Linux 4.2-rc5
[deliverable/linux.git] / drivers / usb / dwc2 / core.c
CommitLineData
56f5b1cf
PZ
1/*
2 * core.c - DesignWare HS OTG Controller common routines
3 *
4 * Copyright (C) 2004-2013 Synopsys, Inc.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions, and the following disclaimer,
11 * without modification.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The names of the above-listed copyright holders may not be used
16 * to endorse or promote products derived from this software without
17 * specific prior written permission.
18 *
19 * ALTERNATIVELY, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") as published by the Free Software
21 * Foundation; either version 2 of the License, or (at your option) any
22 * later version.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */
36
37/*
38 * The Core code provides basic services for accessing and managing the
39 * DWC_otg hardware. These services are used by both the Host Controller
40 * Driver and the Peripheral Controller Driver.
41 */
42#include <linux/kernel.h>
43#include <linux/module.h>
44#include <linux/moduleparam.h>
45#include <linux/spinlock.h>
46#include <linux/interrupt.h>
47#include <linux/dma-mapping.h>
48#include <linux/delay.h>
49#include <linux/io.h>
50#include <linux/slab.h>
51#include <linux/usb.h>
52
53#include <linux/usb/hcd.h>
54#include <linux/usb/ch11.h>
55
56#include "core.h"
57#include "hcd.h"
58
d17ee77b
GH
59#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
60/**
61 * dwc2_backup_host_registers() - Backup controller host registers.
62 * When suspending usb bus, registers needs to be backuped
63 * if controller power is disabled once suspended.
64 *
65 * @hsotg: Programming view of the DWC_otg controller
66 */
67static int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
68{
69 struct dwc2_hregs_backup *hr;
70 int i;
71
72 dev_dbg(hsotg->dev, "%s\n", __func__);
73
74 /* Backup Host regs */
cc1e204c 75 hr = &hsotg->hr_backup;
d17ee77b
GH
76 hr->hcfg = readl(hsotg->regs + HCFG);
77 hr->haintmsk = readl(hsotg->regs + HAINTMSK);
78 for (i = 0; i < hsotg->core_params->host_channels; ++i)
79 hr->hcintmsk[i] = readl(hsotg->regs + HCINTMSK(i));
80
81 hr->hprt0 = readl(hsotg->regs + HPRT0);
82 hr->hfir = readl(hsotg->regs + HFIR);
cc1e204c 83 hr->valid = true;
d17ee77b
GH
84
85 return 0;
86}
87
88/**
89 * dwc2_restore_host_registers() - Restore controller host registers.
90 * When resuming usb bus, device registers needs to be restored
91 * if controller power were disabled.
92 *
93 * @hsotg: Programming view of the DWC_otg controller
94 */
95static int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
96{
97 struct dwc2_hregs_backup *hr;
98 int i;
99
100 dev_dbg(hsotg->dev, "%s\n", __func__);
101
102 /* Restore host regs */
cc1e204c
MYK
103 hr = &hsotg->hr_backup;
104 if (!hr->valid) {
d17ee77b
GH
105 dev_err(hsotg->dev, "%s: no host registers to restore\n",
106 __func__);
107 return -EINVAL;
108 }
cc1e204c 109 hr->valid = false;
d17ee77b
GH
110
111 writel(hr->hcfg, hsotg->regs + HCFG);
112 writel(hr->haintmsk, hsotg->regs + HAINTMSK);
113
114 for (i = 0; i < hsotg->core_params->host_channels; ++i)
115 writel(hr->hcintmsk[i], hsotg->regs + HCINTMSK(i));
116
117 writel(hr->hprt0, hsotg->regs + HPRT0);
118 writel(hr->hfir, hsotg->regs + HFIR);
119
120 return 0;
121}
122#else
123static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
124{ return 0; }
125
126static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
127{ return 0; }
128#endif
129
130#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
131 IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
132/**
133 * dwc2_backup_device_registers() - Backup controller device registers.
134 * When suspending usb bus, registers needs to be backuped
135 * if controller power is disabled once suspended.
136 *
137 * @hsotg: Programming view of the DWC_otg controller
138 */
139static int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
140{
141 struct dwc2_dregs_backup *dr;
142 int i;
143
144 dev_dbg(hsotg->dev, "%s\n", __func__);
145
146 /* Backup dev regs */
cc1e204c 147 dr = &hsotg->dr_backup;
d17ee77b
GH
148
149 dr->dcfg = readl(hsotg->regs + DCFG);
150 dr->dctl = readl(hsotg->regs + DCTL);
151 dr->daintmsk = readl(hsotg->regs + DAINTMSK);
152 dr->diepmsk = readl(hsotg->regs + DIEPMSK);
153 dr->doepmsk = readl(hsotg->regs + DOEPMSK);
154
155 for (i = 0; i < hsotg->num_of_eps; i++) {
156 /* Backup IN EPs */
157 dr->diepctl[i] = readl(hsotg->regs + DIEPCTL(i));
158
159 /* Ensure DATA PID is correctly configured */
160 if (dr->diepctl[i] & DXEPCTL_DPID)
161 dr->diepctl[i] |= DXEPCTL_SETD1PID;
162 else
163 dr->diepctl[i] |= DXEPCTL_SETD0PID;
164
165 dr->dieptsiz[i] = readl(hsotg->regs + DIEPTSIZ(i));
166 dr->diepdma[i] = readl(hsotg->regs + DIEPDMA(i));
167
168 /* Backup OUT EPs */
169 dr->doepctl[i] = readl(hsotg->regs + DOEPCTL(i));
170
171 /* Ensure DATA PID is correctly configured */
172 if (dr->doepctl[i] & DXEPCTL_DPID)
173 dr->doepctl[i] |= DXEPCTL_SETD1PID;
174 else
175 dr->doepctl[i] |= DXEPCTL_SETD0PID;
176
177 dr->doeptsiz[i] = readl(hsotg->regs + DOEPTSIZ(i));
178 dr->doepdma[i] = readl(hsotg->regs + DOEPDMA(i));
179 }
cc1e204c 180 dr->valid = true;
d17ee77b
GH
181 return 0;
182}
183
184/**
185 * dwc2_restore_device_registers() - Restore controller device registers.
186 * When resuming usb bus, device registers needs to be restored
187 * if controller power were disabled.
188 *
189 * @hsotg: Programming view of the DWC_otg controller
190 */
191static int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
192{
193 struct dwc2_dregs_backup *dr;
194 u32 dctl;
195 int i;
196
197 dev_dbg(hsotg->dev, "%s\n", __func__);
198
199 /* Restore dev regs */
cc1e204c
MYK
200 dr = &hsotg->dr_backup;
201 if (!dr->valid) {
d17ee77b
GH
202 dev_err(hsotg->dev, "%s: no device registers to restore\n",
203 __func__);
204 return -EINVAL;
205 }
cc1e204c 206 dr->valid = false;
d17ee77b
GH
207
208 writel(dr->dcfg, hsotg->regs + DCFG);
209 writel(dr->dctl, hsotg->regs + DCTL);
210 writel(dr->daintmsk, hsotg->regs + DAINTMSK);
211 writel(dr->diepmsk, hsotg->regs + DIEPMSK);
212 writel(dr->doepmsk, hsotg->regs + DOEPMSK);
213
214 for (i = 0; i < hsotg->num_of_eps; i++) {
215 /* Restore IN EPs */
216 writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
217 writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
218 writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
219
220 /* Restore OUT EPs */
221 writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
222 writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
223 writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
224 }
225
226 /* Set the Power-On Programming done bit */
227 dctl = readl(hsotg->regs + DCTL);
228 dctl |= DCTL_PWRONPRGDONE;
229 writel(dctl, hsotg->regs + DCTL);
230
231 return 0;
232}
233#else
234static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
235{ return 0; }
236
237static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
238{ return 0; }
239#endif
240
241/**
242 * dwc2_backup_global_registers() - Backup global controller registers.
243 * When suspending usb bus, registers needs to be backuped
244 * if controller power is disabled once suspended.
245 *
246 * @hsotg: Programming view of the DWC_otg controller
247 */
248static int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg)
249{
250 struct dwc2_gregs_backup *gr;
251 int i;
252
253 /* Backup global regs */
cc1e204c 254 gr = &hsotg->gr_backup;
d17ee77b
GH
255
256 gr->gotgctl = readl(hsotg->regs + GOTGCTL);
257 gr->gintmsk = readl(hsotg->regs + GINTMSK);
258 gr->gahbcfg = readl(hsotg->regs + GAHBCFG);
259 gr->gusbcfg = readl(hsotg->regs + GUSBCFG);
260 gr->grxfsiz = readl(hsotg->regs + GRXFSIZ);
261 gr->gnptxfsiz = readl(hsotg->regs + GNPTXFSIZ);
262 gr->hptxfsiz = readl(hsotg->regs + HPTXFSIZ);
263 gr->gdfifocfg = readl(hsotg->regs + GDFIFOCFG);
264 for (i = 0; i < MAX_EPS_CHANNELS; i++)
265 gr->dtxfsiz[i] = readl(hsotg->regs + DPTXFSIZN(i));
266
cc1e204c 267 gr->valid = true;
d17ee77b
GH
268 return 0;
269}
270
271/**
272 * dwc2_restore_global_registers() - Restore controller global registers.
273 * When resuming usb bus, device registers needs to be restored
274 * if controller power were disabled.
275 *
276 * @hsotg: Programming view of the DWC_otg controller
277 */
278static int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg)
279{
280 struct dwc2_gregs_backup *gr;
281 int i;
282
283 dev_dbg(hsotg->dev, "%s\n", __func__);
284
285 /* Restore global regs */
cc1e204c
MYK
286 gr = &hsotg->gr_backup;
287 if (!gr->valid) {
d17ee77b
GH
288 dev_err(hsotg->dev, "%s: no global registers to restore\n",
289 __func__);
290 return -EINVAL;
291 }
cc1e204c 292 gr->valid = false;
d17ee77b
GH
293
294 writel(0xffffffff, hsotg->regs + GINTSTS);
295 writel(gr->gotgctl, hsotg->regs + GOTGCTL);
296 writel(gr->gintmsk, hsotg->regs + GINTMSK);
297 writel(gr->gusbcfg, hsotg->regs + GUSBCFG);
298 writel(gr->gahbcfg, hsotg->regs + GAHBCFG);
299 writel(gr->grxfsiz, hsotg->regs + GRXFSIZ);
300 writel(gr->gnptxfsiz, hsotg->regs + GNPTXFSIZ);
301 writel(gr->hptxfsiz, hsotg->regs + HPTXFSIZ);
302 writel(gr->gdfifocfg, hsotg->regs + GDFIFOCFG);
303 for (i = 0; i < MAX_EPS_CHANNELS; i++)
304 writel(gr->dtxfsiz[i], hsotg->regs + DPTXFSIZN(i));
305
306 return 0;
307}
308
309/**
310 * dwc2_exit_hibernation() - Exit controller from Partial Power Down.
311 *
312 * @hsotg: Programming view of the DWC_otg controller
313 * @restore: Controller registers need to be restored
314 */
315int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, bool restore)
316{
317 u32 pcgcctl;
318 int ret = 0;
319
285046aa
GH
320 if (!hsotg->core_params->hibernation)
321 return -ENOTSUPP;
322
d17ee77b
GH
323 pcgcctl = readl(hsotg->regs + PCGCTL);
324 pcgcctl &= ~PCGCTL_STOPPCLK;
325 writel(pcgcctl, hsotg->regs + PCGCTL);
326
327 pcgcctl = readl(hsotg->regs + PCGCTL);
328 pcgcctl &= ~PCGCTL_PWRCLMP;
329 writel(pcgcctl, hsotg->regs + PCGCTL);
330
331 pcgcctl = readl(hsotg->regs + PCGCTL);
332 pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
333 writel(pcgcctl, hsotg->regs + PCGCTL);
334
335 udelay(100);
336 if (restore) {
337 ret = dwc2_restore_global_registers(hsotg);
338 if (ret) {
339 dev_err(hsotg->dev, "%s: failed to restore registers\n",
340 __func__);
341 return ret;
342 }
343 if (dwc2_is_host_mode(hsotg)) {
344 ret = dwc2_restore_host_registers(hsotg);
345 if (ret) {
346 dev_err(hsotg->dev, "%s: failed to restore host registers\n",
347 __func__);
348 return ret;
349 }
350 } else {
351 ret = dwc2_restore_device_registers(hsotg);
352 if (ret) {
353 dev_err(hsotg->dev, "%s: failed to restore device registers\n",
354 __func__);
355 return ret;
356 }
357 }
358 }
359
360 return ret;
361}
362
363/**
364 * dwc2_enter_hibernation() - Put controller in Partial Power Down.
365 *
366 * @hsotg: Programming view of the DWC_otg controller
367 */
368int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg)
369{
370 u32 pcgcctl;
371 int ret = 0;
372
285046aa
GH
373 if (!hsotg->core_params->hibernation)
374 return -ENOTSUPP;
375
d17ee77b
GH
376 /* Backup all registers */
377 ret = dwc2_backup_global_registers(hsotg);
378 if (ret) {
379 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
380 __func__);
381 return ret;
382 }
383
384 if (dwc2_is_host_mode(hsotg)) {
385 ret = dwc2_backup_host_registers(hsotg);
386 if (ret) {
387 dev_err(hsotg->dev, "%s: failed to backup host registers\n",
388 __func__);
389 return ret;
390 }
391 } else {
392 ret = dwc2_backup_device_registers(hsotg);
393 if (ret) {
394 dev_err(hsotg->dev, "%s: failed to backup device registers\n",
395 __func__);
396 return ret;
397 }
398 }
399
400 /* Put the controller in low power state */
401 pcgcctl = readl(hsotg->regs + PCGCTL);
402
403 pcgcctl |= PCGCTL_PWRCLMP;
404 writel(pcgcctl, hsotg->regs + PCGCTL);
405 ndelay(20);
406
407 pcgcctl |= PCGCTL_RSTPDWNMODULE;
408 writel(pcgcctl, hsotg->regs + PCGCTL);
409 ndelay(20);
410
411 pcgcctl |= PCGCTL_STOPPCLK;
412 writel(pcgcctl, hsotg->regs + PCGCTL);
413
414 return ret;
415}
416
56f5b1cf
PZ
417/**
418 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
419 * used in both device and host modes
420 *
421 * @hsotg: Programming view of the DWC_otg controller
422 */
423static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
424{
425 u32 intmsk;
426
427 /* Clear any pending OTG Interrupts */
428 writel(0xffffffff, hsotg->regs + GOTGINT);
429
430 /* Clear any pending interrupts */
431 writel(0xffffffff, hsotg->regs + GINTSTS);
432
433 /* Enable the interrupts in the GINTMSK */
434 intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
435
436 if (hsotg->core_params->dma_enable <= 0)
437 intmsk |= GINTSTS_RXFLVL;
a6d249d8
GH
438 if (hsotg->core_params->external_id_pin_ctl <= 0)
439 intmsk |= GINTSTS_CONIDSTSCHNG;
56f5b1cf 440
a6d249d8 441 intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
56f5b1cf
PZ
442 GINTSTS_SESSREQINT;
443
444 writel(intmsk, hsotg->regs + GINTMSK);
445}
446
447/*
448 * Initializes the FSLSPClkSel field of the HCFG register depending on the
449 * PHY type
450 */
451static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
452{
56f5b1cf
PZ
453 u32 hcfg, val;
454
9badec2f
MK
455 if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
456 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
56f5b1cf
PZ
457 hsotg->core_params->ulpi_fs_ls > 0) ||
458 hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
459 /* Full speed PHY */
460 val = HCFG_FSLSPCLKSEL_48_MHZ;
461 } else {
462 /* High speed PHY running at full speed or high speed */
463 val = HCFG_FSLSPCLKSEL_30_60_MHZ;
464 }
465
466 dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
467 hcfg = readl(hsotg->regs + HCFG);
468 hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
f9234633 469 hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
56f5b1cf
PZ
470 writel(hcfg, hsotg->regs + HCFG);
471}
472
473/*
474 * Do core a soft reset of the core. Be careful with this because it
475 * resets all the internal state machines of the core.
