staging/rdma/hfi1: move hfi1_migrate_qp
[deliverable/linux.git] / drivers / staging / rdma / hfi1 / init.c
CommitLineData
77241056
MM
1/*
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2015 Intel Corporation.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * BSD LICENSE
20 *
21 * Copyright(c) 2015 Intel Corporation.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 *
27 * - Redistributions of source code must retain the above copyright
28 * notice, this list of conditions and the following disclaimer.
29 * - Redistributions in binary form must reproduce the above copyright
30 * notice, this list of conditions and the following disclaimer in
31 * the documentation and/or other materials provided with the
32 * distribution.
33 * - Neither the name of Intel Corporation nor the names of its
34 * contributors may be used to endorse or promote products derived
35 * from this software without specific prior written permission.
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 *
49 */
50
51#include <linux/pci.h>
52#include <linux/netdevice.h>
53#include <linux/vmalloc.h>
54#include <linux/delay.h>
55#include <linux/idr.h>
56#include <linux/module.h>
57#include <linux/printk.h>
58#include <linux/hrtimer.h>
59
60#include "hfi.h"
61#include "device.h"
62#include "common.h"
6c63e423 63#include "trace.h"
77241056
MM
64#include "mad.h"
65#include "sdma.h"
66#include "debugfs.h"
67#include "verbs.h"
68
69#undef pr_fmt
70#define pr_fmt(fmt) DRIVER_NAME ": " fmt
71
72/*
73 * min buffers we want to have per context, after driver
74 */
75#define HFI1_MIN_USER_CTXT_BUFCNT 7
76
77#define HFI1_MIN_HDRQ_EGRBUF_CNT 2
78#define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
79#define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
80
81/*
82 * Number of user receive contexts we are configured to use (to allow for more
83 * pio buffers per ctxt, etc.) Zero means use one user context per CPU.
84 */
85uint num_rcv_contexts;
86module_param_named(num_rcv_contexts, num_rcv_contexts, uint, S_IRUGO);
87MODULE_PARM_DESC(
88 num_rcv_contexts, "Set max number of user receive contexts to use");
89
90u8 krcvqs[RXE_NUM_DATA_VL];
91int krcvqsset;
92module_param_array(krcvqs, byte, &krcvqsset, S_IRUGO);
93MODULE_PARM_DESC(krcvqs, "Array of the number of kernel receive queues by VL");
94
95/* computed based on above array */
96unsigned n_krcvqs;
97
98static unsigned hfi1_rcvarr_split = 25;
99module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
100MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
101
102static uint eager_buffer_size = (2 << 20); /* 2MB */
103module_param(eager_buffer_size, uint, S_IRUGO);
104MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 2MB");
105
106static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
107module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
108MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
109
110static uint hfi1_hdrq_entsize = 32;
111module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, S_IRUGO);
112MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B (default), 32 - 128B");
113
114unsigned int user_credit_return_threshold = 33; /* default is 33% */
115module_param(user_credit_return_threshold, uint, S_IRUGO);
116MODULE_PARM_DESC(user_credit_return_theshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
117
118static inline u64 encode_rcv_header_entry_size(u16);
119
120static struct idr hfi1_unit_table;
121u32 hfi1_cpulist_count;
122unsigned long *hfi1_cpulist;
123
124/*
125 * Common code for creating the receive context array.
126 */
127int hfi1_create_ctxts(struct hfi1_devdata *dd)
128{
129 unsigned i;
130 int ret;
131 int local_node_id = pcibus_to_node(dd->pcidev->bus);
132
133 if (local_node_id < 0)
134 local_node_id = numa_node_id();
135 dd->assigned_node_id = local_node_id;
136
137 dd->rcd = kcalloc(dd->num_rcv_contexts, sizeof(*dd->rcd), GFP_KERNEL);
806e6e1b 138 if (!dd->rcd)
77241056 139 goto nomem;
77241056
MM
140
141 /* create one or more kernel contexts */
142 for (i = 0; i < dd->first_user_ctxt; ++i) {
143 struct hfi1_pportdata *ppd;
144 struct hfi1_ctxtdata *rcd;
145
146 ppd = dd->pport + (i % dd->num_pports);
147 rcd = hfi1_create_ctxtdata(ppd, i);
148 if (!rcd) {
149 dd_dev_err(dd,
150 "Unable to allocate kernel receive context, failing\n");
151 goto nomem;
152 }
153 /*
154 * Set up the kernel context flags here and now because they
155 * use default values for all receive side memories. User
156 * contexts will be handled as they are created.
157 */
158 rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
159 HFI1_CAP_KGET(NODROP_RHQ_FULL) |
160 HFI1_CAP_KGET(NODROP_EGR_FULL) |
161 HFI1_CAP_KGET(DMA_RTAIL);
162 rcd->seq_cnt = 1;
163
164 rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
165 if (!rcd->sc) {
166 dd_dev_err(dd,
167 "Unable to allocate kernel send context, failing\n");
168 dd->rcd[rcd->ctxt] = NULL;
169 hfi1_free_ctxtdata(dd, rcd);
170 goto nomem;
171 }
172
173 ret = hfi1_init_ctxt(rcd->sc);
174 if (ret < 0) {
175 dd_dev_err(dd,
176 "Failed to setup kernel receive context, failing\n");
177 sc_free(rcd->sc);
178 dd->rcd[rcd->ctxt] = NULL;
179 hfi1_free_ctxtdata(dd, rcd);
180 ret = -EFAULT;
181 goto bail;
182 }
183 }
184
185 return 0;
186nomem:
187 ret = -ENOMEM;
188bail:
189 kfree(dd->rcd);
190 dd->rcd = NULL;
191 return ret;
192}
193
194/*
195 * Common code for user and kernel context setup.
196 */
197struct hfi1_ctxtdata *hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, u32 ctxt)
198{
199 struct hfi1_devdata *dd = ppd->dd;
200 struct hfi1_ctxtdata *rcd;
201 unsigned kctxt_ngroups = 0;
202 u32 base;
203
204 if (dd->rcv_entries.nctxt_extra >
205 dd->num_rcv_contexts - dd->first_user_ctxt)
206 kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
207 (dd->num_rcv_contexts - dd->first_user_ctxt));
208 rcd = kzalloc(sizeof(*rcd), GFP_KERNEL);
209 if (rcd) {
210 u32 rcvtids, max_entries;
211
6c63e423 212 hfi1_cdbg(PROC, "setting up context %u\n", ctxt);
77241056
MM
213
214 INIT_LIST_HEAD(&rcd->qp_wait_list);
215 rcd->ppd = ppd;
216 rcd->dd = dd;
217 rcd->cnt = 1;
218 rcd->ctxt = ctxt;
219 dd->rcd[ctxt] = rcd;
220 rcd->numa_id = numa_node_id();
221 rcd->rcv_array_groups = dd->rcv_entries.ngroups;
222
223 spin_lock_init(&rcd->exp_lock);
224
225 /*
226 * Calculate the context's RcvArray entry starting point.
227 * We do this here because we have to take into account all
228 * the RcvArray entries that previous context would have
229 * taken and we have to account for any extra groups
230 * assigned to the kernel or user contexts.
