cntr_entry *entry,
2013 void *context, int vl, int mode, u64 data)
2014{
2015 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2016
2017 return dd->cce_err_status_cnt[11];
2018}
2019
2020static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2021 const struct cntr_entry *entry,
2022 void *context, int vl, int mode, u64 data)
2023{
2024 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2025
2026 return dd->cce_err_status_cnt[10];
2027}
2028
2029static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2030 const struct cntr_entry *entry,
2031 void *context, int vl, int mode, u64 data)
2032{
2033 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2034
2035 return dd->cce_err_status_cnt[9];
2036}
2037
2038static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2039 const struct cntr_entry *entry,
2040 void *context, int vl, int mode, u64 data)
2041{
2042 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2043
2044 return dd->cce_err_status_cnt[8];
2045}
2046
2047static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2048 void *context, int vl,
2049 int mode, u64 data)
2050{
2051 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2052
2053 return dd->cce_err_status_cnt[7];
2054}
2055
2056static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2057 const struct cntr_entry *entry,
2058 void *context, int vl, int mode, u64 data)
2059{
2060 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2061
2062 return dd->cce_err_status_cnt[6];
2063}
2064
2065static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2066 void *context, int vl, int mode,
2067 u64 data)
2068{
2069 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2070
2071 return dd->cce_err_status_cnt[5];
2072}
2073
2074static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2075 void *context, int vl, int mode,
2076 u64 data)
2077{
2078 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2079
2080 return dd->cce_err_status_cnt[4];
2081}
2082
2083static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2084 const struct cntr_entry *entry,
2085 void *context, int vl, int mode, u64 data)
2086{
2087 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2088
2089 return dd->cce_err_status_cnt[3];
2090}
2091
2092static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2093 void *context, int vl,
2094 int mode, u64 data)
2095{
2096 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2097
2098 return dd->cce_err_status_cnt[2];
2099}
2100
2101static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2102 void *context, int vl,
2103 int mode, u64 data)
2104{
2105 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2106
2107 return dd->cce_err_status_cnt[1];
2108}
2109
2110static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2111 void *context, int vl, int mode,
2112 u64 data)
2113{
2114 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2115
2116 return dd->cce_err_status_cnt[0];
2117}
2118
2119/*
2120 * Software counters corresponding to each of the
2121 * error status bits within RcvErrStatus
2122 */
2123static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2124 void *context, int vl, int mode,
2125 u64 data)
2126{
2127 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2128
2129 return dd->rcv_err_status_cnt[63];
2130}
2131
2132static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2133 void *context, int vl,
2134 int mode, u64 data)
2135{
2136 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2137
2138 return dd->rcv_err_status_cnt[62];
2139}
2140
2141static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2142 void *context, int vl, int mode,
2143 u64 data)
2144{
2145 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2146
2147 return dd->rcv_err_status_cnt[61];
2148}
2149
2150static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2151 void *context, int vl, int mode,
2152 u64 data)
2153{
2154 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2155
2156 return dd->rcv_err_status_cnt[60];
2157}
2158
2159static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2160 void *context, int vl,
2161 int mode, u64 data)
2162{
2163 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2164
2165 return dd->rcv_err_status_cnt[59];
2166}
2167
2168static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2169 void *context, int vl,
2170 int mode, u64 data)
2171{
2172 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2173
2174 return dd->rcv_err_status_cnt[58];
2175}
2176
2177static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2178 void *context, int vl, int mode,
2179 u64 data)
2180{
2181 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2182
2183 return dd->rcv_err_status_cnt[57];
2184}
2185
2186static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2187 void *context, int vl, int mode,
2188 u64 data)
2189{
2190 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2191
2192 return dd->rcv_err_status_cnt[56];
2193}
2194
2195static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2196 void *context, int vl, int mode,
2197 u64 data)
2198{
2199 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2200
2201 return dd->rcv_err_status_cnt[55];
2202}
2203
2204static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2205 const struct cntr_entry *entry,
2206 void *context, int vl, int mode, u64 data)
2207{
2208 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2209
2210 return dd->rcv_err_status_cnt[54];
2211}
2212
2213static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2214 const struct cntr_entry *entry,
2215 void *context, int vl, int mode, u64 data)
2216{
2217 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2218
2219 return dd->rcv_err_status_cnt[53];
2220}
2221
2222static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2223 void *context, int vl,
2224 int mode, u64 data)
2225{
2226 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2227
2228 return dd->rcv_err_status_cnt[52];
2229}
2230
2231static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2232 void *context, int vl,
2233 int mode, u64 data)
2234{
2235 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2236
2237 return dd->rcv_err_status_cnt[51];
2238}
2239
2240static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2241 void *context, int vl,
2242 int mode, u64 data)
2243{
2244 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2245
2246 return dd->rcv_err_status_cnt[50];
2247}
2248
2249static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2250 void *context, int vl,
2251 int mode, u64 data)
2252{
2253 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2254
2255 return dd->rcv_err_status_cnt[49];
2256}
2257
2258static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2259 void *context, int vl,
2260 int mode, u64 data)
2261{
2262 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2263
2264 return dd->rcv_err_status_cnt[48];
2265}
2266
2267static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2268 void *context, int vl,
2269 int mode, u64 data)
2270{
2271 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2272
2273 return dd->rcv_err_status_cnt[47];
2274}
2275
2276static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2277 void *context, int vl, int mode,
2278 u64 data)
2279{
2280 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2281
2282 return dd->rcv_err_status_cnt[46];
2283}
2284
2285static u64 access_rx_hq_intr_csr_parity_err_cnt(
2286 const struct cntr_entry *entry,
2287 void *context, int vl, int mode, u64 data)
2288{
2289 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2290
2291 return dd->rcv_err_status_cnt[45];
2292}
2293
2294static u64 access_rx_lookup_csr_parity_err_cnt(
2295 const struct cntr_entry *entry,
2296 void *context, int vl, int mode, u64 data)
2297{
2298 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2299
2300 return dd->rcv_err_status_cnt[44];
2301}
2302
2303static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2304 const struct cntr_entry *entry,
2305 void *context, int vl, int mode, u64 data)
2306{
2307 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2308
2309 return dd->rcv_err_status_cnt[43];
2310}
2311
2312static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2313 const struct cntr_entry *entry,
2314 void *context, int vl, int mode, u64 data)
2315{
2316 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2317
2318 return dd->rcv_err_status_cnt[42];
2319}
2320
2321static u64 access_rx_lookup_des_part2_parity_err_cnt(
2322 const struct cntr_entry *entry,
2323 void *context, int vl, int mode, u64 data)
2324{
2325 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2326
2327 return dd->rcv_err_status_cnt[41];
2328}
2329
2330static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2331 const struct cntr_entry *entry,
2332 void *context, int vl, int mode, u64 data)
2333{
2334 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2335
2336 return dd->rcv_err_status_cnt[40];
2337}
2338
2339static u64 access_rx_lookup_des_part1_unc_err_cnt(
2340 const struct cntr_entry *entry,
2341 void *context, int vl, int mode, u64 data)
2342{
2343 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2344
2345 return dd->rcv_err_status_cnt[39];
2346}
2347
2348static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2349 const struct cntr_entry *entry,
2350 void *context, int vl, int mode, u64 data)
2351{
2352 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2353
2354 return dd->rcv_err_status_cnt[38];
2355}
2356
2357static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2358 const struct cntr_entry *entry,
2359 void *context, int vl, int mode, u64 data)
2360{
2361 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2362
2363 return dd->rcv_err_status_cnt[37];
2364}
2365
2366static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2367 const struct cntr_entry *entry,
2368 void *context, int vl, int mode, u64 data)
2369{
2370 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2371
2372 return dd->rcv_err_status_cnt[36];
2373}
2374
2375static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2376 const struct cntr_entry *entry,
2377 void *context, int vl, int mode, u64 data)
2378{
2379 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2380
2381 return dd->rcv_err_status_cnt[35];
2382}
2383
2384static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2385 const struct cntr_entry *entry,
2386 void *context, int vl, int mode, u64 data)
2387{
2388 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2389
2390 return dd->rcv_err_status_cnt[34];
2391}
2392
2393static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2394 const struct cntr_entry *entry,
2395 void *context, int vl, int mode, u64 data)
2396{
2397 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2398
2399 return dd->rcv_err_status_cnt[33];
2400}
2401
2402static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2403 void *context, int vl, int mode,
2404 u64 data)
2405{
2406 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2407
2408 return dd->rcv_err_status_cnt[32];
2409}
2410
2411static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2412 void *context, int vl, int mode,
2413 u64 data)
2414{
2415 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2416
2417 return dd->rcv_err_status_cnt[31];
2418}
2419
2420static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2421 void *context, int vl, int mode,
2422 u64 data)
2423{
2424 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2425
2426 return dd->rcv_err_status_cnt[30];
2427}
2428
2429static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2430 void *context, int vl, int mode,
2431 u64 data)
2432{
2433 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2434
2435 return dd->rcv_err_status_cnt[29];
2436}
2437
2438static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2439 void *context, int vl,
2440 int mode, u64 data)
2441{
2442 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2443
2444 return dd->rcv_err_status_cnt[28];
2445}
2446
2447static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2448 const struct cntr_entry *entry,
2449 void *context, int vl, int mode, u64 data)
2450{
2451 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2452
2453 return dd->rcv_err_status_cnt[27];
2454}
2455
2456static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2457 const struct cntr_entry *entry,
2458 void *context, int vl, int mode, u64 data)
2459{
2460 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2461
2462 return dd->rcv_err_status_cnt[26];
2463}
2464
2465static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2466 const struct cntr_entry *entry,
2467 void *context, int vl, int mode, u64 data)
2468{
2469 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2470
2471 return dd->rcv_err_status_cnt[25];
2472}
2473
2474static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2475 const struct cntr_entry *entry,
2476 void *context, int vl, int mode, u64 data)
2477{
2478 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2479
2480 return dd->rcv_err_status_cnt[24];
2481}
2482
2483static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2484 const struct cntr_entry *entry,
2485 void *context, int vl, int mode, u64 data)
2486{
2487 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2488
2489 return dd->rcv_err_status_cnt[23];
2490}
2491
2492static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2493 const struct cntr_entry *entry,
2494 void *context, int vl, int mode, u64 data)
2495{
2496 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2497
2498 return dd->rcv_err_status_cnt[22];
2499}
2500
2501static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2502 const struct cntr_entry *entry,
2503 void *context, int vl, int mode, u64 data)
2504{
2505 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2506
2507 return dd->rcv_err_status_cnt[21];
2508}
2509
2510static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2511 const struct cntr_entry *entry,
2512 void *context, int vl, int mode, u64 data)
2513{
2514 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2515
2516 return dd->rcv_err_status_cnt[20];
2517}
2518
2519static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2520 const struct cntr_entry *entry,
2521 void *context, int vl, int mode, u64 data)
2522{
2523 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2524
2525 return dd->rcv_err_status_cnt[19];
2526}
2527
2528static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2529 void *context, int vl,
2530 int mode, u64 data)
2531{
2532 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2533
2534 return dd->rcv_err_status_cnt[18];
2535}
2536
2537static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2538 void *context, int vl,
2539 int mode, u64 data)
2540{
2541 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2542
2543 return dd->rcv_err_status_cnt[17];
2544}
2545
2546static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2547 const struct cntr_entry *entry,
2548 void *context, int vl, int mode, u64 data)
2549{
2550 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2551
2552 return dd->rcv_err_status_cnt[16];
2553}
2554
2555static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2556 const struct cntr_entry *entry,
2557 void *context, int vl, int mode, u64 data)
2558{
2559 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2560
2561 return dd->rcv_err_status_cnt[15];
2562}
2563
2564static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2565 void *context, int vl,
2566 int mode, u64 data)
2567{
2568 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2569
2570 return dd->rcv_err_status_cnt[14];
2571}
2572
2573static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2574 void *context, int vl,
2575 int mode, u64 data)
2576{
2577 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2578
2579 return dd->rcv_err_status_cnt[13];
2580}
2581
2582static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2583 void *context, int vl, int mode,
2584 u64 data)
2585{
2586 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2587
2588 return dd->rcv_err_status_cnt[12];
2589}
2590
2591static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2592 void *context, int vl, int mode,
2593 u64 data)
2594{
2595 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2596
2597 return dd->rcv_err_status_cnt[11];
2598}
2599
2600static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2601 void *context, int vl, int mode,
2602 u64 data)
2603{
2604 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2605
2606 return dd->rcv_err_status_cnt[10];
2607}
2608
2609static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2610 void *context, int vl, int mode,
2611 u64 data)
2612{
2613 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2614
2615 return dd->rcv_err_status_cnt[9];
2616}
2617
2618static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2619 void *context, int vl, int mode,
2620 u64 data)
2621{
2622 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2623
2624 return dd->rcv_err_status_cnt[8];
2625}
2626
2627static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2628 const struct cntr_entry *entry,
2629 void *context, int vl, int mode, u64 data)
2630{
2631 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2632
2633 return dd->rcv_err_status_cnt[7];
2634}
2635
2636static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2637 const struct cntr_entry *entry,
2638 void *context, int vl, int mode, u64 data)
2639{
2640 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2641
2642 return dd->rcv_err_status_cnt[6];
2643}
2644
2645static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2646 void *context, int vl, int mode,
2647 u64 data)
2648{
2649 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2650
2651 return dd->rcv_err_status_cnt[5];
2652}
2653
2654static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2655 void *context, int vl, int mode,
2656 u64 data)
2657{
2658 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2659
2660 return dd->rcv_err_status_cnt[4];
2661}
2662
2663static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2664 void *context, int vl, int mode,
2665 u64 data)
2666{
2667 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2668
2669 return dd->rcv_err_status_cnt[3];
2670}
2671
2672static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2673 void *context, int vl, int mode,
2674 u64 data)
2675{
2676 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2677
2678 return dd->rcv_err_status_cnt[2];
2679}
2680
2681static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2682 void *context, int vl, int mode,
2683 u64 data)
2684{
2685 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2686
2687 return dd->rcv_err_status_cnt[1];
2688}
2689
2690static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2691 void *context, int vl, int mode,
2692 u64 data)
2693{
2694 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2695
2696 return dd->rcv_err_status_cnt[0];
2697}
2698
2699/*
2700 * Software counters corresponding to each of the
2701 * error status bits within SendPioErrStatus
2702 */
2703static u64 access_pio_pec_sop_head_parity_err_cnt(
2704 const struct cntr_entry *entry,
2705 void *context, int vl, int mode, u64 data)
2706{
2707 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2708
2709 return dd->send_pio_err_status_cnt[35];
2710}
2711
2712static u64 access_pio_pcc_sop_head_parity_err_cnt(
2713 const struct cntr_entry *entry,
2714 void *context, int vl, int mode, u64 data)
2715{
2716 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2717
2718 return dd->send_pio_err_status_cnt[34];
2719}
2720
2721static u64 access_pio_last_returned_cnt_parity_err_cnt(
2722 const struct cntr_entry *entry,
2723 void *context, int vl, int mode, u64 data)
2724{
2725 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2726
2727 return dd->send_pio_err_status_cnt[33];
2728}
2729
2730static u64 access_pio_current_free_cnt_parity_err_cnt(
2731 const struct cntr_entry *entry,
2732 void *context, int vl, int mode, u64 data)
2733{
2734 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2735
2736 return dd->send_pio_err_status_cnt[32];
2737}
2738
2739static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2740 void *context, int vl, int mode,
2741 u64 data)
2742{
2743 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2744
2745 return dd->send_pio_err_status_cnt[31];
2746}
2747
2748static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2749 void *context, int vl, int mode,
2750 u64 data)
2751{
2752 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2753
2754 return dd->send_pio_err_status_cnt[30];
2755}
2756
2757static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2758 void *context, int vl, int mode,
2759 u64 data)
2760{
2761 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2762
2763 return dd->send_pio_err_status_cnt[29];
2764}
2765
2766static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2767 const struct cntr_entry *entry,
2768 void *context, int vl, int mode, u64 data)
2769{
2770 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2771
2772 return dd->send_pio_err_status_cnt[28];
2773}
2774
2775static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2776 void *context, int vl, int mode,
2777 u64 data)
2778{
2779 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2780
2781 return dd->send_pio_err_status_cnt[27];
2782}
2783
2784static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2785 void *context, int vl, int mode,
2786 u64 data)
2787{
2788 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2789
2790 return dd->send_pio_err_status_cnt[26];
2791}
2792
2793static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2794 void *context, int vl,
2795 int mode, u64 data)
2796{
2797 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2798
2799 return dd->send_pio_err_status_cnt[25];
2800}
2801
2802static u64 access_pio_block_qw_count_parity_err_cnt(
2803 const struct cntr_entry *entry,
2804 void *context, int vl, int mode, u64 data)
2805{
2806 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2807
2808 return dd->send_pio_err_status_cnt[24];
2809}
2810
2811static u64 access_pio_write_qw_valid_parity_err_cnt(
2812 const struct cntr_entry *entry,
2813 void *context, int vl, int mode, u64 data)
2814{
2815 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2816
2817 return dd->send_pio_err_status_cnt[23];
2818}
2819
2820static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2821 void *context, int vl, int mode,
2822 u64 data)
2823{
2824 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2825
2826 return dd->send_pio_err_status_cnt[22];
2827}
2828
2829static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2830 void *context, int vl,
2831 int mode, u64 data)
2832{
2833 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2834
2835 return dd->send_pio_err_status_cnt[21];
2836}
2837
2838static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2839 void *context, int vl,
2840 int mode, u64 data)
2841{
2842 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2843
2844 return dd->send_pio_err_status_cnt[20];
2845}
2846
2847static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2848 void *context, int vl,
2849 int mode, u64 data)
2850{
2851 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2852
2853 return dd->send_pio_err_status_cnt[19];
2854}
2855
2856static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2857 const struct cntr_entry *entry,
2858 void *context, int vl, int mode, u64 data)
2859{
2860 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2861
2862 return dd->send_pio_err_status_cnt[18];
2863}
2864
2865static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2866 void *context, int vl, int mode,
2867 u64 data)
2868{
2869 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2870
2871 return dd->send_pio_err_status_cnt[17];
2872}
2873
2874static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2875 void *context, int vl, int mode,
2876 u64 data)
2877{
2878 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2879
2880 return dd->send_pio_err_status_cnt[16];
2881}
2882
2883static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2884 const struct cntr_entry *entry,
2885 void *context, int vl, int mode, u64 data)
2886{
2887 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2888
2889 return dd->send_pio_err_status_cnt[15];
2890}
2891
2892static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2893 const struct cntr_entry *entry,
2894 void *context, int vl, int mode, u64 data)
2895{
2896 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2897
2898 return dd->send_pio_err_status_cnt[14];
2899}
2900
2901static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2902 const struct cntr_entry *entry,
2903 void *context, int vl, int mode, u64 data)
2904{
2905 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2906
2907 return dd->send_pio_err_status_cnt[13];
2908}
2909
2910static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
2911 const struct cntr_entry *entry,
2912 void *context, int vl, int mode, u64 data)
2913{
2914 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2915
2916 return dd->send_pio_err_status_cnt[12];
2917}
2918
2919static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
2920 const struct cntr_entry *entry,
2921 void *context, int vl, int mode, u64 data)
2922{
2923 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2924
2925 return dd->send_pio_err_status_cnt[11];
2926}
2927
2928static u64 access_pio_sm_pkt_reset_parity_err_cnt(
2929 const struct cntr_entry *entry,
2930 void *context, int vl, int mode, u64 data)
2931{
2932 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2933
2934 return dd->send_pio_err_status_cnt[10];
2935}
2936
2937static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
2938 const struct cntr_entry *entry,
2939 void *context, int vl, int mode, u64 data)
2940{
2941 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2942
2943 return dd->send_pio_err_status_cnt[9];
2944}
2945
2946static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
2947 const struct cntr_entry *entry,
2948 void *context, int vl, int mode, u64 data)
2949{
2950 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2951
2952 return dd->send_pio_err_status_cnt[8];
2953}
2954
2955static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
2956 const struct cntr_entry *entry,
2957 void *context, int vl, int mode, u64 data)
2958{
2959 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2960
2961 return dd->send_pio_err_status_cnt[7];
2962}
2963
2964static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
2965 void *context, int vl, int mode,
2966 u64 data)
2967{
2968 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2969
2970 return dd->send_pio_err_status_cnt[6];
2971}
2972
2973static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
2974 void *context, int vl, int mode,
2975 u64 data)
2976{
2977 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2978
2979 return dd->send_pio_err_status_cnt[5];
2980}
2981
2982static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
2983 void *context, int vl, int mode,
2984 u64 data)
2985{
2986 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2987
2988 return dd->send_pio_err_status_cnt[4];
2989}
2990
2991static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
2992 void *context, int vl, int mode,
2993 u64 data)
2994{
2995 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2996
2997 return dd->send_pio_err_status_cnt[3];
2998}
2999
3000static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3001 void *context, int vl, int mode,
3002 u64 data)
3003{
3004 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3005
3006 return dd->send_pio_err_status_cnt[2];
3007}
3008
3009static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3010 void *context, int vl,
3011 int mode, u64 data)
3012{
3013 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3014
3015 return dd->send_pio_err_status_cnt[1];
3016}
3017
3018static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3019 void *context, int vl, int mode,
3020 u64 data)
3021{
3022 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3023
3024 return dd->send_pio_err_status_cnt[0];
3025}
3026
3027/*
3028 * Software counters corresponding to each of the
3029 * error status bits within SendDmaErrStatus
3030 */
3031static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3032 const struct cntr_entry *entry,
3033 void *context, int vl, int mode, u64 data)
3034{
3035 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3036
3037 return dd->send_dma_err_status_cnt[3];
3038}
3039
3040static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3041 const struct cntr_entry *entry,
3042 void *context, int vl, int mode, u64 data)
3043{
3044 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3045
3046 return dd->send_dma_err_status_cnt[2];
3047}
3048
3049static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3050 void *context, int vl, int mode,
3051 u64 data)
3052{
3053 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3054
3055 return dd->send_dma_err_status_cnt[1];
3056}
3057
3058static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3059 void *context, int vl, int mode,
3060 u64 data)
3061{
3062 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3063
3064 return dd->send_dma_err_status_cnt[0];
3065}
3066
3067/*
3068 * Software counters corresponding to each of the
3069 * error status bits within SendEgressErrStatus
3070 */
3071static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3072 const struct cntr_entry *entry,
3073 void *context, int vl, int mode, u64 data)
3074{
3075 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3076
3077 return dd->send_egress_err_status_cnt[63];
3078}
3079
3080static u64 access_tx_read_sdma_memory_csr_err_cnt(
3081 const struct cntr_entry *entry,
3082 void *context, int vl, int mode, u64 data)
3083{
3084 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3085
3086 return dd->send_egress_err_status_cnt[62];
3087}
3088
3089static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3090 void *context, int vl, int mode,
3091 u64 data)
3092{
3093 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3094
3095 return dd->send_egress_err_status_cnt[61];
3096}
3097
3098static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3099 void *context, int vl,
3100 int mode, u64 data)
3101{
3102 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3103
3104 return dd->send_egress_err_status_cnt[60];
3105}
3106
3107static u64 access_tx_read_sdma_memory_cor_err_cnt(
3108 const struct cntr_entry *entry,
3109 void *context, int vl, int mode, u64 data)
3110{
3111 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3112
3113 return dd->send_egress_err_status_cnt[59];
3114}
3115
3116static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3117 void *context, int vl, int mode,
3118 u64 data)
3119{
3120 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3121
3122 return dd->send_egress_err_status_cnt[58];
3123}
3124
3125static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3126 void *context, int vl, int mode,
3127 u64 data)
3128{
3129 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3130
3131 return dd->send_egress_err_status_cnt[57];
3132}
3133
3134static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3135 void *context, int vl, int mode,
3136 u64 data)
3137{
3138 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3139
3140 return dd->send_egress_err_status_cnt[56];
3141}
3142
3143static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3144 void *context, int vl, int mode,
3145 u64 data)
3146{
3147 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3148
3149 return dd->send_egress_err_status_cnt[55];
3150}
3151
3152static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3153 void *context, int vl, int mode,
3154 u64 data)
3155{
3156 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3157
3158 return dd->send_egress_err_status_cnt[54];
3159}
3160
3161static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3162 void *context, int vl, int mode,
3163 u64 data)
3164{
3165 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3166
3167 return dd->send_egress_err_status_cnt[53];
3168}
3169
3170static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3171 void *context, int vl, int mode,
3172 u64 data)
3173{
3174 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3175
3176 return dd->send_egress_err_status_cnt[52];
3177}
3178
3179static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3180 void *context, int vl, int mode,
3181 u64 data)
3182{
3183 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3184
3185 return dd->send_egress_err_status_cnt[51];
3186}
3187
3188static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3189 void *context, int vl, int mode,
3190 u64 data)
3191{
3192 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3193
3194 return dd->send_egress_err_status_cnt[50];
3195}
3196
3197static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3198 void *context, int vl, int mode,
3199 u64 data)
3200{
3201 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3202
3203 return dd->send_egress_err_status_cnt[49];
3204}
3205
3206static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3207 void *context, int vl, int mode,
3208 u64 data)
3209{
3210 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3211
3212 return dd->send_egress_err_status_cnt[48];
3213}
3214
3215static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3216 void *context, int vl, int mode,
3217 u64 data)
3218{
3219 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3220
3221 return dd->send_egress_err_status_cnt[47];
3222}
3223
3224static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3225 void *context, int vl, int mode,
3226 u64 data)
3227{
3228 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3229
3230 return dd->send_egress_err_status_cnt[46];
3231}
3232
3233static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3234 void *context, int vl, int mode,
3235 u64 data)
3236{
3237 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3238
3239 return dd->send_egress_err_status_cnt[45];
3240}
3241
3242static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3243 void *context, int vl,
3244 int mode, u64 data)
3245{
3246 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3247
3248 return dd->send_egress_err_status_cnt[44];
3249}
3250
3251static u64 access_tx_read_sdma_memory_unc_err_cnt(
3252 const struct cntr_entry *entry,
3253 void *context, int vl, int mode, u64 data)
3254{
3255 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3256
3257 return dd->send_egress_err_status_cnt[43];
3258}
3259
3260static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3261 void *context, int vl, int mode,
3262 u64 data)
3263{
3264 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3265
3266 return dd->send_egress_err_status_cnt[42];
3267}
3268
3269static u64 access_tx_credit_return_partiy_err_cnt(
3270 const struct cntr_entry *entry,
3271 void *context, int vl, int mode, u64 data)
3272{
3273 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3274
3275 return dd->send_egress_err_status_cnt[41];
3276}
3277
3278static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3279 const struct cntr_entry *entry,
3280 void *context, int vl, int mode, u64 data)
3281{
3282 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3283
3284 return dd->send_egress_err_status_cnt[40];
3285}
3286
3287static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3288 const struct cntr_entry *entry,
3289 void *context, int vl, int mode, u64 data)
3290{
3291 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3292
3293 return dd->send_egress_err_status_cnt[39];
3294}
3295
3296static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3297 const struct cntr_entry *entry,
3298 void *context, int vl, int mode, u64 data)
3299{
3300 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3301
3302 return dd->send_egress_err_status_cnt[38];
3303}
3304
3305static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3306 const struct cntr_entry *entry,
3307 void *context, int vl, int mode, u64 data)
3308{
3309 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3310
3311 return dd->send_egress_err_status_cnt[37];
3312}
3313
3314static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3315 const struct cntr_entry *entry,
3316 void *context, int vl, int mode, u64 data)
3317{
3318 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3319
3320 return dd->send_egress_err_status_cnt[36];
3321}
3322
3323static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3324 const struct cntr_entry *entry,
3325 void *context, int vl, int mode, u64 data)
3326{
3327 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3328
3329 return dd->send_egress_err_status_cnt[35];
3330}
3331
3332static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3333 const struct cntr_entry *entry,
3334 void *context, int vl, int mode, u64 data)
3335{
3336 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3337
3338 return dd->send_egress_err_status_cnt[34];
3339}
3340
3341static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3342 const struct cntr_entry *entry,
3343 void *context, int vl, int mode, u64 data)
3344{
3345 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3346
3347 return dd->send_egress_err_status_cnt[33];
3348}
3349
3350static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3351 const struct cntr_entry *entry,
3352 void *context, int vl, int mode, u64 data)
3353{
3354 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3355
3356 return dd->send_egress_err_status_cnt[32];
3357}
3358
3359static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3360 const struct cntr_entry *entry,
3361 void *context, int vl, int mode, u64 data)
3362{
3363 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3364
3365 return dd->send_egress_err_status_cnt[31];
3366}
3367
3368static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3369 const struct cntr_entry *entry,
3370 void *context, int vl, int mode, u64 data)
3371{
3372 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3373
3374 return dd->send_egress_err_status_cnt[30];
3375}
3376
3377static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3378 const struct cntr_entry *entry,
3379 void *context, int vl, int mode, u64 data)
3380{
3381 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3382
3383 return dd->send_egress_err_status_cnt[29];
3384}
3385
3386static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3387 const struct cntr_entry *entry,
3388 void *context, int vl, int mode, u64 data)
3389{
3390 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3391
3392 return dd->send_egress_err_status_cnt[28];
3393}
3394
3395static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3396 const struct cntr_entry *entry,
3397 void *context, int vl, int mode, u64 data)
3398{
3399 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3400
3401 return dd->send_egress_err_status_cnt[27];
3402}
3403
3404static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3405 const struct cntr_entry *entry,
3406 void *context, int vl, int mode, u64 data)
3407{
3408 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3409
3410 return dd->send_egress_err_status_cnt[26];
3411}
3412
3413static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3414 const struct cntr_entry *entry,
3415 void *context, int vl, int mode, u64 data)
3416{
3417 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3418
3419 return dd->send_egress_err_status_cnt[25];
3420}
3421
3422static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3423 const struct cntr_entry *entry,
3424 void *context, int vl, int mode, u64 data)
3425{
3426 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3427
3428 return dd->send_egress_err_status_cnt[24];
3429}
3430
3431static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3432 const struct cntr_entry *entry,
3433 void *context, int vl, int mode, u64 data)
3434{
3435 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3436
3437 return dd->send_egress_err_status_cnt[23];
3438}
3439
3440static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3441 const struct cntr_entry *entry,
3442 void *context, int vl, int mode, u64 data)
3443{
3444 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3445
3446 return dd->send_egress_err_status_cnt[22];
3447}
3448
3449static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3450 const struct cntr_entry *entry,
3451 void *context, int vl, int mode, u64 data)
3452{
3453 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3454
3455 return dd->send_egress_err_status_cnt[21];
3456}
3457
3458static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3459 const struct cntr_entry *entry,
3460 void *context, int vl, int mode, u64 data)
3461{
3462 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3463
3464 return dd->send_egress_err_status_cnt[20];
3465}
3466
3467static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3468 const struct cntr_entry *entry,
3469 void *context, int vl, int mode, u64 data)
3470{
3471 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3472
3473 return dd->send_egress_err_status_cnt[19];
3474}
3475
3476static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3477 const struct cntr_entry *entry,
3478 void *context, int vl, int mode, u64 data)
3479{
3480 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3481
3482 return dd->send_egress_err_status_cnt[18];
3483}
3484
3485static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3486 const struct cntr_entry *entry,
3487 void *context, int vl, int mode, u64 data)
3488{
3489 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3490
3491 return dd->send_egress_err_status_cnt[17];
3492}
3493
3494static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3495 const struct cntr_entry *entry,
3496 void *context, int vl, int mode, u64 data)
3497{
3498 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3499
3500 return dd->send_egress_err_status_cnt[16];
3501}
3502
3503static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3504 void *context, int vl, int mode,
3505 u64 data)
3506{
3507 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3508
3509 return dd->send_egress_err_status_cnt[15];
3510}
3511
3512static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3513 void *context, int vl,
3514 int mode, u64 data)
3515{
3516 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3517
3518 return dd->send_egress_err_status_cnt[14];
3519}
3520
3521static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3522 void *context, int vl, int mode,
3523 u64 data)
3524{
3525 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3526
3527 return dd->send_egress_err_status_cnt[13];
3528}
3529
3530static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3531 void *context, int vl, int mode,
3532 u64 data)
3533{
3534 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3535
3536 return dd->send_egress_err_status_cnt[12];
3537}
3538
3539static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3540 const struct cntr_entry *entry,
3541 void *context, int vl, int mode, u64 data)
3542{
3543 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3544
3545 return dd->send_egress_err_status_cnt[11];
3546}
3547
3548static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3549 void *context, int vl, int mode,
3550 u64 data)
3551{
3552 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3553
3554 return dd->send_egress_err_status_cnt[10];
3555}
3556
3557static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3558 void *context, int vl, int mode,
3559 u64 data)
3560{
3561 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3562
3563 return dd->send_egress_err_status_cnt[9];
3564}
3565
3566static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3567 const struct cntr_entry *entry,
3568 void *context, int vl, int mode, u64 data)
3569{
3570 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3571
3572 return dd->send_egress_err_status_cnt[8];
3573}
3574
3575static u64 access_tx_pio_launch_intf_parity_err_cnt(
3576 const struct cntr_entry *entry,
3577 void *context, int vl, int mode, u64 data)
3578{
3579 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3580
3581 return dd->send_egress_err_status_cnt[7];
3582}
3583
3584static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3585 void *context, int vl, int mode,
3586 u64 data)
3587{
3588 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3589
3590 return dd->send_egress_err_status_cnt[6];
3591}
3592
3593static u64 access_tx_incorrect_link_state_err_cnt(
3594 const struct cntr_entry *entry,
3595 void *context, int vl, int mode, u64 data)
3596{
3597 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3598
3599 return dd->send_egress_err_status_cnt[5];
3600}
3601
3602static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3603 void *context, int vl, int mode,
3604 u64 data)
3605{
3606 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3607
3608 return dd->send_egress_err_status_cnt[4];
3609}
3610
3611static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3612 const struct cntr_entry *entry,
3613 void *context, int vl, int mode, u64 data)
3614{
3615 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3616
3617 return dd->send_egress_err_status_cnt[3];
3618}
3619
3620static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3621 void *context, int vl, int mode,
3622 u64 data)
3623{
3624 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3625
3626 return dd->send_egress_err_status_cnt[2];
3627}
3628
3629static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3630 const struct cntr_entry *entry,
3631 void *context, int vl, int mode, u64 data)
3632{
3633 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3634
3635 return dd->send_egress_err_status_cnt[1];
3636}
3637
3638static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3639 const struct cntr_entry *entry,
3640 void *context, int vl, int mode, u64 data)
3641{
3642 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3643
3644 return dd->send_egress_err_status_cnt[0];
3645}
3646
3647/*
3648 * Software counters corresponding to each of the
3649 * error status bits within SendErrStatus
3650 */
3651static u64 access_send_csr_write_bad_addr_err_cnt(
3652 const struct cntr_entry *entry,
3653 void *context, int vl, int mode, u64 data)
3654{
3655 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3656
3657 return dd->send_err_status_cnt[2];
3658}
3659
3660static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3661 void *context, int vl,
3662 int mode, u64 data)
3663{
3664 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3665
3666 return dd->send_err_status_cnt[1];
3667}
3668
3669static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3670 void *context, int vl, int mode,
3671 u64 data)
3672{
3673 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3674
3675 return dd->send_err_status_cnt[0];
3676}
3677
3678/*
3679 * Software counters corresponding to each of the
3680 * error status bits within SendCtxtErrStatus
3681 */
3682static u64 access_pio_write_out_of_bounds_err_cnt(
3683 const struct cntr_entry *entry,
3684 void *context, int vl, int mode, u64 data)
3685{
3686 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3687
3688 return dd->sw_ctxt_err_status_cnt[4];
3689}
3690
3691static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3692 void *context, int vl, int mode,
3693 u64 data)
3694{
3695 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3696
3697 return dd->sw_ctxt_err_status_cnt[3];
3698}
3699
3700static u64 access_pio_write_crosses_boundary_err_cnt(
3701 const struct cntr_entry *entry,
3702 void *context, int vl, int mode, u64 data)
3703{
3704 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3705
3706 return dd->sw_ctxt_err_status_cnt[2];
3707}
3708
3709static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3710 void *context, int vl,
3711 int mode, u64 data)
3712{
3713 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3714
3715 return dd->sw_ctxt_err_status_cnt[1];
3716}
3717
3718static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3719 void *context, int vl, int mode,
3720 u64 data)
3721{
3722 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3723
3724 return dd->sw_ctxt_err_status_cnt[0];
3725}
3726
3727/*
3728 * Software counters corresponding to each of the
3729 * error status bits within SendDmaEngErrStatus
3730 */
3731static u64 access_sdma_header_request_fifo_cor_err_cnt(
3732 const struct cntr_entry *entry,
3733 void *context, int vl, int mode, u64 data)
3734{
3735 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3736
3737 return dd->sw_send_dma_eng_err_status_cnt[23];
3738}
3739
3740static u64 access_sdma_header_storage_cor_err_cnt(
3741 const struct cntr_entry *entry,
3742 void *context, int vl, int mode, u64 data)
3743{
3744 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3745
3746 return dd->sw_send_dma_eng_err_status_cnt[22];
3747}
3748
3749static u64 access_sdma_packet_tracking_cor_err_cnt(
3750 const struct cntr_entry *entry,
3751 void *context, int vl, int mode, u64 data)
3752{
3753 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3754
3755 return dd->sw_send_dma_eng_err_status_cnt[21];
3756}
3757
3758static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3759 void *context, int vl, int mode,
3760 u64 data)
3761{
3762 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3763
3764 return dd->sw_send_dma_eng_err_status_cnt[20];
3765}
3766
3767static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3768 void *context, int vl, int mode,
3769 u64 data)
3770{
3771 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3772
3773 return dd->sw_send_dma_eng_err_status_cnt[19];
3774}
3775
3776static u64 access_sdma_header_request_fifo_unc_err_cnt(
3777 const struct cntr_entry *entry,
3778 void *context, int vl, int mode, u64 data)
3779{
3780 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3781
3782 return dd->sw_send_dma_eng_err_status_cnt[18];
3783}
3784
3785static u64 access_sdma_header_storage_unc_err_cnt(
3786 const struct cntr_entry *entry,
3787 void *context, int vl, int mode, u64 data)
3788{
3789 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3790
3791 return dd->sw_send_dma_eng_err_status_cnt[17];
3792}
3793
3794static u64 access_sdma_packet_tracking_unc_err_cnt(
3795 const struct cntr_entry *entry,
3796 void *context, int vl, int mode, u64 data)
3797{
3798 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3799
3800 return dd->sw_send_dma_eng_err_status_cnt[16];
3801}
3802
3803static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3804 void *context, int vl, int mode,
3805 u64 data)
3806{
3807 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3808
3809 return dd->sw_send_dma_eng_err_status_cnt[15];
3810}
3811
3812static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3813 void *context, int vl, int mode,
3814 u64 data)
3815{
3816 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3817
3818 return dd->sw_send_dma_eng_err_status_cnt[14];
3819}
3820
3821static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3822 void *context, int vl, int mode,
3823 u64 data)
3824{
3825 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3826
3827 return dd->sw_send_dma_eng_err_status_cnt[13];
3828}
3829
3830static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3831 void *context, int vl, int mode,
3832 u64 data)
3833{
3834 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3835
3836 return dd->sw_send_dma_eng_err_status_cnt[12];
3837}
3838
3839static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3840 void *context, int vl, int mode,
3841 u64 data)
3842{
3843 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3844
3845 return dd->sw_send_dma_eng_err_status_cnt[11];
3846}
3847
3848static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3849 void *context, int vl, int mode,
3850 u64 data)
3851{
3852 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3853
3854 return dd->sw_send_dma_eng_err_status_cnt[10];
3855}
3856
3857static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3858 void *context, int vl, int mode,
3859 u64 data)
3860{
3861 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3862
3863 return dd->sw_send_dma_eng_err_status_cnt[9];
3864}
3865
3866static u64 access_sdma_packet_desc_overflow_err_cnt(
3867 const struct cntr_entry *entry,
3868 void *context, int vl, int mode, u64 data)
3869{
3870 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3871
3872 return dd->sw_send_dma_eng_err_status_cnt[8];
3873}
3874
3875static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3876 void *context, int vl,
3877 int mode, u64 data)
3878{
3879 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3880
3881 return dd->sw_send_dma_eng_err_status_cnt[7];
3882}
3883
3884static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3885 void *context, int vl, int mode, u64 data)
3886{
3887 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3888
3889 return dd->sw_send_dma_eng_err_status_cnt[6];
3890}
3891
3892static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3893 void *context, int vl, int mode,
3894 u64 data)
3895{
3896 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3897
3898 return dd->sw_send_dma_eng_err_status_cnt[5];
3899}
3900
3901static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3902 void *context, int vl, int mode,
3903 u64 data)
3904{
3905 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3906
3907 return dd->sw_send_dma_eng_err_status_cnt[4];
3908}
3909
3910static u64 access_sdma_tail_out_of_bounds_err_cnt(
3911 const struct cntr_entry *entry,
3912 void *context, int vl, int mode, u64 data)
3913{
3914 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3915
3916 return dd->sw_send_dma_eng_err_status_cnt[3];
3917}
3918
3919static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
3920 void *context, int vl, int mode,
3921 u64 data)
3922{
3923 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3924
3925 return dd->sw_send_dma_eng_err_status_cnt[2];
3926}
3927
3928static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
3929 void *context, int vl, int mode,
3930 u64 data)
3931{
3932 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3933
3934 return dd->sw_send_dma_eng_err_status_cnt[1];
3935}
3936
3937static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
3938 void *context, int vl, int mode,
3939 u64 data)
3940{
3941 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3942
3943 return dd->sw_send_dma_eng_err_status_cnt[0];
3944}
3945
77241056
MM
3946#define def_access_sw_cpu(cntr) \
3947static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \
3948 void *context, int vl, int mode, u64 data) \
3949{ \
3950 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
4eb06882
DD
3951 return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr, \
3952 ppd->ibport_data.rvp.cntr, vl, \
77241056
MM
3953 mode, data); \
3954}
3955
3956def_access_sw_cpu(rc_acks);
3957def_access_sw_cpu(rc_qacks);
3958def_access_sw_cpu(rc_delayed_comp);
3959
3960#define def_access_ibp_counter(cntr) \
3961static u64 access_ibp_##cntr(const struct cntr_entry *entry, \
3962 void *context, int vl, int mode, u64 data) \
3963{ \
3964 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
3965 \
3966 if (vl != CNTR_INVALID_VL) \
3967 return 0; \
3968 \
4eb06882 3969 return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr, \
77241056
MM
3970 mode, data); \
3971}
3972
3973def_access_ibp_counter(loop_pkts);
3974def_access_ibp_counter(rc_resends);
3975def_access_ibp_counter(rnr_naks);
3976def_access_ibp_counter(other_naks);
3977def_access_ibp_counter(rc_timeouts);
3978def_access_ibp_counter(pkt_drops);
3979def_access_ibp_counter(dmawait);
3980def_access_ibp_counter(rc_seqnak);
3981def_access_ibp_counter(rc_dupreq);
3982def_access_ibp_counter(rdma_seq);
3983def_access_ibp_counter(unaligned);
3984def_access_ibp_counter(seq_naks);
3985
3986static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
3987[C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
3988[C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
3989 CNTR_NORMAL),
3990[C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
3991 CNTR_NORMAL),
3992[C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
3993 RCV_TID_FLOW_GEN_MISMATCH_CNT,
3994 CNTR_NORMAL),
77241056
MM
3995[C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
3996 CNTR_NORMAL),
3997[C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
3998 RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
3999[C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4000 CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4001[C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4002 CNTR_NORMAL),
4003[C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4004 CNTR_NORMAL),
4005[C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4006 CNTR_NORMAL),
4007[C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4008 CNTR_NORMAL),
4009[C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4010 CNTR_NORMAL),
4011[C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4012 CNTR_NORMAL),
4013[C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4014 CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
4015[C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4016 CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4017[C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4018 CNTR_SYNTH),
4019[C_DC_RCV_ERR] = DC_PERF_CNTR(DcRecvErr, DCC_ERR_PORTRCV_ERR_CNT, CNTR_SYNTH),
4020[C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4021 CNTR_SYNTH),
4022[C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4023 CNTR_SYNTH),
4024[C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4025 CNTR_SYNTH),
4026[C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4027 DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4028[C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4029 DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4030 CNTR_SYNTH),
4031[C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4032 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4033[C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4034 CNTR_SYNTH),
4035[C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4036 CNTR_SYNTH),
4037[C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4038 CNTR_SYNTH),
4039[C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4040 CNTR_SYNTH),
4041[C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4042 CNTR_SYNTH),
4043[C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4044 CNTR_SYNTH),
4045[C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4046 CNTR_SYNTH),
4047[C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4048 CNTR_SYNTH | CNTR_VL),
4049[C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4050 CNTR_SYNTH | CNTR_VL),
4051[C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4052[C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4053 CNTR_SYNTH | CNTR_VL),
4054[C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4055[C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4056 CNTR_SYNTH | CNTR_VL),
4057[C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4058 CNTR_SYNTH),
4059[C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4060 CNTR_SYNTH | CNTR_VL),
4061[C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4062 CNTR_SYNTH),
4063[C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4064 CNTR_SYNTH | CNTR_VL),
4065[C_DC_TOTAL_CRC] =
4066 DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4067 CNTR_SYNTH),
4068[C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4069 CNTR_SYNTH),
4070[C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4071 CNTR_SYNTH),
4072[C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4073 CNTR_SYNTH),
4074[C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4075 CNTR_SYNTH),
4076[C_DC_CRC_MULT_LN] =
