Merge remote-tracking branch 'usb/usb-next'
[deliverable/linux.git] / drivers / usb / storage / alauda.c
CommitLineData
e80b0fad
MD
1/*
2 * Driver for Alauda-based card readers
3 *
4 * Current development and maintenance by:
5 * (c) 2005 Daniel Drake <dsd@gentoo.org>
6 *
7 * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
8 *
9 * Alauda implements a vendor-specific command set to access two media reader
10 * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
11 * which are accepted by these devices.
12 *
13 * The driver was developed through reverse-engineering, with the help of the
14 * sddr09 driver which has many similarities, and with some help from the
15 * (very old) vendor-supplied GPL sma03 driver.
16 *
17 * For protocol info, see http://alauda.sourceforge.net
18 *
19 * This program is free software; you can redistribute it and/or modify it
20 * under the terms of the GNU General Public License as published by the
21 * Free Software Foundation; either version 2, or (at your option) any
22 * later version.
23 *
24 * This program is distributed in the hope that it will be useful, but
25 * WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 * General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
a74bba3b 34#include <linux/module.h>
5a0e3ad6 35#include <linux/slab.h>
a74bba3b 36
e80b0fad
MD
37#include <scsi/scsi.h>
38#include <scsi/scsi_cmnd.h>
39#include <scsi/scsi_device.h>
40
41#include "usb.h"
42#include "transport.h"
43#include "protocol.h"
44#include "debug.h"
aa519be3
AM
45#include "scsiglue.h"
46
47#define DRV_NAME "ums-alauda"
a74bba3b 48
4246b06a
MG
49MODULE_DESCRIPTION("Driver for Alauda-based card readers");
50MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
51MODULE_LICENSE("GPL");
52
a74bba3b
AS
53/*
54 * Status bytes
55 */
56#define ALAUDA_STATUS_ERROR 0x01
57#define ALAUDA_STATUS_READY 0x40
58
59/*
60 * Control opcodes (for request field)
61 */
62#define ALAUDA_GET_XD_MEDIA_STATUS 0x08
63#define ALAUDA_GET_SM_MEDIA_STATUS 0x98
64#define ALAUDA_ACK_XD_MEDIA_CHANGE 0x0a
65#define ALAUDA_ACK_SM_MEDIA_CHANGE 0x9a
66#define ALAUDA_GET_XD_MEDIA_SIG 0x86
67#define ALAUDA_GET_SM_MEDIA_SIG 0x96
68
69/*
70 * Bulk command identity (byte 0)
71 */
72#define ALAUDA_BULK_CMD 0x40
73
74/*
75 * Bulk opcodes (byte 1)
76 */
77#define ALAUDA_BULK_GET_REDU_DATA 0x85
78#define ALAUDA_BULK_READ_BLOCK 0x94
79#define ALAUDA_BULK_ERASE_BLOCK 0xa3
80#define ALAUDA_BULK_WRITE_BLOCK 0xb4
81#define ALAUDA_BULK_GET_STATUS2 0xb7
82#define ALAUDA_BULK_RESET_MEDIA 0xe0
83
84/*
85 * Port to operate on (byte 8)
86 */
87#define ALAUDA_PORT_XD 0x00
88#define ALAUDA_PORT_SM 0x01
89
90/*
91 * LBA and PBA are unsigned ints. Special values.
92 */
93#define UNDEF 0xffff
94#define SPARE 0xfffe
95#define UNUSABLE 0xfffd
96
97struct alauda_media_info {
98 unsigned long capacity; /* total media size in bytes */
99 unsigned int pagesize; /* page size in bytes */
100 unsigned int blocksize; /* number of pages per block */
101 unsigned int uzonesize; /* number of usable blocks per zone */
102 unsigned int zonesize; /* number of blocks per zone */
103 unsigned int blockmask; /* mask to get page from address */
104
105 unsigned char pageshift;
106 unsigned char blockshift;
107 unsigned char zoneshift;
108
109 u16 **lba_to_pba; /* logical to physical block map */
110 u16 **pba_to_lba; /* physical to logical block map */
111};
112
113struct alauda_info {
114 struct alauda_media_info port[2];
115 int wr_ep; /* endpoint to write data out of */
116
117 unsigned char sense_key;
118 unsigned long sense_asc; /* additional sense code */
119 unsigned long sense_ascq; /* additional sense code qualifier */
120};
e80b0fad
MD
121
122#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
123#define LSB_of(s) ((s)&0xFF)
124#define MSB_of(s) ((s)>>8)
125
126#define MEDIA_PORT(us) us->srb->device->lun
127#define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
128
129#define PBA_LO(pba) ((pba & 0xF) << 5)
130#define PBA_HI(pba) (pba >> 3)
131#define PBA_ZONE(pba) (pba >> 11)
132
a74bba3b
AS
133static int init_alauda(struct us_data *us);
134
135
136/*
137 * The table of devices
138 */
139#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
140 vendorName, productName, useProtocol, useTransport, \
141 initFunction, flags) \
142{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
f61870ee 143 .driver_info = (flags) }
a74bba3b 144
3358be9a 145static struct usb_device_id alauda_usb_ids[] = {
a74bba3b
AS
146# include "unusual_alauda.h"
147 { } /* Terminating entry */
148};
149MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
150
151#undef UNUSUAL_DEV
152
153/*
154 * The flags table
155 */
156#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
157 vendor_name, product_name, use_protocol, use_transport, \
158 init_function, Flags) \
159{ \
160 .vendorName = vendor_name, \