231 */
232 if (ctxt < dd->first_user_ctxt) {
233 if (ctxt < kctxt_ngroups) {
234 base = ctxt * (dd->rcv_entries.ngroups + 1);
235 rcd->rcv_array_groups++;
236 } else
237 base = kctxt_ngroups +
238 (ctxt * dd->rcv_entries.ngroups);
239 } else {
240 u16 ct = ctxt - dd->first_user_ctxt;
241
242 base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
243 kctxt_ngroups);
244 if (ct < dd->rcv_entries.nctxt_extra) {
245 base += ct * (dd->rcv_entries.ngroups + 1);
246 rcd->rcv_array_groups++;
247 } else
248 base += dd->rcv_entries.nctxt_extra +
249 (ct * dd->rcv_entries.ngroups);
250 }
251 rcd->eager_base = base * dd->rcv_entries.group_size;
252
253 /* Validate and initialize Rcv Hdr Q variables */
254 if (rcvhdrcnt % HDRQ_INCREMENT) {
255 dd_dev_err(dd,
256 "ctxt%u: header queue count %d must be divisible by %d\n",
257 rcd->ctxt, rcvhdrcnt, HDRQ_INCREMENT);
258 goto bail;
259 }
260 rcd->rcvhdrq_cnt = rcvhdrcnt;
261 rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
262 /*
263 * Simple Eager buffer allocation: we have already pre-allocated
264 * the number of RcvArray entry groups. Each ctxtdata structure
265 * holds the number of groups for that context.
266 *
267 * To follow CSR requirements and maintain cacheline alignment,
268 * make sure all sizes and bases are multiples of group_size.
269 *
270 * The expected entry count is what is left after assigning
271 * eager.
272 */
273 max_entries = rcd->rcv_array_groups *
274 dd->rcv_entries.group_size;
275 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
276 rcd->egrbufs.count = round_down(rcvtids,
277 dd->rcv_entries.group_size);
278 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
279 dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
280 rcd->ctxt);
281 rcd->egrbufs.count = MAX_EAGER_ENTRIES;
282 }
6c63e423
SS
283 hfi1_cdbg(PROC,
284 "ctxt%u: max Eager buffer RcvArray entries: %u\n",
285 rcd->ctxt, rcd->egrbufs.count);
77241056
MM
286
287 /*
288 * Allocate array that will hold the eager buffer accounting
289 * data.
290 * This will allocate the maximum possible buffer count based
291 * on the value of the RcvArray split parameter.
292 * The resulting value will be rounded down to the closest
293 * multiple of dd->rcv_entries.group_size.
294 */
314fcc0d
SB
295 rcd->egrbufs.buffers = kcalloc(rcd->egrbufs.count,
296 sizeof(*rcd->egrbufs.buffers),
297 GFP_KERNEL);
77241056
MM
298 if (!rcd->egrbufs.buffers)
299 goto bail;
314fcc0d
SB
300 rcd->egrbufs.rcvtids = kcalloc(rcd->egrbufs.count,
301 sizeof(*rcd->egrbufs.rcvtids),
302 GFP_KERNEL);
77241056
MM
303 if (!rcd->egrbufs.rcvtids)
304 goto bail;
305 rcd->egrbufs.size = eager_buffer_size;
306 /*
307 * The size of the buffers programmed into the RcvArray
308 * entries needs to be big enough to handle the highest
309 * MTU supported.
310 */
311 if (rcd->egrbufs.size < hfi1_max_mtu) {
312 rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
6c63e423
SS
313 hfi1_cdbg(PROC,
314 "ctxt%u: eager bufs size too small. Adjusting to %zu\n",
77241056
MM
315 rcd->ctxt, rcd->egrbufs.size);
316 }
317 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
318
319 if (ctxt < dd->first_user_ctxt) { /* N/A for PSM contexts */
320 rcd->opstats = kzalloc(sizeof(*rcd->opstats),
321 GFP_KERNEL);
806e6e1b 322 if (!rcd->opstats)
77241056 323 goto bail;
77241056
MM
324 }
325 }
326 return rcd;
327bail:
328 kfree(rcd->opstats);
329 kfree(rcd->egrbufs.rcvtids);
330 kfree(rcd->egrbufs.buffers);
331 kfree(rcd);
332 return NULL;
333}
334
335/*
336 * Convert a receive header entry size that to the encoding used in the CSR.
337 *
338 * Return a zero if the given size is invalid.
339 */
340static inline u64 encode_rcv_header_entry_size(u16 size)
341{
342 /* there are only 3 valid receive header entry sizes */
343 if (size == 2)
344 return 1;
345 if (size == 16)
346 return 2;
347 else if (size == 32)
348 return 4;
349 return 0; /* invalid */
350}
351
352/*
353 * Select the largest ccti value over all SLs to determine the intra-
354 * packet gap for the link.
355 *
356 * called with cca_timer_lock held (to protect access to cca_timer
357 * array), and rcu_read_lock() (to protect access to cc_state).
358 */
359void set_link_ipg(struct hfi1_pportdata *ppd)
360{
361 struct hfi1_devdata *dd = ppd->dd;
362 struct cc_state *cc_state;
363 int i;
364 u16 cce, ccti_limit, max_ccti = 0;
365 u16 shift, mult;
366 u64 src;
367 u32 current_egress_rate; /* Mbits /sec */
368 u32 max_pkt_time;
369 /*
370 * max_pkt_time is the maximum packet egress time in units
371 * of the fabric clock period 1/(805 MHz).
372 */
373
374 cc_state = get_cc_state(ppd);
375
376 if (cc_state == NULL)
377 /*
378 * This should _never_ happen - rcu_read_lock() is held,
379 * and set_link_ipg() should not be called if cc_state
380 * is NULL.
381 */
382 return;
383
384 for (i = 0; i < OPA_MAX_SLS; i++) {
385 u16 ccti = ppd->cca_timer[i].ccti;
386
387 if (ccti > max_ccti)
388 max_ccti = ccti;
389 }
390
391 ccti_limit = cc_state->cct.ccti_limit;
392 if (max_ccti > ccti_limit)
393 max_ccti = ccti_limit;
394
395 cce = cc_state->cct.entries[max_ccti].entry;
396 shift = (cce & 0xc000) >> 14;
397 mult = (cce & 0x3fff);
398
399 current_egress_rate = active_egress_rate(ppd);
400
401 max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
402
403 src = (max_pkt_time >> shift) * mult;
404
405 src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
406 src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
407
408 write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
409}
410
411static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
412{
413 struct cca_timer *cca_timer;
414 struct hfi1_pportdata *ppd;
415 int sl;
416 u16 ccti, ccti_timer, ccti_min;
417 struct cc_state *cc_state;
b77d713a 418 unsigned long flags;
77241056
MM
419
420 cca_timer = container_of(t, struct cca_timer, hrtimer);
421 ppd = cca_timer->ppd;
422 sl = cca_timer->sl;
423
424 rcu_read_lock();
425
426 cc_state = get_cc_state(ppd);
427
428 if (cc_state == NULL) {
429 rcu_read_unlock();
430 return HRTIMER_NORESTART;
431 }
432
433 /*
434 * 1) decrement ccti for SL
435 * 2) calculate IPG for link (set_link_ipg())
436 * 3) restart timer, unless ccti is at min value
437 */
438
439 ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
440 ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
441
b77d713a 442 spin_lock_irqsave(&ppd->cca_timer_lock, flags);
77241056
MM
443
444 ccti = cca_timer->ccti;
445
446 if (ccti > ccti_min) {
447 cca_timer->ccti--;
448 set_link_ipg(ppd);
449 }
450
b77d713a 451 spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
77241056
MM
452
453 rcu_read_unlock();
454
455 if (ccti > ccti_min) {
456 unsigned long nsec = 1024 * ccti_timer;
457 /* ccti_timer is in units of 1.024 usec */
458 hrtimer_forward_now(t, ns_to_ktime(nsec));
459 return HRTIMER_RESTART;
460 }
461 return HRTIMER_NORESTART;
462}
463
464/*
465 * Common code for initializing the physical port structure.