4077 DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4078 CNTR_SYNTH),
4079[C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4080 CNTR_SYNTH),
4081[C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4082 CNTR_SYNTH),
4083[C_DC_SEQ_CRC_CNT] =
4084 DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4085 CNTR_SYNTH),
4086[C_DC_ESC0_ONLY_CNT] =
4087 DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4088 CNTR_SYNTH),
4089[C_DC_ESC0_PLUS1_CNT] =
4090 DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4091 CNTR_SYNTH),
4092[C_DC_ESC0_PLUS2_CNT] =
4093 DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4094 CNTR_SYNTH),
4095[C_DC_REINIT_FROM_PEER_CNT] =
4096 DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4097 CNTR_SYNTH),
4098[C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4099 CNTR_SYNTH),
4100[C_DC_MISC_FLG_CNT] =
4101 DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4102 CNTR_SYNTH),
4103[C_DC_PRF_GOOD_LTP_CNT] =
4104 DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4105[C_DC_PRF_ACCEPTED_LTP_CNT] =
4106 DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4107 CNTR_SYNTH),
4108[C_DC_PRF_RX_FLIT_CNT] =
4109 DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4110[C_DC_PRF_TX_FLIT_CNT] =
4111 DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4112[C_DC_PRF_CLK_CNTR] =
4113 DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4114[C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4115 DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4116[C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4117 DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4118 CNTR_SYNTH),
4119[C_DC_PG_STS_TX_SBE_CNT] =
4120 DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4121[C_DC_PG_STS_TX_MBE_CNT] =
4122 DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4123 CNTR_SYNTH),
4124[C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4125 access_sw_cpu_intr),
4126[C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4127 access_sw_cpu_rcv_limit),
4128[C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4129 access_sw_vtx_wait),
4130[C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4131 access_sw_pio_wait),
14553ca1
MM
4132[C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4133 access_sw_pio_drain),
77241056
MM
4134[C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4135 access_sw_kmem_wait),
b421922e
DL
4136[C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4137 access_sw_send_schedule),
a699c6c2
VM
4138[C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4139 SEND_DMA_DESC_FETCHED_CNT, 0,
4140 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4141 dev_access_u32_csr),
4142[C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4143 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4144 access_sde_int_cnt),
4145[C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4146 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4147 access_sde_err_cnt),
4148[C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4149 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4150 access_sde_idle_int_cnt),
4151[C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4152 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4153 access_sde_progress_int_cnt),
2c5b521a
JR
4154/* MISC_ERR_STATUS */
4155[C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4156 CNTR_NORMAL,
4157 access_misc_pll_lock_fail_err_cnt),
4158[C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4159 CNTR_NORMAL,
4160 access_misc_mbist_fail_err_cnt),
4161[C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4162 CNTR_NORMAL,
4163 access_misc_invalid_eep_cmd_err_cnt),
4164[C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4165 CNTR_NORMAL,
4166 access_misc_efuse_done_parity_err_cnt),
4167[C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4168 CNTR_NORMAL,
4169 access_misc_efuse_write_err_cnt),
4170[C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4171 0, CNTR_NORMAL,
4172 access_misc_efuse_read_bad_addr_err_cnt),
4173[C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4174 CNTR_NORMAL,
4175 access_misc_efuse_csr_parity_err_cnt),
4176[C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4177 CNTR_NORMAL,
4178 access_misc_fw_auth_failed_err_cnt),
4179[C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4180 CNTR_NORMAL,
4181 access_misc_key_mismatch_err_cnt),
4182[C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4183 CNTR_NORMAL,
4184 access_misc_sbus_write_failed_err_cnt),
4185[C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4186 CNTR_NORMAL,
4187 access_misc_csr_write_bad_addr_err_cnt),
4188[C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4189 CNTR_NORMAL,
4190 access_misc_csr_read_bad_addr_err_cnt),
4191[C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4192 CNTR_NORMAL,
4193 access_misc_csr_parity_err_cnt),
4194/* CceErrStatus */
4195[C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4196 CNTR_NORMAL,
4197 access_sw_cce_err_status_aggregated_cnt),
4198[C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4199 CNTR_NORMAL,
4200 access_cce_msix_csr_parity_err_cnt),
4201[C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4202 CNTR_NORMAL,
4203 access_cce_int_map_unc_err_cnt),
4204[C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4205 CNTR_NORMAL,
4206 access_cce_int_map_cor_err_cnt),
4207[C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4208 CNTR_NORMAL,
4209 access_cce_msix_table_unc_err_cnt),
4210[C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4211 CNTR_NORMAL,
4212 access_cce_msix_table_cor_err_cnt),
4213[C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4214 0, CNTR_NORMAL,
4215 access_cce_rxdma_conv_fifo_parity_err_cnt),
4216[C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4217 0, CNTR_NORMAL,
4218 access_cce_rcpl_async_fifo_parity_err_cnt),
4219[C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4220 CNTR_NORMAL,
4221 access_cce_seg_write_bad_addr_err_cnt),
4222[C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4223 CNTR_NORMAL,
4224 access_cce_seg_read_bad_addr_err_cnt),
4225[C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4226 CNTR_NORMAL,
4227 access_la_triggered_cnt),
4228[C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4229 CNTR_NORMAL,
4230 access_cce_trgt_cpl_timeout_err_cnt),
4231[C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4232 CNTR_NORMAL,
4233 access_pcic_receive_parity_err_cnt),
4234[C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4235 CNTR_NORMAL,
4236 access_pcic_transmit_back_parity_err_cnt),
4237[C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4238 0, CNTR_NORMAL,
4239 access_pcic_transmit_front_parity_err_cnt),
4240[C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4241 CNTR_NORMAL,
4242 access_pcic_cpl_dat_q_unc_err_cnt),
4243[C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4244 CNTR_NORMAL,
4245 access_pcic_cpl_hd_q_unc_err_cnt),
4246[C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4247 CNTR_NORMAL,
4248 access_pcic_post_dat_q_unc_err_cnt),
4249[C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4250 CNTR_NORMAL,
4251 access_pcic_post_hd_q_unc_err_cnt),
4252[C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4253 CNTR_NORMAL,
4254 access_pcic_retry_sot_mem_unc_err_cnt),
4255[C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4256 CNTR_NORMAL,
4257 access_pcic_retry_mem_unc_err),
4258[C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4259 CNTR_NORMAL,
4260 access_pcic_n_post_dat_q_parity_err_cnt),
4261[C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4262 CNTR_NORMAL,
4263 access_pcic_n_post_h_q_parity_err_cnt),
4264[C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4265 CNTR_NORMAL,
4266 access_pcic_cpl_dat_q_cor_err_cnt),
4267[C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4268 CNTR_NORMAL,
4269 access_pcic_cpl_hd_q_cor_err_cnt),
4270[C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4271 CNTR_NORMAL,
4272 access_pcic_post_dat_q_cor_err_cnt),
4273[C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4274 CNTR_NORMAL,
4275 access_pcic_post_hd_q_cor_err_cnt),
4276[C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4277 CNTR_NORMAL,
4278 access_pcic_retry_sot_mem_cor_err_cnt),
4279[C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4280 CNTR_NORMAL,
4281 access_pcic_retry_mem_cor_err_cnt),
4282[C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4283 "CceCli1AsyncFifoDbgParityError", 0, 0,
4284 CNTR_NORMAL,
4285 access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4286[C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4287 "CceCli1AsyncFifoRxdmaParityError", 0, 0,
4288 CNTR_NORMAL,
4289 access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4290 ),
4291[C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4292 "CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4293 CNTR_NORMAL,
4294 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4295[C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4296 "CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4297 CNTR_NORMAL,
4298 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4299[C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4300 0, CNTR_NORMAL,
4301 access_cce_cli2_async_fifo_parity_err_cnt),
4302[C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4303 CNTR_NORMAL,
4304 access_cce_csr_cfg_bus_parity_err_cnt),
4305[C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4306 0, CNTR_NORMAL,
4307 access_cce_cli0_async_fifo_parity_err_cnt),
4308[C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4309 CNTR_NORMAL,
4310 access_cce_rspd_data_parity_err_cnt),
4311[C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4312 CNTR_NORMAL,
4313 access_cce_trgt_access_err_cnt),
4314[C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4315 0, CNTR_NORMAL,
4316 access_cce_trgt_async_fifo_parity_err_cnt),
4317[C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4318 CNTR_NORMAL,
4319 access_cce_csr_write_bad_addr_err_cnt),
4320[C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4321 CNTR_NORMAL,
4322 access_cce_csr_read_bad_addr_err_cnt),
4323[C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4324 CNTR_NORMAL,
4325 access_ccs_csr_parity_err_cnt),
4326
4327/* RcvErrStatus */
4328[C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4329 CNTR_NORMAL,
4330 access_rx_csr_parity_err_cnt),
4331[C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4332 CNTR_NORMAL,
4333 access_rx_csr_write_bad_addr_err_cnt),
4334[C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4335 CNTR_NORMAL,
4336 access_rx_csr_read_bad_addr_err_cnt),
4337[C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4338 CNTR_NORMAL,
4339 access_rx_dma_csr_unc_err_cnt),
4340[C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4341 CNTR_NORMAL,
4342 access_rx_dma_dq_fsm_encoding_err_cnt),
4343[C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4344 CNTR_NORMAL,
4345 access_rx_dma_eq_fsm_encoding_err_cnt),
4346[C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4347 CNTR_NORMAL,
4348 access_rx_dma_csr_parity_err_cnt),
4349[C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4350 CNTR_NORMAL,
4351 access_rx_rbuf_data_cor_err_cnt),
4352[C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4353 CNTR_NORMAL,
4354 access_rx_rbuf_data_unc_err_cnt),
4355[C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4356 CNTR_NORMAL,
4357 access_rx_dma_data_fifo_rd_cor_err_cnt),
4358[C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4359 CNTR_NORMAL,
4360 access_rx_dma_data_fifo_rd_unc_err_cnt),
4361[C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4362 CNTR_NORMAL,
4363 access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4364[C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4365 CNTR_NORMAL,
4366 access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4367[C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4368 CNTR_NORMAL,
4369 access_rx_rbuf_desc_part2_cor_err_cnt),
4370[C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4371 CNTR_NORMAL,
4372 access_rx_rbuf_desc_part2_unc_err_cnt),
4373[C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4374 CNTR_NORMAL,
4375 access_rx_rbuf_desc_part1_cor_err_cnt),
4376[C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4377 CNTR_NORMAL,
4378 access_rx_rbuf_desc_part1_unc_err_cnt),
4379[C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4380 CNTR_NORMAL,
4381 access_rx_hq_intr_fsm_err_cnt),
4382[C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4383 CNTR_NORMAL,
4384 access_rx_hq_intr_csr_parity_err_cnt),
4385[C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4386 CNTR_NORMAL,
4387 access_rx_lookup_csr_parity_err_cnt),
4388[C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4389 CNTR_NORMAL,
4390 access_rx_lookup_rcv_array_cor_err_cnt),
4391[C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4392 CNTR_NORMAL,
4393 access_rx_lookup_rcv_array_unc_err_cnt),
4394[C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4395 0, CNTR_NORMAL,
4396 access_rx_lookup_des_part2_parity_err_cnt),
4397[C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4398 0, CNTR_NORMAL,
4399 access_rx_lookup_des_part1_unc_cor_err_cnt),
4400[C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4401 CNTR_NORMAL,
4402 access_rx_lookup_des_part1_unc_err_cnt),
4403[C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4404 CNTR_NORMAL,
4405 access_rx_rbuf_next_free_buf_cor_err_cnt),
4406[C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4407 CNTR_NORMAL,
4408 access_rx_rbuf_next_free_buf_unc_err_cnt),
4409[C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4410 "RxRbufFlInitWrAddrParityErr", 0, 0,
4411 CNTR_NORMAL,
4412 access_rbuf_fl_init_wr_addr_parity_err_cnt),
4413[C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4414 0, CNTR_NORMAL,
4415 access_rx_rbuf_fl_initdone_parity_err_cnt),
4416[C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4417 0, CNTR_NORMAL,
4418 access_rx_rbuf_fl_write_addr_parity_err_cnt),
4419[C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4420 CNTR_NORMAL,
4421 access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4422[C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4423 CNTR_NORMAL,
4424 access_rx_rbuf_empty_err_cnt),
4425[C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4426 CNTR_NORMAL,
4427 access_rx_rbuf_full_err_cnt),
4428[C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4429 CNTR_NORMAL,
4430 access_rbuf_bad_lookup_err_cnt),
4431[C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4432 CNTR_NORMAL,
4433 access_rbuf_ctx_id_parity_err_cnt),
4434[C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4435 CNTR_NORMAL,
4436 access_rbuf_csr_qeopdw_parity_err_cnt),
4437[C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4438 "RxRbufCsrQNumOfPktParityErr", 0, 0,
4439 CNTR_NORMAL,
4440 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4441[C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4442 "RxRbufCsrQTlPtrParityErr", 0, 0,
4443 CNTR_NORMAL,
4444 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4445[C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4446 0, CNTR_NORMAL,
4447 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4448[C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4449 0, CNTR_NORMAL,
4450 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4451[C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4452 0, 0, CNTR_NORMAL,
4453 access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4454[C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4455 0, CNTR_NORMAL,
4456 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4457[C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4458 "RxRbufCsrQHeadBufNumParityErr", 0, 0,
4459 CNTR_NORMAL,
4460 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4461[C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4462 0, CNTR_NORMAL,
4463 access_rx_rbuf_block_list_read_cor_err_cnt),
4464[C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4465 0, CNTR_NORMAL,
4466 access_rx_rbuf_block_list_read_unc_err_cnt),
4467[C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4468 CNTR_NORMAL,
4469 access_rx_rbuf_lookup_des_cor_err_cnt),
4470[C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4471 CNTR_NORMAL,
4472 access_rx_rbuf_lookup_des_unc_err_cnt),
4473[C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4474 "RxRbufLookupDesRegUncCorErr", 0, 0,
4475 CNTR_NORMAL,
4476 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4477[C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4478 CNTR_NORMAL,
4479 access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4480[C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4481 CNTR_NORMAL,
4482 access_rx_rbuf_free_list_cor_err_cnt),
4483[C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4484 CNTR_NORMAL,
4485 access_rx_rbuf_free_list_unc_err_cnt),
4486[C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4487 CNTR_NORMAL,
4488 access_rx_rcv_fsm_encoding_err_cnt),
4489[C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4490 CNTR_NORMAL,
4491 access_rx_dma_flag_cor_err_cnt),
4492[C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4493 CNTR_NORMAL,
4494 access_rx_dma_flag_unc_err_cnt),
4495[C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4496 CNTR_NORMAL,
4497 access_rx_dc_sop_eop_parity_err_cnt),
4498[C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4499 CNTR_NORMAL,
4500 access_rx_rcv_csr_parity_err_cnt),
4501[C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4502 CNTR_NORMAL,
4503 access_rx_rcv_qp_map_table_cor_err_cnt),
4504[C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4505 CNTR_NORMAL,
4506 access_rx_rcv_qp_map_table_unc_err_cnt),
4507[C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4508 CNTR_NORMAL,
4509 access_rx_rcv_data_cor_err_cnt),
4510[C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4511 CNTR_NORMAL,
4512 access_rx_rcv_data_unc_err_cnt),
4513[C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4514 CNTR_NORMAL,
4515 access_rx_rcv_hdr_cor_err_cnt),
4516[C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4517 CNTR_NORMAL,
4518 access_rx_rcv_hdr_unc_err_cnt),
4519[C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4520 CNTR_NORMAL,
4521 access_rx_dc_intf_parity_err_cnt),
4522[C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4523 CNTR_NORMAL,
4524 access_rx_dma_csr_cor_err_cnt),
4525/* SendPioErrStatus */
4526[C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4527 CNTR_NORMAL,
4528 access_pio_pec_sop_head_parity_err_cnt),
4529[C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4530 CNTR_NORMAL,
4531 access_pio_pcc_sop_head_parity_err_cnt),
4532[C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4533 0, 0, CNTR_NORMAL,
4534 access_pio_last_returned_cnt_parity_err_cnt),
4535[C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4536 0, CNTR_NORMAL,
4537 access_pio_current_free_cnt_parity_err_cnt),
4538[C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4539 CNTR_NORMAL,
4540 access_pio_reserved_31_err_cnt),
4541[C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4542 CNTR_NORMAL,
4543 access_pio_reserved_30_err_cnt),
4544[C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4545 CNTR_NORMAL,
4546 access_pio_ppmc_sop_len_err_cnt),
4547[C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4548 CNTR_NORMAL,
4549 access_pio_ppmc_bqc_mem_parity_err_cnt),
4550[C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4551 CNTR_NORMAL,
4552 access_pio_vl_fifo_parity_err_cnt),
4553[C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4554 CNTR_NORMAL,
4555 access_pio_vlf_sop_parity_err_cnt),
4556[C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4557 CNTR_NORMAL,
4558 access_pio_vlf_v1_len_parity_err_cnt),
4559[C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4560 CNTR_NORMAL,
4561 access_pio_block_qw_count_parity_err_cnt),
4562[C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4563 CNTR_NORMAL,
4564 access_pio_write_qw_valid_parity_err_cnt),
4565[C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4566 CNTR_NORMAL,
4567 access_pio_state_machine_err_cnt),
4568[C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4569 CNTR_NORMAL,
4570 access_pio_write_data_parity_err_cnt),
4571[C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4572 CNTR_NORMAL,
4573 access_pio_host_addr_mem_cor_err_cnt),
4574[C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4575 CNTR_NORMAL,
4576 access_pio_host_addr_mem_unc_err_cnt),
4577[C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4578 CNTR_NORMAL,
4579 access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4580[C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4581 CNTR_NORMAL,
4582 access_pio_init_sm_in_err_cnt),
4583[C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4584 CNTR_NORMAL,
4585 access_pio_ppmc_pbl_fifo_err_cnt),
4586[C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4587 0, CNTR_NORMAL,
4588 access_pio_credit_ret_fifo_parity_err_cnt),
4589[C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4590 CNTR_NORMAL,
4591 access_pio_v1_len_mem_bank1_cor_err_cnt),
4592[C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4593 CNTR_NORMAL,
4594 access_pio_v1_len_mem_bank0_cor_err_cnt),
4595[C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4596 CNTR_NORMAL,
4597 access_pio_v1_len_mem_bank1_unc_err_cnt),
4598[C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4599 CNTR_NORMAL,
4600 access_pio_v1_len_mem_bank0_unc_err_cnt),
4601[C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4602 CNTR_NORMAL,
4603 access_pio_sm_pkt_reset_parity_err_cnt),
4604[C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4605 CNTR_NORMAL,
4606 access_pio_pkt_evict_fifo_parity_err_cnt),
4607[C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4608 "PioSbrdctrlCrrelFifoParityErr", 0, 0,
4609 CNTR_NORMAL,
4610 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4611[C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4612 CNTR_NORMAL,
4613 access_pio_sbrdctl_crrel_parity_err_cnt),
4614[C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4615 CNTR_NORMAL,
4616 access_pio_pec_fifo_parity_err_cnt),
4617[C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4618 CNTR_NORMAL,
4619 access_pio_pcc_fifo_parity_err_cnt),
4620[C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4621 CNTR_NORMAL,
4622 access_pio_sb_mem_fifo1_err_cnt),
4623[C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4624 CNTR_NORMAL,
4625 access_pio_sb_mem_fifo0_err_cnt),
4626[C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4627 CNTR_NORMAL,
4628 access_pio_csr_parity_err_cnt),
4629[C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4630 CNTR_NORMAL,
4631 access_pio_write_addr_parity_err_cnt),
4632[C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4633 CNTR_NORMAL,
4634 access_pio_write_bad_ctxt_err_cnt),
4635/* SendDmaErrStatus */
4636[C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4637 0, CNTR_NORMAL,
4638 access_sdma_pcie_req_tracking_cor_err_cnt),
4639[C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4640 0, CNTR_NORMAL,
4641 access_sdma_pcie_req_tracking_unc_err_cnt),
4642[C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4643 CNTR_NORMAL,
4644 access_sdma_csr_parity_err_cnt),
4645[C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4646 CNTR_NORMAL,
4647 access_sdma_rpy_tag_err_cnt),
4648/* SendEgressErrStatus */
4649[C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4650 CNTR_NORMAL,
4651 access_tx_read_pio_memory_csr_unc_err_cnt),
4652[C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4653 0, CNTR_NORMAL,
4654 access_tx_read_sdma_memory_csr_err_cnt),
4655[C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4656 CNTR_NORMAL,
4657 access_tx_egress_fifo_cor_err_cnt),
4658[C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4659 CNTR_NORMAL,
4660 access_tx_read_pio_memory_cor_err_cnt),
4661[C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4662 CNTR_NORMAL,
4663 access_tx_read_sdma_memory_cor_err_cnt),
4664[C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4665 CNTR_NORMAL,
4666 access_tx_sb_hdr_cor_err_cnt),
4667[C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4668 CNTR_NORMAL,
4669 access_tx_credit_overrun_err_cnt),
4670[C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4671 CNTR_NORMAL,
4672 access_tx_launch_fifo8_cor_err_cnt),
4673[C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4674 CNTR_NORMAL,
4675 access_tx_launch_fifo7_cor_err_cnt),
4676[C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4677 CNTR_NORMAL,
4678 access_tx_launch_fifo6_cor_err_cnt),
4679[C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4680 CNTR_NORMAL,
4681 access_tx_launch_fifo5_cor_err_cnt),
4682[C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4683 CNTR_NORMAL,
4684 access_tx_launch_fifo4_cor_err_cnt),
4685[C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4686 CNTR_NORMAL,
4687 access_tx_launch_fifo3_cor_err_cnt),
4688[C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4689 CNTR_NORMAL,
4690 access_tx_launch_fifo2_cor_err_cnt),
4691[C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4692 CNTR_NORMAL,
4693 access_tx_launch_fifo1_cor_err_cnt),
4694[C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4695 CNTR_NORMAL,
4696 access_tx_launch_fifo0_cor_err_cnt),
4697[C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4698 CNTR_NORMAL,
4699 access_tx_credit_return_vl_err_cnt),
4700[C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4701 CNTR_NORMAL,
4702 access_tx_hcrc_insertion_err_cnt),
4703[C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4704 CNTR_NORMAL,
4705 access_tx_egress_fifo_unc_err_cnt),
4706[C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4707 CNTR_NORMAL,
4708 access_tx_read_pio_memory_unc_err_cnt),
4709[C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4710 CNTR_NORMAL,
4711 access_tx_read_sdma_memory_unc_err_cnt),
4712[C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4713 CNTR_NORMAL,
4714 access_tx_sb_hdr_unc_err_cnt),
4715[C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4716 CNTR_NORMAL,
4717 access_tx_credit_return_partiy_err_cnt),
4718[C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4719 0, 0, CNTR_NORMAL,
4720 access_tx_launch_fifo8_unc_or_parity_err_cnt),
4721[C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4722 0, 0, CNTR_NORMAL,
4723 access_tx_launch_fifo7_unc_or_parity_err_cnt),
4724[C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4725 0, 0, CNTR_NORMAL,
4726 access_tx_launch_fifo6_unc_or_parity_err_cnt),
4727[C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4728 0, 0, CNTR_NORMAL,
4729 access_tx_launch_fifo5_unc_or_parity_err_cnt),
4730[C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4731 0, 0, CNTR_NORMAL,
4732 access_tx_launch_fifo4_unc_or_parity_err_cnt),
4733[C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4734 0, 0, CNTR_NORMAL,
4735 access_tx_launch_fifo3_unc_or_parity_err_cnt),
4736[C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4737 0, 0, CNTR_NORMAL,
4738 access_tx_launch_fifo2_unc_or_parity_err_cnt),
4739[C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4740 0, 0, CNTR_NORMAL,
4741 access_tx_launch_fifo1_unc_or_parity_err_cnt),
4742[C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4743 0, 0, CNTR_NORMAL,
4744 access_tx_launch_fifo0_unc_or_parity_err_cnt),
4745[C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4746 0, 0, CNTR_NORMAL,
4747 access_tx_sdma15_disallowed_packet_err_cnt),
4748[C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4749 0, 0, CNTR_NORMAL,
4750 access_tx_sdma14_disallowed_packet_err_cnt),
4751[C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4752 0, 0, CNTR_NORMAL,
4753 access_tx_sdma13_disallowed_packet_err_cnt),
4754[C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4755 0, 0, CNTR_NORMAL,
4756 access_tx_sdma12_disallowed_packet_err_cnt),
4757[C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4758 0, 0, CNTR_NORMAL,
4759 access_tx_sdma11_disallowed_packet_err_cnt),
4760[C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4761 0, 0, CNTR_NORMAL,
4762 access_tx_sdma10_disallowed_packet_err_cnt),
4763[C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4764 0, 0, CNTR_NORMAL,
4765 access_tx_sdma9_disallowed_packet_err_cnt),
4766[C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4767 0, 0, CNTR_NORMAL,
4768 access_tx_sdma8_disallowed_packet_err_cnt),
4769[C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4770 0, 0, CNTR_NORMAL,
4771 access_tx_sdma7_disallowed_packet_err_cnt),
4772[C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4773 0, 0, CNTR_NORMAL,
4774 access_tx_sdma6_disallowed_packet_err_cnt),
4775[C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4776 0, 0, CNTR_NORMAL,
4777 access_tx_sdma5_disallowed_packet_err_cnt),
4778[C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4779 0, 0, CNTR_NORMAL,
4780 access_tx_sdma4_disallowed_packet_err_cnt),
4781[C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4782 0, 0, CNTR_NORMAL,
4783 access_tx_sdma3_disallowed_packet_err_cnt),
4784[C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4785 0, 0, CNTR_NORMAL,
4786 access_tx_sdma2_disallowed_packet_err_cnt),
4787[C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4788 0, 0, CNTR_NORMAL,
4789 access_tx_sdma1_disallowed_packet_err_cnt),
4790[C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4791 0, 0, CNTR_NORMAL,
4792 access_tx_sdma0_disallowed_packet_err_cnt),
4793[C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4794 CNTR_NORMAL,
4795 access_tx_config_parity_err_cnt),
4796[C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4797 CNTR_NORMAL,
4798 access_tx_sbrd_ctl_csr_parity_err_cnt),
4799[C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4800 CNTR_NORMAL,
4801 access_tx_launch_csr_parity_err_cnt),
4802[C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4803 CNTR_NORMAL,
4804 access_tx_illegal_vl_err_cnt),
4805[C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4806 "TxSbrdCtlStateMachineParityErr", 0, 0,
4807 CNTR_NORMAL,
4808 access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4809[C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4810 CNTR_NORMAL,
4811 access_egress_reserved_10_err_cnt),
4812[C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4813 CNTR_NORMAL,
4814 access_egress_reserved_9_err_cnt),
4815[C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4816 0, 0, CNTR_NORMAL,
4817 access_tx_sdma_launch_intf_parity_err_cnt),
4818[C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4819 CNTR_NORMAL,
4820 access_tx_pio_launch_intf_parity_err_cnt),
4821[C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4822 CNTR_NORMAL,
4823 access_egress_reserved_6_err_cnt),
4824[C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4825 CNTR_NORMAL,
4826 access_tx_incorrect_link_state_err_cnt),
4827[C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4828 CNTR_NORMAL,
4829 access_tx_linkdown_err_cnt),
4830[C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4831 "EgressFifoUnderrunOrParityErr", 0, 0,
4832 CNTR_NORMAL,
4833 access_tx_egress_fifi_underrun_or_parity_err_cnt),
4834[C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4835 CNTR_NORMAL,
4836 access_egress_reserved_2_err_cnt),
4837[C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4838 CNTR_NORMAL,
4839 access_tx_pkt_integrity_mem_unc_err_cnt),
4840[C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4841 CNTR_NORMAL,
4842 access_tx_pkt_integrity_mem_cor_err_cnt),
4843/* SendErrStatus */
4844[C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4845 CNTR_NORMAL,
4846 access_send_csr_write_bad_addr_err_cnt),
4847[C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4848 CNTR_NORMAL,
4849 access_send_csr_read_bad_addr_err_cnt),
4850[C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4851 CNTR_NORMAL,
4852 access_send_csr_parity_cnt),
4853/* SendCtxtErrStatus */
4854[C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4855 CNTR_NORMAL,
4856 access_pio_write_out_of_bounds_err_cnt),
4857[C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4858 CNTR_NORMAL,
4859 access_pio_write_overflow_err_cnt),
4860[C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4861 0, 0, CNTR_NORMAL,
4862 access_pio_write_crosses_boundary_err_cnt),
4863[C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4864 CNTR_NORMAL,
4865 access_pio_disallowed_packet_err_cnt),
4866[C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4867 CNTR_NORMAL,
4868 access_pio_inconsistent_sop_err_cnt),
4869/* SendDmaEngErrStatus */
4870[C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4871 0, 0, CNTR_NORMAL,
4872 access_sdma_header_request_fifo_cor_err_cnt),
4873[C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4874 CNTR_NORMAL,
4875 access_sdma_header_storage_cor_err_cnt),
4876[C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4877 CNTR_NORMAL,
4878 access_sdma_packet_tracking_cor_err_cnt),
4879[C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4880 CNTR_NORMAL,
4881 access_sdma_assembly_cor_err_cnt),
4882[C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
4883 CNTR_NORMAL,
4884 access_sdma_desc_table_cor_err_cnt),
4885[C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
4886 0, 0, CNTR_NORMAL,
4887 access_sdma_header_request_fifo_unc_err_cnt),
4888[C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
4889 CNTR_NORMAL,
4890 access_sdma_header_storage_unc_err_cnt),
4891[C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
4892 CNTR_NORMAL,
4893 access_sdma_packet_tracking_unc_err_cnt),
4894[C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
4895 CNTR_NORMAL,
4896 access_sdma_assembly_unc_err_cnt),
4897[C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
4898 CNTR_NORMAL,
4899 access_sdma_desc_table_unc_err_cnt),
4900[C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
4901 CNTR_NORMAL,
4902 access_sdma_timeout_err_cnt),
4903[C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
4904 CNTR_NORMAL,
4905 access_sdma_header_length_err_cnt),
4906[C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
4907 CNTR_NORMAL,
4908 access_sdma_header_address_err_cnt),
4909[C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
4910 CNTR_NORMAL,
4911 access_sdma_header_select_err_cnt),
4912[C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
4913 CNTR_NORMAL,
4914 access_sdma_reserved_9_err_cnt),
4915[C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
4916 CNTR_NORMAL,
4917 access_sdma_packet_desc_overflow_err_cnt),
4918[C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
4919 CNTR_NORMAL,
4920 access_sdma_length_mismatch_err_cnt),
4921[C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
4922 CNTR_NORMAL,
4923 access_sdma_halt_err_cnt),
4924[C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
4925 CNTR_NORMAL,
4926 access_sdma_mem_read_err_cnt),
4927[C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
4928 CNTR_NORMAL,
4929 access_sdma_first_desc_err_cnt),
4930[C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
4931 CNTR_NORMAL,
4932 access_sdma_tail_out_of_bounds_err_cnt),
4933[C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
4934 CNTR_NORMAL,
4935 access_sdma_too_long_err_cnt),
4936[C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
4937 CNTR_NORMAL,
4938 access_sdma_gen_mismatch_err_cnt),
4939[C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
4940 CNTR_NORMAL,
4941 access_sdma_wrong_dw_err_cnt),
77241056
MM
4942};
4943
4944static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
4945[C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
4946 CNTR_NORMAL),
4947[C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
4948 CNTR_NORMAL),
4949[C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
4950 CNTR_NORMAL),
4951[C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
4952 CNTR_NORMAL),
4953[C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
4954 CNTR_NORMAL),
4955[C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
4956 CNTR_NORMAL),
4957[C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
4958 CNTR_NORMAL),
4959[C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
4960[C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
4961[C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
4962[C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
17fb4f29 4963 CNTR_SYNTH | CNTR_VL),
77241056 4964[C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
17fb4f29 4965 CNTR_SYNTH | CNTR_VL),
77241056 4966[C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
17fb4f29 4967 CNTR_SYNTH | CNTR_VL),
77241056
MM
4968[C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
4969[C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
4970[C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
17fb4f29 4971 access_sw_link_dn_cnt),
77241056 4972[C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
17fb4f29 4973 access_sw_link_up_cnt),
6d014530
DL
4974[C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
4975 access_sw_unknown_frame_cnt),
77241056 4976[C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
17fb4f29 4977 access_sw_xmit_discards),
77241056 4978[C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
17fb4f29
JJ
4979 CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
4980 access_sw_xmit_discards),
77241056 4981[C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
17fb4f29 4982 access_xmit_constraint_errs),
77241056 4983[C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
17fb4f29 4984 access_rcv_constraint_errs),
77241056
MM
4985[C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
4986[C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
4987[C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
4988[C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
4989[C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
4990[C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
4991[C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
4992[C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
4993[C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
4994[C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
4995[C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
4996[C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
4997[C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
4998 access_sw_cpu_rc_acks),
4999[C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
17fb4f29 5000 access_sw_cpu_rc_qacks),
77241056 5001[C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
17fb4f29 5002 access_sw_cpu_rc_delayed_comp),
77241056
MM
5003[OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5004[OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5005[OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5006[OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5007[OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5008[OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5009[OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5010[OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5011[OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5012[OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5013[OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5014[OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5015[OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5016[OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5017[OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5018[OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5019[OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5020[OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5021[OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5022[OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5023[OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5024[OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5025[OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5026[OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5027[OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5028[OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5029[OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5030[OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5031[OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5032[OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5033[OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5034[OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5035[OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5036[OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5037[OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5038[OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5039[OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5040[OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5041[OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5042[OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5043[OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5044[OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5045[OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5046[OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5047[OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5048[OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5049[OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5050[OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5051[OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5052[OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5053[OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5054[OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5055[OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5056[OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5057[OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5058[OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5059[OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5060[OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5061[OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5062[OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5063[OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5064[OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5065[OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5066[OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5067[OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5068[OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5069[OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5070[OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5071[OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5072[OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5073[OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5074[OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5075[OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5076[OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5077[OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5078[OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5079[OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5080[OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5081[OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5082[OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5083};
5084
5085/* ======================================================================== */
5086
77241056
MM
5087/* return true if this is chip revision revision a */
5088int is_ax(struct hfi1_devdata *dd)
5089{
5090 u8 chip_rev_minor =
5091 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5092 & CCE_REVISION_CHIP_REV_MINOR_MASK;
5093 return (chip_rev_minor & 0xf0) == 0;
5094}
5095
5096/* return true if this is chip revision revision b */
5097int is_bx(struct hfi1_devdata *dd)
5098{
5099 u8 chip_rev_minor =
5100 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5101 & CCE_REVISION_CHIP_REV_MINOR_MASK;
995deafa 5102 return (chip_rev_minor & 0xF0) == 0x10;
77241056
MM
5103}
5104
5105/*
5106 * Append string s to buffer buf. Arguments curp and len are the current
5107 * position and remaining length, respectively.
5108 *
5109 * return 0 on success, 1 on out of room
5110 */
5111static int append_str(char *buf, char **curp, int *lenp, const char *s)
5112{
5113 char *p = *curp;
5114 int len = *lenp;
5115 int result = 0; /* success */
5116 char c;
5117
5118 /* add a comma, if first in the buffer */
5119 if (p != buf) {
5120 if (len == 0) {
5121 result = 1; /* out of room */
5122 goto done;
5123 }
5124 *p++ = ',';
5125 len--;
5126 }
5127
5128 /* copy the string */
5129 while ((c = *s++) != 0) {
5130 if (len == 0) {
5131 result = 1; /* out of room */
5132 goto done;
5133 }
5134 *p++ = c;
5135 len--;
5136 }
5137
5138done:
5139 /* write return values */
5140 *curp = p;
5141 *lenp = len;
5142
5143 return result;
5144}
5145
5146/*
5147 * Using the given flag table, print a comma separated string into
5148 * the buffer. End in '*' if the buffer is too short.
5149 */
5150static char *flag_string(char *buf, int buf_len, u64 flags,
17fb4f29 5151 struct flag_table *table, int table_size)
77241056
MM
5152{
5153 char extra[32];
5154 char *p = buf;
5155 int len = buf_len;
5156 int no_room = 0;
5157 int i;
5158
5159 /* make sure there is at least 2 so we can form "*" */
5160 if (len < 2)
5161 return "";
5162
5163 len--; /* leave room for a nul */
5164 for (i = 0; i < table_size; i++) {
5165 if (flags & table[i].flag) {
5166 no_room = append_str(buf, &p, &len, table[i].str);
5167 if (no_room)
5168 break;
5169 flags &= ~table[i].flag;
5170 }
5171 }
5172
5173 /* any undocumented bits left? */
5174 if (!no_room && flags) {
5175 snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5176 no_room = append_str(buf, &p, &len, extra);
5177 }
5178
5179 /* add * if ran out of room */
5180 if (no_room) {
5181 /* may need to back up to add space for a '*' */
5182 if (len == 0)
5183 --p;
5184 *p++ = '*';
5185 }
5186
5187 /* add final nul - space already allocated above */
5188 *p = 0;
5189 return buf;
5190}
5191
5192/* first 8 CCE error interrupt source names */
5193static const char * const cce_misc_names[] = {
5194 "CceErrInt", /* 0 */
5195 "RxeErrInt", /* 1 */
5196 "MiscErrInt", /* 2 */
5197 "Reserved3", /* 3 */
5198 "PioErrInt", /* 4 */
5199 "SDmaErrInt", /* 5 */
5200 "EgressErrInt", /* 6 */
5201 "TxeErrInt" /* 7 */
5202};
5203
5204/*
5205 * Return the miscellaneous error interrupt name.
5206 */
5207static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5208{
5209 if (source < ARRAY_SIZE(cce_misc_names))
5210 strncpy(buf, cce_misc_names[source], bsize);
5211 else
17fb4f29
JJ
5212 snprintf(buf, bsize, "Reserved%u",
5213 source + IS_GENERAL_ERR_START);
77241056
MM
5214
5215 return buf;
5216}
5217
5218/*
5219 * Return the SDMA engine error interrupt name.
5220 */
5221static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5222{
5223 snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5224 return buf;
5225}
5226
5227/*
5228 * Return the send context error interrupt name.
5229 */
5230static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5231{
5232 snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5233 return buf;
5234}
5235
5236static const char * const various_names[] = {
5237 "PbcInt",
5238 "GpioAssertInt",
5239 "Qsfp1Int",
5240 "Qsfp2Int",
5241 "TCritInt"
5242};
5243
5244/*
5245 * Return the various interrupt name.
5246 */
5247static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5248{
5249 if (source < ARRAY_SIZE(various_names))
5250 strncpy(buf, various_names[source], bsize);
5251 else
8638b77f 5252 snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
77241056
MM
5253 return buf;
5254}
5255
5256/*
5257 * Return the DC interrupt name.
5258 */
5259static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5260{
5261 static const char * const dc_int_names[] = {
5262 "common",
5263 "lcb",
5264 "8051",
5265 "lbm" /* local block merge */
5266 };
5267
5268 if (source < ARRAY_SIZE(dc_int_names))
5269 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5270 else
5271 snprintf(buf, bsize, "DCInt%u", source);
5272 return buf;
5273}
5274
5275static const char * const sdma_int_names[] = {
5276 "SDmaInt",
5277 "SdmaIdleInt",
5278 "SdmaProgressInt",
5279};
5280
5281/*
5282 * Return the SDMA engine interrupt name.
5283 */
5284static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5285{
5286 /* what interrupt */
5287 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
5288 /* which engine */
5289 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5290
5291 if (likely(what < 3))
5292 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5293 else
5294 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5295 return buf;
5296}
5297
5298/*
5299 * Return the receive available interrupt name.
5300 */
5301static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5302{
5303 snprintf(buf, bsize, "RcvAvailInt%u", source);
5304 return buf;
5305}
5306
5307/*
5308 * Return the receive urgent interrupt name.
5309 */
5310static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5311{
5312 snprintf(buf, bsize, "RcvUrgentInt%u", source);
5313 return buf;
5314}
5315
5316/*
5317 * Return the send credit interrupt name.
5318 */
5319static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5320{
5321 snprintf(buf, bsize, "SendCreditInt%u", source);
5322 return buf;
5323}
5324
5325/*
5326 * Return the reserved interrupt name.
5327 */
5328static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5329{
5330 snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5331 return buf;
5332}
5333
5334static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5335{
5336 return flag_string(buf, buf_len, flags,
17fb4f29
JJ
5337 cce_err_status_flags,
5338 ARRAY_SIZE(cce_err_status_flags));
77241056
MM
5339}
5340
5341static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5342{
5343 return flag_string(buf, buf_len, flags,
17fb4f29
JJ
5344 rxe_err_status_flags,
5345 ARRAY_SIZE(rxe_err_status_flags));
77241056
MM
5346}
5347
5348static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5349{
5350 return flag_string(buf, buf_len, flags, misc_err_status_flags,
17fb4f29 5351 ARRAY_SIZE(misc_err_status_flags));
77241056
MM
5352}
5353
5354static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5355{
5356 return flag_string(buf, buf_len, flags,
17fb4f29
JJ
5357 pio_err_status_flags,
5358 ARRAY_SIZE(pio_err_status_flags));
77241056
MM
5359}
5360
5361static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5362{
5363 return flag_string(buf, buf_len, flags,
17fb4f29
JJ
5364 sdma_err_status_flags,
5365 ARRAY_SIZE(sdma_err_status_flags));
77241056
MM
5366}
5367
5368static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5369{
5370 return flag_string(buf, buf_len, flags,
17fb4f29
JJ
5371 egress_err_status_flags,
5372 ARRAY_SIZE(egress_err_status_flags));
77241056
MM
5373}
5374
5375static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5376{
5377 return flag_string(buf, buf_len, flags,
17fb4f29
JJ
5378 egress_err_info_flags,
5379 ARRAY_SIZE(egress_err_info_flags));
77241056
MM
5380}
5381
5382static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5383{
5384 return flag_string(buf, buf_len, flags,
17fb4f29
JJ
5385 send_err_status_flags,
5386 ARRAY_SIZE(send_err_status_flags));
77241056
MM
5387}
5388
5389static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5390{
5391 char buf[96];
2c5b521a 5392 int i = 0;
77241056
MM
5393
5394 /*
5395 * For most these errors, there is nothing that can be done except
5396 * report or record it.
5397 */
5398 dd_dev_info(dd, "CCE Error: %s\n",
17fb4f29 5399 cce_err_status_string(buf, sizeof(buf), reg));
77241056 5400
995deafa
MM
5401 if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5402 is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
77241056
MM
5403 /* this error requires a manual drop into SPC freeze mode */
5404 /* then a fix up */
5405 start_freeze_handling(dd->pport, FREEZE_SELF);
5406 }
2c5b521a
JR
5407
5408 for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5409 if (reg & (1ull << i)) {
5410 incr_cntr64(&dd->cce_err_status_cnt[i]);
5411 /* maintain a counter over all cce_err_status errors */
5412 incr_cntr64(&dd->sw_cce_err_status_aggregate);
5413 }
5414 }
77241056
MM
5415}
5416
5417/*
5418 * Check counters for receive errors that do not have an interrupt
5419 * associated with them.
5420 */
5421#define RCVERR_CHECK_TIME 10
5422static void update_rcverr_timer(unsigned long opaque)
5423{
5424 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
5425 struct hfi1_pportdata *ppd = dd->pport;
5426 u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5427
5428 if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
17fb4f29 5429 ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
77241056 5430 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
17fb4f29
JJ
5431 set_link_down_reason(
5432 ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5433 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
77241056
MM
5434 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
5435 }
50e5dcbe 5436 dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
77241056
MM
5437
5438 mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5439}
5440
5441static int init_rcverr(struct hfi1_devdata *dd)
5442{
24523a94 5443 setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
77241056
MM
5444 /* Assume the hardware counter has been reset */
5445 dd->rcv_ovfl_cnt = 0;
5446 return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5447}
5448
5449static void free_rcverr(struct hfi1_devdata *dd)
5450{
5451 if (dd->rcverr_timer.data)
5452 del_timer_sync(&dd->rcverr_timer);
5453 dd->rcverr_timer.data = 0;
5454}
5455
5456static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5457{
5458 char buf[96];
2c5b521a 5459 int i = 0;
77241056
MM
5460
5461 dd_dev_info(dd, "Receive Error: %s\n",
17fb4f29 5462 rxe_err_status_string(buf, sizeof(buf), reg));
77241056
MM
5463
5464 if (reg & ALL_RXE_FREEZE_ERR) {
5465 int flags = 0;
5466
5467 /*
5468 * Freeze mode recovery is disabled for the errors
5469 * in RXE_FREEZE_ABORT_MASK
5470 */
995deafa 5471 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
77241056
MM
5472 flags = FREEZE_ABORT;
5473
5474 start_freeze_handling(dd->pport, flags);
5475 }
2c5b521a
JR
5476
5477 for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5478 if (reg & (1ull << i))
5479 incr_cntr64(&dd->rcv_err_status_cnt[i]);
5480 }
77241056
MM
5481}
5482
5483static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5484{
5485 char buf[96];
2c5b521a 5486 int i = 0;
77241056
MM
5487
5488 dd_dev_info(dd, "Misc Error: %s",
17fb4f29 5489 misc_err_status_string(buf, sizeof(buf), reg));
2c5b521a
JR
5490 for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5491 if (reg & (1ull << i))
5492 incr_cntr64(&dd->misc_err_status_cnt[i]);
5493 }
77241056
MM
5494}
5495
5496static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5497{
5498 char buf[96];
2c5b521a 5499 int i = 0;
77241056
MM
5500
5501 dd_dev_info(dd, "PIO Error: %s\n",
17fb4f29 5502 pio_err_status_string(buf, sizeof(buf), reg));
77241056
MM
5503
5504 if (reg & ALL_PIO_FREEZE_ERR)
5505 start_freeze_handling(dd->pport, 0);
2c5b521a
JR
5506
5507 for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5508 if (reg & (1ull << i))
5509 incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5510 }
77241056
MM
5511}
5512
5513static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5514{
5515 char buf[96];
2c5b521a 5516 int i = 0;
77241056
MM
5517
5518 dd_dev_info(dd, "SDMA Error: %s\n",
17fb4f29 5519 sdma_err_status_string(buf, sizeof(buf), reg));
77241056
MM
5520
5521 if (reg & ALL_SDMA_FREEZE_ERR)
5522 start_freeze_handling(dd->pport, 0);
2c5b521a
JR
5523
5524 for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5525 if (reg & (1ull << i))
5526 incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5527 }
77241056
MM
5528}
5529
69a00b8e 5530static inline void __count_port_discards(struct hfi1_pportdata *ppd)
77241056 5531{
69a00b8e
MM
5532 incr_cntr64(&ppd->port_xmit_discards);
5533}
77241056 5534
69a00b8e
MM
5535static void count_port_inactive(struct hfi1_devdata *dd)
5536{
5537 __count_port_discards(dd->pport);
77241056
MM
5538}
5539
5540/*
5541 * We have had a "disallowed packet" error during egress. Determine the
5542 * integrity check which failed, and update relevant error counter, etc.
5543 *
5544 * Note that the SEND_EGRESS_ERR_INFO register has only a single
5545 * bit of state per integrity check, and so we can miss the reason for an
5546 * egress error if more than one packet fails the same integrity check
5547 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5548 */
69a00b8e
MM
5549static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5550 int vl)
77241056
MM
5551{
5552 struct hfi1_pportdata *ppd = dd->pport;
5553 u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5554 u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5555 char buf[96];
5556
5557 /* clear down all observed info as quickly as possible after read */
5558 write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5559
5560 dd_dev_info(dd,
17fb4f29
JJ
5561 "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5562 info, egress_err_info_string(buf, sizeof(buf), info), src);
77241056
MM
5563
5564 /* Eventually add other counters for each bit */
69a00b8e
MM
5565 if (info & PORT_DISCARD_EGRESS_ERRS) {
5566 int weight, i;
77241056 5567
69a00b8e 5568 /*
4c9e7aac
DL
5569 * Count all applicable bits as individual errors and
5570 * attribute them to the packet that triggered this handler.
5571 * This may not be completely accurate due to limitations
5572 * on the available hardware error information. There is
5573 * a single information register and any number of error
5574 * packets may have occurred and contributed to it before
5575 * this routine is called. This means that:
5576 * a) If multiple packets with the same error occur before
5577 * this routine is called, earlier packets are missed.
5578 * There is only a single bit for each error type.
5579 * b) Errors may not be attributed to the correct VL.
5580 * The driver is attributing all bits in the info register
5581 * to the packet that triggered this call, but bits
5582 * could be an accumulation of different packets with
5583 * different VLs.
5584 * c) A single error packet may have multiple counts attached
5585 * to it. There is no way for the driver to know if
5586 * multiple bits set in the info register are due to a
5587 * single packet or multiple packets. The driver assumes
5588 * multiple packets.
69a00b8e 5589 */
4c9e7aac 5590 weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
69a00b8e
MM
5591 for (i = 0; i < weight; i++) {
5592 __count_port_discards(ppd);
5593 if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5594 incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5595 else if (vl == 15)
5596 incr_cntr64(&ppd->port_xmit_discards_vl
5597 [C_VL_15]);
5598 }
77241056
MM
5599 }
5600}
5601
5602/*
5603 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5604 * register. Does it represent a 'port inactive' error?
5605 */
5606static inline int port_inactive_err(u64 posn)
5607{
5608 return (posn >= SEES(TX_LINKDOWN) &&
5609 posn <= SEES(TX_INCORRECT_LINK_STATE));
5610}
5611
5612/*
5613 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5614 * register. Does it represent a 'disallowed packet' error?
5615 */
69a00b8e 5616static inline int disallowed_pkt_err(int posn)
77241056
MM
5617{
5618 return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5619 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5620}
5621
69a00b8e
MM
5622/*
5623 * Input value is a bit position of one of the SDMA engine disallowed
5624 * packet errors. Return which engine. Use of this must be guarded by
5625 * disallowed_pkt_err().
5626 */
5627static inline int disallowed_pkt_engine(int posn)
5628{
5629 return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5630}
5631
5632/*
5633 * Translate an SDMA engine to a VL. Return -1 if the tranlation cannot
5634 * be done.
