Merge tag 'powerpc-4.8-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[deliverable/linux.git] / drivers / usb / storage / sddr09.c
CommitLineData
f0183a33
FB
1/*
2 * Driver for SanDisk SDDR-09 SmartMedia reader
1da177e4 3 *
1da177e4
LT
4 * (c) 2000, 2001 Robert Baruch (autophile@starband.net)
5 * (c) 2002 Andries Brouwer (aeb@cwi.nl)
6 * Developed with the assistance of:
7 * (c) 2002 Alan Stern <stern@rowland.org>
8 *
9 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
10 * This chip is a programmable USB controller. In the SDDR-09, it has
11 * been programmed to obey a certain limited set of SCSI commands.
12 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
13 * commands.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2, or (at your option) any
18 * later version.
19 *
20 * This program is distributed in the hope that it will be useful, but
21 * WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * General Public License for more details.
24 *
25 * You should have received a copy of the GNU General Public License along
26 * with this program; if not, write to the Free Software Foundation, Inc.,
27 * 675 Mass Ave, Cambridge, MA 02139, USA.
28 */
29
30/*
31 * Known vendor commands: 12 bytes, first byte is opcode
32 *
33 * E7: read scatter gather
34 * E8: read
35 * E9: write
36 * EA: erase
37 * EB: reset
38 * EC: read status
39 * ED: read ID
40 * EE: write CIS (?)
41 * EF: compute checksum (?)
42 */
43
1da177e4 44#include <linux/errno.h>
0ff71883 45#include <linux/module.h>
1da177e4
LT
46#include <linux/slab.h>
47
48#include <scsi/scsi.h>
49#include <scsi/scsi_cmnd.h>
c20b15fd 50#include <scsi/scsi_device.h>
1da177e4
LT
51
52#include "usb.h"
53#include "transport.h"
54#include "protocol.h"
55#include "debug.h"
aa519be3
AM
56#include "scsiglue.h"
57
58#define DRV_NAME "ums-sddr09"
0ff71883 59
4246b06a
MG
60MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
61MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
62MODULE_LICENSE("GPL");
0ff71883
AS
63
64static int usb_stor_sddr09_dpcm_init(struct us_data *us);
65static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
66static int usb_stor_sddr09_init(struct us_data *us);
67
68
69/*
70 * The table of devices
71 */
72#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
73 vendorName, productName, useProtocol, useTransport, \
74 initFunction, flags) \
75{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
f61870ee 76 .driver_info = (flags) }
0ff71883 77
6f871f9e 78static struct usb_device_id sddr09_usb_ids[] = {
0ff71883
AS
79# include "unusual_sddr09.h"
80 { } /* Terminating entry */
81};
82MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
83
84#undef UNUSUAL_DEV
85
86/*
87 * The flags table
88 */
89#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
90 vendor_name, product_name, use_protocol, use_transport, \
91 init_function, Flags) \
92{ \
93 .vendorName = vendor_name, \
94 .productName = product_name, \
95 .useProtocol = use_protocol, \
96 .useTransport = use_transport, \
97 .initFunction = init_function, \
98}
99
100static struct us_unusual_dev sddr09_unusual_dev_list[] = {
101# include "unusual_sddr09.h"
102 { } /* Terminating entry */
103};
104
105#undef UNUSUAL_DEV
1da177e4
LT
106
107
108#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
109#define LSB_of(s) ((s)&0xFF)
110#define MSB_of(s) ((s)>>8)
111
1da177e4
LT
112/*
113 * First some stuff that does not belong here:
114 * data on SmartMedia and other cards, completely
115 * unrelated to this driver.
116 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
117 */
118
119struct nand_flash_dev {
120 int model_id;
121 int chipshift; /* 1<<cs bytes total capacity */
122 char pageshift; /* 1<<ps bytes in a page */
123 char blockshift; /* 1<<bs pages in an erase block */
124 char zoneshift; /* 1<<zs blocks in a zone */
125 /* # of logical blocks is 125/128 of this */
126 char pageadrlen; /* length of an address in bytes - 1 */
127};
128
129/*
130 * NAND Flash Manufacturer ID Codes
131 */
132#define NAND_MFR_AMD 0x01
133#define NAND_MFR_NATSEMI 0x8f
134#define NAND_MFR_TOSHIBA 0x98
135#define NAND_MFR_SAMSUNG 0xec
136
137static inline char *nand_flash_manufacturer(int manuf_id) {
138 switch(manuf_id) {
139 case NAND_MFR_AMD:
140 return "AMD";
141 case NAND_MFR_NATSEMI:
142 return "NATSEMI";
143 case NAND_MFR_TOSHIBA:
144 return "Toshiba";
145 case NAND_MFR_SAMSUNG:
146 return "Samsung";
147 default:
148 return "unknown";
149 }
150}
151
152/*
153 * It looks like it is unnecessary to attach manufacturer to the
154 * remaining data: SSFDC prescribes manufacturer-independent id codes.
155 *
156 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
157 */
158
159static struct nand_flash_dev nand_flash_ids[] = {
160 /* NAND flash */
161 { 0x6e, 20, 8, 4, 8, 2}, /* 1 MB */
162 { 0xe8, 20, 8, 4, 8, 2}, /* 1 MB */
163 { 0xec, 20, 8, 4, 8, 2}, /* 1 MB */
164 { 0x64, 21, 8, 4, 9, 2}, /* 2 MB */
165 { 0xea, 21, 8, 4, 9, 2}, /* 2 MB */
166 { 0x6b, 22, 9, 4, 9, 2}, /* 4 MB */
167 { 0xe3, 22, 9, 4, 9, 2}, /* 4 MB */
168 { 0xe5, 22, 9, 4, 9, 2}, /* 4 MB */
169 { 0xe6, 23, 9, 4, 10, 2}, /* 8 MB */
170 { 0x73, 24, 9, 5, 10, 2}, /* 16 MB */
171 { 0x75, 25, 9, 5, 10, 2}, /* 32 MB */
172 { 0x76, 26, 9, 5, 10, 3}, /* 64 MB */
173 { 0x79, 27, 9, 5, 10, 3}, /* 128 MB */
174
175 /* MASK ROM */
176 { 0x5d, 21, 9, 4, 8, 2}, /* 2 MB */
177 { 0xd5, 22, 9, 4, 9, 2}, /* 4 MB */
178 { 0xd6, 23, 9, 4, 10, 2}, /* 8 MB */
179 { 0x57, 24, 9, 4, 11, 2}, /* 16 MB */
180 { 0x58, 25, 9, 4, 12, 2}, /* 32 MB */
181 { 0,}
182};
183
1da177e4
LT
184static struct nand_flash_dev *
185nand_find_id(unsigned char id) {
186 int i;
187
52950ed4 188 for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
1da177e4
LT
189 if (nand_flash_ids[i].model_id == id)
190 return &(nand_flash_ids[i]);
191 return NULL;
192}
193
194/*
195 * ECC computation.