161 .productName = product_name, \
162 .useProtocol = use_protocol, \
163 .useTransport = use_transport, \
164 .initFunction = init_function, \
165}
166
167static struct us_unusual_dev alauda_unusual_dev_list[] = {
168# include "unusual_alauda.h"
169 { } /* Terminating entry */
170};
171
172#undef UNUSUAL_DEV
173
174
e80b0fad
MD
175/*
176 * Media handling
177 */
178
179struct alauda_card_info {
180 unsigned char id; /* id byte */
181 unsigned char chipshift; /* 1<<cs bytes total capacity */
182 unsigned char pageshift; /* 1<<ps bytes in a page */
183 unsigned char blockshift; /* 1<<bs pages per block */
184 unsigned char zoneshift; /* 1<<zs blocks per zone */
185};
186
187static struct alauda_card_info alauda_card_ids[] = {
188 /* NAND flash */
189 { 0x6e, 20, 8, 4, 8}, /* 1 MB */
190 { 0xe8, 20, 8, 4, 8}, /* 1 MB */
191 { 0xec, 20, 8, 4, 8}, /* 1 MB */
192 { 0x64, 21, 8, 4, 9}, /* 2 MB */
193 { 0xea, 21, 8, 4, 9}, /* 2 MB */
194 { 0x6b, 22, 9, 4, 9}, /* 4 MB */
195 { 0xe3, 22, 9, 4, 9}, /* 4 MB */
196 { 0xe5, 22, 9, 4, 9}, /* 4 MB */
197 { 0xe6, 23, 9, 4, 10}, /* 8 MB */
198 { 0x73, 24, 9, 5, 10}, /* 16 MB */
199 { 0x75, 25, 9, 5, 10}, /* 32 MB */
200 { 0x76, 26, 9, 5, 10}, /* 64 MB */
201 { 0x79, 27, 9, 5, 10}, /* 128 MB */
202 { 0x71, 28, 9, 5, 10}, /* 256 MB */
203
204 /* MASK ROM */
205 { 0x5d, 21, 9, 4, 8}, /* 2 MB */
206 { 0xd5, 22, 9, 4, 9}, /* 4 MB */
207 { 0xd6, 23, 9, 4, 10}, /* 8 MB */
208 { 0x57, 24, 9, 4, 11}, /* 16 MB */
209 { 0x58, 25, 9, 4, 12}, /* 32 MB */
210 { 0,}
211};
212
0de84696
BP
213static struct alauda_card_info *alauda_card_find_id(unsigned char id)
214{
e80b0fad
MD
215 int i;
216
217 for (i = 0; alauda_card_ids[i].id != 0; i++)
218 if (alauda_card_ids[i].id == id)
219 return &(alauda_card_ids[i]);
220 return NULL;
221}
222
223/*
224 * ECC computation.
225 */
226
227static unsigned char parity[256];
228static unsigned char ecc2[256];
229
0de84696
BP
230static void nand_init_ecc(void)
231{
e80b0fad
MD
232 int i, j, a;
233
234 parity[0] = 0;
235 for (i = 1; i < 256; i++)
236 parity[i] = (parity[i&(i-1)] ^ 1);
237
238 for (i = 0; i < 256; i++) {
239 a = 0;
240 for (j = 0; j < 8; j++) {
241 if (i & (1<<j)) {
242 if ((j & 1) == 0)
243 a ^= 0x04;
244 if ((j & 2) == 0)
245 a ^= 0x10;
246 if ((j & 4) == 0)
247 a ^= 0x40;
248 }
249 }
250 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
251 }
252}
253
254/* compute 3-byte ecc on 256 bytes */
0de84696
BP
255static void nand_compute_ecc(unsigned char *data, unsigned char *ecc)
256{
e80b0fad 257 int i, j, a;
6523f6d2 258 unsigned char par = 0, bit, bits[8] = {0};
e80b0fad
MD
259
260 /* collect 16 checksum bits */
261 for (i = 0; i < 256; i++) {
262 par ^= data[i];
263 bit = parity[data[i]];
264 for (j = 0; j < 8; j++)
265 if ((i & (1<<j)) == 0)
266 bits[j] ^= bit;
267 }
268
269 /* put 4+4+4 = 12 bits in the ecc */
270 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
271 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
272
273 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
274 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
275
276 ecc[2] = ecc2[par];
277}
278
0de84696
BP
279static int nand_compare_ecc(unsigned char *data, unsigned char *ecc)
280{
e80b0fad
MD
281 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
282}
283
0de84696
BP
284static void nand_store_ecc(unsigned char *data, unsigned char *ecc)
285{
e80b0fad
MD
286 memcpy(data, ecc, 3);
287}
288
289/*
290 * Alauda driver
291 */
292
293/*
294 * Forget our PBA <---> LBA mappings for a particular port
295 */
296static void alauda_free_maps (struct alauda_media_info *media_info)
297{
298 unsigned int shift = media_info->zoneshift
299 + media_info->blockshift + media_info->pageshift;
300 unsigned int num_zones = media_info->capacity >> shift;
301 unsigned int i;
302
303 if (media_info->lba_to_pba != NULL)
304 for (i = 0; i < num_zones; i++) {
305 kfree(media_info->lba_to_pba[i]);
306 media_info->lba_to_pba[i] = NULL;
307 }
308
309 if (media_info->pba_to_lba != NULL)
310 for (i = 0; i < num_zones; i++) {
311 kfree(media_info->pba_to_lba[i]);
312 media_info->pba_to_lba[i] = NULL;
313 }
314}
315
316/*
317 * Returns 2 bytes of status data
318 * The first byte describes media status, and second byte describes door status
319 */
320static int alauda_get_media_status(struct us_data *us, unsigned char *data)
321{
322 int rc;
323 unsigned char command;
324
325 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
326 command = ALAUDA_GET_XD_MEDIA_STATUS;
327 else
328 command = ALAUDA_GET_SM_MEDIA_STATUS;
329
330 rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
331 command, 0xc0, 0, 1, data, 2);
332
191648d0 333 usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]);
e80b0fad
MD
334
335 return rc;
336}
337
338/*
339 * Clears the "media was changed" bit so that we know when it changes again
340 * in the future.