476 */
beb7e592 477static int dwc2_core_reset(struct dwc2_hsotg *hsotg)
56f5b1cf
PZ
478{
479 u32 greset;
480 int count = 0;
c0155b9d 481 u32 gusbcfg;
56f5b1cf
PZ
482
483 dev_vdbg(hsotg->dev, "%s()\n", __func__);
484
485 /* Wait for AHB master IDLE state */
486 do {
487 usleep_range(20000, 40000);
488 greset = readl(hsotg->regs + GRSTCTL);
489 if (++count > 50) {
490 dev_warn(hsotg->dev,
491 "%s() HANG! AHB Idle GRSTCTL=%0x\n",
492 __func__, greset);
beb7e592 493 return -EBUSY;
56f5b1cf
PZ
494 }
495 } while (!(greset & GRSTCTL_AHBIDLE));
496
497 /* Core Soft Reset */
498 count = 0;
499 greset |= GRSTCTL_CSFTRST;
500 writel(greset, hsotg->regs + GRSTCTL);
501 do {
502 usleep_range(20000, 40000);
503 greset = readl(hsotg->regs + GRSTCTL);
504 if (++count > 50) {
505 dev_warn(hsotg->dev,
506 "%s() HANG! Soft Reset GRSTCTL=%0x\n",
507 __func__, greset);
beb7e592 508 return -EBUSY;
56f5b1cf
PZ
509 }
510 } while (greset & GRSTCTL_CSFTRST);
511
c0155b9d
KY
512 if (hsotg->dr_mode == USB_DR_MODE_HOST) {
513 gusbcfg = readl(hsotg->regs + GUSBCFG);
514 gusbcfg &= ~GUSBCFG_FORCEDEVMODE;
515 gusbcfg |= GUSBCFG_FORCEHOSTMODE;
516 writel(gusbcfg, hsotg->regs + GUSBCFG);
517 } else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
518 gusbcfg = readl(hsotg->regs + GUSBCFG);
519 gusbcfg &= ~GUSBCFG_FORCEHOSTMODE;
520 gusbcfg |= GUSBCFG_FORCEDEVMODE;
521 writel(gusbcfg, hsotg->regs + GUSBCFG);
522 } else if (hsotg->dr_mode == USB_DR_MODE_OTG) {
523 gusbcfg = readl(hsotg->regs + GUSBCFG);
524 gusbcfg &= ~GUSBCFG_FORCEHOSTMODE;
525 gusbcfg &= ~GUSBCFG_FORCEDEVMODE;
526 writel(gusbcfg, hsotg->regs + GUSBCFG);
527 }
528
56f5b1cf
PZ
529 /*
530 * NOTE: This long sleep is _very_ important, otherwise the core will
531 * not stay in host mode after a connector ID change!
532 */
533 usleep_range(150000, 200000);
beb7e592
JD
534
535 return 0;
56f5b1cf
PZ
536}
537
beb7e592 538static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
56f5b1cf
PZ
539{
540 u32 usbcfg, i2cctl;
beb7e592 541 int retval = 0;
56f5b1cf
PZ
542
543 /*
544 * core_init() is now called on every switch so only call the
545 * following for the first time through
546 */
547 if (select_phy) {
548 dev_dbg(hsotg->dev, "FS PHY selected\n");
549 usbcfg = readl(hsotg->regs + GUSBCFG);
550 usbcfg |= GUSBCFG_PHYSEL;
551 writel(usbcfg, hsotg->regs + GUSBCFG);
552
553 /* Reset after a PHY select */
beb7e592
JD
554 retval = dwc2_core_reset(hsotg);
555 if (retval) {
556 dev_err(hsotg->dev, "%s() Reset failed, aborting",
557 __func__);
558 return retval;
559 }
56f5b1cf
PZ
560 }
561
562 /*
563 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
564 * do this on HNP Dev/Host mode switches (done in dev_init and
565 * host_init).
566 */
567 if (dwc2_is_host_mode(hsotg))
568 dwc2_init_fs_ls_pclk_sel(hsotg);
569
570 if (hsotg->core_params->i2c_enable > 0) {
571 dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
572
573 /* Program GUSBCFG.OtgUtmiFsSel to I2C */
574 usbcfg = readl(hsotg->regs + GUSBCFG);
575 usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
576 writel(usbcfg, hsotg->regs + GUSBCFG);
577
578 /* Program GI2CCTL.I2CEn */
579 i2cctl = readl(hsotg->regs + GI2CCTL);
580 i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
581 i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
582 i2cctl &= ~GI2CCTL_I2CEN;
583 writel(i2cctl, hsotg->regs + GI2CCTL);
584 i2cctl |= GI2CCTL_I2CEN;
585 writel(i2cctl, hsotg->regs + GI2CCTL);
586 }
beb7e592
JD
587
588 return retval;
56f5b1cf
PZ
589}
590
beb7e592 591static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
56f5b1cf
PZ
592{
593 u32 usbcfg;
beb7e592 594 int retval = 0;
56f5b1cf
PZ
595
596 if (!select_phy)
a23666c4 597 return 0;
56f5b1cf
PZ
598
599 usbcfg = readl(hsotg->regs + GUSBCFG);
600
601 /*
602 * HS PHY parameters. These parameters are preserved during soft reset
603 * so only program the first time. Do a soft reset immediately after
604 * setting phyif.
605 */
606 switch (hsotg->core_params->phy_type) {
607 case DWC2_PHY_TYPE_PARAM_ULPI:
608 /* ULPI interface */
609 dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
610 usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
611 usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
612 if (hsotg->core_params->phy_ulpi_ddr > 0)
613 usbcfg |= GUSBCFG_DDRSEL;
614 break;
615 case DWC2_PHY_TYPE_PARAM_UTMI:
616 /* UTMI+ interface */
617 dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
618 usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
619 if (hsotg->core_params->phy_utmi_width == 16)
620 usbcfg |= GUSBCFG_PHYIF16;
621 break;
622 default:
623 dev_err(hsotg->dev, "FS PHY selected at HS!\n");
624 break;
625 }
626
627 writel(usbcfg, hsotg->regs + GUSBCFG);
628
629 /* Reset after setting the PHY parameters */
beb7e592
JD
630 retval = dwc2_core_reset(hsotg);
631 if (retval) {
632 dev_err(hsotg->dev, "%s() Reset failed, aborting",
633 __func__);
634 return retval;
635 }
636
637 return retval;
56f5b1cf
PZ
638}
639
beb7e592 640static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
56f5b1cf 641{
9badec2f 642 u32 usbcfg;
beb7e592 643 int retval = 0;
56f5b1cf
PZ
644
645 if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL &&
646 hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
647 /* If FS mode with FS PHY */
beb7e592
JD
648 retval = dwc2_fs_phy_init(hsotg, select_phy);
649 if (retval)
650 return retval;
56f5b1cf
PZ
651 } else {
652 /* High speed PHY */
beb7e592
JD
653 retval = dwc2_hs_phy_init(hsotg, select_phy);
654 if (retval)
655 return retval;
56f5b1cf
PZ
656 }
657
9badec2f
MK
658 if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
659 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
56f5b1cf
PZ
660 hsotg->core_params->ulpi_fs_ls > 0) {
661 dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
662 usbcfg = readl(hsotg->regs + GUSBCFG);
663 usbcfg |= GUSBCFG_ULPI_FS_LS;
664 usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
665 writel(usbcfg, hsotg->regs + GUSBCFG);
666 } else {
667 usbcfg = readl(hsotg->regs + GUSBCFG);
668 usbcfg &= ~GUSBCFG_ULPI_FS_LS;
669 usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
670 writel(usbcfg, hsotg->regs + GUSBCFG);
671 }
beb7e592
JD
672
673 return retval;
56f5b1cf
PZ
674}
675
676static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
677{
4d3190e1 678 u32 ahbcfg = readl(hsotg->regs + GAHBCFG);
56f5b1cf 679
9badec2f 680 switch (hsotg->hw_params.arch) {
56f5b1cf
PZ
681 case GHWCFG2_EXT_DMA_ARCH:
682 dev_err(hsotg->dev, "External DMA Mode not supported\n");
683 return -EINVAL;
684
685 case GHWCFG2_INT_DMA_ARCH:
686 dev_dbg(hsotg->dev, "Internal DMA Mode\n");
4d3190e1
PZ
687 if (hsotg->core_params->ahbcfg != -1) {
688 ahbcfg &= GAHBCFG_CTRL_MASK;
689 ahbcfg |= hsotg->core_params->ahbcfg &
690 ~GAHBCFG_CTRL_MASK;
691 }
56f5b1cf
PZ
692 break;
693
694 case GHWCFG2_SLAVE_ONLY_ARCH:
695 default:
696 dev_dbg(hsotg->dev, "Slave Only Mode\n");
697 break;
698 }
699
700 dev_dbg(hsotg->dev, "dma_enable:%d dma_desc_enable:%d\n",
701 hsotg->core_params->dma_enable,
702 hsotg->core_params->dma_desc_enable);
703
704 if (hsotg->core_params->dma_enable > 0) {
705 if (hsotg->core_params->dma_desc_enable > 0)
706 dev_dbg(hsotg->dev, "Using Descriptor DMA mode\n");
707 else
708 dev_dbg(hsotg->dev, "Using Buffer DMA mode\n");
709 } else {
710 dev_dbg(hsotg->dev, "Using Slave mode\n");
711 hsotg->core_params->dma_desc_enable = 0;
712 }
713
56f5b1cf
PZ
714 if (hsotg->core_params->dma_enable > 0)
715 ahbcfg |= GAHBCFG_DMA_EN;
716
717 writel(ahbcfg, hsotg->regs + GAHBCFG);
718
719 return 0;
720}
721
722static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
723{
724 u32 usbcfg;
725
726 usbcfg = readl(hsotg->regs + GUSBCFG);
727 usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
728
9badec2f 729 switch (hsotg->hw_params.op_mode) {
56f5b1cf
PZ
730 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
731 if (hsotg->core_params->otg_cap ==
732 DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
733 usbcfg |= GUSBCFG_HNPCAP;
734 if (hsotg->core_params->otg_cap !=
735 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
736 usbcfg |= GUSBCFG_SRPCAP;
737 break;
738
739 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
740 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
741 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
742 if (hsotg->core_params->otg_cap !=
743 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
744 usbcfg |= GUSBCFG_SRPCAP;
745 break;
746
747 case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
748 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
749 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
750 default:
751 break;
752 }
753
754 writel(usbcfg, hsotg->regs + GUSBCFG);
755}
756
757/**
758 * dwc2_core_init() - Initializes the DWC_otg controller registers and
759 * prepares the core for device mode or host mode operation
760 *
761 * @hsotg: Programming view of the DWC_otg controller
762 * @select_phy: If true then also set the Phy type
6706c721 763 * @irq: If >= 0, the irq to register
56f5b1cf 764 */
6706c721 765int dwc2_core_init(struct dwc2_hsotg *hsotg, bool select_phy, int irq)
56f5b1cf
PZ
766{
767 u32 usbcfg, otgctl;
768 int retval;
769
770 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
771
772 usbcfg = readl(hsotg->regs + GUSBCFG);
773
774 /* Set ULPI External VBUS bit if needed */
775 usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
776 if (hsotg->core_params->phy_ulpi_ext_vbus ==
777 DWC2_PHY_ULPI_EXTERNAL_VBUS)
778 usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
779
780 /* Set external TS Dline pulsing bit if needed */
781 usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
782 if (hsotg->core_params->ts_dline > 0)
783 usbcfg |= GUSBCFG_TERMSELDLPULSE;
784
785 writel(usbcfg, hsotg->regs + GUSBCFG);
786
787 /* Reset the Controller */
beb7e592
JD
788 retval = dwc2_core_reset(hsotg);
789 if (retval) {
790 dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
791 __func__);
792 return retval;
793 }
56f5b1cf 794
56f5b1cf
PZ
795 /*
796 * This needs to happen in FS mode before any other programming occurs
797 */
beb7e592
JD
798 retval = dwc2_phy_init(hsotg, select_phy);
799 if (retval)
800 return retval;
56f5b1cf
PZ
801
802 /* Program the GAHBCFG Register */
803 retval = dwc2_gahbcfg_init(hsotg);
804 if (retval)
805 return retval;
806
807 /* Program the GUSBCFG register */
808 dwc2_gusbcfg_init(hsotg);
809
810 /* Program the GOTGCTL register */
811 otgctl = readl(hsotg->regs + GOTGCTL);
812 otgctl &= ~GOTGCTL_OTGVER;
813 if (hsotg->core_params->otg_ver > 0)
814 otgctl |= GOTGCTL_OTGVER;
815 writel(otgctl, hsotg->regs + GOTGCTL);
816 dev_dbg(hsotg->dev, "OTG VER PARAM: %d\n", hsotg->core_params->otg_ver);
817
818 /* Clear the SRP success bit for FS-I2c */
819 hsotg->srp_success = 0;
820
821 /* Enable common interrupts */
822 dwc2_enable_common_interrupts(hsotg);
823
824 /*
997f4f81 825 * Do device or host initialization based on mode during PCD and
56f5b1cf
PZ
826 * HCD initialization
827 */
828 if (dwc2_is_host_mode(hsotg)) {
829 dev_dbg(hsotg->dev, "Host Mode\n");
830 hsotg->op_state = OTG_STATE_A_HOST;
831 } else {
832 dev_dbg(hsotg->dev, "Device Mode\n");
833 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
834 }
835
836 return 0;
837}
838
839/**
840 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
841 *
842 * @hsotg: Programming view of DWC_otg controller
843 */
844void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
845{
846 u32 intmsk;
847
848 dev_dbg(hsotg->dev, "%s()\n", __func__);
849
850 /* Disable all interrupts */
851 writel(0, hsotg->regs + GINTMSK);
852 writel(0, hsotg->regs + HAINTMSK);
853
56f5b1cf
PZ
854 /* Enable the common interrupts */
855 dwc2_enable_common_interrupts(hsotg);
856
857 /* Enable host mode interrupts without disturbing common interrupts */
858 intmsk = readl(hsotg->regs + GINTMSK);
859 intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
860 writel(intmsk, hsotg->regs + GINTMSK);
861}
862
863/**
864 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
865 *
866 * @hsotg: Programming view of DWC_otg controller
867 */
868void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
869{
870 u32 intmsk = readl(hsotg->regs + GINTMSK);
871
872 /* Disable host mode interrupts without disturbing common interrupts */
873 intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
874 GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP);
875 writel(intmsk, hsotg->regs + GINTMSK);
876}
877
112fe8e2
DN
878/*
879 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
880 * For system that have a total fifo depth that is smaller than the default
881 * RX + TX fifo size.
882 *
883 * @hsotg: Programming view of DWC_otg controller
884 */
885static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
886{
887 struct dwc2_core_params *params = hsotg->core_params;
888 struct dwc2_hw_params *hw = &hsotg->hw_params;
889 u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
890
891 total_fifo_size = hw->total_fifo_size;
892 rxfsiz = params->host_rx_fifo_size;
893 nptxfsiz = params->host_nperio_tx_fifo_size;
894 ptxfsiz = params->host_perio_tx_fifo_size;
895
896 /*
897 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
898 * allocation with support for high bandwidth endpoints. Synopsys
899 * defines MPS(Max Packet size) for a periodic EP=1024, and for
900 * non-periodic as 512.
901 */
902 if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
903 /*
904 * For Buffer DMA mode/Scatter Gather DMA mode
905 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
906 * with n = number of host channel.
907 * 2 * ((1024/4) + 2) = 516
908 */
909 rxfsiz = 516 + hw->host_channels;
910
911 /*
912 * min non-periodic tx fifo depth
913 * 2 * (largest non-periodic USB packet used / 4)
914 * 2 * (512/4) = 256
915 */
916 nptxfsiz = 256;
917
918 /*
919 * min periodic tx fifo depth
920 * (largest packet size*MC)/4
921 * (1024 * 3)/4 = 768
922 */
923 ptxfsiz = 768;
924
925 params->host_rx_fifo_size = rxfsiz;
926 params->host_nperio_tx_fifo_size = nptxfsiz;
927 params->host_perio_tx_fifo_size = ptxfsiz;
928 }
929
930 /*
931 * If the summation of RX, NPTX and PTX fifo sizes is still
932 * bigger than the total_fifo_size, then we have a problem.
933 *
934 * We won't be able to allocate as many endpoints. Right now,
935 * we're just printing an error message, but ideally this FIFO
936 * allocation algorithm would be improved in the future.
937 *
938 * FIXME improve this FIFO allocation algorithm.