196 */
197static unsigned char parity[256];
198static unsigned char ecc2[256];
199
200static void nand_init_ecc(void) {
201 int i, j, a;
202
203 parity[0] = 0;
204 for (i = 1; i < 256; i++)
205 parity[i] = (parity[i&(i-1)] ^ 1);
206
207 for (i = 0; i < 256; i++) {
208 a = 0;
209 for (j = 0; j < 8; j++) {
210 if (i & (1<<j)) {
211 if ((j & 1) == 0)
212 a ^= 0x04;
213 if ((j & 2) == 0)
214 a ^= 0x10;
215 if ((j & 4) == 0)
216 a ^= 0x40;
217 }
218 }
219 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
220 }
221}
222
223/* compute 3-byte ecc on 256 bytes */
224static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
225 int i, j, a;
4cb4f838 226 unsigned char par = 0, bit, bits[8] = {0};
1da177e4
LT
227
228 /* collect 16 checksum bits */
229 for (i = 0; i < 256; i++) {
230 par ^= data[i];
231 bit = parity[data[i]];
232 for (j = 0; j < 8; j++)
233 if ((i & (1<<j)) == 0)
234 bits[j] ^= bit;
235 }
236
237 /* put 4+4+4 = 12 bits in the ecc */
238 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
239 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
240
241 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
242 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
243
244 ecc[2] = ecc2[par];
245}
246
247static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
248 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
249}
250
251static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
252 memcpy(data, ecc, 3);
253}
254
255/*
256 * The actual driver starts here.
257 */
258
f5b8cb9c
MD
259struct sddr09_card_info {
260 unsigned long capacity; /* Size of card in bytes */
261 int pagesize; /* Size of page in bytes */
262 int pageshift; /* log2 of pagesize */
263 int blocksize; /* Size of block in pages */
264 int blockshift; /* log2 of blocksize */
265 int blockmask; /* 2^blockshift - 1 */
266 int *lba_to_pba; /* logical to physical map */
267 int *pba_to_lba; /* physical to logical map */
268 int lbact; /* number of available pages */
269 int flags;
270#define SDDR09_WP 1 /* write protected */
271};
272
1da177e4
LT
273/*
274 * On my 16MB card, control blocks have size 64 (16 real control bytes,
275 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
276 * so the reader makes up the remaining 48. Don't know whether these numbers
277 * depend on the card. For now a constant.
278 */
279#define CONTROL_SHIFT 6
280
281/*
282 * On my Combo CF/SM reader, the SM reader has LUN 1.
283 * (and things fail with LUN 0).
284 * It seems LUN is irrelevant for others.
285 */
286#define LUN 1
287#define LUNBITS (LUN << 5)
288
289/*
290 * LBA and PBA are unsigned ints. Special values.
291 */
292#define UNDEF 0xffffffff
293#define SPARE 0xfffffffe
294#define UNUSABLE 0xfffffffd
295
4c4c9432 296static const int erase_bad_lba_entries = 0;
1da177e4
LT
297
298/* send vendor interface command (0x41) */
299/* called for requests 0, 1, 8 */
300static int
301sddr09_send_command(struct us_data *us,
302 unsigned char request,
303 unsigned char direction,
304 unsigned char *xfer_data,
305 unsigned int xfer_len) {
306 unsigned int pipe;
307 unsigned char requesttype = (0x41 | direction);
308 int rc;
309
310 // Get the receive or send control pipe number
311
312 if (direction == USB_DIR_IN)
313 pipe = us->recv_ctrl_pipe;
314 else
315 pipe = us->send_ctrl_pipe;
316
317 rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
318 0, 0, xfer_data, xfer_len);
0dc08a35
MD
319 switch (rc) {
320 case USB_STOR_XFER_GOOD: return 0;
321 case USB_STOR_XFER_STALLED: return -EPIPE;
322 default: return -EIO;
323 }
1da177e4
LT
324}
325
326static int
327sddr09_send_scsi_command(struct us_data *us,
328 unsigned char *command,
329 unsigned int command_len) {
330 return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
331}
332
333#if 0
334/*
335 * Test Unit Ready Command: 12 bytes.
336 * byte 0: opcode: 00
337 */
338static int
339sddr09_test_unit_ready(struct us_data *us) {
340 unsigned char *command = us->iobuf;
341 int result;
342
343 memset(command, 0, 6);
344 command[1] = LUNBITS;
345
346 result = sddr09_send_scsi_command(us, command, 6);
347
191648d0 348 usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result);
1da177e4
LT
349
350 return result;
351}
352#endif
353
354/*
355 * Request Sense Command: 12 bytes.
356 * byte 0: opcode: 03
357 * byte 4: data length
358 */
359static int
360sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
361 unsigned char *command = us->iobuf;
362 int result;
363
364 memset(command, 0, 12);
365 command[0] = 0x03;
366 command[1] = LUNBITS;
367 command[4] = buflen;
368
369 result = sddr09_send_scsi_command(us, command, 12);
0dc08a35 370 if (result)
1da177e4 371 return result;
1da177e4
LT
372
373 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
374 sensebuf, buflen, NULL);
0dc08a35 375 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1da177e4
LT
376}
377
378/*
379 * Read Command: 12 bytes.
380 * byte 0: opcode: E8
381 * byte 1: last two bits: 00: read data, 01: read blockwise control,
382 * 10: read both, 11: read pagewise control.
383 * It turns out we need values 20, 21, 22, 23 here (LUN 1).
384 * bytes 2-5: address (interpretation depends on byte 1, see below)
385 * bytes 10-11: count (idem)
386 *
387 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
388 * A read data command gets data in 512-byte pages.
389 * A read control command gets control in 64-byte chunks.
390 * A read both command gets data+control in 576-byte chunks.
391 *
392 * Blocks are groups of 32 pages, and read blockwise control jumps to the
393 * next block, while read pagewise control jumps to the next page after
394 * reading a group of 64 control bytes.
395 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
396 *
397 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
398 */
399
400static int
401sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
402 int nr_of_pages, int bulklen, unsigned char *buf,
403 int use_sg) {
404
405 unsigned char *command = us->iobuf;
406 int result;
407
408 command[0] = 0xE8;
409 command[1] = LUNBITS | x;
410 command[2] = MSB_of(fromaddress>>16);
411 command[3] = LSB_of(fromaddress>>16);
412 command[4] = MSB_of(fromaddress & 0xFFFF);
413 command[5] = LSB_of(fromaddress & 0xFFFF);
414 command[6] = 0;
415 command[7] = 0;
416 command[8] = 0;
417 command[9] = 0;
418 command[10] = MSB_of(nr_of_pages);
419 command[11] = LSB_of(nr_of_pages);
420
421 result = sddr09_send_scsi_command(us, command, 12);
422
0dc08a35 423 if (result) {
191648d0
JP
424 usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n",
425 x, result);
1da177e4
LT
426 return result;
427 }
428
429 result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
430 buf, bulklen, use_sg, NULL);
431
432 if (result != USB_STOR_XFER_GOOD) {
191648d0
JP
433 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n",
434 x, result);
0dc08a35 435 return -EIO;
1da177e4 436 }
0dc08a35 437 return 0;
1da177e4
LT
438}
439
440/*
441 * Read Data
442 *
443 * fromaddress counts data shorts:
444 * increasing it by 256 shifts the bytestream by 512 bytes;
445 * the last 8 bits are ignored.
446 *
447 * nr_of_pages counts pages of size (1 << pageshift).
448 */
449static int
450sddr09_read20(struct us_data *us, unsigned long fromaddress,
451 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
452 int bulklen = nr_of_pages << pageshift;
453
454 /* The last 8 bits of fromaddress are ignored. */
455 return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
456 buf, use_sg);
457}
458
459/*
460 * Read Blockwise Control
461 *
462 * fromaddress gives the starting position (as in read data;
463 * the last 8 bits are ignored); increasing it by 32*256 shifts
464 * the output stream by 64 bytes.
465 *
466 * count counts control groups of size (1 << controlshift).
467 * For me, controlshift = 6. Is this constant?
468 *
469 * After getting one control group, jump to the next block
470 * (fromaddress += 8192).
471 */
472static int
473sddr09_read21(struct us_data *us, unsigned long fromaddress,
474 int count, int controlshift, unsigned char *buf, int use_sg) {
475
476 int bulklen = (count << controlshift);
477 return sddr09_readX(us, 1, fromaddress, count, bulklen,
478 buf, use_sg);
479}
480
481/*
482 * Read both Data and Control
483 *
484 * fromaddress counts data shorts, ignoring control:
485 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
486 * the last 8 bits are ignored.