341 */
342static int alauda_ack_media(struct us_data *us)
343{
344 unsigned char command;
345
346 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
347 command = ALAUDA_ACK_XD_MEDIA_CHANGE;
348 else
349 command = ALAUDA_ACK_SM_MEDIA_CHANGE;
350
351 return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
352 command, 0x40, 0, 1, NULL, 0);
353}
354
355/*
356 * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
357 * and some other details.
358 */
359static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
360{
361 unsigned char command;
362
363 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
364 command = ALAUDA_GET_XD_MEDIA_SIG;
365 else
366 command = ALAUDA_GET_SM_MEDIA_SIG;
367
368 return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
369 command, 0xc0, 0, 0, data, 4);
370}
371
372/*
373 * Resets the media status (but not the whole device?)
374 */
375static int alauda_reset_media(struct us_data *us)
376{
377 unsigned char *command = us->iobuf;
378
379 memset(command, 0, 9);
380 command[0] = ALAUDA_BULK_CMD;
381 command[1] = ALAUDA_BULK_RESET_MEDIA;
382 command[8] = MEDIA_PORT(us);
383
384 return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
385 command, 9, NULL);
386}
387
388/*
389 * Examines the media and deduces capacity, etc.
390 */
391static int alauda_init_media(struct us_data *us)
392{
393 unsigned char *data = us->iobuf;
394 int ready = 0;
395 struct alauda_card_info *media_info;
396 unsigned int num_zones;
397
398 while (ready == 0) {
399 msleep(20);
400
401 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
402 return USB_STOR_TRANSPORT_ERROR;
403
404 if (data[0] & 0x10)
405 ready = 1;
406 }
407
191648d0 408 usb_stor_dbg(us, "We are ready for action!\n");
e80b0fad
MD
409
410 if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
411 return USB_STOR_TRANSPORT_ERROR;
412
413 msleep(10);
414
415 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
416 return USB_STOR_TRANSPORT_ERROR;
417
418 if (data[0] != 0x14) {
191648d0 419 usb_stor_dbg(us, "Media not ready after ack\n");
e80b0fad
MD
420 return USB_STOR_TRANSPORT_ERROR;
421 }
422
423 if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
424 return USB_STOR_TRANSPORT_ERROR;
425
7adce467 426 usb_stor_dbg(us, "Media signature: %4ph\n", data);
e80b0fad
MD
427 media_info = alauda_card_find_id(data[1]);
428 if (media_info == NULL) {
7adce467
AS
429 pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n",
430 data);
e80b0fad
MD
431 return USB_STOR_TRANSPORT_ERROR;
432 }
433
434 MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
191648d0
JP
435 usb_stor_dbg(us, "Found media with capacity: %ldMB\n",
436 MEDIA_INFO(us).capacity >> 20);
e80b0fad
MD
437
438 MEDIA_INFO(us).pageshift = media_info->pageshift;
439 MEDIA_INFO(us).blockshift = media_info->blockshift;
440 MEDIA_INFO(us).zoneshift = media_info->zoneshift;
441
442 MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
443 MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
444 MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
445
446 MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
447 MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
448
449 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
450 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
451 MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
452 MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
453
454 if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
455 return USB_STOR_TRANSPORT_ERROR;
456
457 return USB_STOR_TRANSPORT_GOOD;
458}
459
460/*
461 * Examines the media status and does the right thing when the media has gone,
462 * appeared, or changed.