5635 */
5636static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5637{
5638 struct sdma_vl_map *m;
5639 int vl;
5640
5641 /* range check */
5642 if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5643 return -1;
5644
5645 rcu_read_lock();
5646 m = rcu_dereference(dd->sdma_map);
5647 vl = m->engine_to_vl[engine];
5648 rcu_read_unlock();
5649
5650 return vl;
5651}
5652
5653/*
5654 * Translate the send context (sofware index) into a VL. Return -1 if the
5655 * translation cannot be done.
5656 */
5657static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5658{
5659 struct send_context_info *sci;
5660 struct send_context *sc;
5661 int i;
5662
5663 sci = &dd->send_contexts[sw_index];
5664
5665 /* there is no information for user (PSM) and ack contexts */
5666 if (sci->type != SC_KERNEL)
5667 return -1;
5668
5669 sc = sci->sc;
5670 if (!sc)
5671 return -1;
5672 if (dd->vld[15].sc == sc)
5673 return 15;
5674 for (i = 0; i < num_vls; i++)
5675 if (dd->vld[i].sc == sc)
5676 return i;
5677
5678 return -1;
5679}
5680
77241056
MM
5681static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5682{
5683 u64 reg_copy = reg, handled = 0;
5684 char buf[96];
2c5b521a 5685 int i = 0;
77241056
MM
5686
5687 if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5688 start_freeze_handling(dd->pport, 0);
69a00b8e
MM
5689 else if (is_ax(dd) &&
5690 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5691 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
77241056
MM
5692 start_freeze_handling(dd->pport, 0);
5693
5694 while (reg_copy) {
5695 int posn = fls64(reg_copy);
69a00b8e 5696 /* fls64() returns a 1-based offset, we want it zero based */
77241056 5697 int shift = posn - 1;
69a00b8e 5698 u64 mask = 1ULL << shift;
77241056
MM
5699
5700 if (port_inactive_err(shift)) {
5701 count_port_inactive(dd);
69a00b8e 5702 handled |= mask;
77241056 5703 } else if (disallowed_pkt_err(shift)) {
69a00b8e
MM
5704 int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5705
5706 handle_send_egress_err_info(dd, vl);
5707 handled |= mask;
77241056 5708 }
69a00b8e 5709 reg_copy &= ~mask;
77241056
MM
5710 }
5711
5712 reg &= ~handled;
5713
5714 if (reg)
5715 dd_dev_info(dd, "Egress Error: %s\n",
17fb4f29 5716 egress_err_status_string(buf, sizeof(buf), reg));
2c5b521a
JR
5717
5718 for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5719 if (reg & (1ull << i))
5720 incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5721 }
77241056
MM
5722}
5723
5724static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5725{
5726 char buf[96];
2c5b521a 5727 int i = 0;
77241056
MM
5728
5729 dd_dev_info(dd, "Send Error: %s\n",
17fb4f29 5730 send_err_status_string(buf, sizeof(buf), reg));
77241056 5731
2c5b521a
JR
5732 for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5733 if (reg & (1ull << i))
5734 incr_cntr64(&dd->send_err_status_cnt[i]);
5735 }
77241056
MM
5736}
5737
5738/*
5739 * The maximum number of times the error clear down will loop before
5740 * blocking a repeating error. This value is arbitrary.
5741 */
5742#define MAX_CLEAR_COUNT 20
5743
5744/*
5745 * Clear and handle an error register. All error interrupts are funneled
5746 * through here to have a central location to correctly handle single-
5747 * or multi-shot errors.
5748 *
5749 * For non per-context registers, call this routine with a context value
5750 * of 0 so the per-context offset is zero.
5751 *
5752 * If the handler loops too many times, assume that something is wrong
5753 * and can't be fixed, so mask the error bits.
5754 */
5755static void interrupt_clear_down(struct hfi1_devdata *dd,
5756 u32 context,
5757 const struct err_reg_info *eri)
5758{
5759 u64 reg;
5760 u32 count;
5761
5762 /* read in a loop until no more errors are seen */
5763 count = 0;
5764 while (1) {
5765 reg = read_kctxt_csr(dd, context, eri->status);
5766 if (reg == 0)
5767 break;
5768 write_kctxt_csr(dd, context, eri->clear, reg);
5769 if (likely(eri->handler))
5770 eri->handler(dd, context, reg);
5771 count++;
5772 if (count > MAX_CLEAR_COUNT) {
5773 u64 mask;
5774
5775 dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
17fb4f29 5776 eri->desc, reg);
77241056
MM
5777 /*
5778 * Read-modify-write so any other masked bits
5779 * remain masked.
5780 */
5781 mask = read_kctxt_csr(dd, context, eri->mask);
5782 mask &= ~reg;
5783 write_kctxt_csr(dd, context, eri->mask, mask);
5784 break;
5785 }
5786 }
5787}
5788
5789/*
5790 * CCE block "misc" interrupt. Source is < 16.
5791 */
5792static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5793{
5794 const struct err_reg_info *eri = &misc_errs[source];
5795
5796 if (eri->handler) {
5797 interrupt_clear_down(dd, 0, eri);
5798 } else {
5799 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
17fb4f29 5800 source);
77241056
MM
5801 }
5802}
5803
5804static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5805{
5806 return flag_string(buf, buf_len, flags,
17fb4f29
JJ
5807 sc_err_status_flags,
5808 ARRAY_SIZE(sc_err_status_flags));
77241056
MM
5809}
5810
5811/*
5812 * Send context error interrupt. Source (hw_context) is < 160.
5813 *
5814 * All send context errors cause the send context to halt. The normal
5815 * clear-down mechanism cannot be used because we cannot clear the
5816 * error bits until several other long-running items are done first.
5817 * This is OK because with the context halted, nothing else is going
5818 * to happen on it anyway.
5819 */
5820static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5821 unsigned int hw_context)
5822{
5823 struct send_context_info *sci;
5824 struct send_context *sc;
5825 char flags[96];
5826 u64 status;
5827 u32 sw_index;
2c5b521a 5828 int i = 0;
77241056
MM
5829
5830 sw_index = dd->hw_to_sw[hw_context];
5831 if (sw_index >= dd->num_send_contexts) {
5832 dd_dev_err(dd,
17fb4f29
JJ
5833 "out of range sw index %u for send context %u\n",
5834 sw_index, hw_context);
77241056
MM
5835 return;
5836 }
5837 sci = &dd->send_contexts[sw_index];
5838 sc = sci->sc;
5839 if (!sc) {
5840 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
17fb4f29 5841 sw_index, hw_context);
77241056
MM
5842 return;
5843 }
5844
5845 /* tell the software that a halt has begun */
5846 sc_stop(sc, SCF_HALTED);
5847
5848 status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5849
5850 dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
17fb4f29
JJ
5851 send_context_err_status_string(flags, sizeof(flags),
5852 status));
77241056
MM
5853
5854 if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
69a00b8e 5855 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
77241056
MM
5856
5857 /*
5858 * Automatically restart halted kernel contexts out of interrupt
5859 * context. User contexts must ask the driver to restart the context.
5860 */
5861 if (sc->type != SC_USER)
5862 queue_work(dd->pport->hfi1_wq, &sc->halt_work);
2c5b521a
JR
5863
5864 /*
5865 * Update the counters for the corresponding status bits.
5866 * Note that these particular counters are aggregated over all
5867 * 160 contexts.
5868 */
5869 for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5870 if (status & (1ull << i))
5871 incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5872 }
77241056
MM
5873}
5874
5875static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5876 unsigned int source, u64 status)
5877{
5878 struct sdma_engine *sde;
2c5b521a 5879 int i = 0;
77241056
MM
5880
5881 sde = &dd->per_sdma[source];
5882#ifdef CONFIG_SDMA_VERBOSITY
5883 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5884 slashstrip(__FILE__), __LINE__, __func__);
5885 dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
5886 sde->this_idx, source, (unsigned long long)status);
5887#endif
a699c6c2 5888 sde->err_cnt++;
77241056 5889 sdma_engine_error(sde, status);
2c5b521a
JR
5890
5891 /*
5892 * Update the counters for the corresponding status bits.
5893 * Note that these particular counters are aggregated over
5894 * all 16 DMA engines.
5895 */
5896 for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
5897 if (status & (1ull << i))
5898 incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
5899 }
77241056
MM
5900}
5901
5902/*
5903 * CCE block SDMA error interrupt. Source is < 16.
5904 */
5905static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
5906{
5907#ifdef CONFIG_SDMA_VERBOSITY
5908 struct sdma_engine *sde = &dd->per_sdma[source];
5909
5910 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5911 slashstrip(__FILE__), __LINE__, __func__);
5912 dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
5913 source);
5914 sdma_dumpstate(sde);
5915#endif
5916 interrupt_clear_down(dd, source, &sdma_eng_err);
5917}
5918
5919/*
5920 * CCE block "various" interrupt. Source is < 8.
5921 */
5922static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
5923{
5924 const struct err_reg_info *eri = &various_err[source];
5925
5926 /*
5927 * TCritInt cannot go through interrupt_clear_down()
5928 * because it is not a second tier interrupt. The handler
5929 * should be called directly.
5930 */
5931 if (source == TCRIT_INT_SOURCE)
5932 handle_temp_err(dd);
5933 else if (eri->handler)
5934 interrupt_clear_down(dd, 0, eri);
5935 else
5936 dd_dev_info(dd,
17fb4f29
JJ
5937 "%s: Unimplemented/reserved interrupt %d\n",
5938 __func__, source);
77241056
MM
5939}
5940
5941static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
5942{
8ebd4cf1 5943 /* src_ctx is always zero */
77241056
MM
5944 struct hfi1_pportdata *ppd = dd->pport;
5945 unsigned long flags;
5946 u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
5947
5948 if (reg & QSFP_HFI0_MODPRST_N) {
77241056 5949 if (!qsfp_mod_present(ppd)) {
e8aa284b
EH
5950 dd_dev_info(dd, "%s: QSFP module removed\n",
5951 __func__);
5952
77241056
MM
5953 ppd->driver_link_ready = 0;
5954 /*
5955 * Cable removed, reset all our information about the
5956 * cache and cable capabilities
5957 */
5958
5959 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
5960 /*
5961 * We don't set cache_refresh_required here as we expect
5962 * an interrupt when a cable is inserted
5963 */
5964 ppd->qsfp_info.cache_valid = 0;
8ebd4cf1
EH
5965 ppd->qsfp_info.reset_needed = 0;
5966 ppd->qsfp_info.limiting_active = 0;
77241056 5967 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
17fb4f29 5968 flags);
8ebd4cf1
EH
5969 /* Invert the ModPresent pin now to detect plug-in */
5970 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
5971 ASIC_QSFP1_INVERT, qsfp_int_mgmt);
a9c05e35
BM
5972
5973 if ((ppd->offline_disabled_reason >
5974 HFI1_ODR_MASK(
e1bf0d5e 5975 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
a9c05e35
BM
5976 (ppd->offline_disabled_reason ==
5977 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
5978 ppd->offline_disabled_reason =
5979 HFI1_ODR_MASK(
e1bf0d5e 5980 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
a9c05e35 5981
77241056
MM
5982 if (ppd->host_link_state == HLS_DN_POLL) {
5983 /*
5984 * The link is still in POLL. This means
5985 * that the normal link down processing
5986 * will not happen. We have to do it here
5987 * before turning the DC off.
5988 */
5989 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
5990 }
5991 } else {
e8aa284b
EH
5992 dd_dev_info(dd, "%s: QSFP module inserted\n",
5993 __func__);
5994
77241056
MM
5995 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
5996 ppd->qsfp_info.cache_valid = 0;
5997 ppd->qsfp_info.cache_refresh_required = 1;
5998 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
17fb4f29 5999 flags);
77241056 6000
8ebd4cf1
EH
6001 /*
6002 * Stop inversion of ModPresent pin to detect
6003 * removal of the cable
6004 */
77241056 6005 qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
8ebd4cf1
EH
6006 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6007 ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6008
6009 ppd->offline_disabled_reason =
6010 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
77241056
MM
6011 }
6012 }
6013
6014 if (reg & QSFP_HFI0_INT_N) {
e8aa284b 6015 dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
17fb4f29 6016 __func__);
77241056
MM
6017 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6018 ppd->qsfp_info.check_interrupt_flags = 1;
77241056
MM
6019 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6020 }
6021
6022 /* Schedule the QSFP work only if there is a cable attached. */
6023 if (qsfp_mod_present(ppd))
6024 queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work);
6025}
6026
6027static int request_host_lcb_access(struct hfi1_devdata *dd)
6028{
6029 int ret;
6030
6031 ret = do_8051_command(dd, HCMD_MISC,
17fb4f29
JJ
6032 (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6033 LOAD_DATA_FIELD_ID_SHIFT, NULL);
77241056
MM
6034 if (ret != HCMD_SUCCESS) {
6035 dd_dev_err(dd, "%s: command failed with error %d\n",
17fb4f29 6036 __func__, ret);
77241056
MM
6037 }
6038 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6039}
6040
6041static int request_8051_lcb_access(struct hfi1_devdata *dd)
6042{
6043 int ret;
6044
6045 ret = do_8051_command(dd, HCMD_MISC,
17fb4f29
JJ
6046 (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6047 LOAD_DATA_FIELD_ID_SHIFT, NULL);
77241056
MM
6048 if (ret != HCMD_SUCCESS) {
6049 dd_dev_err(dd, "%s: command failed with error %d\n",
17fb4f29 6050 __func__, ret);
77241056
MM
6051 }
6052 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6053}
6054
6055/*
6056 * Set the LCB selector - allow host access. The DCC selector always
6057 * points to the host.
6058 */
6059static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6060{
6061 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
17fb4f29
JJ
6062 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6063 DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
77241056
MM
6064}
6065
6066/*
6067 * Clear the LCB selector - allow 8051 access. The DCC selector always
6068 * points to the host.
6069 */
6070static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6071{
6072 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
17fb4f29 6073 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
77241056
MM
6074}
6075
6076/*
6077 * Acquire LCB access from the 8051. If the host already has access,
6078 * just increment a counter. Otherwise, inform the 8051 that the
6079 * host is taking access.
6080 *
6081 * Returns:
6082 * 0 on success
6083 * -EBUSY if the 8051 has control and cannot be disturbed
6084 * -errno if unable to acquire access from the 8051
6085 */
6086int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6087{
6088 struct hfi1_pportdata *ppd = dd->pport;
6089 int ret = 0;
6090
6091 /*
6092 * Use the host link state lock so the operation of this routine
6093 * { link state check, selector change, count increment } can occur
6094 * as a unit against a link state change. Otherwise there is a
6095 * race between the state change and the count increment.
6096 */
6097 if (sleep_ok) {
6098 mutex_lock(&ppd->hls_lock);
6099 } else {
951842b0 6100 while (!mutex_trylock(&ppd->hls_lock))
77241056
MM
6101 udelay(1);
6102 }
6103
6104 /* this access is valid only when the link is up */
6105 if ((ppd->host_link_state & HLS_UP) == 0) {
6106 dd_dev_info(dd, "%s: link state %s not up\n",
17fb4f29 6107 __func__, link_state_name(ppd->host_link_state));
77241056
MM
6108 ret = -EBUSY;
6109 goto done;
6110 }
6111
6112 if (dd->lcb_access_count == 0) {
6113 ret = request_host_lcb_access(dd);
6114 if (ret) {
6115 dd_dev_err(dd,
17fb4f29
JJ
6116 "%s: unable to acquire LCB access, err %d\n",
6117 __func__, ret);
77241056
MM
6118 goto done;
6119 }
6120 set_host_lcb_access(dd);
6121 }
6122 dd->lcb_access_count++;
6123done:
6124 mutex_unlock(&ppd->hls_lock);
6125 return ret;
6126}
6127
6128/*
6129 * Release LCB access by decrementing the use count. If the count is moving
6130 * from 1 to 0, inform 8051 that it has control back.
6131 *
6132 * Returns:
6133 * 0 on success
6134 * -errno if unable to release access to the 8051
6135 */
6136int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6137{
6138 int ret = 0;
6139
6140 /*
6141 * Use the host link state lock because the acquire needed it.
6142 * Here, we only need to keep { selector change, count decrement }
6143 * as a unit.
6144 */
6145 if (sleep_ok) {
6146 mutex_lock(&dd->pport->hls_lock);
6147 } else {
951842b0 6148 while (!mutex_trylock(&dd->pport->hls_lock))
77241056
MM
6149 udelay(1);
6150 }
6151
6152 if (dd->lcb_access_count == 0) {
6153 dd_dev_err(dd, "%s: LCB access count is zero. Skipping.\n",
17fb4f29 6154 __func__);
77241056
MM
6155 goto done;
6156 }
6157
6158 if (dd->lcb_access_count == 1) {
6159 set_8051_lcb_access(dd);
6160 ret = request_8051_lcb_access(dd);
6161 if (ret) {
6162 dd_dev_err(dd,
17fb4f29
JJ
6163 "%s: unable to release LCB access, err %d\n",
6164 __func__, ret);
77241056
MM
6165 /* restore host access if the grant didn't work */
6166 set_host_lcb_access(dd);
6167 goto done;
6168 }
6169 }
6170 dd->lcb_access_count--;
6171done:
6172 mutex_unlock(&dd->pport->hls_lock);
6173 return ret;
6174}
6175
6176/*
6177 * Initialize LCB access variables and state. Called during driver load,
6178 * after most of the initialization is finished.
6179 *
6180 * The DC default is LCB access on for the host. The driver defaults to
6181 * leaving access to the 8051. Assign access now - this constrains the call
6182 * to this routine to be after all LCB set-up is done. In particular, after
6183 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6184 */
6185static void init_lcb_access(struct hfi1_devdata *dd)
6186{
6187 dd->lcb_access_count = 0;
6188}
6189
6190/*
6191 * Write a response back to a 8051 request.
6192 */
6193static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6194{
6195 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
17fb4f29
JJ
6196 DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6197 (u64)return_code <<
6198 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6199 (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
77241056
MM
6200}
6201
6202/*
cbac386a
EH
6203 * Handle host requests from the 8051.
6204 *
6205 * This is a work-queue function outside of the interrupt.
77241056 6206 */
cbac386a 6207void handle_8051_request(struct work_struct *work)
77241056 6208{
cbac386a
EH
6209 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6210 dc_host_req_work);
6211 struct hfi1_devdata *dd = ppd->dd;
77241056 6212 u64 reg;
cbac386a
EH
6213 u16 data = 0;
6214 u8 type, i, lanes, *cache = ppd->qsfp_info.cache;
6215 u8 cdr_ctrl_byte = cache[QSFP_CDR_CTRL_BYTE_OFFS];
77241056
MM
6216
6217 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6218 if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6219 return; /* no request */
6220
6221 /* zero out COMPLETED so the response is seen */
6222 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6223
6224 /* extract request details */
6225 type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6226 & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6227 data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6228 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6229
6230 switch (type) {
6231 case HREQ_LOAD_CONFIG:
6232 case HREQ_SAVE_CONFIG:
6233 case HREQ_READ_CONFIG:
6234 case HREQ_SET_TX_EQ_ABS:
6235 case HREQ_SET_TX_EQ_REL:
77241056 6236 dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
17fb4f29 6237 type);
77241056
MM
6238 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6239 break;
6240
cbac386a
EH
6241 case HREQ_ENABLE:
6242 lanes = data & 0xF;
6243 for (i = 0; lanes; lanes >>= 1, i++) {
6244 if (!(lanes & 1))
6245 continue;
6246 if (data & 0x200) {
6247 /* enable TX CDR */
6248 if (cache[QSFP_MOD_PWR_OFFS] & 0x8 &&
6249 cache[QSFP_CDR_INFO_OFFS] & 0x80)
6250 cdr_ctrl_byte |= (1 << (i + 4));
6251 } else {
6252 /* disable TX CDR */
6253 if (cache[QSFP_MOD_PWR_OFFS] & 0x8 &&
6254 cache[QSFP_CDR_INFO_OFFS] & 0x80)
6255 cdr_ctrl_byte &= ~(1 << (i + 4));
6256 }
6257
6258 if (data & 0x800) {
6259 /* enable RX CDR */
6260 if (cache[QSFP_MOD_PWR_OFFS] & 0x4 &&
6261 cache[QSFP_CDR_INFO_OFFS] & 0x40)
6262 cdr_ctrl_byte |= (1 << i);
6263 } else {
6264 /* disable RX CDR */
6265 if (cache[QSFP_MOD_PWR_OFFS] & 0x4 &&
6266 cache[QSFP_CDR_INFO_OFFS] & 0x40)
6267 cdr_ctrl_byte &= ~(1 << i);
6268 }
6269 }
765a6fac
DL
6270 one_qsfp_write(ppd, dd->hfi1_id, QSFP_CDR_CTRL_BYTE_OFFS,
6271 &cdr_ctrl_byte, 1);
cbac386a
EH
6272 hreq_response(dd, HREQ_SUCCESS, data);
6273 refresh_qsfp_cache(ppd, &ppd->qsfp_info);
6274 break;
6275
77241056
MM
6276 case HREQ_CONFIG_DONE:
6277 hreq_response(dd, HREQ_SUCCESS, 0);
6278 break;
6279
6280 case HREQ_INTERFACE_TEST:
6281 hreq_response(dd, HREQ_SUCCESS, data);
6282 break;
6283
6284 default:
6285 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6286 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6287 break;
6288 }
6289}
6290
6291static void write_global_credit(struct hfi1_devdata *dd,
6292 u8 vau, u16 total, u16 shared)
6293{
6294 write_csr(dd, SEND_CM_GLOBAL_CREDIT,
17fb4f29
JJ
6295 ((u64)total <<
6296 SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT) |
6297 ((u64)shared <<
6298 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT) |
6299 ((u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT));
77241056
MM
6300}
6301
6302/*
6303 * Set up initial VL15 credits of the remote. Assumes the rest of
6304 * the CM credit registers are zero from a previous global or credit reset .
6305 */
6306void set_up_vl15(struct hfi1_devdata *dd, u8 vau, u16 vl15buf)
6307{
6308 /* leave shared count at zero for both global and VL15 */
6309 write_global_credit(dd, vau, vl15buf, 0);
6310
6311 /* We may need some credits for another VL when sending packets
6312 * with the snoop interface. Dividing it down the middle for VL15
6313 * and VL0 should suffice.
6314 */
6315 if (unlikely(dd->hfi1_snoop.mode_flag == HFI1_PORT_SNOOP_MODE)) {
6316 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)(vl15buf >> 1)
6317 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6318 write_csr(dd, SEND_CM_CREDIT_VL, (u64)(vl15buf >> 1)
6319 << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT);
6320 } else {
6321 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6322 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6323 }
6324}
6325
6326/*
6327 * Zero all credit details from the previous connection and
6328 * reset the CM manager's internal counters.
6329 */
6330void reset_link_credits(struct hfi1_devdata *dd)
6331{
6332 int i;
6333
6334 /* remove all previous VL credit limits */
6335 for (i = 0; i < TXE_NUM_DATA_VL; i++)
8638b77f 6336 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
77241056
MM
6337 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6338 write_global_credit(dd, 0, 0, 0);
6339 /* reset the CM block */
6340 pio_send_control(dd, PSC_CM_RESET);
6341}
6342
6343/* convert a vCU to a CU */
6344static u32 vcu_to_cu(u8 vcu)
6345{
6346 return 1 << vcu;
6347}
6348
6349/* convert a CU to a vCU */
6350static u8 cu_to_vcu(u32 cu)
6351{
6352 return ilog2(cu);
6353}
6354
6355/* convert a vAU to an AU */
6356static u32 vau_to_au(u8 vau)
6357{
6358 return 8 * (1 << vau);
6359}
6360
6361static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6362{
6363 ppd->sm_trap_qp = 0x0;
6364 ppd->sa_qp = 0x1;
6365}
6366
6367/*
6368 * Graceful LCB shutdown. This leaves the LCB FIFOs in reset.
6369 */
6370static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6371{
6372 u64 reg;
6373
6374 /* clear lcb run: LCB_CFG_RUN.EN = 0 */
6375 write_csr(dd, DC_LCB_CFG_RUN, 0);
6376 /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6377 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
17fb4f29 6378 1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
77241056
MM
6379 /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6380 dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6381 reg = read_csr(dd, DCC_CFG_RESET);
17fb4f29
JJ
6382 write_csr(dd, DCC_CFG_RESET, reg |
6383 (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) |
6384 (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
50e5dcbe 6385 (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
77241056
MM
6386 if (!abort) {
6387 udelay(1); /* must hold for the longer of 16cclks or 20ns */
6388 write_csr(dd, DCC_CFG_RESET, reg);
6389 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6390 }
6391}
6392
6393/*
6394 * This routine should be called after the link has been transitioned to
6395 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6396 * reset).
6397 *
6398 * The expectation is that the caller of this routine would have taken
6399 * care of properly transitioning the link into the correct state.
6400 */
6401static void dc_shutdown(struct hfi1_devdata *dd)
6402{
6403 unsigned long flags;
6404
6405 spin_lock_irqsave(&dd->dc8051_lock, flags);
6406 if (dd->dc_shutdown) {
6407 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6408 return;
6409 }
6410 dd->dc_shutdown = 1;
6411 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6412 /* Shutdown the LCB */
6413 lcb_shutdown(dd, 1);
4d114fdd
JJ
6414 /*
6415 * Going to OFFLINE would have causes the 8051 to put the
77241056 6416 * SerDes into reset already. Just need to shut down the 8051,
4d114fdd
JJ
6417 * itself.
6418 */
77241056
MM
6419 write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6420}
6421
4d114fdd
JJ
6422/*
6423 * Calling this after the DC has been brought out of reset should not
6424 * do any damage.
6425 */
77241056
MM
6426static void dc_start(struct hfi1_devdata *dd)
6427{
6428 unsigned long flags;
6429 int ret;
6430
6431 spin_lock_irqsave(&dd->dc8051_lock, flags);
6432 if (!dd->dc_shutdown)
6433 goto done;
6434 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6435 /* Take the 8051 out of reset */
6436 write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6437 /* Wait until 8051 is ready */
6438 ret = wait_fm_ready(dd, TIMEOUT_8051_START);
6439 if (ret) {
6440 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
17fb4f29 6441 __func__);
77241056
MM
6442 }
6443 /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6444 write_csr(dd, DCC_CFG_RESET, 0x10);
6445 /* lcb_shutdown() with abort=1 does not restore these */
6446 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6447 spin_lock_irqsave(&dd->dc8051_lock, flags);
6448 dd->dc_shutdown = 0;
6449done:
6450 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6451}
6452
6453/*
6454 * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6455 */
6456static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6457{
6458 u64 rx_radr, tx_radr;
6459 u32 version;
6460
6461 if (dd->icode != ICODE_FPGA_EMULATION)
6462 return;
6463
6464 /*
6465 * These LCB defaults on emulator _s are good, nothing to do here:
6466 * LCB_CFG_TX_FIFOS_RADR
6467 * LCB_CFG_RX_FIFOS_RADR
6468 * LCB_CFG_LN_DCLK
6469 * LCB_CFG_IGNORE_LOST_RCLK
6470 */
6471 if (is_emulator_s(dd))
6472 return;
6473 /* else this is _p */
6474
6475 version = emulator_rev(dd);
995deafa 6476 if (!is_ax(dd))
77241056
MM
6477 version = 0x2d; /* all B0 use 0x2d or higher settings */
6478
6479 if (version <= 0x12) {
6480 /* release 0x12 and below */
6481
6482 /*
6483 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6484 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6485 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6486 */
6487 rx_radr =
6488 0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6489 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6490 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6491 /*
6492 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6493 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6494 */
6495 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6496 } else if (version <= 0x18) {
6497 /* release 0x13 up to 0x18 */
6498 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6499 rx_radr =
6500 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6501 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6502 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6503 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6504 } else if (version == 0x19) {
6505 /* release 0x19 */
6506 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6507 rx_radr =
6508 0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6509 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6510 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6511 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6512 } else if (version == 0x1a) {
6513 /* release 0x1a */
6514 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6515 rx_radr =
6516 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6517 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6518 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6519 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6520 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6521 } else {
6522 /* release 0x1b and higher */
6523 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6524 rx_radr =
6525 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6526 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6527 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6528 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6529 }
6530
6531 write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6532 /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6533 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
17fb4f29 6534 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
77241056
MM
6535 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6536}
6537
6538/*
6539 * Handle a SMA idle message
6540 *
6541 * This is a work-queue function outside of the interrupt.
6542 */
6543void handle_sma_message(struct work_struct *work)
6544{
6545 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6546 sma_message_work);
6547 struct hfi1_devdata *dd = ppd->dd;
6548 u64 msg;
6549 int ret;
6550
4d114fdd
JJ
6551 /*
6552 * msg is bytes 1-4 of the 40-bit idle message - the command code
6553 * is stripped off
6554 */
77241056
MM
6555 ret = read_idle_sma(dd, &msg);
6556 if (ret)
6557 return;
6558 dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6559 /*
6560 * React to the SMA message. Byte[1] (0 for us) is the command.
6561 */
6562 switch (msg & 0xff) {
6563 case SMA_IDLE_ARM:
6564 /*
6565 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6566 * State Transitions
6567 *
6568 * Only expected in INIT or ARMED, discard otherwise.
6569 */
6570 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6571 ppd->neighbor_normal = 1;
6572 break;
6573 case SMA_IDLE_ACTIVE:
6574 /*
6575 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6576 * State Transitions
6577 *
6578 * Can activate the node. Discard otherwise.
6579 */
d0d236ea
JJ
6580 if (ppd->host_link_state == HLS_UP_ARMED &&
6581 ppd->is_active_optimize_enabled) {
77241056
MM
6582 ppd->neighbor_normal = 1;
6583 ret = set_link_state(ppd, HLS_UP_ACTIVE);
6584 if (ret)
6585 dd_dev_err(
6586 dd,
6587 "%s: received Active SMA idle message, couldn't set link to Active\n",
6588 __func__);
6589 }
6590 break;
6591 default:
6592 dd_dev_err(dd,
17fb4f29
JJ
6593 "%s: received unexpected SMA idle message 0x%llx\n",
6594 __func__, msg);
77241056
MM
6595 break;
6596 }
6597}
6598
6599static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6600{
6601 u64 rcvctrl;
6602 unsigned long flags;
6603
6604 spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6605 rcvctrl = read_csr(dd, RCV_CTRL);
6606 rcvctrl |= add;
6607 rcvctrl &= ~clear;
6608 write_csr(dd, RCV_CTRL, rcvctrl);
6609 spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6610}
6611
6612static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6613{
6614 adjust_rcvctrl(dd, add, 0);
6615}
6616
6617static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6618{
6619 adjust_rcvctrl(dd, 0, clear);
6620}
6621
6622/*
6623 * Called from all interrupt handlers to start handling an SPC freeze.
6624 */
6625void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6626{
6627 struct hfi1_devdata *dd = ppd->dd;
6628 struct send_context *sc;
6629 int i;
6630
6631 if (flags & FREEZE_SELF)
6632 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6633
6634 /* enter frozen mode */
6635 dd->flags |= HFI1_FROZEN;
6636
6637 /* notify all SDMA engines that they are going into a freeze */
6638 sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6639
6640 /* do halt pre-handling on all enabled send contexts */
6641 for (i = 0; i < dd->num_send_contexts; i++) {
6642 sc = dd->send_contexts[i].sc;
6643 if (sc && (sc->flags & SCF_ENABLED))
6644 sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6645 }
6646
6647 /* Send context are frozen. Notify user space */
6648 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6649
6650 if (flags & FREEZE_ABORT) {
6651 dd_dev_err(dd,
6652 "Aborted freeze recovery. Please REBOOT system\n");
6653 return;
6654 }
6655 /* queue non-interrupt handler */
6656 queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6657}
6658
6659/*
6660 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6661 * depending on the "freeze" parameter.
6662 *
6663 * No need to return an error if it times out, our only option
6664 * is to proceed anyway.
6665 */
6666static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6667{
6668 unsigned long timeout;
6669 u64 reg;
6670
6671 timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6672 while (1) {
6673 reg = read_csr(dd, CCE_STATUS);
6674 if (freeze) {
6675 /* waiting until all indicators are set */
6676 if ((reg & ALL_FROZE) == ALL_FROZE)
6677 return; /* all done */
6678 } else {
6679 /* waiting until all indicators are clear */
6680 if ((reg & ALL_FROZE) == 0)
6681 return; /* all done */
6682 }
6683
6684 if (time_after(jiffies, timeout)) {
6685 dd_dev_err(dd,
17fb4f29
JJ
6686 "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6687 freeze ? "" : "un", reg & ALL_FROZE,
6688 freeze ? ALL_FROZE : 0ull);
77241056
MM
6689 return;
6690 }
6691 usleep_range(80, 120);
6692 }
6693}
6694
6695/*
6696 * Do all freeze handling for the RXE block.
6697 */
6698static void rxe_freeze(struct hfi1_devdata *dd)
6699{
6700 int i;
6701
6702 /* disable port */
6703 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6704
6705 /* disable all receive contexts */
6706 for (i = 0; i < dd->num_rcv_contexts; i++)
6707 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i);
6708}
6709
6710/*
6711 * Unfreeze handling for the RXE block - kernel contexts only.
6712 * This will also enable the port. User contexts will do unfreeze
6713 * handling on a per-context basis as they call into the driver.
6714 *
6715 */
6716static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6717{
566c157c 6718 u32 rcvmask;
77241056
MM
6719 int i;
6720
6721 /* enable all kernel contexts */
566c157c
MH
6722 for (i = 0; i < dd->n_krcv_queues; i++) {
6723 rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6724 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6725 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
6726 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6727 hfi1_rcvctrl(dd, rcvmask, i);
6728 }
77241056
MM
6729
6730 /* enable port */
6731 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6732}
6733
6734/*
6735 * Non-interrupt SPC freeze handling.
6736 *
6737 * This is a work-queue function outside of the triggering interrupt.
6738 */
6739void handle_freeze(struct work_struct *work)
6740{
6741 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6742 freeze_work);
6743 struct hfi1_devdata *dd = ppd->dd;
6744
6745 /* wait for freeze indicators on all affected blocks */
77241056
MM
6746 wait_for_freeze_status(dd, 1);
6747
6748 /* SPC is now frozen */
6749
6750 /* do send PIO freeze steps */
6751 pio_freeze(dd);
6752
6753 /* do send DMA freeze steps */
6754 sdma_freeze(dd);
6755
6756 /* do send egress freeze steps - nothing to do */
6757
6758 /* do receive freeze steps */
6759 rxe_freeze(dd);
6760
6761 /*
6762 * Unfreeze the hardware - clear the freeze, wait for each
6763 * block's frozen bit to clear, then clear the frozen flag.
6764 */
6765 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6766 wait_for_freeze_status(dd, 0);
6767
995deafa 6768 if (is_ax(dd)) {
77241056
MM
6769 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6770 wait_for_freeze_status(dd, 1);
6771 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6772 wait_for_freeze_status(dd, 0);
6773 }
6774
6775 /* do send PIO unfreeze steps for kernel contexts */
6776 pio_kernel_unfreeze(dd);
6777
6778 /* do send DMA unfreeze steps */
6779 sdma_unfreeze(dd);
6780
6781 /* do send egress unfreeze steps - nothing to do */
6782
6783 /* do receive unfreeze steps for kernel contexts */
6784 rxe_kernel_unfreeze(dd);
6785
6786 /*
6787 * The unfreeze procedure touches global device registers when
6788 * it disables and re-enables RXE. Mark the device unfrozen
6789 * after all that is done so other parts of the driver waiting
6790 * for the device to unfreeze don't do things out of order.
6791 *
6792 * The above implies that the meaning of HFI1_FROZEN flag is
6793 * "Device has gone into freeze mode and freeze mode handling
6794 * is still in progress."
6795 *
6796 * The flag will be removed when freeze mode processing has
6797 * completed.
6798 */
6799 dd->flags &= ~HFI1_FROZEN;
6800 wake_up(&dd->event_queue);
6801
6802 /* no longer frozen */
77241056
MM
6803}
6804
6805/*
6806 * Handle a link up interrupt from the 8051.
6807 *
6808 * This is a work-queue function outside of the interrupt.
6809 */
6810void handle_link_up(struct work_struct *work)
6811{
6812 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
17fb4f29 6813 link_up_work);
77241056
MM
6814 set_link_state(ppd, HLS_UP_INIT);
6815
6816 /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6817 read_ltp_rtt(ppd->dd);
6818 /*
6819 * OPA specifies that certain counters are cleared on a transition
6820 * to link up, so do that.
6821 */
6822 clear_linkup_counters(ppd->dd);
6823 /*
6824 * And (re)set link up default values.
6825 */
6826 set_linkup_defaults(ppd);
6827
6828 /* enforce link speed enabled */
6829 if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6830 /* oops - current speed is not enabled, bounce */
6831 dd_dev_err(ppd->dd,
17fb4f29
JJ
6832 "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6833 ppd->link_speed_active, ppd->link_speed_enabled);
77241056 6834 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
17fb4f29 6835 OPA_LINKDOWN_REASON_SPEED_POLICY);
77241056 6836 set_link_state(ppd, HLS_DN_OFFLINE);
8ebd4cf1 6837 tune_serdes(ppd);
77241056
MM
6838 start_link(ppd);
6839 }
6840}
6841
4d114fdd
JJ
6842/*
6843 * Several pieces of LNI information were cached for SMA in ppd.
6844 * Reset these on link down
6845 */
77241056
MM
6846static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6847{
6848 ppd->neighbor_guid = 0;
6849 ppd->neighbor_port_number = 0;
6850 ppd->neighbor_type = 0;
6851 ppd->neighbor_fm_security = 0;
6852}
6853
6854/*
6855 * Handle a link down interrupt from the 8051.
6856 *
6857 * This is a work-queue function outside of the interrupt.
6858 */
6859void handle_link_down(struct work_struct *work)
6860{
6861 u8 lcl_reason, neigh_reason = 0;
6862 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6863 link_down_work);
6864
8ebd4cf1
EH
6865 if ((ppd->host_link_state &
6866 (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
6867 ppd->port_type == PORT_TYPE_FIXED)
6868 ppd->offline_disabled_reason =
6869 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
6870
6871 /* Go offline first, then deal with reading/writing through 8051 */
77241056
MM
6872 set_link_state(ppd, HLS_DN_OFFLINE);
6873
6874 lcl_reason = 0;
6875 read_planned_down_reason_code(ppd->dd, &neigh_reason);
6876
6877 /*
6878 * If no reason, assume peer-initiated but missed
6879 * LinkGoingDown idle flits.
6880 */
6881 if (neigh_reason == 0)
6882 lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
6883
6884 set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
6885
6886 reset_neighbor_info(ppd);
6887
6888 /* disable the port */
6889 clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6890
4d114fdd
JJ
6891 /*
6892 * If there is no cable attached, turn the DC off. Otherwise,
6893 * start the link bring up.
6894 */
8ebd4cf1 6895 if (!qsfp_mod_present(ppd)) {
77241056 6896 dc_shutdown(ppd->dd);
8ebd4cf1
EH
6897 } else {
6898 tune_serdes(ppd);
77241056 6899 start_link(ppd);
8ebd4cf1 6900 }
77241056
MM
6901}
6902
6903void handle_link_bounce(struct work_struct *work)
6904{
6905 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6906 link_bounce_work);
6907
6908 /*
6909 * Only do something if the link is currently up.
6910 */
6911 if (ppd->host_link_state & HLS_UP) {
6912 set_link_state(ppd, HLS_DN_OFFLINE);
8ebd4cf1 6913 tune_serdes(ppd);
77241056
MM
6914 start_link(ppd);
6915 } else {
6916 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
17fb4f29 6917 __func__, link_state_name(ppd->host_link_state));
77241056
MM
6918 }
6919}
6920
6921/*
6922 * Mask conversion: Capability exchange to Port LTP. The capability
6923 * exchange has an implicit 16b CRC that is mandatory.
6924 */
6925static int cap_to_port_ltp(int cap)
6926{
6927 int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
6928
6929 if (cap & CAP_CRC_14B)
6930 port_ltp |= PORT_LTP_CRC_MODE_14;
6931 if (cap & CAP_CRC_48B)
6932 port_ltp |= PORT_LTP_CRC_MODE_48;
6933 if (cap & CAP_CRC_12B_16B_PER_LANE)
6934 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
6935
6936 return port_ltp;
6937}
6938
6939/*
6940 * Convert an OPA Port LTP mask to capability mask
6941 */
6942int port_ltp_to_cap(int port_ltp)
6943{
6944 int cap_mask = 0;
6945
6946 if (port_ltp & PORT_LTP_CRC_MODE_14)
6947 cap_mask |= CAP_CRC_14B;
6948 if (port_ltp & PORT_LTP_CRC_MODE_48)
6949 cap_mask |= CAP_CRC_48B;
6950 if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
6951 cap_mask |= CAP_CRC_12B_16B_PER_LANE;
6952
6953 return cap_mask;
6954}
6955
6956/*
6957 * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
6958 */
6959static int lcb_to_port_ltp(int lcb_crc)
6960{
6961 int port_ltp = 0;
6962
6963 if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
6964 port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
6965 else if (lcb_crc == LCB_CRC_48B)
6966 port_ltp = PORT_LTP_CRC_MODE_48;
6967 else if (lcb_crc == LCB_CRC_14B)
6968 port_ltp = PORT_LTP_CRC_MODE_14;
6969 else
6970 port_ltp = PORT_LTP_CRC_MODE_16;
6971
6972 return port_ltp;
6973}
6974
6975/*
6976 * Our neighbor has indicated that we are allowed to act as a fabric
6977 * manager, so place the full management partition key in the second
6978 * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
6979 * that we should already have the limited management partition key in
6980 * array element 1, and also that the port is not yet up when
6981 * add_full_mgmt_pkey() is invoked.
6982 */
6983static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
6984{
6985 struct hfi1_devdata *dd = ppd->dd;
6986
8764522e
DL
6987 /* Sanity check - ppd->pkeys[2] should be 0, or already initalized */
6988 if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY)))
6989 dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
6990 __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
77241056
MM
6991 ppd->pkeys[2] = FULL_MGMT_P_KEY;
6992 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
6993}
6994
6995/*
6996 * Convert the given link width to the OPA link width bitmask.
6997 */
6998static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
6999{
7000 switch (width) {
7001 case 0:
7002 /*
7003 * Simulator and quick linkup do not set the width.
7004 * Just set it to 4x without complaint.
7005 */
7006 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7007 return OPA_LINK_WIDTH_4X;
7008 return 0; /* no lanes up */
7009 case 1: return OPA_LINK_WIDTH_1X;
7010 case 2: return OPA_LINK_WIDTH_2X;
7011 case 3: return OPA_LINK_WIDTH_3X;
7012 default:
7013 dd_dev_info(dd, "%s: invalid width %d, using 4\n",
17fb4f29 7014 __func__, width);
77241056
MM
7015 /* fall through */
7016 case 4: return OPA_LINK_WIDTH_4X;
7017 }
7018}
7019
7020/*
7021 * Do a population count on the bottom nibble.
7022 */
7023static const u8 bit_counts[16] = {
7024 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7025};
f4d507cd 7026
77241056
MM
7027static inline u8 nibble_to_count(u8 nibble)
7028{
7029 return bit_counts[nibble & 0xf];
7030}
7031
7032/*
7033 * Read the active lane information from the 8051 registers and return
7034 * their widths.
7035 *
7036 * Active lane information is found in these 8051 registers:
7037 * enable_lane_tx
7038 * enable_lane_rx
7039 */
7040static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7041 u16 *rx_width)
7042{
7043 u16 tx, rx;
7044 u8 enable_lane_rx;
7045 u8 enable_lane_tx;
7046 u8 tx_polarity_inversion;
7047 u8 rx_polarity_inversion;
7048 u8 max_rate;
7049
7050 /* read the active lanes */
7051 read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
17fb4f29 7052 &rx_polarity_inversion, &max_rate);
77241056
MM
7053 read_local_lni(dd, &enable_lane_rx);
7054
7055 /* convert to counts */
7056 tx = nibble_to_count(enable_lane_tx);
7057 rx = nibble_to_count(enable_lane_rx);
7058
7059 /*
7060 * Set link_speed_active here, overriding what was set in
7061 * handle_verify_cap(). The ASIC 8051 firmware does not correctly
7062 * set the max_rate field in handle_verify_cap until v0.19.
7063 */
d0d236ea
JJ
7064 if ((dd->icode == ICODE_RTL_SILICON) &&
7065 (dd->dc8051_ver < dc8051_ver(0, 19))) {
77241056
MM
7066 /* max_rate: 0 = 12.5G, 1 = 25G */
7067 switch (max_rate) {
7068 case 0:
7069 dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7070 break;
7071 default:
7072 dd_dev_err(dd,
17fb4f29
JJ
7073 "%s: unexpected max rate %d, using 25Gb\n",
7074 __func__, (int)max_rate);
77241056
MM
7075 /* fall through */
7076 case 1:
7077 dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7078 break;
7079 }
7080 }
7081
7082 dd_dev_info(dd,
17fb4f29
JJ
7083 "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7084 enable_lane_tx, tx, enable_lane_rx, rx);
77241056
MM
7085 *tx_width = link_width_to_bits(dd, tx);
7086 *rx_width = link_width_to_bits(dd, rx);
7087}
7088
7089/*
7090 * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7091 * Valid after the end of VerifyCap and during LinkUp. Does not change
7092 * after link up. I.e. look elsewhere for downgrade information.
7093 *
7094 * Bits are:
7095 * + bits [7:4] contain the number of active transmitters
7096 * + bits [3:0] contain the number of active receivers
7097 * These are numbers 1 through 4 and can be different values if the
7098 * link is asymmetric.
7099 *
7100 * verify_cap_local_fm_link_width[0] retains its original value.
7101 */
7102static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7103 u16 *rx_width)
7104{
7105 u16 widths, tx, rx;
7106 u8 misc_bits, local_flags;
7107 u16 active_tx, active_rx;
7108
7109 read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
7110 tx = widths >> 12;
7111 rx = (widths >> 8) & 0xf;
7112
7113 *tx_width = link_width_to_bits(dd, tx);
7114 *rx_width = link_width_to_bits(dd, rx);
7115
7116 /* print the active widths */
7117 get_link_widths(dd, &active_tx, &active_rx);
7118}
7119
7120/*
7121 * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7122 * hardware information when the link first comes up.
7123 *
7124 * The link width is not available until after VerifyCap.AllFramesReceived
7125 * (the trigger for handle_verify_cap), so this is outside that routine
7126 * and should be called when the 8051 signals linkup.
7127 */
7128void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7129{
7130 u16 tx_width, rx_width;
7131
7132 /* get end-of-LNI link widths */
7133 get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7134
7135 /* use tx_width as the link is supposed to be symmetric on link up */
7136 ppd->link_width_active = tx_width;
7137 /* link width downgrade active (LWD.A) starts out matching LW.A */
7138 ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7139 ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7140 /* per OPA spec, on link up LWD.E resets to LWD.S */
7141 ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7142 /* cache the active egress rate (units {10^6 bits/sec]) */
7143 ppd->current_egress_rate = active_egress_rate(ppd);
7144}
7145
7146/*
7147 * Handle a verify capabilities interrupt from the 8051.
7148 *
7149 * This is a work-queue function outside of the interrupt.