487 *
488 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
489 */
490static int
491sddr09_read22(struct us_data *us, unsigned long fromaddress,
492 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
493
494 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
191648d0 495 usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen);
1da177e4
LT
496 return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
497 buf, use_sg);
498}
499
500#if 0
501/*
502 * Read Pagewise Control
503 *
504 * fromaddress gives the starting position (as in read data;
505 * the last 8 bits are ignored); increasing it by 256 shifts
506 * the output stream by 64 bytes.
507 *
508 * count counts control groups of size (1 << controlshift).
509 * For me, controlshift = 6. Is this constant?
510 *
511 * After getting one control group, jump to the next page
512 * (fromaddress += 256).
513 */
514static int
515sddr09_read23(struct us_data *us, unsigned long fromaddress,
516 int count, int controlshift, unsigned char *buf, int use_sg) {
517
518 int bulklen = (count << controlshift);
519 return sddr09_readX(us, 3, fromaddress, count, bulklen,
520 buf, use_sg);
521}
522#endif
523
524/*
525 * Erase Command: 12 bytes.
526 * byte 0: opcode: EA
527 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
528 *
529 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
530 * The byte address being erased is 2*Eaddress.
531 * The CIS cannot be erased.
532 */
533static int
534sddr09_erase(struct us_data *us, unsigned long Eaddress) {
535 unsigned char *command = us->iobuf;
536 int result;
537
191648d0 538 usb_stor_dbg(us, "erase address %lu\n", Eaddress);
1da177e4
LT
539
540 memset(command, 0, 12);
541 command[0] = 0xEA;
542 command[1] = LUNBITS;
543 command[6] = MSB_of(Eaddress>>16);
544 command[7] = LSB_of(Eaddress>>16);
545 command[8] = MSB_of(Eaddress & 0xFFFF);
546 command[9] = LSB_of(Eaddress & 0xFFFF);
547
548 result = sddr09_send_scsi_command(us, command, 12);
549
0dc08a35 550 if (result)
191648d0
JP
551 usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n",
552 result);
1da177e4
LT
553
554 return result;
555}
556
557/*
558 * Write CIS Command: 12 bytes.
559 * byte 0: opcode: EE
560 * bytes 2-5: write address in shorts
561 * bytes 10-11: sector count
562 *
563 * This writes at the indicated address. Don't know how it differs
564 * from E9. Maybe it does not erase? However, it will also write to
565 * the CIS.
566 *
567 * When two such commands on the same page follow each other directly,
568 * the second one is not done.
569 */
570
571/*
572 * Write Command: 12 bytes.
573 * byte 0: opcode: E9
574 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
575 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
576 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
577 *
578 * If write address equals erase address, the erase is done first,
579 * otherwise the write is done first. When erase address equals zero
580 * no erase is done?
581 */
582static int
583sddr09_writeX(struct us_data *us,
584 unsigned long Waddress, unsigned long Eaddress,
585 int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
586
587 unsigned char *command = us->iobuf;
588 int result;
589
590 command[0] = 0xE9;
591 command[1] = LUNBITS;
592
593 command[2] = MSB_of(Waddress>>16);
594 command[3] = LSB_of(Waddress>>16);
595 command[4] = MSB_of(Waddress & 0xFFFF);
596 command[5] = LSB_of(Waddress & 0xFFFF);
597
598 command[6] = MSB_of(Eaddress>>16);
599 command[7] = LSB_of(Eaddress>>16);
600 command[8] = MSB_of(Eaddress & 0xFFFF);
601 command[9] = LSB_of(Eaddress & 0xFFFF);
602
603 command[10] = MSB_of(nr_of_pages);
604 command[11] = LSB_of(nr_of_pages);
605
606 result = sddr09_send_scsi_command(us, command, 12);
607
0dc08a35 608 if (result) {
191648d0
JP
609 usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n",
610 result);
1da177e4
LT
611 return result;
612 }
613
614 result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
615 buf, bulklen, use_sg, NULL);
616
617 if (result != USB_STOR_XFER_GOOD) {
191648d0
JP
618 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n",
619 result);
0dc08a35 620 return -EIO;
1da177e4 621 }
0dc08a35 622 return 0;
1da177e4
LT
623}
624
625/* erase address, write same address */
626static int
627sddr09_write_inplace(struct us_data *us, unsigned long address,
628 int nr_of_pages, int pageshift, unsigned char *buf,
629 int use_sg) {
630 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
631 return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
632 buf, use_sg);
633}
634
635#if 0
636/*
637 * Read Scatter Gather Command: 3+4n bytes.
638 * byte 0: opcode E7
639 * byte 2: n
640 * bytes 4i-1,4i,4i+1: page address
641 * byte 4i+2: page count
642 * (i=1..n)
643 *
644 * This reads several pages from the card to a single memory buffer.
645 * The last two bits of byte 1 have the same meaning as for E8.
646 */
647static int
648sddr09_read_sg_test_only(struct us_data *us) {
649 unsigned char *command = us->iobuf;
650 int result, bulklen, nsg, ct;
651 unsigned char *buf;
652 unsigned long address;
653
654 nsg = bulklen = 0;
655 command[0] = 0xE7;
656 command[1] = LUNBITS;
657 command[2] = 0;
658 address = 040000; ct = 1;
659 nsg++;
660 bulklen += (ct << 9);
661 command[4*nsg+2] = ct;
662 command[4*nsg+1] = ((address >> 9) & 0xFF);
663 command[4*nsg+0] = ((address >> 17) & 0xFF);
664 command[4*nsg-1] = ((address >> 25) & 0xFF);
665
666 address = 0340000; ct = 1;
667 nsg++;
668 bulklen += (ct << 9);
669 command[4*nsg+2] = ct;
670 command[4*nsg+1] = ((address >> 9) & 0xFF);
671 command[4*nsg+0] = ((address >> 17) & 0xFF);
672 command[4*nsg-1] = ((address >> 25) & 0xFF);
673
674 address = 01000000; ct = 2;
675 nsg++;
676 bulklen += (ct << 9);
677 command[4*nsg+2] = ct;
678 command[4*nsg+1] = ((address >> 9) & 0xFF);
679 command[4*nsg+0] = ((address >> 17) & 0xFF);
680 command[4*nsg-1] = ((address >> 25) & 0xFF);
681
682 command[2] = nsg;
683
684 result = sddr09_send_scsi_command(us, command, 4*nsg+3);
685
0dc08a35 686 if (result) {
191648d0
JP
687 usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n",
688 result);
1da177e4
LT
689 return result;
690 }
691
5cbded58 692 buf = kmalloc(bulklen, GFP_NOIO);
1da177e4 693 if (!buf)
0dc08a35 694 return -ENOMEM;
1da177e4
LT
695
696 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
697 buf, bulklen, NULL);
698 kfree(buf);
699 if (result != USB_STOR_XFER_GOOD) {
191648d0
JP
700 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n",
701 result);
0dc08a35 702 return -EIO;
1da177e4
LT
703 }
704
0dc08a35 705 return 0;
1da177e4
LT
706}
707#endif
708
709/*
710 * Read Status Command: 12 bytes.
711 * byte 0: opcode: EC
712 *
713 * Returns 64 bytes, all zero except for the first.