463 */
464static int alauda_check_media(struct us_data *us)
465{
466 struct alauda_info *info = (struct alauda_info *) us->extra;
467 unsigned char status[2];
468 int rc;
469
470 rc = alauda_get_media_status(us, status);
471
472 /* Check for no media or door open */
473 if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
474 || ((status[1] & 0x01) == 0)) {
191648d0 475 usb_stor_dbg(us, "No media, or door open\n");
e80b0fad
MD
476 alauda_free_maps(&MEDIA_INFO(us));
477 info->sense_key = 0x02;
478 info->sense_asc = 0x3A;
479 info->sense_ascq = 0x00;
480 return USB_STOR_TRANSPORT_FAILED;
481 }
482
483 /* Check for media change */
484 if (status[0] & 0x08) {
191648d0 485 usb_stor_dbg(us, "Media change detected\n");
e80b0fad
MD
486 alauda_free_maps(&MEDIA_INFO(us));
487 alauda_init_media(us);
488
489 info->sense_key = UNIT_ATTENTION;
490 info->sense_asc = 0x28;
491 info->sense_ascq = 0x00;
492 return USB_STOR_TRANSPORT_FAILED;
493 }
494
495 return USB_STOR_TRANSPORT_GOOD;
496}
497
498/*
499 * Checks the status from the 2nd status register
500 * Returns 3 bytes of status data, only the first is known
501 */
502static int alauda_check_status2(struct us_data *us)
503{
504 int rc;
505 unsigned char command[] = {
506 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
507 0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
508 };
509 unsigned char data[3];
510
511 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
512 command, 9, NULL);
513 if (rc != USB_STOR_XFER_GOOD)
514 return rc;
515
516 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
517 data, 3, NULL);
518 if (rc != USB_STOR_XFER_GOOD)
519 return rc;
520
7adce467 521 usb_stor_dbg(us, "%3ph\n", data);
e80b0fad
MD
522 if (data[0] & ALAUDA_STATUS_ERROR)
523 return USB_STOR_XFER_ERROR;
524
525 return USB_STOR_XFER_GOOD;
526}
527
528/*
529 * Gets the redundancy data for the first page of a PBA
530 * Returns 16 bytes.
531 */
532static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
533{
534 int rc;
535 unsigned char command[] = {
536 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
537 PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
538 };
539
540 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
541 command, 9, NULL);
542 if (rc != USB_STOR_XFER_GOOD)
543 return rc;
544
545 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
546 data, 16, NULL);
547}
548
549/*
550 * Finds the first unused PBA in a zone
551 * Returns the absolute PBA of an unused PBA, or 0 if none found.
552 */
553static u16 alauda_find_unused_pba(struct alauda_media_info *info,
554 unsigned int zone)
555{
556 u16 *pba_to_lba = info->pba_to_lba[zone];
557 unsigned int i;
558
559 for (i = 0; i < info->zonesize; i++)
560 if (pba_to_lba[i] == UNDEF)
561 return (zone << info->zoneshift) + i;
562
563 return 0;
564}
565
566/*
567 * Reads the redundancy data for all PBA's in a zone
568 * Produces lba <--> pba mappings
569 */
570static int alauda_read_map(struct us_data *us, unsigned int zone)
571{
572 unsigned char *data = us->iobuf;
573 int result;
574 int i, j;
575 unsigned int zonesize = MEDIA_INFO(us).zonesize;
576 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
577 unsigned int lba_offset, lba_real, blocknum;
578 unsigned int zone_base_lba = zone * uzonesize;
579 unsigned int zone_base_pba = zone * zonesize;
580 u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
581 u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
582 if (lba_to_pba == NULL || pba_to_lba == NULL) {
583 result = USB_STOR_TRANSPORT_ERROR;
584 goto error;
585 }
586
191648d0 587 usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone);
e80b0fad
MD
588
589 /* 1024 PBA's per zone */
590 for (i = 0; i < zonesize; i++)
591 lba_to_pba[i] = pba_to_lba[i] = UNDEF;
592
593 for (i = 0; i < zonesize; i++) {
594 blocknum = zone_base_pba + i;
595
596 result = alauda_get_redu_data(us, blocknum, data);
597 if (result != USB_STOR_XFER_GOOD) {
598 result = USB_STOR_TRANSPORT_ERROR;
599 goto error;
600 }
601
602 /* special PBAs have control field 0^16 */
603 for (j = 0; j < 16; j++)
604 if (data[j] != 0)
605 goto nonz;
606 pba_to_lba[i] = UNUSABLE;
191648d0 607 usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum);
e80b0fad
MD
608 continue;
609
610 nonz:
611 /* unwritten PBAs have control field FF^16 */
612 for (j = 0; j < 16; j++)
613 if (data[j] != 0xff)
614 goto nonff;
615 continue;
616
617 nonff:
618 /* normal PBAs start with six FFs */
619 if (j < 6) {
191648d0
JP
620 usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n",
621 blocknum,
622 data[0], data[1], data[2], data[3],
623 data[4], data[5]);
e80b0fad
MD
624 pba_to_lba[i] = UNUSABLE;
625 continue;
626 }
627
628 if ((data[6] >> 4) != 0x01) {
191648d0
JP
629 usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n",
630 blocknum, data[6], data[7],
631 data[11], data[12]);
e80b0fad
MD
632 pba_to_lba[i] = UNUSABLE;
633 continue;
634 }
635
636 /* check even parity */
637 if (parity[data[6] ^ data[7]]) {
6f8aa65b
FS
638 printk(KERN_WARNING
639 "alauda_read_map: Bad parity in LBA for block %d"
e80b0fad
MD
640 " (%02X %02X)\n", i, data[6], data[7]);
641 pba_to_lba[i] = UNUSABLE;
642 continue;
643 }
644
645 lba_offset = short_pack(data[7], data[6]);
646 lba_offset = (lba_offset & 0x07FF) >> 1;
647 lba_real = lba_offset + zone_base_lba;
648
649 /*
650 * Every 1024 physical blocks ("zone"), the LBA numbers
651 * go back to zero, but are within a higher block of LBA's.
652 * Also, there is a maximum of 1000 LBA's per zone.
653 * In other words, in PBA 1024-2047 you will find LBA 0-999
654 * which are really LBA 1000-1999. This allows for 24 bad
655 * or special physical blocks per zone.