466 */
467void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
468 struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
469{
470 int i, size;
471 uint default_pkey_idx;
472
473 ppd->dd = dd;
474 ppd->hw_pidx = hw_pidx;
475 ppd->port = port; /* IB port number, not index */
476
477 default_pkey_idx = 1;
478
479 ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
480 if (loopback) {
481 hfi1_early_err(&pdev->dev,
482 "Faking data partition 0x8001 in idx %u\n",
483 !default_pkey_idx);
484 ppd->pkeys[!default_pkey_idx] = 0x8001;
485 }
486
487 INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
488 INIT_WORK(&ppd->link_up_work, handle_link_up);
489 INIT_WORK(&ppd->link_down_work, handle_link_down);
490 INIT_WORK(&ppd->freeze_work, handle_freeze);
491 INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
492 INIT_WORK(&ppd->sma_message_work, handle_sma_message);
493 INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
494 mutex_init(&ppd->hls_lock);
495 spin_lock_init(&ppd->sdma_alllock);
496 spin_lock_init(&ppd->qsfp_info.qsfp_lock);
497
498 ppd->sm_trap_qp = 0x0;
499 ppd->sa_qp = 0x1;
500
501 ppd->hfi1_wq = NULL;
502
503 spin_lock_init(&ppd->cca_timer_lock);
504
505 for (i = 0; i < OPA_MAX_SLS; i++) {
506 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
507 HRTIMER_MODE_REL);
508 ppd->cca_timer[i].ppd = ppd;
509 ppd->cca_timer[i].sl = i;
510 ppd->cca_timer[i].ccti = 0;
511 ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
512 }
513
514 ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
515
516 spin_lock_init(&ppd->cc_state_lock);
517 spin_lock_init(&ppd->cc_log_lock);
518 size = sizeof(struct cc_state);
519 RCU_INIT_POINTER(ppd->cc_state, kzalloc(size, GFP_KERNEL));
520 if (!rcu_dereference(ppd->cc_state))
521 goto bail;
522 return;
523
524bail:
525
526 hfi1_early_err(&pdev->dev,
527 "Congestion Control Agent disabled for port %d\n", port);
528}
529
530/*
531 * Do initialization for device that is only needed on
532 * first detect, not on resets.
533 */
534static int loadtime_init(struct hfi1_devdata *dd)
535{
536 return 0;
537}
538
539/**
540 * init_after_reset - re-initialize after a reset
541 * @dd: the hfi1_ib device
542 *
543 * sanity check at least some of the values after reset, and
544 * ensure no receive or transmit (explicitly, in case reset
545 * failed
546 */
547static int init_after_reset(struct hfi1_devdata *dd)
548{
549 int i;
550
551 /*
552 * Ensure chip does no sends or receives, tail updates, or
553 * pioavail updates while we re-initialize. This is mostly
554 * for the driver data structures, not chip registers.
555 */
556 for (i = 0; i < dd->num_rcv_contexts; i++)
557 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
558 HFI1_RCVCTRL_INTRAVAIL_DIS |
559 HFI1_RCVCTRL_TAILUPD_DIS, i);
560 pio_send_control(dd, PSC_GLOBAL_DISABLE);
561 for (i = 0; i < dd->num_send_contexts; i++)
562 sc_disable(dd->send_contexts[i].sc);
563
564 return 0;
565}
566
567static void enable_chip(struct hfi1_devdata *dd)
568{
569 u32 rcvmask;
570 u32 i;
571
572 /* enable PIO send */
573 pio_send_control(dd, PSC_GLOBAL_ENABLE);
574
575 /*
576 * Enable kernel ctxts' receive and receive interrupt.
577 * Other ctxts done as user opens and initializes them.
578 */
579 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
580 for (i = 0; i < dd->first_user_ctxt; ++i) {
581 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
582 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
583 if (!HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, MULTI_PKT_EGR))
584 rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
585 if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_RHQ_FULL))
586 rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
587 if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_EGR_FULL))
588 rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
589 hfi1_rcvctrl(dd, rcvmask, i);
590 sc_enable(dd->rcd[i]->sc);
591 }
592}
593
594/**
595 * create_workqueues - create per port workqueues
596 * @dd: the hfi1_ib device
597 */
598static int create_workqueues(struct hfi1_devdata *dd)
599{
600 int pidx;
601 struct hfi1_pportdata *ppd;
602
603 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
604 ppd = dd->pport + pidx;
605 if (!ppd->hfi1_wq) {
606 char wq_name[8]; /* 3 + 2 + 1 + 1 + 1 */
607
608 snprintf(wq_name, sizeof(wq_name), "hfi%d_%d",
609 dd->unit, pidx);
610 ppd->hfi1_wq =
611 create_singlethread_workqueue(wq_name);
612 if (!ppd->hfi1_wq)
613 goto wq_error;
614 }
615 }
616 return 0;
617wq_error:
618 pr_err("create_singlethread_workqueue failed for port %d\n",
619 pidx + 1);
620 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
621 ppd = dd->pport + pidx;
622 if (ppd->hfi1_wq) {
623 destroy_workqueue(ppd->hfi1_wq);
624 ppd->hfi1_wq = NULL;
625 }
626 }
627 return -ENOMEM;
628}
629
630/**
631 * hfi1_init - do the actual initialization sequence on the chip
632 * @dd: the hfi1_ib device
633 * @reinit: re-initializing, so don't allocate new memory
634 *
635 * Do the actual initialization sequence on the chip. This is done
636 * both from the init routine called from the PCI infrastructure, and
637 * when we reset the chip, or detect that it was reset internally,
638 * or it's administratively re-enabled.
639 *
640 * Memory allocation here and in called routines is only done in
641 * the first case (reinit == 0). We have to be careful, because even
642 * without memory allocation, we need to re-write all the chip registers
643 * TIDs, etc. after the reset or enable has completed.