714 * bit 0: 1: Error
715 * bit 5: 1: Suspended
716 * bit 6: 1: Ready
717 * bit 7: 1: Not write-protected
718 */
719
720static int
721sddr09_read_status(struct us_data *us, unsigned char *status) {
722
723 unsigned char *command = us->iobuf;
724 unsigned char *data = us->iobuf;
725 int result;
726
191648d0 727 usb_stor_dbg(us, "Reading status...\n");
1da177e4
LT
728
729 memset(command, 0, 12);
730 command[0] = 0xEC;
731 command[1] = LUNBITS;
732
733 result = sddr09_send_scsi_command(us, command, 12);
0dc08a35 734 if (result)
1da177e4
LT
735 return result;
736
737 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
738 data, 64, NULL);
739 *status = data[0];
0dc08a35 740 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1da177e4
LT
741}
742
743static int
744sddr09_read_data(struct us_data *us,
745 unsigned long address,
746 unsigned int sectors) {
747
748 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
749 unsigned char *buffer;
750 unsigned int lba, maxlba, pba;
751 unsigned int page, pages;
1f6f31a0
JA
752 unsigned int len, offset;
753 struct scatterlist *sg;
1da177e4
LT
754 int result;
755
a6c976c6
MD
756 // Figure out the initial LBA and page
757 lba = address >> info->blockshift;
758 page = (address & info->blockmask);
759 maxlba = info->capacity >> (info->pageshift + info->blockshift);
760 if (lba >= maxlba)
761 return -EIO;
762
1da177e4
LT
763 // Since we only read in one block at a time, we have to create
764 // a bounce buffer and move the data a piece at a time between the
765 // bounce buffer and the actual transfer buffer.
766
767 len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
768 buffer = kmalloc(len, GFP_NOIO);
769 if (buffer == NULL) {
6f8aa65b 770 printk(KERN_WARNING "sddr09_read_data: Out of memory\n");
0dc08a35 771 return -ENOMEM;
1da177e4
LT
772 }
773
1da177e4
LT
774 // This could be made much more efficient by checking for
775 // contiguous LBA's. Another exercise left to the student.
776
0dc08a35 777 result = 0;
1f6f31a0
JA
778 offset = 0;
779 sg = NULL;
1da177e4
LT
780
781 while (sectors > 0) {
782
783 /* Find number of pages we can read in this block */
784 pages = min(sectors, info->blocksize - page);
785 len = pages << info->pageshift;
786
787 /* Not overflowing capacity? */
788 if (lba >= maxlba) {
191648d0
JP
789 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
790 lba, maxlba);
0dc08a35 791 result = -EIO;
1da177e4
LT
792 break;
793 }
794
795 /* Find where this lba lives on disk */
796 pba = info->lba_to_pba[lba];
797
798 if (pba == UNDEF) { /* this lba was never written */
799
191648d0
JP
800 usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
801 pages, lba, page);
1da177e4 802
f0183a33
FB
803 /*
804 * This is not really an error. It just means
805 * that the block has never been written.
806 * Instead of returning an error
807 * it is better to return all zero data.
808 */
1da177e4
LT
809
810 memset(buffer, 0, len);
811
812 } else {
191648d0
JP
813 usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
814 pages, pba, lba, page);
1da177e4
LT
815
816 address = ((pba << info->blockshift) + page) <<
817 info->pageshift;
818
819 result = sddr09_read20(us, address>>1,
820 pages, info->pageshift, buffer, 0);
0dc08a35 821 if (result)
1da177e4
LT
822 break;
823 }
824
825 // Store the data in the transfer buffer
826 usb_stor_access_xfer_buf(buffer, len, us->srb,
1f6f31a0 827 &sg, &offset, TO_XFER_BUF);
1da177e4
LT
828
829 page = 0;
830 lba++;
831 sectors -= pages;
832 }
833
834 kfree(buffer);
835 return result;
836}
837
838static unsigned int
839sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
840 static unsigned int lastpba = 1;
841 int zonestart, end, i;
842
843 zonestart = (lba/1000) << 10;
844 end = info->capacity >> (info->blockshift + info->pageshift);
845 end -= zonestart;
846 if (end > 1024)
847 end = 1024;
848
849 for (i = lastpba+1; i < end; i++) {
850 if (info->pba_to_lba[zonestart+i] == UNDEF) {
851 lastpba = i;
852 return zonestart+i;
853 }
854 }
855 for (i = 0; i <= lastpba; i++) {
856 if (info->pba_to_lba[zonestart+i] == UNDEF) {
857 lastpba = i;
858 return zonestart+i;
859 }
860 }
861 return 0;
862}
863
864static int
865sddr09_write_lba(struct us_data *us, unsigned int lba,
866 unsigned int page, unsigned int pages,
867 unsigned char *ptr, unsigned char *blockbuffer) {
868
869 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
870 unsigned long address;
871 unsigned int pba, lbap;
872 unsigned int pagelen;
873 unsigned char *bptr, *cptr, *xptr;
874 unsigned char ecc[3];
875 int i, result, isnew;
876
877 lbap = ((lba % 1000) << 1) | 0x1000;
878 if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
879 lbap ^= 1;
880 pba = info->lba_to_pba[lba];
881 isnew = 0;
882
883 if (pba == UNDEF) {
884 pba = sddr09_find_unused_pba(info, lba);
885 if (!pba) {
6f8aa65b
FS
886 printk(KERN_WARNING
887 "sddr09_write_lba: Out of unused blocks\n");
0dc08a35 888 return -ENOSPC;
1da177e4
LT
889 }
890 info->pba_to_lba[pba] = lba;
891 info->lba_to_pba[lba] = pba;
892 isnew = 1;
893 }
894
895 if (pba == 1) {
f0183a33
FB
896 /*
897 * Maybe it is impossible to write to PBA 1.
898 * Fake success, but don't do anything.