7150 */
7151void handle_verify_cap(struct work_struct *work)
7152{
7153 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7154 link_vc_work);
7155 struct hfi1_devdata *dd = ppd->dd;
7156 u64 reg;
7157 u8 power_management;
7158 u8 continious;
7159 u8 vcu;
7160 u8 vau;
7161 u8 z;
7162 u16 vl15buf;
7163 u16 link_widths;
7164 u16 crc_mask;
7165 u16 crc_val;
7166 u16 device_id;
7167 u16 active_tx, active_rx;
7168 u8 partner_supported_crc;
7169 u8 remote_tx_rate;
7170 u8 device_rev;
7171
7172 set_link_state(ppd, HLS_VERIFY_CAP);
7173
7174 lcb_shutdown(dd, 0);
7175 adjust_lcb_for_fpga_serdes(dd);
7176
7177 /*
7178 * These are now valid:
7179 * remote VerifyCap fields in the general LNI config
7180 * CSR DC8051_STS_REMOTE_GUID
7181 * CSR DC8051_STS_REMOTE_NODE_TYPE
7182 * CSR DC8051_STS_REMOTE_FM_SECURITY
7183 * CSR DC8051_STS_REMOTE_PORT_NO
7184 */
7185
7186 read_vc_remote_phy(dd, &power_management, &continious);
17fb4f29
JJ
7187 read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7188 &partner_supported_crc);
77241056
MM
7189 read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7190 read_remote_device_id(dd, &device_id, &device_rev);
7191 /*
7192 * And the 'MgmtAllowed' information, which is exchanged during
7193 * LNI, is also be available at this point.
7194 */
7195 read_mgmt_allowed(dd, &ppd->mgmt_allowed);
7196 /* print the active widths */
7197 get_link_widths(dd, &active_tx, &active_rx);
7198 dd_dev_info(dd,
17fb4f29
JJ
7199 "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7200 (int)power_management, (int)continious);
77241056 7201 dd_dev_info(dd,
17fb4f29
JJ
7202 "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7203 (int)vau, (int)z, (int)vcu, (int)vl15buf,
7204 (int)partner_supported_crc);
77241056 7205 dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
17fb4f29 7206 (u32)remote_tx_rate, (u32)link_widths);
77241056 7207 dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
17fb4f29 7208 (u32)device_id, (u32)device_rev);
77241056
MM
7209 /*
7210 * The peer vAU value just read is the peer receiver value. HFI does
7211 * not support a transmit vAU of 0 (AU == 8). We advertised that
7212 * with Z=1 in the fabric capabilities sent to the peer. The peer
7213 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7214 * receive to vAU of 1 (AU == 16). Do the same here. We do not care
7215 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7216 * subject to the Z value exception.
7217 */
7218 if (vau == 0)
7219 vau = 1;
7220 set_up_vl15(dd, vau, vl15buf);
7221
7222 /* set up the LCB CRC mode */
7223 crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7224
7225 /* order is important: use the lowest bit in common */
7226 if (crc_mask & CAP_CRC_14B)
7227 crc_val = LCB_CRC_14B;
7228 else if (crc_mask & CAP_CRC_48B)
7229 crc_val = LCB_CRC_48B;
7230 else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7231 crc_val = LCB_CRC_12B_16B_PER_LANE;
7232 else
7233 crc_val = LCB_CRC_16B;
7234
7235 dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7236 write_csr(dd, DC_LCB_CFG_CRC_MODE,
7237 (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7238
7239 /* set (14b only) or clear sideband credit */
7240 reg = read_csr(dd, SEND_CM_CTRL);
7241 if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7242 write_csr(dd, SEND_CM_CTRL,
17fb4f29 7243 reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
77241056
MM
7244 } else {
7245 write_csr(dd, SEND_CM_CTRL,
17fb4f29 7246 reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
77241056
MM
7247 }
7248
7249 ppd->link_speed_active = 0; /* invalid value */
7250 if (dd->dc8051_ver < dc8051_ver(0, 20)) {
7251 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7252 switch (remote_tx_rate) {
7253 case 0:
7254 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7255 break;
7256 case 1:
7257 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7258 break;
7259 }
7260 } else {
7261 /* actual rate is highest bit of the ANDed rates */
7262 u8 rate = remote_tx_rate & ppd->local_tx_rate;
7263
7264 if (rate & 2)
7265 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7266 else if (rate & 1)
7267 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7268 }
7269 if (ppd->link_speed_active == 0) {
7270 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
17fb4f29 7271 __func__, (int)remote_tx_rate);
77241056
MM
7272 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7273 }
7274
7275 /*
7276 * Cache the values of the supported, enabled, and active
7277 * LTP CRC modes to return in 'portinfo' queries. But the bit
7278 * flags that are returned in the portinfo query differ from
7279 * what's in the link_crc_mask, crc_sizes, and crc_val
7280 * variables. Convert these here.
7281 */
7282 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7283 /* supported crc modes */
7284 ppd->port_ltp_crc_mode |=
7285 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7286 /* enabled crc modes */
7287 ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7288 /* active crc mode */
7289
7290 /* set up the remote credit return table */
7291 assign_remote_cm_au_table(dd, vcu);
7292
7293 /*
7294 * The LCB is reset on entry to handle_verify_cap(), so this must
7295 * be applied on every link up.
7296 *
7297 * Adjust LCB error kill enable to kill the link if
7298 * these RBUF errors are seen:
7299 * REPLAY_BUF_MBE_SMASK
7300 * FLIT_INPUT_BUF_MBE_SMASK
7301 */
995deafa 7302 if (is_ax(dd)) { /* fixed in B0 */
77241056
MM
7303 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7304 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7305 | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7306 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7307 }
7308
7309 /* pull LCB fifos out of reset - all fifo clocks must be stable */
7310 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7311
7312 /* give 8051 access to the LCB CSRs */
7313 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7314 set_8051_lcb_access(dd);
7315
7316 ppd->neighbor_guid =
7317 read_csr(dd, DC_DC8051_STS_REMOTE_GUID);
7318 ppd->neighbor_port_number = read_csr(dd, DC_DC8051_STS_REMOTE_PORT_NO) &
7319 DC_DC8051_STS_REMOTE_PORT_NO_VAL_SMASK;
7320 ppd->neighbor_type =
7321 read_csr(dd, DC_DC8051_STS_REMOTE_NODE_TYPE) &
7322 DC_DC8051_STS_REMOTE_NODE_TYPE_VAL_MASK;
7323 ppd->neighbor_fm_security =
7324 read_csr(dd, DC_DC8051_STS_REMOTE_FM_SECURITY) &
7325 DC_DC8051_STS_LOCAL_FM_SECURITY_DISABLED_MASK;
7326 dd_dev_info(dd,
17fb4f29
JJ
7327 "Neighbor Guid: %llx Neighbor type %d MgmtAllowed %d FM security bypass %d\n",
7328 ppd->neighbor_guid, ppd->neighbor_type,
7329 ppd->mgmt_allowed, ppd->neighbor_fm_security);
77241056
MM
7330 if (ppd->mgmt_allowed)
7331 add_full_mgmt_pkey(ppd);
7332
7333 /* tell the 8051 to go to LinkUp */
7334 set_link_state(ppd, HLS_GOING_UP);
7335}
7336
7337/*
7338 * Apply the link width downgrade enabled policy against the current active
7339 * link widths.
7340 *
7341 * Called when the enabled policy changes or the active link widths change.
7342 */
7343void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
7344{
77241056 7345 int do_bounce = 0;
323fd785
DL
7346 int tries;
7347 u16 lwde;
77241056
MM
7348 u16 tx, rx;
7349
323fd785
DL
7350 /* use the hls lock to avoid a race with actual link up */
7351 tries = 0;
7352retry:
77241056
MM
7353 mutex_lock(&ppd->hls_lock);
7354 /* only apply if the link is up */
323fd785
DL
7355 if (!(ppd->host_link_state & HLS_UP)) {
7356 /* still going up..wait and retry */
7357 if (ppd->host_link_state & HLS_GOING_UP) {
7358 if (++tries < 1000) {
7359 mutex_unlock(&ppd->hls_lock);
7360 usleep_range(100, 120); /* arbitrary */
7361 goto retry;
7362 }
7363 dd_dev_err(ppd->dd,
7364 "%s: giving up waiting for link state change\n",
7365 __func__);
7366 }
7367 goto done;
7368 }
7369
7370 lwde = ppd->link_width_downgrade_enabled;
77241056
MM
7371
7372 if (refresh_widths) {
7373 get_link_widths(ppd->dd, &tx, &rx);
7374 ppd->link_width_downgrade_tx_active = tx;
7375 ppd->link_width_downgrade_rx_active = rx;
7376 }
7377
7378 if (lwde == 0) {
7379 /* downgrade is disabled */
7380
7381 /* bounce if not at starting active width */
17fb4f29
JJ
7382 if ((ppd->link_width_active !=
7383 ppd->link_width_downgrade_tx_active) ||
7384 (ppd->link_width_active !=
7385 ppd->link_width_downgrade_rx_active)) {
77241056 7386 dd_dev_err(ppd->dd,
17fb4f29 7387 "Link downgrade is disabled and link has downgraded, downing link\n");
77241056 7388 dd_dev_err(ppd->dd,
17fb4f29
JJ
7389 " original 0x%x, tx active 0x%x, rx active 0x%x\n",
7390 ppd->link_width_active,
7391 ppd->link_width_downgrade_tx_active,
7392 ppd->link_width_downgrade_rx_active);
77241056
MM
7393 do_bounce = 1;
7394 }
d0d236ea
JJ
7395 } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7396 (lwde & ppd->link_width_downgrade_rx_active) == 0) {
77241056
MM
7397 /* Tx or Rx is outside the enabled policy */
7398 dd_dev_err(ppd->dd,
17fb4f29 7399 "Link is outside of downgrade allowed, downing link\n");
77241056 7400 dd_dev_err(ppd->dd,
17fb4f29
JJ
7401 " enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7402 lwde, ppd->link_width_downgrade_tx_active,
7403 ppd->link_width_downgrade_rx_active);
77241056
MM
7404 do_bounce = 1;
7405 }
7406
323fd785
DL
7407done:
7408 mutex_unlock(&ppd->hls_lock);
7409
77241056
MM
7410 if (do_bounce) {
7411 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
17fb4f29 7412 OPA_LINKDOWN_REASON_WIDTH_POLICY);
77241056 7413 set_link_state(ppd, HLS_DN_OFFLINE);
8ebd4cf1 7414 tune_serdes(ppd);
77241056
MM
7415 start_link(ppd);
7416 }
7417}
7418
7419/*
7420 * Handle a link downgrade interrupt from the 8051.
7421 *
7422 * This is a work-queue function outside of the interrupt.
7423 */
7424void handle_link_downgrade(struct work_struct *work)
7425{
7426 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7427 link_downgrade_work);
7428
7429 dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7430 apply_link_downgrade_policy(ppd, 1);
7431}
7432
7433static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7434{
7435 return flag_string(buf, buf_len, flags, dcc_err_flags,
7436 ARRAY_SIZE(dcc_err_flags));
7437}
7438
7439static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7440{
7441 return flag_string(buf, buf_len, flags, lcb_err_flags,
7442 ARRAY_SIZE(lcb_err_flags));
7443}
7444
7445static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7446{
7447 return flag_string(buf, buf_len, flags, dc8051_err_flags,
7448 ARRAY_SIZE(dc8051_err_flags));
7449}
7450
7451static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7452{
7453 return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7454 ARRAY_SIZE(dc8051_info_err_flags));
7455}
7456
7457static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7458{
7459 return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7460 ARRAY_SIZE(dc8051_info_host_msg_flags));
7461}
7462
7463static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7464{
7465 struct hfi1_pportdata *ppd = dd->pport;
7466 u64 info, err, host_msg;
7467 int queue_link_down = 0;
7468 char buf[96];
7469
7470 /* look at the flags */
7471 if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7472 /* 8051 information set by firmware */
7473 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7474 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7475 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7476 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7477 host_msg = (info >>
7478 DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7479 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7480
7481 /*
7482 * Handle error flags.
7483 */
7484 if (err & FAILED_LNI) {
7485 /*
7486 * LNI error indications are cleared by the 8051
7487 * only when starting polling. Only pay attention
7488 * to them when in the states that occur during
7489 * LNI.
7490 */
7491 if (ppd->host_link_state
7492 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7493 queue_link_down = 1;
7494 dd_dev_info(dd, "Link error: %s\n",
17fb4f29
JJ
7495 dc8051_info_err_string(buf,
7496 sizeof(buf),
7497 err &
7498 FAILED_LNI));
77241056
MM
7499 }
7500 err &= ~(u64)FAILED_LNI;
7501 }
6d014530
DL
7502 /* unknown frames can happen durning LNI, just count */
7503 if (err & UNKNOWN_FRAME) {
7504 ppd->unknown_frame_count++;
7505 err &= ~(u64)UNKNOWN_FRAME;
7506 }
77241056
MM
7507 if (err) {
7508 /* report remaining errors, but do not do anything */
7509 dd_dev_err(dd, "8051 info error: %s\n",
17fb4f29
JJ
7510 dc8051_info_err_string(buf, sizeof(buf),
7511 err));
77241056
MM
7512 }
7513
7514 /*
7515 * Handle host message flags.
7516 */
7517 if (host_msg & HOST_REQ_DONE) {
7518 /*
7519 * Presently, the driver does a busy wait for
7520 * host requests to complete. This is only an
7521 * informational message.
7522 * NOTE: The 8051 clears the host message
7523 * information *on the next 8051 command*.
7524 * Therefore, when linkup is achieved,
7525 * this flag will still be set.
7526 */
7527 host_msg &= ~(u64)HOST_REQ_DONE;
7528 }
7529 if (host_msg & BC_SMA_MSG) {
7530 queue_work(ppd->hfi1_wq, &ppd->sma_message_work);
7531 host_msg &= ~(u64)BC_SMA_MSG;
7532 }
7533 if (host_msg & LINKUP_ACHIEVED) {
7534 dd_dev_info(dd, "8051: Link up\n");
7535 queue_work(ppd->hfi1_wq, &ppd->link_up_work);
7536 host_msg &= ~(u64)LINKUP_ACHIEVED;
7537 }
7538 if (host_msg & EXT_DEVICE_CFG_REQ) {
cbac386a 7539 queue_work(ppd->hfi1_wq, &ppd->dc_host_req_work);
77241056
MM
7540 host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7541 }
7542 if (host_msg & VERIFY_CAP_FRAME) {
7543 queue_work(ppd->hfi1_wq, &ppd->link_vc_work);
7544 host_msg &= ~(u64)VERIFY_CAP_FRAME;
7545 }
7546 if (host_msg & LINK_GOING_DOWN) {
7547 const char *extra = "";
7548 /* no downgrade action needed if going down */
7549 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7550 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7551 extra = " (ignoring downgrade)";
7552 }
7553 dd_dev_info(dd, "8051: Link down%s\n", extra);
7554 queue_link_down = 1;
7555 host_msg &= ~(u64)LINK_GOING_DOWN;
7556 }
7557 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7558 queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work);
7559 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7560 }
7561 if (host_msg) {
7562 /* report remaining messages, but do not do anything */
7563 dd_dev_info(dd, "8051 info host message: %s\n",
17fb4f29
JJ
7564 dc8051_info_host_msg_string(buf,
7565 sizeof(buf),
7566 host_msg));
77241056
MM
7567 }
7568
7569 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7570 }
7571 if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7572 /*
7573 * Lost the 8051 heartbeat. If this happens, we
7574 * receive constant interrupts about it. Disable
7575 * the interrupt after the first.
7576 */
7577 dd_dev_err(dd, "Lost 8051 heartbeat\n");
7578 write_csr(dd, DC_DC8051_ERR_EN,
17fb4f29
JJ
7579 read_csr(dd, DC_DC8051_ERR_EN) &
7580 ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
77241056
MM
7581
7582 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7583 }
7584 if (reg) {
7585 /* report the error, but do not do anything */
7586 dd_dev_err(dd, "8051 error: %s\n",
17fb4f29 7587 dc8051_err_string(buf, sizeof(buf), reg));
77241056
MM
7588 }
7589
7590 if (queue_link_down) {
4d114fdd
JJ
7591 /*
7592 * if the link is already going down or disabled, do not
7593 * queue another
7594 */
d0d236ea
JJ
7595 if ((ppd->host_link_state &
7596 (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7597 ppd->link_enabled == 0) {
77241056 7598 dd_dev_info(dd, "%s: not queuing link down\n",
17fb4f29 7599 __func__);
77241056
MM
7600 } else {
7601 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
7602 }
7603 }
7604}
7605
7606static const char * const fm_config_txt[] = {
7607[0] =
7608 "BadHeadDist: Distance violation between two head flits",
7609[1] =
7610 "BadTailDist: Distance violation between two tail flits",
7611[2] =
7612 "BadCtrlDist: Distance violation between two credit control flits",
7613[3] =
7614 "BadCrdAck: Credits return for unsupported VL",
7615[4] =
7616 "UnsupportedVLMarker: Received VL Marker",
7617[5] =
7618 "BadPreempt: Exceeded the preemption nesting level",
7619[6] =
7620 "BadControlFlit: Received unsupported control flit",
7621/* no 7 */
7622[8] =
7623 "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7624};
7625
7626static const char * const port_rcv_txt[] = {
7627[1] =
7628 "BadPktLen: Illegal PktLen",
7629[2] =
7630 "PktLenTooLong: Packet longer than PktLen",
7631[3] =
7632 "PktLenTooShort: Packet shorter than PktLen",
7633[4] =
7634 "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7635[5] =
7636 "BadDLID: Illegal DLID (0, doesn't match HFI)",
7637[6] =
7638 "BadL2: Illegal L2 opcode",
7639[7] =
7640 "BadSC: Unsupported SC",
7641[9] =
7642 "BadRC: Illegal RC",
7643[11] =
7644 "PreemptError: Preempting with same VL",
7645[12] =
7646 "PreemptVL15: Preempting a VL15 packet",
7647};
7648
7649#define OPA_LDR_FMCONFIG_OFFSET 16
7650#define OPA_LDR_PORTRCV_OFFSET 0
7651static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7652{
7653 u64 info, hdr0, hdr1;
7654 const char *extra;
7655 char buf[96];
7656 struct hfi1_pportdata *ppd = dd->pport;
7657 u8 lcl_reason = 0;
7658 int do_bounce = 0;
7659
7660 if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7661 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7662 info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7663 dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7664 /* set status bit */
7665 dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7666 }
7667 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7668 }
7669
7670 if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7671 struct hfi1_pportdata *ppd = dd->pport;
7672 /* this counter saturates at (2^32) - 1 */
7673 if (ppd->link_downed < (u32)UINT_MAX)
7674 ppd->link_downed++;
7675 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7676 }
7677
7678 if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7679 u8 reason_valid = 1;
7680
7681 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7682 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7683 dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7684 /* set status bit */
7685 dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7686 }
7687 switch (info) {
7688 case 0:
7689 case 1:
7690 case 2:
7691 case 3:
7692 case 4:
7693 case 5:
7694 case 6:
7695 extra = fm_config_txt[info];
7696 break;
7697 case 8:
7698 extra = fm_config_txt[info];
7699 if (ppd->port_error_action &
7700 OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7701 do_bounce = 1;
7702 /*
7703 * lcl_reason cannot be derived from info
7704 * for this error
7705 */
7706 lcl_reason =
7707 OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7708 }
7709 break;
7710 default:
7711 reason_valid = 0;
7712 snprintf(buf, sizeof(buf), "reserved%lld", info);
7713 extra = buf;
7714 break;
7715 }
7716
7717 if (reason_valid && !do_bounce) {
7718 do_bounce = ppd->port_error_action &
7719 (1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7720 lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7721 }
7722
7723 /* just report this */
7724 dd_dev_info(dd, "DCC Error: fmconfig error: %s\n", extra);
7725 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7726 }
7727
7728 if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7729 u8 reason_valid = 1;
7730
7731 info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7732 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7733 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7734 if (!(dd->err_info_rcvport.status_and_code &
7735 OPA_EI_STATUS_SMASK)) {
7736 dd->err_info_rcvport.status_and_code =
7737 info & OPA_EI_CODE_SMASK;
7738 /* set status bit */
7739 dd->err_info_rcvport.status_and_code |=
7740 OPA_EI_STATUS_SMASK;
4d114fdd
JJ
7741 /*
7742 * save first 2 flits in the packet that caused
7743 * the error
7744 */
77241056
MM
7745 dd->err_info_rcvport.packet_flit1 = hdr0;
7746 dd->err_info_rcvport.packet_flit2 = hdr1;
7747 }
7748 switch (info) {
7749 case 1:
7750 case 2:
7751 case 3:
7752 case 4:
7753 case 5:
7754 case 6:
7755 case 7:
7756 case 9:
7757 case 11:
7758 case 12:
7759 extra = port_rcv_txt[info];
7760 break;
7761 default:
7762 reason_valid = 0;
7763 snprintf(buf, sizeof(buf), "reserved%lld", info);
7764 extra = buf;
7765 break;
7766 }
7767
7768 if (reason_valid && !do_bounce) {
7769 do_bounce = ppd->port_error_action &
7770 (1 << (OPA_LDR_PORTRCV_OFFSET + info));
7771 lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
7772 }
7773
7774 /* just report this */
7775 dd_dev_info(dd, "DCC Error: PortRcv error: %s\n", extra);
7776 dd_dev_info(dd, " hdr0 0x%llx, hdr1 0x%llx\n",
17fb4f29 7777 hdr0, hdr1);
77241056
MM
7778
7779 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
7780 }
7781
7782 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
7783 /* informative only */
7784 dd_dev_info(dd, "8051 access to LCB blocked\n");
7785 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
7786 }
7787 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
7788 /* informative only */
7789 dd_dev_info(dd, "host access to LCB blocked\n");
7790 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
7791 }
7792
7793 /* report any remaining errors */
7794 if (reg)
7795 dd_dev_info(dd, "DCC Error: %s\n",
17fb4f29 7796 dcc_err_string(buf, sizeof(buf), reg));
77241056
MM
7797
7798 if (lcl_reason == 0)
7799 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
7800
7801 if (do_bounce) {
7802 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
7803 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
7804 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
7805 }
7806}
7807
7808static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7809{
7810 char buf[96];
7811
7812 dd_dev_info(dd, "LCB Error: %s\n",
17fb4f29 7813 lcb_err_string(buf, sizeof(buf), reg));
77241056
MM
7814}
7815
7816/*
7817 * CCE block DC interrupt. Source is < 8.
7818 */
7819static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
7820{
7821 const struct err_reg_info *eri = &dc_errs[source];
7822
7823 if (eri->handler) {
7824 interrupt_clear_down(dd, 0, eri);
7825 } else if (source == 3 /* dc_lbm_int */) {
7826 /*
7827 * This indicates that a parity error has occurred on the
7828 * address/control lines presented to the LBM. The error
7829 * is a single pulse, there is no associated error flag,
7830 * and it is non-maskable. This is because if a parity
7831 * error occurs on the request the request is dropped.
7832 * This should never occur, but it is nice to know if it
7833 * ever does.
7834 */
7835 dd_dev_err(dd, "Parity error in DC LBM block\n");
7836 } else {
7837 dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
7838 }
7839}
7840
7841/*
7842 * TX block send credit interrupt. Source is < 160.
7843 */
7844static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
7845{
7846 sc_group_release_update(dd, source);
7847}
7848
7849/*
7850 * TX block SDMA interrupt. Source is < 48.
7851 *
7852 * SDMA interrupts are grouped by type:
7853 *
7854 * 0 - N-1 = SDma
7855 * N - 2N-1 = SDmaProgress
7856 * 2N - 3N-1 = SDmaIdle
7857 */
7858static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
7859{
7860 /* what interrupt */
7861 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
7862 /* which engine */
7863 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
7864
7865#ifdef CONFIG_SDMA_VERBOSITY
7866 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
7867 slashstrip(__FILE__), __LINE__, __func__);
7868 sdma_dumpstate(&dd->per_sdma[which]);
7869#endif
7870
7871 if (likely(what < 3 && which < dd->num_sdma)) {
7872 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
7873 } else {
7874 /* should not happen */
7875 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
7876 }
7877}
7878
7879/*
7880 * RX block receive available interrupt. Source is < 160.
7881 */
7882static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
7883{
7884 struct hfi1_ctxtdata *rcd;
7885 char *err_detail;
7886
7887 if (likely(source < dd->num_rcv_contexts)) {
7888 rcd = dd->rcd[source];
7889 if (rcd) {
7890 if (source < dd->first_user_ctxt)
f4f30031 7891 rcd->do_interrupt(rcd, 0);
77241056
MM
7892 else
7893 handle_user_interrupt(rcd);
7894 return; /* OK */
7895 }
7896 /* received an interrupt, but no rcd */
7897 err_detail = "dataless";
7898 } else {
7899 /* received an interrupt, but are not using that context */
7900 err_detail = "out of range";
7901 }
7902 dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
17fb4f29 7903 err_detail, source);
77241056
MM
7904}
7905
7906/*
7907 * RX block receive urgent interrupt. Source is < 160.
7908 */
7909static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
7910{
7911 struct hfi1_ctxtdata *rcd;
7912 char *err_detail;
7913
7914 if (likely(source < dd->num_rcv_contexts)) {
7915 rcd = dd->rcd[source];
7916 if (rcd) {
7917 /* only pay attention to user urgent interrupts */
7918 if (source >= dd->first_user_ctxt)
7919 handle_user_interrupt(rcd);
7920 return; /* OK */
7921 }
7922 /* received an interrupt, but no rcd */
7923 err_detail = "dataless";
7924 } else {
7925 /* received an interrupt, but are not using that context */
7926 err_detail = "out of range";
7927 }
7928 dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
17fb4f29 7929 err_detail, source);
77241056
MM
7930}
7931
7932/*
7933 * Reserved range interrupt. Should not be called in normal operation.
7934 */
7935static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
7936{
7937 char name[64];
7938
7939 dd_dev_err(dd, "unexpected %s interrupt\n",
17fb4f29 7940 is_reserved_name(name, sizeof(name), source));
77241056
MM
7941}
7942
7943static const struct is_table is_table[] = {
4d114fdd
JJ
7944/*
7945 * start end
7946 * name func interrupt func
7947 */
77241056
MM
7948{ IS_GENERAL_ERR_START, IS_GENERAL_ERR_END,
7949 is_misc_err_name, is_misc_err_int },
7950{ IS_SDMAENG_ERR_START, IS_SDMAENG_ERR_END,
7951 is_sdma_eng_err_name, is_sdma_eng_err_int },
7952{ IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
7953 is_sendctxt_err_name, is_sendctxt_err_int },
7954{ IS_SDMA_START, IS_SDMA_END,
7955 is_sdma_eng_name, is_sdma_eng_int },
7956{ IS_VARIOUS_START, IS_VARIOUS_END,
7957 is_various_name, is_various_int },
7958{ IS_DC_START, IS_DC_END,
7959 is_dc_name, is_dc_int },
7960{ IS_RCVAVAIL_START, IS_RCVAVAIL_END,
7961 is_rcv_avail_name, is_rcv_avail_int },
7962{ IS_RCVURGENT_START, IS_RCVURGENT_END,
7963 is_rcv_urgent_name, is_rcv_urgent_int },
7964{ IS_SENDCREDIT_START, IS_SENDCREDIT_END,
7965 is_send_credit_name, is_send_credit_int},
7966{ IS_RESERVED_START, IS_RESERVED_END,
7967 is_reserved_name, is_reserved_int},
7968};
7969
7970/*
7971 * Interrupt source interrupt - called when the given source has an interrupt.
7972 * Source is a bit index into an array of 64-bit integers.
7973 */
7974static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
7975{
7976 const struct is_table *entry;
7977
7978 /* avoids a double compare by walking the table in-order */
7979 for (entry = &is_table[0]; entry->is_name; entry++) {
7980 if (source < entry->end) {
7981 trace_hfi1_interrupt(dd, entry, source);
7982 entry->is_int(dd, source - entry->start);
7983 return;
7984 }
7985 }
7986 /* fell off the end */
7987 dd_dev_err(dd, "invalid interrupt source %u\n", source);
7988}
7989
7990/*
7991 * General interrupt handler. This is able to correctly handle
7992 * all interrupts in case INTx is used.
7993 */
7994static irqreturn_t general_interrupt(int irq, void *data)
7995{
7996 struct hfi1_devdata *dd = data;
7997 u64 regs[CCE_NUM_INT_CSRS];
7998 u32 bit;
7999 int i;
8000
8001 this_cpu_inc(*dd->int_counter);
8002
8003 /* phase 1: scan and clear all handled interrupts */
8004 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8005 if (dd->gi_mask[i] == 0) {
8006 regs[i] = 0; /* used later */
8007 continue;
8008 }
8009 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8010 dd->gi_mask[i];
8011 /* only clear if anything is set */
8012 if (regs[i])
8013 write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8014 }
8015
8016 /* phase 2: call the appropriate handler */
8017 for_each_set_bit(bit, (unsigned long *)&regs[0],
17fb4f29 8018 CCE_NUM_INT_CSRS * 64) {
77241056
MM
8019 is_interrupt(dd, bit);
8020 }
8021
8022 return IRQ_HANDLED;
8023}
8024
8025static irqreturn_t sdma_interrupt(int irq, void *data)
8026{
8027 struct sdma_engine *sde = data;
8028 struct hfi1_devdata *dd = sde->dd;
8029 u64 status;
8030
8031#ifdef CONFIG_SDMA_VERBOSITY
8032 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8033 slashstrip(__FILE__), __LINE__, __func__);
8034 sdma_dumpstate(sde);
8035#endif
8036
8037 this_cpu_inc(*dd->int_counter);
8038
8039 /* This read_csr is really bad in the hot path */
8040 status = read_csr(dd,
17fb4f29
JJ
8041 CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8042 & sde->imask;
77241056
MM
8043 if (likely(status)) {
8044 /* clear the interrupt(s) */
8045 write_csr(dd,
17fb4f29
JJ
8046 CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8047 status);
77241056
MM
8048
8049 /* handle the interrupt(s) */
8050 sdma_engine_interrupt(sde, status);
8051 } else
8052 dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n",
17fb4f29 8053 sde->this_idx);
77241056
MM
8054
8055 return IRQ_HANDLED;
8056}
8057
8058/*
ecd42f8d
DL
8059 * Clear the receive interrupt. Use a read of the interrupt clear CSR
8060 * to insure that the write completed. This does NOT guarantee that
8061 * queued DMA writes to memory from the chip are pushed.
f4f30031
DL
8062 */
8063static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8064{
8065 struct hfi1_devdata *dd = rcd->dd;
8066 u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8067
8068 mmiowb(); /* make sure everything before is written */
8069 write_csr(dd, addr, rcd->imask);
8070 /* force the above write on the chip and get a value back */
8071 (void)read_csr(dd, addr);
8072}
8073
8074/* force the receive interrupt */
fb9036dd 8075void force_recv_intr(struct hfi1_ctxtdata *rcd)
f4f30031
DL
8076{
8077 write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8078}
8079
ecd42f8d
DL
8080/*
8081 * Return non-zero if a packet is present.
8082 *
8083 * This routine is called when rechecking for packets after the RcvAvail
8084 * interrupt has been cleared down. First, do a quick check of memory for
8085 * a packet present. If not found, use an expensive CSR read of the context
8086 * tail to determine the actual tail. The CSR read is necessary because there
8087 * is no method to push pending DMAs to memory other than an interrupt and we
8088 * are trying to determine if we need to force an interrupt.
8089 */
f4f30031
DL
8090static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8091{
ecd42f8d
DL
8092 u32 tail;
8093 int present;
8094
f4f30031 8095 if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
ecd42f8d 8096 present = (rcd->seq_cnt ==
f4f30031 8097 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
ecd42f8d
DL
8098 else /* is RDMA rtail */
8099 present = (rcd->head != get_rcvhdrtail(rcd));
8100
8101 if (present)
8102 return 1;
f4f30031 8103
ecd42f8d
DL
8104 /* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8105 tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8106 return rcd->head != tail;
f4f30031
DL
8107}
8108
8109/*
8110 * Receive packet IRQ handler. This routine expects to be on its own IRQ.
8111 * This routine will try to handle packets immediately (latency), but if
8112 * it finds too many, it will invoke the thread handler (bandwitdh). The
16733b88 8113 * chip receive interrupt is *not* cleared down until this or the thread (if
f4f30031
DL
8114 * invoked) is finished. The intent is to avoid extra interrupts while we
8115 * are processing packets anyway.
77241056
MM
8116 */
8117static irqreturn_t receive_context_interrupt(int irq, void *data)
8118{
8119 struct hfi1_ctxtdata *rcd = data;
8120 struct hfi1_devdata *dd = rcd->dd;
f4f30031
DL
8121 int disposition;
8122 int present;
77241056
MM
8123
8124 trace_hfi1_receive_interrupt(dd, rcd->ctxt);
8125 this_cpu_inc(*dd->int_counter);
affa48de 8126 aspm_ctx_disable(rcd);
77241056 8127
f4f30031
DL
8128 /* receive interrupt remains blocked while processing packets */
8129 disposition = rcd->do_interrupt(rcd, 0);
77241056 8130
f4f30031
DL
8131 /*
8132 * Too many packets were seen while processing packets in this
8133 * IRQ handler. Invoke the handler thread. The receive interrupt
8134 * remains blocked.
8135 */
8136 if (disposition == RCV_PKT_LIMIT)
8137 return IRQ_WAKE_THREAD;
8138
8139 /*
8140 * The packet processor detected no more packets. Clear the receive
8141 * interrupt and recheck for a packet packet that may have arrived
8142 * after the previous check and interrupt clear. If a packet arrived,
8143 * force another interrupt.
8144 */
8145 clear_recv_intr(rcd);
8146 present = check_packet_present(rcd);
8147 if (present)
8148 force_recv_intr(rcd);
8149
8150 return IRQ_HANDLED;
8151}
8152
8153/*
8154 * Receive packet thread handler. This expects to be invoked with the
8155 * receive interrupt still blocked.
8156 */
8157static irqreturn_t receive_context_thread(int irq, void *data)
8158{
8159 struct hfi1_ctxtdata *rcd = data;
8160 int present;
8161
8162 /* receive interrupt is still blocked from the IRQ handler */
8163 (void)rcd->do_interrupt(rcd, 1);
8164
8165 /*
8166 * The packet processor will only return if it detected no more
8167 * packets. Hold IRQs here so we can safely clear the interrupt and
8168 * recheck for a packet that may have arrived after the previous
8169 * check and the interrupt clear. If a packet arrived, force another
8170 * interrupt.
8171 */
8172 local_irq_disable();
8173 clear_recv_intr(rcd);
8174 present = check_packet_present(rcd);
8175 if (present)
8176 force_recv_intr(rcd);
8177 local_irq_enable();
77241056
MM
8178
8179 return IRQ_HANDLED;
8180}
8181
8182/* ========================================================================= */
8183
8184u32 read_physical_state(struct hfi1_devdata *dd)
8185{
8186 u64 reg;
8187
8188 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8189 return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8190 & DC_DC8051_STS_CUR_STATE_PORT_MASK;
8191}
8192
fb9036dd 8193u32 read_logical_state(struct hfi1_devdata *dd)
77241056
MM
8194{
8195 u64 reg;
8196
8197 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8198 return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8199 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8200}
8201
8202static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8203{
8204 u64 reg;
8205
8206 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8207 /* clear current state, set new state */
8208 reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8209 reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8210 write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8211}
8212
8213/*
8214 * Use the 8051 to read a LCB CSR.
8215 */
8216static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8217{
8218 u32 regno;
8219 int ret;
8220
8221 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8222 if (acquire_lcb_access(dd, 0) == 0) {
8223 *data = read_csr(dd, addr);
8224 release_lcb_access(dd, 0);
8225 return 0;
8226 }
8227 return -EBUSY;
8228 }
8229
8230 /* register is an index of LCB registers: (offset - base) / 8 */
8231 regno = (addr - DC_LCB_CFG_RUN) >> 3;
8232 ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8233 if (ret != HCMD_SUCCESS)
8234 return -EBUSY;
8235 return 0;
8236}
8237
8238/*
8239 * Read an LCB CSR. Access may not be in host control, so check.
8240 * Return 0 on success, -EBUSY on failure.
8241 */
8242int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8243{
8244 struct hfi1_pportdata *ppd = dd->pport;
8245
8246 /* if up, go through the 8051 for the value */
8247 if (ppd->host_link_state & HLS_UP)
8248 return read_lcb_via_8051(dd, addr, data);
8249 /* if going up or down, no access */
8250 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8251 return -EBUSY;
8252 /* otherwise, host has access */
8253 *data = read_csr(dd, addr);
8254 return 0;
8255}
8256
8257/*
8258 * Use the 8051 to write a LCB CSR.
8259 */
8260static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8261{
3bf40d65
DL
8262 u32 regno;
8263 int ret;
77241056 8264
3bf40d65
DL
8265 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8266 (dd->dc8051_ver < dc8051_ver(0, 20))) {
8267 if (acquire_lcb_access(dd, 0) == 0) {
8268 write_csr(dd, addr, data);
8269 release_lcb_access(dd, 0);
8270 return 0;
8271 }
8272 return -EBUSY;
77241056 8273 }
3bf40d65
DL
8274
8275 /* register is an index of LCB registers: (offset - base) / 8 */
8276 regno = (addr - DC_LCB_CFG_RUN) >> 3;
8277 ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8278 if (ret != HCMD_SUCCESS)
8279 return -EBUSY;
8280 return 0;
77241056
MM
8281}
8282
8283/*
8284 * Write an LCB CSR. Access may not be in host control, so check.
8285 * Return 0 on success, -EBUSY on failure.
8286 */
8287int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8288{
8289 struct hfi1_pportdata *ppd = dd->pport;
8290
8291 /* if up, go through the 8051 for the value */
8292 if (ppd->host_link_state & HLS_UP)
8293 return write_lcb_via_8051(dd, addr, data);
8294 /* if going up or down, no access */
8295 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8296 return -EBUSY;
8297 /* otherwise, host has access */
8298 write_csr(dd, addr, data);
8299 return 0;
8300}
8301
8302/*
8303 * Returns:
8304 * < 0 = Linux error, not able to get access
8305 * > 0 = 8051 command RETURN_CODE
8306 */
8307static int do_8051_command(
8308 struct hfi1_devdata *dd,
8309 u32 type,
8310 u64 in_data,
8311 u64 *out_data)
8312{
8313 u64 reg, completed;
8314 int return_code;
8315 unsigned long flags;
8316 unsigned long timeout;
8317
8318 hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8319
8320 /*
8321 * Alternative to holding the lock for a long time:
8322 * - keep busy wait - have other users bounce off
8323 */
8324 spin_lock_irqsave(&dd->dc8051_lock, flags);
8325
8326 /* We can't send any commands to the 8051 if it's in reset */
8327 if (dd->dc_shutdown) {
8328 return_code = -ENODEV;
8329 goto fail;
8330 }
8331
8332 /*
8333 * If an 8051 host command timed out previously, then the 8051 is
8334 * stuck.
8335 *
8336 * On first timeout, attempt to reset and restart the entire DC
8337 * block (including 8051). (Is this too big of a hammer?)
8338 *
8339 * If the 8051 times out a second time, the reset did not bring it
8340 * back to healthy life. In that case, fail any subsequent commands.
8341 */
8342 if (dd->dc8051_timed_out) {
8343 if (dd->dc8051_timed_out > 1) {
8344 dd_dev_err(dd,
8345 "Previous 8051 host command timed out, skipping command %u\n",
8346 type);
8347 return_code = -ENXIO;
8348 goto fail;
8349 }
8350 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
8351 dc_shutdown(dd);
8352 dc_start(dd);
8353 spin_lock_irqsave(&dd->dc8051_lock, flags);
8354 }
8355
8356 /*
8357 * If there is no timeout, then the 8051 command interface is
8358 * waiting for a command.
8359 */
8360
3bf40d65
DL
8361 /*
8362 * When writing a LCB CSR, out_data contains the full value to
8363 * to be written, while in_data contains the relative LCB
8364 * address in 7:0. Do the work here, rather than the caller,
8365 * of distrubting the write data to where it needs to go:
8366 *
8367 * Write data
8368 * 39:00 -> in_data[47:8]
8369 * 47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8370 * 63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8371 */
8372 if (type == HCMD_WRITE_LCB_CSR) {
8373 in_data |= ((*out_data) & 0xffffffffffull) << 8;
8374 reg = ((((*out_data) >> 40) & 0xff) <<
8375 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8376 | ((((*out_data) >> 48) & 0xffff) <<
8377 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8378 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8379 }
8380
77241056
MM
8381 /*
8382 * Do two writes: the first to stabilize the type and req_data, the
8383 * second to activate.
8384 */
8385 reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8386 << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8387 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8388 << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8389 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8390 reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8391 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8392
8393 /* wait for completion, alternate: interrupt */
8394 timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8395 while (1) {
8396 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8397 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8398 if (completed)
8399 break;
8400 if (time_after(jiffies, timeout)) {
8401 dd->dc8051_timed_out++;
8402 dd_dev_err(dd, "8051 host command %u timeout\n", type);
8403 if (out_data)
8404 *out_data = 0;
8405 return_code = -ETIMEDOUT;
8406 goto fail;
8407 }
8408 udelay(2);
8409 }
8410
8411 if (out_data) {
8412 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8413 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8414 if (type == HCMD_READ_LCB_CSR) {
8415 /* top 16 bits are in a different register */
8416 *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8417 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8418 << (48
8419 - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8420 }
8421 }
8422 return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8423 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8424 dd->dc8051_timed_out = 0;
8425 /*
8426 * Clear command for next user.
8427 */
8428 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8429
8430fail:
8431 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
8432
8433 return return_code;
8434}
8435
8436static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8437{
8438 return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8439}
8440
8ebd4cf1
EH
8441int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8442 u8 lane_id, u32 config_data)
77241056
MM
8443{
8444 u64 data;
8445 int ret;
8446
8447 data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8448 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8449 | (u64)config_data << LOAD_DATA_DATA_SHIFT;
8450 ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8451 if (ret != HCMD_SUCCESS) {
8452 dd_dev_err(dd,
17fb4f29
JJ
8453 "load 8051 config: field id %d, lane %d, err %d\n",
8454 (int)field_id, (int)lane_id, ret);
77241056
MM
8455 }
8456 return ret;
8457}
8458
8459/*
8460 * Read the 8051 firmware "registers". Use the RAM directly. Always
8461 * set the result, even on error.
8462 * Return 0 on success, -errno on failure
8463 */
8ebd4cf1
EH
8464int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8465 u32 *result)
77241056
MM
8466{
8467 u64 big_data;
8468 u32 addr;
8469 int ret;
8470
8471 /* address start depends on the lane_id */
8472 if (lane_id < 4)
8473 addr = (4 * NUM_GENERAL_FIELDS)
8474 + (lane_id * 4 * NUM_LANE_FIELDS);
8475 else
8476 addr = 0;
8477 addr += field_id * 4;
8478
8479 /* read is in 8-byte chunks, hardware will truncate the address down */
8480 ret = read_8051_data(dd, addr, 8, &big_data);
8481
8482 if (ret == 0) {
8483 /* extract the 4 bytes we want */
8484 if (addr & 0x4)
8485 *result = (u32)(big_data >> 32);
8486 else
8487 *result = (u32)big_data;
8488 } else {
8489 *result = 0;
8490 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
17fb4f29 8491 __func__, lane_id, field_id);
77241056
MM
8492 }
8493
8494 return ret;
8495}
8496
8497static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8498 u8 continuous)
8499{
8500 u32 frame;
8501
8502 frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8503 | power_management << POWER_MANAGEMENT_SHIFT;
8504 return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8505 GENERAL_CONFIG, frame);
8506}
8507
8508static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8509 u16 vl15buf, u8 crc_sizes)
8510{
8511 u32 frame;
8512
8513 frame = (u32)vau << VAU_SHIFT
8514 | (u32)z << Z_SHIFT
8515 | (u32)vcu << VCU_SHIFT
8516 | (u32)vl15buf << VL15BUF_SHIFT
8517 | (u32)crc_sizes << CRC_SIZES_SHIFT;
8518 return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8519 GENERAL_CONFIG, frame);
8520}
8521
8522static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8523 u8 *flag_bits, u16 *link_widths)
8524{
8525 u32 frame;
8526
8527 read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
17fb4f29 8528 &frame);
77241056
MM
8529 *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8530 *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8531 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8532}
8533
8534static int write_vc_local_link_width(struct hfi1_devdata *dd,
8535 u8 misc_bits,
8536 u8 flag_bits,
8537 u16 link_widths)
8538{
8539 u32 frame;
8540
8541 frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8542 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8543 | (u32)link_widths << LINK_WIDTH_SHIFT;
8544 return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8545 frame);
8546}
8547
8548static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8549 u8 device_rev)
8550{
8551 u32 frame;
8552
8553 frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8554 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8555 return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8556}
8557
8558static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8559 u8 *device_rev)
8560{
8561 u32 frame;
8562
8563 read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8564 *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8565 *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8566 & REMOTE_DEVICE_REV_MASK;
8567}
8568
8569void read_misc_status(struct hfi1_devdata *dd, u8 *ver_a, u8 *ver_b)
8570{
8571 u32 frame;
8572
8573 read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8574 *ver_a = (frame >> STS_FM_VERSION_A_SHIFT) & STS_FM_VERSION_A_MASK;
8575 *ver_b = (frame >> STS_FM_VERSION_B_SHIFT) & STS_FM_VERSION_B_MASK;
8576}
8577
8578static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8579 u8 *continuous)
8580{
8581 u32 frame;
8582
8583 read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8584 *power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8585 & POWER_MANAGEMENT_MASK;
8586 *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8587 & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8588}
8589
8590static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8591 u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8592{
8593 u32 frame;
8594
8595 read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8596 *vau = (frame >> VAU_SHIFT) & VAU_MASK;
8597 *z = (frame >> Z_SHIFT) & Z_MASK;
8598 *vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8599 *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8600 *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8601}
8602
8603static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8604 u8 *remote_tx_rate,
8605 u16 *link_widths)
8606{
8607 u32 frame;
8608
8609 read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
17fb4f29 8610 &frame);
77241056
MM
8611 *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8612 & REMOTE_TX_RATE_MASK;
8613 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8614}
8615
8616static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8617{
8618 u32 frame;
8619
8620 read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8621 *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8622}
8623
8624static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
8625{
8626 u32 frame;
8627
8628 read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
8629 *mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
8630}
8631
8632static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8633{
8634 read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8635}
8636
8637static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8638{
8639 read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8640}
8641
8642void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8643{
8644 u32 frame;
8645 int ret;
8646
8647 *link_quality = 0;
8648 if (dd->pport->host_link_state & HLS_UP) {
8649 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
17fb4f29 8650 &frame);
77241056
MM
8651 if (ret == 0)
8652 *link_quality = (frame >> LINK_QUALITY_SHIFT)
8653 & LINK_QUALITY_MASK;
8654 }
8655}
8656
8657static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8658{
8659 u32 frame;
8660
8661 read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8662 *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8663}
8664
8665static int read_tx_settings(struct hfi1_devdata *dd,
8666 u8 *enable_lane_tx,
8667 u8 *tx_polarity_inversion,
8668 u8 *rx_polarity_inversion,
8669 u8 *max_rate)
8670{
8671 u32 frame;
8672 int ret;
8673
8674 ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
8675 *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
8676 & ENABLE_LANE_TX_MASK;
8677 *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
8678 & TX_POLARITY_INVERSION_MASK;
8679 *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
8680 & RX_POLARITY_INVERSION_MASK;
8681 *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
8682 return ret;
8683}
8684
8685static int write_tx_settings(struct hfi1_devdata *dd,
8686 u8 enable_lane_tx,
8687 u8 tx_polarity_inversion,
8688 u8 rx_polarity_inversion,
8689 u8 max_rate)
8690{
8691 u32 frame;
8692
8693 /* no need to mask, all variable sizes match field widths */
8694 frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
8695 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
8696 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
8697 | max_rate << MAX_RATE_SHIFT;
8698 return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
8699}
8700
8701static void check_fabric_firmware_versions(struct hfi1_devdata *dd)
8702{
8703 u32 frame, version, prod_id;
8704 int ret, lane;
8705
8706 /* 4 lanes */
8707 for (lane = 0; lane < 4; lane++) {
8708 ret = read_8051_config(dd, SPICO_FW_VERSION, lane, &frame);
8709 if (ret) {
17fb4f29
JJ
8710 dd_dev_err(dd,
8711 "Unable to read lane %d firmware details\n",
8712 lane);
77241056
MM
8713 continue;
8714 }
8715 version = (frame >> SPICO_ROM_VERSION_SHIFT)
8716 & SPICO_ROM_VERSION_MASK;
8717 prod_id = (frame >> SPICO_ROM_PROD_ID_SHIFT)
8718 & SPICO_ROM_PROD_ID_MASK;
8719 dd_dev_info(dd,
17fb4f29
JJ
8720 "Lane %d firmware: version 0x%04x, prod_id 0x%04x\n",
8721 lane, version, prod_id);
77241056
MM
8722 }
8723}
8724
8725/*
8726 * Read an idle LCB message.