939 */
940 if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
941 dev_err(hsotg->dev, "invalid fifo sizes\n");
942}
943
56f5b1cf
PZ
944static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
945{
946 struct dwc2_core_params *params = hsotg->core_params;
a1fc5243 947 u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
56f5b1cf 948
1208605f 949 if (!params->enable_dynamic_fifo)
56f5b1cf
PZ
950 return;
951
112fe8e2
DN
952 dwc2_calculate_dynamic_fifo(hsotg);
953
56f5b1cf 954 /* Rx FIFO */
a1fc5243
MK
955 grxfsiz = readl(hsotg->regs + GRXFSIZ);
956 dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
957 grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
958 grxfsiz |= params->host_rx_fifo_size <<
959 GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
960 writel(grxfsiz, hsotg->regs + GRXFSIZ);
56f5b1cf
PZ
961 dev_dbg(hsotg->dev, "new grxfsiz=%08x\n", readl(hsotg->regs + GRXFSIZ));
962
963 /* Non-periodic Tx FIFO */
964 dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
965 readl(hsotg->regs + GNPTXFSIZ));
966 nptxfsiz = params->host_nperio_tx_fifo_size <<
967 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
968 nptxfsiz |= params->host_rx_fifo_size <<
969 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
970 writel(nptxfsiz, hsotg->regs + GNPTXFSIZ);
971 dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
972 readl(hsotg->regs + GNPTXFSIZ));
973
974 /* Periodic Tx FIFO */
975 dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
976 readl(hsotg->regs + HPTXFSIZ));
c35205aa
MK
977 hptxfsiz = params->host_perio_tx_fifo_size <<
978 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
979 hptxfsiz |= (params->host_rx_fifo_size +
980 params->host_nperio_tx_fifo_size) <<
981 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
982 writel(hptxfsiz, hsotg->regs + HPTXFSIZ);
56f5b1cf
PZ
983 dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
984 readl(hsotg->regs + HPTXFSIZ));
985
986 if (hsotg->core_params->en_multiple_tx_fifo > 0 &&
9badec2f 987 hsotg->hw_params.snpsid <= DWC2_CORE_REV_2_94a) {
56f5b1cf
PZ
988 /*
989 * Global DFIFOCFG calculation for Host mode -
990 * include RxFIFO, NPTXFIFO and HPTXFIFO
991 */
992 dfifocfg = readl(hsotg->regs + GDFIFOCFG);
56f5b1cf 993 dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
08b9f9db
MK
994 dfifocfg |= (params->host_rx_fifo_size +
995 params->host_nperio_tx_fifo_size +
996 params->host_perio_tx_fifo_size) <<
56f5b1cf
PZ
997 GDFIFOCFG_EPINFOBASE_SHIFT &
998 GDFIFOCFG_EPINFOBASE_MASK;
999 writel(dfifocfg, hsotg->regs + GDFIFOCFG);
1000 }
1001}
1002
1003/**
1004 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
1005 * Host mode
1006 *
1007 * @hsotg: Programming view of DWC_otg controller
1008 *
1009 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
1010 * request queues. Host channels are reset to ensure that they are ready for
1011 * performing transfers.
1012 */
1013void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
1014{
1015 u32 hcfg, hfir, otgctl;
1016
1017 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
1018
1019 /* Restart the Phy Clock */
1020 writel(0, hsotg->regs + PCGCTL);
1021
1022 /* Initialize Host Configuration Register */
1023 dwc2_init_fs_ls_pclk_sel(hsotg);
1024 if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL) {
1025 hcfg = readl(hsotg->regs + HCFG);
1026 hcfg |= HCFG_FSLSSUPP;
1027 writel(hcfg, hsotg->regs + HCFG);
1028 }
1029
1030 /*
1031 * This bit allows dynamic reloading of the HFIR register during
0dcde508 1032 * runtime. This bit needs to be programmed during initial configuration
56f5b1cf
PZ
1033 * and its value must not be changed during runtime.
1034 */
1035 if (hsotg->core_params->reload_ctl > 0) {
1036 hfir = readl(hsotg->regs + HFIR);
1037 hfir |= HFIR_RLDCTRL;
1038 writel(hfir, hsotg->regs + HFIR);
1039 }
1040
1041 if (hsotg->core_params->dma_desc_enable > 0) {
9badec2f
MK
1042 u32 op_mode = hsotg->hw_params.op_mode;
1043 if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
1044 !hsotg->hw_params.dma_desc_enable ||
56f5b1cf
PZ
1045 op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
1046 op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
1047 op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
1048 dev_err(hsotg->dev,
1049 "Hardware does not support descriptor DMA mode -\n");
1050 dev_err(hsotg->dev,
1051 "falling back to buffer DMA mode.\n");
1052 hsotg->core_params->dma_desc_enable = 0;
1053 } else {
1054 hcfg = readl(hsotg->regs + HCFG);
1055 hcfg |= HCFG_DESCDMA;
1056 writel(hcfg, hsotg->regs + HCFG);
1057 }
1058 }
1059
1060 /* Configure data FIFO sizes */
1061 dwc2_config_fifos(hsotg);
1062
1063 /* TODO - check this */
1064 /* Clear Host Set HNP Enable in the OTG Control Register */
1065 otgctl = readl(hsotg->regs + GOTGCTL);
1066 otgctl &= ~GOTGCTL_HSTSETHNPEN;
1067 writel(otgctl, hsotg->regs + GOTGCTL);
1068
1069 /* Make sure the FIFOs are flushed */
1070 dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
1071 dwc2_flush_rx_fifo(hsotg);
1072
1073 /* Clear Host Set HNP Enable in the OTG Control Register */
1074 otgctl = readl(hsotg->regs + GOTGCTL);
1075 otgctl &= ~GOTGCTL_HSTSETHNPEN;
1076 writel(otgctl, hsotg->regs + GOTGCTL);
1077
1078 if (hsotg->core_params->dma_desc_enable <= 0) {
1079 int num_channels, i;
1080 u32 hcchar;
1081
1082 /* Flush out any leftover queued requests */
1083 num_channels = hsotg->core_params->host_channels;
1084 for (i = 0; i < num_channels; i++) {
1085 hcchar = readl(hsotg->regs + HCCHAR(i));
1086 hcchar &= ~HCCHAR_CHENA;
1087 hcchar |= HCCHAR_CHDIS;
1088 hcchar &= ~HCCHAR_EPDIR;
1089 writel(hcchar, hsotg->regs + HCCHAR(i));
1090 }
1091
1092 /* Halt all channels to put them into a known state */
1093 for (i = 0; i < num_channels; i++) {
1094 int count = 0;
1095
1096 hcchar = readl(hsotg->regs + HCCHAR(i));
1097 hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
1098 hcchar &= ~HCCHAR_EPDIR;
1099 writel(hcchar, hsotg->regs + HCCHAR(i));
1100 dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
1101 __func__, i);
1102 do {
1103 hcchar = readl(hsotg->regs + HCCHAR(i));
1104 if (++count > 1000) {
1105 dev_err(hsotg->dev,
1106 "Unable to clear enable on channel %d\n",
1107 i);
1108 break;
1109 }
1110 udelay(1);
1111 } while (hcchar & HCCHAR_CHENA);
1112 }
1113 }
1114
1115 /* Turn on the vbus power */
1116 dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
1117 if (hsotg->op_state == OTG_STATE_A_HOST) {
1118 u32 hprt0 = dwc2_read_hprt0(hsotg);
1119
1120 dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
1121 !!(hprt0 & HPRT0_PWR));
1122 if (!(hprt0 & HPRT0_PWR)) {
1123 hprt0 |= HPRT0_PWR;
1124 writel(hprt0, hsotg->regs + HPRT0);
1125 }
1126 }
1127
1128 dwc2_enable_host_interrupts(hsotg);
1129}
1130
1131static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
1132 struct dwc2_host_chan *chan)
1133{
1134 u32 hcintmsk = HCINTMSK_CHHLTD;
1135
1136 switch (chan->ep_type) {
1137 case USB_ENDPOINT_XFER_CONTROL:
1138 case USB_ENDPOINT_XFER_BULK:
1139 dev_vdbg(hsotg->dev, "control/bulk\n");
1140 hcintmsk |= HCINTMSK_XFERCOMPL;
1141 hcintmsk |= HCINTMSK_STALL;
1142 hcintmsk |= HCINTMSK_XACTERR;
1143 hcintmsk |= HCINTMSK_DATATGLERR;
1144 if (chan->ep_is_in) {
1145 hcintmsk |= HCINTMSK_BBLERR;
1146 } else {
1147 hcintmsk |= HCINTMSK_NAK;
1148 hcintmsk |= HCINTMSK_NYET;
1149 if (chan->do_ping)
1150 hcintmsk |= HCINTMSK_ACK;
1151 }
1152
1153 if (chan->do_split) {
1154 hcintmsk |= HCINTMSK_NAK;
1155 if (chan->complete_split)
1156 hcintmsk |= HCINTMSK_NYET;
1157 else
1158 hcintmsk |= HCINTMSK_ACK;
1159 }
1160
1161 if (chan->error_state)
1162 hcintmsk |= HCINTMSK_ACK;
1163 break;
1164
1165 case USB_ENDPOINT_XFER_INT:
b49977a6
MK
1166 if (dbg_perio())
1167 dev_vdbg(hsotg->dev, "intr\n");
56f5b1cf
PZ
1168 hcintmsk |= HCINTMSK_XFERCOMPL;
1169 hcintmsk |= HCINTMSK_NAK;
1170 hcintmsk |= HCINTMSK_STALL;
1171 hcintmsk |= HCINTMSK_XACTERR;
1172 hcintmsk |= HCINTMSK_DATATGLERR;
1173 hcintmsk |= HCINTMSK_FRMOVRUN;
1174
1175 if (chan->ep_is_in)
1176 hcintmsk |= HCINTMSK_BBLERR;
1177 if (chan->error_state)
1178 hcintmsk |= HCINTMSK_ACK;
1179 if (chan->do_split) {
1180 if (chan->complete_split)
1181 hcintmsk |= HCINTMSK_NYET;
1182 else
1183 hcintmsk |= HCINTMSK_ACK;
1184 }
1185 break;
1186
1187 case USB_ENDPOINT_XFER_ISOC:
b49977a6
MK
1188 if (dbg_perio())
1189 dev_vdbg(hsotg->dev, "isoc\n");
56f5b1cf
PZ
1190 hcintmsk |= HCINTMSK_XFERCOMPL;
1191 hcintmsk |= HCINTMSK_FRMOVRUN;
1192 hcintmsk |= HCINTMSK_ACK;
1193
1194 if (chan->ep_is_in) {
1195 hcintmsk |= HCINTMSK_XACTERR;
1196 hcintmsk |= HCINTMSK_BBLERR;
1197 }
1198 break;
1199 default:
1200 dev_err(hsotg->dev, "## Unknown EP type ##\n");
1201 break;
1202 }
1203
1204 writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
b49977a6
MK
1205 if (dbg_hc(chan))
1206 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
56f5b1cf
PZ
1207}
1208
1209static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
1210 struct dwc2_host_chan *chan)
1211{
1212 u32 hcintmsk = HCINTMSK_CHHLTD;
1213
1214 /*
1215 * For Descriptor DMA mode core halts the channel on AHB error.
1216 * Interrupt is not required.
1217 */
1218 if (hsotg->core_params->dma_desc_enable <= 0) {
b49977a6
MK
1219 if (dbg_hc(chan))
1220 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
56f5b1cf
PZ
1221 hcintmsk |= HCINTMSK_AHBERR;
1222 } else {
b49977a6
MK
1223 if (dbg_hc(chan))
1224 dev_vdbg(hsotg->dev, "desc DMA enabled\n");
56f5b1cf
PZ
1225 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1226 hcintmsk |= HCINTMSK_XFERCOMPL;
1227 }
1228
1229 if (chan->error_state && !chan->do_split &&
1230 chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
b49977a6
MK
1231 if (dbg_hc(chan))
1232 dev_vdbg(hsotg->dev, "setting ACK\n");
56f5b1cf
PZ
1233 hcintmsk |= HCINTMSK_ACK;
1234 if (chan->ep_is_in) {
1235 hcintmsk |= HCINTMSK_DATATGLERR;
1236 if (chan->ep_type != USB_ENDPOINT_XFER_INT)
1237 hcintmsk |= HCINTMSK_NAK;
1238 }
1239 }
1240
1241 writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
b49977a6
MK
1242 if (dbg_hc(chan))
1243 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
56f5b1cf
PZ
1244}
1245
1246static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
1247 struct dwc2_host_chan *chan)
1248{
1249 u32 intmsk;
1250
1251 if (hsotg->core_params->dma_enable > 0) {
b49977a6
MK
1252 if (dbg_hc(chan))
1253 dev_vdbg(hsotg->dev, "DMA enabled\n");
56f5b1cf
PZ
1254 dwc2_hc_enable_dma_ints(hsotg, chan);
1255 } else {
b49977a6
MK
1256 if (dbg_hc(chan))
1257 dev_vdbg(hsotg->dev, "DMA disabled\n");
56f5b1cf
PZ
1258 dwc2_hc_enable_slave_ints(hsotg, chan);
1259 }
1260
1261 /* Enable the top level host channel interrupt */
1262 intmsk = readl(hsotg->regs + HAINTMSK);
1263 intmsk |= 1 << chan->hc_num;
1264 writel(intmsk, hsotg->regs + HAINTMSK);
b49977a6
MK
1265 if (dbg_hc(chan))
1266 dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
56f5b1cf
PZ
1267
1268 /* Make sure host channel interrupts are enabled */
1269 intmsk = readl(hsotg->regs + GINTMSK);
1270 intmsk |= GINTSTS_HCHINT;
1271 writel(intmsk, hsotg->regs + GINTMSK);
b49977a6
MK
1272 if (dbg_hc(chan))
1273 dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
56f5b1cf
PZ
1274}
1275
1276/**
1277 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
1278 * a specific endpoint
1279 *
1280 * @hsotg: Programming view of DWC_otg controller
1281 * @chan: Information needed to initialize the host channel
1282 *
1283 * The HCCHARn register is set up with the characteristics specified in chan.
1284 * Host channel interrupts that may need to be serviced while this transfer is
1285 * in progress are enabled.
1286 */
1287void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1288{
1289 u8 hc_num = chan->hc_num;
1290 u32 hcintmsk;
1291 u32 hcchar;
1292 u32 hcsplt = 0;
1293
b49977a6
MK
1294 if (dbg_hc(chan))
1295 dev_vdbg(hsotg->dev, "%s()\n", __func__);
56f5b1cf
PZ
1296
1297 /* Clear old interrupt conditions for this host channel */
1298 hcintmsk = 0xffffffff;
1299 hcintmsk &= ~HCINTMSK_RESERVED14_31;
1300 writel(hcintmsk, hsotg->regs + HCINT(hc_num));
1301
1302 /* Enable channel interrupts required for this transfer */
1303 dwc2_hc_enable_ints(hsotg, chan);
1304
1305 /*
1306 * Program the HCCHARn register with the endpoint characteristics for
1307 * the current transfer
1308 */
1309 hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
1310 hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
1311 if (chan->ep_is_in)
1312 hcchar |= HCCHAR_EPDIR;
1313 if (chan->speed == USB_SPEED_LOW)
1314 hcchar |= HCCHAR_LSPDDEV;
1315 hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
1316 hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
1317 writel(hcchar, hsotg->regs + HCCHAR(hc_num));
b49977a6
MK
1318 if (dbg_hc(chan)) {
1319 dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
1320 hc_num, hcchar);
1321
57bb8aed
MK
1322 dev_vdbg(hsotg->dev, "%s: Channel %d\n",
1323 __func__, hc_num);
b49977a6 1324 dev_vdbg(hsotg->dev, " Dev Addr: %d\n",
57bb8aed 1325 chan->dev_addr);
b49977a6 1326 dev_vdbg(hsotg->dev, " Ep Num: %d\n",
57bb8aed 1327 chan->ep_num);
b49977a6 1328 dev_vdbg(hsotg->dev, " Is In: %d\n",
57bb8aed 1329 chan->ep_is_in);
b49977a6 1330 dev_vdbg(hsotg->dev, " Is Low Speed: %d\n",
57bb8aed 1331 chan->speed == USB_SPEED_LOW);
b49977a6 1332 dev_vdbg(hsotg->dev, " Ep Type: %d\n",
57bb8aed 1333 chan->ep_type);
b49977a6 1334 dev_vdbg(hsotg->dev, " Max Pkt: %d\n",
57bb8aed 1335 chan->max_packet);
b49977a6 1336 }
56f5b1cf
PZ
1337
1338 /* Program the HCSPLT register for SPLITs */
1339 if (chan->do_split) {
b49977a6
MK
1340 if (dbg_hc(chan))
1341 dev_vdbg(hsotg->dev,
1342 "Programming HC %d with split --> %s\n",
1343 hc_num,
1344 chan->complete_split ? "CSPLIT" : "SSPLIT");
56f5b1cf
PZ
1345 if (chan->complete_split)
1346 hcsplt |= HCSPLT_COMPSPLT;
1347 hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
1348 HCSPLT_XACTPOS_MASK;
1349 hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
1350 HCSPLT_HUBADDR_MASK;
1351 hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
1352 HCSPLT_PRTADDR_MASK;
b49977a6
MK
1353 if (dbg_hc(chan)) {
1354 dev_vdbg(hsotg->dev, " comp split %d\n",
1355 chan->complete_split);
1356 dev_vdbg(hsotg->dev, " xact pos %d\n",
1357 chan->xact_pos);
1358 dev_vdbg(hsotg->dev, " hub addr %d\n",
1359 chan->hub_addr);
1360 dev_vdbg(hsotg->dev, " hub port %d\n",
1361 chan->hub_port);
1362 dev_vdbg(hsotg->dev, " is_in %d\n",
1363 chan->ep_is_in);
1364 dev_vdbg(hsotg->dev, " Max Pkt %d\n",
57bb8aed 1365 chan->max_packet);
b49977a6
MK
1366 dev_vdbg(hsotg->dev, " xferlen %d\n",
1367 chan->xfer_len);
1368 }
56f5b1cf
PZ
1369 }
1370
1371 writel(hcsplt, hsotg->regs + HCSPLT(hc_num));
1372}
1373
1374/**
1375 * dwc2_hc_halt() - Attempts to halt a host channel
1376 *
1377 * @hsotg: Controller register interface
1378 * @chan: Host channel to halt
1379 * @halt_status: Reason for halting the channel
1380 *
1381 * This function should only be called in Slave mode or to abort a transfer in
1382 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
1383 * controller halts the channel when the transfer is complete or a condition
1384 * occurs that requires application intervention.