644 */
645int hfi1_init(struct hfi1_devdata *dd, int reinit)
646{
647 int ret = 0, pidx, lastfail = 0;
648 unsigned i, len;
649 struct hfi1_ctxtdata *rcd;
650 struct hfi1_pportdata *ppd;
651
652 /* Set up recv low level handlers */
653 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EXPECTED] =
654 kdeth_process_expected;
655 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EAGER] =
656 kdeth_process_eager;
657 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_IB] = process_receive_ib;
658 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_ERROR] =
659 process_receive_error;
660 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_BYPASS] =
661 process_receive_bypass;
662 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID5] =
663 process_receive_invalid;
664 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID6] =
665 process_receive_invalid;
666 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID7] =
667 process_receive_invalid;
668 dd->rhf_rcv_function_map = dd->normal_rhf_rcv_functions;
669
670 /* Set up send low level handlers */
671 dd->process_pio_send = hfi1_verbs_send_pio;
672 dd->process_dma_send = hfi1_verbs_send_dma;
673 dd->pio_inline_send = pio_copy;
674
675 if (is_a0(dd)) {
676 atomic_set(&dd->drop_packet, DROP_PACKET_ON);
677 dd->do_drop = 1;
678 } else {
679 atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
680 dd->do_drop = 0;
681 }
682
683 /* make sure the link is not "up" */
684 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
685 ppd = dd->pport + pidx;
686 ppd->linkup = 0;
687 }
688
689 if (reinit)
690 ret = init_after_reset(dd);
691 else
692 ret = loadtime_init(dd);
693 if (ret)
694 goto done;
695
696 /* dd->rcd can be NULL if early initialization failed */
697 for (i = 0; dd->rcd && i < dd->first_user_ctxt; ++i) {
698 /*
699 * Set up the (kernel) rcvhdr queue and egr TIDs. If doing
700 * re-init, the simplest way to handle this is to free
701 * existing, and re-allocate.
702 * Need to re-create rest of ctxt 0 ctxtdata as well.
703 */
704 rcd = dd->rcd[i];
705 if (!rcd)
706 continue;
707
708 rcd->do_interrupt = &handle_receive_interrupt;
709
710 lastfail = hfi1_create_rcvhdrq(dd, rcd);
711 if (!lastfail)
712 lastfail = hfi1_setup_eagerbufs(rcd);
713 if (lastfail)
714 dd_dev_err(dd,
715 "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
716 }
717 if (lastfail)
718 ret = lastfail;
719
720 /* Allocate enough memory for user event notification. */
721 len = ALIGN(dd->chip_rcv_contexts * HFI1_MAX_SHARED_CTXTS *
722 sizeof(*dd->events), PAGE_SIZE);
723 dd->events = vmalloc_user(len);
724 if (!dd->events)
725 dd_dev_err(dd, "Failed to allocate user events page\n");
726 /*
727 * Allocate a page for device and port status.
728 * Page will be shared amongst all user processes.
729 */
730 dd->status = vmalloc_user(PAGE_SIZE);
731 if (!dd->status)
732 dd_dev_err(dd, "Failed to allocate dev status page\n");
733 else
734 dd->freezelen = PAGE_SIZE - (sizeof(*dd->status) -
735 sizeof(dd->status->freezemsg));
736 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
737 ppd = dd->pport + pidx;
738 if (dd->status)
739 /* Currently, we only have one port */
740 ppd->statusp = &dd->status->port;
741
742 set_mtu(ppd);
743 }
744
745 /* enable chip even if we have an error, so we can debug cause */
746 enable_chip(dd);
747
748 ret = hfi1_cq_init(dd);
749done:
750 /*
751 * Set status even if port serdes is not initialized
752 * so that diags will work.
753 */
754 if (dd->status)
755 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
756 HFI1_STATUS_INITTED;
757 if (!ret) {
758 /* enable all interrupts from the chip */
759 set_intr_state(dd, 1);
760
761 /* chip is OK for user apps; mark it as initialized */
762 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
763 ppd = dd->pport + pidx;
764
765 /* initialize the qsfp if it exists
766 * Requires interrupts to be enabled so we are notified
767 * when the QSFP completes reset, and has
768 * to be done before bringing up the SERDES
769 */
770 init_qsfp(ppd);
771
772 /* start the serdes - must be after interrupts are
773 enabled so we are notified when the link goes up */
774 lastfail = bringup_serdes(ppd);
775 if (lastfail)
776 dd_dev_info(dd,
777 "Failed to bring up port %u\n",
778 ppd->port);
779
780 /*
781 * Set status even if port serdes is not initialized
782 * so that diags will work.
783 */
784 if (ppd->statusp)
785 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
786 HFI1_STATUS_INITTED;
787 if (!ppd->link_speed_enabled)
788 continue;
789 }
790 }
791
792 /* if ret is non-zero, we probably should do some cleanup here... */
793 return ret;
794}
795
796static inline struct hfi1_devdata *__hfi1_lookup(int unit)
797{
798 return idr_find(&hfi1_unit_table, unit);
799}
800
801struct hfi1_devdata *hfi1_lookup(int unit)
802{
803 struct hfi1_devdata *dd;
804 unsigned long flags;
805
806 spin_lock_irqsave(&hfi1_devs_lock, flags);
807 dd = __hfi1_lookup(unit);
808 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
809
810 return dd;
811}
812
813/*
814 * Stop the timers during unit shutdown, or after an error late
815 * in initialization.
816 */
817static void stop_timers(struct hfi1_devdata *dd)
818{
819 struct hfi1_pportdata *ppd;
820 int pidx;
821
822 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
823 ppd = dd->pport + pidx;
824 if (ppd->led_override_timer.data) {
825 del_timer_sync(&ppd->led_override_timer);
826 atomic_set(&ppd->led_override_timer_active, 0);
827 }
828 }
829}
830
831/**
832 * shutdown_device - shut down a device
833 * @dd: the hfi1_ib device
834 *
835 * This is called to make the device quiet when we are about to
836 * unload the driver, and also when the device is administratively
837 * disabled. It does not free any data structures.
838 * Everything it does has to be setup again by hfi1_init(dd, 1)
839 */
840static void shutdown_device(struct hfi1_devdata *dd)
841{
842 struct hfi1_pportdata *ppd;
843 unsigned pidx;
844 int i;
845
846 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
847 ppd = dd->pport + pidx;
848
849 ppd->linkup = 0;
850 if (ppd->statusp)
851 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
852 HFI1_STATUS_IB_READY);
853 }
854 dd->flags &= ~HFI1_INITTED;
855
856 /* mask interrupts, but not errors */
857 set_intr_state(dd, 0);
858
859 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
860 ppd = dd->pport + pidx;
861 for (i = 0; i < dd->num_rcv_contexts; i++)
862 hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
863 HFI1_RCVCTRL_CTXT_DIS |
864 HFI1_RCVCTRL_INTRAVAIL_DIS |
865 HFI1_RCVCTRL_PKEY_DIS |
866 HFI1_RCVCTRL_ONE_PKT_EGR_DIS, i);
867 /*
868 * Gracefully stop all sends allowing any in progress to
869 * trickle out first.
870 */
871 for (i = 0; i < dd->num_send_contexts; i++)
872 sc_flush(dd->send_contexts[i].sc);
873 }
874
875 /*
876 * Enough for anything that's going to trickle out to have actually
877 * done so.
878 */
879 udelay(20);
880
881 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
882 ppd = dd->pport + pidx;
883
884 /* disable all contexts */
885 for (i = 0; i < dd->num_send_contexts; i++)
886 sc_disable(dd->send_contexts[i].sc);
887 /* disable the send device */
888 pio_send_control(dd, PSC_GLOBAL_DISABLE);
889
890 /*
891 * Clear SerdesEnable.
892 * We can't count on interrupts since we are stopping.