656 */
657
658 if (lba_offset >= uzonesize) {
6f8aa65b
FS
659 printk(KERN_WARNING
660 "alauda_read_map: Bad low LBA %d for block %d\n",
e80b0fad
MD
661 lba_real, blocknum);
662 continue;
663 }
664
665 if (lba_to_pba[lba_offset] != UNDEF) {
6f8aa65b
FS
666 printk(KERN_WARNING
667 "alauda_read_map: "
668 "LBA %d seen for PBA %d and %d\n",
e80b0fad
MD
669 lba_real, lba_to_pba[lba_offset], blocknum);
670 continue;
671 }
672
673 pba_to_lba[i] = lba_real;
674 lba_to_pba[lba_offset] = blocknum;
675 continue;
676 }
677
678 MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
679 MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
680 result = 0;
681 goto out;
682
683error:
684 kfree(lba_to_pba);
685 kfree(pba_to_lba);
686out:
687 return result;
688}
689
690/*
691 * Checks to see whether we have already mapped a certain zone
692 * If we haven't, the map is generated
693 */
694static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
695{
696 if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
697 || MEDIA_INFO(us).pba_to_lba[zone] == NULL)
698 alauda_read_map(us, zone);
699}
700
701/*
702 * Erases an entire block
703 */
704static int alauda_erase_block(struct us_data *us, u16 pba)
705{
706 int rc;
707 unsigned char command[] = {
708 ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
709 PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
710 };
711 unsigned char buf[2];
712
191648d0 713 usb_stor_dbg(us, "Erasing PBA %d\n", pba);
e80b0fad
MD
714
715 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
716 command, 9, NULL);
717 if (rc != USB_STOR_XFER_GOOD)
718 return rc;
719
720 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
721 buf, 2, NULL);
722 if (rc != USB_STOR_XFER_GOOD)
723 return rc;
724
191648d0 725 usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]);
e80b0fad
MD
726 return rc;
727}
728
729/*
730 * Reads data from a certain offset page inside a PBA, including interleaved
731 * redundancy data. Returns (pagesize+64)*pages bytes in data.
732 */
733static int alauda_read_block_raw(struct us_data *us, u16 pba,
734 unsigned int page, unsigned int pages, unsigned char *data)
735{
736 int rc;
737 unsigned char command[] = {
738 ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
739 PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
740 };
741
191648d0 742 usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages);
e80b0fad
MD
743
744 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
745 command, 9, NULL);
746 if (rc != USB_STOR_XFER_GOOD)
747 return rc;
748
749 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
750 data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
751}
752
753/*
754 * Reads data from a certain offset page inside a PBA, excluding redundancy
755 * data. Returns pagesize*pages bytes in data. Note that data must be big enough
756 * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
757 * trailing bytes outside this function.
758 */
759static int alauda_read_block(struct us_data *us, u16 pba,
760 unsigned int page, unsigned int pages, unsigned char *data)
761{
762 int i, rc;
763 unsigned int pagesize = MEDIA_INFO(us).pagesize;
764
765 rc = alauda_read_block_raw(us, pba, page, pages, data);
766 if (rc != USB_STOR_XFER_GOOD)
767 return rc;
768
769 /* Cut out the redundancy data */
770 for (i = 0; i < pages; i++) {
771 int dest_offset = i * pagesize;
772 int src_offset = i * (pagesize + 64);
773 memmove(data + dest_offset, data + src_offset, pagesize);
774 }
775
776 return rc;
777}
778
779/*
780 * Writes an entire block of data and checks status after write.
781 * Redundancy data must be already included in data. Data should be
782 * (pagesize+64)*blocksize bytes in length.
783 */
784static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
785{
786 int rc;
787 struct alauda_info *info = (struct alauda_info *) us->extra;
788 unsigned char command[] = {
789 ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
790 PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
791 };
792
191648d0 793 usb_stor_dbg(us, "pba %d\n", pba);
e80b0fad
MD
794
795 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
796 command, 9, NULL);
797 if (rc != USB_STOR_XFER_GOOD)
798 return rc;
799
800 rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
801 (MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
802 NULL);
803 if (rc != USB_STOR_XFER_GOOD)
804 return rc;
805
806 return alauda_check_status2(us);
807}
808
809/*
810 * Write some data to a specific LBA.
811 */
812static int alauda_write_lba(struct us_data *us, u16 lba,
813 unsigned int page, unsigned int pages,
814 unsigned char *ptr, unsigned char *blockbuffer)
815{
816 u16 pba, lbap, new_pba;
817 unsigned char *bptr, *cptr, *xptr;
818 unsigned char ecc[3];
819 int i, result;
820 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
821 unsigned int zonesize = MEDIA_INFO(us).zonesize;
822 unsigned int pagesize = MEDIA_INFO(us).pagesize;
823 unsigned int blocksize = MEDIA_INFO(us).blocksize;
824 unsigned int lba_offset = lba % uzonesize;
825 unsigned int new_pba_offset;
826 unsigned int zone = lba / uzonesize;
827
828 alauda_ensure_map_for_zone(us, zone);
829
830 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
831 if (pba == 1) {
f0183a33
FB
832 /*
833 * Maybe it is impossible to write to PBA 1.
834 * Fake success, but don't do anything.