1385 *
1386 * In slave mode, checks for a free request queue entry, then sets the Channel
1387 * Enable and Channel Disable bits of the Host Channel Characteristics
1388 * register of the specified channel to intiate the halt. If there is no free
1389 * request queue entry, sets only the Channel Disable bit of the HCCHARn
1390 * register to flush requests for this channel. In the latter case, sets a
1391 * flag to indicate that the host channel needs to be halted when a request
1392 * queue slot is open.
1393 *
1394 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
1395 * HCCHARn register. The controller ensures there is space in the request
1396 * queue before submitting the halt request.
1397 *
1398 * Some time may elapse before the core flushes any posted requests for this
1399 * host channel and halts. The Channel Halted interrupt handler completes the
1400 * deactivation of the host channel.
1401 */
1402void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
1403 enum dwc2_halt_status halt_status)
1404{
1405 u32 nptxsts, hptxsts, hcchar;
1406
b49977a6
MK
1407 if (dbg_hc(chan))
1408 dev_vdbg(hsotg->dev, "%s()\n", __func__);
56f5b1cf
PZ
1409 if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
1410 dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
1411
1412 if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
1413 halt_status == DWC2_HC_XFER_AHB_ERR) {
1414 /*
1415 * Disable all channel interrupts except Ch Halted. The QTD
1416 * and QH state associated with this transfer has been cleared
1417 * (in the case of URB_DEQUEUE), so the channel needs to be
1418 * shut down carefully to prevent crashes.
1419 */
1420 u32 hcintmsk = HCINTMSK_CHHLTD;
1421
1422 dev_vdbg(hsotg->dev, "dequeue/error\n");
1423 writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
1424
1425 /*
1426 * Make sure no other interrupts besides halt are currently
1427 * pending. Handling another interrupt could cause a crash due
1428 * to the QTD and QH state.
1429 */
1430 writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1431
1432 /*
1433 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
1434 * even if the channel was already halted for some other
1435 * reason
1436 */
1437 chan->halt_status = halt_status;
1438
1439 hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
1440 if (!(hcchar & HCCHAR_CHENA)) {
1441 /*
1442 * The channel is either already halted or it hasn't
1443 * started yet. In DMA mode, the transfer may halt if
1444 * it finishes normally or a condition occurs that
1445 * requires driver intervention. Don't want to halt
1446 * the channel again. In either Slave or DMA mode,
1447 * it's possible that the transfer has been assigned
1448 * to a channel, but not started yet when an URB is
1449 * dequeued. Don't want to halt a channel that hasn't
1450 * started yet.
1451 */
1452 return;
1453 }
1454 }
1455 if (chan->halt_pending) {
1456 /*
1457 * A halt has already been issued for this channel. This might
1458 * happen when a transfer is aborted by a higher level in
1459 * the stack.
1460 */
1461 dev_vdbg(hsotg->dev,
1462 "*** %s: Channel %d, chan->halt_pending already set ***\n",
1463 __func__, chan->hc_num);
1464 return;
1465 }
1466
1467 hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
1468
1469 /* No need to set the bit in DDMA for disabling the channel */
1470 /* TODO check it everywhere channel is disabled */
1471 if (hsotg->core_params->dma_desc_enable <= 0) {
b49977a6
MK
1472 if (dbg_hc(chan))
1473 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
56f5b1cf
PZ
1474 hcchar |= HCCHAR_CHENA;
1475 } else {
b49977a6
MK
1476 if (dbg_hc(chan))
1477 dev_dbg(hsotg->dev, "desc DMA enabled\n");
56f5b1cf
PZ
1478 }
1479 hcchar |= HCCHAR_CHDIS;
1480
1481 if (hsotg->core_params->dma_enable <= 0) {
b49977a6
MK
1482 if (dbg_hc(chan))
1483 dev_vdbg(hsotg->dev, "DMA not enabled\n");
56f5b1cf
PZ
1484 hcchar |= HCCHAR_CHENA;
1485
1486 /* Check for space in the request queue to issue the halt */
1487 if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
1488 chan->ep_type == USB_ENDPOINT_XFER_BULK) {
1489 dev_vdbg(hsotg->dev, "control/bulk\n");
1490 nptxsts = readl(hsotg->regs + GNPTXSTS);
1491 if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
1492 dev_vdbg(hsotg->dev, "Disabling channel\n");
1493 hcchar &= ~HCCHAR_CHENA;
1494 }
1495 } else {
b49977a6
MK
1496 if (dbg_perio())
1497 dev_vdbg(hsotg->dev, "isoc/intr\n");
56f5b1cf
PZ
1498 hptxsts = readl(hsotg->regs + HPTXSTS);
1499 if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
1500 hsotg->queuing_high_bandwidth) {
b49977a6
MK
1501 if (dbg_perio())
1502 dev_vdbg(hsotg->dev, "Disabling channel\n");
56f5b1cf
PZ
1503 hcchar &= ~HCCHAR_CHENA;
1504 }
1505 }
1506 } else {
b49977a6
MK
1507 if (dbg_hc(chan))
1508 dev_vdbg(hsotg->dev, "DMA enabled\n");
56f5b1cf
PZ
1509 }
1510
1511 writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1512 chan->halt_status = halt_status;
1513
1514 if (hcchar & HCCHAR_CHENA) {
b49977a6
MK
1515 if (dbg_hc(chan))
1516 dev_vdbg(hsotg->dev, "Channel enabled\n");
56f5b1cf
PZ
1517 chan->halt_pending = 1;
1518 chan->halt_on_queue = 0;
1519 } else {
b49977a6
MK
1520 if (dbg_hc(chan))
1521 dev_vdbg(hsotg->dev, "Channel disabled\n");
56f5b1cf
PZ
1522 chan->halt_on_queue = 1;
1523 }
1524
b49977a6
MK
1525 if (dbg_hc(chan)) {
1526 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1527 chan->hc_num);
1528 dev_vdbg(hsotg->dev, " hcchar: 0x%08x\n",
1529 hcchar);
1530 dev_vdbg(hsotg->dev, " halt_pending: %d\n",
1531 chan->halt_pending);
1532 dev_vdbg(hsotg->dev, " halt_on_queue: %d\n",
1533 chan->halt_on_queue);
1534 dev_vdbg(hsotg->dev, " halt_status: %d\n",
1535 chan->halt_status);
1536 }
56f5b1cf
PZ
1537}
1538
1539/**
1540 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
1541 *
1542 * @hsotg: Programming view of DWC_otg controller
1543 * @chan: Identifies the host channel to clean up
1544 *
1545 * This function is normally called after a transfer is done and the host
1546 * channel is being released
1547 */
1548void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1549{
1550 u32 hcintmsk;
1551
1552 chan->xfer_started = 0;
1553
1554 /*
1555 * Clear channel interrupt enables and any unhandled channel interrupt
1556 * conditions
1557 */
1558 writel(0, hsotg->regs + HCINTMSK(chan->hc_num));
1559 hcintmsk = 0xffffffff;
1560 hcintmsk &= ~HCINTMSK_RESERVED14_31;
1561 writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1562}
1563
1564/**
1565 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
1566 * which frame a periodic transfer should occur
1567 *
1568 * @hsotg: Programming view of DWC_otg controller
1569 * @chan: Identifies the host channel to set up and its properties
1570 * @hcchar: Current value of the HCCHAR register for the specified host channel
1571 *
1572 * This function has no effect on non-periodic transfers
1573 */
1574static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
1575 struct dwc2_host_chan *chan, u32 *hcchar)
1576{
56f5b1cf
PZ
1577 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1578 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
56f5b1cf 1579 /* 1 if _next_ frame is odd, 0 if it's even */
81a58955 1580 if (!(dwc2_hcd_get_frame_number(hsotg) & 0x1))
56f5b1cf
PZ
1581 *hcchar |= HCCHAR_ODDFRM;
1582 }
1583}
1584
1585static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1586{
1587 /* Set up the initial PID for the transfer */
1588 if (chan->speed == USB_SPEED_HIGH) {
1589 if (chan->ep_is_in) {
1590 if (chan->multi_count == 1)
1591 chan->data_pid_start = DWC2_HC_PID_DATA0;
1592 else if (chan->multi_count == 2)
1593 chan->data_pid_start = DWC2_HC_PID_DATA1;
1594 else
1595 chan->data_pid_start = DWC2_HC_PID_DATA2;
1596 } else {
1597 if (chan->multi_count == 1)
1598 chan->data_pid_start = DWC2_HC_PID_DATA0;
1599 else
1600 chan->data_pid_start = DWC2_HC_PID_MDATA;
1601 }
1602 } else {
1603 chan->data_pid_start = DWC2_HC_PID_DATA0;
1604 }
1605}
1606
1607/**
1608 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1609 * the Host Channel
1610 *
1611 * @hsotg: Programming view of DWC_otg controller
1612 * @chan: Information needed to initialize the host channel
1613 *
1614 * This function should only be called in Slave mode. For a channel associated
1615 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1616 * associated with a periodic EP, the periodic Tx FIFO is written.
1617 *
1618 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1619 * the number of bytes written to the Tx FIFO.
1620 */
1621static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1622 struct dwc2_host_chan *chan)
1623{
1624 u32 i;
1625 u32 remaining_count;
1626 u32 byte_count;
1627 u32 dword_count;
1628 u32 __iomem *data_fifo;
1629 u32 *data_buf = (u32 *)chan->xfer_buf;
1630
b49977a6
MK
1631 if (dbg_hc(chan))
1632 dev_vdbg(hsotg->dev, "%s()\n", __func__);
56f5b1cf
PZ
1633
1634 data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));
1635
1636 remaining_count = chan->xfer_len - chan->xfer_count;
1637 if (remaining_count > chan->max_packet)
1638 byte_count = chan->max_packet;
1639 else
1640 byte_count = remaining_count;
1641
1642 dword_count = (byte_count + 3) / 4;
1643
1644 if (((unsigned long)data_buf & 0x3) == 0) {
1645 /* xfer_buf is DWORD aligned */
1646 for (i = 0; i < dword_count; i++, data_buf++)
1647 writel(*data_buf, data_fifo);
1648 } else {
1649 /* xfer_buf is not DWORD aligned */
1650 for (i = 0; i < dword_count; i++, data_buf++) {
1651 u32 data = data_buf[0] | data_buf[1] << 8 |
1652 data_buf[2] << 16 | data_buf[3] << 24;
1653 writel(data, data_fifo);
1654 }
1655 }
1656
1657 chan->xfer_count += byte_count;
1658 chan->xfer_buf += byte_count;
1659}
1660
1661/**
1662 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1663 * channel and starts the transfer
1664 *
1665 * @hsotg: Programming view of DWC_otg controller
1666 * @chan: Information needed to initialize the host channel. The xfer_len value
1667 * may be reduced to accommodate the max widths of the XferSize and
1668 * PktCnt fields in the HCTSIZn register. The multi_count value may be
1669 * changed to reflect the final xfer_len value.
1670 *
1671 * This function may be called in either Slave mode or DMA mode. In Slave mode,
1672 * the caller must ensure that there is sufficient space in the request queue
1673 * and Tx Data FIFO.
1674 *
1675 * For an OUT transfer in Slave mode, it loads a data packet into the
1676 * appropriate FIFO. If necessary, additional data packets are loaded in the
1677 * Host ISR.
1678 *
1679 * For an IN transfer in Slave mode, a data packet is requested. The data
1680 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1681 * additional data packets are requested in the Host ISR.
1682 *
1683 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1684 * register along with a packet count of 1 and the channel is enabled. This
1685 * causes a single PING transaction to occur. Other fields in HCTSIZ are
1686 * simply set to 0 since no data transfer occurs in this case.
1687 *
1688 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1689 * all the information required to perform the subsequent data transfer. In
1690 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1691 * controller performs the entire PING protocol, then starts the data
1692 * transfer.
1693 */
1694void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1695 struct dwc2_host_chan *chan)
1696{
1697 u32 max_hc_xfer_size = hsotg->core_params->max_transfer_size;
1698 u16 max_hc_pkt_count = hsotg->core_params->max_packet_count;
1699 u32 hcchar;
1700 u32 hctsiz = 0;
1701 u16 num_packets;
1702
b49977a6
MK
1703 if (dbg_hc(chan))
1704 dev_vdbg(hsotg->dev, "%s()\n", __func__);
56f5b1cf
PZ
1705
1706 if (chan->do_ping) {
1707 if (hsotg->core_params->dma_enable <= 0) {
b49977a6
MK
1708 if (dbg_hc(chan))
1709 dev_vdbg(hsotg->dev, "ping, no DMA\n");
56f5b1cf
PZ
1710 dwc2_hc_do_ping(hsotg, chan);
1711 chan->xfer_started = 1;
1712 return;
1713 } else {
b49977a6
MK
1714 if (dbg_hc(chan))
1715 dev_vdbg(hsotg->dev, "ping, DMA\n");
56f5b1cf
PZ
1716 hctsiz |= TSIZ_DOPNG;
1717 }
1718 }
1719
1720 if (chan->do_split) {
b49977a6
MK
1721 if (dbg_hc(chan))
1722 dev_vdbg(hsotg->dev, "split\n");
56f5b1cf
PZ
1723 num_packets = 1;
1724
1725 if (chan->complete_split && !chan->ep_is_in)
1726 /*
1727 * For CSPLIT OUT Transfer, set the size to 0 so the
1728 * core doesn't expect any data written to the FIFO
1729 */
1730 chan->xfer_len = 0;
1731 else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1732 chan->xfer_len = chan->max_packet;
1733 else if (!chan->ep_is_in && chan->xfer_len > 188)
1734 chan->xfer_len = 188;
1735
1736 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1737 TSIZ_XFERSIZE_MASK;
1738 } else {
b49977a6
MK
1739 if (dbg_hc(chan))
1740 dev_vdbg(hsotg->dev, "no split\n");
56f5b1cf
PZ
1741 /*
1742 * Ensure that the transfer length and packet count will fit
1743 * in the widths allocated for them in the HCTSIZn register
1744 */
1745 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1746 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1747 /*
1748 * Make sure the transfer size is no larger than one
1749 * (micro)frame's worth of data. (A check was done
1750 * when the periodic transfer was accepted to ensure
1751 * that a (micro)frame's worth of data can be
1752 * programmed into a channel.)