8727 *
8728 * Returns 0 on success, -EINVAL on error
8729 */
8730static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
8731{
8732 int ret;
8733
17fb4f29 8734 ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
77241056
MM
8735 if (ret != HCMD_SUCCESS) {
8736 dd_dev_err(dd, "read idle message: type %d, err %d\n",
17fb4f29 8737 (u32)type, ret);
77241056
MM
8738 return -EINVAL;
8739 }
8740 dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
8741 /* return only the payload as we already know the type */
8742 *data_out >>= IDLE_PAYLOAD_SHIFT;
8743 return 0;
8744}
8745
8746/*
8747 * Read an idle SMA message. To be done in response to a notification from
8748 * the 8051.
8749 *
8750 * Returns 0 on success, -EINVAL on error
8751 */
8752static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
8753{
17fb4f29
JJ
8754 return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
8755 data);
77241056
MM
8756}
8757
8758/*
8759 * Send an idle LCB message.
8760 *
8761 * Returns 0 on success, -EINVAL on error
8762 */
8763static int send_idle_message(struct hfi1_devdata *dd, u64 data)
8764{
8765 int ret;
8766
8767 dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
8768 ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
8769 if (ret != HCMD_SUCCESS) {
8770 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
17fb4f29 8771 data, ret);
77241056
MM
8772 return -EINVAL;
8773 }
8774 return 0;
8775}
8776
8777/*
8778 * Send an idle SMA message.
8779 *
8780 * Returns 0 on success, -EINVAL on error
8781 */
8782int send_idle_sma(struct hfi1_devdata *dd, u64 message)
8783{
8784 u64 data;
8785
17fb4f29
JJ
8786 data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
8787 ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
77241056
MM
8788 return send_idle_message(dd, data);
8789}
8790
8791/*
8792 * Initialize the LCB then do a quick link up. This may or may not be
8793 * in loopback.
8794 *
8795 * return 0 on success, -errno on error
8796 */
8797static int do_quick_linkup(struct hfi1_devdata *dd)
8798{
8799 u64 reg;
8800 unsigned long timeout;
8801 int ret;
8802
8803 lcb_shutdown(dd, 0);
8804
8805 if (loopback) {
8806 /* LCB_CFG_LOOPBACK.VAL = 2 */
8807 /* LCB_CFG_LANE_WIDTH.VAL = 0 */
8808 write_csr(dd, DC_LCB_CFG_LOOPBACK,
17fb4f29 8809 IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
77241056
MM
8810 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
8811 }
8812
8813 /* start the LCBs */
8814 /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
8815 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
8816
8817 /* simulator only loopback steps */
8818 if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8819 /* LCB_CFG_RUN.EN = 1 */
8820 write_csr(dd, DC_LCB_CFG_RUN,
17fb4f29 8821 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
77241056
MM
8822
8823 /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
8824 timeout = jiffies + msecs_to_jiffies(10);
8825 while (1) {
17fb4f29 8826 reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
77241056
MM
8827 if (reg)
8828 break;
8829 if (time_after(jiffies, timeout)) {
8830 dd_dev_err(dd,
17fb4f29 8831 "timeout waiting for LINK_TRANSFER_ACTIVE\n");
77241056
MM
8832 return -ETIMEDOUT;
8833 }
8834 udelay(2);
8835 }
8836
8837 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
17fb4f29 8838 1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
77241056
MM
8839 }
8840
8841 if (!loopback) {
8842 /*
8843 * When doing quick linkup and not in loopback, both
8844 * sides must be done with LCB set-up before either
8845 * starts the quick linkup. Put a delay here so that
8846 * both sides can be started and have a chance to be
8847 * done with LCB set up before resuming.
8848 */
8849 dd_dev_err(dd,
17fb4f29 8850 "Pausing for peer to be finished with LCB set up\n");
77241056 8851 msleep(5000);
17fb4f29 8852 dd_dev_err(dd, "Continuing with quick linkup\n");
77241056
MM
8853 }
8854
8855 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
8856 set_8051_lcb_access(dd);
8857
8858 /*
8859 * State "quick" LinkUp request sets the physical link state to
8860 * LinkUp without a verify capability sequence.
8861 * This state is in simulator v37 and later.
8862 */
8863 ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
8864 if (ret != HCMD_SUCCESS) {
8865 dd_dev_err(dd,
17fb4f29
JJ
8866 "%s: set physical link state to quick LinkUp failed with return %d\n",
8867 __func__, ret);
77241056
MM
8868
8869 set_host_lcb_access(dd);
8870 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
8871
8872 if (ret >= 0)
8873 ret = -EINVAL;
8874 return ret;
8875 }
8876
8877 return 0; /* success */
8878}
8879
8880/*
8881 * Set the SerDes to internal loopback mode.
8882 * Returns 0 on success, -errno on error.
8883 */
8884static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
8885{
8886 int ret;
8887
8888 ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
8889 if (ret == HCMD_SUCCESS)
8890 return 0;
8891 dd_dev_err(dd,
17fb4f29
JJ
8892 "Set physical link state to SerDes Loopback failed with return %d\n",
8893 ret);
77241056
MM
8894 if (ret >= 0)
8895 ret = -EINVAL;
8896 return ret;
8897}
8898
8899/*
8900 * Do all special steps to set up loopback.
8901 */
8902static int init_loopback(struct hfi1_devdata *dd)
8903{
8904 dd_dev_info(dd, "Entering loopback mode\n");
8905
8906 /* all loopbacks should disable self GUID check */
8907 write_csr(dd, DC_DC8051_CFG_MODE,
17fb4f29 8908 (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
77241056
MM
8909
8910 /*
8911 * The simulator has only one loopback option - LCB. Switch
8912 * to that option, which includes quick link up.
8913 *
8914 * Accept all valid loopback values.
8915 */
d0d236ea
JJ
8916 if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
8917 (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
8918 loopback == LOOPBACK_CABLE)) {
77241056
MM
8919 loopback = LOOPBACK_LCB;
8920 quick_linkup = 1;
8921 return 0;
8922 }
8923
8924 /* handle serdes loopback */
8925 if (loopback == LOOPBACK_SERDES) {
8926 /* internal serdes loopack needs quick linkup on RTL */
8927 if (dd->icode == ICODE_RTL_SILICON)
8928 quick_linkup = 1;
8929 return set_serdes_loopback_mode(dd);
8930 }
8931
8932 /* LCB loopback - handled at poll time */
8933 if (loopback == LOOPBACK_LCB) {
8934 quick_linkup = 1; /* LCB is always quick linkup */
8935
8936 /* not supported in emulation due to emulation RTL changes */
8937 if (dd->icode == ICODE_FPGA_EMULATION) {
8938 dd_dev_err(dd,
17fb4f29 8939 "LCB loopback not supported in emulation\n");
77241056
MM
8940 return -EINVAL;
8941 }
8942 return 0;
8943 }
8944
8945 /* external cable loopback requires no extra steps */
8946 if (loopback == LOOPBACK_CABLE)
8947 return 0;
8948
8949 dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
8950 return -EINVAL;
8951}
8952
8953/*
8954 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
8955 * used in the Verify Capability link width attribute.
8956 */
8957static u16 opa_to_vc_link_widths(u16 opa_widths)
8958{
8959 int i;
8960 u16 result = 0;
8961
8962 static const struct link_bits {
8963 u16 from;
8964 u16 to;
8965 } opa_link_xlate[] = {
8638b77f
JJ
8966 { OPA_LINK_WIDTH_1X, 1 << (1 - 1) },
8967 { OPA_LINK_WIDTH_2X, 1 << (2 - 1) },
8968 { OPA_LINK_WIDTH_3X, 1 << (3 - 1) },
8969 { OPA_LINK_WIDTH_4X, 1 << (4 - 1) },
77241056
MM
8970 };
8971
8972 for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
8973 if (opa_widths & opa_link_xlate[i].from)
8974 result |= opa_link_xlate[i].to;
8975 }
8976 return result;
8977}
8978
8979/*
8980 * Set link attributes before moving to polling.
8981 */
8982static int set_local_link_attributes(struct hfi1_pportdata *ppd)
8983{
8984 struct hfi1_devdata *dd = ppd->dd;
8985 u8 enable_lane_tx;
8986 u8 tx_polarity_inversion;
8987 u8 rx_polarity_inversion;
8988 int ret;
8989
8990 /* reset our fabric serdes to clear any lingering problems */
8991 fabric_serdes_reset(dd);
8992
8993 /* set the local tx rate - need to read-modify-write */
8994 ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
17fb4f29 8995 &rx_polarity_inversion, &ppd->local_tx_rate);
77241056
MM
8996 if (ret)
8997 goto set_local_link_attributes_fail;
8998
8999 if (dd->dc8051_ver < dc8051_ver(0, 20)) {
9000 /* set the tx rate to the fastest enabled */
9001 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9002 ppd->local_tx_rate = 1;
9003 else
9004 ppd->local_tx_rate = 0;
9005 } else {
9006 /* set the tx rate to all enabled */
9007 ppd->local_tx_rate = 0;
9008 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9009 ppd->local_tx_rate |= 2;
9010 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9011 ppd->local_tx_rate |= 1;
9012 }
febffe2c
EH
9013
9014 enable_lane_tx = 0xF; /* enable all four lanes */
77241056 9015 ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
17fb4f29 9016 rx_polarity_inversion, ppd->local_tx_rate);
77241056
MM
9017 if (ret != HCMD_SUCCESS)
9018 goto set_local_link_attributes_fail;
9019
9020 /*
9021 * DC supports continuous updates.
9022 */
17fb4f29
JJ
9023 ret = write_vc_local_phy(dd,
9024 0 /* no power management */,
9025 1 /* continuous updates */);
77241056
MM
9026 if (ret != HCMD_SUCCESS)
9027 goto set_local_link_attributes_fail;
9028
9029 /* z=1 in the next call: AU of 0 is not supported by the hardware */
9030 ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9031 ppd->port_crc_mode_enabled);
9032 if (ret != HCMD_SUCCESS)
9033 goto set_local_link_attributes_fail;
9034
9035 ret = write_vc_local_link_width(dd, 0, 0,
17fb4f29
JJ
9036 opa_to_vc_link_widths(
9037 ppd->link_width_enabled));
77241056
MM
9038 if (ret != HCMD_SUCCESS)
9039 goto set_local_link_attributes_fail;
9040
9041 /* let peer know who we are */
9042 ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9043 if (ret == HCMD_SUCCESS)
9044 return 0;
9045
9046set_local_link_attributes_fail:
9047 dd_dev_err(dd,
17fb4f29
JJ
9048 "Failed to set local link attributes, return 0x%x\n",
9049 ret);
77241056
MM
9050 return ret;
9051}
9052
9053/*
9054 * Call this to start the link. Schedule a retry if the cable is not
9055 * present or if unable to start polling. Do not do anything if the
9056 * link is disabled. Returns 0 if link is disabled or moved to polling
9057 */
9058int start_link(struct hfi1_pportdata *ppd)
9059{
9060 if (!ppd->link_enabled) {
9061 dd_dev_info(ppd->dd,
17fb4f29
JJ
9062 "%s: stopping link start because link is disabled\n",
9063 __func__);
77241056
MM
9064 return 0;
9065 }
9066 if (!ppd->driver_link_ready) {
9067 dd_dev_info(ppd->dd,
17fb4f29
JJ
9068 "%s: stopping link start because driver is not ready\n",
9069 __func__);
77241056
MM
9070 return 0;
9071 }
9072
9073 if (qsfp_mod_present(ppd) || loopback == LOOPBACK_SERDES ||
17fb4f29
JJ
9074 loopback == LOOPBACK_LCB ||
9075 ppd->dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
77241056
MM
9076 return set_link_state(ppd, HLS_DN_POLL);
9077
9078 dd_dev_info(ppd->dd,
17fb4f29
JJ
9079 "%s: stopping link start because no cable is present\n",
9080 __func__);
77241056
MM
9081 return -EAGAIN;
9082}
9083
8ebd4cf1
EH
9084static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9085{
9086 struct hfi1_devdata *dd = ppd->dd;
9087 u64 mask;
9088 unsigned long timeout;
9089
9090 /*
9091 * Check for QSFP interrupt for t_init (SFF 8679)
9092 */
9093 timeout = jiffies + msecs_to_jiffies(2000);
9094 while (1) {
9095 mask = read_csr(dd, dd->hfi1_id ?
9096 ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9097 if (!(mask & QSFP_HFI0_INT_N)) {
9098 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR :
9099 ASIC_QSFP1_CLEAR, QSFP_HFI0_INT_N);
9100 break;
9101 }
9102 if (time_after(jiffies, timeout)) {
9103 dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9104 __func__);
9105 break;
9106 }
9107 udelay(2);
9108 }
9109}
9110
9111static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9112{
9113 struct hfi1_devdata *dd = ppd->dd;
9114 u64 mask;
9115
9116 mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9117 if (enable)
9118 mask |= (u64)QSFP_HFI0_INT_N;
9119 else
9120 mask &= ~(u64)QSFP_HFI0_INT_N;
9121 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9122}
9123
9124void reset_qsfp(struct hfi1_pportdata *ppd)
77241056
MM
9125{
9126 struct hfi1_devdata *dd = ppd->dd;
9127 u64 mask, qsfp_mask;
9128
8ebd4cf1
EH
9129 /* Disable INT_N from triggering QSFP interrupts */
9130 set_qsfp_int_n(ppd, 0);
9131
9132 /* Reset the QSFP */
77241056 9133 mask = (u64)QSFP_HFI0_RESET_N;
8ebd4cf1 9134 qsfp_mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_OE : ASIC_QSFP1_OE);
77241056 9135 qsfp_mask |= mask;
17fb4f29 9136 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_OE : ASIC_QSFP1_OE, qsfp_mask);
77241056 9137
17fb4f29
JJ
9138 qsfp_mask = read_csr(dd,
9139 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
77241056
MM
9140 qsfp_mask &= ~mask;
9141 write_csr(dd,
17fb4f29 9142 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
77241056
MM
9143
9144 udelay(10);
9145
9146 qsfp_mask |= mask;
9147 write_csr(dd,
17fb4f29 9148 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
8ebd4cf1
EH
9149
9150 wait_for_qsfp_init(ppd);
9151
9152 /*
9153 * Allow INT_N to trigger the QSFP interrupt to watch
9154 * for alarms and warnings
9155 */
9156 set_qsfp_int_n(ppd, 1);
77241056
MM
9157}
9158
9159static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9160 u8 *qsfp_interrupt_status)
9161{
9162 struct hfi1_devdata *dd = ppd->dd;
9163
9164 if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
17fb4f29
JJ
9165 (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9166 dd_dev_info(dd, "%s: QSFP cable on fire\n",
9167 __func__);
77241056
MM
9168
9169 if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
17fb4f29
JJ
9170 (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9171 dd_dev_info(dd, "%s: QSFP cable temperature too low\n",
9172 __func__);
77241056
MM
9173
9174 if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
17fb4f29
JJ
9175 (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9176 dd_dev_info(dd, "%s: QSFP supply voltage too high\n",
9177 __func__);
77241056
MM
9178
9179 if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
17fb4f29
JJ
9180 (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9181 dd_dev_info(dd, "%s: QSFP supply voltage too low\n",
9182 __func__);
77241056
MM
9183
9184 /* Byte 2 is vendor specific */
9185
9186 if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
17fb4f29
JJ
9187 (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9188 dd_dev_info(dd, "%s: Cable RX channel 1/2 power too high\n",
9189 __func__);
77241056
MM
9190
9191 if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
17fb4f29
JJ
9192 (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9193 dd_dev_info(dd, "%s: Cable RX channel 1/2 power too low\n",
9194 __func__);
77241056
MM
9195
9196 if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
17fb4f29
JJ
9197 (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9198 dd_dev_info(dd, "%s: Cable RX channel 3/4 power too high\n",
9199 __func__);
77241056
MM
9200
9201 if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
17fb4f29
JJ
9202 (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9203 dd_dev_info(dd, "%s: Cable RX channel 3/4 power too low\n",
9204 __func__);
77241056
MM
9205
9206 if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
17fb4f29
JJ
9207 (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9208 dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too high\n",
9209 __func__);
77241056
MM
9210
9211 if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
17fb4f29
JJ
9212 (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9213 dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too low\n",
9214 __func__);
77241056
MM
9215
9216 if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
17fb4f29
JJ
9217 (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9218 dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too high\n",
9219 __func__);
77241056
MM
9220
9221 if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
17fb4f29
JJ
9222 (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9223 dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too low\n",
9224 __func__);
77241056
MM
9225
9226 if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
17fb4f29
JJ
9227 (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9228 dd_dev_info(dd, "%s: Cable TX channel 1/2 power too high\n",
9229 __func__);
77241056
MM
9230
9231 if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
17fb4f29
JJ
9232 (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9233 dd_dev_info(dd, "%s: Cable TX channel 1/2 power too low\n",
9234 __func__);
77241056
MM
9235
9236 if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
17fb4f29
JJ
9237 (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9238 dd_dev_info(dd, "%s: Cable TX channel 3/4 power too high\n",
9239 __func__);
77241056
MM
9240
9241 if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
17fb4f29
JJ
9242 (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9243 dd_dev_info(dd, "%s: Cable TX channel 3/4 power too low\n",
9244 __func__);
77241056
MM
9245
9246 /* Bytes 9-10 and 11-12 are reserved */
9247 /* Bytes 13-15 are vendor specific */
9248
9249 return 0;
9250}
9251
77241056 9252/* This routine will only be scheduled if the QSFP module is present */
8ebd4cf1 9253void qsfp_event(struct work_struct *work)
77241056
MM
9254{
9255 struct qsfp_data *qd;
9256 struct hfi1_pportdata *ppd;
9257 struct hfi1_devdata *dd;
9258
9259 qd = container_of(work, struct qsfp_data, qsfp_work);
9260 ppd = qd->ppd;
9261 dd = ppd->dd;
9262
9263 /* Sanity check */
9264 if (!qsfp_mod_present(ppd))
9265 return;
9266
9267 /*
9268 * Turn DC back on after cables has been
9269 * re-inserted. Up until now, the DC has been in
9270 * reset to save power.
9271 */
9272 dc_start(dd);
9273
9274 if (qd->cache_refresh_required) {
8ebd4cf1
EH
9275 set_qsfp_int_n(ppd, 0);
9276
9277 wait_for_qsfp_init(ppd);
9278
9279 /*
9280 * Allow INT_N to trigger the QSFP interrupt to watch
9281 * for alarms and warnings
77241056 9282 */
8ebd4cf1
EH
9283 set_qsfp_int_n(ppd, 1);
9284
9285 tune_serdes(ppd);
9286
9287 start_link(ppd);
77241056
MM
9288 }
9289
9290 if (qd->check_interrupt_flags) {
9291 u8 qsfp_interrupt_status[16] = {0,};
9292
765a6fac
DL
9293 if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9294 &qsfp_interrupt_status[0], 16) != 16) {
77241056 9295 dd_dev_info(dd,
17fb4f29
JJ
9296 "%s: Failed to read status of QSFP module\n",
9297 __func__);
77241056
MM
9298 } else {
9299 unsigned long flags;
77241056 9300
8ebd4cf1
EH
9301 handle_qsfp_error_conditions(
9302 ppd, qsfp_interrupt_status);
77241056
MM
9303 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9304 ppd->qsfp_info.check_interrupt_flags = 0;
9305 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
17fb4f29 9306 flags);
77241056
MM
9307 }
9308 }
9309}
9310
8ebd4cf1 9311static void init_qsfp_int(struct hfi1_devdata *dd)
77241056 9312{
8ebd4cf1
EH
9313 struct hfi1_pportdata *ppd = dd->pport;
9314 u64 qsfp_mask, cce_int_mask;
9315 const int qsfp1_int_smask = QSFP1_INT % 64;
9316 const int qsfp2_int_smask = QSFP2_INT % 64;
77241056 9317
8ebd4cf1
EH
9318 /*
9319 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9320 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9321 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9322 * the index of the appropriate CSR in the CCEIntMask CSR array
9323 */
9324 cce_int_mask = read_csr(dd, CCE_INT_MASK +
9325 (8 * (QSFP1_INT / 64)));
9326 if (dd->hfi1_id) {
9327 cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9328 write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9329 cce_int_mask);
9330 } else {
9331 cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9332 write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9333 cce_int_mask);
77241056
MM
9334 }
9335
77241056
MM
9336 qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9337 /* Clear current status to avoid spurious interrupts */
8ebd4cf1
EH
9338 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9339 qsfp_mask);
9340 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9341 qsfp_mask);
9342
9343 set_qsfp_int_n(ppd, 0);
77241056
MM
9344
9345 /* Handle active low nature of INT_N and MODPRST_N pins */
9346 if (qsfp_mod_present(ppd))
9347 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9348 write_csr(dd,
9349 dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9350 qsfp_mask);
77241056
MM
9351}
9352
bbdeb33d
DL
9353/*
9354 * Do a one-time initialize of the LCB block.
9355 */
9356static void init_lcb(struct hfi1_devdata *dd)
9357{
a59329d5
DL
9358 /* simulator does not correctly handle LCB cclk loopback, skip */
9359 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9360 return;
9361
bbdeb33d
DL
9362 /* the DC has been reset earlier in the driver load */
9363
9364 /* set LCB for cclk loopback on the port */
9365 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9366 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9367 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9368 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9369 write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9370 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9371 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9372}
9373
77241056
MM
9374int bringup_serdes(struct hfi1_pportdata *ppd)
9375{
9376 struct hfi1_devdata *dd = ppd->dd;
9377 u64 guid;
9378 int ret;
9379
9380 if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9381 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9382
9383 guid = ppd->guid;
9384 if (!guid) {
9385 if (dd->base_guid)
9386 guid = dd->base_guid + ppd->port - 1;
9387 ppd->guid = guid;
9388 }
9389
77241056
MM
9390 /* Set linkinit_reason on power up per OPA spec */
9391 ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9392
bbdeb33d
DL
9393 /* one-time init of the LCB */
9394 init_lcb(dd);
9395
77241056
MM
9396 if (loopback) {
9397 ret = init_loopback(dd);
9398 if (ret < 0)
9399 return ret;
9400 }
9401
8ebd4cf1
EH
9402 /* tune the SERDES to a ballpark setting for
9403 * optimal signal and bit error rate
9404 * Needs to be done before starting the link
9405 */
9406 tune_serdes(ppd);
9407
77241056
MM
9408 return start_link(ppd);
9409}
9410
9411void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9412{
9413 struct hfi1_devdata *dd = ppd->dd;
9414
9415 /*
9416 * Shut down the link and keep it down. First turn off that the
9417 * driver wants to allow the link to be up (driver_link_ready).
9418 * Then make sure the link is not automatically restarted
9419 * (link_enabled). Cancel any pending restart. And finally
9420 * go offline.
9421 */
9422 ppd->driver_link_ready = 0;
9423 ppd->link_enabled = 0;
9424
8ebd4cf1
EH
9425 ppd->offline_disabled_reason =
9426 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
77241056 9427 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
17fb4f29 9428 OPA_LINKDOWN_REASON_SMA_DISABLED);
77241056
MM
9429 set_link_state(ppd, HLS_DN_OFFLINE);
9430
9431 /* disable the port */
9432 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9433}
9434
9435static inline int init_cpu_counters(struct hfi1_devdata *dd)
9436{
9437 struct hfi1_pportdata *ppd;
9438 int i;
9439
9440 ppd = (struct hfi1_pportdata *)(dd + 1);
9441 for (i = 0; i < dd->num_pports; i++, ppd++) {
4eb06882
DD
9442 ppd->ibport_data.rvp.rc_acks = NULL;
9443 ppd->ibport_data.rvp.rc_qacks = NULL;
9444 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9445 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9446 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9447 if (!ppd->ibport_data.rvp.rc_acks ||
9448 !ppd->ibport_data.rvp.rc_delayed_comp ||
9449 !ppd->ibport_data.rvp.rc_qacks)
77241056
MM
9450 return -ENOMEM;
9451 }
9452
9453 return 0;
9454}
9455
9456static const char * const pt_names[] = {
9457 "expected",
9458 "eager",
9459 "invalid"
9460};
9461
9462static const char *pt_name(u32 type)
9463{
9464 return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type];
9465}
9466
9467/*
9468 * index is the index into the receive array
9469 */
9470void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9471 u32 type, unsigned long pa, u16 order)
9472{
9473 u64 reg;
9474 void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc :
9475 (dd->kregbase + RCV_ARRAY));
9476
9477 if (!(dd->flags & HFI1_PRESENT))
9478 goto done;
9479
9480 if (type == PT_INVALID) {
9481 pa = 0;
9482 } else if (type > PT_INVALID) {
9483 dd_dev_err(dd,
17fb4f29
JJ
9484 "unexpected receive array type %u for index %u, not handled\n",
9485 type, index);
77241056
MM
9486 goto done;
9487 }
9488
9489 hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx",
9490 pt_name(type), index, pa, (unsigned long)order);
9491
9492#define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */
9493 reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9494 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9495 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9496 << RCV_ARRAY_RT_ADDR_SHIFT;
9497 writeq(reg, base + (index * 8));
9498
9499 if (type == PT_EAGER)
9500 /*
9501 * Eager entries are written one-by-one so we have to push them
9502 * after we write the entry.
9503 */
9504 flush_wc();
9505done:
9506 return;
9507}
9508
9509void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9510{
9511 struct hfi1_devdata *dd = rcd->dd;
9512 u32 i;
9513
9514 /* this could be optimized */
9515 for (i = rcd->eager_base; i < rcd->eager_base +
9516 rcd->egrbufs.alloced; i++)
9517 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9518
9519 for (i = rcd->expected_base;
9520 i < rcd->expected_base + rcd->expected_count; i++)
9521 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9522}
9523
9524int hfi1_get_base_kinfo(struct hfi1_ctxtdata *rcd,
9525 struct hfi1_ctxt_info *kinfo)
9526{
9527 kinfo->runtime_flags = (HFI1_MISC_GET() << HFI1_CAP_USER_SHIFT) |
9528 HFI1_CAP_UGET(MASK) | HFI1_CAP_KGET(K2U);
9529 return 0;
9530}
9531
9532struct hfi1_message_header *hfi1_get_msgheader(
9533 struct hfi1_devdata *dd, __le32 *rhf_addr)
9534{
9535 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
9536
9537 return (struct hfi1_message_header *)
9538 (rhf_addr - dd->rhf_offset + offset);
9539}
9540
9541static const char * const ib_cfg_name_strings[] = {
9542 "HFI1_IB_CFG_LIDLMC",
9543 "HFI1_IB_CFG_LWID_DG_ENB",
9544 "HFI1_IB_CFG_LWID_ENB",
9545 "HFI1_IB_CFG_LWID",
9546 "HFI1_IB_CFG_SPD_ENB",
9547 "HFI1_IB_CFG_SPD",
9548 "HFI1_IB_CFG_RXPOL_ENB",
9549 "HFI1_IB_CFG_LREV_ENB",
9550 "HFI1_IB_CFG_LINKLATENCY",
9551 "HFI1_IB_CFG_HRTBT",
9552 "HFI1_IB_CFG_OP_VLS",
9553 "HFI1_IB_CFG_VL_HIGH_CAP",
9554 "HFI1_IB_CFG_VL_LOW_CAP",
9555 "HFI1_IB_CFG_OVERRUN_THRESH",
9556 "HFI1_IB_CFG_PHYERR_THRESH",
9557 "HFI1_IB_CFG_LINKDEFAULT",
9558 "HFI1_IB_CFG_PKEYS",
9559 "HFI1_IB_CFG_MTU",
9560 "HFI1_IB_CFG_LSTATE",
9561 "HFI1_IB_CFG_VL_HIGH_LIMIT",
9562 "HFI1_IB_CFG_PMA_TICKS",
9563 "HFI1_IB_CFG_PORT"
9564};
9565
9566static const char *ib_cfg_name(int which)
9567{
9568 if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9569 return "invalid";
9570 return ib_cfg_name_strings[which];
9571}
9572
9573int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9574{
9575 struct hfi1_devdata *dd = ppd->dd;
9576 int val = 0;
9577
9578 switch (which) {
9579 case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9580 val = ppd->link_width_enabled;
9581 break;
9582 case HFI1_IB_CFG_LWID: /* currently active Link-width */
9583 val = ppd->link_width_active;
9584 break;
9585 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9586 val = ppd->link_speed_enabled;
9587 break;
9588 case HFI1_IB_CFG_SPD: /* current Link speed */
9589 val = ppd->link_speed_active;
9590 break;
9591
9592 case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9593 case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9594 case HFI1_IB_CFG_LINKLATENCY:
9595 goto unimplemented;
9596
9597 case HFI1_IB_CFG_OP_VLS:
9598 val = ppd->vls_operational;
9599 break;
9600 case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9601 val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9602 break;
9603 case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9604 val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9605 break;
9606 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9607 val = ppd->overrun_threshold;
9608 break;
9609 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9610 val = ppd->phy_error_threshold;
9611 break;
9612 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9613 val = dd->link_default;
9614 break;
9615
9616 case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9617 case HFI1_IB_CFG_PMA_TICKS:
9618 default:
9619unimplemented:
9620 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9621 dd_dev_info(
9622 dd,
9623 "%s: which %s: not implemented\n",
9624 __func__,
9625 ib_cfg_name(which));
9626 break;
9627 }
9628
9629 return val;
9630}
9631
9632/*
9633 * The largest MAD packet size.
9634 */
9635#define MAX_MAD_PACKET 2048
9636
9637/*
9638 * Return the maximum header bytes that can go on the _wire_
9639 * for this device. This count includes the ICRC which is
9640 * not part of the packet held in memory but it is appended
9641 * by the HW.
9642 * This is dependent on the device's receive header entry size.
9643 * HFI allows this to be set per-receive context, but the
9644 * driver presently enforces a global value.
9645 */
9646u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
9647{
9648 /*
9649 * The maximum non-payload (MTU) bytes in LRH.PktLen are
9650 * the Receive Header Entry Size minus the PBC (or RHF) size
9651 * plus one DW for the ICRC appended by HW.
9652 *
9653 * dd->rcd[0].rcvhdrqentsize is in DW.
9654 * We use rcd[0] as all context will have the same value. Also,
9655 * the first kernel context would have been allocated by now so
9656 * we are guaranteed a valid value.
9657 */
9658 return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
9659}
9660
9661/*
9662 * Set Send Length
9663 * @ppd - per port data
9664 *
9665 * Set the MTU by limiting how many DWs may be sent. The SendLenCheck*
9666 * registers compare against LRH.PktLen, so use the max bytes included
9667 * in the LRH.
9668 *
9669 * This routine changes all VL values except VL15, which it maintains at
9670 * the same value.
9671 */
9672static void set_send_length(struct hfi1_pportdata *ppd)
9673{
9674 struct hfi1_devdata *dd = ppd->dd;
6cc6ad2e
HC
9675 u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
9676 u32 maxvlmtu = dd->vld[15].mtu;
77241056
MM
9677 u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
9678 & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
9679 SEND_LEN_CHECK1_LEN_VL15_SHIFT;
9680 int i;
9681
9682 for (i = 0; i < ppd->vls_supported; i++) {
9683 if (dd->vld[i].mtu > maxvlmtu)
9684 maxvlmtu = dd->vld[i].mtu;
9685 if (i <= 3)
9686 len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
9687 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
9688 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
9689 else
9690 len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
9691 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
9692 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
9693 }
9694 write_csr(dd, SEND_LEN_CHECK0, len1);
9695 write_csr(dd, SEND_LEN_CHECK1, len2);
9696 /* adjust kernel credit return thresholds based on new MTUs */
9697 /* all kernel receive contexts have the same hdrqentsize */
9698 for (i = 0; i < ppd->vls_supported; i++) {
9699 sc_set_cr_threshold(dd->vld[i].sc,
17fb4f29
JJ
9700 sc_mtu_to_threshold(dd->vld[i].sc,
9701 dd->vld[i].mtu,
9702 dd->rcd[0]->
9703 rcvhdrqentsize));
77241056
MM
9704 }
9705 sc_set_cr_threshold(dd->vld[15].sc,
17fb4f29
JJ
9706 sc_mtu_to_threshold(dd->vld[15].sc,
9707 dd->vld[15].mtu,
9708 dd->rcd[0]->rcvhdrqentsize));
77241056
MM
9709
9710 /* Adjust maximum MTU for the port in DC */
9711 dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
9712 (ilog2(maxvlmtu >> 8) + 1);
9713 len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
9714 len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
9715 len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
9716 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
9717 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
9718}
9719
9720static void set_lidlmc(struct hfi1_pportdata *ppd)
9721{
9722 int i;
9723 u64 sreg = 0;
9724 struct hfi1_devdata *dd = ppd->dd;
9725 u32 mask = ~((1U << ppd->lmc) - 1);
9726 u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
9727
9728 if (dd->hfi1_snoop.mode_flag)
9729 dd_dev_info(dd, "Set lid/lmc while snooping");
9730
9731 c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
9732 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
9733 c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
8638b77f 9734 << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
77241056
MM
9735 ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
9736 << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
9737 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
9738
9739 /*
9740 * Iterate over all the send contexts and set their SLID check
9741 */
9742 sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
9743 SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
9744 (((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
9745 SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
9746
9747 for (i = 0; i < dd->chip_send_contexts; i++) {
9748 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
9749 i, (u32)sreg);
9750 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
9751 }
9752
9753 /* Now we have to do the same thing for the sdma engines */
9754 sdma_update_lmc(dd, mask, ppd->lid);
9755}
9756
9757static int wait_phy_linkstate(struct hfi1_devdata *dd, u32 state, u32 msecs)
9758{
9759 unsigned long timeout;
9760 u32 curr_state;
9761
9762 timeout = jiffies + msecs_to_jiffies(msecs);
9763 while (1) {
9764 curr_state = read_physical_state(dd);
9765 if (curr_state == state)
9766 break;
9767 if (time_after(jiffies, timeout)) {
9768 dd_dev_err(dd,
17fb4f29
JJ
9769 "timeout waiting for phy link state 0x%x, current state is 0x%x\n",
9770 state, curr_state);
77241056
MM
9771 return -ETIMEDOUT;
9772 }
9773 usleep_range(1950, 2050); /* sleep 2ms-ish */
9774 }
9775
9776 return 0;
9777}
9778
9779/*
9780 * Helper for set_link_state(). Do not call except from that routine.
9781 * Expects ppd->hls_mutex to be held.
9782 *
9783 * @rem_reason value to be sent to the neighbor
9784 *
9785 * LinkDownReasons only set if transition succeeds.
9786 */
9787static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
9788{
9789 struct hfi1_devdata *dd = ppd->dd;
9790 u32 pstate, previous_state;
9791 u32 last_local_state;
9792 u32 last_remote_state;
9793 int ret;
9794 int do_transition;
9795 int do_wait;
9796
9797 previous_state = ppd->host_link_state;
9798 ppd->host_link_state = HLS_GOING_OFFLINE;
9799 pstate = read_physical_state(dd);
9800 if (pstate == PLS_OFFLINE) {
9801 do_transition = 0; /* in right state */
9802 do_wait = 0; /* ...no need to wait */
9803 } else if ((pstate & 0xff) == PLS_OFFLINE) {
9804 do_transition = 0; /* in an offline transient state */
9805 do_wait = 1; /* ...wait for it to settle */
9806 } else {
9807 do_transition = 1; /* need to move to offline */
9808 do_wait = 1; /* ...will need to wait */
9809 }
9810
9811 if (do_transition) {
9812 ret = set_physical_link_state(dd,
bf640096 9813 (rem_reason << 8) | PLS_OFFLINE);
77241056
MM
9814
9815 if (ret != HCMD_SUCCESS) {
9816 dd_dev_err(dd,
17fb4f29
JJ
9817 "Failed to transition to Offline link state, return %d\n",
9818 ret);
77241056
MM
9819 return -EINVAL;
9820 }
a9c05e35
BM
9821 if (ppd->offline_disabled_reason ==
9822 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
77241056 9823 ppd->offline_disabled_reason =
a9c05e35 9824 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
77241056
MM
9825 }
9826
9827 if (do_wait) {
9828 /* it can take a while for the link to go down */
dc060245 9829 ret = wait_phy_linkstate(dd, PLS_OFFLINE, 10000);
77241056
MM
9830 if (ret < 0)
9831 return ret;
9832 }
9833
9834 /* make sure the logical state is also down */
9835 wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
9836
9837 /*
9838 * Now in charge of LCB - must be after the physical state is
9839 * offline.quiet and before host_link_state is changed.
9840 */
9841 set_host_lcb_access(dd);
9842 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9843 ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
9844
8ebd4cf1
EH
9845 if (ppd->port_type == PORT_TYPE_QSFP &&
9846 ppd->qsfp_info.limiting_active &&
9847 qsfp_mod_present(ppd)) {
765a6fac
DL
9848 int ret;
9849
9850 ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
9851 if (ret == 0) {
9852 set_qsfp_tx(ppd, 0);
9853 release_chip_resource(dd, qsfp_resource(dd));
9854 } else {
9855 /* not fatal, but should warn */
9856 dd_dev_err(dd,
9857 "Unable to acquire lock to turn off QSFP TX\n");
9858 }
8ebd4cf1
EH
9859 }
9860
77241056
MM
9861 /*
9862 * The LNI has a mandatory wait time after the physical state
9863 * moves to Offline.Quiet. The wait time may be different
9864 * depending on how the link went down. The 8051 firmware
9865 * will observe the needed wait time and only move to ready
9866 * when that is completed. The largest of the quiet timeouts
05087f3b
DL
9867 * is 6s, so wait that long and then at least 0.5s more for
9868 * other transitions, and another 0.5s for a buffer.
77241056 9869 */
05087f3b 9870 ret = wait_fm_ready(dd, 7000);
77241056
MM
9871 if (ret) {
9872 dd_dev_err(dd,
17fb4f29 9873 "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
77241056
MM
9874 /* state is really offline, so make it so */
9875 ppd->host_link_state = HLS_DN_OFFLINE;
9876 return ret;
9877 }
9878
9879 /*
9880 * The state is now offline and the 8051 is ready to accept host
9881 * requests.
9882 * - change our state
9883 * - notify others if we were previously in a linkup state
9884 */
9885 ppd->host_link_state = HLS_DN_OFFLINE;
9886 if (previous_state & HLS_UP) {
9887 /* went down while link was up */
9888 handle_linkup_change(dd, 0);
9889 } else if (previous_state
9890 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
9891 /* went down while attempting link up */
9892 /* byte 1 of last_*_state is the failure reason */
9893 read_last_local_state(dd, &last_local_state);
9894 read_last_remote_state(dd, &last_remote_state);
9895 dd_dev_err(dd,
17fb4f29
JJ
9896 "LNI failure last states: local 0x%08x, remote 0x%08x\n",
9897 last_local_state, last_remote_state);
77241056
MM
9898 }
9899
9900 /* the active link width (downgrade) is 0 on link down */
9901 ppd->link_width_active = 0;
9902 ppd->link_width_downgrade_tx_active = 0;
9903 ppd->link_width_downgrade_rx_active = 0;
9904 ppd->current_egress_rate = 0;
9905 return 0;
9906}
9907
9908/* return the link state name */
9909static const char *link_state_name(u32 state)
9910{
9911 const char *name;
9912 int n = ilog2(state);
9913 static const char * const names[] = {
9914 [__HLS_UP_INIT_BP] = "INIT",
9915 [__HLS_UP_ARMED_BP] = "ARMED",
9916 [__HLS_UP_ACTIVE_BP] = "ACTIVE",
9917 [__HLS_DN_DOWNDEF_BP] = "DOWNDEF",
9918 [__HLS_DN_POLL_BP] = "POLL",
9919 [__HLS_DN_DISABLE_BP] = "DISABLE",
9920 [__HLS_DN_OFFLINE_BP] = "OFFLINE",
9921 [__HLS_VERIFY_CAP_BP] = "VERIFY_CAP",
9922 [__HLS_GOING_UP_BP] = "GOING_UP",
9923 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
9924 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
9925 };
9926
9927 name = n < ARRAY_SIZE(names) ? names[n] : NULL;
9928 return name ? name : "unknown";
9929}
9930
9931/* return the link state reason name */
9932static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
9933{
9934 if (state == HLS_UP_INIT) {
9935 switch (ppd->linkinit_reason) {
9936 case OPA_LINKINIT_REASON_LINKUP:
9937 return "(LINKUP)";
9938 case OPA_LINKINIT_REASON_FLAPPING:
9939 return "(FLAPPING)";
9940 case OPA_LINKINIT_OUTSIDE_POLICY:
9941 return "(OUTSIDE_POLICY)";
9942 case OPA_LINKINIT_QUARANTINED:
9943 return "(QUARANTINED)";
9944 case OPA_LINKINIT_INSUFIC_CAPABILITY:
9945 return "(INSUFIC_CAPABILITY)";
9946 default:
9947 break;
9948 }
9949 }
9950 return "";
9951}
9952
9953/*
9954 * driver_physical_state - convert the driver's notion of a port's
9955 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
9956 * Return -1 (converted to a u32) to indicate error.
9957 */
9958u32 driver_physical_state(struct hfi1_pportdata *ppd)
9959{
9960 switch (ppd->host_link_state) {
9961 case HLS_UP_INIT:
9962 case HLS_UP_ARMED:
9963 case HLS_UP_ACTIVE:
9964 return IB_PORTPHYSSTATE_LINKUP;
9965 case HLS_DN_POLL:
9966 return IB_PORTPHYSSTATE_POLLING;
9967 case HLS_DN_DISABLE:
9968 return IB_PORTPHYSSTATE_DISABLED;
9969 case HLS_DN_OFFLINE:
9970 return OPA_PORTPHYSSTATE_OFFLINE;
9971 case HLS_VERIFY_CAP:
9972 return IB_PORTPHYSSTATE_POLLING;
9973 case HLS_GOING_UP:
9974 return IB_PORTPHYSSTATE_POLLING;
9975 case HLS_GOING_OFFLINE:
9976 return OPA_PORTPHYSSTATE_OFFLINE;
9977 case HLS_LINK_COOLDOWN:
9978 return OPA_PORTPHYSSTATE_OFFLINE;
9979 case HLS_DN_DOWNDEF:
9980 default:
9981 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
9982 ppd->host_link_state);
9983 return -1;
9984 }
9985}
9986
9987/*
9988 * driver_logical_state - convert the driver's notion of a port's
9989 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
9990 * (converted to a u32) to indicate error.
9991 */
9992u32 driver_logical_state(struct hfi1_pportdata *ppd)
9993{
9994 if (ppd->host_link_state && !(ppd->host_link_state & HLS_UP))
9995 return IB_PORT_DOWN;
9996
9997 switch (ppd->host_link_state & HLS_UP) {
9998 case HLS_UP_INIT:
9999 return IB_PORT_INIT;
10000 case HLS_UP_ARMED:
10001 return IB_PORT_ARMED;
10002 case HLS_UP_ACTIVE:
10003 return IB_PORT_ACTIVE;
10004 default:
10005 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10006 ppd->host_link_state);
10007 return -1;
10008 }
10009}
10010
10011void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10012 u8 neigh_reason, u8 rem_reason)
10013{
10014 if (ppd->local_link_down_reason.latest == 0 &&
10015 ppd->neigh_link_down_reason.latest == 0) {
10016 ppd->local_link_down_reason.latest = lcl_reason;
10017 ppd->neigh_link_down_reason.latest = neigh_reason;
10018 ppd->remote_link_down_reason = rem_reason;
10019 }
10020}
10021
10022/*
10023 * Change the physical and/or logical link state.
10024 *
10025 * Do not call this routine while inside an interrupt. It contains
10026 * calls to routines that can take multiple seconds to finish.
10027 *
10028 * Returns 0 on success, -errno on failure.
10029 */
10030int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10031{
10032 struct hfi1_devdata *dd = ppd->dd;
10033 struct ib_event event = {.device = NULL};
10034 int ret1, ret = 0;
10035 int was_up, is_down;
10036 int orig_new_state, poll_bounce;
10037
10038 mutex_lock(&ppd->hls_lock);
10039
10040 orig_new_state = state;
10041 if (state == HLS_DN_DOWNDEF)
10042 state = dd->link_default;
10043
10044 /* interpret poll -> poll as a link bounce */
d0d236ea
JJ
10045 poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10046 state == HLS_DN_POLL;
77241056
MM
10047
10048 dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
17fb4f29
JJ
10049 link_state_name(ppd->host_link_state),
10050 link_state_name(orig_new_state),
10051 poll_bounce ? "(bounce) " : "",
10052 link_state_reason_name(ppd, state));
77241056
MM
10053
10054 was_up = !!(ppd->host_link_state & HLS_UP);
10055
10056 /*
10057 * If we're going to a (HLS_*) link state that implies the logical
10058 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10059 * reset is_sm_config_started to 0.
10060 */
10061 if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10062 ppd->is_sm_config_started = 0;
10063
10064 /*
10065 * Do nothing if the states match. Let a poll to poll link bounce
10066 * go through.
10067 */
10068 if (ppd->host_link_state == state && !poll_bounce)
10069 goto done;
10070
10071 switch (state) {
10072 case HLS_UP_INIT:
d0d236ea
JJ
10073 if (ppd->host_link_state == HLS_DN_POLL &&
10074 (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
77241056
MM
10075 /*
10076 * Quick link up jumps from polling to here.
10077 *
10078 * Whether in normal or loopback mode, the
10079 * simulator jumps from polling to link up.
10080 * Accept that here.
10081 */
17fb4f29 10082 /* OK */
77241056
MM
10083 } else if (ppd->host_link_state != HLS_GOING_UP) {
10084 goto unexpected;
10085 }
10086
10087 ppd->host_link_state = HLS_UP_INIT;
10088 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10089 if (ret) {
10090 /* logical state didn't change, stay at going_up */
10091 ppd->host_link_state = HLS_GOING_UP;
10092 dd_dev_err(dd,
17fb4f29
JJ
10093 "%s: logical state did not change to INIT\n",
10094 __func__);
77241056
MM
10095 } else {
10096 /* clear old transient LINKINIT_REASON code */
10097 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10098 ppd->linkinit_reason =
10099 OPA_LINKINIT_REASON_LINKUP;
10100
10101 /* enable the port */
10102 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10103
10104 handle_linkup_change(dd, 1);
10105 }
10106 break;
10107 case HLS_UP_ARMED:
10108 if (ppd->host_link_state != HLS_UP_INIT)
10109 goto unexpected;
10110
10111 ppd->host_link_state = HLS_UP_ARMED;
10112 set_logical_state(dd, LSTATE_ARMED);
10113 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10114 if (ret) {
10115 /* logical state didn't change, stay at init */
10116 ppd->host_link_state = HLS_UP_INIT;
10117 dd_dev_err(dd,
17fb4f29
JJ
10118 "%s: logical state did not change to ARMED\n",
10119 __func__);
77241056
MM
10120 }
10121 /*
10122 * The simulator does not currently implement SMA messages,
10123 * so neighbor_normal is not set. Set it here when we first
10124 * move to Armed.