835 */
6f8aa65b
FS
836 printk(KERN_WARNING
837 "alauda_write_lba: avoid writing to pba 1\n");
e80b0fad
MD
838 return USB_STOR_TRANSPORT_GOOD;
839 }
840
841 new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
842 if (!new_pba) {
6f8aa65b
FS
843 printk(KERN_WARNING
844 "alauda_write_lba: Out of unused blocks\n");
e80b0fad
MD
845 return USB_STOR_TRANSPORT_ERROR;
846 }
847
848 /* read old contents */
849 if (pba != UNDEF) {
850 result = alauda_read_block_raw(us, pba, 0,
851 blocksize, blockbuffer);
852 if (result != USB_STOR_XFER_GOOD)
853 return result;
854 } else {
855 memset(blockbuffer, 0, blocksize * (pagesize + 64));
856 }
857
858 lbap = (lba_offset << 1) | 0x1000;
859 if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
860 lbap ^= 1;
861
862 /* check old contents and fill lba */
863 for (i = 0; i < blocksize; i++) {
864 bptr = blockbuffer + (i * (pagesize + 64));
865 cptr = bptr + pagesize;
866 nand_compute_ecc(bptr, ecc);
867 if (!nand_compare_ecc(cptr+13, ecc)) {
191648d0
JP
868 usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
869 i, pba);
e80b0fad
MD
870 nand_store_ecc(cptr+13, ecc);
871 }
872 nand_compute_ecc(bptr + (pagesize / 2), ecc);
873 if (!nand_compare_ecc(cptr+8, ecc)) {
191648d0
JP
874 usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
875 i, pba);
e80b0fad
MD
876 nand_store_ecc(cptr+8, ecc);
877 }
878 cptr[6] = cptr[11] = MSB_of(lbap);
879 cptr[7] = cptr[12] = LSB_of(lbap);
880 }
881
882 /* copy in new stuff and compute ECC */
883 xptr = ptr;
884 for (i = page; i < page+pages; i++) {
885 bptr = blockbuffer + (i * (pagesize + 64));
886 cptr = bptr + pagesize;
887 memcpy(bptr, xptr, pagesize);
888 xptr += pagesize;
889 nand_compute_ecc(bptr, ecc);
890 nand_store_ecc(cptr+13, ecc);
891 nand_compute_ecc(bptr + (pagesize / 2), ecc);
892 nand_store_ecc(cptr+8, ecc);
893 }
894
895 result = alauda_write_block(us, new_pba, blockbuffer);
896 if (result != USB_STOR_XFER_GOOD)
897 return result;
898
899 new_pba_offset = new_pba - (zone * zonesize);
900 MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
901 MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
191648d0 902 usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba);
e80b0fad
MD
903
904 if (pba != UNDEF) {
905 unsigned int pba_offset = pba - (zone * zonesize);
906 result = alauda_erase_block(us, pba);
907 if (result != USB_STOR_XFER_GOOD)
908 return result;
909 MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
910 }
911
912 return USB_STOR_TRANSPORT_GOOD;
913}
914
915/*
916 * Read data from a specific sector address
917 */
918static int alauda_read_data(struct us_data *us, unsigned long address,
919 unsigned int sectors)
920{
921 unsigned char *buffer;
922 u16 lba, max_lba;
1f6f31a0 923 unsigned int page, len, offset;
e80b0fad
MD
924 unsigned int blockshift = MEDIA_INFO(us).blockshift;
925 unsigned int pageshift = MEDIA_INFO(us).pageshift;
926 unsigned int blocksize = MEDIA_INFO(us).blocksize;
927 unsigned int pagesize = MEDIA_INFO(us).pagesize;
928 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
1f6f31a0 929 struct scatterlist *sg;
e80b0fad
MD
930 int result;
931
932 /*
933 * Since we only read in one block at a time, we have to create
934 * a bounce buffer and move the data a piece at a time between the
935 * bounce buffer and the actual transfer buffer.
936 * We make this buffer big enough to hold temporary redundancy data,
937 * which we use when reading the data blocks.
938 */
939
940 len = min(sectors, blocksize) * (pagesize + 64);
941 buffer = kmalloc(len, GFP_NOIO);
e5cdac92 942 if (!buffer)
e80b0fad 943 return USB_STOR_TRANSPORT_ERROR;
e80b0fad
MD
944
945 /* Figure out the initial LBA and page */
946 lba = address >> blockshift;
947 page = (address & MEDIA_INFO(us).blockmask);
948 max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
949
950 result = USB_STOR_TRANSPORT_GOOD;
1f6f31a0
JA
951 offset = 0;
952 sg = NULL;
e80b0fad
MD
953
954 while (sectors > 0) {
955 unsigned int zone = lba / uzonesize; /* integer division */
956 unsigned int lba_offset = lba - (zone * uzonesize);
957 unsigned int pages;
958 u16 pba;
959 alauda_ensure_map_for_zone(us, zone);
960
961 /* Not overflowing capacity? */
962 if (lba >= max_lba) {
191648d0
JP
963 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
964 lba, max_lba);
e80b0fad
MD
965 result = USB_STOR_TRANSPORT_ERROR;
966 break;
967 }
968
969 /* Find number of pages we can read in this block */
970 pages = min(sectors, blocksize - page);
971 len = pages << pageshift;
972
973 /* Find where this lba lives on disk */
974 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
975
976 if (pba == UNDEF) { /* this lba was never written */
191648d0
JP
977 usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
978 pages, lba, page);
e80b0fad 979
f0183a33
FB
980 /*
981 * This is not really an error. It just means
982 * that the block has never been written.
983 * Instead of returning USB_STOR_TRANSPORT_ERROR
984 * it is better to return all zero data.