893 */
894 hfi1_quiet_serdes(ppd);
895
896 if (ppd->hfi1_wq) {
897 destroy_workqueue(ppd->hfi1_wq);
898 ppd->hfi1_wq = NULL;
899 }
900 }
901 sdma_exit(dd);
902}
903
904/**
905 * hfi1_free_ctxtdata - free a context's allocated data
906 * @dd: the hfi1_ib device
907 * @rcd: the ctxtdata structure
908 *
909 * free up any allocated data for a context
910 * This should not touch anything that would affect a simultaneous
911 * re-allocation of context data, because it is called after hfi1_mutex
912 * is released (and can be called from reinit as well).
913 * It should never change any chip state, or global driver state.
914 */
915void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
916{
917 unsigned e;
918
919 if (!rcd)
920 return;
921
922 if (rcd->rcvhdrq) {
923 dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size,
924 rcd->rcvhdrq, rcd->rcvhdrq_phys);
925 rcd->rcvhdrq = NULL;
926 if (rcd->rcvhdrtail_kvaddr) {
927 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
928 (void *)rcd->rcvhdrtail_kvaddr,
929 rcd->rcvhdrqtailaddr_phys);
930 rcd->rcvhdrtail_kvaddr = NULL;
931 }
932 }
933
934 /* all the RcvArray entries should have been cleared by now */
935 kfree(rcd->egrbufs.rcvtids);
936
937 for (e = 0; e < rcd->egrbufs.alloced; e++) {
938 if (rcd->egrbufs.buffers[e].phys)
939 dma_free_coherent(&dd->pcidev->dev,
940 rcd->egrbufs.buffers[e].len,
941 rcd->egrbufs.buffers[e].addr,
942 rcd->egrbufs.buffers[e].phys);
943 }
944 kfree(rcd->egrbufs.buffers);
945
946 sc_free(rcd->sc);
947 vfree(rcd->physshadow);
948 vfree(rcd->tid_pg_list);
949 vfree(rcd->user_event_mask);
950 vfree(rcd->subctxt_uregbase);
951 vfree(rcd->subctxt_rcvegrbuf);
952 vfree(rcd->subctxt_rcvhdr_base);
953 kfree(rcd->tidusemap);
954 kfree(rcd->opstats);
955 kfree(rcd);
956}
957
958void hfi1_free_devdata(struct hfi1_devdata *dd)
959{
960 unsigned long flags;
961
962 spin_lock_irqsave(&hfi1_devs_lock, flags);
963 idr_remove(&hfi1_unit_table, dd->unit);
964 list_del(&dd->list);
965 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
966 hfi1_dbg_ibdev_exit(&dd->verbs_dev);
967 rcu_barrier(); /* wait for rcu callbacks to complete */
968 free_percpu(dd->int_counter);
969 free_percpu(dd->rcv_limit);
970 ib_dealloc_device(&dd->verbs_dev.ibdev);
971}
972
973/*
974 * Allocate our primary per-unit data structure. Must be done via verbs
975 * allocator, because the verbs cleanup process both does cleanup and
976 * free of the data structure.
977 * "extra" is for chip-specific data.
978 *
979 * Use the idr mechanism to get a unit number for this unit.
980 */
981struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra)
982{
983 unsigned long flags;
984 struct hfi1_devdata *dd;
985 int ret;
986
987 dd = (struct hfi1_devdata *)ib_alloc_device(sizeof(*dd) + extra);
988 if (!dd)
989 return ERR_PTR(-ENOMEM);
990 /* extra is * number of ports */
991 dd->num_pports = extra / sizeof(struct hfi1_pportdata);
992 dd->pport = (struct hfi1_pportdata *)(dd + 1);
993
994 INIT_LIST_HEAD(&dd->list);
995 dd->node = dev_to_node(&pdev->dev);
996 if (dd->node < 0)
997 dd->node = 0;
998 idr_preload(GFP_KERNEL);
999 spin_lock_irqsave(&hfi1_devs_lock, flags);
1000
1001 ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT);
1002 if (ret >= 0) {
1003 dd->unit = ret;
1004 list_add(&dd->list, &hfi1_dev_list);
1005 }
1006
1007 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1008 idr_preload_end();
1009
1010 if (ret < 0) {
1011 hfi1_early_err(&pdev->dev,
1012 "Could not allocate unit ID: error %d\n", -ret);
1013 goto bail;
1014 }
1015 /*
1016 * Initialize all locks for the device. This needs to be as early as
1017 * possible so locks are usable.
1018 */
1019 spin_lock_init(&dd->sc_lock);
1020 spin_lock_init(&dd->sendctrl_lock);
1021 spin_lock_init(&dd->rcvctrl_lock);
1022 spin_lock_init(&dd->uctxt_lock);
1023 spin_lock_init(&dd->hfi1_diag_trans_lock);
1024 spin_lock_init(&dd->sc_init_lock);
1025 spin_lock_init(&dd->dc8051_lock);
1026 spin_lock_init(&dd->dc8051_memlock);
1027 mutex_init(&dd->qsfp_i2c_mutex);
1028 seqlock_init(&dd->sc2vl_lock);
1029 spin_lock_init(&dd->sde_map_lock);
1030 init_waitqueue_head(&dd->event_queue);
1031
1032 dd->int_counter = alloc_percpu(u64);
1033 if (!dd->int_counter) {
1034 ret = -ENOMEM;
1035 hfi1_early_err(&pdev->dev,
1036 "Could not allocate per-cpu int_counter\n");
1037 goto bail;
1038 }
1039
1040 dd->rcv_limit = alloc_percpu(u64);
1041 if (!dd->rcv_limit) {
1042 ret = -ENOMEM;
1043 hfi1_early_err(&pdev->dev,
1044 "Could not allocate per-cpu rcv_limit\n");
1045 goto bail;
1046 }
1047
1048 if (!hfi1_cpulist_count) {
1049 u32 count = num_online_cpus();
1050
314fcc0d
SB
1051 hfi1_cpulist = kcalloc(BITS_TO_LONGS(count), sizeof(long),
1052 GFP_KERNEL);
77241056
MM
1053 if (hfi1_cpulist)
1054 hfi1_cpulist_count = count;
1055 else
1056 hfi1_early_err(
1057 &pdev->dev,
1058 "Could not alloc cpulist info, cpu affinity might be wrong\n");
1059 }
1060 hfi1_dbg_ibdev_init(&dd->verbs_dev);
1061 return dd;
1062
1063bail:
1064 if (!list_empty(&dd->list))
1065 list_del_init(&dd->list);
1066 ib_dealloc_device(&dd->verbs_dev.ibdev);
1067 return ERR_PTR(ret);
1068}
1069
1070/*
1071 * Called from freeze mode handlers, and from PCI error
1072 * reporting code. Should be paranoid about state of
1073 * system and data structures.
1074 */
1075void hfi1_disable_after_error(struct hfi1_devdata *dd)
1076{
1077 if (dd->flags & HFI1_INITTED) {
1078 u32 pidx;
1079
1080 dd->flags &= ~HFI1_INITTED;
1081 if (dd->pport)
1082 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1083 struct hfi1_pportdata *ppd;
1084
1085 ppd = dd->pport + pidx;
1086 if (dd->flags & HFI1_PRESENT)
1087 set_link_state(ppd, HLS_DN_DISABLE);
1088
1089 if (ppd->statusp)
1090 *ppd->statusp &= ~HFI1_STATUS_IB_READY;
1091 }
1092 }
1093
1094 /*
1095 * Mark as having had an error for driver, and also
1096 * for /sys and status word mapped to user programs.