1753 */
1754 u32 max_periodic_len =
1755 chan->multi_count * chan->max_packet;
1756
1757 if (chan->xfer_len > max_periodic_len)
1758 chan->xfer_len = max_periodic_len;
1759 } else if (chan->xfer_len > max_hc_xfer_size) {
1760 /*
1761 * Make sure that xfer_len is a multiple of max packet
1762 * size
1763 */
1764 chan->xfer_len =
1765 max_hc_xfer_size - chan->max_packet + 1;
1766 }
1767
1768 if (chan->xfer_len > 0) {
1769 num_packets = (chan->xfer_len + chan->max_packet - 1) /
1770 chan->max_packet;
1771 if (num_packets > max_hc_pkt_count) {
1772 num_packets = max_hc_pkt_count;
1773 chan->xfer_len = num_packets * chan->max_packet;
1774 }
1775 } else {
1776 /* Need 1 packet for transfer length of 0 */
1777 num_packets = 1;
1778 }
1779
1780 if (chan->ep_is_in)
1781 /*
1782 * Always program an integral # of max packets for IN
1783 * transfers
1784 */
1785 chan->xfer_len = num_packets * chan->max_packet;
1786
1787 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1788 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1789 /*
1790 * Make sure that the multi_count field matches the
1791 * actual transfer length
1792 */
1793 chan->multi_count = num_packets;
1794
1795 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1796 dwc2_set_pid_isoc(chan);
1797
1798 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1799 TSIZ_XFERSIZE_MASK;
1800 }
1801
1802 chan->start_pkt_count = num_packets;
1803 hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1804 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1805 TSIZ_SC_MC_PID_MASK;
1806 writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
b49977a6
MK
1807 if (dbg_hc(chan)) {
1808 dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1809 hctsiz, chan->hc_num);
1810
1811 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1812 chan->hc_num);
1813 dev_vdbg(hsotg->dev, " Xfer Size: %d\n",
d6ec53e0
MK
1814 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1815 TSIZ_XFERSIZE_SHIFT);
b49977a6 1816 dev_vdbg(hsotg->dev, " Num Pkts: %d\n",
d6ec53e0
MK
1817 (hctsiz & TSIZ_PKTCNT_MASK) >>
1818 TSIZ_PKTCNT_SHIFT);
b49977a6 1819 dev_vdbg(hsotg->dev, " Start PID: %d\n",
d6ec53e0
MK
1820 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1821 TSIZ_SC_MC_PID_SHIFT);
b49977a6 1822 }
56f5b1cf
PZ
1823
1824 if (hsotg->core_params->dma_enable > 0) {
1825 dma_addr_t dma_addr;
1826
1827 if (chan->align_buf) {
b49977a6
MK
1828 if (dbg_hc(chan))
1829 dev_vdbg(hsotg->dev, "align_buf\n");
56f5b1cf
PZ
1830 dma_addr = chan->align_buf;
1831 } else {
1832 dma_addr = chan->xfer_dma;
1833 }
1834 writel((u32)dma_addr, hsotg->regs + HCDMA(chan->hc_num));
b49977a6
MK
1835 if (dbg_hc(chan))
1836 dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1837 (unsigned long)dma_addr, chan->hc_num);
56f5b1cf
PZ
1838 }
1839
1840 /* Start the split */
1841 if (chan->do_split) {
1842 u32 hcsplt = readl(hsotg->regs + HCSPLT(chan->hc_num));
1843
1844 hcsplt |= HCSPLT_SPLTENA;
1845 writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num));
1846 }
1847
1848 hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
1849 hcchar &= ~HCCHAR_MULTICNT_MASK;
1850 hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1851 HCCHAR_MULTICNT_MASK;
1852 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1853
1854 if (hcchar & HCCHAR_CHDIS)
1855 dev_warn(hsotg->dev,
1856 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1857 __func__, chan->hc_num, hcchar);
1858
1859 /* Set host channel enable after all other setup is complete */
1860 hcchar |= HCCHAR_CHENA;
1861 hcchar &= ~HCCHAR_CHDIS;
1862
b49977a6
MK
1863 if (dbg_hc(chan))
1864 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
d6ec53e0
MK
1865 (hcchar & HCCHAR_MULTICNT_MASK) >>
1866 HCCHAR_MULTICNT_SHIFT);
56f5b1cf
PZ
1867
1868 writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
b49977a6
MK
1869 if (dbg_hc(chan))
1870 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1871 chan->hc_num);
56f5b1cf
PZ
1872
1873 chan->xfer_started = 1;
1874 chan->requests++;
1875
1876 if (hsotg->core_params->dma_enable <= 0 &&
1877 !chan->ep_is_in && chan->xfer_len > 0)
1878 /* Load OUT packet into the appropriate Tx FIFO */
1879 dwc2_hc_write_packet(hsotg, chan);
1880}
1881
1882/**
1883 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1884 * host channel and starts the transfer in Descriptor DMA mode
1885 *
1886 * @hsotg: Programming view of DWC_otg controller
1887 * @chan: Information needed to initialize the host channel
1888 *
1889 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1890 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1891 * with micro-frame bitmap.
1892 *
1893 * Initializes HCDMA register with descriptor list address and CTD value then
1894 * starts the transfer via enabling the channel.
1895 */
1896void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1897 struct dwc2_host_chan *chan)
1898{
1899 u32 hcchar;
1900 u32 hc_dma;
1901 u32 hctsiz = 0;
1902
1903 if (chan->do_ping)
1904 hctsiz |= TSIZ_DOPNG;
1905
1906 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1907 dwc2_set_pid_isoc(chan);
1908
1909 /* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1910 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1911 TSIZ_SC_MC_PID_MASK;
1912
1913 /* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1914 hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1915
1916 /* Non-zero only for high-speed interrupt endpoints */
1917 hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1918
b49977a6
MK
1919 if (dbg_hc(chan)) {
1920 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1921 chan->hc_num);
1922 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1923 chan->data_pid_start);
1924 dev_vdbg(hsotg->dev, " NTD: %d\n", chan->ntd - 1);
1925 }
56f5b1cf
PZ
1926
1927 writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1928
1929 hc_dma = (u32)chan->desc_list_addr & HCDMA_DMA_ADDR_MASK;
1930
1931 /* Always start from first descriptor */
1932 hc_dma &= ~HCDMA_CTD_MASK;
1933 writel(hc_dma, hsotg->regs + HCDMA(chan->hc_num));
b49977a6
MK
1934 if (dbg_hc(chan))
1935 dev_vdbg(hsotg->dev, "Wrote %08x to HCDMA(%d)\n",
1936 hc_dma, chan->hc_num);
56f5b1cf
PZ
1937
1938 hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
1939 hcchar &= ~HCCHAR_MULTICNT_MASK;
1940 hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1941 HCCHAR_MULTICNT_MASK;
1942
1943 if (hcchar & HCCHAR_CHDIS)
1944 dev_warn(hsotg->dev,
1945 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1946 __func__, chan->hc_num, hcchar);
1947
1948 /* Set host channel enable after all other setup is complete */
1949 hcchar |= HCCHAR_CHENA;
1950 hcchar &= ~HCCHAR_CHDIS;
1951
b49977a6
MK
1952 if (dbg_hc(chan))
1953 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
d6ec53e0
MK
1954 (hcchar & HCCHAR_MULTICNT_MASK) >>
1955 HCCHAR_MULTICNT_SHIFT);
56f5b1cf
PZ
1956
1957 writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
b49977a6
MK
1958 if (dbg_hc(chan))
1959 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1960 chan->hc_num);
56f5b1cf
PZ
1961
1962 chan->xfer_started = 1;
1963 chan->requests++;
1964}
1965
1966/**
1967 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1968 * a previous call to dwc2_hc_start_transfer()
1969 *
1970 * @hsotg: Programming view of DWC_otg controller
1971 * @chan: Information needed to initialize the host channel
1972 *
1973 * The caller must ensure there is sufficient space in the request queue and Tx
1974 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1975 * the controller acts autonomously to complete transfers programmed to a host
1976 * channel.
1977 *
1978 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1979 * if there is any data remaining to be queued. For an IN transfer, another
1980 * data packet is always requested. For the SETUP phase of a control transfer,
1981 * this function does nothing.
1982 *
1983 * Return: 1 if a new request is queued, 0 if no more requests are required
1984 * for this transfer
1985 */
1986int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1987 struct dwc2_host_chan *chan)
1988{
b49977a6
MK
1989 if (dbg_hc(chan))
1990 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1991 chan->hc_num);
56f5b1cf
PZ
1992
1993 if (chan->do_split)
1994 /* SPLITs always queue just once per channel */
1995 return 0;
1996
1997 if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1998 /* SETUPs are queued only once since they can't be NAK'd */
1999 return 0;
2000
2001 if (chan->ep_is_in) {
2002 /*
2003 * Always queue another request for other IN transfers. If
2004 * back-to-back INs are issued and NAKs are received for both,
2005 * the driver may still be processing the first NAK when the
2006 * second NAK is received. When the interrupt handler clears
2007 * the NAK interrupt for the first NAK, the second NAK will
2008 * not be seen. So we can't depend on the NAK interrupt
2009 * handler to requeue a NAK'd request. Instead, IN requests
2010 * are issued each time this function is called. When the
2011 * transfer completes, the extra requests for the channel will
2012 * be flushed.
2013 */
2014 u32 hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
2015
2016 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
2017 hcchar |= HCCHAR_CHENA;
2018 hcchar &= ~HCCHAR_CHDIS;
b49977a6
MK
2019 if (dbg_hc(chan))
2020 dev_vdbg(hsotg->dev, " IN xfer: hcchar = 0x%08x\n",
2021 hcchar);
56f5b1cf
PZ
2022 writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
2023 chan->requests++;
2024 return 1;
2025 }
2026
2027 /* OUT transfers */
2028
2029 if (chan->xfer_count < chan->xfer_len) {
2030 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2031 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2032 u32 hcchar = readl(hsotg->regs +
2033 HCCHAR(chan->hc_num));
2034
2035 dwc2_hc_set_even_odd_frame(hsotg, chan,
2036 &hcchar);
2037 }
2038
2039 /* Load OUT packet into the appropriate Tx FIFO */
2040 dwc2_hc_write_packet(hsotg, chan);
2041 chan->requests++;
2042 return 1;
2043 }
2044
2045 return 0;
2046}
2047
2048/**
2049 * dwc2_hc_do_ping() - Starts a PING transfer
2050 *
2051 * @hsotg: Programming view of DWC_otg controller
2052 * @chan: Information needed to initialize the host channel
2053 *
2054 * This function should only be called in Slave mode. The Do Ping bit is set in
2055 * the HCTSIZ register, then the channel is enabled.
2056 */
2057void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
2058{
2059 u32 hcchar;
2060 u32 hctsiz;
2061
b49977a6
MK
2062 if (dbg_hc(chan))
2063 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
2064 chan->hc_num);
2065
56f5b1cf
PZ
2066
2067 hctsiz = TSIZ_DOPNG;
2068 hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
2069 writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
2070
2071 hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
2072 hcchar |= HCCHAR_CHENA;
2073 hcchar &= ~HCCHAR_CHDIS;
2074 writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
2075}
2076
2077/**
2078 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
2079 * the HFIR register according to PHY type and speed
2080 *
2081 * @hsotg: Programming view of DWC_otg controller
2082 *
2083 * NOTE: The caller can modify the value of the HFIR register only after the
2084 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
2085 * has been set
2086 */
2087u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
2088{
2089 u32 usbcfg;
56f5b1cf
PZ
2090 u32 hprt0;
2091 int clock = 60; /* default value */
2092
2093 usbcfg = readl(hsotg->regs + GUSBCFG);
56f5b1cf
PZ
2094 hprt0 = readl(hsotg->regs + HPRT0);
2095
2096 if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
2097 !(usbcfg & GUSBCFG_PHYIF16))
2098 clock = 60;
9badec2f 2099 if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
56f5b1cf
PZ
2100 GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
2101 clock = 48;
2102 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
2103 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
2104 clock = 30;
2105 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
2106 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
2107 clock = 60;
2108 if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
2109 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
2110 clock = 48;
2111 if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
9badec2f 2112 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
56f5b1cf 2113 clock = 48;
f9234633 2114 if ((usbcfg & GUSBCFG_PHYSEL) &&
9badec2f 2115 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
56f5b1cf
PZ
2116 clock = 48;
2117
f9234633 2118 if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
56f5b1cf
PZ
2119 /* High speed case */
2120 return 125 * clock;
2121 else
2122 /* FS/LS case */
2123 return 1000 * clock;
2124}
2125
2126/**
2127 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
2128 * buffer
2129 *
2130 * @core_if: Programming view of DWC_otg controller
2131 * @dest: Destination buffer for the packet
2132 * @bytes: Number of bytes to copy to the destination
2133 */
2134void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
2135{
2136 u32 __iomem *fifo = hsotg->regs + HCFIFO(0);
2137 u32 *data_buf = (u32 *)dest;
2138 int word_count = (bytes + 3) / 4;
2139 int i;
2140
2141 /*
2142 * Todo: Account for the case where dest is not dword aligned. This
2143 * requires reading data from the FIFO into a u32 temp buffer, then
2144 * moving it into the data buffer.
2145 */
2146
2147 dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
2148
2149 for (i = 0; i < word_count; i++, data_buf++)
2150 *data_buf = readl(fifo);
2151}
2152
2153/**
2154 * dwc2_dump_host_registers() - Prints the host registers
2155 *
2156 * @hsotg: Programming view of DWC_otg controller
2157 *
2158 * NOTE: This function will be removed once the peripheral controller code
2159 * is integrated and the driver is stable
2160 */
2161void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg)
2162{
2163#ifdef DEBUG
2164 u32 __iomem *addr;
2165 int i;
2166
2167 dev_dbg(hsotg->dev, "Host Global Registers\n");
2168 addr = hsotg->regs + HCFG;
2169 dev_dbg(hsotg->dev, "HCFG @0x%08lX : 0x%08X\n",
2170 (unsigned long)addr, readl(addr));
2171 addr = hsotg->regs + HFIR;
2172 dev_dbg(hsotg->dev, "HFIR @0x%08lX : 0x%08X\n",
2173 (unsigned long)addr, readl(addr));
2174 addr = hsotg->regs + HFNUM;
2175 dev_dbg(hsotg->dev, "HFNUM @0x%08lX : 0x%08X\n",
2176 (unsigned long)addr, readl(addr));
2177 addr = hsotg->regs + HPTXSTS;
2178 dev_dbg(hsotg->dev, "HPTXSTS @0x%08lX : 0x%08X\n",
2179 (unsigned long)addr, readl(addr));
2180 addr = hsotg->regs + HAINT;
2181 dev_dbg(hsotg->dev, "HAINT @0x%08lX : 0x%08X\n",
2182 (unsigned long)addr, readl(addr));
2183 addr = hsotg->regs + HAINTMSK;
2184 dev_dbg(hsotg->dev, "HAINTMSK @0x%08lX : 0x%08X\n",
2185 (unsigned long)addr, readl(addr));
2186 if (hsotg->core_params->dma_desc_enable > 0) {
2187 addr = hsotg->regs + HFLBADDR;
2188 dev_dbg(hsotg->dev, "HFLBADDR @0x%08lX : 0x%08X\n",
2189 (unsigned long)addr, readl(addr));
2190 }
2191
2192 addr = hsotg->regs + HPRT0;
2193 dev_dbg(hsotg->dev, "HPRT0 @0x%08lX : 0x%08X\n",
2194 (unsigned long)addr, readl(addr));
2195
2196 for (i = 0; i < hsotg->core_params->host_channels; i++) {
2197 dev_dbg(hsotg->dev, "Host Channel %d Specific Registers\n", i);
2198 addr = hsotg->regs + HCCHAR(i);
2199 dev_dbg(hsotg->dev, "HCCHAR @0x%08lX : 0x%08X\n",
2200 (unsigned long)addr, readl(addr));
2201 addr = hsotg->regs + HCSPLT(i);
2202 dev_dbg(hsotg->dev, "HCSPLT @0x%08lX : 0x%08X\n",
2203 (unsigned long)addr, readl(addr));
2204 addr = hsotg->regs + HCINT(i);
2205 dev_dbg(hsotg->dev, "HCINT @0x%08lX : 0x%08X\n",
2206 (unsigned long)addr, readl(addr));
2207 addr = hsotg->regs + HCINTMSK(i);
2208 dev_dbg(hsotg->dev, "HCINTMSK @0x%08lX : 0x%08X\n",
2209 (unsigned long)addr, readl(addr));
2210 addr = hsotg->regs + HCTSIZ(i);
2211 dev_dbg(hsotg->dev, "HCTSIZ @0x%08lX : 0x%08X\n",
2212 (unsigned long)addr, readl(addr));
2213 addr = hsotg->regs + HCDMA(i);
2214 dev_dbg(hsotg->dev, "HCDMA @0x%08lX : 0x%08X\n",
2215 (unsigned long)addr, readl(addr));
2216 if (hsotg->core_params->dma_desc_enable > 0) {
2217 addr = hsotg->regs + HCDMAB(i);
2218 dev_dbg(hsotg->dev, "HCDMAB @0x%08lX : 0x%08X\n",
2219 (unsigned long)addr, readl(addr));