985 */
e80b0fad
MD
986
987 memset(buffer, 0, len);
988 } else {
191648d0
JP
989 usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
990 pages, pba, lba, page);
e80b0fad
MD
991
992 result = alauda_read_block(us, pba, page, pages, buffer);
993 if (result != USB_STOR_TRANSPORT_GOOD)
994 break;
995 }
996
997 /* Store the data in the transfer buffer */
998 usb_stor_access_xfer_buf(buffer, len, us->srb,
1f6f31a0 999 &sg, &offset, TO_XFER_BUF);
e80b0fad
MD
1000
1001 page = 0;
1002 lba++;
1003 sectors -= pages;
1004 }
1005
1006 kfree(buffer);
1007 return result;
1008}
1009
1010/*
1011 * Write data to a specific sector address
1012 */
1013static int alauda_write_data(struct us_data *us, unsigned long address,
1014 unsigned int sectors)
1015{
1016 unsigned char *buffer, *blockbuffer;
1f6f31a0 1017 unsigned int page, len, offset;
e80b0fad
MD
1018 unsigned int blockshift = MEDIA_INFO(us).blockshift;
1019 unsigned int pageshift = MEDIA_INFO(us).pageshift;
1020 unsigned int blocksize = MEDIA_INFO(us).blocksize;
1021 unsigned int pagesize = MEDIA_INFO(us).pagesize;
1f6f31a0 1022 struct scatterlist *sg;
e80b0fad
MD
1023 u16 lba, max_lba;
1024 int result;
1025
1026 /*
1027 * Since we don't write the user data directly to the device,
1028 * we have to create a bounce buffer and move the data a piece
1029 * at a time between the bounce buffer and the actual transfer buffer.
1030 */
1031
1032 len = min(sectors, blocksize) * pagesize;
1033 buffer = kmalloc(len, GFP_NOIO);
e5cdac92 1034 if (!buffer)
e80b0fad 1035 return USB_STOR_TRANSPORT_ERROR;
e80b0fad
MD
1036
1037 /*
1038 * We also need a temporary block buffer, where we read in the old data,
1039 * overwrite parts with the new data, and manipulate the redundancy data
1040 */
1041 blockbuffer = kmalloc((pagesize + 64) * blocksize, GFP_NOIO);
e5cdac92 1042 if (!blockbuffer) {
e80b0fad
MD
1043 kfree(buffer);
1044 return USB_STOR_TRANSPORT_ERROR;
1045 }
1046
1047 /* Figure out the initial LBA and page */
1048 lba = address >> blockshift;
1049 page = (address & MEDIA_INFO(us).blockmask);
1050 max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
1051
1052 result = USB_STOR_TRANSPORT_GOOD;
1f6f31a0
JA
1053 offset = 0;
1054 sg = NULL;
e80b0fad
MD
1055
1056 while (sectors > 0) {
1057 /* Write as many sectors as possible in this block */
1058 unsigned int pages = min(sectors, blocksize - page);
1059 len = pages << pageshift;
1060
1061 /* Not overflowing capacity? */
1062 if (lba >= max_lba) {
191648d0
JP
1063 usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n",
1064 lba, max_lba);
e80b0fad
MD
1065 result = USB_STOR_TRANSPORT_ERROR;
1066 break;
1067 }
1068
1069 /* Get the data from the transfer buffer */
1070 usb_stor_access_xfer_buf(buffer, len, us->srb,
1f6f31a0 1071 &sg, &offset, FROM_XFER_BUF);
e80b0fad
MD
1072
1073 result = alauda_write_lba(us, lba, page, pages, buffer,
1074 blockbuffer);
1075 if (result != USB_STOR_TRANSPORT_GOOD)
1076 break;
1077
1078 page = 0;
1079 lba++;
1080 sectors -= pages;
1081 }
1082
1083 kfree(buffer);
1084 kfree(blockbuffer);
1085 return result;
1086}
1087
1088/*
1089 * Our interface with the rest of the world
1090 */
1091
1092static void alauda_info_destructor(void *extra)
1093{
1094 struct alauda_info *info = (struct alauda_info *) extra;
1095 int port;
1096
1097 if (!info)
1098 return;
1099
1100 for (port = 0; port < 2; port++) {
1101 struct alauda_media_info *media_info = &info->port[port];
1102
1103 alauda_free_maps(media_info);
1104 kfree(media_info->lba_to_pba);
1105 kfree(media_info->pba_to_lba);
1106 }
1107}
1108
1109/*
1110 * Initialize alauda_info struct and find the data-write endpoint
1111 */
a74bba3b 1112static int init_alauda(struct us_data *us)
e80b0fad
MD
1113{
1114 struct alauda_info *info;
1115 struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
1116 nand_init_ecc();
1117
1118 us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
191648d0 1119 if (!us->extra)
e80b0fad 1120 return USB_STOR_TRANSPORT_ERROR;
191648d0 1121
e80b0fad
MD
1122 info = (struct alauda_info *) us->extra;
1123 us->extra_destructor = alauda_info_destructor;
1124
1125 info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
1126 altsetting->endpoint[0].desc.bEndpointAddress
1127 & USB_ENDPOINT_NUMBER_MASK);
1128
1129 return USB_STOR_TRANSPORT_GOOD;
1130}
1131
a74bba3b 1132static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
e80b0fad
MD
1133{
1134 int rc;
1135 struct alauda_info *info = (struct alauda_info *) us->extra;