899 */
6f8aa65b 900 printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
0dc08a35 901 return 0;
1da177e4
LT
902 }
903
904 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
905
906 /* read old contents */
907 address = (pba << (info->pageshift + info->blockshift));
908 result = sddr09_read22(us, address>>1, info->blocksize,
909 info->pageshift, blockbuffer, 0);
0dc08a35 910 if (result)
1da177e4
LT
911 return result;
912
913 /* check old contents and fill lba */
914 for (i = 0; i < info->blocksize; i++) {
915 bptr = blockbuffer + i*pagelen;
916 cptr = bptr + info->pagesize;
917 nand_compute_ecc(bptr, ecc);
918 if (!nand_compare_ecc(cptr+13, ecc)) {
191648d0
JP
919 usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
920 i, pba);
1da177e4
LT
921 nand_store_ecc(cptr+13, ecc);
922 }
923 nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
924 if (!nand_compare_ecc(cptr+8, ecc)) {
191648d0
JP
925 usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
926 i, pba);
1da177e4
LT
927 nand_store_ecc(cptr+8, ecc);
928 }
929 cptr[6] = cptr[11] = MSB_of(lbap);
930 cptr[7] = cptr[12] = LSB_of(lbap);
931 }
932
933 /* copy in new stuff and compute ECC */
934 xptr = ptr;
935 for (i = page; i < page+pages; i++) {
936 bptr = blockbuffer + i*pagelen;
937 cptr = bptr + info->pagesize;
938 memcpy(bptr, xptr, info->pagesize);
939 xptr += info->pagesize;
940 nand_compute_ecc(bptr, ecc);
941 nand_store_ecc(cptr+13, ecc);
942 nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
943 nand_store_ecc(cptr+8, ecc);
944 }
945
191648d0 946 usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba);
1da177e4
LT
947
948 result = sddr09_write_inplace(us, address>>1, info->blocksize,
949 info->pageshift, blockbuffer, 0);
950
191648d0 951 usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result);
1da177e4
LT
952
953#if 0
954 {
955 unsigned char status = 0;
956 int result2 = sddr09_read_status(us, &status);
0dc08a35 957 if (result2)
191648d0 958 usb_stor_dbg(us, "cannot read status\n");
1da177e4 959 else if (status != 0xc0)
191648d0 960 usb_stor_dbg(us, "status after write: 0x%x\n", status);
1da177e4
LT
961 }
962#endif
963
964#if 0
965 {
966 int result2 = sddr09_test_unit_ready(us);
967 }
968#endif
969
970 return result;
971}
972
973static int
974sddr09_write_data(struct us_data *us,
975 unsigned long address,
976 unsigned int sectors) {
977
978 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
a6c976c6 979 unsigned int lba, maxlba, page, pages;
1da177e4
LT
980 unsigned int pagelen, blocklen;
981 unsigned char *blockbuffer;
982 unsigned char *buffer;
1f6f31a0
JA
983 unsigned int len, offset;
984 struct scatterlist *sg;
1da177e4
LT
985 int result;
986
f0183a33 987 /* Figure out the initial LBA and page */
a6c976c6
MD
988 lba = address >> info->blockshift;
989 page = (address & info->blockmask);
990 maxlba = info->capacity >> (info->pageshift + info->blockshift);
991 if (lba >= maxlba)
992 return -EIO;
993
f0183a33
FB
994 /*
995 * blockbuffer is used for reading in the old data, overwriting
996 * with the new data, and performing ECC calculations
997 */
1da177e4 998
f0183a33
FB
999 /*
1000 * TODO: instead of doing kmalloc/kfree for each write,
1001 * add a bufferpointer to the info structure
1002 */
1da177e4
LT
1003
1004 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
1005 blocklen = (pagelen << info->blockshift);
1006 blockbuffer = kmalloc(blocklen, GFP_NOIO);
1007 if (!blockbuffer) {
6f8aa65b 1008 printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
0dc08a35 1009 return -ENOMEM;
1da177e4
LT
1010 }
1011
f0183a33
FB
1012 /*
1013 * Since we don't write the user data directly to the device,
1014 * we have to create a bounce buffer and move the data a piece
1015 * at a time between the bounce buffer and the actual transfer buffer.
1016 */
1da177e4
LT
1017
1018 len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
1019 buffer = kmalloc(len, GFP_NOIO);
1020 if (buffer == NULL) {
6f8aa65b 1021 printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1da177e4 1022 kfree(blockbuffer);
0dc08a35 1023 return -ENOMEM;
1da177e4
LT
1024 }
1025
0dc08a35 1026 result = 0;
1f6f31a0
JA
1027 offset = 0;
1028 sg = NULL;
1da177e4
LT
1029
1030 while (sectors > 0) {
1031
f0183a33 1032 /* Write as many sectors as possible in this block */
1da177e4
LT
1033
1034 pages = min(sectors, info->blocksize - page);
1035 len = (pages << info->pageshift);
1036
a6c976c6
MD
1037 /* Not overflowing capacity? */
1038 if (lba >= maxlba) {
191648d0
JP
1039 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
1040 lba, maxlba);
a6c976c6
MD
1041 result = -EIO;
1042 break;
1043 }
1044
f0183a33 1045 /* Get the data from the transfer buffer */
1da177e4 1046 usb_stor_access_xfer_buf(buffer, len, us->srb,
1f6f31a0 1047 &sg, &offset, FROM_XFER_BUF);
1da177e4
LT
1048
1049 result = sddr09_write_lba(us, lba, page, pages,
1050 buffer, blockbuffer);
0dc08a35 1051 if (result)
1da177e4
LT
1052 break;
1053
1054 page = 0;
1055 lba++;
1056 sectors -= pages;
1057 }
1058
1059 kfree(buffer);
1060 kfree(blockbuffer);
1061
1062 return result;
1063}
1064
1065static int
1066sddr09_read_control(struct us_data *us,
1067 unsigned long address,
1068 unsigned int blocks,
1069 unsigned char *content,
1070 int use_sg) {
1071
191648d0
JP
1072 usb_stor_dbg(us, "Read control address %lu, blocks %d\n",
1073 address, blocks);
1da177e4
LT
1074
1075 return sddr09_read21(us, address, blocks,
1076 CONTROL_SHIFT, content, use_sg);
1077}
1078
1079/*
1080 * Read Device ID Command: 12 bytes.
1081 * byte 0: opcode: ED
1082 *
1083 * Returns 2 bytes: Manufacturer ID and Device ID.
1084 * On more recent cards 3 bytes: the third byte is an option code A5
1085 * signifying that the secret command to read an 128-bit ID is available.
1086 * On still more recent cards 4 bytes: the fourth byte C0 means that
1087 * a second read ID cmd is available.
1088 */
1089static int
1090sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1091 unsigned char *command = us->iobuf;
1092 unsigned char *content = us->iobuf;
1093 int result, i;
1094
1095 memset(command, 0, 12);
1096 command[0] = 0xED;
1097 command[1] = LUNBITS;
1098
1099 result = sddr09_send_scsi_command(us, command, 12);
0dc08a35 1100 if (result)
1da177e4
LT
1101 return result;
1102
1103 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1104 content, 64, NULL);
1105
1106 for (i = 0; i < 4; i++)
1107 deviceID[i] = content[i];
1108
0dc08a35 1109 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1da177e4
LT
1110}
1111
1112static int
1113sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1114 int result;
1115 unsigned char status;
ef976ea3 1116 const char *wp_fmt;
1da177e4
LT
1117
1118 result = sddr09_read_status(us, &status);
0dc08a35 1119 if (result) {
191648d0 1120 usb_stor_dbg(us, "read_status fails\n");
1da177e4
LT
1121 return result;
1122 }
1da177e4
LT
1123 if ((status & 0x80) == 0) {
1124 info->flags |= SDDR09_WP; /* write protected */
ef976ea3
VD
1125 wp_fmt = " WP";
1126 } else {
1127 wp_fmt = "";
1da177e4 1128 }
ef976ea3
VD
1129 usb_stor_dbg(us, "status 0x%02X%s%s%s%s\n", status, wp_fmt,
1130 status & 0x40 ? " Ready" : "",
1131 status & LUNBITS ? " Suspended" : "",
1132 status & 0x01 ? " Error" : "");
1133
0dc08a35 1134 return 0;
1da177e4
LT
1135}
1136
1137#if 0
1138/*
1139 * Reset Command: 12 bytes.
1140 * byte 0: opcode: EB
1141 */
1142static int
1143sddr09_reset(struct us_data *us) {
1144
1145 unsigned char *command = us->iobuf;
1146
1147 memset(command, 0, 12);
1148 command[0] = 0xEB;
1149 command[1] = LUNBITS;
1150
1151 return sddr09_send_scsi_command(us, command, 12);
1152}
1153#endif
1154
1155static struct nand_flash_dev *
1156sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1157 struct nand_flash_dev *cardinfo;
1158 unsigned char deviceID[4];
1159 char blurbtxt[256];
1160 int result;
1161
191648d0 1162 usb_stor_dbg(us, "Reading capacity...\n");
1da177e4
LT
1163
1164 result = sddr09_read_deviceID(us, deviceID);
1165
0dc08a35 1166 if (result) {
191648d0 1167 usb_stor_dbg(us, "Result of read_deviceID is %d\n", result);
6f8aa65b 1168 printk(KERN_WARNING "sddr09: could not read card info\n");
1da177e4
LT
1169 return NULL;
1170 }
1171
7adce467 1172 sprintf(blurbtxt, "sddr09: Found Flash card, ID = %4ph", deviceID);
1da177e4
LT
1173
1174 /* Byte 0 is the manufacturer */
1175 sprintf(blurbtxt + strlen(blurbtxt),
1176 ": Manuf. %s",
1177 nand_flash_manufacturer(deviceID[0]));
1178
1179 /* Byte 1 is the device type */
1180 cardinfo = nand_find_id(deviceID[1]);
1181 if (cardinfo) {
f0183a33
FB
1182 /*
1183 * MB or MiB? It is neither. A 16 MB card has
1184 * 17301504 raw bytes, of which 16384000 are
1185 * usable for user data.