1097 * This marks unit as not usable, until reset.
1098 */
1099 if (dd->status)
1100 dd->status->dev |= HFI1_STATUS_HWERROR;
1101}
1102
1103static void remove_one(struct pci_dev *);
1104static int init_one(struct pci_dev *, const struct pci_device_id *);
1105
1106#define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1107#define PFX DRIVER_NAME ": "
1108
1109static const struct pci_device_id hfi1_pci_tbl[] = {
1110 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1111 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1112 { 0, }
1113};
1114
1115MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1116
1117static struct pci_driver hfi1_pci_driver = {
1118 .name = DRIVER_NAME,
1119 .probe = init_one,
1120 .remove = remove_one,
1121 .id_table = hfi1_pci_tbl,
1122 .err_handler = &hfi1_pci_err_handler,
1123};
1124
1125static void __init compute_krcvqs(void)
1126{
1127 int i;
1128
1129 for (i = 0; i < krcvqsset; i++)
1130 n_krcvqs += krcvqs[i];
1131}
1132
1133/*
1134 * Do all the generic driver unit- and chip-independent memory
1135 * allocation and initialization.
1136 */
1137static int __init hfi1_mod_init(void)
1138{
1139 int ret;
1140
1141 ret = dev_init();
1142 if (ret)
1143 goto bail;
1144
1145 /* validate max MTU before any devices start */
1146 if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1147 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1148 hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1149 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1150 }
1151 /* valid CUs run from 1-128 in powers of 2 */
1152 if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1153 hfi1_cu = 1;
1154 /* valid credit return threshold is 0-100, variable is unsigned */
1155 if (user_credit_return_threshold > 100)
1156 user_credit_return_threshold = 100;
1157
1158 compute_krcvqs();
1159 /* sanitize receive interrupt count, time must wait until after
1160 the hardware type is known */
1161 if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1162 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1163 /* reject invalid combinations */
1164 if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1165 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1166 rcv_intr_count = 1;
1167 }
1168 if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1169 /*
1170 * Avoid indefinite packet delivery by requiring a timeout
1171 * if count is > 1.
1172 */
1173 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1174 rcv_intr_timeout = 1;
1175 }
1176 if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1177 /*
1178 * The dynamic algorithm expects a non-zero timeout
1179 * and a count > 1.
1180 */
1181 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1182 rcv_intr_dynamic = 0;
1183 }
1184
1185 /* sanitize link CRC options */
1186 link_crc_mask &= SUPPORTED_CRCS;
1187
1188 /*
1189 * These must be called before the driver is registered with
1190 * the PCI subsystem.
1191 */
1192 idr_init(&hfi1_unit_table);
1193
1194 hfi1_dbg_init();
1195 ret = pci_register_driver(&hfi1_pci_driver);
1196 if (ret < 0) {
1197 pr_err("Unable to register driver: error %d\n", -ret);
1198 goto bail_dev;
1199 }
1200 goto bail; /* all OK */
1201
1202bail_dev:
1203 hfi1_dbg_exit();
1204 idr_destroy(&hfi1_unit_table);
1205 dev_cleanup();
1206bail:
1207 return ret;
1208}
1209
1210module_init(hfi1_mod_init);
1211
1212/*
1213 * Do the non-unit driver cleanup, memory free, etc. at unload.
1214 */
1215static void __exit hfi1_mod_cleanup(void)
1216{
1217 pci_unregister_driver(&hfi1_pci_driver);
1218 hfi1_dbg_exit();
1219 hfi1_cpulist_count = 0;
1220 kfree(hfi1_cpulist);
1221
1222 idr_destroy(&hfi1_unit_table);
1223 dispose_firmware(); /* asymmetric with obtain_firmware() */
1224 dev_cleanup();
1225}
1226
1227module_exit(hfi1_mod_cleanup);
1228
1229/* this can only be called after a successful initialization */
1230static void cleanup_device_data(struct hfi1_devdata *dd)
1231{
1232 int ctxt;
1233 int pidx;
1234 struct hfi1_ctxtdata **tmp;
1235 unsigned long flags;
1236
1237 /* users can't do anything more with chip */
1238 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1239 struct hfi1_pportdata *ppd = &dd->pport[pidx];
1240 struct cc_state *cc_state;
1241 int i;
1242
1243 if (ppd->statusp)
1244 *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1245
1246 for (i = 0; i < OPA_MAX_SLS; i++)
1247 hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1248
1249 spin_lock(&ppd->cc_state_lock);
1250 cc_state = get_cc_state(ppd);
1251 rcu_assign_pointer(ppd->cc_state, NULL);
1252 spin_unlock(&ppd->cc_state_lock);
1253
1254 if (cc_state)
1255 call_rcu(&cc_state->rcu, cc_state_reclaim);
1256 }
1257
1258 free_credit_return(dd);
1259
1260 /*
1261 * Free any resources still in use (usually just kernel contexts)
1262 * at unload; we do for ctxtcnt, because that's what we allocate.
1263 * We acquire lock to be really paranoid that rcd isn't being
1264 * accessed from some interrupt-related code (that should not happen,
1265 * but best to be sure).
1266 */
1267 spin_lock_irqsave(&dd->uctxt_lock, flags);
1268 tmp = dd->rcd;
1269 dd->rcd = NULL;
1270 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1271 for (ctxt = 0; tmp && ctxt < dd->num_rcv_contexts; ctxt++) {
1272 struct hfi1_ctxtdata *rcd = tmp[ctxt];
1273
1274 tmp[ctxt] = NULL; /* debugging paranoia */
1275 if (rcd) {
1276 hfi1_clear_tids(rcd);
1277 hfi1_free_ctxtdata(dd, rcd);
1278 }
1279 }
1280 kfree(tmp);
1281 /* must follow rcv context free - need to remove rcv's hooks */
1282 for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1283 sc_free(dd->send_contexts[ctxt].sc);
1284 dd->num_send_contexts = 0;
1285 kfree(dd->send_contexts);
1286 dd->send_contexts = NULL;
1287 kfree(dd->boardname);
1288 vfree(dd->events);
1289 vfree(dd->status);
1290 hfi1_cq_exit(dd);
1291}
1292
1293/*
1294 * Clean up on unit shutdown, or error during unit load after
1295 * successful initialization.
1296 */
1297static void postinit_cleanup(struct hfi1_devdata *dd)
1298{
1299 hfi1_start_cleanup(dd);
1300
1301 hfi1_pcie_ddcleanup(dd);
1302 hfi1_pcie_cleanup(dd->pcidev);
1303
1304 cleanup_device_data(dd);
1305
1306 hfi1_free_devdata(dd);
1307}
1308
1309static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1310{
1311 int ret = 0, j, pidx, initfail;
1312 struct hfi1_devdata *dd = NULL;
1313
1314 /* First, lock the non-writable module parameters */
1315 HFI1_CAP_LOCK();
1316
1317 /* Validate some global module parameters */
1318 if (rcvhdrcnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
1319 hfi1_early_err(&pdev->dev, "Header queue count too small\n");
1320 ret = -EINVAL;
1321 goto bail;
1322 }
1323 /* use the encoding function as a sanitization check */
1324 if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1325 hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n",
1326 hfi1_hdrq_entsize);
1327 goto bail;
1328 }
1329
1330 /* The receive eager buffer size must be set before the receive
1331 * contexts are created.