10125 */
10126 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10127 ppd->neighbor_normal = 1;
10128 break;
10129 case HLS_UP_ACTIVE:
10130 if (ppd->host_link_state != HLS_UP_ARMED)
10131 goto unexpected;
10132
10133 ppd->host_link_state = HLS_UP_ACTIVE;
10134 set_logical_state(dd, LSTATE_ACTIVE);
10135 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10136 if (ret) {
10137 /* logical state didn't change, stay at armed */
10138 ppd->host_link_state = HLS_UP_ARMED;
10139 dd_dev_err(dd,
17fb4f29
JJ
10140 "%s: logical state did not change to ACTIVE\n",
10141 __func__);
77241056 10142 } else {
77241056
MM
10143 /* tell all engines to go running */
10144 sdma_all_running(dd);
10145
10146 /* Signal the IB layer that the port has went active */
ec3f2c12 10147 event.device = &dd->verbs_dev.rdi.ibdev;
77241056
MM
10148 event.element.port_num = ppd->port;
10149 event.event = IB_EVENT_PORT_ACTIVE;
10150 }
10151 break;
10152 case HLS_DN_POLL:
10153 if ((ppd->host_link_state == HLS_DN_DISABLE ||
10154 ppd->host_link_state == HLS_DN_OFFLINE) &&
10155 dd->dc_shutdown)
10156 dc_start(dd);
10157 /* Hand LED control to the DC */
10158 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10159
10160 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10161 u8 tmp = ppd->link_enabled;
10162
10163 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10164 if (ret) {
10165 ppd->link_enabled = tmp;
10166 break;
10167 }
10168 ppd->remote_link_down_reason = 0;
10169
10170 if (ppd->driver_link_ready)
10171 ppd->link_enabled = 1;
10172 }
10173
fb9036dd 10174 set_all_slowpath(ppd->dd);
77241056
MM
10175 ret = set_local_link_attributes(ppd);
10176 if (ret)
10177 break;
10178
10179 ppd->port_error_action = 0;
10180 ppd->host_link_state = HLS_DN_POLL;
10181
10182 if (quick_linkup) {
10183 /* quick linkup does not go into polling */
10184 ret = do_quick_linkup(dd);
10185 } else {
10186 ret1 = set_physical_link_state(dd, PLS_POLLING);
10187 if (ret1 != HCMD_SUCCESS) {
10188 dd_dev_err(dd,
17fb4f29
JJ
10189 "Failed to transition to Polling link state, return 0x%x\n",
10190 ret1);
77241056
MM
10191 ret = -EINVAL;
10192 }
10193 }
a9c05e35
BM
10194 ppd->offline_disabled_reason =
10195 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
77241056
MM
10196 /*
10197 * If an error occurred above, go back to offline. The
10198 * caller may reschedule another attempt.
10199 */
10200 if (ret)
10201 goto_offline(ppd, 0);
10202 break;
10203 case HLS_DN_DISABLE:
10204 /* link is disabled */
10205 ppd->link_enabled = 0;
10206
10207 /* allow any state to transition to disabled */
10208
10209 /* must transition to offline first */
10210 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10211 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10212 if (ret)
10213 break;
10214 ppd->remote_link_down_reason = 0;
10215 }
10216
10217 ret1 = set_physical_link_state(dd, PLS_DISABLED);
10218 if (ret1 != HCMD_SUCCESS) {
10219 dd_dev_err(dd,
17fb4f29
JJ
10220 "Failed to transition to Disabled link state, return 0x%x\n",
10221 ret1);
77241056
MM
10222 ret = -EINVAL;
10223 break;
10224 }
10225 ppd->host_link_state = HLS_DN_DISABLE;
10226 dc_shutdown(dd);
10227 break;
10228 case HLS_DN_OFFLINE:
10229 if (ppd->host_link_state == HLS_DN_DISABLE)
10230 dc_start(dd);
10231
10232 /* allow any state to transition to offline */
10233 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10234 if (!ret)
10235 ppd->remote_link_down_reason = 0;
10236 break;
10237 case HLS_VERIFY_CAP:
10238 if (ppd->host_link_state != HLS_DN_POLL)
10239 goto unexpected;
10240 ppd->host_link_state = HLS_VERIFY_CAP;
10241 break;
10242 case HLS_GOING_UP:
10243 if (ppd->host_link_state != HLS_VERIFY_CAP)
10244 goto unexpected;
10245
10246 ret1 = set_physical_link_state(dd, PLS_LINKUP);
10247 if (ret1 != HCMD_SUCCESS) {
10248 dd_dev_err(dd,
17fb4f29
JJ
10249 "Failed to transition to link up state, return 0x%x\n",
10250 ret1);
77241056
MM
10251 ret = -EINVAL;
10252 break;
10253 }
10254 ppd->host_link_state = HLS_GOING_UP;
10255 break;
10256
10257 case HLS_GOING_OFFLINE: /* transient within goto_offline() */
10258 case HLS_LINK_COOLDOWN: /* transient within goto_offline() */
10259 default:
10260 dd_dev_info(dd, "%s: state 0x%x: not supported\n",
17fb4f29 10261 __func__, state);
77241056
MM
10262 ret = -EINVAL;
10263 break;
10264 }
10265
10266 is_down = !!(ppd->host_link_state & (HLS_DN_POLL |
10267 HLS_DN_DISABLE | HLS_DN_OFFLINE));
10268
10269 if (was_up && is_down && ppd->local_link_down_reason.sma == 0 &&
10270 ppd->neigh_link_down_reason.sma == 0) {
10271 ppd->local_link_down_reason.sma =
10272 ppd->local_link_down_reason.latest;
10273 ppd->neigh_link_down_reason.sma =
10274 ppd->neigh_link_down_reason.latest;
10275 }
10276
10277 goto done;
10278
10279unexpected:
10280 dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
17fb4f29
JJ
10281 __func__, link_state_name(ppd->host_link_state),
10282 link_state_name(state));
77241056
MM
10283 ret = -EINVAL;
10284
10285done:
10286 mutex_unlock(&ppd->hls_lock);
10287
10288 if (event.device)
10289 ib_dispatch_event(&event);
10290
10291 return ret;
10292}
10293
10294int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10295{
10296 u64 reg;
10297 int ret = 0;
10298
10299 switch (which) {
10300 case HFI1_IB_CFG_LIDLMC:
10301 set_lidlmc(ppd);
10302 break;
10303 case HFI1_IB_CFG_VL_HIGH_LIMIT:
10304 /*
10305 * The VL Arbitrator high limit is sent in units of 4k
10306 * bytes, while HFI stores it in units of 64 bytes.
10307 */
8638b77f 10308 val *= 4096 / 64;
77241056
MM
10309 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10310 << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10311 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10312 break;
10313 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10314 /* HFI only supports POLL as the default link down state */
10315 if (val != HLS_DN_POLL)
10316 ret = -EINVAL;
10317 break;
10318 case HFI1_IB_CFG_OP_VLS:
10319 if (ppd->vls_operational != val) {
10320 ppd->vls_operational = val;
10321 if (!ppd->port)
10322 ret = -EINVAL;
77241056
MM
10323 }
10324 break;
10325 /*
10326 * For link width, link width downgrade, and speed enable, always AND
10327 * the setting with what is actually supported. This has two benefits.
10328 * First, enabled can't have unsupported values, no matter what the
10329 * SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean
10330 * "fill in with your supported value" have all the bits in the
10331 * field set, so simply ANDing with supported has the desired result.
10332 */
10333 case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10334 ppd->link_width_enabled = val & ppd->link_width_supported;
10335 break;
10336 case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10337 ppd->link_width_downgrade_enabled =
10338 val & ppd->link_width_downgrade_supported;
10339 break;
10340 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10341 ppd->link_speed_enabled = val & ppd->link_speed_supported;
10342 break;
10343 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10344 /*
10345 * HFI does not follow IB specs, save this value
10346 * so we can report it, if asked.
10347 */
10348 ppd->overrun_threshold = val;
10349 break;
10350 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10351 /*
10352 * HFI does not follow IB specs, save this value
10353 * so we can report it, if asked.
10354 */
10355 ppd->phy_error_threshold = val;
10356 break;
10357
10358 case HFI1_IB_CFG_MTU:
10359 set_send_length(ppd);
10360 break;
10361
10362 case HFI1_IB_CFG_PKEYS:
10363 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10364 set_partition_keys(ppd);
10365 break;
10366
10367 default:
10368 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10369 dd_dev_info(ppd->dd,
17fb4f29
JJ
10370 "%s: which %s, val 0x%x: not implemented\n",
10371 __func__, ib_cfg_name(which), val);
77241056
MM
10372 break;
10373 }
10374 return ret;
10375}
10376
10377/* begin functions related to vl arbitration table caching */
10378static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10379{
10380 int i;
10381
10382 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10383 VL_ARB_LOW_PRIO_TABLE_SIZE);
10384 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10385 VL_ARB_HIGH_PRIO_TABLE_SIZE);
10386
10387 /*
10388 * Note that we always return values directly from the
10389 * 'vl_arb_cache' (and do no CSR reads) in response to a
10390 * 'Get(VLArbTable)'. This is obviously correct after a
10391 * 'Set(VLArbTable)', since the cache will then be up to
10392 * date. But it's also correct prior to any 'Set(VLArbTable)'
10393 * since then both the cache, and the relevant h/w registers
10394 * will be zeroed.
10395 */
10396
10397 for (i = 0; i < MAX_PRIO_TABLE; i++)
10398 spin_lock_init(&ppd->vl_arb_cache[i].lock);
10399}
10400
10401/*
10402 * vl_arb_lock_cache
10403 *
10404 * All other vl_arb_* functions should be called only after locking
10405 * the cache.
10406 */
10407static inline struct vl_arb_cache *
10408vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10409{
10410 if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10411 return NULL;
10412 spin_lock(&ppd->vl_arb_cache[idx].lock);
10413 return &ppd->vl_arb_cache[idx];
10414}
10415
10416static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
10417{
10418 spin_unlock(&ppd->vl_arb_cache[idx].lock);
10419}
10420
10421static void vl_arb_get_cache(struct vl_arb_cache *cache,
10422 struct ib_vl_weight_elem *vl)
10423{
10424 memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
10425}
10426
10427static void vl_arb_set_cache(struct vl_arb_cache *cache,
10428 struct ib_vl_weight_elem *vl)
10429{
10430 memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10431}
10432
10433static int vl_arb_match_cache(struct vl_arb_cache *cache,
10434 struct ib_vl_weight_elem *vl)
10435{
10436 return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10437}
f4d507cd 10438
77241056
MM
10439/* end functions related to vl arbitration table caching */
10440
10441static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
10442 u32 size, struct ib_vl_weight_elem *vl)
10443{
10444 struct hfi1_devdata *dd = ppd->dd;
10445 u64 reg;
10446 unsigned int i, is_up = 0;
10447 int drain, ret = 0;
10448
10449 mutex_lock(&ppd->hls_lock);
10450
10451 if (ppd->host_link_state & HLS_UP)
10452 is_up = 1;
10453
10454 drain = !is_ax(dd) && is_up;
10455
10456 if (drain)
10457 /*
10458 * Before adjusting VL arbitration weights, empty per-VL
10459 * FIFOs, otherwise a packet whose VL weight is being
10460 * set to 0 could get stuck in a FIFO with no chance to
10461 * egress.
10462 */
10463 ret = stop_drain_data_vls(dd);
10464
10465 if (ret) {
10466 dd_dev_err(
10467 dd,
10468 "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
10469 __func__);
10470 goto err;
10471 }
10472
10473 for (i = 0; i < size; i++, vl++) {
10474 /*
10475 * NOTE: The low priority shift and mask are used here, but
10476 * they are the same for both the low and high registers.
10477 */
10478 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
10479 << SEND_LOW_PRIORITY_LIST_VL_SHIFT)
10480 | (((u64)vl->weight
10481 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
10482 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
10483 write_csr(dd, target + (i * 8), reg);
10484 }
10485 pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
10486
10487 if (drain)
10488 open_fill_data_vls(dd); /* reopen all VLs */
10489
10490err:
10491 mutex_unlock(&ppd->hls_lock);
10492
10493 return ret;
10494}
10495
10496/*
10497 * Read one credit merge VL register.
10498 */
10499static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
10500 struct vl_limit *vll)
10501{
10502 u64 reg = read_csr(dd, csr);
10503
10504 vll->dedicated = cpu_to_be16(
10505 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
10506 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
10507 vll->shared = cpu_to_be16(
10508 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
10509 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
10510}
10511
10512/*
10513 * Read the current credit merge limits.
10514 */
10515static int get_buffer_control(struct hfi1_devdata *dd,
10516 struct buffer_control *bc, u16 *overall_limit)
10517{
10518 u64 reg;
10519 int i;
10520
10521 /* not all entries are filled in */
10522 memset(bc, 0, sizeof(*bc));
10523
10524 /* OPA and HFI have a 1-1 mapping */
10525 for (i = 0; i < TXE_NUM_DATA_VL; i++)
8638b77f 10526 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
77241056
MM
10527
10528 /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
10529 read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
10530
10531 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10532 bc->overall_shared_limit = cpu_to_be16(
10533 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
10534 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
10535 if (overall_limit)
10536 *overall_limit = (reg
10537 >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
10538 & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
10539 return sizeof(struct buffer_control);
10540}
10541
10542static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10543{
10544 u64 reg;
10545 int i;
10546
10547 /* each register contains 16 SC->VLnt mappings, 4 bits each */
10548 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
10549 for (i = 0; i < sizeof(u64); i++) {
10550 u8 byte = *(((u8 *)&reg) + i);
10551
10552 dp->vlnt[2 * i] = byte & 0xf;
10553 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
10554 }
10555
10556 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
10557 for (i = 0; i < sizeof(u64); i++) {
10558 u8 byte = *(((u8 *)&reg) + i);
10559
10560 dp->vlnt[16 + (2 * i)] = byte & 0xf;
10561 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
10562 }
10563 return sizeof(struct sc2vlnt);
10564}
10565
10566static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
10567 struct ib_vl_weight_elem *vl)
10568{
10569 unsigned int i;
10570
10571 for (i = 0; i < nelems; i++, vl++) {
10572 vl->vl = 0xf;
10573 vl->weight = 0;
10574 }
10575}
10576
10577static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10578{
10579 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
17fb4f29
JJ
10580 DC_SC_VL_VAL(15_0,
10581 0, dp->vlnt[0] & 0xf,
10582 1, dp->vlnt[1] & 0xf,
10583 2, dp->vlnt[2] & 0xf,
10584 3, dp->vlnt[3] & 0xf,
10585 4, dp->vlnt[4] & 0xf,
10586 5, dp->vlnt[5] & 0xf,
10587 6, dp->vlnt[6] & 0xf,
10588 7, dp->vlnt[7] & 0xf,
10589 8, dp->vlnt[8] & 0xf,
10590 9, dp->vlnt[9] & 0xf,
10591 10, dp->vlnt[10] & 0xf,
10592 11, dp->vlnt[11] & 0xf,
10593 12, dp->vlnt[12] & 0xf,
10594 13, dp->vlnt[13] & 0xf,
10595 14, dp->vlnt[14] & 0xf,
10596 15, dp->vlnt[15] & 0xf));
77241056 10597 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
17fb4f29
JJ
10598 DC_SC_VL_VAL(31_16,
10599 16, dp->vlnt[16] & 0xf,
10600 17, dp->vlnt[17] & 0xf,
10601 18, dp->vlnt[18] & 0xf,
10602 19, dp->vlnt[19] & 0xf,
10603 20, dp->vlnt[20] & 0xf,
10604 21, dp->vlnt[21] & 0xf,
10605 22, dp->vlnt[22] & 0xf,
10606 23, dp->vlnt[23] & 0xf,
10607 24, dp->vlnt[24] & 0xf,
10608 25, dp->vlnt[25] & 0xf,
10609 26, dp->vlnt[26] & 0xf,
10610 27, dp->vlnt[27] & 0xf,
10611 28, dp->vlnt[28] & 0xf,
10612 29, dp->vlnt[29] & 0xf,
10613 30, dp->vlnt[30] & 0xf,
10614 31, dp->vlnt[31] & 0xf));
77241056
MM
10615}
10616
10617static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
10618 u16 limit)
10619{
10620 if (limit != 0)
10621 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
17fb4f29 10622 what, (int)limit, idx);
77241056
MM
10623}
10624
10625/* change only the shared limit portion of SendCmGLobalCredit */
10626static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
10627{
10628 u64 reg;
10629
10630 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10631 reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
10632 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
10633 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
10634}
10635
10636/* change only the total credit limit portion of SendCmGLobalCredit */
10637static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
10638{
10639 u64 reg;
10640
10641 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10642 reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
10643 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
10644 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
10645}
10646
10647/* set the given per-VL shared limit */
10648static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
10649{
10650 u64 reg;
10651 u32 addr;
10652
10653 if (vl < TXE_NUM_DATA_VL)
10654 addr = SEND_CM_CREDIT_VL + (8 * vl);
10655 else
10656 addr = SEND_CM_CREDIT_VL15;
10657
10658 reg = read_csr(dd, addr);
10659 reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
10660 reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
10661 write_csr(dd, addr, reg);
10662}
10663
10664/* set the given per-VL dedicated limit */
10665static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
10666{
10667 u64 reg;
10668 u32 addr;
10669
10670 if (vl < TXE_NUM_DATA_VL)
10671 addr = SEND_CM_CREDIT_VL + (8 * vl);
10672 else
10673 addr = SEND_CM_CREDIT_VL15;
10674
10675 reg = read_csr(dd, addr);
10676 reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
10677 reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
10678 write_csr(dd, addr, reg);
10679}
10680
10681/* spin until the given per-VL status mask bits clear */
10682static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
10683 const char *which)
10684{
10685 unsigned long timeout;
10686 u64 reg;
10687
10688 timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
10689 while (1) {
10690 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
10691
10692 if (reg == 0)
10693 return; /* success */
10694 if (time_after(jiffies, timeout))
10695 break; /* timed out */
10696 udelay(1);
10697 }
10698
10699 dd_dev_err(dd,
17fb4f29
JJ
10700 "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
10701 which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
77241056
MM
10702 /*
10703 * If this occurs, it is likely there was a credit loss on the link.
10704 * The only recovery from that is a link bounce.
10705 */
10706 dd_dev_err(dd,
17fb4f29 10707 "Continuing anyway. A credit loss may occur. Suggest a link bounce\n");
77241056
MM
10708}
10709
10710/*
10711 * The number of credits on the VLs may be changed while everything
10712 * is "live", but the following algorithm must be followed due to
10713 * how the hardware is actually implemented. In particular,
10714 * Return_Credit_Status[] is the only correct status check.
10715 *
10716 * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
10717 * set Global_Shared_Credit_Limit = 0
10718 * use_all_vl = 1
10719 * mask0 = all VLs that are changing either dedicated or shared limits
10720 * set Shared_Limit[mask0] = 0
10721 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
10722 * if (changing any dedicated limit)
10723 * mask1 = all VLs that are lowering dedicated limits
10724 * lower Dedicated_Limit[mask1]
10725 * spin until Return_Credit_Status[mask1] == 0
10726 * raise Dedicated_Limits
10727 * raise Shared_Limits
10728 * raise Global_Shared_Credit_Limit
10729 *
10730 * lower = if the new limit is lower, set the limit to the new value
10731 * raise = if the new limit is higher than the current value (may be changed
10732 * earlier in the algorithm), set the new limit to the new value
10733 */
8a4d3444
MM
10734int set_buffer_control(struct hfi1_pportdata *ppd,
10735 struct buffer_control *new_bc)
77241056 10736{
8a4d3444 10737 struct hfi1_devdata *dd = ppd->dd;
77241056
MM
10738 u64 changing_mask, ld_mask, stat_mask;
10739 int change_count;
10740 int i, use_all_mask;
10741 int this_shared_changing;
8a4d3444 10742 int vl_count = 0, ret;
77241056
MM
10743 /*
10744 * A0: add the variable any_shared_limit_changing below and in the
10745 * algorithm above. If removing A0 support, it can be removed.
10746 */
10747 int any_shared_limit_changing;
10748 struct buffer_control cur_bc;
10749 u8 changing[OPA_MAX_VLS];
10750 u8 lowering_dedicated[OPA_MAX_VLS];
10751 u16 cur_total;
10752 u32 new_total = 0;
10753 const u64 all_mask =
10754 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
10755 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
10756 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
10757 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
10758 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
10759 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
10760 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
10761 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
10762 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
10763
10764#define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
10765#define NUM_USABLE_VLS 16 /* look at VL15 and less */
10766
77241056
MM
10767 /* find the new total credits, do sanity check on unused VLs */
10768 for (i = 0; i < OPA_MAX_VLS; i++) {
10769 if (valid_vl(i)) {
10770 new_total += be16_to_cpu(new_bc->vl[i].dedicated);
10771 continue;
10772 }
10773 nonzero_msg(dd, i, "dedicated",
17fb4f29 10774 be16_to_cpu(new_bc->vl[i].dedicated));
77241056 10775 nonzero_msg(dd, i, "shared",
17fb4f29 10776 be16_to_cpu(new_bc->vl[i].shared));
77241056
MM
10777 new_bc->vl[i].dedicated = 0;
10778 new_bc->vl[i].shared = 0;
10779 }
10780 new_total += be16_to_cpu(new_bc->overall_shared_limit);
bff14bb6 10781
77241056
MM
10782 /* fetch the current values */
10783 get_buffer_control(dd, &cur_bc, &cur_total);
10784
10785 /*
10786 * Create the masks we will use.
10787 */
10788 memset(changing, 0, sizeof(changing));
10789 memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
4d114fdd
JJ
10790 /*
10791 * NOTE: Assumes that the individual VL bits are adjacent and in
10792 * increasing order
10793 */
77241056
MM
10794 stat_mask =
10795 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
10796 changing_mask = 0;
10797 ld_mask = 0;
10798 change_count = 0;
10799 any_shared_limit_changing = 0;
10800 for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
10801 if (!valid_vl(i))
10802 continue;
10803 this_shared_changing = new_bc->vl[i].shared
10804 != cur_bc.vl[i].shared;
10805 if (this_shared_changing)
10806 any_shared_limit_changing = 1;
d0d236ea
JJ
10807 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
10808 this_shared_changing) {
77241056
MM
10809 changing[i] = 1;
10810 changing_mask |= stat_mask;
10811 change_count++;
10812 }
10813 if (be16_to_cpu(new_bc->vl[i].dedicated) <
10814 be16_to_cpu(cur_bc.vl[i].dedicated)) {
10815 lowering_dedicated[i] = 1;
10816 ld_mask |= stat_mask;
10817 }
10818 }
10819
10820 /* bracket the credit change with a total adjustment */
10821 if (new_total > cur_total)
10822 set_global_limit(dd, new_total);
10823
10824 /*
10825 * Start the credit change algorithm.
10826 */
10827 use_all_mask = 0;
10828 if ((be16_to_cpu(new_bc->overall_shared_limit) <
995deafa
MM
10829 be16_to_cpu(cur_bc.overall_shared_limit)) ||
10830 (is_ax(dd) && any_shared_limit_changing)) {
77241056
MM
10831 set_global_shared(dd, 0);
10832 cur_bc.overall_shared_limit = 0;
10833 use_all_mask = 1;
10834 }
10835
10836 for (i = 0; i < NUM_USABLE_VLS; i++) {
10837 if (!valid_vl(i))
10838 continue;
10839
10840 if (changing[i]) {
10841 set_vl_shared(dd, i, 0);
10842 cur_bc.vl[i].shared = 0;
10843 }
10844 }
10845
10846 wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
17fb4f29 10847 "shared");
77241056
MM
10848
10849 if (change_count > 0) {
10850 for (i = 0; i < NUM_USABLE_VLS; i++) {
10851 if (!valid_vl(i))
10852 continue;
10853
10854 if (lowering_dedicated[i]) {
10855 set_vl_dedicated(dd, i,
17fb4f29
JJ
10856 be16_to_cpu(new_bc->
10857 vl[i].dedicated));
77241056
MM
10858 cur_bc.vl[i].dedicated =
10859 new_bc->vl[i].dedicated;
10860 }
10861 }
10862
10863 wait_for_vl_status_clear(dd, ld_mask, "dedicated");
10864
10865 /* now raise all dedicated that are going up */
10866 for (i = 0; i < NUM_USABLE_VLS; i++) {
10867 if (!valid_vl(i))
10868 continue;
10869
10870 if (be16_to_cpu(new_bc->vl[i].dedicated) >
10871 be16_to_cpu(cur_bc.vl[i].dedicated))
10872 set_vl_dedicated(dd, i,
17fb4f29
JJ
10873 be16_to_cpu(new_bc->
10874 vl[i].dedicated));
77241056
MM
10875 }
10876 }
10877
10878 /* next raise all shared that are going up */
10879 for (i = 0; i < NUM_USABLE_VLS; i++) {
10880 if (!valid_vl(i))
10881 continue;
10882
10883 if (be16_to_cpu(new_bc->vl[i].shared) >
10884 be16_to_cpu(cur_bc.vl[i].shared))
10885 set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
10886 }
10887
10888 /* finally raise the global shared */
10889 if (be16_to_cpu(new_bc->overall_shared_limit) >
17fb4f29 10890 be16_to_cpu(cur_bc.overall_shared_limit))
77241056 10891 set_global_shared(dd,
17fb4f29 10892 be16_to_cpu(new_bc->overall_shared_limit));
77241056
MM
10893
10894 /* bracket the credit change with a total adjustment */
10895 if (new_total < cur_total)
10896 set_global_limit(dd, new_total);
8a4d3444
MM
10897
10898 /*
10899 * Determine the actual number of operational VLS using the number of
10900 * dedicated and shared credits for each VL.
10901 */
10902 if (change_count > 0) {
10903 for (i = 0; i < TXE_NUM_DATA_VL; i++)
10904 if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
10905 be16_to_cpu(new_bc->vl[i].shared) > 0)
10906 vl_count++;
10907 ppd->actual_vls_operational = vl_count;
10908 ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
10909 ppd->actual_vls_operational :
10910 ppd->vls_operational,
10911 NULL);
10912 if (ret == 0)
10913 ret = pio_map_init(dd, ppd->port - 1, vl_count ?
10914 ppd->actual_vls_operational :
10915 ppd->vls_operational, NULL);
10916 if (ret)
10917 return ret;
10918 }
77241056
MM
10919 return 0;
10920}
10921
10922/*
10923 * Read the given fabric manager table. Return the size of the
10924 * table (in bytes) on success, and a negative error code on
10925 * failure.
10926 */
10927int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
10928
10929{
10930 int size;
10931 struct vl_arb_cache *vlc;
10932
10933 switch (which) {
10934 case FM_TBL_VL_HIGH_ARB:
10935 size = 256;
10936 /*
10937 * OPA specifies 128 elements (of 2 bytes each), though
10938 * HFI supports only 16 elements in h/w.
10939 */
10940 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
10941 vl_arb_get_cache(vlc, t);
10942 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
10943 break;
10944 case FM_TBL_VL_LOW_ARB:
10945 size = 256;
10946 /*
10947 * OPA specifies 128 elements (of 2 bytes each), though
10948 * HFI supports only 16 elements in h/w.
10949 */
10950 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
10951 vl_arb_get_cache(vlc, t);
10952 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
10953 break;
10954 case FM_TBL_BUFFER_CONTROL:
10955 size = get_buffer_control(ppd->dd, t, NULL);
10956 break;
10957 case FM_TBL_SC2VLNT:
10958 size = get_sc2vlnt(ppd->dd, t);
10959 break;
10960 case FM_TBL_VL_PREEMPT_ELEMS:
10961 size = 256;
10962 /* OPA specifies 128 elements, of 2 bytes each */
10963 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
10964 break;
10965 case FM_TBL_VL_PREEMPT_MATRIX:
10966 size = 256;
10967 /*
10968 * OPA specifies that this is the same size as the VL
10969 * arbitration tables (i.e., 256 bytes).
10970 */
10971 break;
10972 default:
10973 return -EINVAL;
10974 }
10975 return size;
10976}
10977
10978/*
10979 * Write the given fabric manager table.
10980 */
10981int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
10982{
10983 int ret = 0;
10984 struct vl_arb_cache *vlc;
10985
10986 switch (which) {
10987 case FM_TBL_VL_HIGH_ARB:
10988 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
10989 if (vl_arb_match_cache(vlc, t)) {
10990 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
10991 break;
10992 }
10993 vl_arb_set_cache(vlc, t);
10994 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
10995 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
10996 VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
10997 break;
10998 case FM_TBL_VL_LOW_ARB:
10999 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11000 if (vl_arb_match_cache(vlc, t)) {
11001 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11002 break;
11003 }
11004 vl_arb_set_cache(vlc, t);
11005 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11006 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11007 VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11008 break;
11009 case FM_TBL_BUFFER_CONTROL:
8a4d3444 11010 ret = set_buffer_control(ppd, t);
77241056
MM
11011 break;
11012 case FM_TBL_SC2VLNT:
11013 set_sc2vlnt(ppd->dd, t);
11014 break;
11015 default:
11016 ret = -EINVAL;
11017 }
11018 return ret;
11019}
11020
11021/*
11022 * Disable all data VLs.
11023 *
11024 * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11025 */
11026static int disable_data_vls(struct hfi1_devdata *dd)
11027{
995deafa 11028 if (is_ax(dd))
77241056
MM
11029 return 1;
11030
11031 pio_send_control(dd, PSC_DATA_VL_DISABLE);
11032
11033 return 0;
11034}
11035
11036/*
11037 * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11038 * Just re-enables all data VLs (the "fill" part happens
11039 * automatically - the name was chosen for symmetry with
11040 * stop_drain_data_vls()).
11041 *
11042 * Return 0 if successful, non-zero if the VLs cannot be enabled.
11043 */
11044int open_fill_data_vls(struct hfi1_devdata *dd)
11045{
995deafa 11046 if (is_ax(dd))
77241056
MM
11047 return 1;
11048
11049 pio_send_control(dd, PSC_DATA_VL_ENABLE);
11050
11051 return 0;
11052}
11053
11054/*
11055 * drain_data_vls() - assumes that disable_data_vls() has been called,
11056 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11057 * engines to drop to 0.
11058 */
11059static void drain_data_vls(struct hfi1_devdata *dd)
11060{
11061 sc_wait(dd);
11062 sdma_wait(dd);
11063 pause_for_credit_return(dd);
11064}
11065
11066/*
11067 * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11068 *
11069 * Use open_fill_data_vls() to resume using data VLs. This pair is
11070 * meant to be used like this:
11071 *
11072 * stop_drain_data_vls(dd);
11073 * // do things with per-VL resources
11074 * open_fill_data_vls(dd);
11075 */
11076int stop_drain_data_vls(struct hfi1_devdata *dd)
11077{
11078 int ret;
11079
11080 ret = disable_data_vls(dd);
11081 if (ret == 0)
11082 drain_data_vls(dd);
11083
11084 return ret;
11085}
11086
11087/*
11088 * Convert a nanosecond time to a cclock count. No matter how slow
11089 * the cclock, a non-zero ns will always have a non-zero result.
11090 */
11091u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11092{
11093 u32 cclocks;
11094
11095 if (dd->icode == ICODE_FPGA_EMULATION)
11096 cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11097 else /* simulation pretends to be ASIC */
11098 cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11099 if (ns && !cclocks) /* if ns nonzero, must be at least 1 */
11100 cclocks = 1;
11101 return cclocks;
11102}
11103
11104/*
11105 * Convert a cclock count to nanoseconds. Not matter how slow
11106 * the cclock, a non-zero cclocks will always have a non-zero result.
11107 */
11108u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11109{
11110 u32 ns;
11111
11112 if (dd->icode == ICODE_FPGA_EMULATION)
11113 ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11114 else /* simulation pretends to be ASIC */
11115 ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11116 if (cclocks && !ns)
11117 ns = 1;
11118 return ns;
11119}
11120
11121/*
11122 * Dynamically adjust the receive interrupt timeout for a context based on
11123 * incoming packet rate.
11124 *
11125 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11126 */
11127static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11128{
11129 struct hfi1_devdata *dd = rcd->dd;
11130 u32 timeout = rcd->rcvavail_timeout;
11131
11132 /*
11133 * This algorithm doubles or halves the timeout depending on whether
11134 * the number of packets received in this interrupt were less than or
11135 * greater equal the interrupt count.
11136 *
11137 * The calculations below do not allow a steady state to be achieved.
11138 * Only at the endpoints it is possible to have an unchanging
11139 * timeout.
11140 */
11141 if (npkts < rcv_intr_count) {
11142 /*
11143 * Not enough packets arrived before the timeout, adjust
11144 * timeout downward.
11145 */
11146 if (timeout < 2) /* already at minimum? */
11147 return;
11148 timeout >>= 1;
11149 } else {
11150 /*
11151 * More than enough packets arrived before the timeout, adjust
11152 * timeout upward.
11153 */
11154 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11155 return;
11156 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11157 }
11158
11159 rcd->rcvavail_timeout = timeout;
4d114fdd
JJ
11160 /*
11161 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11162 * been verified to be in range
11163 */
77241056 11164 write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
17fb4f29
JJ
11165 (u64)timeout <<
11166 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
77241056
MM
11167}
11168
11169void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11170 u32 intr_adjust, u32 npkts)
11171{
11172 struct hfi1_devdata *dd = rcd->dd;
11173 u64 reg;
11174 u32 ctxt = rcd->ctxt;
11175
11176 /*
11177 * Need to write timeout register before updating RcvHdrHead to ensure
11178 * that a new value is used when the HW decides to restart counting.
11179 */
11180 if (intr_adjust)
11181 adjust_rcv_timeout(rcd, npkts);
11182 if (updegr) {
11183 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11184 << RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11185 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11186 }
11187 mmiowb();
11188 reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11189 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11190 << RCV_HDR_HEAD_HEAD_SHIFT);
11191 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11192 mmiowb();
11193}
11194
11195u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11196{
11197 u32 head, tail;
11198
11199 head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11200 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11201
11202 if (rcd->rcvhdrtail_kvaddr)
11203 tail = get_rcvhdrtail(rcd);
11204 else
11205 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11206
11207 return head == tail;
11208}
11209
11210/*
11211 * Context Control and Receive Array encoding for buffer size:
11212 * 0x0 invalid
11213 * 0x1 4 KB
11214 * 0x2 8 KB
11215 * 0x3 16 KB
11216 * 0x4 32 KB
11217 * 0x5 64 KB
11218 * 0x6 128 KB
11219 * 0x7 256 KB
11220 * 0x8 512 KB (Receive Array only)
11221 * 0x9 1 MB (Receive Array only)
11222 * 0xa 2 MB (Receive Array only)
11223 *
11224 * 0xB-0xF - reserved (Receive Array only)
11225 *
11226 *
11227 * This routine assumes that the value has already been sanity checked.
11228 */
11229static u32 encoded_size(u32 size)
11230{
11231 switch (size) {
8638b77f
JJ
11232 case 4 * 1024: return 0x1;
11233 case 8 * 1024: return 0x2;
11234 case 16 * 1024: return 0x3;
11235 case 32 * 1024: return 0x4;
11236 case 64 * 1024: return 0x5;
11237 case 128 * 1024: return 0x6;
11238 case 256 * 1024: return 0x7;
11239 case 512 * 1024: return 0x8;
11240 case 1 * 1024 * 1024: return 0x9;
11241 case 2 * 1024 * 1024: return 0xa;
77241056
MM
11242 }
11243 return 0x1; /* if invalid, go with the minimum size */
11244}
11245
11246void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt)
11247{
11248 struct hfi1_ctxtdata *rcd;
11249 u64 rcvctrl, reg;
11250 int did_enable = 0;
11251
11252 rcd = dd->rcd[ctxt];
11253 if (!rcd)
11254 return;
11255
11256 hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11257
11258 rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11259 /* if the context already enabled, don't do the extra steps */
d0d236ea
JJ
11260 if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11261 !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
77241056
MM
11262 /* reset the tail and hdr addresses, and sequence count */
11263 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11264 rcd->rcvhdrq_phys);
11265 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
11266 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11267 rcd->rcvhdrqtailaddr_phys);
11268 rcd->seq_cnt = 1;
11269
11270 /* reset the cached receive header queue head value */
11271 rcd->head = 0;
11272
11273 /*
11274 * Zero the receive header queue so we don't get false
11275 * positives when checking the sequence number. The
11276 * sequence numbers could land exactly on the same spot.
11277 * E.g. a rcd restart before the receive header wrapped.
11278 */
11279 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11280
11281 /* starting timeout */
11282 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11283
11284 /* enable the context */
11285 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11286
11287 /* clean the egr buffer size first */
11288 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11289 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11290 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11291 << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11292
11293 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11294 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11295 did_enable = 1;
11296
11297 /* zero RcvEgrIndexHead */
11298 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11299
11300 /* set eager count and base index */
11301 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11302 & RCV_EGR_CTRL_EGR_CNT_MASK)
11303 << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11304 (((rcd->eager_base >> RCV_SHIFT)
11305 & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11306 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11307 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11308
11309 /*
11310 * Set TID (expected) count and base index.
11311 * rcd->expected_count is set to individual RcvArray entries,
11312 * not pairs, and the CSR takes a pair-count in groups of
11313 * four, so divide by 8.
11314 */
11315 reg = (((rcd->expected_count >> RCV_SHIFT)
11316 & RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11317 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11318 (((rcd->expected_base >> RCV_SHIFT)
11319 & RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11320 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11321 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
82c2611d
NV
11322 if (ctxt == HFI1_CTRL_CTXT)
11323 write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
77241056
MM
11324 }
11325 if (op & HFI1_RCVCTRL_CTXT_DIS) {
11326 write_csr(dd, RCV_VL15, 0);
46b010d3
MB
11327 /*
11328 * When receive context is being disabled turn on tail
11329 * update with a dummy tail address and then disable
11330 * receive context.
11331 */
11332 if (dd->rcvhdrtail_dummy_physaddr) {
11333 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11334 dd->rcvhdrtail_dummy_physaddr);
566c157c 11335 /* Enabling RcvCtxtCtrl.TailUpd is intentional. */
46b010d3
MB
11336 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11337 }
11338
77241056
MM
11339 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11340 }
11341 if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11342 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11343 if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11344 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11345 if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_phys)
11346 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
566c157c
MH
11347 if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11348 /* See comment on RcvCtxtCtrl.TailUpd above */
11349 if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11350 rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11351 }
77241056
MM
11352 if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11353 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11354 if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11355 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11356 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
4d114fdd
JJ
11357 /*
11358 * In one-packet-per-eager mode, the size comes from
11359 * the RcvArray entry.
11360 */
77241056
MM
11361 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11362 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11363 }
11364 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11365 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11366 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11367 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11368 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11369 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11370 if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11371 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11372 if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11373 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11374 rcd->rcvctrl = rcvctrl;
11375 hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11376 write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11377
11378 /* work around sticky RcvCtxtStatus.BlockedRHQFull */
d0d236ea
JJ
11379 if (did_enable &&
11380 (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
77241056
MM
11381 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11382 if (reg != 0) {
11383 dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
17fb4f29 11384 ctxt, reg);
77241056
MM
11385 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11386 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11387 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11388 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11389 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11390 dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
17fb4f29 11391 ctxt, reg, reg == 0 ? "not" : "still");
77241056
MM
11392 }
11393 }
11394
11395 if (did_enable) {
11396 /*
11397 * The interrupt timeout and count must be set after
11398 * the context is enabled to take effect.
11399 */
11400 /* set interrupt timeout */
11401 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
17fb4f29 11402 (u64)rcd->rcvavail_timeout <<
77241056
MM
11403 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11404
11405 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11406 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11407 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11408 }
11409
11410 if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
11411 /*
11412 * If the context has been disabled and the Tail Update has
46b010d3
MB
11413 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11414 * so it doesn't contain an address that is invalid.
77241056 11415 */
46b010d3
MB
11416 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11417 dd->rcvhdrtail_dummy_physaddr);
77241056
MM
11418}
11419
582e05c3 11420u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
77241056
MM
11421{
11422 int ret;
11423 u64 val = 0;
11424
11425 if (namep) {
11426 ret = dd->cntrnameslen;
77241056
MM
11427 *namep = dd->cntrnames;
11428 } else {
11429 const struct cntr_entry *entry;
11430 int i, j;
11431
11432 ret = (dd->ndevcntrs) * sizeof(u64);
77241056
MM
11433
11434 /* Get the start of the block of counters */
11435 *cntrp = dd->cntrs;
11436
11437 /*
11438 * Now go and fill in each counter in the block.
11439 */
11440 for (i = 0; i < DEV_CNTR_LAST; i++) {
11441 entry = &dev_cntrs[i];
11442 hfi1_cdbg(CNTR, "reading %s", entry->name);
11443 if (entry->flags & CNTR_DISABLED) {
11444 /* Nothing */
11445 hfi1_cdbg(CNTR, "\tDisabled\n");
11446 } else {
11447 if (entry->flags & CNTR_VL) {
11448 hfi1_cdbg(CNTR, "\tPer VL\n");
11449 for (j = 0; j < C_VL_COUNT; j++) {
11450 val = entry->rw_cntr(entry,
11451 dd, j,
11452 CNTR_MODE_R,
11453 0);
11454 hfi1_cdbg(
11455 CNTR,
11456 "\t\tRead 0x%llx for %d\n",
11457 val, j);
11458 dd->cntrs[entry->offset + j] =
11459 val;
11460 }
a699c6c2
VM
11461 } else if (entry->flags & CNTR_SDMA) {
11462 hfi1_cdbg(CNTR,
11463 "\t Per SDMA Engine\n");
11464 for (j = 0; j < dd->chip_sdma_engines;
11465 j++) {
11466 val =
11467 entry->rw_cntr(entry, dd, j,
11468 CNTR_MODE_R, 0);
11469 hfi1_cdbg(CNTR,
11470 "\t\tRead 0x%llx for %d\n",
11471 val, j);
11472 dd->cntrs[entry->offset + j] =
11473 val;
11474 }
77241056
MM
11475 } else {
11476 val = entry->rw_cntr(entry, dd,
11477 CNTR_INVALID_VL,
11478 CNTR_MODE_R, 0);
11479 dd->cntrs[entry->offset] = val;
11480 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11481 }
11482 }
11483 }
11484 }
11485 return ret;
11486}
11487
11488/*
11489 * Used by sysfs to create files for hfi stats to read
11490 */
582e05c3 11491u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
77241056
MM
11492{
11493 int ret;
11494 u64 val = 0;
11495
11496 if (namep) {
582e05c3
DL
11497 ret = ppd->dd->portcntrnameslen;
11498 *namep = ppd->dd->portcntrnames;
77241056
MM
11499 } else {
11500 const struct cntr_entry *entry;
77241056
MM
11501 int i, j;
11502
582e05c3 11503 ret = ppd->dd->nportcntrs * sizeof(u64);
77241056
MM
11504 *cntrp = ppd->cntrs;
11505
11506 for (i = 0; i < PORT_CNTR_LAST; i++) {
11507 entry = &port_cntrs[i];
11508 hfi1_cdbg(CNTR, "reading %s", entry->name);
11509 if (entry->flags & CNTR_DISABLED) {
11510 /* Nothing */
11511 hfi1_cdbg(CNTR, "\tDisabled\n");
11512 continue;
11513 }
11514
11515 if (entry->flags & CNTR_VL) {
11516 hfi1_cdbg(CNTR, "\tPer VL");
11517 for (j = 0; j < C_VL_COUNT; j++) {
11518 val = entry->rw_cntr(entry, ppd, j,
11519 CNTR_MODE_R,
11520 0);
11521 hfi1_cdbg(
11522 CNTR,
11523 "\t\tRead 0x%llx for %d",
11524 val, j);
11525 ppd->cntrs[entry->offset + j] = val;
11526 }
11527 } else {
11528 val = entry->rw_cntr(entry, ppd,
11529 CNTR_INVALID_VL,
11530 CNTR_MODE_R,
11531 0);
11532 ppd->cntrs[entry->offset] = val;
11533 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11534 }
11535 }
11536 }
11537 return ret;
11538}
11539
11540static void free_cntrs(struct hfi1_devdata *dd)
11541{
11542 struct hfi1_pportdata *ppd;
11543 int i;
11544
11545 if (dd->synth_stats_timer.data)
11546 del_timer_sync(&dd->synth_stats_timer);
11547 dd->synth_stats_timer.data = 0;
11548 ppd = (struct hfi1_pportdata *)(dd + 1);
11549 for (i = 0; i < dd->num_pports; i++, ppd++) {
11550 kfree(ppd->cntrs);
11551 kfree(ppd->scntrs);
4eb06882
DD
11552 free_percpu(ppd->ibport_data.rvp.rc_acks);
11553 free_percpu(ppd->ibport_data.rvp.rc_qacks);
11554 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
77241056
MM
11555 ppd->cntrs = NULL;
11556 ppd->scntrs = NULL;
4eb06882
DD
11557 ppd->ibport_data.rvp.rc_acks = NULL;
11558 ppd->ibport_data.rvp.rc_qacks = NULL;
11559 ppd->ibport_data.rvp.rc_delayed_comp = NULL;
77241056
MM
11560 }
11561 kfree(dd->portcntrnames);
11562 dd->portcntrnames = NULL;
11563 kfree(dd->cntrs);
11564 dd->cntrs = NULL;
11565 kfree(dd->scntrs);
11566 dd->scntrs = NULL;
11567 kfree(dd->cntrnames);
11568 dd->cntrnames = NULL;
11569}
11570
11571#define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
11572#define CNTR_32BIT_MAX 0x00000000FFFFFFFF
11573
11574static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
11575 u64 *psval, void *context, int vl)
11576{
11577 u64 val;
11578 u64 sval = *psval;
11579
11580 if (entry->flags & CNTR_DISABLED) {
11581 dd_dev_err(dd, "Counter %s not enabled", entry->name);
11582 return 0;
11583 }
11584
11585 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
11586
11587 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
11588
11589 /* If its a synthetic counter there is more work we need to do */
11590 if (entry->flags & CNTR_SYNTH) {
11591 if (sval == CNTR_MAX) {
11592 /* No need to read already saturated */
11593 return CNTR_MAX;
11594 }
11595
11596 if (entry->flags & CNTR_32BIT) {
11597 /* 32bit counters can wrap multiple times */
11598 u64 upper = sval >> 32;
11599 u64 lower = (sval << 32) >> 32;
11600
11601 if (lower > val) { /* hw wrapped */
11602 if (upper == CNTR_32BIT_MAX)
11603 val = CNTR_MAX;
11604 else
11605 upper++;
11606 }
11607
11608 if (val != CNTR_MAX)
11609 val = (upper << 32) | val;
11610
11611 } else {
11612 /* If we rolled we are saturated */
11613 if ((val < sval) || (val > CNTR_MAX))
11614 val = CNTR_MAX;
11615 }
11616 }
11617
11618 *psval = val;
11619
11620 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
11621
11622 return val;
11623}
11624
11625static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
11626 struct cntr_entry *entry,
11627 u64 *psval, void *context, int vl, u64 data)
11628{
11629 u64 val;
11630
11631 if (entry->flags & CNTR_DISABLED) {
11632 dd_dev_err(dd, "Counter %s not enabled", entry->name);
11633 return 0;
11634 }
11635
11636 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
11637
11638 if (entry->flags & CNTR_SYNTH) {
11639 *psval = data;
11640 if (entry->flags & CNTR_32BIT) {
11641 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
11642 (data << 32) >> 32);
11643 val = data; /* return the full 64bit value */
11644 } else {
11645 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
11646 data);
11647 }
11648 } else {
11649 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
11650 }
11651
11652 *psval = val;
11653
11654 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
11655
11656 return val;
11657}
11658
11659u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
11660{
11661 struct cntr_entry *entry;
11662 u64 *sval;
11663
11664 entry = &dev_cntrs[index];
11665 sval = dd->scntrs + entry->offset;
11666
11667 if (vl != CNTR_INVALID_VL)
11668 sval += vl;
11669
11670 return read_dev_port_cntr(dd, entry, sval, dd, vl);
11671}
11672
11673u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
11674{
11675 struct cntr_entry *entry;
11676 u64 *sval;
11677
11678 entry = &dev_cntrs[index];
11679 sval = dd->scntrs + entry->offset;
11680
11681 if (vl != CNTR_INVALID_VL)
11682 sval += vl;
11683
11684 return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
11685}
11686
11687u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
11688{
11689 struct cntr_entry *entry;
11690 u64 *sval;
11691
11692 entry = &port_cntrs[index];
11693 sval = ppd->scntrs + entry->offset;
11694
11695 if (vl != CNTR_INVALID_VL)
11696 sval += vl;
11697
11698 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
11699 (index <= C_RCV_HDR_OVF_LAST)) {
11700 /* We do not want to bother for disabled contexts */
11701 return 0;
11702 }
11703
11704 return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
11705}
11706
11707u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
11708{
11709 struct cntr_entry *entry;
11710 u64 *sval;
11711
11712 entry = &port_cntrs[index];
11713 sval = ppd->scntrs + entry->offset;
11714
11715 if (vl != CNTR_INVALID_VL)
11716 sval += vl;
11717
11718 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
11719 (index <= C_RCV_HDR_OVF_LAST)) {
11720 /* We do not want to bother for disabled contexts */
11721 return 0;
11722 }
11723
11724 return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
11725}
11726
11727static void update_synth_timer(unsigned long opaque)
11728{
11729 u64 cur_tx;
11730 u64 cur_rx;
11731 u64 total_flits;
11732 u8 update = 0;
11733 int i, j, vl;
11734 struct hfi1_pportdata *ppd;
11735 struct cntr_entry *entry;
11736
11737 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
11738
11739 /*
11740 * Rather than keep beating on the CSRs pick a minimal set that we can
11741 * check to watch for potential roll over. We can do this by looking at
11742 * the number of flits sent/recv. If the total flits exceeds 32bits then
11743 * we have to iterate all the counters and update.