2220 }
2221 }
2222#endif
2223}
2224
2225/**
2226 * dwc2_dump_global_registers() - Prints the core global registers
2227 *
2228 * @hsotg: Programming view of DWC_otg controller
2229 *
2230 * NOTE: This function will be removed once the peripheral controller code
2231 * is integrated and the driver is stable
2232 */
2233void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg)
2234{
2235#ifdef DEBUG
2236 u32 __iomem *addr;
56f5b1cf
PZ
2237
2238 dev_dbg(hsotg->dev, "Core Global Registers\n");
2239 addr = hsotg->regs + GOTGCTL;
2240 dev_dbg(hsotg->dev, "GOTGCTL @0x%08lX : 0x%08X\n",
2241 (unsigned long)addr, readl(addr));
2242 addr = hsotg->regs + GOTGINT;
2243 dev_dbg(hsotg->dev, "GOTGINT @0x%08lX : 0x%08X\n",
2244 (unsigned long)addr, readl(addr));
2245 addr = hsotg->regs + GAHBCFG;
2246 dev_dbg(hsotg->dev, "GAHBCFG @0x%08lX : 0x%08X\n",
2247 (unsigned long)addr, readl(addr));
2248 addr = hsotg->regs + GUSBCFG;
2249 dev_dbg(hsotg->dev, "GUSBCFG @0x%08lX : 0x%08X\n",
2250 (unsigned long)addr, readl(addr));
2251 addr = hsotg->regs + GRSTCTL;
2252 dev_dbg(hsotg->dev, "GRSTCTL @0x%08lX : 0x%08X\n",
2253 (unsigned long)addr, readl(addr));
2254 addr = hsotg->regs + GINTSTS;
2255 dev_dbg(hsotg->dev, "GINTSTS @0x%08lX : 0x%08X\n",
2256 (unsigned long)addr, readl(addr));
2257 addr = hsotg->regs + GINTMSK;
2258 dev_dbg(hsotg->dev, "GINTMSK @0x%08lX : 0x%08X\n",
2259 (unsigned long)addr, readl(addr));
2260 addr = hsotg->regs + GRXSTSR;
2261 dev_dbg(hsotg->dev, "GRXSTSR @0x%08lX : 0x%08X\n",
2262 (unsigned long)addr, readl(addr));
2263 addr = hsotg->regs + GRXFSIZ;
2264 dev_dbg(hsotg->dev, "GRXFSIZ @0x%08lX : 0x%08X\n",
2265 (unsigned long)addr, readl(addr));
2266 addr = hsotg->regs + GNPTXFSIZ;
2267 dev_dbg(hsotg->dev, "GNPTXFSIZ @0x%08lX : 0x%08X\n",
2268 (unsigned long)addr, readl(addr));
2269 addr = hsotg->regs + GNPTXSTS;
2270 dev_dbg(hsotg->dev, "GNPTXSTS @0x%08lX : 0x%08X\n",
2271 (unsigned long)addr, readl(addr));
2272 addr = hsotg->regs + GI2CCTL;
2273 dev_dbg(hsotg->dev, "GI2CCTL @0x%08lX : 0x%08X\n",
2274 (unsigned long)addr, readl(addr));
2275 addr = hsotg->regs + GPVNDCTL;
2276 dev_dbg(hsotg->dev, "GPVNDCTL @0x%08lX : 0x%08X\n",
2277 (unsigned long)addr, readl(addr));
2278 addr = hsotg->regs + GGPIO;
2279 dev_dbg(hsotg->dev, "GGPIO @0x%08lX : 0x%08X\n",
2280 (unsigned long)addr, readl(addr));
2281 addr = hsotg->regs + GUID;
2282 dev_dbg(hsotg->dev, "GUID @0x%08lX : 0x%08X\n",
2283 (unsigned long)addr, readl(addr));
2284 addr = hsotg->regs + GSNPSID;
2285 dev_dbg(hsotg->dev, "GSNPSID @0x%08lX : 0x%08X\n",
2286 (unsigned long)addr, readl(addr));
2287 addr = hsotg->regs + GHWCFG1;
2288 dev_dbg(hsotg->dev, "GHWCFG1 @0x%08lX : 0x%08X\n",
2289 (unsigned long)addr, readl(addr));
2290 addr = hsotg->regs + GHWCFG2;
2291 dev_dbg(hsotg->dev, "GHWCFG2 @0x%08lX : 0x%08X\n",
2292 (unsigned long)addr, readl(addr));
2293 addr = hsotg->regs + GHWCFG3;
2294 dev_dbg(hsotg->dev, "GHWCFG3 @0x%08lX : 0x%08X\n",
2295 (unsigned long)addr, readl(addr));
2296 addr = hsotg->regs + GHWCFG4;
2297 dev_dbg(hsotg->dev, "GHWCFG4 @0x%08lX : 0x%08X\n",
2298 (unsigned long)addr, readl(addr));
2299 addr = hsotg->regs + GLPMCFG;
2300 dev_dbg(hsotg->dev, "GLPMCFG @0x%08lX : 0x%08X\n",
2301 (unsigned long)addr, readl(addr));
2302 addr = hsotg->regs + GPWRDN;
2303 dev_dbg(hsotg->dev, "GPWRDN @0x%08lX : 0x%08X\n",
2304 (unsigned long)addr, readl(addr));
2305 addr = hsotg->regs + GDFIFOCFG;
2306 dev_dbg(hsotg->dev, "GDFIFOCFG @0x%08lX : 0x%08X\n",
2307 (unsigned long)addr, readl(addr));
2308 addr = hsotg->regs + HPTXFSIZ;
2309 dev_dbg(hsotg->dev, "HPTXFSIZ @0x%08lX : 0x%08X\n",
2310 (unsigned long)addr, readl(addr));
2311
56f5b1cf
PZ
2312 addr = hsotg->regs + PCGCTL;
2313 dev_dbg(hsotg->dev, "PCGCTL @0x%08lX : 0x%08X\n",
2314 (unsigned long)addr, readl(addr));
2315#endif
2316}
2317
2318/**
2319 * dwc2_flush_tx_fifo() - Flushes a Tx FIFO
2320 *
2321 * @hsotg: Programming view of DWC_otg controller
2322 * @num: Tx FIFO to flush
2323 */
2324void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num)
2325{
2326 u32 greset;
2327 int count = 0;
2328
2329 dev_vdbg(hsotg->dev, "Flush Tx FIFO %d\n", num);
2330
2331 greset = GRSTCTL_TXFFLSH;
2332 greset |= num << GRSTCTL_TXFNUM_SHIFT & GRSTCTL_TXFNUM_MASK;
2333 writel(greset, hsotg->regs + GRSTCTL);
2334
2335 do {
2336 greset = readl(hsotg->regs + GRSTCTL);
2337 if (++count > 10000) {
2338 dev_warn(hsotg->dev,
2339 "%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n",
2340 __func__, greset,
2341 readl(hsotg->regs + GNPTXSTS));
2342 break;
2343 }
2344 udelay(1);
2345 } while (greset & GRSTCTL_TXFFLSH);
2346
2347 /* Wait for at least 3 PHY Clocks */
2348 udelay(1);
2349}
2350
2351/**
2352 * dwc2_flush_rx_fifo() - Flushes the Rx FIFO
2353 *
2354 * @hsotg: Programming view of DWC_otg controller
2355 */
2356void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg)
2357{
2358 u32 greset;
2359 int count = 0;
2360
2361 dev_vdbg(hsotg->dev, "%s()\n", __func__);
2362
2363 greset = GRSTCTL_RXFFLSH;
2364 writel(greset, hsotg->regs + GRSTCTL);
2365
2366 do {
2367 greset = readl(hsotg->regs + GRSTCTL);
2368 if (++count > 10000) {
2369 dev_warn(hsotg->dev, "%s() HANG! GRSTCTL=%0x\n",
2370 __func__, greset);
2371 break;
2372 }
2373 udelay(1);
2374 } while (greset & GRSTCTL_RXFFLSH);
2375
2376 /* Wait for at least 3 PHY Clocks */
2377 udelay(1);
2378}
2379
498f0669 2380#define DWC2_OUT_OF_BOUNDS(a, b, c) ((a) < (b) || (a) > (c))
56f5b1cf
PZ
2381
2382/* Parameter access functions */
7218dae7 2383void dwc2_set_param_otg_cap(struct dwc2_hsotg *hsotg, int val)
56f5b1cf
PZ
2384{
2385 int valid = 1;
56f5b1cf
PZ
2386
2387 switch (val) {
2388 case DWC2_CAP_PARAM_HNP_SRP_CAPABLE:
9badec2f 2389 if (hsotg->hw_params.op_mode != GHWCFG2_OP_MODE_HNP_SRP_CAPABLE)
56f5b1cf
PZ
2390 valid = 0;
2391 break;
2392 case DWC2_CAP_PARAM_SRP_ONLY_CAPABLE:
9badec2f 2393 switch (hsotg->hw_params.op_mode) {
56f5b1cf
PZ
2394 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
2395 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
2396 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
2397 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
2398 break;
2399 default:
2400 valid = 0;
2401 break;
2402 }
2403 break;
2404 case DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE:
2405 /* always valid */
2406 break;
2407 default:
2408 valid = 0;
2409 break;
2410 }
2411
2412 if (!valid) {
2413 if (val >= 0)
2414 dev_err(hsotg->dev,
2415 "%d invalid for otg_cap parameter. Check HW configuration.\n",
2416 val);
9badec2f 2417 switch (hsotg->hw_params.op_mode) {
56f5b1cf
PZ
2418 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
2419 val = DWC2_CAP_PARAM_HNP_SRP_CAPABLE;
2420 break;
2421 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
2422 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
2423 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
2424 val = DWC2_CAP_PARAM_SRP_ONLY_CAPABLE;
2425 break;
2426 default:
2427 val = DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE;
2428 break;
2429 }
2430 dev_dbg(hsotg->dev, "Setting otg_cap to %d\n", val);
56f5b1cf
PZ
2431 }
2432
2433 hsotg->core_params->otg_cap = val;
56f5b1cf
PZ
2434}
2435
7218dae7 2436void dwc2_set_param_dma_enable(struct dwc2_hsotg *hsotg, int val)
56f5b1cf
PZ
2437{
2438 int valid = 1;
56f5b1cf 2439
9badec2f 2440 if (val > 0 && hsotg->hw_params.arch == GHWCFG2_SLAVE_ONLY_ARCH)
56f5b1cf
PZ
2441 valid = 0;
2442 if (val < 0)
2443 valid = 0;
2444
2445 if (!valid) {
2446 if (val >= 0)
2447 dev_err(hsotg->dev,
2448 "%d invalid for dma_enable parameter. Check HW configuration.\n",
2449 val);
9badec2f 2450 val = hsotg->hw_params.arch != GHWCFG2_SLAVE_ONLY_ARCH;
56f5b1cf 2451 dev_dbg(hsotg->dev, "Setting dma_enable to %d\n", val);
56f5b1cf
PZ
2452 }
2453
2454 hsotg->core_params->dma_enable = val;
56f5b1cf
PZ
2455}
2456
7218dae7 2457void dwc2_set_param_dma_desc_enable(struct dwc2_hsotg *hsotg, int val)
56f5b1cf
PZ
2458{
2459 int valid = 1;
56f5b1cf
PZ
2460
2461 if (val > 0 && (hsotg->core_params->dma_enable <= 0 ||
9badec2f 2462 !hsotg->hw_params.dma_desc_enable))
56f5b1cf
PZ
2463 valid = 0;
2464 if (val < 0)
2465 valid = 0;
2466
2467 if (!valid) {
2468 if (val >= 0)
2469 dev_err(hsotg->dev,
2470 "%d invalid for dma_desc_enable parameter. Check HW configuration.\n",
2471 val);
2472 val = (hsotg->core_params->dma_enable > 0 &&
9badec2f 2473 hsotg->hw_params.dma_desc_enable);
56f5b1cf 2474 dev_dbg(hsotg->dev, "Setting dma_desc_enable to %d\n", val);
56f5b1cf
PZ
2475 }
2476
2477 hsotg->core_params->dma_desc_enable = val;
56f5b1cf
PZ
2478}
2479
7218dae7
PZ
2480void dwc2_set_param_host_support_fs_ls_low_power(struct dwc2_hsotg *hsotg,
2481 int val)
56f5b1cf 2482{
498f0669 2483 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
56f5b1cf
PZ
2484 if (val >= 0) {
2485 dev_err(hsotg->dev,
2486 "Wrong value for host_support_fs_low_power\n");
2487 dev_err(hsotg->dev,
2488 "host_support_fs_low_power must be 0 or 1\n");
2489 }
2490 val = 0;
2491 dev_dbg(hsotg->dev,
2492 "Setting host_support_fs_low_power to %d\n", val);
56f5b1cf
PZ
2493 }
2494
2495 hsotg->core_params->host_support_fs_ls_low_power = val;
56f5b1cf
PZ
2496}
2497
7218dae7 2498void dwc2_set_param_enable_dynamic_fifo(struct dwc2_hsotg *hsotg, int val)
56f5b1cf
PZ
2499{
2500 int valid = 1;
56f5b1cf 2501
9badec2f 2502 if (val > 0 && !hsotg->hw_params.enable_dynamic_fifo)
56f5b1cf
PZ
2503 valid = 0;
2504 if (val < 0)
2505 valid = 0;
2506
2507 if (!valid) {
2508 if (val >= 0)
2509 dev_err(hsotg->dev,
2510 "%d invalid for enable_dynamic_fifo parameter. Check HW configuration.\n",
2511 val);
9badec2f 2512 val = hsotg->hw_params.enable_dynamic_fifo;
56f5b1cf 2513 dev_dbg(hsotg->dev, "Setting enable_dynamic_fifo to %d\n", val);
56f5b1cf
PZ
2514 }
2515
2516 hsotg->core_params->enable_dynamic_fifo = val;
56f5b1cf
PZ
2517}
2518
7218dae7 2519void dwc2_set_param_host_rx_fifo_size(struct dwc2_hsotg *hsotg, int val)
56f5b1cf
PZ
2520{
2521 int valid = 1;
56f5b1cf 2522
9badec2f 2523 if (val < 16 || val > hsotg->hw_params.host_rx_fifo_size)
56f5b1cf
PZ
2524 valid = 0;
2525
2526 if (!valid) {
2527 if (val >= 0)
2528 dev_err(hsotg->dev,
2529 "%d invalid for host_rx_fifo_size. Check HW configuration.\n",
2530 val);
9badec2f 2531 val = hsotg->hw_params.host_rx_fifo_size;
56f5b1cf 2532 dev_dbg(hsotg->dev, "Setting host_rx_fifo_size to %d\n", val);
56f5b1cf
PZ
2533 }
2534
2535 hsotg->core_params->host_rx_fifo_size = val;
56f5b1cf
PZ
2536}
2537
7218dae7 2538void dwc2_set_param_host_nperio_tx_fifo_size(struct dwc2_hsotg *hsotg, int val)
56f5b1cf
PZ
2539{
2540 int valid = 1;
56f5b1cf 2541
9badec2f 2542 if (val < 16 || val > hsotg->hw_params.host_nperio_tx_fifo_size)
56f5b1cf
PZ
2543 valid = 0;
2544
2545 if (!valid) {
2546 if (val >= 0)
2547 dev_err(hsotg->dev,
2548 "%d invalid for host_nperio_tx_fifo_size. Check HW configuration.\n",
2549 val);
9badec2f 2550 val = hsotg->hw_params.host_nperio_tx_fifo_size;
56f5b1cf
PZ
2551 dev_dbg(hsotg->dev, "Setting host_nperio_tx_fifo_size to %d\n",
2552 val);
56f5b1cf
PZ
2553 }
2554
2555 hsotg->core_params->host_nperio_tx_fifo_size = val;
56f5b1cf
PZ
2556}
2557
7218dae7 2558void dwc2_set_param_host_perio_tx_fifo_size(struct dwc2_hsotg *hsotg, int val)
56f5b1cf
PZ
2559{
2560 int valid = 1;
56f5b1cf 2561
9badec2f 2562 if (val < 16 || val > hsotg->hw_params.host_perio_tx_fifo_size)
56f5b1cf
PZ
2563 valid = 0;
2564
2565 if (!valid) {
2566 if (val >= 0)
2567 dev_err(hsotg->dev,
2568 "%d invalid for host_perio_tx_fifo_size. Check HW configuration.\n",
2569 val);
9badec2f 2570 val = hsotg->hw_params.host_perio_tx_fifo_size;
56f5b1cf
PZ
2571 dev_dbg(hsotg->dev, "Setting host_perio_tx_fifo_size to %d\n",
2572 val);
56f5b1cf
PZ
2573 }
2574
2575 hsotg->core_params->host_perio_tx_fifo_size = val;
56f5b1cf
PZ
2576}
2577
7218dae7 2578void dwc2_set_param_max_transfer_size(struct dwc2_hsotg *hsotg, int val)
56f5b1cf
PZ
2579{
2580 int valid = 1;
56f5b1cf 2581
9badec2f 2582 if (val < 2047 || val > hsotg->hw_params.max_transfer_size)
56f5b1cf
PZ
2583 valid = 0;
2584
2585 if (!valid) {
2586 if (val >= 0)
2587 dev_err(hsotg->dev,
2588 "%d invalid for max_transfer_size. Check HW configuration.\n",
2589 val);
9badec2f 2590 val = hsotg->hw_params.max_transfer_size;
56f5b1cf 2591 dev_dbg(hsotg->dev, "Setting max_transfer_size to %d\n", val);
56f5b1cf
PZ
2592 }
2593
2594 hsotg->core_params->max_transfer_size = val;
56f5b1cf
PZ
2595}
2596
7218dae7 2597void dwc2_set_param_max_packet_count(struct dwc2_hsotg *hsotg, int val)
56f5b1cf
PZ
2598{
2599 int valid = 1;
56f5b1cf 2600
9badec2f 2601 if (val < 15 || val > hsotg->hw_params.max_packet_count)
56f5b1cf
PZ
2602 valid = 0;
2603
2604 if (!valid) {
2605 if (val >= 0)
2606 dev_err(hsotg->dev,
2607 "%d invalid for max_packet_count. Check HW configuration.\n",
2608 val);
9badec2f 2609 val = hsotg->hw_params.max_packet_count;
56f5b1cf 2610 dev_dbg(hsotg->dev, "Setting max_packet_count to %d\n", val);
56f5b1cf
PZ
2611 }
2612
2613 hsotg->core_params->max_packet_count = val;
56f5b1cf
PZ
2614}
2615
7218dae7 2616void dwc2_set_param_host_channels(struct dwc2_hsotg *hsotg, int val)
56f5b1cf
PZ
2617{
2618 int valid = 1;
56f5b1cf 2619
9badec2f 2620 if (val < 1 || val > hsotg->hw_params.host_channels)
56f5b1cf
PZ
2621 valid = 0;
2622
2623 if (!valid) {
2624 if (val >= 0)
2625 dev_err(hsotg->dev,
2626 "%d invalid for host_channels. Check HW configuration.\n",
2627 val);
9badec2f 2628 val = hsotg->hw_params.host_channels;
56f5b1cf 2629 dev_dbg(hsotg->dev, "Setting host_channels to %d\n", val);
56f5b1cf
PZ
2630 }
2631
2632 hsotg->core_params->host_channels = val;
56f5b1cf
PZ
2633}
2634
7218dae7 2635void dwc2_set_param_phy_type(struct dwc2_hsotg *hsotg, int val)
56f5b1cf 2636{
56f5b1cf 2637 int valid = 0;
0464a3d2 2638 u32 hs_phy_type, fs_phy_type;
56f5b1cf 2639
498f0669
PZ
2640 if (DWC2_OUT_OF_BOUNDS(val, DWC2_PHY_TYPE_PARAM_FS,
2641 DWC2_PHY_TYPE_PARAM_ULPI)) {
56f5b1cf
PZ
2642 if (val >= 0) {
2643 dev_err(hsotg->dev, "Wrong value for phy_type\n");
2644 dev_err(hsotg->dev, "phy_type must be 0, 1 or 2\n");
2645 }
2646
56f5b1cf 2647 valid = 0;
56f5b1cf
PZ
2648 }
2649
9badec2f
MK
2650 hs_phy_type = hsotg->hw_params.hs_phy_type;
2651 fs_phy_type = hsotg->hw_params.fs_phy_type;
56f5b1cf
PZ
2652 if (val == DWC2_PHY_TYPE_PARAM_UTMI &&
2653 (hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI ||
2654 hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI))
2655 valid = 1;
2656 else if (val == DWC2_PHY_TYPE_PARAM_ULPI &&
2657 (hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI ||
2658 hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI))
2659 valid = 1;
2660 else if (val == DWC2_PHY_TYPE_PARAM_FS &&
2661 fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
2662 valid = 1;
2663
2664 if (!valid) {
2665 if (val >= 0)
2666 dev_err(hsotg->dev,
2667 "%d invalid for phy_type. Check HW configuration.\n",
2668 val);
929aea09 2669 val = DWC2_PHY_TYPE_PARAM_FS;
56f5b1cf
PZ
2670 if (hs_phy_type != GHWCFG2_HS_PHY_TYPE_NOT_SUPPORTED) {
2671 if (hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI ||
2672 hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI)
2673 val = DWC2_PHY_TYPE_PARAM_UTMI;
2674 else
2675 val = DWC2_PHY_TYPE_PARAM_ULPI;
2676 }
2677 dev_dbg(hsotg->dev, "Setting phy_type to %d\n", val);
56f5b1cf 2678 }
56f5b1cf
PZ
2679
2680 hsotg->core_params->phy_type = val;
56f5b1cf
PZ
2681}
2682
2683static int dwc2_get_param_phy_type(struct dwc2_hsotg *hsotg)
2684{
2685 return hsotg->core_params->phy_type;
2686}
2687
7218dae7 2688void dwc2_set_param_speed(struct dwc2_hsotg *hsotg, int val)
56f5b1cf
PZ
2689{
2690 int valid = 1;
56f5b1cf 2691
498f0669 2692 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
56f5b1cf
PZ
2693 if (val >= 0) {
2694 dev_err(hsotg->dev, "Wrong value for speed parameter\n");
2695 dev_err(hsotg->dev, "max_speed parameter must be 0 or 1\n");
2696 }
2697 valid = 0;
2698 }
2699
929aea09
MK
2700 if (val == DWC2_SPEED_PARAM_HIGH &&
2701 dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS)
56f5b1cf
PZ
2702 valid = 0;
2703
2704 if (!valid) {
2705 if (val >= 0)
2706 dev_err(hsotg->dev,
2707 "%d invalid for speed parameter. Check HW configuration.\n",
2708 val);
2709 val = dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS ?