1136 unsigned char *ptr = us->iobuf;
1137 static unsigned char inquiry_response[36] = {
1138 0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1139 };
1140
1141 if (srb->cmnd[0] == INQUIRY) {
191648d0 1142 usb_stor_dbg(us, "INQUIRY - Returning bogus response\n");
e80b0fad
MD
1143 memcpy(ptr, inquiry_response, sizeof(inquiry_response));
1144 fill_inquiry_response(us, ptr, 36);
1145 return USB_STOR_TRANSPORT_GOOD;
1146 }
1147
1148 if (srb->cmnd[0] == TEST_UNIT_READY) {
191648d0 1149 usb_stor_dbg(us, "TEST_UNIT_READY\n");
e80b0fad
MD
1150 return alauda_check_media(us);
1151 }
1152
1153 if (srb->cmnd[0] == READ_CAPACITY) {
1154 unsigned int num_zones;
1155 unsigned long capacity;
1156
1157 rc = alauda_check_media(us);
1158 if (rc != USB_STOR_TRANSPORT_GOOD)
1159 return rc;
1160
1161 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
1162 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
1163
1164 capacity = num_zones * MEDIA_INFO(us).uzonesize
1165 * MEDIA_INFO(us).blocksize;
1166
1167 /* Report capacity and page size */
1168 ((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
1169 ((__be32 *) ptr)[1] = cpu_to_be32(512);
1170
1171 usb_stor_set_xfer_buf(ptr, 8, srb);
1172 return USB_STOR_TRANSPORT_GOOD;
1173 }
1174
1175 if (srb->cmnd[0] == READ_10) {
1176 unsigned int page, pages;
1177
1178 rc = alauda_check_media(us);
1179 if (rc != USB_STOR_TRANSPORT_GOOD)
1180 return rc;
1181
1182 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1183 page <<= 16;
1184 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1185 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1186
191648d0 1187 usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages);
e80b0fad
MD
1188
1189 return alauda_read_data(us, page, pages);
1190 }
1191
1192 if (srb->cmnd[0] == WRITE_10) {
1193 unsigned int page, pages;
1194
1195 rc = alauda_check_media(us);
1196 if (rc != USB_STOR_TRANSPORT_GOOD)
1197 return rc;
1198
1199 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1200 page <<= 16;
1201 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1202 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1203
191648d0 1204 usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages);
e80b0fad
MD
1205
1206 return alauda_write_data(us, page, pages);
1207 }
1208
1209 if (srb->cmnd[0] == REQUEST_SENSE) {
191648d0 1210 usb_stor_dbg(us, "REQUEST_SENSE\n");
e80b0fad
MD
1211
1212 memset(ptr, 0, 18);
1213 ptr[0] = 0xF0;
1214 ptr[2] = info->sense_key;
1215 ptr[7] = 11;
1216 ptr[12] = info->sense_asc;
1217 ptr[13] = info->sense_ascq;
1218 usb_stor_set_xfer_buf(ptr, 18, srb);
1219
1220 return USB_STOR_TRANSPORT_GOOD;
1221 }
1222
1223 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
f0183a33
FB
1224 /*
1225 * sure. whatever. not like we can stop the user from popping
1226 * the media out of the device (no locking doors, etc)
1227 */
e80b0fad
MD
1228 return USB_STOR_TRANSPORT_GOOD;
1229 }
1230
191648d0
JP
1231 usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n",
1232 srb->cmnd[0], srb->cmnd[0]);
e80b0fad
MD
1233 info->sense_key = 0x05;
1234 info->sense_asc = 0x20;
1235 info->sense_ascq = 0x00;
1236 return USB_STOR_TRANSPORT_FAILED;
1237}
1238
aa519be3
AM
1239static struct scsi_host_template alauda_host_template;
1240
a74bba3b
AS
1241static int alauda_probe(struct usb_interface *intf,
1242 const struct usb_device_id *id)
1243{
1244 struct us_data *us;
1245 int result;
1246
1247 result = usb_stor_probe1(&us, intf, id,
aa519be3
AM
1248 (id - alauda_usb_ids) + alauda_unusual_dev_list,
1249 &alauda_host_template);
a74bba3b
AS
1250 if (result)
1251 return result;
1252
1253 us->transport_name = "Alauda Control/Bulk";
1254 us->transport = alauda_transport;
1255 us->transport_reset = usb_stor_Bulk_reset;
1256 us->max_lun = 1;
1257
1258 result = usb_stor_probe2(us);
1259 return result;
1260}
1261
1262static struct usb_driver alauda_driver = {
aa519be3 1263 .name = DRV_NAME,
a74bba3b
AS
1264 .probe = alauda_probe,
1265 .disconnect = usb_stor_disconnect,
1266 .suspend = usb_stor_suspend,
1267 .resume = usb_stor_resume,
1268 .reset_resume = usb_stor_reset_resume,
1269 .pre_reset = usb_stor_pre_reset,
1270 .post_reset = usb_stor_post_reset,
1271 .id_table = alauda_usb_ids,
1272 .soft_unbind = 1,
e73b2db6 1273 .no_dynamic_id = 1,
a74bba3b
AS
1274};
1275
aa519be3 1276module_usb_stor_driver(alauda_driver, alauda_host_template, DRV_NAME);
This page took 0.88898 seconds and 5 git commands to generate.