11744 */
11745 entry = &dev_cntrs[C_DC_RCV_FLITS];
11746 cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
11747
11748 entry = &dev_cntrs[C_DC_XMIT_FLITS];
11749 cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
11750
11751 hfi1_cdbg(
11752 CNTR,
11753 "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
11754 dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
11755
11756 if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
11757 /*
11758 * May not be strictly necessary to update but it won't hurt and
11759 * simplifies the logic here.
11760 */
11761 update = 1;
11762 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
11763 dd->unit);
11764 } else {
11765 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
11766 hfi1_cdbg(CNTR,
11767 "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
11768 total_flits, (u64)CNTR_32BIT_MAX);
11769 if (total_flits >= CNTR_32BIT_MAX) {
11770 hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
11771 dd->unit);
11772 update = 1;
11773 }
11774 }
11775
11776 if (update) {
11777 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
11778 for (i = 0; i < DEV_CNTR_LAST; i++) {
11779 entry = &dev_cntrs[i];
11780 if (entry->flags & CNTR_VL) {
11781 for (vl = 0; vl < C_VL_COUNT; vl++)
11782 read_dev_cntr(dd, i, vl);
11783 } else {
11784 read_dev_cntr(dd, i, CNTR_INVALID_VL);
11785 }
11786 }
11787 ppd = (struct hfi1_pportdata *)(dd + 1);
11788 for (i = 0; i < dd->num_pports; i++, ppd++) {
11789 for (j = 0; j < PORT_CNTR_LAST; j++) {
11790 entry = &port_cntrs[j];
11791 if (entry->flags & CNTR_VL) {
11792 for (vl = 0; vl < C_VL_COUNT; vl++)
11793 read_port_cntr(ppd, j, vl);
11794 } else {
11795 read_port_cntr(ppd, j, CNTR_INVALID_VL);
11796 }
11797 }
11798 }
11799
11800 /*
11801 * We want the value in the register. The goal is to keep track
11802 * of the number of "ticks" not the counter value. In other
11803 * words if the register rolls we want to notice it and go ahead
11804 * and force an update.
11805 */
11806 entry = &dev_cntrs[C_DC_XMIT_FLITS];
11807 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
11808 CNTR_MODE_R, 0);
11809
11810 entry = &dev_cntrs[C_DC_RCV_FLITS];
11811 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
11812 CNTR_MODE_R, 0);
11813
11814 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
11815 dd->unit, dd->last_tx, dd->last_rx);
11816
11817 } else {
11818 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
11819 }
11820
11821mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
11822}
11823
11824#define C_MAX_NAME 13 /* 12 chars + one for /0 */
11825static int init_cntrs(struct hfi1_devdata *dd)
11826{
c024c554 11827 int i, rcv_ctxts, j;
77241056
MM
11828 size_t sz;
11829 char *p;
11830 char name[C_MAX_NAME];
11831 struct hfi1_pportdata *ppd;
11d2b114
SS
11832 const char *bit_type_32 = ",32";
11833 const int bit_type_32_sz = strlen(bit_type_32);
77241056
MM
11834
11835 /* set up the stats timer; the add_timer is done at the end */
24523a94
MFW
11836 setup_timer(&dd->synth_stats_timer, update_synth_timer,
11837 (unsigned long)dd);
77241056
MM
11838
11839 /***********************/
11840 /* per device counters */
11841 /***********************/
11842
11843 /* size names and determine how many we have*/
11844 dd->ndevcntrs = 0;
11845 sz = 0;
77241056
MM
11846
11847 for (i = 0; i < DEV_CNTR_LAST; i++) {
77241056
MM
11848 if (dev_cntrs[i].flags & CNTR_DISABLED) {
11849 hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
11850 continue;
11851 }
11852
11853 if (dev_cntrs[i].flags & CNTR_VL) {
c024c554 11854 dev_cntrs[i].offset = dd->ndevcntrs;
77241056 11855 for (j = 0; j < C_VL_COUNT; j++) {
77241056 11856 snprintf(name, C_MAX_NAME, "%s%d",
17fb4f29 11857 dev_cntrs[i].name, vl_from_idx(j));
77241056 11858 sz += strlen(name);
11d2b114
SS
11859 /* Add ",32" for 32-bit counters */
11860 if (dev_cntrs[i].flags & CNTR_32BIT)
11861 sz += bit_type_32_sz;
77241056 11862 sz++;
77241056 11863 dd->ndevcntrs++;
77241056 11864 }
a699c6c2 11865 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
c024c554 11866 dev_cntrs[i].offset = dd->ndevcntrs;
a699c6c2 11867 for (j = 0; j < dd->chip_sdma_engines; j++) {
a699c6c2
VM
11868 snprintf(name, C_MAX_NAME, "%s%d",
11869 dev_cntrs[i].name, j);
11870 sz += strlen(name);
11d2b114
SS
11871 /* Add ",32" for 32-bit counters */
11872 if (dev_cntrs[i].flags & CNTR_32BIT)
11873 sz += bit_type_32_sz;
a699c6c2 11874 sz++;
a699c6c2 11875 dd->ndevcntrs++;
a699c6c2 11876 }
77241056 11877 } else {
11d2b114 11878 /* +1 for newline. */
77241056 11879 sz += strlen(dev_cntrs[i].name) + 1;
11d2b114
SS
11880 /* Add ",32" for 32-bit counters */
11881 if (dev_cntrs[i].flags & CNTR_32BIT)
11882 sz += bit_type_32_sz;
c024c554 11883 dev_cntrs[i].offset = dd->ndevcntrs;
77241056 11884 dd->ndevcntrs++;
77241056
MM
11885 }
11886 }
11887
11888 /* allocate space for the counter values */
c024c554 11889 dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
77241056
MM
11890 if (!dd->cntrs)
11891 goto bail;
11892
c024c554 11893 dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
77241056
MM
11894 if (!dd->scntrs)
11895 goto bail;
11896
77241056
MM
11897 /* allocate space for the counter names */
11898 dd->cntrnameslen = sz;
11899 dd->cntrnames = kmalloc(sz, GFP_KERNEL);
11900 if (!dd->cntrnames)
11901 goto bail;
11902
11903 /* fill in the names */
c024c554 11904 for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
77241056
MM
11905 if (dev_cntrs[i].flags & CNTR_DISABLED) {
11906 /* Nothing */
11d2b114
SS
11907 } else if (dev_cntrs[i].flags & CNTR_VL) {
11908 for (j = 0; j < C_VL_COUNT; j++) {
11d2b114
SS
11909 snprintf(name, C_MAX_NAME, "%s%d",
11910 dev_cntrs[i].name,
11911 vl_from_idx(j));
11912 memcpy(p, name, strlen(name));
11913 p += strlen(name);
11914
11915 /* Counter is 32 bits */
11916 if (dev_cntrs[i].flags & CNTR_32BIT) {
11917 memcpy(p, bit_type_32, bit_type_32_sz);
11918 p += bit_type_32_sz;
77241056 11919 }
11d2b114
SS
11920
11921 *p++ = '\n';
11922 }
11923 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
11924 for (j = 0; j < dd->chip_sdma_engines; j++) {
11d2b114
SS
11925 snprintf(name, C_MAX_NAME, "%s%d",
11926 dev_cntrs[i].name, j);
11927 memcpy(p, name, strlen(name));
11928 p += strlen(name);
11929
11930 /* Counter is 32 bits */
11931 if (dev_cntrs[i].flags & CNTR_32BIT) {
11932 memcpy(p, bit_type_32, bit_type_32_sz);
11933 p += bit_type_32_sz;
a699c6c2 11934 }
11d2b114 11935
77241056
MM
11936 *p++ = '\n';
11937 }
11d2b114
SS
11938 } else {
11939 memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
11940 p += strlen(dev_cntrs[i].name);
11941
11942 /* Counter is 32 bits */
11943 if (dev_cntrs[i].flags & CNTR_32BIT) {
11944 memcpy(p, bit_type_32, bit_type_32_sz);
11945 p += bit_type_32_sz;
11946 }
11947
11948 *p++ = '\n';
77241056
MM
11949 }
11950 }
11951
11952 /*********************/
11953 /* per port counters */
11954 /*********************/
11955
11956 /*
11957 * Go through the counters for the overflows and disable the ones we
11958 * don't need. This varies based on platform so we need to do it
11959 * dynamically here.
11960 */
11961 rcv_ctxts = dd->num_rcv_contexts;
11962 for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
11963 i <= C_RCV_HDR_OVF_LAST; i++) {
11964 port_cntrs[i].flags |= CNTR_DISABLED;
11965 }
11966
11967 /* size port counter names and determine how many we have*/
11968 sz = 0;
11969 dd->nportcntrs = 0;
11970 for (i = 0; i < PORT_CNTR_LAST; i++) {
77241056
MM
11971 if (port_cntrs[i].flags & CNTR_DISABLED) {
11972 hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
11973 continue;
11974 }
11975
11976 if (port_cntrs[i].flags & CNTR_VL) {
77241056
MM
11977 port_cntrs[i].offset = dd->nportcntrs;
11978 for (j = 0; j < C_VL_COUNT; j++) {
77241056 11979 snprintf(name, C_MAX_NAME, "%s%d",
17fb4f29 11980 port_cntrs[i].name, vl_from_idx(j));
77241056 11981 sz += strlen(name);
11d2b114
SS
11982 /* Add ",32" for 32-bit counters */
11983 if (port_cntrs[i].flags & CNTR_32BIT)
11984 sz += bit_type_32_sz;
77241056 11985 sz++;
77241056
MM
11986 dd->nportcntrs++;
11987 }
11988 } else {
11d2b114 11989 /* +1 for newline */
77241056 11990 sz += strlen(port_cntrs[i].name) + 1;
11d2b114
SS
11991 /* Add ",32" for 32-bit counters */
11992 if (port_cntrs[i].flags & CNTR_32BIT)
11993 sz += bit_type_32_sz;
77241056
MM
11994 port_cntrs[i].offset = dd->nportcntrs;
11995 dd->nportcntrs++;
77241056
MM
11996 }
11997 }
11998
11999 /* allocate space for the counter names */
12000 dd->portcntrnameslen = sz;
12001 dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12002 if (!dd->portcntrnames)
12003 goto bail;
12004
12005 /* fill in port cntr names */
12006 for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12007 if (port_cntrs[i].flags & CNTR_DISABLED)
12008 continue;
12009
12010 if (port_cntrs[i].flags & CNTR_VL) {
12011 for (j = 0; j < C_VL_COUNT; j++) {
77241056 12012 snprintf(name, C_MAX_NAME, "%s%d",
17fb4f29 12013 port_cntrs[i].name, vl_from_idx(j));
77241056
MM
12014 memcpy(p, name, strlen(name));
12015 p += strlen(name);
11d2b114
SS
12016
12017 /* Counter is 32 bits */
12018 if (port_cntrs[i].flags & CNTR_32BIT) {
12019 memcpy(p, bit_type_32, bit_type_32_sz);
12020 p += bit_type_32_sz;
12021 }
12022
77241056
MM
12023 *p++ = '\n';
12024 }
12025 } else {
12026 memcpy(p, port_cntrs[i].name,
12027 strlen(port_cntrs[i].name));
12028 p += strlen(port_cntrs[i].name);
11d2b114
SS
12029
12030 /* Counter is 32 bits */
12031 if (port_cntrs[i].flags & CNTR_32BIT) {
12032 memcpy(p, bit_type_32, bit_type_32_sz);
12033 p += bit_type_32_sz;
12034 }
12035
77241056
MM
12036 *p++ = '\n';
12037 }
12038 }
12039
12040 /* allocate per port storage for counter values */
12041 ppd = (struct hfi1_pportdata *)(dd + 1);
12042 for (i = 0; i < dd->num_pports; i++, ppd++) {
12043 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12044 if (!ppd->cntrs)
12045 goto bail;
12046
12047 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12048 if (!ppd->scntrs)
12049 goto bail;
12050 }
12051
12052 /* CPU counters need to be allocated and zeroed */
12053 if (init_cpu_counters(dd))
12054 goto bail;
12055
12056 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12057 return 0;
12058bail:
12059 free_cntrs(dd);
12060 return -ENOMEM;
12061}
12062
77241056
MM
12063static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12064{
12065 switch (chip_lstate) {
12066 default:
12067 dd_dev_err(dd,
17fb4f29
JJ
12068 "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12069 chip_lstate);
77241056
MM
12070 /* fall through */
12071 case LSTATE_DOWN:
12072 return IB_PORT_DOWN;
12073 case LSTATE_INIT:
12074 return IB_PORT_INIT;
12075 case LSTATE_ARMED:
12076 return IB_PORT_ARMED;
12077 case LSTATE_ACTIVE:
12078 return IB_PORT_ACTIVE;
12079 }
12080}
12081
12082u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12083{
12084 /* look at the HFI meta-states only */
12085 switch (chip_pstate & 0xf0) {
12086 default:
12087 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
17fb4f29 12088 chip_pstate);
77241056
MM
12089 /* fall through */
12090 case PLS_DISABLED:
12091 return IB_PORTPHYSSTATE_DISABLED;
12092 case PLS_OFFLINE:
12093 return OPA_PORTPHYSSTATE_OFFLINE;
12094 case PLS_POLLING:
12095 return IB_PORTPHYSSTATE_POLLING;
12096 case PLS_CONFIGPHY:
12097 return IB_PORTPHYSSTATE_TRAINING;
12098 case PLS_LINKUP:
12099 return IB_PORTPHYSSTATE_LINKUP;
12100 case PLS_PHYTEST:
12101 return IB_PORTPHYSSTATE_PHY_TEST;
12102 }
12103}
12104
12105/* return the OPA port logical state name */
12106const char *opa_lstate_name(u32 lstate)
12107{
12108 static const char * const port_logical_names[] = {
12109 "PORT_NOP",
12110 "PORT_DOWN",
12111 "PORT_INIT",
12112 "PORT_ARMED",
12113 "PORT_ACTIVE",
12114 "PORT_ACTIVE_DEFER",
12115 };
12116 if (lstate < ARRAY_SIZE(port_logical_names))
12117 return port_logical_names[lstate];
12118 return "unknown";
12119}
12120
12121/* return the OPA port physical state name */
12122const char *opa_pstate_name(u32 pstate)
12123{
12124 static const char * const port_physical_names[] = {
12125 "PHYS_NOP",
12126 "reserved1",
12127 "PHYS_POLL",
12128 "PHYS_DISABLED",
12129 "PHYS_TRAINING",
12130 "PHYS_LINKUP",
12131 "PHYS_LINK_ERR_RECOVER",
12132 "PHYS_PHY_TEST",
12133 "reserved8",
12134 "PHYS_OFFLINE",
12135 "PHYS_GANGED",
12136 "PHYS_TEST",
12137 };
12138 if (pstate < ARRAY_SIZE(port_physical_names))
12139 return port_physical_names[pstate];
12140 return "unknown";
12141}
12142
12143/*
12144 * Read the hardware link state and set the driver's cached value of it.
12145 * Return the (new) current value.
12146 */
12147u32 get_logical_state(struct hfi1_pportdata *ppd)
12148{
12149 u32 new_state;
12150
12151 new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd));
12152 if (new_state != ppd->lstate) {
12153 dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
17fb4f29 12154 opa_lstate_name(new_state), new_state);
77241056
MM
12155 ppd->lstate = new_state;
12156 }
12157 /*
12158 * Set port status flags in the page mapped into userspace
12159 * memory. Do it here to ensure a reliable state - this is
12160 * the only function called by all state handling code.
12161 * Always set the flags due to the fact that the cache value
12162 * might have been changed explicitly outside of this
12163 * function.
12164 */
12165 if (ppd->statusp) {
12166 switch (ppd->lstate) {
12167 case IB_PORT_DOWN:
12168 case IB_PORT_INIT:
12169 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12170 HFI1_STATUS_IB_READY);
12171 break;
12172 case IB_PORT_ARMED:
12173 *ppd->statusp |= HFI1_STATUS_IB_CONF;
12174 break;
12175 case IB_PORT_ACTIVE:
12176 *ppd->statusp |= HFI1_STATUS_IB_READY;
12177 break;
12178 }
12179 }
12180 return ppd->lstate;
12181}
12182
12183/**
12184 * wait_logical_linkstate - wait for an IB link state change to occur
12185 * @ppd: port device
12186 * @state: the state to wait for
12187 * @msecs: the number of milliseconds to wait
12188 *
12189 * Wait up to msecs milliseconds for IB link state change to occur.
12190 * For now, take the easy polling route.
12191 * Returns 0 if state reached, otherwise -ETIMEDOUT.
12192 */
12193static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12194 int msecs)
12195{
12196 unsigned long timeout;
12197
12198 timeout = jiffies + msecs_to_jiffies(msecs);
12199 while (1) {
12200 if (get_logical_state(ppd) == state)
12201 return 0;
12202 if (time_after(jiffies, timeout))
12203 break;
12204 msleep(20);
12205 }
12206 dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state);
12207
12208 return -ETIMEDOUT;
12209}
12210
12211u8 hfi1_ibphys_portstate(struct hfi1_pportdata *ppd)
12212{
77241056
MM
12213 u32 pstate;
12214 u32 ib_pstate;
12215
12216 pstate = read_physical_state(ppd->dd);
12217 ib_pstate = chip_to_opa_pstate(ppd->dd, pstate);
f45c8dc8 12218 if (ppd->last_pstate != ib_pstate) {
77241056 12219 dd_dev_info(ppd->dd,
17fb4f29
JJ
12220 "%s: physical state changed to %s (0x%x), phy 0x%x\n",
12221 __func__, opa_pstate_name(ib_pstate), ib_pstate,
12222 pstate);
f45c8dc8 12223 ppd->last_pstate = ib_pstate;
77241056
MM
12224 }
12225 return ib_pstate;
12226}
12227
12228/*
12229 * Read/modify/write ASIC_QSFP register bits as selected by mask
12230 * data: 0 or 1 in the positions depending on what needs to be written
12231 * dir: 0 for read, 1 for write
12232 * mask: select by setting
12233 * I2CCLK (bit 0)
12234 * I2CDATA (bit 1)
12235 */
12236u64 hfi1_gpio_mod(struct hfi1_devdata *dd, u32 target, u32 data, u32 dir,
12237 u32 mask)
12238{
12239 u64 qsfp_oe, target_oe;
12240
12241 target_oe = target ? ASIC_QSFP2_OE : ASIC_QSFP1_OE;
12242 if (mask) {
12243 /* We are writing register bits, so lock access */
12244 dir &= mask;
12245 data &= mask;
12246
12247 qsfp_oe = read_csr(dd, target_oe);
12248 qsfp_oe = (qsfp_oe & ~(u64)mask) | (u64)dir;
12249 write_csr(dd, target_oe, qsfp_oe);
12250 }
12251 /* We are exclusively reading bits here, but it is unlikely
12252 * we'll get valid data when we set the direction of the pin
12253 * in the same call, so read should call this function again
12254 * to get valid data
12255 */
12256 return read_csr(dd, target ? ASIC_QSFP2_IN : ASIC_QSFP1_IN);
12257}
12258
12259#define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12260(r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12261
12262#define SET_STATIC_RATE_CONTROL_SMASK(r) \
12263(r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12264
12265int hfi1_init_ctxt(struct send_context *sc)
12266{
d125a6c6 12267 if (sc) {
77241056
MM
12268 struct hfi1_devdata *dd = sc->dd;
12269 u64 reg;
12270 u8 set = (sc->type == SC_USER ?
12271 HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12272 HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12273 reg = read_kctxt_csr(dd, sc->hw_context,
12274 SEND_CTXT_CHECK_ENABLE);
12275 if (set)
12276 CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12277 else
12278 SET_STATIC_RATE_CONTROL_SMASK(reg);
12279 write_kctxt_csr(dd, sc->hw_context,
12280 SEND_CTXT_CHECK_ENABLE, reg);
12281 }
12282 return 0;
12283}
12284
12285int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12286{
12287 int ret = 0;
12288 u64 reg;
12289
12290 if (dd->icode != ICODE_RTL_SILICON) {
12291 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12292 dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12293 __func__);
12294 return -EINVAL;
12295 }
12296 reg = read_csr(dd, ASIC_STS_THERM);
12297 temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12298 ASIC_STS_THERM_CURR_TEMP_MASK);
12299 temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12300 ASIC_STS_THERM_LO_TEMP_MASK);
12301 temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12302 ASIC_STS_THERM_HI_TEMP_MASK);
12303 temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12304 ASIC_STS_THERM_CRIT_TEMP_MASK);
12305 /* triggers is a 3-bit value - 1 bit per trigger. */
12306 temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12307
12308 return ret;
12309}
12310
12311/* ========================================================================= */
12312
12313/*
12314 * Enable/disable chip from delivering interrupts.
12315 */
12316void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12317{
12318 int i;
12319
12320 /*
12321 * In HFI, the mask needs to be 1 to allow interrupts.
12322 */
12323 if (enable) {
77241056
MM
12324 /* enable all interrupts */
12325 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
8638b77f 12326 write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0);
77241056 12327
8ebd4cf1 12328 init_qsfp_int(dd);
77241056
MM
12329 } else {
12330 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
8638b77f 12331 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
77241056
MM
12332 }
12333}
12334
12335/*
12336 * Clear all interrupt sources on the chip.
12337 */
12338static void clear_all_interrupts(struct hfi1_devdata *dd)
12339{
12340 int i;
12341
12342 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
8638b77f 12343 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
77241056
MM
12344
12345 write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
12346 write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
12347 write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
12348 write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
12349 write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
12350 write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
12351 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
12352 for (i = 0; i < dd->chip_send_contexts; i++)
12353 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
12354 for (i = 0; i < dd->chip_sdma_engines; i++)
12355 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
12356
12357 write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
12358 write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
12359 write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
12360}
12361
12362/* Move to pcie.c? */
12363static void disable_intx(struct pci_dev *pdev)
12364{
12365 pci_intx(pdev, 0);
12366}
12367
12368static void clean_up_interrupts(struct hfi1_devdata *dd)
12369{
12370 int i;
12371
12372 /* remove irqs - must happen before disabling/turning off */
12373 if (dd->num_msix_entries) {
12374 /* MSI-X */
12375 struct hfi1_msix_entry *me = dd->msix_entries;
12376
12377 for (i = 0; i < dd->num_msix_entries; i++, me++) {
d125a6c6 12378 if (!me->arg) /* => no irq, no affinity */
957558c9
MH
12379 continue;
12380 hfi1_put_irq_affinity(dd, &dd->msix_entries[i]);
77241056
MM
12381 free_irq(me->msix.vector, me->arg);
12382 }
12383 } else {
12384 /* INTx */
12385 if (dd->requested_intx_irq) {
12386 free_irq(dd->pcidev->irq, dd);
12387 dd->requested_intx_irq = 0;
12388 }
12389 }
12390
12391 /* turn off interrupts */
12392 if (dd->num_msix_entries) {
12393 /* MSI-X */
6e5b6131 12394 pci_disable_msix(dd->pcidev);
77241056
MM
12395 } else {
12396 /* INTx */
12397 disable_intx(dd->pcidev);
12398 }
12399
12400 /* clean structures */
77241056
MM
12401 kfree(dd->msix_entries);
12402 dd->msix_entries = NULL;
12403 dd->num_msix_entries = 0;
12404}
12405
12406/*
12407 * Remap the interrupt source from the general handler to the given MSI-X
12408 * interrupt.
12409 */
12410static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
12411{
12412 u64 reg;
12413 int m, n;
12414
12415 /* clear from the handled mask of the general interrupt */
12416 m = isrc / 64;
12417 n = isrc % 64;
12418 dd->gi_mask[m] &= ~((u64)1 << n);
12419
12420 /* direct the chip source to the given MSI-X interrupt */
12421 m = isrc / 8;
12422 n = isrc % 8;
8638b77f
JJ
12423 reg = read_csr(dd, CCE_INT_MAP + (8 * m));
12424 reg &= ~((u64)0xff << (8 * n));
12425 reg |= ((u64)msix_intr & 0xff) << (8 * n);
12426 write_csr(dd, CCE_INT_MAP + (8 * m), reg);
77241056
MM
12427}
12428
12429static void remap_sdma_interrupts(struct hfi1_devdata *dd,
12430 int engine, int msix_intr)
12431{
12432 /*
12433 * SDMA engine interrupt sources grouped by type, rather than
12434 * engine. Per-engine interrupts are as follows:
12435 * SDMA
12436 * SDMAProgress
12437 * SDMAIdle
12438 */
8638b77f 12439 remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
17fb4f29 12440 msix_intr);
8638b77f 12441 remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
17fb4f29 12442 msix_intr);
8638b77f 12443 remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
17fb4f29 12444 msix_intr);
77241056
MM
12445}
12446
77241056
MM
12447static int request_intx_irq(struct hfi1_devdata *dd)
12448{
12449 int ret;
12450
9805071e
JJ
12451 snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d",
12452 dd->unit);
77241056 12453 ret = request_irq(dd->pcidev->irq, general_interrupt,
17fb4f29 12454 IRQF_SHARED, dd->intx_name, dd);
77241056
MM
12455 if (ret)
12456 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
17fb4f29 12457 ret);
77241056
MM
12458 else
12459 dd->requested_intx_irq = 1;
12460 return ret;
12461}
12462
12463static int request_msix_irqs(struct hfi1_devdata *dd)
12464{
77241056
MM
12465 int first_general, last_general;
12466 int first_sdma, last_sdma;
12467 int first_rx, last_rx;
957558c9 12468 int i, ret = 0;
77241056
MM
12469
12470 /* calculate the ranges we are going to use */
12471 first_general = 0;
f3ff8189
JJ
12472 last_general = first_general + 1;
12473 first_sdma = last_general;
12474 last_sdma = first_sdma + dd->num_sdma;
12475 first_rx = last_sdma;
77241056
MM
12476 last_rx = first_rx + dd->n_krcv_queues;
12477
77241056
MM
12478 /*
12479 * Sanity check - the code expects all SDMA chip source
12480 * interrupts to be in the same CSR, starting at bit 0. Verify
12481 * that this is true by checking the bit location of the start.
12482 */
12483 BUILD_BUG_ON(IS_SDMA_START % 64);
12484
12485 for (i = 0; i < dd->num_msix_entries; i++) {
12486 struct hfi1_msix_entry *me = &dd->msix_entries[i];
12487 const char *err_info;
12488 irq_handler_t handler;
f4f30031 12489 irq_handler_t thread = NULL;
77241056
MM
12490 void *arg;
12491 int idx;
12492 struct hfi1_ctxtdata *rcd = NULL;
12493 struct sdma_engine *sde = NULL;
12494
12495 /* obtain the arguments to request_irq */
12496 if (first_general <= i && i < last_general) {
12497 idx = i - first_general;
12498 handler = general_interrupt;
12499 arg = dd;
12500 snprintf(me->name, sizeof(me->name),
9805071e 12501 DRIVER_NAME "_%d", dd->unit);
77241056 12502 err_info = "general";
957558c9 12503 me->type = IRQ_GENERAL;
77241056
MM
12504 } else if (first_sdma <= i && i < last_sdma) {
12505 idx = i - first_sdma;
12506 sde = &dd->per_sdma[idx];
12507 handler = sdma_interrupt;
12508 arg = sde;
12509 snprintf(me->name, sizeof(me->name),
9805071e 12510 DRIVER_NAME "_%d sdma%d", dd->unit, idx);
77241056
MM
12511 err_info = "sdma";
12512 remap_sdma_interrupts(dd, idx, i);
957558c9 12513 me->type = IRQ_SDMA;
77241056
MM
12514 } else if (first_rx <= i && i < last_rx) {
12515 idx = i - first_rx;
12516 rcd = dd->rcd[idx];
12517 /* no interrupt if no rcd */
12518 if (!rcd)
12519 continue;
12520 /*
12521 * Set the interrupt register and mask for this
12522 * context's interrupt.
12523 */
8638b77f 12524 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
77241056 12525 rcd->imask = ((u64)1) <<
8638b77f 12526 ((IS_RCVAVAIL_START + idx) % 64);
77241056 12527 handler = receive_context_interrupt;
f4f30031 12528 thread = receive_context_thread;
77241056
MM
12529 arg = rcd;
12530 snprintf(me->name, sizeof(me->name),
9805071e 12531 DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
77241056 12532 err_info = "receive context";
66c0933b 12533 remap_intr(dd, IS_RCVAVAIL_START + idx, i);
957558c9 12534 me->type = IRQ_RCVCTXT;
77241056
MM
12535 } else {
12536 /* not in our expected range - complain, then
4d114fdd
JJ
12537 * ignore it
12538 */
77241056 12539 dd_dev_err(dd,
17fb4f29 12540 "Unexpected extra MSI-X interrupt %d\n", i);
77241056
MM
12541 continue;
12542 }
12543 /* no argument, no interrupt */
d125a6c6 12544 if (!arg)
77241056
MM
12545 continue;
12546 /* make sure the name is terminated */
8638b77f 12547 me->name[sizeof(me->name) - 1] = 0;
77241056 12548
f4f30031 12549 ret = request_threaded_irq(me->msix.vector, handler, thread, 0,
17fb4f29 12550 me->name, arg);
77241056
MM
12551 if (ret) {
12552 dd_dev_err(dd,
17fb4f29
JJ
12553 "unable to allocate %s interrupt, vector %d, index %d, err %d\n",
12554 err_info, me->msix.vector, idx, ret);
77241056
MM
12555 return ret;
12556 }
12557 /*
12558 * assign arg after request_irq call, so it will be
12559 * cleaned up
12560 */
12561 me->arg = arg;
12562
957558c9
MH
12563 ret = hfi1_get_irq_affinity(dd, me);
12564 if (ret)
12565 dd_dev_err(dd,
12566 "unable to pin IRQ %d\n", ret);
77241056
MM
12567 }
12568
77241056 12569 return ret;
77241056
MM
12570}
12571
12572/*
12573 * Set the general handler to accept all interrupts, remap all
12574 * chip interrupts back to MSI-X 0.
12575 */
12576static void reset_interrupts(struct hfi1_devdata *dd)
12577{
12578 int i;
12579
12580 /* all interrupts handled by the general handler */
12581 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12582 dd->gi_mask[i] = ~(u64)0;
12583
12584 /* all chip interrupts map to MSI-X 0 */
12585 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
8638b77f 12586 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
77241056
MM
12587}
12588
12589static int set_up_interrupts(struct hfi1_devdata *dd)
12590{
12591 struct hfi1_msix_entry *entries;
12592 u32 total, request;
12593 int i, ret;
12594 int single_interrupt = 0; /* we expect to have all the interrupts */
12595
12596 /*
12597 * Interrupt count:
12598 * 1 general, "slow path" interrupt (includes the SDMA engines
12599 * slow source, SDMACleanupDone)
12600 * N interrupts - one per used SDMA engine
12601 * M interrupt - one per kernel receive context
12602 */
12603 total = 1 + dd->num_sdma + dd->n_krcv_queues;
12604
12605 entries = kcalloc(total, sizeof(*entries), GFP_KERNEL);
12606 if (!entries) {
77241056
MM
12607 ret = -ENOMEM;
12608 goto fail;
12609 }
12610 /* 1-1 MSI-X entry assignment */
12611 for (i = 0; i < total; i++)
12612 entries[i].msix.entry = i;
12613
12614 /* ask for MSI-X interrupts */
12615 request = total;
12616 request_msix(dd, &request, entries);
12617
12618 if (request == 0) {
12619 /* using INTx */
12620 /* dd->num_msix_entries already zero */
12621 kfree(entries);
12622 single_interrupt = 1;
12623 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
12624 } else {
12625 /* using MSI-X */
12626 dd->num_msix_entries = request;
12627 dd->msix_entries = entries;
12628
12629 if (request != total) {
12630 /* using MSI-X, with reduced interrupts */
12631 dd_dev_err(
12632 dd,
12633 "cannot handle reduced interrupt case, want %u, got %u\n",
12634 total, request);
12635 ret = -EINVAL;
12636 goto fail;
12637 }
12638 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
12639 }
12640
12641 /* mask all interrupts */
12642 set_intr_state(dd, 0);
12643 /* clear all pending interrupts */
12644 clear_all_interrupts(dd);
12645
12646 /* reset general handler mask, chip MSI-X mappings */
12647 reset_interrupts(dd);
12648
12649 if (single_interrupt)
12650 ret = request_intx_irq(dd);
12651 else
12652 ret = request_msix_irqs(dd);
12653 if (ret)
12654 goto fail;
12655
12656 return 0;
12657
12658fail:
12659 clean_up_interrupts(dd);
12660 return ret;
12661}
12662
12663/*
12664 * Set up context values in dd. Sets:
12665 *
12666 * num_rcv_contexts - number of contexts being used
12667 * n_krcv_queues - number of kernel contexts
12668 * first_user_ctxt - first non-kernel context in array of contexts
12669 * freectxts - number of free user contexts
12670 * num_send_contexts - number of PIO send contexts being used
12671 */
12672static int set_up_context_variables(struct hfi1_devdata *dd)
12673{
12674 int num_kernel_contexts;
77241056
MM
12675 int total_contexts;
12676 int ret;
12677 unsigned ngroups;
12678
12679 /*
12680 * Kernel contexts: (to be fixed later):
12681 * - min or 2 or 1 context/numa
82c2611d
NV
12682 * - Context 0 - control context (VL15/multicast/error)
12683 * - Context 1 - default context
77241056
MM
12684 */
12685 if (n_krcvqs)
82c2611d
NV
12686 /*
12687 * Don't count context 0 in n_krcvqs since
12688 * is isn't used for normal verbs traffic.
12689 *
12690 * krcvqs will reflect number of kernel
12691 * receive contexts above 0.
12692 */
12693 num_kernel_contexts = n_krcvqs + MIN_KERNEL_KCTXTS - 1;
77241056 12694 else
0edf80ea 12695 num_kernel_contexts = num_online_nodes() + 1;
77241056
MM
12696 num_kernel_contexts =
12697 max_t(int, MIN_KERNEL_KCTXTS, num_kernel_contexts);
12698 /*
12699 * Every kernel receive context needs an ACK send context.
12700 * one send context is allocated for each VL{0-7} and VL15
12701 */
12702 if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
12703 dd_dev_err(dd,
12704 "Reducing # kernel rcv contexts to: %d, from %d\n",
12705 (int)(dd->chip_send_contexts - num_vls - 1),
12706 (int)num_kernel_contexts);
12707 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
12708 }
12709 /*
12710 * User contexts: (to be fixed later)
2ce6bf22
SS
12711 * - default to 1 user context per CPU if num_user_contexts is
12712 * negative
77241056 12713 */
2ce6bf22 12714 if (num_user_contexts < 0)
77241056
MM
12715 num_user_contexts = num_online_cpus();
12716
12717 total_contexts = num_kernel_contexts + num_user_contexts;
12718
12719 /*
12720 * Adjust the counts given a global max.
12721 */
12722 if (total_contexts > dd->chip_rcv_contexts) {
12723 dd_dev_err(dd,
12724 "Reducing # user receive contexts to: %d, from %d\n",
12725 (int)(dd->chip_rcv_contexts - num_kernel_contexts),
12726 (int)num_user_contexts);
12727 num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
12728 /* recalculate */
12729 total_contexts = num_kernel_contexts + num_user_contexts;
12730 }
12731
12732 /* the first N are kernel contexts, the rest are user contexts */
12733 dd->num_rcv_contexts = total_contexts;
12734 dd->n_krcv_queues = num_kernel_contexts;
12735 dd->first_user_ctxt = num_kernel_contexts;
affa48de 12736 dd->num_user_contexts = num_user_contexts;
77241056
MM
12737 dd->freectxts = num_user_contexts;
12738 dd_dev_info(dd,
17fb4f29
JJ
12739 "rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
12740 (int)dd->chip_rcv_contexts,
12741 (int)dd->num_rcv_contexts,
12742 (int)dd->n_krcv_queues,
12743 (int)dd->num_rcv_contexts - dd->n_krcv_queues);
77241056
MM
12744
12745 /*
12746 * Receive array allocation:
12747 * All RcvArray entries are divided into groups of 8. This
12748 * is required by the hardware and will speed up writes to
12749 * consecutive entries by using write-combining of the entire
12750 * cacheline.
12751 *
12752 * The number of groups are evenly divided among all contexts.
12753 * any left over groups will be given to the first N user
12754 * contexts.
12755 */
12756 dd->rcv_entries.group_size = RCV_INCREMENT;
12757 ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
12758 dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
12759 dd->rcv_entries.nctxt_extra = ngroups -
12760 (dd->num_rcv_contexts * dd->rcv_entries.ngroups);
12761 dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
12762 dd->rcv_entries.ngroups,
12763 dd->rcv_entries.nctxt_extra);
12764 if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
12765 MAX_EAGER_ENTRIES * 2) {
12766 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
12767 dd->rcv_entries.group_size;
12768 dd_dev_info(dd,
17fb4f29
JJ
12769 "RcvArray group count too high, change to %u\n",
12770 dd->rcv_entries.ngroups);
77241056
MM
12771 dd->rcv_entries.nctxt_extra = 0;
12772 }
12773 /*
12774 * PIO send contexts
12775 */
12776 ret = init_sc_pools_and_sizes(dd);
12777 if (ret >= 0) { /* success */
12778 dd->num_send_contexts = ret;
12779 dd_dev_info(
12780 dd,
12781 "send contexts: chip %d, used %d (kernel %d, ack %d, user %d)\n",
12782 dd->chip_send_contexts,
12783 dd->num_send_contexts,
12784 dd->sc_sizes[SC_KERNEL].count,
12785 dd->sc_sizes[SC_ACK].count,
12786 dd->sc_sizes[SC_USER].count);
12787 ret = 0; /* success */
12788 }
12789
12790 return ret;
12791}
12792
12793/*
12794 * Set the device/port partition key table. The MAD code
12795 * will ensure that, at least, the partial management
12796 * partition key is present in the table.
12797 */
12798static void set_partition_keys(struct hfi1_pportdata *ppd)
12799{
12800 struct hfi1_devdata *dd = ppd->dd;
12801 u64 reg = 0;
12802 int i;
12803
12804 dd_dev_info(dd, "Setting partition keys\n");
12805 for (i = 0; i < hfi1_get_npkeys(dd); i++) {
12806 reg |= (ppd->pkeys[i] &
12807 RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
12808 ((i % 4) *
12809 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
12810 /* Each register holds 4 PKey values. */
12811 if ((i % 4) == 3) {
12812 write_csr(dd, RCV_PARTITION_KEY +
12813 ((i - 3) * 2), reg);
12814 reg = 0;
12815 }
12816 }
12817
12818 /* Always enable HW pkeys check when pkeys table is set */
12819 add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
12820}
12821
12822/*
12823 * These CSRs and memories are uninitialized on reset and must be
12824 * written before reading to set the ECC/parity bits.
12825 *
12826 * NOTE: All user context CSRs that are not mmaped write-only
12827 * (e.g. the TID flows) must be initialized even if the driver never
12828 * reads them.
12829 */
12830static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
12831{
12832 int i, j;
12833
12834 /* CceIntMap */
12835 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
8638b77f 12836 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
77241056
MM
12837
12838 /* SendCtxtCreditReturnAddr */
12839 for (i = 0; i < dd->chip_send_contexts; i++)
12840 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
12841
12842 /* PIO Send buffers */
12843 /* SDMA Send buffers */
4d114fdd
JJ
12844 /*
12845 * These are not normally read, and (presently) have no method
12846 * to be read, so are not pre-initialized
12847 */
77241056
MM
12848
12849 /* RcvHdrAddr */
12850 /* RcvHdrTailAddr */
12851 /* RcvTidFlowTable */
12852 for (i = 0; i < dd->chip_rcv_contexts; i++) {
12853 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
12854 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
12855 for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
8638b77f 12856 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
77241056
MM
12857 }
12858
12859 /* RcvArray */
12860 for (i = 0; i < dd->chip_rcv_array_count; i++)
8638b77f 12861 write_csr(dd, RCV_ARRAY + (8 * i),
17fb4f29 12862 RCV_ARRAY_RT_WRITE_ENABLE_SMASK);
77241056
MM
12863
12864 /* RcvQPMapTable */
12865 for (i = 0; i < 32; i++)
12866 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
12867}
12868
12869/*
12870 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
12871 */
12872static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
12873 u64 ctrl_bits)
12874{
12875 unsigned long timeout;
12876 u64 reg;
12877
12878 /* is the condition present? */
12879 reg = read_csr(dd, CCE_STATUS);
12880 if ((reg & status_bits) == 0)
12881 return;
12882
12883 /* clear the condition */
12884 write_csr(dd, CCE_CTRL, ctrl_bits);
12885
12886 /* wait for the condition to clear */
12887 timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
12888 while (1) {
12889 reg = read_csr(dd, CCE_STATUS);
12890 if ((reg & status_bits) == 0)
12891 return;
12892 if (time_after(jiffies, timeout)) {
12893 dd_dev_err(dd,
17fb4f29
JJ
12894 "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
12895 status_bits, reg & status_bits);
77241056
MM
12896 return;
12897 }
12898 udelay(1);
12899 }
12900}
12901
12902/* set CCE CSRs to chip reset defaults */
12903static void reset_cce_csrs(struct hfi1_devdata *dd)
12904{
12905 int i;
12906
12907 /* CCE_REVISION read-only */
12908 /* CCE_REVISION2 read-only */
12909 /* CCE_CTRL - bits clear automatically */
12910 /* CCE_STATUS read-only, use CceCtrl to clear */
12911 clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
12912 clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
12913 clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
12914 for (i = 0; i < CCE_NUM_SCRATCH; i++)
12915 write_csr(dd, CCE_SCRATCH + (8 * i), 0);
12916 /* CCE_ERR_STATUS read-only */
12917 write_csr(dd, CCE_ERR_MASK, 0);
12918 write_csr(dd, CCE_ERR_CLEAR, ~0ull);
12919 /* CCE_ERR_FORCE leave alone */
12920 for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
12921 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
12922 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
12923 /* CCE_PCIE_CTRL leave alone */
12924 for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
12925 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
12926 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
17fb4f29 12927 CCE_MSIX_TABLE_UPPER_RESETCSR);
77241056
MM
12928 }
12929 for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
12930 /* CCE_MSIX_PBA read-only */
12931 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
12932 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
12933 }
12934 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
12935 write_csr(dd, CCE_INT_MAP, 0);
12936 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
12937 /* CCE_INT_STATUS read-only */
12938 write_csr(dd, CCE_INT_MASK + (8 * i), 0);
12939 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
12940 /* CCE_INT_FORCE leave alone */
12941 /* CCE_INT_BLOCKED read-only */
12942 }
12943 for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
12944 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
12945}
12946
77241056
MM
12947/* set MISC CSRs to chip reset defaults */
12948static void reset_misc_csrs(struct hfi1_devdata *dd)
12949{
12950 int i;
12951
12952 for (i = 0; i < 32; i++) {
12953 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
12954 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
12955 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
12956 }
4d114fdd
JJ
12957 /*
12958 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
12959 * only be written 128-byte chunks
12960 */
77241056
MM
12961 /* init RSA engine to clear lingering errors */
12962 write_csr(dd, MISC_CFG_RSA_CMD, 1);
12963 write_csr(dd, MISC_CFG_RSA_MU, 0);
12964 write_csr(dd, MISC_CFG_FW_CTRL, 0);
12965 /* MISC_STS_8051_DIGEST read-only */
12966 /* MISC_STS_SBM_DIGEST read-only */
12967 /* MISC_STS_PCIE_DIGEST read-only */
12968 /* MISC_STS_FAB_DIGEST read-only */
12969 /* MISC_ERR_STATUS read-only */
12970 write_csr(dd, MISC_ERR_MASK, 0);
12971 write_csr(dd, MISC_ERR_CLEAR, ~0ull);
12972 /* MISC_ERR_FORCE leave alone */
12973}
12974
12975/* set TXE CSRs to chip reset defaults */
12976static void reset_txe_csrs(struct hfi1_devdata *dd)
12977{
12978 int i;
12979
12980 /*
12981 * TXE Kernel CSRs
12982 */
12983 write_csr(dd, SEND_CTRL, 0);
12984 __cm_reset(dd, 0); /* reset CM internal state */
12985 /* SEND_CONTEXTS read-only */
12986 /* SEND_DMA_ENGINES read-only */
12987 /* SEND_PIO_MEM_SIZE read-only */
12988 /* SEND_DMA_MEM_SIZE read-only */
12989 write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
12990 pio_reset_all(dd); /* SEND_PIO_INIT_CTXT */
12991 /* SEND_PIO_ERR_STATUS read-only */
12992 write_csr(dd, SEND_PIO_ERR_MASK, 0);
12993 write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
12994 /* SEND_PIO_ERR_FORCE leave alone */
12995 /* SEND_DMA_ERR_STATUS read-only */
12996 write_csr(dd, SEND_DMA_ERR_MASK, 0);
12997 write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
12998 /* SEND_DMA_ERR_FORCE leave alone */
12999 /* SEND_EGRESS_ERR_STATUS read-only */
13000 write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13001 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13002 /* SEND_EGRESS_ERR_FORCE leave alone */
13003 write_csr(dd, SEND_BTH_QP, 0);
13004 write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13005 write_csr(dd, SEND_SC2VLT0, 0);
13006 write_csr(dd, SEND_SC2VLT1, 0);
13007 write_csr(dd, SEND_SC2VLT2, 0);
13008 write_csr(dd, SEND_SC2VLT3, 0);
13009 write_csr(dd, SEND_LEN_CHECK0, 0);
13010 write_csr(dd, SEND_LEN_CHECK1, 0);
13011 /* SEND_ERR_STATUS read-only */
13012 write_csr(dd, SEND_ERR_MASK, 0);
13013 write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13014 /* SEND_ERR_FORCE read-only */
13015 for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
8638b77f 13016 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
77241056 13017 for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
8638b77f
JJ
13018 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13019 for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
13020 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
77241056 13021 for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
8638b77f 13022 write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
77241056 13023 for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
8638b77f 13024 write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
77241056 13025 write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
17fb4f29 13026 write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
77241056
MM
13027 /* SEND_CM_CREDIT_USED_STATUS read-only */
13028 write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13029 write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13030 write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13031 write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13032 write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13033 for (i = 0; i < TXE_NUM_DATA_VL; i++)
8638b77f 13034 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
77241056
MM
13035 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13036 /* SEND_CM_CREDIT_USED_VL read-only */
13037 /* SEND_CM_CREDIT_USED_VL15 read-only */
13038 /* SEND_EGRESS_CTXT_STATUS read-only */
13039 /* SEND_EGRESS_SEND_DMA_STATUS read-only */
13040 write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13041 /* SEND_EGRESS_ERR_INFO read-only */
13042 /* SEND_EGRESS_ERR_SOURCE read-only */
13043
13044 /*
13045 * TXE Per-Context CSRs
13046 */
13047 for (i = 0; i < dd->chip_send_contexts; i++) {
13048 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13049 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13050 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13051 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13052 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13053 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13054 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13055 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13056 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13057 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13058 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13059 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13060 }
13061
13062 /*
13063 * TXE Per-SDMA CSRs
13064 */
13065 for (i = 0; i < dd->chip_sdma_engines; i++) {
13066 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13067 /* SEND_DMA_STATUS read-only */
13068 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13069 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13070 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13071 /* SEND_DMA_HEAD read-only */
13072 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13073 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13074 /* SEND_DMA_IDLE_CNT read-only */
13075 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13076 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13077 /* SEND_DMA_DESC_FETCHED_CNT read-only */
13078 /* SEND_DMA_ENG_ERR_STATUS read-only */
13079 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13080 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13081 /* SEND_DMA_ENG_ERR_FORCE leave alone */
13082 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13083 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13084 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13085 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13086 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13087 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13088 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13089 }
13090}
13091
13092/*
13093 * Expect on entry:
13094 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13095 */
13096static void init_rbufs(struct hfi1_devdata *dd)
13097{
13098 u64 reg;
13099 int count;
13100
13101 /*
13102 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13103 * clear.