1186 */
1da177e4
LT
1187 sprintf(blurbtxt + strlen(blurbtxt),
1188 ", %d MB", 1<<(cardinfo->chipshift - 20));
1189 } else {
1190 sprintf(blurbtxt + strlen(blurbtxt),
1191 ", type unrecognized");
1192 }
1193
1194 /* Byte 2 is code to signal availability of 128-bit ID */
1195 if (deviceID[2] == 0xa5) {
1196 sprintf(blurbtxt + strlen(blurbtxt),
1197 ", 128-bit ID");
1198 }
1199
1200 /* Byte 3 announces the availability of another read ID command */
1201 if (deviceID[3] == 0xc0) {
1202 sprintf(blurbtxt + strlen(blurbtxt),
1203 ", extra cmd");
1204 }
1205
1206 if (flags & SDDR09_WP)
1207 sprintf(blurbtxt + strlen(blurbtxt),
1208 ", WP");
1209
6f8aa65b 1210 printk(KERN_WARNING "%s\n", blurbtxt);
1da177e4
LT
1211
1212 return cardinfo;
1213}
1214
1215static int
1216sddr09_read_map(struct us_data *us) {
1217
1218 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1219 int numblocks, alloc_len, alloc_blocks;
1220 int i, j, result;
1221 unsigned char *buffer, *buffer_end, *ptr;
1222 unsigned int lba, lbact;
1223
1224 if (!info->capacity)
1225 return -1;
1226
f0183a33
FB
1227 /*
1228 * size of a block is 1 << (blockshift + pageshift) bytes
1229 * divide into the total capacity to get the number of blocks
1230 */
1da177e4
LT
1231
1232 numblocks = info->capacity >> (info->blockshift + info->pageshift);
1233
f0183a33
FB
1234 /*
1235 * read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1236 * but only use a 64 KB buffer
1237 * buffer size used must be a multiple of (1 << CONTROL_SHIFT)
1238 */
1da177e4
LT
1239#define SDDR09_READ_MAP_BUFSZ 65536
1240
1241 alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1242 alloc_len = (alloc_blocks << CONTROL_SHIFT);
1243 buffer = kmalloc(alloc_len, GFP_NOIO);
1244 if (buffer == NULL) {
6f8aa65b 1245 printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1da177e4
LT
1246 result = -1;
1247 goto done;
1248 }
1249 buffer_end = buffer + alloc_len;
1250
1251#undef SDDR09_READ_MAP_BUFSZ
1252
1253 kfree(info->lba_to_pba);
1254 kfree(info->pba_to_lba);
1255 info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1256 info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1257
1258 if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
6f8aa65b 1259 printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1da177e4
LT
1260 result = -1;
1261 goto done;
1262 }
1263
1264 for (i = 0; i < numblocks; i++)
1265 info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1266
1267 /*
1268 * Define lba-pba translation table
1269 */
1270
1271 ptr = buffer_end;
1272 for (i = 0; i < numblocks; i++) {
1273 ptr += (1 << CONTROL_SHIFT);
1274 if (ptr >= buffer_end) {
1275 unsigned long address;
1276
1277 address = i << (info->pageshift + info->blockshift);
1278 result = sddr09_read_control(
1279 us, address>>1,
1280 min(alloc_blocks, numblocks - i),
1281 buffer, 0);
0dc08a35 1282 if (result) {
1da177e4
LT
1283 result = -1;
1284 goto done;
1285 }
1286 ptr = buffer;
1287 }
1288
1289 if (i == 0 || i == 1) {
1290 info->pba_to_lba[i] = UNUSABLE;
1291 continue;
1292 }
1293
1294 /* special PBAs have control field 0^16 */
1295 for (j = 0; j < 16; j++)
1296 if (ptr[j] != 0)
1297 goto nonz;
1298 info->pba_to_lba[i] = UNUSABLE;
6f8aa65b
FS
1299 printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1300 i);
1da177e4
LT
1301 continue;
1302
1303 nonz:
1304 /* unwritten PBAs have control field FF^16 */
1305 for (j = 0; j < 16; j++)
1306 if (ptr[j] != 0xff)
1307 goto nonff;
1308 continue;
1309
1310 nonff:
1311 /* normal PBAs start with six FFs */
1312 if (j < 6) {
6f8aa65b
FS
1313 printk(KERN_WARNING
1314 "sddr09: PBA %d has no logical mapping: "
1da177e4
LT
1315 "reserved area = %02X%02X%02X%02X "
1316 "data status %02X block status %02X\n",
1317 i, ptr[0], ptr[1], ptr[2], ptr[3],
1318 ptr[4], ptr[5]);
1319 info->pba_to_lba[i] = UNUSABLE;
1320 continue;
1321 }
1322
1323 if ((ptr[6] >> 4) != 0x01) {
6f8aa65b
FS
1324 printk(KERN_WARNING
1325 "sddr09: PBA %d has invalid address field "
1da177e4
LT
1326 "%02X%02X/%02X%02X\n",
1327 i, ptr[6], ptr[7], ptr[11], ptr[12]);
1328 info->pba_to_lba[i] = UNUSABLE;
1329 continue;
1330 }
1331
1332 /* check even parity */
1333 if (parity[ptr[6] ^ ptr[7]]) {
6f8aa65b
FS
1334 printk(KERN_WARNING
1335 "sddr09: Bad parity in LBA for block %d"
1da177e4
LT
1336 " (%02X %02X)\n", i, ptr[6], ptr[7]);
1337 info->pba_to_lba[i] = UNUSABLE;
1338 continue;
1339 }
1340
1341 lba = short_pack(ptr[7], ptr[6]);
1342 lba = (lba & 0x07FF) >> 1;
1343
1344 /*
1345 * Every 1024 physical blocks ("zone"), the LBA numbers
1346 * go back to zero, but are within a higher block of LBA's.
1347 * Also, there is a maximum of 1000 LBA's per zone.
1348 * In other words, in PBA 1024-2047 you will find LBA 0-999
1349 * which are really LBA 1000-1999. This allows for 24 bad
1350 * or special physical blocks per zone.
1351 */
1352
1353 if (lba >= 1000) {
6f8aa65b
FS
1354 printk(KERN_WARNING
1355 "sddr09: Bad low LBA %d for block %d\n",
1da177e4
LT
1356 lba, i);
1357 goto possibly_erase;
1358 }
1359
1360 lba += 1000*(i/0x400);
1361
1362 if (info->lba_to_pba[lba] != UNDEF) {
6f8aa65b
FS
1363 printk(KERN_WARNING
1364 "sddr09: LBA %d seen for PBA %d and %d\n",
1da177e4
LT
1365 lba, info->lba_to_pba[lba], i);
1366 goto possibly_erase;
1367 }
1368
1369 info->pba_to_lba[i] = lba;
1370 info->lba_to_pba[lba] = i;
1371 continue;
1372
1373 possibly_erase:
1374 if (erase_bad_lba_entries) {
1375 unsigned long address;
1376
1377 address = (i << (info->pageshift + info->blockshift));
1378 sddr09_erase(us, address>>1);
1379 info->pba_to_lba[i] = UNDEF;
1380 } else
1381 info->pba_to_lba[i] = UNUSABLE;
1382 }
1383
1384 /*
1385 * Approximate capacity. This is not entirely correct yet,
1386 * since a zone with less than 1000 usable pages leads to
1387 * missing LBAs. Especially if it is the last zone, some
1388 * LBAs can be past capacity.
