xen/swiotlb: Move the nr_tbl determination in its own function.
[deliverable/linux.git] / drivers / xen / swiotlb-xen.c
CommitLineData
b097186f
KRW
1/*
2 * Copyright 2010
3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
4 *
5 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License v2.0 as published by
9 * the Free Software Foundation
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * PV guests under Xen are running in an non-contiguous memory architecture.
17 *
18 * When PCI pass-through is utilized, this necessitates an IOMMU for
19 * translating bus (DMA) to virtual and vice-versa and also providing a
20 * mechanism to have contiguous pages for device drivers operations (say DMA
21 * operations).
22 *
23 * Specifically, under Xen the Linux idea of pages is an illusion. It
24 * assumes that pages start at zero and go up to the available memory. To
25 * help with that, the Linux Xen MMU provides a lookup mechanism to
26 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28 * memory is not contiguous. Xen hypervisor stitches memory for guests
29 * from different pools, which means there is no guarantee that PFN==MFN
30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31 * allocated in descending order (high to low), meaning the guest might
32 * never get any MFN's under the 4GB mark.
33 *
34 */
35
36#include <linux/bootmem.h>
37#include <linux/dma-mapping.h>
63c9744b 38#include <linux/export.h>
b097186f
KRW
39#include <xen/swiotlb-xen.h>
40#include <xen/page.h>
41#include <xen/xen-ops.h>
f4b2f07b 42#include <xen/hvc-console.h>
b097186f
KRW
43/*
44 * Used to do a quick range check in swiotlb_tbl_unmap_single and
45 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
46 * API.
47 */
48
49static char *xen_io_tlb_start, *xen_io_tlb_end;
50static unsigned long xen_io_tlb_nslabs;
51/*
52 * Quick lookup value of the bus address of the IOTLB.
53 */
54
55u64 start_dma_addr;
56
57static dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
58{
6eab04a8 59 return phys_to_machine(XPADDR(paddr)).maddr;
b097186f
KRW
60}
61
62static phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
63{
64 return machine_to_phys(XMADDR(baddr)).paddr;
65}
66
67static dma_addr_t xen_virt_to_bus(void *address)
68{
69 return xen_phys_to_bus(virt_to_phys(address));
70}
71
72static int check_pages_physically_contiguous(unsigned long pfn,
73 unsigned int offset,
74 size_t length)
75{
76 unsigned long next_mfn;
77 int i;
78 int nr_pages;
79
80 next_mfn = pfn_to_mfn(pfn);
81 nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
82
83 for (i = 1; i < nr_pages; i++) {
84 if (pfn_to_mfn(++pfn) != ++next_mfn)
85 return 0;
86 }
87 return 1;
88}
89
90static int range_straddles_page_boundary(phys_addr_t p, size_t size)
91{
92 unsigned long pfn = PFN_DOWN(p);
93 unsigned int offset = p & ~PAGE_MASK;
94
95 if (offset + size <= PAGE_SIZE)
96 return 0;
97 if (check_pages_physically_contiguous(pfn, offset, size))
98 return 0;
99 return 1;
100}
101
102static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
103{
104 unsigned long mfn = PFN_DOWN(dma_addr);
105 unsigned long pfn = mfn_to_local_pfn(mfn);
106 phys_addr_t paddr;
107
108 /* If the address is outside our domain, it CAN
109 * have the same virtual address as another address
110 * in our domain. Therefore _only_ check address within our domain.