1332 *
1333 * Set the eager buffer size. Validate that it falls in a range
1334 * allowed by the hardware - all powers of 2 between the min and
1335 * max. The maximum valid MTU is within the eager buffer range
1336 * so we do not need to cap the max_mtu by an eager buffer size
1337 * setting.
1338 */
1339 if (eager_buffer_size) {
1340 if (!is_power_of_2(eager_buffer_size))
1341 eager_buffer_size =
1342 roundup_pow_of_two(eager_buffer_size);
1343 eager_buffer_size =
1344 clamp_val(eager_buffer_size,
1345 MIN_EAGER_BUFFER * 8,
1346 MAX_EAGER_BUFFER_TOTAL);
1347 hfi1_early_info(&pdev->dev, "Eager buffer size %u\n",
1348 eager_buffer_size);
1349 } else {
1350 hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n");
1351 ret = -EINVAL;
1352 goto bail;
1353 }
1354
1355 /* restrict value of hfi1_rcvarr_split */
1356 hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1357
1358 ret = hfi1_pcie_init(pdev, ent);
1359 if (ret)
1360 goto bail;
1361
1362 /*
1363 * Do device-specific initialization, function table setup, dd
1364 * allocation, etc.
1365 */
1366 switch (ent->device) {
1367 case PCI_DEVICE_ID_INTEL0:
1368 case PCI_DEVICE_ID_INTEL1:
1369 dd = hfi1_init_dd(pdev, ent);
1370 break;
1371 default:
1372 hfi1_early_err(&pdev->dev,
1373 "Failing on unknown Intel deviceid 0x%x\n",
1374 ent->device);
1375 ret = -ENODEV;
1376 }
1377
1378 if (IS_ERR(dd))
1379 ret = PTR_ERR(dd);
1380 if (ret)
1381 goto clean_bail; /* error already printed */
1382
1383 ret = create_workqueues(dd);
1384 if (ret)
1385 goto clean_bail;
1386
1387 /* do the generic initialization */
1388 initfail = hfi1_init(dd, 0);
1389
1390 ret = hfi1_register_ib_device(dd);
1391
1392 /*
1393 * Now ready for use. this should be cleared whenever we
1394 * detect a reset, or initiate one. If earlier failure,
1395 * we still create devices, so diags, etc. can be used
1396 * to determine cause of problem.
1397 */
1398 if (!initfail && !ret)
1399 dd->flags |= HFI1_INITTED;
1400
1401 j = hfi1_device_create(dd);
1402 if (j)
1403 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1404
1405 if (initfail || ret) {
1406 stop_timers(dd);
1407 flush_workqueue(ib_wq);
1408 for (pidx = 0; pidx < dd->num_pports; ++pidx)
1409 hfi1_quiet_serdes(dd->pport + pidx);
1410 if (!j)
1411 hfi1_device_remove(dd);
1412 if (!ret)
1413 hfi1_unregister_ib_device(dd);
1414 postinit_cleanup(dd);
1415 if (initfail)
1416 ret = initfail;
1417 goto bail; /* everything already cleaned */
1418 }
1419
1420 sdma_start(dd);
1421
1422 return 0;
1423
1424clean_bail:
1425 hfi1_pcie_cleanup(pdev);
1426bail:
1427 return ret;
1428}
1429
1430static void remove_one(struct pci_dev *pdev)
1431{
1432 struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1433
1434 /* unregister from IB core */
1435 hfi1_unregister_ib_device(dd);
1436
1437 /*
1438 * Disable the IB link, disable interrupts on the device,
1439 * clear dma engines, etc.
1440 */
1441 shutdown_device(dd);
1442
1443 stop_timers(dd);
1444
1445 /* wait until all of our (qsfp) queue_work() calls complete */
1446 flush_workqueue(ib_wq);
1447
1448 hfi1_device_remove(dd);
1449
1450 postinit_cleanup(dd);
1451}
1452
1453/**
1454 * hfi1_create_rcvhdrq - create a receive header queue
1455 * @dd: the hfi1_ib device
1456 * @rcd: the context data
1457 *
1458 * This must be contiguous memory (from an i/o perspective), and must be
1459 * DMA'able (which means for some systems, it will go through an IOMMU,
1460 * or be forced into a low address range).
1461 */
1462int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1463{
1464 unsigned amt;
1465 u64 reg;
1466
1467 if (!rcd->rcvhdrq) {
1468 dma_addr_t phys_hdrqtail;
1469 gfp_t gfp_flags;
1470
1471 /*
1472 * rcvhdrqentsize is in DWs, so we have to convert to bytes
1473 * (* sizeof(u32)).
1474 */
1475 amt = ALIGN(rcd->rcvhdrq_cnt * rcd->rcvhdrqentsize *
1476 sizeof(u32), PAGE_SIZE);
1477
1478 gfp_flags = (rcd->ctxt >= dd->first_user_ctxt) ?
1479 GFP_USER : GFP_KERNEL;
1480 rcd->rcvhdrq = dma_zalloc_coherent(
1481 &dd->pcidev->dev, amt, &rcd->rcvhdrq_phys,
1482 gfp_flags | __GFP_COMP);
1483
1484 if (!rcd->rcvhdrq) {
1485 dd_dev_err(dd,
1486 "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1487 amt, rcd->ctxt);
1488 goto bail;
1489 }
1490
1491 /* Event mask is per device now and is in hfi1_devdata */
1492 /*if (rcd->ctxt >= dd->first_user_ctxt) {
1493 rcd->user_event_mask = vmalloc_user(PAGE_SIZE);
1494 if (!rcd->user_event_mask)
1495 goto bail_free_hdrq;
1496 }*/
1497
1498 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1499 rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent(
1500 &dd->pcidev->dev, PAGE_SIZE, &phys_hdrqtail,
1501 gfp_flags);
1502 if (!rcd->rcvhdrtail_kvaddr)
1503 goto bail_free;
1504 rcd->rcvhdrqtailaddr_phys = phys_hdrqtail;
1505 }
1506
1507 rcd->rcvhdrq_size = amt;
1508 }
1509 /*
1510 * These values are per-context:
1511 * RcvHdrCnt
1512 * RcvHdrEntSize
1513 * RcvHdrSize
1514 */
1515 reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
1516 & RCV_HDR_CNT_CNT_MASK)
1517 << RCV_HDR_CNT_CNT_SHIFT;
1518 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
1519 reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
1520 & RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
1521 << RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
1522 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
1523 reg = (dd->rcvhdrsize & RCV_HDR_SIZE_HDR_SIZE_MASK)
1524 << RCV_HDR_SIZE_HDR_SIZE_SHIFT;
1525 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
1526 return 0;
1527
1528bail_free:
1529 dd_dev_err(dd,
1530 "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1531 rcd->ctxt);
1532 vfree(rcd->user_event_mask);
1533 rcd->user_event_mask = NULL;
1534 dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1535 rcd->rcvhdrq_phys);
1536 rcd->rcvhdrq = NULL;
1537bail:
1538 return -ENOMEM;
1539}
1540
1541/**
1542 * allocate eager buffers, both kernel and user contexts.