1389 */
1390 lbact = 0;
1391 for (i = 0; i < numblocks; i += 1024) {
1392 int ct = 0;
1393
1394 for (j = 0; j < 1024 && i+j < numblocks; j++) {
1395 if (info->pba_to_lba[i+j] != UNUSABLE) {
1396 if (ct >= 1000)
1397 info->pba_to_lba[i+j] = SPARE;
1398 else
1399 ct++;
1400 }
1401 }
1402 lbact += ct;
1403 }
1404 info->lbact = lbact;
191648d0 1405 usb_stor_dbg(us, "Found %d LBA's\n", lbact);
1da177e4
LT
1406 result = 0;
1407
1408 done:
1409 if (result != 0) {
1410 kfree(info->lba_to_pba);
1411 kfree(info->pba_to_lba);
1412 info->lba_to_pba = NULL;
1413 info->pba_to_lba = NULL;
1414 }
1415 kfree(buffer);
1416 return result;
1417}
1418
1419static void
1420sddr09_card_info_destructor(void *extra) {
1421 struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1422
1423 if (!info)
1424 return;
1425
1426 kfree(info->lba_to_pba);
1427 kfree(info->pba_to_lba);
1428}
1429
f5b8cb9c
MD
1430static int
1431sddr09_common_init(struct us_data *us) {
1432 int result;
1433
1434 /* set the configuration -- STALL is an acceptable response here */
1435 if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
191648d0
JP
1436 usb_stor_dbg(us, "active config #%d != 1 ??\n",
1437 us->pusb_dev->actconfig->desc.bConfigurationValue);
f5b8cb9c
MD
1438 return -EINVAL;
1439 }
1440
1441 result = usb_reset_configuration(us->pusb_dev);
191648d0 1442 usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result);
f5b8cb9c 1443 if (result == -EPIPE) {
191648d0 1444 usb_stor_dbg(us, "-- stall on control interface\n");
f5b8cb9c
MD
1445 } else if (result != 0) {
1446 /* it's not a stall, but another error -- time to bail */
191648d0 1447 usb_stor_dbg(us, "-- Unknown error. Rejecting device\n");
f5b8cb9c 1448 return -EINVAL;
1da177e4 1449 }
f5b8cb9c
MD
1450
1451 us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1452 if (!us->extra)
1453 return -ENOMEM;
1454 us->extra_destructor = sddr09_card_info_destructor;
1455
1456 nand_init_ecc();
1457 return 0;
1da177e4
LT
1458}
1459
f5b8cb9c 1460
1da177e4
LT
1461/*
1462 * This is needed at a very early stage. If this is not listed in the
1463 * unusual devices list but called from here then LUN 0 of the combo reader
1464 * is not recognized. But I do not know what precisely these calls do.
1465 */
0ff71883 1466static int
f5b8cb9c 1467usb_stor_sddr09_dpcm_init(struct us_data *us) {
1da177e4
LT
1468 int result;
1469 unsigned char *data = us->iobuf;
1470
f5b8cb9c
MD
1471 result = sddr09_common_init(us);
1472 if (result)
1473 return result;
1474
1da177e4 1475 result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
0dc08a35 1476 if (result) {
191648d0 1477 usb_stor_dbg(us, "send_command fails\n");
1da177e4
LT
1478 return result;
1479 }
1480
191648d0 1481 usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1da177e4
LT
1482 // get 07 02
1483
1484 result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
0dc08a35 1485 if (result) {
191648d0 1486 usb_stor_dbg(us, "2nd send_command fails\n");
1da177e4
LT
1487 return result;
1488 }
1489
191648d0 1490 usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1da177e4
LT
1491 // get 07 00
1492
1493 result = sddr09_request_sense(us, data, 18);
0dc08a35 1494 if (result == 0 && data[2] != 0) {
1da177e4
LT
1495 int j;
1496 for (j=0; j<18; j++)
1497 printk(" %02X", data[j]);
1498 printk("\n");
1499 // get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1500 // 70: current command
1501 // sense key 0, sense code 0, extd sense code 0
1502 // additional transfer length * = sizeof(data) - 7
1503 // Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1504 // sense key 06, sense code 28: unit attention,
1505 // not ready to ready transition
1506 }
1507
1508 // test unit ready
1509
f5b8cb9c 1510 return 0; /* not result */
1da177e4
LT
1511}
1512
c20b15fd
AS
1513/*
1514 * Transport for the Microtech DPCM-USB
1515 */
0ff71883 1516static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
c20b15fd
AS
1517{
1518 int ret;
1519
9cb78c16 1520 usb_stor_dbg(us, "LUN=%d\n", (u8)srb->device->lun);
c20b15fd
AS
1521
1522 switch (srb->device->lun) {
1523 case 0:
1524
1525 /*
1526 * LUN 0 corresponds to the CompactFlash card reader.
1527 */
1528 ret = usb_stor_CB_transport(srb, us);
1529 break;
1530
1531 case 1:
1532
1533 /*
1534 * LUN 1 corresponds to the SmartMedia card reader.
1535 */
1536
1537 /*
1538 * Set the LUN to 0 (just in case).
1539 */
1540 srb->device->lun = 0;
1541 ret = sddr09_transport(srb, us);
1542 srb->device->lun = 1;
1543 break;
1544
1545 default:
9cb78c16 1546 usb_stor_dbg(us, "Invalid LUN %d\n", (u8)srb->device->lun);
c20b15fd
AS
1547 ret = USB_STOR_TRANSPORT_ERROR;
1548 break;
1549 }
1550 return ret;
1551}
1552
1553
1da177e4
LT
1554/*
1555 * Transport for the Sandisk SDDR-09
1556 */
0ff71883 1557static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1da177e4
LT
1558{
1559 static unsigned char sensekey = 0, sensecode = 0;
1560 static unsigned char havefakesense = 0;
1561 int result, i;
1562 unsigned char *ptr = us->iobuf;
1563 unsigned long capacity;
1564 unsigned int page, pages;
1565
1566 struct sddr09_card_info *info;
1567
1568 static unsigned char inquiry_response[8] = {
1569 0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1570 };
1571
1572 /* note: no block descriptor support */
1573 static unsigned char mode_page_01[19] = {
1574 0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1575 0x01, 0x0A,
1576 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1577 };
1578
1579 info = (struct sddr09_card_info *)us->extra;
1da177e4
LT
1580
1581 if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1582 /* for a faked command, we have to follow with a faked sense */
1583 memset(ptr, 0, 18);
1584 ptr[0] = 0x70;
1585 ptr[2] = sensekey;
1586 ptr[7] = 11;
1587 ptr[12] = sensecode;
1588 usb_stor_set_xfer_buf(ptr, 18, srb);
1589 sensekey = sensecode = havefakesense = 0;
1590 return USB_STOR_TRANSPORT_GOOD;
1591 }
1592
1593 havefakesense = 1;
1594
f0183a33
FB
1595 /*
1596 * Dummy up a response for INQUIRY since SDDR09 doesn't
1597 * respond to INQUIRY commands
1598 */
1da177e4
LT
1599
1600 if (srb->cmnd[0] == INQUIRY) {
1601 memcpy(ptr, inquiry_response, 8);
1602 fill_inquiry_response(us, ptr, 36);
1603 return USB_STOR_TRANSPORT_GOOD;
1604 }
1605
1606 if (srb->cmnd[0] == READ_CAPACITY) {
1607 struct nand_flash_dev *cardinfo;
1608
1609 sddr09_get_wp(us, info); /* read WP bit */
1610
1611 cardinfo = sddr09_get_cardinfo(us, info->flags);
1612 if (!cardinfo) {
1613 /* probably no media */
1614 init_error:
1615 sensekey = 0x02; /* not ready */
1616 sensecode = 0x3a; /* medium not present */
1617 return USB_STOR_TRANSPORT_FAILED;
1618 }
1619
1620 info->capacity = (1 << cardinfo->chipshift);
1621 info->pageshift = cardinfo->pageshift;
1622 info->pagesize = (1 << info->pageshift);
1623 info->blockshift = cardinfo->blockshift;
1624 info->blocksize = (1 << info->blockshift);
1625 info->blockmask = info->blocksize - 1;
1626
1627 // map initialization, must follow get_cardinfo()
1628 if (sddr09_read_map(us)) {
1629 /* probably out of memory */
1630 goto init_error;
1631 }
1632
1633 // Report capacity
1634
1635 capacity = (info->lbact << info->blockshift) - 1;
1636
1637 ((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1638
1639 // Report page size
1640
1641 ((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1642 usb_stor_set_xfer_buf(ptr, 8, srb);
1643
1644 return USB_STOR_TRANSPORT_GOOD;
1645 }
1646
1647 if (srb->cmnd[0] == MODE_SENSE_10) {
1648 int modepage = (srb->cmnd[2] & 0x3F);
1649
f0183a33
FB
1650 /*
1651 * They ask for the Read/Write error recovery page,
1652 * or for all pages.