929aea09 2710 DWC2_SPEED_PARAM_FULL : DWC2_SPEED_PARAM_HIGH;
56f5b1cf 2711 dev_dbg(hsotg->dev, "Setting speed to %d\n", val);
56f5b1cf
PZ
2712 }
2713
2714 hsotg->core_params->speed = val;
56f5b1cf
PZ
2715}
2716
7218dae7 2717void dwc2_set_param_host_ls_low_power_phy_clk(struct dwc2_hsotg *hsotg, int val)
56f5b1cf
PZ
2718{
2719 int valid = 1;
56f5b1cf 2720
498f0669
PZ
2721 if (DWC2_OUT_OF_BOUNDS(val, DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ,
2722 DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ)) {
56f5b1cf
PZ
2723 if (val >= 0) {
2724 dev_err(hsotg->dev,
2725 "Wrong value for host_ls_low_power_phy_clk parameter\n");
2726 dev_err(hsotg->dev,
2727 "host_ls_low_power_phy_clk must be 0 or 1\n");
2728 }
2729 valid = 0;
2730 }
2731
2732 if (val == DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ &&
2733 dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS)
2734 valid = 0;
2735
2736 if (!valid) {
2737 if (val >= 0)
2738 dev_err(hsotg->dev,
2739 "%d invalid for host_ls_low_power_phy_clk. Check HW configuration.\n",
2740 val);
2741 val = dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS
2742 ? DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ
2743 : DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ;
2744 dev_dbg(hsotg->dev, "Setting host_ls_low_power_phy_clk to %d\n",
2745 val);
56f5b1cf
PZ
2746 }
2747
2748 hsotg->core_params->host_ls_low_power_phy_clk = val;
56f5b1cf
PZ
2749}
2750
7218dae7 2751void dwc2_set_param_phy_ulpi_ddr(struct dwc2_hsotg *hsotg, int val)
56f5b1cf 2752{
498f0669 2753 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
56f5b1cf
PZ
2754 if (val >= 0) {
2755 dev_err(hsotg->dev, "Wrong value for phy_ulpi_ddr\n");
2756 dev_err(hsotg->dev, "phy_upli_ddr must be 0 or 1\n");
2757 }
2758 val = 0;
2759 dev_dbg(hsotg->dev, "Setting phy_upli_ddr to %d\n", val);
56f5b1cf
PZ
2760 }
2761
2762 hsotg->core_params->phy_ulpi_ddr = val;
56f5b1cf
PZ
2763}
2764
7218dae7 2765void dwc2_set_param_phy_ulpi_ext_vbus(struct dwc2_hsotg *hsotg, int val)
56f5b1cf 2766{
498f0669 2767 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
56f5b1cf
PZ
2768 if (val >= 0) {
2769 dev_err(hsotg->dev,
2770 "Wrong value for phy_ulpi_ext_vbus\n");
2771 dev_err(hsotg->dev,
2772 "phy_ulpi_ext_vbus must be 0 or 1\n");
2773 }
2774 val = 0;
2775 dev_dbg(hsotg->dev, "Setting phy_ulpi_ext_vbus to %d\n", val);
56f5b1cf
PZ
2776 }
2777
2778 hsotg->core_params->phy_ulpi_ext_vbus = val;
56f5b1cf
PZ
2779}
2780
7218dae7 2781void dwc2_set_param_phy_utmi_width(struct dwc2_hsotg *hsotg, int val)
56f5b1cf 2782{
de4a1931 2783 int valid = 0;
56f5b1cf 2784
de4a1931
MK
2785 switch (hsotg->hw_params.utmi_phy_data_width) {
2786 case GHWCFG4_UTMI_PHY_DATA_WIDTH_8:
2787 valid = (val == 8);
2788 break;
2789 case GHWCFG4_UTMI_PHY_DATA_WIDTH_16:
2790 valid = (val == 16);
2791 break;
2792 case GHWCFG4_UTMI_PHY_DATA_WIDTH_8_OR_16:
2793 valid = (val == 8 || val == 16);
2794 break;
2795 }
2796
2797 if (!valid) {
56f5b1cf 2798 if (val >= 0) {
de4a1931
MK
2799 dev_err(hsotg->dev,
2800 "%d invalid for phy_utmi_width. Check HW configuration.\n",
2801 val);
56f5b1cf 2802 }
de4a1931
MK
2803 val = (hsotg->hw_params.utmi_phy_data_width ==
2804 GHWCFG4_UTMI_PHY_DATA_WIDTH_8) ? 8 : 16;
56f5b1cf 2805 dev_dbg(hsotg->dev, "Setting phy_utmi_width to %d\n", val);
56f5b1cf
PZ
2806 }
2807
2808 hsotg->core_params->phy_utmi_width = val;
56f5b1cf
PZ
2809}
2810
7218dae7 2811void dwc2_set_param_ulpi_fs_ls(struct dwc2_hsotg *hsotg, int val)
56f5b1cf 2812{
498f0669 2813 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
56f5b1cf
PZ
2814 if (val >= 0) {
2815 dev_err(hsotg->dev, "Wrong value for ulpi_fs_ls\n");
2816 dev_err(hsotg->dev, "ulpi_fs_ls must be 0 or 1\n");
2817 }
2818 val = 0;
2819 dev_dbg(hsotg->dev, "Setting ulpi_fs_ls to %d\n", val);
56f5b1cf
PZ
2820 }
2821
2822 hsotg->core_params->ulpi_fs_ls = val;
56f5b1cf
PZ
2823}
2824
7218dae7 2825void dwc2_set_param_ts_dline(struct dwc2_hsotg *hsotg, int val)
56f5b1cf 2826{
498f0669 2827 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
56f5b1cf
PZ
2828 if (val >= 0) {
2829 dev_err(hsotg->dev, "Wrong value for ts_dline\n");
2830 dev_err(hsotg->dev, "ts_dline must be 0 or 1\n");
2831 }
2832 val = 0;
2833 dev_dbg(hsotg->dev, "Setting ts_dline to %d\n", val);
56f5b1cf
PZ
2834 }
2835
2836 hsotg->core_params->ts_dline = val;
56f5b1cf
PZ
2837}
2838
7218dae7 2839void dwc2_set_param_i2c_enable(struct dwc2_hsotg *hsotg, int val)
56f5b1cf 2840{
56f5b1cf 2841 int valid = 1;
56f5b1cf 2842
498f0669 2843 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
56f5b1cf
PZ
2844 if (val >= 0) {
2845 dev_err(hsotg->dev, "Wrong value for i2c_enable\n");
2846 dev_err(hsotg->dev, "i2c_enable must be 0 or 1\n");
2847 }
2848
56f5b1cf 2849 valid = 0;
56f5b1cf
PZ
2850 }
2851
9badec2f 2852 if (val == 1 && !(hsotg->hw_params.i2c_enable))
56f5b1cf
PZ
2853 valid = 0;
2854
2855 if (!valid) {
2856 if (val >= 0)
2857 dev_err(hsotg->dev,
2858 "%d invalid for i2c_enable. Check HW configuration.\n",
2859 val);
9badec2f 2860 val = hsotg->hw_params.i2c_enable;
56f5b1cf 2861 dev_dbg(hsotg->dev, "Setting i2c_enable to %d\n", val);
56f5b1cf 2862 }
56f5b1cf
PZ
2863
2864 hsotg->core_params->i2c_enable = val;
56f5b1cf
PZ
2865}
2866
7218dae7 2867void dwc2_set_param_en_multiple_tx_fifo(struct dwc2_hsotg *hsotg, int val)
56f5b1cf
PZ
2868{
2869 int valid = 1;
56f5b1cf 2870
498f0669 2871 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
56f5b1cf
PZ
2872 if (val >= 0) {
2873 dev_err(hsotg->dev,
2874 "Wrong value for en_multiple_tx_fifo,\n");
2875 dev_err(hsotg->dev,
2876 "en_multiple_tx_fifo must be 0 or 1\n");
2877 }
2878 valid = 0;
2879 }
2880
9badec2f 2881 if (val == 1 && !hsotg->hw_params.en_multiple_tx_fifo)
56f5b1cf
PZ
2882 valid = 0;
2883
2884 if (!valid) {
2885 if (val >= 0)
2886 dev_err(hsotg->dev,
2887 "%d invalid for parameter en_multiple_tx_fifo. Check HW configuration.\n",
2888 val);
9badec2f 2889 val = hsotg->hw_params.en_multiple_tx_fifo;
56f5b1cf 2890 dev_dbg(hsotg->dev, "Setting en_multiple_tx_fifo to %d\n", val);
56f5b1cf
PZ
2891 }
2892
2893 hsotg->core_params->en_multiple_tx_fifo = val;
56f5b1cf
PZ
2894}
2895
7218dae7 2896void dwc2_set_param_reload_ctl(struct dwc2_hsotg *hsotg, int val)
56f5b1cf
PZ
2897{
2898 int valid = 1;
56f5b1cf 2899
498f0669 2900 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
56f5b1cf
PZ
2901 if (val >= 0) {
2902 dev_err(hsotg->dev,
2903 "'%d' invalid for parameter reload_ctl\n", val);
2904 dev_err(hsotg->dev, "reload_ctl must be 0 or 1\n");
2905 }
2906 valid = 0;
2907 }
2908
9badec2f 2909 if (val == 1 && hsotg->hw_params.snpsid < DWC2_CORE_REV_2_92a)
56f5b1cf
PZ
2910 valid = 0;
2911
2912 if (!valid) {
2913 if (val >= 0)
2914 dev_err(hsotg->dev,
2915 "%d invalid for parameter reload_ctl. Check HW configuration.\n",
2916 val);
9badec2f 2917 val = hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_92a;
56f5b1cf 2918 dev_dbg(hsotg->dev, "Setting reload_ctl to %d\n", val);
56f5b1cf
PZ
2919 }
2920
2921 hsotg->core_params->reload_ctl = val;
56f5b1cf
PZ
2922}
2923
7218dae7 2924void dwc2_set_param_ahbcfg(struct dwc2_hsotg *hsotg, int val)
56f5b1cf 2925{
4d3190e1
PZ
2926 if (val != -1)
2927 hsotg->core_params->ahbcfg = val;
2928 else
f9234633 2929 hsotg->core_params->ahbcfg = GAHBCFG_HBSTLEN_INCR4 <<
0464a3d2 2930 GAHBCFG_HBSTLEN_SHIFT;
56f5b1cf
PZ
2931}
2932
7218dae7 2933void dwc2_set_param_otg_ver(struct dwc2_hsotg *hsotg, int val)
56f5b1cf 2934{
498f0669 2935 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
56f5b1cf
PZ
2936 if (val >= 0) {
2937 dev_err(hsotg->dev,
2938 "'%d' invalid for parameter otg_ver\n", val);
2939 dev_err(hsotg->dev,
2940 "otg_ver must be 0 (for OTG 1.3 support) or 1 (for OTG 2.0 support)\n");
2941 }
2942 val = 0;
2943 dev_dbg(hsotg->dev, "Setting otg_ver to %d\n", val);
56f5b1cf
PZ
2944 }
2945
2946 hsotg->core_params->otg_ver = val;
56f5b1cf
PZ
2947}
2948
49cf10c6 2949static void dwc2_set_param_uframe_sched(struct dwc2_hsotg *hsotg, int val)
e8576e68
PZ
2950{
2951 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2952 if (val >= 0) {
2953 dev_err(hsotg->dev,
2954 "'%d' invalid for parameter uframe_sched\n",
2955 val);
2956 dev_err(hsotg->dev, "uframe_sched must be 0 or 1\n");
2957 }
2958 val = 1;
2959 dev_dbg(hsotg->dev, "Setting uframe_sched to %d\n", val);
2960 }
2961
2962 hsotg->core_params->uframe_sched = val;
2963}
2964
a6d249d8
GH
2965static void dwc2_set_param_external_id_pin_ctl(struct dwc2_hsotg *hsotg,
2966 int val)
2967{
2968 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2969 if (val >= 0) {
2970 dev_err(hsotg->dev,
2971 "'%d' invalid for parameter external_id_pin_ctl\n",
2972 val);
2973 dev_err(hsotg->dev, "external_id_pin_ctl must be 0 or 1\n");
2974 }
2975 val = 0;
2976 dev_dbg(hsotg->dev, "Setting external_id_pin_ctl to %d\n", val);
2977 }
2978
2979 hsotg->core_params->external_id_pin_ctl = val;
2980}
2981
285046aa
GH
2982static void dwc2_set_param_hibernation(struct dwc2_hsotg *hsotg,
2983 int val)
2984{
2985 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2986 if (val >= 0) {
2987 dev_err(hsotg->dev,
2988 "'%d' invalid for parameter hibernation\n",
2989 val);
2990 dev_err(hsotg->dev, "hibernation must be 0 or 1\n");
2991 }
2992 val = 0;
2993 dev_dbg(hsotg->dev, "Setting hibernation to %d\n", val);
2994 }
2995
2996 hsotg->core_params->hibernation = val;
2997}
2998
e8576e68
PZ
2999/*
3000 * This function is called during module intialization to pass module parameters
3001 * for the DWC_otg core.