111 */
112 if (pfn_valid(pfn)) {
113 paddr = PFN_PHYS(pfn);
114 return paddr >= virt_to_phys(xen_io_tlb_start) &&
115 paddr < virt_to_phys(xen_io_tlb_end);
116 }
117 return 0;
118}
119
120static int max_dma_bits = 32;
121
122static int
123xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
124{
125 int i, rc;
126 int dma_bits;
127
128 dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
129
130 i = 0;
131 do {
132 int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
133
134 do {
135 rc = xen_create_contiguous_region(
136 (unsigned long)buf + (i << IO_TLB_SHIFT),
137 get_order(slabs << IO_TLB_SHIFT),
138 dma_bits);
139 } while (rc && dma_bits++ < max_dma_bits);
140 if (rc)
141 return rc;
142
143 i += slabs;
144 } while (i < nslabs);
145 return 0;
146}
1cef36a5
KRW
147static unsigned long xen_set_nslabs(unsigned long nr_tbl)
148{
149 if (!nr_tbl) {
150 xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
151 xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
152 } else
153 xen_io_tlb_nslabs = nr_tbl;
b097186f 154
1cef36a5
KRW
155 return xen_io_tlb_nslabs << IO_TLB_SHIFT;
156}
b097186f
KRW
157void __init xen_swiotlb_init(int verbose)
158{
159 unsigned long bytes;
f4b2f07b 160 int rc = -ENOMEM;
f4b2f07b
KRW
161 char *m = NULL;
162 unsigned int repeat = 3;
5f98ecdb 163
1cef36a5 164 xen_io_tlb_nslabs = swiotlb_nr_tbl();
f4b2f07b 165retry:
1cef36a5 166 bytes = xen_set_nslabs(xen_io_tlb_nslabs);
b097186f
KRW
167 /*
168 * Get IO TLB memory from any location.
169 */
63a74175 170 xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
f4b2f07b
KRW
171 if (!xen_io_tlb_start) {
172 m = "Cannot allocate Xen-SWIOTLB buffer!\n";
173 goto error;
174 }
b097186f
KRW
175 xen_io_tlb_end = xen_io_tlb_start + bytes;
176 /*
177 * And replace that memory with pages under 4GB.
178 */
179 rc = xen_swiotlb_fixup(xen_io_tlb_start,
180 bytes,
181 xen_io_tlb_nslabs);
f4b2f07b 182 if (rc) {
63a74175 183 free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
f4b2f07b
KRW
184 m = "Failed to get contiguous memory for DMA from Xen!\n"\
185 "You either: don't have the permissions, do not have"\
186 " enough free memory under 4GB, or the hypervisor memory"\
187 "is too fragmented!";
b097186f 188 goto error;
f4b2f07b 189 }
b097186f
KRW
190 start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
191 swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, verbose);
192
193 return;
194error:
f4b2f07b
KRW
195 if (repeat--) {
196 xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
197 (xen_io_tlb_nslabs >> 1));
198 printk(KERN_INFO "Xen-SWIOTLB: Lowering to %luMB\n",
199 (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
200 goto retry;
201 }
61ca7983
RD
202 xen_raw_printk("%s (rc:%d)", m, rc);
203 panic("%s (rc:%d)", m, rc);
b097186f
KRW
204}
205
206void *
207xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
baa676fc
AP
208 dma_addr_t *dma_handle, gfp_t flags,
209 struct dma_attrs *attrs)
b097186f
KRW
210{
211 void *ret;
212 int order = get_order(size);
213 u64 dma_mask = DMA_BIT_MASK(32);
214 unsigned long vstart;
6810df88
KRW
215 phys_addr_t phys;
216 dma_addr_t dev_addr;
b097186f
KRW
217
218 /*
219 * Ignore region specifiers - the kernel's ideas of
220 * pseudo-phys memory layout has nothing to do with the
221 * machine physical layout. We can't allocate highmem
222 * because we can't return a pointer to it.
223 */
224 flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
225
226 if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
227 return ret;
228
229 vstart = __get_free_pages(flags, order);
230 ret = (void *)vstart;
231
6810df88
KRW
232 if (!ret)
233 return ret;
234
b097186f 235 if (hwdev && hwdev->coherent_dma_mask)
6810df88 236 dma_mask = hwdev->coherent_dma_mask;
b097186f 237
6810df88
KRW
238 phys = virt_to_phys(ret);
239 dev_addr = xen_phys_to_bus(phys);
240 if (((dev_addr + size - 1 <= dma_mask)) &&
241 !range_straddles_page_boundary(phys, size))
242 *dma_handle = dev_addr;
243 else {
b097186f
KRW
244 if (xen_create_contiguous_region(vstart, order,
245 fls64(dma_mask)) != 0) {
246 free_pages(vstart, order);
247 return NULL;
248 }
b097186f
KRW
249 *dma_handle = virt_to_machine(ret).maddr;
250 }
6810df88 251 memset(ret, 0, size);
b097186f
KRW
252 return ret;
253}
254EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
255
256void
257xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
baa676fc 258 dma_addr_t dev_addr, struct dma_attrs *attrs)
b097186f
KRW
259{
260 int order = get_order(size);
6810df88
KRW
261 phys_addr_t phys;
262 u64 dma_mask = DMA_BIT_MASK(32);
b097186f
KRW
263
264 if (dma_release_from_coherent(hwdev, order, vaddr))
265 return;
266
6810df88
KRW
267 if (hwdev && hwdev->coherent_dma_mask)
268 dma_mask = hwdev->coherent_dma_mask;
269
270 phys = virt_to_phys(vaddr);
271
272 if (((dev_addr + size - 1 > dma_mask)) ||
273 range_straddles_page_boundary(phys, size))
274 xen_destroy_contiguous_region((unsigned long)vaddr, order);
275
b097186f
KRW
276 free_pages((unsigned long)vaddr, order);
277}
278EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
279
280
281/*
282 * Map a single buffer of the indicated size for DMA in streaming mode. The
283 * physical address to use is returned.