1653 */
1da177e4
LT
1654 /* %% We should check DBD %% */
1655 if (modepage == 0x01 || modepage == 0x3F) {
191648d0
JP
1656 usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n",
1657 modepage);
1da177e4
LT
1658
1659 memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1660 ((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1661 ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1662 usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1663 return USB_STOR_TRANSPORT_GOOD;
1664 }
1665
1666 sensekey = 0x05; /* illegal request */
1667 sensecode = 0x24; /* invalid field in CDB */
1668 return USB_STOR_TRANSPORT_FAILED;
1669 }
1670
1671 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1672 return USB_STOR_TRANSPORT_GOOD;
1673
1674 havefakesense = 0;
1675
1676 if (srb->cmnd[0] == READ_10) {
1677
1678 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1679 page <<= 16;
1680 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1681 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1682
191648d0
JP
1683 usb_stor_dbg(us, "READ_10: read page %d pagect %d\n",
1684 page, pages);
1da177e4 1685
0dc08a35
MD
1686 result = sddr09_read_data(us, page, pages);
1687 return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1688 USB_STOR_TRANSPORT_ERROR);
1da177e4
LT
1689 }
1690
1691 if (srb->cmnd[0] == WRITE_10) {
1692
1693 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1694 page <<= 16;
1695 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1696 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1697
191648d0
JP
1698 usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n",
1699 page, pages);
1da177e4 1700
0dc08a35
MD
1701 result = sddr09_write_data(us, page, pages);
1702 return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1703 USB_STOR_TRANSPORT_ERROR);
1da177e4
LT
1704 }
1705
f0183a33
FB
1706 /*
1707 * catch-all for all other commands, except
1da177e4
LT
1708 * pass TEST_UNIT_READY and REQUEST_SENSE through
1709 */
1710 if (srb->cmnd[0] != TEST_UNIT_READY &&
1711 srb->cmnd[0] != REQUEST_SENSE) {
1712 sensekey = 0x05; /* illegal request */
1713 sensecode = 0x20; /* invalid command */
1714 havefakesense = 1;
1715 return USB_STOR_TRANSPORT_FAILED;
1716 }
1717
1718 for (; srb->cmd_len<12; srb->cmd_len++)
1719 srb->cmnd[srb->cmd_len] = 0;
1720
1721 srb->cmnd[1] = LUNBITS;
1722
1723 ptr[0] = 0;
1724 for (i=0; i<12; i++)
1725 sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1726
191648d0 1727 usb_stor_dbg(us, "Send control for command %s\n", ptr);
1da177e4
LT
1728
1729 result = sddr09_send_scsi_command(us, srb->cmnd, 12);
0dc08a35 1730 if (result) {
191648d0
JP
1731 usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n",
1732 result);
0dc08a35 1733 return USB_STOR_TRANSPORT_ERROR;
1da177e4
LT
1734 }
1735
41c2497b 1736 if (scsi_bufflen(srb) == 0)
1da177e4
LT
1737 return USB_STOR_TRANSPORT_GOOD;
1738
1739 if (srb->sc_data_direction == DMA_TO_DEVICE ||
1740 srb->sc_data_direction == DMA_FROM_DEVICE) {
1741 unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1742 ? us->send_bulk_pipe : us->recv_bulk_pipe;
1743
191648d0
JP
1744 usb_stor_dbg(us, "%s %d bytes\n",
1745 (srb->sc_data_direction == DMA_TO_DEVICE) ?
1746 "sending" : "receiving",
1747 scsi_bufflen(srb));
1da177e4 1748
41c2497b 1749 result = usb_stor_bulk_srb(us, pipe, srb);
1da177e4
LT
1750
1751 return (result == USB_STOR_XFER_GOOD ?
1752 USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1753 }
1754
1755 return USB_STOR_TRANSPORT_GOOD;
1756}
1757
f5b8cb9c
MD
1758/*
1759 * Initialization routine for the sddr09 subdriver
1760 */
0ff71883 1761static int
f5b8cb9c
MD
1762usb_stor_sddr09_init(struct us_data *us) {
1763 return sddr09_common_init(us);
1764}
0ff71883 1765
aa519be3
AM
1766static struct scsi_host_template sddr09_host_template;
1767
0ff71883
AS
1768static int sddr09_probe(struct usb_interface *intf,
1769 const struct usb_device_id *id)
1770{
1771 struct us_data *us;
1772 int result;
1773
1774 result = usb_stor_probe1(&us, intf, id,
aa519be3
AM
1775 (id - sddr09_usb_ids) + sddr09_unusual_dev_list,
1776 &sddr09_host_template);
0ff71883
AS
1777 if (result)
1778 return result;
1779
8fa7fd74 1780 if (us->protocol == USB_PR_DPCM_USB) {
0ff71883
AS
1781 us->transport_name = "Control/Bulk-EUSB/SDDR09";
1782 us->transport = dpcm_transport;
1783 us->transport_reset = usb_stor_CB_reset;
1784 us->max_lun = 1;
1785 } else {
1786 us->transport_name = "EUSB/SDDR09";
1787 us->transport = sddr09_transport;
1788 us->transport_reset = usb_stor_CB_reset;
1789 us->max_lun = 0;
1790 }
1791
1792 result = usb_stor_probe2(us);
1793 return result;
1794}
1795
1796static struct usb_driver sddr09_driver = {
aa519be3 1797 .name = DRV_NAME,
0ff71883
AS
1798 .probe = sddr09_probe,
1799 .disconnect = usb_stor_disconnect,
1800 .suspend = usb_stor_suspend,
1801 .resume = usb_stor_resume,
1802 .reset_resume = usb_stor_reset_resume,
1803 .pre_reset = usb_stor_pre_reset,
1804 .post_reset = usb_stor_post_reset,
1805 .id_table = sddr09_usb_ids,
1806 .soft_unbind = 1,
e73b2db6 1807 .no_dynamic_id = 1,
0ff71883
AS
1808};
1809
aa519be3 1810module_usb_stor_driver(sddr09_driver, sddr09_host_template, DRV_NAME);
This page took 0.937823 seconds and 5 git commands to generate.