3002 */
3003void dwc2_set_parameters(struct dwc2_hsotg *hsotg,
3004 const struct dwc2_core_params *params)
3005{
3006 dev_dbg(hsotg->dev, "%s()\n", __func__);
3007
3008 dwc2_set_param_otg_cap(hsotg, params->otg_cap);
3009 dwc2_set_param_dma_enable(hsotg, params->dma_enable);
3010 dwc2_set_param_dma_desc_enable(hsotg, params->dma_desc_enable);
3011 dwc2_set_param_host_support_fs_ls_low_power(hsotg,
3012 params->host_support_fs_ls_low_power);
3013 dwc2_set_param_enable_dynamic_fifo(hsotg,
3014 params->enable_dynamic_fifo);
3015 dwc2_set_param_host_rx_fifo_size(hsotg,
3016 params->host_rx_fifo_size);
3017 dwc2_set_param_host_nperio_tx_fifo_size(hsotg,
3018 params->host_nperio_tx_fifo_size);
3019 dwc2_set_param_host_perio_tx_fifo_size(hsotg,
3020 params->host_perio_tx_fifo_size);
3021 dwc2_set_param_max_transfer_size(hsotg,
3022 params->max_transfer_size);
3023 dwc2_set_param_max_packet_count(hsotg,
3024 params->max_packet_count);
3025 dwc2_set_param_host_channels(hsotg, params->host_channels);
3026 dwc2_set_param_phy_type(hsotg, params->phy_type);
3027 dwc2_set_param_speed(hsotg, params->speed);
3028 dwc2_set_param_host_ls_low_power_phy_clk(hsotg,
3029 params->host_ls_low_power_phy_clk);
3030 dwc2_set_param_phy_ulpi_ddr(hsotg, params->phy_ulpi_ddr);
3031 dwc2_set_param_phy_ulpi_ext_vbus(hsotg,
3032 params->phy_ulpi_ext_vbus);
3033 dwc2_set_param_phy_utmi_width(hsotg, params->phy_utmi_width);
3034 dwc2_set_param_ulpi_fs_ls(hsotg, params->ulpi_fs_ls);
3035 dwc2_set_param_ts_dline(hsotg, params->ts_dline);
3036 dwc2_set_param_i2c_enable(hsotg, params->i2c_enable);
3037 dwc2_set_param_en_multiple_tx_fifo(hsotg,
3038 params->en_multiple_tx_fifo);
3039 dwc2_set_param_reload_ctl(hsotg, params->reload_ctl);
3040 dwc2_set_param_ahbcfg(hsotg, params->ahbcfg);
3041 dwc2_set_param_otg_ver(hsotg, params->otg_ver);
3042 dwc2_set_param_uframe_sched(hsotg, params->uframe_sched);
a6d249d8 3043 dwc2_set_param_external_id_pin_ctl(hsotg, params->external_id_pin_ctl);
285046aa 3044 dwc2_set_param_hibernation(hsotg, params->hibernation);
e8576e68
PZ
3045}
3046
9badec2f
MK
3047/**
3048 * During device initialization, read various hardware configuration
3049 * registers and interpret the contents.
3050 */
3051int dwc2_get_hwparams(struct dwc2_hsotg *hsotg)
3052{
3053 struct dwc2_hw_params *hw = &hsotg->hw_params;
3054 unsigned width;
3055 u32 hwcfg1, hwcfg2, hwcfg3, hwcfg4;
3056 u32 hptxfsiz, grxfsiz, gnptxfsiz;
3057 u32 gusbcfg;
3058
3059 /*
3060 * Attempt to ensure this device is really a DWC_otg Controller.
3061 * Read and verify the GSNPSID register contents. The value should be
3062 * 0x45f42xxx or 0x45f43xxx, which corresponds to either "OT2" or "OT3",
3063 * as in "OTG version 2.xx" or "OTG version 3.xx".
3064 */
3065 hw->snpsid = readl(hsotg->regs + GSNPSID);
3066 if ((hw->snpsid & 0xfffff000) != 0x4f542000 &&
3067 (hw->snpsid & 0xfffff000) != 0x4f543000) {
3068 dev_err(hsotg->dev, "Bad value for GSNPSID: 0x%08x\n",
3069 hw->snpsid);
3070 return -ENODEV;
3071 }
3072
3073 dev_dbg(hsotg->dev, "Core Release: %1x.%1x%1x%1x (snpsid=%x)\n",
3074 hw->snpsid >> 12 & 0xf, hw->snpsid >> 8 & 0xf,
3075 hw->snpsid >> 4 & 0xf, hw->snpsid & 0xf, hw->snpsid);
3076
3077 hwcfg1 = readl(hsotg->regs + GHWCFG1);
3078 hwcfg2 = readl(hsotg->regs + GHWCFG2);
3079 hwcfg3 = readl(hsotg->regs + GHWCFG3);
3080 hwcfg4 = readl(hsotg->regs + GHWCFG4);
9badec2f
MK
3081 grxfsiz = readl(hsotg->regs + GRXFSIZ);
3082
3083 dev_dbg(hsotg->dev, "hwcfg1=%08x\n", hwcfg1);
3084 dev_dbg(hsotg->dev, "hwcfg2=%08x\n", hwcfg2);
3085 dev_dbg(hsotg->dev, "hwcfg3=%08x\n", hwcfg3);
3086 dev_dbg(hsotg->dev, "hwcfg4=%08x\n", hwcfg4);
9badec2f
MK
3087 dev_dbg(hsotg->dev, "grxfsiz=%08x\n", grxfsiz);
3088
2867c05d 3089 /* Force host mode to get HPTXFSIZ / GNPTXFSIZ exact power on value */
9badec2f
MK
3090 gusbcfg = readl(hsotg->regs + GUSBCFG);
3091 gusbcfg |= GUSBCFG_FORCEHOSTMODE;
3092 writel(gusbcfg, hsotg->regs + GUSBCFG);
3093 usleep_range(100000, 150000);
3094
2867c05d 3095 gnptxfsiz = readl(hsotg->regs + GNPTXFSIZ);
9badec2f 3096 hptxfsiz = readl(hsotg->regs + HPTXFSIZ);
2867c05d 3097 dev_dbg(hsotg->dev, "gnptxfsiz=%08x\n", gnptxfsiz);
9badec2f
MK
3098 dev_dbg(hsotg->dev, "hptxfsiz=%08x\n", hptxfsiz);
3099 gusbcfg = readl(hsotg->regs + GUSBCFG);
3100 gusbcfg &= ~GUSBCFG_FORCEHOSTMODE;
3101 writel(gusbcfg, hsotg->regs + GUSBCFG);
3102 usleep_range(100000, 150000);
3103
3104 /* hwcfg2 */
3105 hw->op_mode = (hwcfg2 & GHWCFG2_OP_MODE_MASK) >>
3106 GHWCFG2_OP_MODE_SHIFT;
3107 hw->arch = (hwcfg2 & GHWCFG2_ARCHITECTURE_MASK) >>
3108 GHWCFG2_ARCHITECTURE_SHIFT;
3109 hw->enable_dynamic_fifo = !!(hwcfg2 & GHWCFG2_DYNAMIC_FIFO);
3110 hw->host_channels = 1 + ((hwcfg2 & GHWCFG2_NUM_HOST_CHAN_MASK) >>
3111 GHWCFG2_NUM_HOST_CHAN_SHIFT);
3112 hw->hs_phy_type = (hwcfg2 & GHWCFG2_HS_PHY_TYPE_MASK) >>
3113 GHWCFG2_HS_PHY_TYPE_SHIFT;
3114 hw->fs_phy_type = (hwcfg2 & GHWCFG2_FS_PHY_TYPE_MASK) >>
3115 GHWCFG2_FS_PHY_TYPE_SHIFT;
3116 hw->num_dev_ep = (hwcfg2 & GHWCFG2_NUM_DEV_EP_MASK) >>
3117 GHWCFG2_NUM_DEV_EP_SHIFT;
3118 hw->nperio_tx_q_depth =
3119 (hwcfg2 & GHWCFG2_NONPERIO_TX_Q_DEPTH_MASK) >>
3120 GHWCFG2_NONPERIO_TX_Q_DEPTH_SHIFT << 1;
3121 hw->host_perio_tx_q_depth =
3122 (hwcfg2 & GHWCFG2_HOST_PERIO_TX_Q_DEPTH_MASK) >>
3123 GHWCFG2_HOST_PERIO_TX_Q_DEPTH_SHIFT << 1;
3124 hw->dev_token_q_depth =
3125 (hwcfg2 & GHWCFG2_DEV_TOKEN_Q_DEPTH_MASK) >>
3126 GHWCFG2_DEV_TOKEN_Q_DEPTH_SHIFT;
3127
3128 /* hwcfg3 */
3129 width = (hwcfg3 & GHWCFG3_XFER_SIZE_CNTR_WIDTH_MASK) >>
3130 GHWCFG3_XFER_SIZE_CNTR_WIDTH_SHIFT;
3131 hw->max_transfer_size = (1 << (width + 11)) - 1;
e8f8c14d
PZ
3132 /*
3133 * Clip max_transfer_size to 65535. dwc2_hc_setup_align_buf() allocates
3134 * coherent buffers with this size, and if it's too large we can
3135 * exhaust the coherent DMA pool.
3136 */
3137 if (hw->max_transfer_size > 65535)
3138 hw->max_transfer_size = 65535;
9badec2f
MK
3139 width = (hwcfg3 & GHWCFG3_PACKET_SIZE_CNTR_WIDTH_MASK) >>
3140 GHWCFG3_PACKET_SIZE_CNTR_WIDTH_SHIFT;
3141 hw->max_packet_count = (1 << (width + 4)) - 1;
3142 hw->i2c_enable = !!(hwcfg3 & GHWCFG3_I2C);
3143 hw->total_fifo_size = (hwcfg3 & GHWCFG3_DFIFO_DEPTH_MASK) >>
3144 GHWCFG3_DFIFO_DEPTH_SHIFT;
3145
3146 /* hwcfg4 */
3147 hw->en_multiple_tx_fifo = !!(hwcfg4 & GHWCFG4_DED_FIFO_EN);
3148 hw->num_dev_perio_in_ep = (hwcfg4 & GHWCFG4_NUM_DEV_PERIO_IN_EP_MASK) >>
3149 GHWCFG4_NUM_DEV_PERIO_IN_EP_SHIFT;
3150 hw->dma_desc_enable = !!(hwcfg4 & GHWCFG4_DESC_DMA);
3151 hw->power_optimized = !!(hwcfg4 & GHWCFG4_POWER_OPTIMIZ);
de4a1931
MK
3152 hw->utmi_phy_data_width = (hwcfg4 & GHWCFG4_UTMI_PHY_DATA_WIDTH_MASK) >>
3153 GHWCFG4_UTMI_PHY_DATA_WIDTH_SHIFT;
9badec2f
MK
3154
3155 /* fifo sizes */
3156 hw->host_rx_fifo_size = (grxfsiz & GRXFSIZ_DEPTH_MASK) >>
3157 GRXFSIZ_DEPTH_SHIFT;
3158 hw->host_nperio_tx_fifo_size = (gnptxfsiz & FIFOSIZE_DEPTH_MASK) >>
3159 FIFOSIZE_DEPTH_SHIFT;
3160 hw->host_perio_tx_fifo_size = (hptxfsiz & FIFOSIZE_DEPTH_MASK) >>
3161 FIFOSIZE_DEPTH_SHIFT;
3162
3163 dev_dbg(hsotg->dev, "Detected values from hardware:\n");
3164 dev_dbg(hsotg->dev, " op_mode=%d\n",
3165 hw->op_mode);
3166 dev_dbg(hsotg->dev, " arch=%d\n",
3167 hw->arch);
3168 dev_dbg(hsotg->dev, " dma_desc_enable=%d\n",
3169 hw->dma_desc_enable);
3170 dev_dbg(hsotg->dev, " power_optimized=%d\n",
3171 hw->power_optimized);
3172 dev_dbg(hsotg->dev, " i2c_enable=%d\n",
3173 hw->i2c_enable);
3174 dev_dbg(hsotg->dev, " hs_phy_type=%d\n",
3175 hw->hs_phy_type);
3176 dev_dbg(hsotg->dev, " fs_phy_type=%d\n",
3177 hw->fs_phy_type);
de4a1931
MK
3178 dev_dbg(hsotg->dev, " utmi_phy_data_wdith=%d\n",
3179 hw->utmi_phy_data_width);
9badec2f
MK
3180 dev_dbg(hsotg->dev, " num_dev_ep=%d\n",
3181 hw->num_dev_ep);
3182 dev_dbg(hsotg->dev, " num_dev_perio_in_ep=%d\n",
3183 hw->num_dev_perio_in_ep);
3184 dev_dbg(hsotg->dev, " host_channels=%d\n",
3185 hw->host_channels);
3186 dev_dbg(hsotg->dev, " max_transfer_size=%d\n",
3187 hw->max_transfer_size);
3188 dev_dbg(hsotg->dev, " max_packet_count=%d\n",
3189 hw->max_packet_count);
3190 dev_dbg(hsotg->dev, " nperio_tx_q_depth=0x%0x\n",
3191 hw->nperio_tx_q_depth);
3192 dev_dbg(hsotg->dev, " host_perio_tx_q_depth=0x%0x\n",
3193 hw->host_perio_tx_q_depth);
3194 dev_dbg(hsotg->dev, " dev_token_q_depth=0x%0x\n",
3195 hw->dev_token_q_depth);
3196 dev_dbg(hsotg->dev, " enable_dynamic_fifo=%d\n",
3197 hw->enable_dynamic_fifo);
3198 dev_dbg(hsotg->dev, " en_multiple_tx_fifo=%d\n",
3199 hw->en_multiple_tx_fifo);
3200 dev_dbg(hsotg->dev, " total_fifo_size=%d\n",
3201 hw->total_fifo_size);
3202 dev_dbg(hsotg->dev, " host_rx_fifo_size=%d\n",
3203 hw->host_rx_fifo_size);
3204 dev_dbg(hsotg->dev, " host_nperio_tx_fifo_size=%d\n",
3205 hw->host_nperio_tx_fifo_size);
3206 dev_dbg(hsotg->dev, " host_perio_tx_fifo_size=%d\n",
3207 hw->host_perio_tx_fifo_size);
3208 dev_dbg(hsotg->dev, "\n");
3209
3210 return 0;
3211}
ecb176c6
MYK
3212
3213/*
3214 * Sets all parameters to the given value.
3215 *
3216 * Assumes that the dwc2_core_params struct contains only integers.
3217 */
3218void dwc2_set_all_params(struct dwc2_core_params *params, int value)
3219{
3220 int *p = (int *)params;
3221 size_t size = sizeof(*params) / sizeof(*p);
3222 int i;
3223
3224 for (i = 0; i < size; i++)
3225 p[i] = value;
3226}
ecb176c6 3227
9badec2f 3228
56f5b1cf
PZ
3229u16 dwc2_get_otg_version(struct dwc2_hsotg *hsotg)
3230{
b66a3f05 3231 return hsotg->core_params->otg_ver == 1 ? 0x0200 : 0x0103;
56f5b1cf
PZ
3232}
3233
057715f2 3234bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg)
56f5b1cf
PZ
3235{
3236 if (readl(hsotg->regs + GSNPSID) == 0xffffffff)
057715f2 3237 return false;
56f5b1cf 3238 else
057715f2 3239 return true;
56f5b1cf
PZ
3240}
3241
3242/**
3243 * dwc2_enable_global_interrupts() - Enables the controller's Global
3244 * Interrupt in the AHB Config register
3245 *
3246 * @hsotg: Programming view of DWC_otg controller
3247 */
3248void dwc2_enable_global_interrupts(struct dwc2_hsotg *hsotg)
3249{
3250 u32 ahbcfg = readl(hsotg->regs + GAHBCFG);
3251
3252 ahbcfg |= GAHBCFG_GLBL_INTR_EN;
3253 writel(ahbcfg, hsotg->regs + GAHBCFG);
3254}
3255
3256/**
3257 * dwc2_disable_global_interrupts() - Disables the controller's Global
3258 * Interrupt in the AHB Config register
3259 *
3260 * @hsotg: Programming view of DWC_otg controller
3261 */
3262void dwc2_disable_global_interrupts(struct dwc2_hsotg *hsotg)
3263{
3264 u32 ahbcfg = readl(hsotg->regs + GAHBCFG);
3265
3266 ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
3267 writel(ahbcfg, hsotg->regs + GAHBCFG);
3268}
3269
3270MODULE_DESCRIPTION("DESIGNWARE HS OTG Core");
3271MODULE_AUTHOR("Synopsys, Inc.");
3272MODULE_LICENSE("Dual BSD/GPL");
This page took 0.338078 seconds and 5 git commands to generate.