1543 * @rcd: the context we are setting up.
1544 *
1545 * Allocate the eager TID buffers and program them into hip.
1546 * They are no longer completely contiguous, we do multiple allocation
1547 * calls. Otherwise we get the OOM code involved, by asking for too
1548 * much per call, with disastrous results on some kernels.
1549 */
1550int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1551{
1552 struct hfi1_devdata *dd = rcd->dd;
1553 u32 max_entries, egrtop, alloced_bytes = 0, idx = 0;
1554 gfp_t gfp_flags;
1555 u16 order;
1556 int ret = 0;
1557 u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1558
1559 /*
1560 * GFP_USER, but without GFP_FS, so buffer cache can be
1561 * coalesced (we hope); otherwise, even at order 4,
1562 * heavy filesystem activity makes these fail, and we can
1563 * use compound pages.
1564 */
71baba4b 1565 gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
77241056
MM
1566
1567 /*
1568 * The minimum size of the eager buffers is a groups of MTU-sized
1569 * buffers.
1570 * The global eager_buffer_size parameter is checked against the
1571 * theoretical lower limit of the value. Here, we check against the
1572 * MTU.
1573 */
1574 if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1575 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1576 /*
1577 * If using one-pkt-per-egr-buffer, lower the eager buffer
1578 * size to the max MTU (page-aligned).
1579 */
1580 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1581 rcd->egrbufs.rcvtid_size = round_mtu;
1582
1583 /*
1584 * Eager buffers sizes of 1MB or less require smaller TID sizes
1585 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1586 */
1587 if (rcd->egrbufs.size <= (1 << 20))
1588 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1589 rounddown_pow_of_two(rcd->egrbufs.size / 8));
1590
1591 while (alloced_bytes < rcd->egrbufs.size &&
1592 rcd->egrbufs.alloced < rcd->egrbufs.count) {
1593 rcd->egrbufs.buffers[idx].addr =
1594 dma_zalloc_coherent(&dd->pcidev->dev,
1595 rcd->egrbufs.rcvtid_size,
1596 &rcd->egrbufs.buffers[idx].phys,
1597 gfp_flags);
1598 if (rcd->egrbufs.buffers[idx].addr) {
1599 rcd->egrbufs.buffers[idx].len =
1600 rcd->egrbufs.rcvtid_size;
1601 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1602 rcd->egrbufs.buffers[idx].addr;
1603 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].phys =
1604 rcd->egrbufs.buffers[idx].phys;
1605 rcd->egrbufs.alloced++;
1606 alloced_bytes += rcd->egrbufs.rcvtid_size;
1607 idx++;
1608 } else {
1609 u32 new_size, i, j;
1610 u64 offset = 0;
1611
1612 /*
1613 * Fail the eager buffer allocation if:
1614 * - we are already using the lowest acceptable size
1615 * - we are using one-pkt-per-egr-buffer (this implies
1616 * that we are accepting only one size)
1617 */
1618 if (rcd->egrbufs.rcvtid_size == round_mtu ||
1619 !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1620 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1621 rcd->ctxt);
1622 goto bail_rcvegrbuf_phys;
1623 }
1624
1625 new_size = rcd->egrbufs.rcvtid_size / 2;
1626
1627 /*
1628 * If the first attempt to allocate memory failed, don't
1629 * fail everything but continue with the next lower
1630 * size.
1631 */
1632 if (idx == 0) {
1633 rcd->egrbufs.rcvtid_size = new_size;
1634 continue;
1635 }
1636
1637 /*
1638 * Re-partition already allocated buffers to a smaller
1639 * size.
1640 */
1641 rcd->egrbufs.alloced = 0;
1642 for (i = 0, j = 0, offset = 0; j < idx; i++) {
1643 if (i >= rcd->egrbufs.count)
1644 break;
1645 rcd->egrbufs.rcvtids[i].phys =
1646 rcd->egrbufs.buffers[j].phys + offset;
1647 rcd->egrbufs.rcvtids[i].addr =
1648 rcd->egrbufs.buffers[j].addr + offset;
1649 rcd->egrbufs.alloced++;
1650 if ((rcd->egrbufs.buffers[j].phys + offset +
1651 new_size) ==
1652 (rcd->egrbufs.buffers[j].phys +
1653 rcd->egrbufs.buffers[j].len)) {
1654 j++;
1655 offset = 0;
1656 } else
1657 offset += new_size;
1658 }
1659 rcd->egrbufs.rcvtid_size = new_size;
1660 }
1661 }
1662 rcd->egrbufs.numbufs = idx;
1663 rcd->egrbufs.size = alloced_bytes;
1664
6c63e423
SS
1665 hfi1_cdbg(PROC,
1666 "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n",
1667 rcd->ctxt, rcd->egrbufs.alloced, rcd->egrbufs.rcvtid_size,
1668 rcd->egrbufs.size);
1669
77241056
MM
1670
1671 /*
1672 * Set the contexts rcv array head update threshold to the closest
1673 * power of 2 (so we can use a mask instead of modulo) below half
1674 * the allocated entries.
1675 */
1676 rcd->egrbufs.threshold =
1677 rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
1678 /*
1679 * Compute the expected RcvArray entry base. This is done after
1680 * allocating the eager buffers in order to maximize the
1681 * expected RcvArray entries for the context.
1682 */
1683 max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
1684 egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
1685 rcd->expected_count = max_entries - egrtop;
1686 if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
1687 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
1688
1689 rcd->expected_base = rcd->eager_base + egrtop;
6c63e423
SS
1690 hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
1691 rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
1692 rcd->eager_base, rcd->expected_base);
77241056
MM
1693
1694 if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
6c63e423
SS
1695 hfi1_cdbg(PROC,
1696 "ctxt%u: current Eager buffer size is invalid %u\n",
1697 rcd->ctxt, rcd->egrbufs.rcvtid_size);
77241056
MM
1698 ret = -EINVAL;
1699 goto bail;
1700 }
1701
1702 for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
1703 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
1704 rcd->egrbufs.rcvtids[idx].phys, order);
1705 cond_resched();
1706 }
1707 goto bail;
1708
1709bail_rcvegrbuf_phys:
1710 for (idx = 0; idx < rcd->egrbufs.alloced &&
1711 rcd->egrbufs.buffers[idx].addr;
1712 idx++) {
1713 dma_free_coherent(&dd->pcidev->dev,
1714 rcd->egrbufs.buffers[idx].len,
1715 rcd->egrbufs.buffers[idx].addr,
1716 rcd->egrbufs.buffers[idx].phys);
1717 rcd->egrbufs.buffers[idx].addr = NULL;
1718 rcd->egrbufs.buffers[idx].phys = 0;
1719 rcd->egrbufs.buffers[idx].len = 0;
1720 }
1721bail:
1722 return ret;
1723}
This page took 0.162168 seconds and 5 git commands to generate.