284 *
285 * Once the device is given the dma address, the device owns this memory until
286 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
287 */
288dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
289 unsigned long offset, size_t size,
290 enum dma_data_direction dir,
291 struct dma_attrs *attrs)
292{
293 phys_addr_t phys = page_to_phys(page) + offset;
294 dma_addr_t dev_addr = xen_phys_to_bus(phys);
295 void *map;
296
297 BUG_ON(dir == DMA_NONE);
298 /*
299 * If the address happens to be in the device's DMA window,
300 * we can safely return the device addr and not worry about bounce
301 * buffering it.
302 */
303 if (dma_capable(dev, dev_addr, size) &&
304 !range_straddles_page_boundary(phys, size) && !swiotlb_force)
305 return dev_addr;
306
307 /*
308 * Oh well, have to allocate and map a bounce buffer.
309 */
310 map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
311 if (!map)
312 return DMA_ERROR_CODE;
313
314 dev_addr = xen_virt_to_bus(map);
315
316 /*
317 * Ensure that the address returned is DMA'ble
318 */
ab2a47bd
KRW
319 if (!dma_capable(dev, dev_addr, size)) {
320 swiotlb_tbl_unmap_single(dev, map, size, dir);
321 dev_addr = 0;
322 }
b097186f
KRW
323 return dev_addr;
324}
325EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
326
327/*
328 * Unmap a single streaming mode DMA translation. The dma_addr and size must
329 * match what was provided for in a previous xen_swiotlb_map_page call. All
330 * other usages are undefined.
331 *
332 * After this call, reads by the cpu to the buffer are guaranteed to see
333 * whatever the device wrote there.
334 */
335static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
336 size_t size, enum dma_data_direction dir)
337{
338 phys_addr_t paddr = xen_bus_to_phys(dev_addr);
339
340 BUG_ON(dir == DMA_NONE);
341
342 /* NOTE: We use dev_addr here, not paddr! */
343 if (is_xen_swiotlb_buffer(dev_addr)) {
344 swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
345 return;
346 }
347
348 if (dir != DMA_FROM_DEVICE)
349 return;
350
351 /*
352 * phys_to_virt doesn't work with hihgmem page but we could
353 * call dma_mark_clean() with hihgmem page here. However, we
354 * are fine since dma_mark_clean() is null on POWERPC. We can
355 * make dma_mark_clean() take a physical address if necessary.
356 */
357 dma_mark_clean(phys_to_virt(paddr), size);
358}
359
360void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
361 size_t size, enum dma_data_direction dir,
362 struct dma_attrs *attrs)
363{
364 xen_unmap_single(hwdev, dev_addr, size, dir);
365}
366EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
367
368/*
369 * Make physical memory consistent for a single streaming mode DMA translation
370 * after a transfer.