13104 */
13105 count = 0;
13106 while (1) {
13107 reg = read_csr(dd, RCV_STATUS);
13108 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13109 | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13110 break;
13111 /*
13112 * Give up after 1ms - maximum wait time.
13113 *
13114 * RBuf size is 148KiB. Slowest possible is PCIe Gen1 x1 at
13115 * 250MB/s bandwidth. Lower rate to 66% for overhead to get:
13116 * 148 KB / (66% * 250MB/s) = 920us
13117 */
13118 if (count++ > 500) {
13119 dd_dev_err(dd,
17fb4f29
JJ
13120 "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13121 __func__, reg);
77241056
MM
13122 break;
13123 }
13124 udelay(2); /* do not busy-wait the CSR */
13125 }
13126
13127 /* start the init - expect RcvCtrl to be 0 */
13128 write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13129
13130 /*
13131 * Read to force the write of Rcvtrl.RxRbufInit. There is a brief
13132 * period after the write before RcvStatus.RxRbufInitDone is valid.
13133 * The delay in the first run through the loop below is sufficient and
13134 * required before the first read of RcvStatus.RxRbufInintDone.
13135 */
13136 read_csr(dd, RCV_CTRL);
13137
13138 /* wait for the init to finish */
13139 count = 0;
13140 while (1) {
13141 /* delay is required first time through - see above */
13142 udelay(2); /* do not busy-wait the CSR */
13143 reg = read_csr(dd, RCV_STATUS);
13144 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13145 break;
13146
13147 /* give up after 100us - slowest possible at 33MHz is 73us */
13148 if (count++ > 50) {
13149 dd_dev_err(dd,
17fb4f29
JJ
13150 "%s: RcvStatus.RxRbufInit not set, continuing\n",
13151 __func__);
77241056
MM
13152 break;
13153 }
13154 }
13155}
13156
13157/* set RXE CSRs to chip reset defaults */
13158static void reset_rxe_csrs(struct hfi1_devdata *dd)
13159{
13160 int i, j;
13161
13162 /*
13163 * RXE Kernel CSRs
13164 */
13165 write_csr(dd, RCV_CTRL, 0);
13166 init_rbufs(dd);
13167 /* RCV_STATUS read-only */
13168 /* RCV_CONTEXTS read-only */
13169 /* RCV_ARRAY_CNT read-only */
13170 /* RCV_BUF_SIZE read-only */
13171 write_csr(dd, RCV_BTH_QP, 0);
13172 write_csr(dd, RCV_MULTICAST, 0);
13173 write_csr(dd, RCV_BYPASS, 0);
13174 write_csr(dd, RCV_VL15, 0);
13175 /* this is a clear-down */
13176 write_csr(dd, RCV_ERR_INFO,
17fb4f29 13177 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
77241056
MM
13178 /* RCV_ERR_STATUS read-only */
13179 write_csr(dd, RCV_ERR_MASK, 0);
13180 write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13181 /* RCV_ERR_FORCE leave alone */
13182 for (i = 0; i < 32; i++)
13183 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13184 for (i = 0; i < 4; i++)
13185 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13186 for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13187 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13188 for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13189 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13190 for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++) {
13191 write_csr(dd, RCV_RSM_CFG + (8 * i), 0);
13192 write_csr(dd, RCV_RSM_SELECT + (8 * i), 0);
13193 write_csr(dd, RCV_RSM_MATCH + (8 * i), 0);
13194 }
13195 for (i = 0; i < 32; i++)
13196 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13197
13198 /*
13199 * RXE Kernel and User Per-Context CSRs
13200 */
13201 for (i = 0; i < dd->chip_rcv_contexts; i++) {
13202 /* kernel */
13203 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13204 /* RCV_CTXT_STATUS read-only */
13205 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13206 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13207 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13208 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13209 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13210 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13211 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13212 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13213 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13214 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13215
13216 /* user */
13217 /* RCV_HDR_TAIL read-only */
13218 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13219 /* RCV_EGR_INDEX_TAIL read-only */
13220 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13221 /* RCV_EGR_OFFSET_TAIL read-only */
13222 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
17fb4f29
JJ
13223 write_uctxt_csr(dd, i,
13224 RCV_TID_FLOW_TABLE + (8 * j), 0);
77241056
MM
13225 }
13226 }
13227}
13228
13229/*
13230 * Set sc2vl tables.
13231 *
13232 * They power on to zeros, so to avoid send context errors
13233 * they need to be set:
13234 *
13235 * SC 0-7 -> VL 0-7 (respectively)
13236 * SC 15 -> VL 15
13237 * otherwise
13238 * -> VL 0
13239 */
13240static void init_sc2vl_tables(struct hfi1_devdata *dd)
13241{
13242 int i;
13243 /* init per architecture spec, constrained by hardware capability */
13244
13245 /* HFI maps sent packets */
13246 write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13247 0,
13248 0, 0, 1, 1,
13249 2, 2, 3, 3,
13250 4, 4, 5, 5,
13251 6, 6, 7, 7));
13252 write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13253 1,
13254 8, 0, 9, 0,
13255 10, 0, 11, 0,
13256 12, 0, 13, 0,
13257 14, 0, 15, 15));
13258 write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13259 2,
13260 16, 0, 17, 0,
13261 18, 0, 19, 0,
13262 20, 0, 21, 0,
13263 22, 0, 23, 0));
13264 write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13265 3,
13266 24, 0, 25, 0,
13267 26, 0, 27, 0,
13268 28, 0, 29, 0,
13269 30, 0, 31, 0));
13270
13271 /* DC maps received packets */
13272 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13273 15_0,
13274 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7,
13275 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13276 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13277 31_16,
13278 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13279 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13280
13281 /* initialize the cached sc2vl values consistently with h/w */
13282 for (i = 0; i < 32; i++) {
13283 if (i < 8 || i == 15)
13284 *((u8 *)(dd->sc2vl) + i) = (u8)i;
13285 else
13286 *((u8 *)(dd->sc2vl) + i) = 0;
13287 }
13288}
13289
13290/*
13291 * Read chip sizes and then reset parts to sane, disabled, values. We cannot
13292 * depend on the chip going through a power-on reset - a driver may be loaded
13293 * and unloaded many times.
13294 *
13295 * Do not write any CSR values to the chip in this routine - there may be
13296 * a reset following the (possible) FLR in this routine.
13297 *
13298 */
13299static void init_chip(struct hfi1_devdata *dd)
13300{
13301 int i;
13302
13303 /*
13304 * Put the HFI CSRs in a known state.
13305 * Combine this with a DC reset.
13306 *
13307 * Stop the device from doing anything while we do a
13308 * reset. We know there are no other active users of
13309 * the device since we are now in charge. Turn off
13310 * off all outbound and inbound traffic and make sure
13311 * the device does not generate any interrupts.
13312 */
13313
13314 /* disable send contexts and SDMA engines */
13315 write_csr(dd, SEND_CTRL, 0);
13316 for (i = 0; i < dd->chip_send_contexts; i++)
13317 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13318 for (i = 0; i < dd->chip_sdma_engines; i++)
13319 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13320 /* disable port (turn off RXE inbound traffic) and contexts */
13321 write_csr(dd, RCV_CTRL, 0);
13322 for (i = 0; i < dd->chip_rcv_contexts; i++)
13323 write_csr(dd, RCV_CTXT_CTRL, 0);
13324 /* mask all interrupt sources */
13325 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
8638b77f 13326 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
77241056
MM
13327
13328 /*
13329 * DC Reset: do a full DC reset before the register clear.
13330 * A recommended length of time to hold is one CSR read,
13331 * so reread the CceDcCtrl. Then, hold the DC in reset
13332 * across the clear.
13333 */
13334 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
50e5dcbe 13335 (void)read_csr(dd, CCE_DC_CTRL);
77241056
MM
13336
13337 if (use_flr) {
13338 /*
13339 * A FLR will reset the SPC core and part of the PCIe.
13340 * The parts that need to be restored have already been
13341 * saved.
13342 */
13343 dd_dev_info(dd, "Resetting CSRs with FLR\n");
13344
13345 /* do the FLR, the DC reset will remain */
13346 hfi1_pcie_flr(dd);
13347
13348 /* restore command and BARs */
13349 restore_pci_variables(dd);
13350
995deafa 13351 if (is_ax(dd)) {
77241056
MM
13352 dd_dev_info(dd, "Resetting CSRs with FLR\n");
13353 hfi1_pcie_flr(dd);
13354 restore_pci_variables(dd);
13355 }
77241056
MM
13356 } else {
13357 dd_dev_info(dd, "Resetting CSRs with writes\n");
13358 reset_cce_csrs(dd);
13359 reset_txe_csrs(dd);
13360 reset_rxe_csrs(dd);
77241056
MM
13361 reset_misc_csrs(dd);
13362 }
13363 /* clear the DC reset */
13364 write_csr(dd, CCE_DC_CTRL, 0);
7c03ed85 13365
77241056 13366 /* Set the LED off */
773d0451
SS
13367 setextled(dd, 0);
13368
77241056
MM
13369 /*
13370 * Clear the QSFP reset.
72a67ba2 13371 * An FLR enforces a 0 on all out pins. The driver does not touch
77241056 13372 * ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and
72a67ba2 13373 * anything plugged constantly in reset, if it pays attention
77241056 13374 * to RESET_N.
72a67ba2 13375 * Prime examples of this are optical cables. Set all pins high.
77241056
MM
13376 * I2CCLK and I2CDAT will change per direction, and INT_N and
13377 * MODPRS_N are input only and their value is ignored.
13378 */
72a67ba2
EH
13379 write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
13380 write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
a2ee27a4 13381 init_chip_resources(dd);
77241056
MM
13382}
13383
13384static void init_early_variables(struct hfi1_devdata *dd)
13385{
13386 int i;
13387
13388 /* assign link credit variables */
13389 dd->vau = CM_VAU;
13390 dd->link_credits = CM_GLOBAL_CREDITS;
995deafa 13391 if (is_ax(dd))
77241056
MM
13392 dd->link_credits--;
13393 dd->vcu = cu_to_vcu(hfi1_cu);
13394 /* enough room for 8 MAD packets plus header - 17K */
13395 dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
13396 if (dd->vl15_init > dd->link_credits)
13397 dd->vl15_init = dd->link_credits;
13398
13399 write_uninitialized_csrs_and_memories(dd);
13400
13401 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
13402 for (i = 0; i < dd->num_pports; i++) {
13403 struct hfi1_pportdata *ppd = &dd->pport[i];
13404
13405 set_partition_keys(ppd);
13406 }
13407 init_sc2vl_tables(dd);
13408}
13409
13410static void init_kdeth_qp(struct hfi1_devdata *dd)
13411{
13412 /* user changed the KDETH_QP */
13413 if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
13414 /* out of range or illegal value */
13415 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
13416 kdeth_qp = 0;
13417 }
13418 if (kdeth_qp == 0) /* not set, or failed range check */
13419 kdeth_qp = DEFAULT_KDETH_QP;
13420
13421 write_csr(dd, SEND_BTH_QP,
17fb4f29
JJ
13422 (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
13423 SEND_BTH_QP_KDETH_QP_SHIFT);
77241056
MM
13424
13425 write_csr(dd, RCV_BTH_QP,
17fb4f29
JJ
13426 (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
13427 RCV_BTH_QP_KDETH_QP_SHIFT);
77241056
MM
13428}
13429
13430/**
13431 * init_qpmap_table
13432 * @dd - device data
13433 * @first_ctxt - first context
13434 * @last_ctxt - first context
13435 *
13436 * This return sets the qpn mapping table that
13437 * is indexed by qpn[8:1].
13438 *
13439 * The routine will round robin the 256 settings
13440 * from first_ctxt to last_ctxt.
13441 *
13442 * The first/last looks ahead to having specialized
13443 * receive contexts for mgmt and bypass. Normal
13444 * verbs traffic will assumed to be on a range
13445 * of receive contexts.
13446 */
13447static void init_qpmap_table(struct hfi1_devdata *dd,
13448 u32 first_ctxt,
13449 u32 last_ctxt)
13450{
13451 u64 reg = 0;
13452 u64 regno = RCV_QP_MAP_TABLE;
13453 int i;
13454 u64 ctxt = first_ctxt;
13455
13456 for (i = 0; i < 256;) {
77241056
MM
13457 reg |= ctxt << (8 * (i % 8));
13458 i++;
13459 ctxt++;
13460 if (ctxt > last_ctxt)
13461 ctxt = first_ctxt;
13462 if (i % 8 == 0) {
13463 write_csr(dd, regno, reg);
13464 reg = 0;
13465 regno += 8;
13466 }
13467 }
13468 if (i % 8)
13469 write_csr(dd, regno, reg);
13470
13471 add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
13472 | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
13473}
13474
13475/**
13476 * init_qos - init RX qos
13477 * @dd - device data
13478 * @first_context
13479 *
13480 * This routine initializes Rule 0 and the
13481 * RSM map table to implement qos.
13482 *
13483 * If all of the limit tests succeed,
13484 * qos is applied based on the array
13485 * interpretation of krcvqs where
13486 * entry 0 is VL0.
13487 *
13488 * The number of vl bits (n) and the number of qpn
13489 * bits (m) are computed to feed both the RSM map table
13490 * and the single rule.
13491 *
13492 */
13493static void init_qos(struct hfi1_devdata *dd, u32 first_ctxt)
13494{
13495 u8 max_by_vl = 0;
13496 unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
13497 u64 *rsmmap;
13498 u64 reg;
995deafa 13499 u8 rxcontext = is_ax(dd) ? 0 : 0xff; /* 0 is default if a0 ver. */
77241056
MM
13500
13501 /* validate */
13502 if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
13503 num_vls == 1 ||
13504 krcvqsset <= 1)
13505 goto bail;
13506 for (i = 0; i < min_t(unsigned, num_vls, krcvqsset); i++)
13507 if (krcvqs[i] > max_by_vl)
13508 max_by_vl = krcvqs[i];
13509 if (max_by_vl > 32)
13510 goto bail;
13511 qpns_per_vl = __roundup_pow_of_two(max_by_vl);
13512 /* determine bits vl */
13513 n = ilog2(num_vls);
13514 /* determine bits for qpn */
13515 m = ilog2(qpns_per_vl);
13516 if ((m + n) > 7)
13517 goto bail;
13518 if (num_vls * qpns_per_vl > dd->chip_rcv_contexts)
13519 goto bail;
13520 rsmmap = kmalloc_array(NUM_MAP_REGS, sizeof(u64), GFP_KERNEL);
859bcad9
EH
13521 if (!rsmmap)
13522 goto bail;
77241056
MM
13523 memset(rsmmap, rxcontext, NUM_MAP_REGS * sizeof(u64));
13524 /* init the local copy of the table */
13525 for (i = 0, ctxt = first_ctxt; i < num_vls; i++) {
13526 unsigned tctxt;
13527
13528 for (qpn = 0, tctxt = ctxt;
13529 krcvqs[i] && qpn < qpns_per_vl; qpn++) {
13530 unsigned idx, regoff, regidx;
13531
13532 /* generate index <= 128 */
13533 idx = (qpn << n) ^ i;
13534 regoff = (idx % 8) * 8;
13535 regidx = idx / 8;
13536 reg = rsmmap[regidx];
13537 /* replace 0xff with context number */
13538 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
13539 << regoff);
13540 reg |= (u64)(tctxt++) << regoff;
13541 rsmmap[regidx] = reg;
13542 if (tctxt == ctxt + krcvqs[i])
13543 tctxt = ctxt;
13544 }
13545 ctxt += krcvqs[i];
13546 }
13547 /* flush cached copies to chip */
13548 for (i = 0; i < NUM_MAP_REGS; i++)
13549 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rsmmap[i]);
13550 /* add rule0 */
13551 write_csr(dd, RCV_RSM_CFG /* + (8 * 0) */,
17fb4f29
JJ
13552 RCV_RSM_CFG_ENABLE_OR_CHAIN_RSM0_MASK <<
13553 RCV_RSM_CFG_ENABLE_OR_CHAIN_RSM0_SHIFT |
13554 2ull << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
77241056 13555 write_csr(dd, RCV_RSM_SELECT /* + (8 * 0) */,
17fb4f29
JJ
13556 LRH_BTH_MATCH_OFFSET << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
13557 LRH_SC_MATCH_OFFSET << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
13558 LRH_SC_SELECT_OFFSET << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
13559 ((u64)n) << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
13560 QPN_SELECT_OFFSET << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
13561 ((u64)m + (u64)n) << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
77241056 13562 write_csr(dd, RCV_RSM_MATCH /* + (8 * 0) */,
17fb4f29
JJ
13563 LRH_BTH_MASK << RCV_RSM_MATCH_MASK1_SHIFT |
13564 LRH_BTH_VALUE << RCV_RSM_MATCH_VALUE1_SHIFT |
13565 LRH_SC_MASK << RCV_RSM_MATCH_MASK2_SHIFT |
13566 LRH_SC_VALUE << RCV_RSM_MATCH_VALUE2_SHIFT);
77241056
MM
13567 /* Enable RSM */
13568 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
13569 kfree(rsmmap);
82c2611d
NV
13570 /* map everything else to first context */
13571 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, MIN_KERNEL_KCTXTS - 1);
77241056
MM
13572 dd->qos_shift = n + 1;
13573 return;
13574bail:
13575 dd->qos_shift = 1;
82c2611d 13576 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
77241056
MM
13577}
13578
13579static void init_rxe(struct hfi1_devdata *dd)
13580{
13581 /* enable all receive errors */
13582 write_csr(dd, RCV_ERR_MASK, ~0ull);
13583 /* setup QPN map table - start where VL15 context leaves off */
17fb4f29
JJ
13584 init_qos(dd, dd->n_krcv_queues > MIN_KERNEL_KCTXTS ?
13585 MIN_KERNEL_KCTXTS : 0);
77241056
MM
13586 /*
13587 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
13588 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
13589 * space, PciCfgCap2.MaxPayloadSize in HFI). There is only one
13590 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
13591 * Max_PayLoad_Size set to its minimum of 128.
13592 *
13593 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
13594 * (64 bytes). Max_Payload_Size is possibly modified upward in
13595 * tune_pcie_caps() which is called after this routine.
13596 */
13597}
13598
13599static void init_other(struct hfi1_devdata *dd)
13600{
13601 /* enable all CCE errors */
13602 write_csr(dd, CCE_ERR_MASK, ~0ull);
13603 /* enable *some* Misc errors */
13604 write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
13605 /* enable all DC errors, except LCB */
13606 write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
13607 write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
13608}
13609
13610/*
13611 * Fill out the given AU table using the given CU. A CU is defined in terms
13612 * AUs. The table is a an encoding: given the index, how many AUs does that
13613 * represent?
13614 *
13615 * NOTE: Assumes that the register layout is the same for the
13616 * local and remote tables.
13617 */
13618static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
13619 u32 csr0to3, u32 csr4to7)
13620{
13621 write_csr(dd, csr0to3,
17fb4f29
JJ
13622 0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
13623 1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
13624 2ull * cu <<
13625 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
13626 4ull * cu <<
13627 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
77241056 13628 write_csr(dd, csr4to7,
17fb4f29
JJ
13629 8ull * cu <<
13630 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
13631 16ull * cu <<
13632 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
13633 32ull * cu <<
13634 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
13635 64ull * cu <<
13636 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
77241056
MM
13637}
13638
13639static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
13640{
13641 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
17fb4f29 13642 SEND_CM_LOCAL_AU_TABLE4_TO7);
77241056
MM
13643}
13644
13645void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
13646{
13647 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
17fb4f29 13648 SEND_CM_REMOTE_AU_TABLE4_TO7);
77241056
MM
13649}
13650
13651static void init_txe(struct hfi1_devdata *dd)
13652{
13653 int i;
13654
13655 /* enable all PIO, SDMA, general, and Egress errors */
13656 write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
13657 write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
13658 write_csr(dd, SEND_ERR_MASK, ~0ull);
13659 write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
13660
13661 /* enable all per-context and per-SDMA engine errors */
13662 for (i = 0; i < dd->chip_send_contexts; i++)
13663 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
13664 for (i = 0; i < dd->chip_sdma_engines; i++)
13665 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
13666
13667 /* set the local CU to AU mapping */
13668 assign_local_cm_au_table(dd, dd->vcu);
13669
13670 /*
13671 * Set reasonable default for Credit Return Timer
13672 * Don't set on Simulator - causes it to choke.
13673 */
13674 if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
13675 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
13676}
13677
13678int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey)
13679{
13680 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
13681 unsigned sctxt;
13682 int ret = 0;
13683 u64 reg;
13684
13685 if (!rcd || !rcd->sc) {
13686 ret = -EINVAL;
13687 goto done;
13688 }
13689 sctxt = rcd->sc->hw_context;
13690 reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
13691 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
13692 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
13693 /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
13694 if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
13695 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
13696 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
13697 /*
13698 * Enable send-side J_KEY integrity check, unless this is A0 h/w
77241056 13699 */
995deafa 13700 if (!is_ax(dd)) {
77241056
MM
13701 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
13702 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
13703 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
13704 }
13705
13706 /* Enable J_KEY check on receive context. */
13707 reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
13708 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
13709 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
13710 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg);
13711done:
13712 return ret;
13713}
13714
13715int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt)
13716{
13717 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
13718 unsigned sctxt;
13719 int ret = 0;
13720 u64 reg;
13721
13722 if (!rcd || !rcd->sc) {
13723 ret = -EINVAL;
13724 goto done;
13725 }
13726 sctxt = rcd->sc->hw_context;
13727 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
13728 /*
13729 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
13730 * This check would not have been enabled for A0 h/w, see
13731 * set_ctxt_jkey().
13732 */
995deafa 13733 if (!is_ax(dd)) {
77241056
MM
13734 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
13735 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
13736 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
13737 }
13738 /* Turn off the J_KEY on the receive side */
13739 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0);
13740done:
13741 return ret;
13742}
13743
13744int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey)
13745{
13746 struct hfi1_ctxtdata *rcd;
13747 unsigned sctxt;
13748 int ret = 0;
13749 u64 reg;
13750
e490974e 13751 if (ctxt < dd->num_rcv_contexts) {
77241056 13752 rcd = dd->rcd[ctxt];
e490974e 13753 } else {
77241056
MM
13754 ret = -EINVAL;
13755 goto done;
13756 }
13757 if (!rcd || !rcd->sc) {
13758 ret = -EINVAL;
13759 goto done;
13760 }
13761 sctxt = rcd->sc->hw_context;
13762 reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
13763 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
13764 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
13765 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
13766 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
13767 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
13768done:
13769 return ret;
13770}
13771
13772int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt)
13773{
13774 struct hfi1_ctxtdata *rcd;
13775 unsigned sctxt;
13776 int ret = 0;
13777 u64 reg;
13778
e490974e 13779 if (ctxt < dd->num_rcv_contexts) {
77241056 13780 rcd = dd->rcd[ctxt];
e490974e 13781 } else {
77241056
MM
13782 ret = -EINVAL;
13783 goto done;
13784 }
13785 if (!rcd || !rcd->sc) {
13786 ret = -EINVAL;
13787 goto done;
13788 }
13789 sctxt = rcd->sc->hw_context;
13790 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
13791 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
13792 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
13793 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13794done:
13795 return ret;
13796}
13797
13798/*
13799 * Start doing the clean up the the chip. Our clean up happens in multiple
13800 * stages and this is just the first.
13801 */
13802void hfi1_start_cleanup(struct hfi1_devdata *dd)
13803{
affa48de 13804 aspm_exit(dd);
77241056
MM
13805 free_cntrs(dd);
13806 free_rcverr(dd);
13807 clean_up_interrupts(dd);
a2ee27a4 13808 finish_chip_resources(dd);
77241056
MM
13809}
13810
13811#define HFI_BASE_GUID(dev) \
13812 ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
13813
13814/*
78eb129d
DL
13815 * Information can be shared between the two HFIs on the same ASIC
13816 * in the same OS. This function finds the peer device and sets
13817 * up a shared structure.
13818 *
77241056
MM
13819 * Certain chip functions need to be initialized only once per asic
13820 * instead of per-device. This function finds the peer device and
13821 * checks whether that chip initialization needs to be done by this
13822 * device.
13823 */
78eb129d 13824static int init_asic_data(struct hfi1_devdata *dd)
77241056
MM
13825{
13826 unsigned long flags;
13827 struct hfi1_devdata *tmp, *peer = NULL;
78eb129d 13828 int ret = 0;
77241056
MM
13829
13830 spin_lock_irqsave(&hfi1_devs_lock, flags);
13831 /* Find our peer device */
13832 list_for_each_entry(tmp, &hfi1_dev_list, list) {
13833 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
13834 dd->unit != tmp->unit) {
13835 peer = tmp;
13836 break;
13837 }
13838 }
13839
13840 /*
13841 * "Claim" the ASIC for initialization if it hasn't been
13842 " "claimed" yet.
13843 */
13844 if (!peer || !(peer->flags & HFI1_DO_INIT_ASIC))
13845 dd->flags |= HFI1_DO_INIT_ASIC;
78eb129d
DL
13846
13847 if (peer) {
13848 dd->asic_data = peer->asic_data;
13849 } else {
13850 dd->asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
13851 if (!dd->asic_data) {
13852 ret = -ENOMEM;
13853 goto done;
13854 }
13855 mutex_init(&dd->asic_data->asic_resource_mutex);
13856 }
13857 dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
13858
13859done:
77241056 13860 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
78eb129d 13861 return ret;
77241056
MM
13862}
13863
5d9157aa
DL
13864/*
13865 * Set dd->boardname. Use a generic name if a name is not returned from
13866 * EFI variable space.
13867 *
13868 * Return 0 on success, -ENOMEM if space could not be allocated.
13869 */
13870static int obtain_boardname(struct hfi1_devdata *dd)
13871{
13872 /* generic board description */
13873 const char generic[] =
13874 "Intel Omni-Path Host Fabric Interface Adapter 100 Series";
13875 unsigned long size;
13876 int ret;
13877
13878 ret = read_hfi1_efi_var(dd, "description", &size,
13879 (void **)&dd->boardname);
13880 if (ret) {
845f876d 13881 dd_dev_info(dd, "Board description not found\n");
5d9157aa
DL
13882 /* use generic description */
13883 dd->boardname = kstrdup(generic, GFP_KERNEL);
13884 if (!dd->boardname)
13885 return -ENOMEM;
13886 }
13887 return 0;
13888}
13889
24487dd3
KW
13890/*
13891 * Check the interrupt registers to make sure that they are mapped correctly.
13892 * It is intended to help user identify any mismapping by VMM when the driver
13893 * is running in a VM. This function should only be called before interrupt
13894 * is set up properly.
13895 *
13896 * Return 0 on success, -EINVAL on failure.
13897 */
13898static int check_int_registers(struct hfi1_devdata *dd)
13899{
13900 u64 reg;
13901 u64 all_bits = ~(u64)0;
13902 u64 mask;
13903
13904 /* Clear CceIntMask[0] to avoid raising any interrupts */
13905 mask = read_csr(dd, CCE_INT_MASK);
13906 write_csr(dd, CCE_INT_MASK, 0ull);
13907 reg = read_csr(dd, CCE_INT_MASK);
13908 if (reg)
13909 goto err_exit;
13910
13911 /* Clear all interrupt status bits */
13912 write_csr(dd, CCE_INT_CLEAR, all_bits);
13913 reg = read_csr(dd, CCE_INT_STATUS);
13914 if (reg)
13915 goto err_exit;
13916
13917 /* Set all interrupt status bits */
13918 write_csr(dd, CCE_INT_FORCE, all_bits);
13919 reg = read_csr(dd, CCE_INT_STATUS);
13920 if (reg != all_bits)
13921 goto err_exit;
13922
13923 /* Restore the interrupt mask */
13924 write_csr(dd, CCE_INT_CLEAR, all_bits);
13925 write_csr(dd, CCE_INT_MASK, mask);
13926
13927 return 0;
13928err_exit:
13929 write_csr(dd, CCE_INT_MASK, mask);
13930 dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
13931 return -EINVAL;
13932}
13933
77241056 13934/**
7c03ed85 13935 * Allocate and initialize the device structure for the hfi.
77241056
MM
13936 * @dev: the pci_dev for hfi1_ib device
13937 * @ent: pci_device_id struct for this dev
13938 *
13939 * Also allocates, initializes, and returns the devdata struct for this
13940 * device instance
13941 *
13942 * This is global, and is called directly at init to set up the
13943 * chip-specific function pointers for later use.
13944 */
13945struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
13946 const struct pci_device_id *ent)
13947{
13948 struct hfi1_devdata *dd;
13949 struct hfi1_pportdata *ppd;
13950 u64 reg;
13951 int i, ret;
13952 static const char * const inames[] = { /* implementation names */
13953 "RTL silicon",
13954 "RTL VCS simulation",
13955 "RTL FPGA emulation",
13956 "Functional simulator"
13957 };
24487dd3 13958 struct pci_dev *parent = pdev->bus->self;
77241056 13959
17fb4f29
JJ
13960 dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
13961 sizeof(struct hfi1_pportdata));
77241056
MM
13962 if (IS_ERR(dd))
13963 goto bail;
13964 ppd = dd->pport;
13965 for (i = 0; i < dd->num_pports; i++, ppd++) {
13966 int vl;
13967 /* init common fields */
13968 hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
13969 /* DC supports 4 link widths */
13970 ppd->link_width_supported =
13971 OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
13972 OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
13973 ppd->link_width_downgrade_supported =
13974 ppd->link_width_supported;
13975 /* start out enabling only 4X */
13976 ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
13977 ppd->link_width_downgrade_enabled =
13978 ppd->link_width_downgrade_supported;
13979 /* link width active is 0 when link is down */
13980 /* link width downgrade active is 0 when link is down */
13981
d0d236ea
JJ
13982 if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
13983 num_vls > HFI1_MAX_VLS_SUPPORTED) {
77241056
MM
13984 hfi1_early_err(&pdev->dev,
13985 "Invalid num_vls %u, using %u VLs\n",
13986 num_vls, HFI1_MAX_VLS_SUPPORTED);
13987 num_vls = HFI1_MAX_VLS_SUPPORTED;
13988 }
13989 ppd->vls_supported = num_vls;
13990 ppd->vls_operational = ppd->vls_supported;
8a4d3444 13991 ppd->actual_vls_operational = ppd->vls_supported;
77241056
MM
13992 /* Set the default MTU. */
13993 for (vl = 0; vl < num_vls; vl++)
13994 dd->vld[vl].mtu = hfi1_max_mtu;
13995 dd->vld[15].mtu = MAX_MAD_PACKET;
13996 /*
13997 * Set the initial values to reasonable default, will be set
13998 * for real when link is up.
13999 */
14000 ppd->lstate = IB_PORT_DOWN;
14001 ppd->overrun_threshold = 0x4;
14002 ppd->phy_error_threshold = 0xf;
14003 ppd->port_crc_mode_enabled = link_crc_mask;
14004 /* initialize supported LTP CRC mode */
14005 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14006 /* initialize enabled LTP CRC mode */
14007 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14008 /* start in offline */
14009 ppd->host_link_state = HLS_DN_OFFLINE;
14010 init_vl_arb_caches(ppd);
f45c8dc8 14011 ppd->last_pstate = 0xff; /* invalid value */
77241056
MM
14012 }
14013
14014 dd->link_default = HLS_DN_POLL;
14015
14016 /*
14017 * Do remaining PCIe setup and save PCIe values in dd.
14018 * Any error printing is already done by the init code.
14019 * On return, we have the chip mapped.
14020 */
14021 ret = hfi1_pcie_ddinit(dd, pdev, ent);
14022 if (ret < 0)
14023 goto bail_free;
14024
14025 /* verify that reads actually work, save revision for reset check */
14026 dd->revision = read_csr(dd, CCE_REVISION);
14027 if (dd->revision == ~(u64)0) {
14028 dd_dev_err(dd, "cannot read chip CSRs\n");
14029 ret = -EINVAL;
14030 goto bail_cleanup;
14031 }
14032 dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14033 & CCE_REVISION_CHIP_REV_MAJOR_MASK;
14034 dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14035 & CCE_REVISION_CHIP_REV_MINOR_MASK;
14036
24487dd3
KW
14037 /*
14038 * Check interrupt registers mapping if the driver has no access to
14039 * the upstream component. In this case, it is likely that the driver
14040 * is running in a VM.
14041 */
14042 if (!parent) {
14043 ret = check_int_registers(dd);
14044 if (ret)
14045 goto bail_cleanup;
14046 }
14047
4d114fdd
JJ
14048 /*
14049 * obtain the hardware ID - NOT related to unit, which is a
14050 * software enumeration
14051 */
77241056
MM
14052 reg = read_csr(dd, CCE_REVISION2);
14053 dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
14054 & CCE_REVISION2_HFI_ID_MASK;
14055 /* the variable size will remove unwanted bits */
14056 dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
14057 dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
14058 dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
17fb4f29
JJ
14059 dd->icode < ARRAY_SIZE(inames) ?
14060 inames[dd->icode] : "unknown", (int)dd->irev);
77241056
MM
14061
14062 /* speeds the hardware can support */
14063 dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
14064 /* speeds allowed to run at */
14065 dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
14066 /* give a reasonable active value, will be set on link up */
14067 dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
14068
14069 dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
14070 dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
14071 dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
14072 dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
14073 dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
14074 /* fix up link widths for emulation _p */
14075 ppd = dd->pport;
14076 if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
14077 ppd->link_width_supported =
14078 ppd->link_width_enabled =
14079 ppd->link_width_downgrade_supported =
14080 ppd->link_width_downgrade_enabled =
14081 OPA_LINK_WIDTH_1X;
14082 }
14083 /* insure num_vls isn't larger than number of sdma engines */
14084 if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
14085 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
11a5909b
DL
14086 num_vls, dd->chip_sdma_engines);
14087 num_vls = dd->chip_sdma_engines;
14088 ppd->vls_supported = dd->chip_sdma_engines;
8a4d3444 14089 ppd->vls_operational = ppd->vls_supported;
77241056
MM
14090 }
14091
14092 /*
14093 * Convert the ns parameter to the 64 * cclocks used in the CSR.
14094 * Limit the max if larger than the field holds. If timeout is
14095 * non-zero, then the calculated field will be at least 1.
14096 *
14097 * Must be after icode is set up - the cclock rate depends
14098 * on knowing the hardware being used.
14099 */
14100 dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
14101 if (dd->rcv_intr_timeout_csr >
14102 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
14103 dd->rcv_intr_timeout_csr =
14104 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
14105 else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
14106 dd->rcv_intr_timeout_csr = 1;
14107
7c03ed85
EH
14108 /* needs to be done before we look for the peer device */
14109 read_guid(dd);
14110
78eb129d
DL
14111 /* set up shared ASIC data with peer device */
14112 ret = init_asic_data(dd);
14113 if (ret)
14114 goto bail_cleanup;
7c03ed85 14115
77241056
MM
14116 /* obtain chip sizes, reset chip CSRs */
14117 init_chip(dd);
14118
14119 /* read in the PCIe link speed information */
14120 ret = pcie_speeds(dd);
14121 if (ret)
14122 goto bail_cleanup;
14123
c3838b39
EH
14124 /* Needs to be called before hfi1_firmware_init */
14125 get_platform_config(dd);
14126
77241056
MM
14127 /* read in firmware */
14128 ret = hfi1_firmware_init(dd);
14129 if (ret)
14130 goto bail_cleanup;
14131
14132 /*
14133 * In general, the PCIe Gen3 transition must occur after the
14134 * chip has been idled (so it won't initiate any PCIe transactions
14135 * e.g. an interrupt) and before the driver changes any registers
14136 * (the transition will reset the registers).
14137 *
14138 * In particular, place this call after:
14139 * - init_chip() - the chip will not initiate any PCIe transactions
14140 * - pcie_speeds() - reads the current link speed
14141 * - hfi1_firmware_init() - the needed firmware is ready to be
14142 * downloaded
14143 */
14144 ret = do_pcie_gen3_transition(dd);
14145 if (ret)
14146 goto bail_cleanup;
14147
14148 /* start setting dd values and adjusting CSRs */
14149 init_early_variables(dd);
14150
14151 parse_platform_config(dd);
14152
5d9157aa
DL
14153 ret = obtain_boardname(dd);
14154 if (ret)
77241056 14155 goto bail_cleanup;
77241056
MM
14156
14157 snprintf(dd->boardversion, BOARD_VERS_MAX,
5d9157aa 14158 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
77241056 14159 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
77241056
MM
14160 (u32)dd->majrev,
14161 (u32)dd->minrev,
14162 (dd->revision >> CCE_REVISION_SW_SHIFT)
14163 & CCE_REVISION_SW_MASK);
14164
14165 ret = set_up_context_variables(dd);
14166 if (ret)
14167 goto bail_cleanup;
14168
14169 /* set initial RXE CSRs */
14170 init_rxe(dd);
14171 /* set initial TXE CSRs */
14172 init_txe(dd);
14173 /* set initial non-RXE, non-TXE CSRs */
14174 init_other(dd);
14175 /* set up KDETH QP prefix in both RX and TX CSRs */
14176 init_kdeth_qp(dd);
14177
957558c9
MH
14178 ret = hfi1_dev_affinity_init(dd);
14179 if (ret)
14180 goto bail_cleanup;
14181
77241056
MM
14182 /* send contexts must be set up before receive contexts */
14183 ret = init_send_contexts(dd);
14184 if (ret)
14185 goto bail_cleanup;
14186
14187 ret = hfi1_create_ctxts(dd);
14188 if (ret)
14189 goto bail_cleanup;
14190
14191 dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
14192 /*
14193 * rcd[0] is guaranteed to be valid by this point. Also, all
14194 * context are using the same value, as per the module parameter.
14195 */
14196 dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
14197
14198 ret = init_pervl_scs(dd);
14199 if (ret)
14200 goto bail_cleanup;
14201
14202 /* sdma init */
14203 for (i = 0; i < dd->num_pports; ++i) {
14204 ret = sdma_init(dd, i);
14205 if (ret)
14206 goto bail_cleanup;
14207 }
14208
14209 /* use contexts created by hfi1_create_ctxts */
14210 ret = set_up_interrupts(dd);
14211 if (ret)
14212 goto bail_cleanup;
14213
14214 /* set up LCB access - must be after set_up_interrupts() */
14215 init_lcb_access(dd);
14216
14217 snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
14218 dd->base_guid & 0xFFFFFF);
14219
14220 dd->oui1 = dd->base_guid >> 56 & 0xFF;
14221 dd->oui2 = dd->base_guid >> 48 & 0xFF;
14222 dd->oui3 = dd->base_guid >> 40 & 0xFF;
14223
14224 ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
14225 if (ret)
14226 goto bail_clear_intr;
14227 check_fabric_firmware_versions(dd);
14228
14229 thermal_init(dd);
14230
14231 ret = init_cntrs(dd);
14232 if (ret)
14233 goto bail_clear_intr;
14234
14235 ret = init_rcverr(dd);
14236 if (ret)
14237 goto bail_free_cntrs;
14238
14239 ret = eprom_init(dd);
14240 if (ret)
14241 goto bail_free_rcverr;
14242
14243 goto bail;
14244
14245bail_free_rcverr:
14246 free_rcverr(dd);
14247bail_free_cntrs:
14248 free_cntrs(dd);
14249bail_clear_intr:
14250 clean_up_interrupts(dd);
14251bail_cleanup:
14252 hfi1_pcie_ddcleanup(dd);
14253bail_free:
14254 hfi1_free_devdata(dd);
14255 dd = ERR_PTR(ret);
14256bail:
14257 return dd;
14258}
14259
14260static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
14261 u32 dw_len)
14262{
14263 u32 delta_cycles;
14264 u32 current_egress_rate = ppd->current_egress_rate;
14265 /* rates here are in units of 10^6 bits/sec */
14266
14267 if (desired_egress_rate == -1)
14268 return 0; /* shouldn't happen */
14269
14270 if (desired_egress_rate >= current_egress_rate)
14271 return 0; /* we can't help go faster, only slower */
14272
14273 delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
14274 egress_cycles(dw_len * 4, current_egress_rate);
14275
14276 return (u16)delta_cycles;
14277}
14278
77241056
MM
14279/**
14280 * create_pbc - build a pbc for transmission
14281 * @flags: special case flags or-ed in built pbc
14282 * @srate: static rate
14283 * @vl: vl
14284 * @dwlen: dword length (header words + data words + pbc words)
14285 *
14286 * Create a PBC with the given flags, rate, VL, and length.
14287 *
14288 * NOTE: The PBC created will not insert any HCRC - all callers but one are
14289 * for verbs, which does not use this PSM feature. The lone other caller
14290 * is for the diagnostic interface which calls this if the user does not
14291 * supply their own PBC.
14292 */
14293u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
14294 u32 dw_len)
14295{
14296 u64 pbc, delay = 0;
14297
14298 if (unlikely(srate_mbs))
14299 delay = delay_cycles(ppd, srate_mbs, dw_len);
14300
14301 pbc = flags
14302 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
14303 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
14304 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT
14305 | (dw_len & PBC_LENGTH_DWS_MASK)
14306 << PBC_LENGTH_DWS_SHIFT;
14307
14308 return pbc;
14309}
14310
14311#define SBUS_THERMAL 0x4f
14312#define SBUS_THERM_MONITOR_MODE 0x1
14313
14314#define THERM_FAILURE(dev, ret, reason) \
14315 dd_dev_err((dd), \
14316 "Thermal sensor initialization failed: %s (%d)\n", \
14317 (reason), (ret))
14318
14319/*
14320 * Initialize the Avago Thermal sensor.
14321 *
14322 * After initialization, enable polling of thermal sensor through
14323 * SBus interface. In order for this to work, the SBus Master
14324 * firmware has to be loaded due to the fact that the HW polling
14325 * logic uses SBus interrupts, which are not supported with
14326 * default firmware. Otherwise, no data will be returned through
14327 * the ASIC_STS_THERM CSR.
14328 */
14329static int thermal_init(struct hfi1_devdata *dd)
14330{
14331 int ret = 0;
14332
14333 if (dd->icode != ICODE_RTL_SILICON ||
14334 !(dd->flags & HFI1_DO_INIT_ASIC))
14335 return ret;
14336
576531fd
DL
14337 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
14338 if (ret) {
14339 THERM_FAILURE(dd, ret, "Acquire SBus");
14340 return ret;
14341 }
14342
77241056 14343 dd_dev_info(dd, "Initializing thermal sensor\n");
4ef98989
JAQ
14344 /* Disable polling of thermal readings */
14345 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
14346 msleep(100);
77241056
MM
14347 /* Thermal Sensor Initialization */
14348 /* Step 1: Reset the Thermal SBus Receiver */
14349 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14350 RESET_SBUS_RECEIVER, 0);
14351 if (ret) {
14352 THERM_FAILURE(dd, ret, "Bus Reset");
14353 goto done;
14354 }
14355 /* Step 2: Set Reset bit in Thermal block */
14356 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14357 WRITE_SBUS_RECEIVER, 0x1);
14358 if (ret) {
14359 THERM_FAILURE(dd, ret, "Therm Block Reset");
14360 goto done;
14361 }
14362 /* Step 3: Write clock divider value (100MHz -> 2MHz) */
14363 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
14364 WRITE_SBUS_RECEIVER, 0x32);
14365 if (ret) {
14366 THERM_FAILURE(dd, ret, "Write Clock Div");
14367 goto done;
14368 }
14369 /* Step 4: Select temperature mode */
14370 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
14371 WRITE_SBUS_RECEIVER,
14372 SBUS_THERM_MONITOR_MODE);
14373 if (ret) {
14374 THERM_FAILURE(dd, ret, "Write Mode Sel");
14375 goto done;
14376 }
14377 /* Step 5: De-assert block reset and start conversion */
14378 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14379 WRITE_SBUS_RECEIVER, 0x2);
14380 if (ret) {
14381 THERM_FAILURE(dd, ret, "Write Reset Deassert");
14382 goto done;
14383 }
14384 /* Step 5.1: Wait for first conversion (21.5ms per spec) */
14385 msleep(22);
14386
14387 /* Enable polling of thermal readings */
14388 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
14389done:
576531fd 14390 release_chip_resource(dd, CR_SBUS);
77241056
MM
14391 return ret;
14392}
14393
14394static void handle_temp_err(struct hfi1_devdata *dd)
14395{
14396 struct hfi1_pportdata *ppd = &dd->pport[0];
14397 /*
14398 * Thermal Critical Interrupt
14399 * Put the device into forced freeze mode, take link down to
14400 * offline, and put DC into reset.
14401 */
14402 dd_dev_emerg(dd,
14403 "Critical temperature reached! Forcing device into freeze mode!\n");
14404 dd->flags |= HFI1_FORCED_FREEZE;
8638b77f 14405 start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
77241056
MM
14406 /*
14407 * Shut DC down as much and as quickly as possible.
14408 *
14409 * Step 1: Take the link down to OFFLINE. This will cause the
14410 * 8051 to put the Serdes in reset. However, we don't want to
14411 * go through the entire link state machine since we want to
14412 * shutdown ASAP. Furthermore, this is not a graceful shutdown
14413 * but rather an attempt to save the chip.
14414 * Code below is almost the same as quiet_serdes() but avoids
14415 * all the extra work and the sleeps.
14416 */
14417 ppd->driver_link_ready = 0;
14418 ppd->link_enabled = 0;
bf640096
HC
14419 set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
14420 PLS_OFFLINE);
77241056
MM
14421 /*
14422 * Step 2: Shutdown LCB and 8051
14423 * After shutdown, do not restore DC_CFG_RESET value.
14424 */
14425 dc_shutdown(dd);
14426}
This page took 0.789845 seconds and 5 git commands to generate.