371 *
372 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
373 * using the cpu, yet do not wish to teardown the dma mapping, you must
374 * call this function before doing so. At the next point you give the dma
375 * address back to the card, you must first perform a
376 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
377 */
378static void
379xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
380 size_t size, enum dma_data_direction dir,
381 enum dma_sync_target target)
382{
383 phys_addr_t paddr = xen_bus_to_phys(dev_addr);
384
385 BUG_ON(dir == DMA_NONE);
386
387 /* NOTE: We use dev_addr here, not paddr! */
388 if (is_xen_swiotlb_buffer(dev_addr)) {
389 swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
390 target);
391 return;
392 }
393
394 if (dir != DMA_FROM_DEVICE)
395 return;
396
397 dma_mark_clean(phys_to_virt(paddr), size);
398}
399
400void
401xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
402 size_t size, enum dma_data_direction dir)
403{
404 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
405}
406EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
407
408void
409xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
410 size_t size, enum dma_data_direction dir)
411{
412 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
413}
414EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
415
416/*
417 * Map a set of buffers described by scatterlist in streaming mode for DMA.
418 * This is the scatter-gather version of the above xen_swiotlb_map_page
419 * interface. Here the scatter gather list elements are each tagged with the
420 * appropriate dma address and length. They are obtained via
421 * sg_dma_{address,length}(SG).
422 *
423 * NOTE: An implementation may be able to use a smaller number of
424 * DMA address/length pairs than there are SG table elements.
425 * (for example via virtual mapping capabilities)
426 * The routine returns the number of addr/length pairs actually
427 * used, at most nents.
428 *
429 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
430 * same here.
431 */
432int
433xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
434 int nelems, enum dma_data_direction dir,
435 struct dma_attrs *attrs)
436{
437 struct scatterlist *sg;
438 int i;
439
440 BUG_ON(dir == DMA_NONE);
441
442 for_each_sg(sgl, sg, nelems, i) {
443 phys_addr_t paddr = sg_phys(sg);
444 dma_addr_t dev_addr = xen_phys_to_bus(paddr);
445
446 if (swiotlb_force ||
447 !dma_capable(hwdev, dev_addr, sg->length) ||
448 range_straddles_page_boundary(paddr, sg->length)) {
449 void *map = swiotlb_tbl_map_single(hwdev,
450 start_dma_addr,
451 sg_phys(sg),
452 sg->length, dir);
453 if (!map) {
454 /* Don't panic here, we expect map_sg users
455 to do proper error handling. */
456 xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
457 attrs);
458 sgl[0].dma_length = 0;
459 return DMA_ERROR_CODE;
460 }
461 sg->dma_address = xen_virt_to_bus(map);
462 } else
463 sg->dma_address = dev_addr;
464 sg->dma_length = sg->length;
465 }
466 return nelems;
467}
468EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
469
470int
471xen_swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
472 enum dma_data_direction dir)
473{
474 return xen_swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
475}
476EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg);
477
478/*
479 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
480 * concerning calls here are the same as for swiotlb_unmap_page() above.
481 */
482void
483xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
484 int nelems, enum dma_data_direction dir,
485 struct dma_attrs *attrs)
486{
487 struct scatterlist *sg;
488 int i;
489
490 BUG_ON(dir == DMA_NONE);
491
492 for_each_sg(sgl, sg, nelems, i)
493 xen_unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
494
495}
496EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
497
498void
499xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
500 enum dma_data_direction dir)
501{
502 return xen_swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
503}
504EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg);
505
506/*
507 * Make physical memory consistent for a set of streaming mode DMA translations
508 * after a transfer.
509 *
510 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
511 * and usage.
512 */
513static void
514xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
515 int nelems, enum dma_data_direction dir,
516 enum dma_sync_target target)
517{
518 struct scatterlist *sg;
519 int i;
520
521 for_each_sg(sgl, sg, nelems, i)
522 xen_swiotlb_sync_single(hwdev, sg->dma_address,
523 sg->dma_length, dir, target);
524}
525
526void
527xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
528 int nelems, enum dma_data_direction dir)
529{
530 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
531}
532EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
533
534void
535xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
536 int nelems, enum dma_data_direction dir)
537{
538 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
539}
540EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
541
542int
543xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
544{
545 return !dma_addr;
546}
547EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
548
549/*
550 * Return whether the given device DMA address mask can be supported
551 * properly. For example, if your device can only drive the low 24-bits
552 * during bus mastering, then you would pass 0x00ffffff as the mask to
553 * this function.
554 */
555int
556xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
557{
558 return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
559}
560EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
This page took 0.145447 seconds and 5 git commands to generate.