Btrfs: fix qgroup rescan to work with skinny metadata
[deliverable/linux.git] / fs / btrfs / backref.c
CommitLineData
a542ad1b
JS
1/*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
425d17a2 19#include <linux/vmalloc.h>
a542ad1b
JS
20#include "ctree.h"
21#include "disk-io.h"
22#include "backref.h"
8da6d581
JS
23#include "ulist.h"
24#include "transaction.h"
25#include "delayed-ref.h"
b916a59a 26#include "locking.h"
a542ad1b 27
976b1908
JS
28struct extent_inode_elem {
29 u64 inum;
30 u64 offset;
31 struct extent_inode_elem *next;
32};
33
34static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
35 struct btrfs_file_extent_item *fi,
36 u64 extent_item_pos,
37 struct extent_inode_elem **eie)
38{
8ca15e05 39 u64 offset = 0;
976b1908
JS
40 struct extent_inode_elem *e;
41
8ca15e05
JB
42 if (!btrfs_file_extent_compression(eb, fi) &&
43 !btrfs_file_extent_encryption(eb, fi) &&
44 !btrfs_file_extent_other_encoding(eb, fi)) {
45 u64 data_offset;
46 u64 data_len;
976b1908 47
8ca15e05
JB
48 data_offset = btrfs_file_extent_offset(eb, fi);
49 data_len = btrfs_file_extent_num_bytes(eb, fi);
50
51 if (extent_item_pos < data_offset ||
52 extent_item_pos >= data_offset + data_len)
53 return 1;
54 offset = extent_item_pos - data_offset;
55 }
976b1908
JS
56
57 e = kmalloc(sizeof(*e), GFP_NOFS);
58 if (!e)
59 return -ENOMEM;
60
61 e->next = *eie;
62 e->inum = key->objectid;
8ca15e05 63 e->offset = key->offset + offset;
976b1908
JS
64 *eie = e;
65
66 return 0;
67}
68
69static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
70 u64 extent_item_pos,
71 struct extent_inode_elem **eie)
72{
73 u64 disk_byte;
74 struct btrfs_key key;
75 struct btrfs_file_extent_item *fi;
76 int slot;
77 int nritems;
78 int extent_type;
79 int ret;
80
81 /*
82 * from the shared data ref, we only have the leaf but we need
83 * the key. thus, we must look into all items and see that we
84 * find one (some) with a reference to our extent item.
85 */
86 nritems = btrfs_header_nritems(eb);
87 for (slot = 0; slot < nritems; ++slot) {
88 btrfs_item_key_to_cpu(eb, &key, slot);
89 if (key.type != BTRFS_EXTENT_DATA_KEY)
90 continue;
91 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
92 extent_type = btrfs_file_extent_type(eb, fi);
93 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
94 continue;
95 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
96 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
97 if (disk_byte != wanted_disk_byte)
98 continue;
99
100 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
101 if (ret < 0)
102 return ret;
103 }
104
105 return 0;
106}
107
8da6d581
JS
108/*
109 * this structure records all encountered refs on the way up to the root
110 */
111struct __prelim_ref {
112 struct list_head list;
113 u64 root_id;
d5c88b73 114 struct btrfs_key key_for_search;
8da6d581
JS
115 int level;
116 int count;
3301958b 117 struct extent_inode_elem *inode_list;
8da6d581
JS
118 u64 parent;
119 u64 wanted_disk_byte;
120};
121
b9e9a6cb
WS
122static struct kmem_cache *btrfs_prelim_ref_cache;
123
124int __init btrfs_prelim_ref_init(void)
125{
126 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
127 sizeof(struct __prelim_ref),
128 0,
129 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
130 NULL);
131 if (!btrfs_prelim_ref_cache)
132 return -ENOMEM;
133 return 0;
134}
135
136void btrfs_prelim_ref_exit(void)
137{
138 if (btrfs_prelim_ref_cache)
139 kmem_cache_destroy(btrfs_prelim_ref_cache);
140}
141
d5c88b73
JS
142/*
143 * the rules for all callers of this function are:
144 * - obtaining the parent is the goal
145 * - if you add a key, you must know that it is a correct key
146 * - if you cannot add the parent or a correct key, then we will look into the
147 * block later to set a correct key
148 *
149 * delayed refs
150 * ============
151 * backref type | shared | indirect | shared | indirect
152 * information | tree | tree | data | data
153 * --------------------+--------+----------+--------+----------
154 * parent logical | y | - | - | -
155 * key to resolve | - | y | y | y
156 * tree block logical | - | - | - | -
157 * root for resolving | y | y | y | y
158 *
159 * - column 1: we've the parent -> done
160 * - column 2, 3, 4: we use the key to find the parent
161 *
162 * on disk refs (inline or keyed)
163 * ==============================
164 * backref type | shared | indirect | shared | indirect
165 * information | tree | tree | data | data
166 * --------------------+--------+----------+--------+----------
167 * parent logical | y | - | y | -
168 * key to resolve | - | - | - | y
169 * tree block logical | y | y | y | y
170 * root for resolving | - | y | y | y
171 *
172 * - column 1, 3: we've the parent -> done
173 * - column 2: we take the first key from the block to find the parent
174 * (see __add_missing_keys)
175 * - column 4: we use the key to find the parent
176 *
177 * additional information that's available but not required to find the parent
178 * block might help in merging entries to gain some speed.
179 */
180
8da6d581 181static int __add_prelim_ref(struct list_head *head, u64 root_id,
d5c88b73 182 struct btrfs_key *key, int level,
742916b8
WS
183 u64 parent, u64 wanted_disk_byte, int count,
184 gfp_t gfp_mask)
8da6d581
JS
185{
186 struct __prelim_ref *ref;
187
48ec4736
LB
188 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
189 return 0;
190
b9e9a6cb 191 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
8da6d581
JS
192 if (!ref)
193 return -ENOMEM;
194
195 ref->root_id = root_id;
196 if (key)
d5c88b73 197 ref->key_for_search = *key;
8da6d581 198 else
d5c88b73 199 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
8da6d581 200
3301958b 201 ref->inode_list = NULL;
8da6d581
JS
202 ref->level = level;
203 ref->count = count;
204 ref->parent = parent;
205 ref->wanted_disk_byte = wanted_disk_byte;
206 list_add_tail(&ref->list, head);
207
208 return 0;
209}
210
211static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
976b1908 212 struct ulist *parents, int level,
69bca40d 213 struct btrfs_key *key_for_search, u64 time_seq,
3d7806ec 214 u64 wanted_disk_byte,
976b1908 215 const u64 *extent_item_pos)
8da6d581 216{
69bca40d
AB
217 int ret = 0;
218 int slot;
219 struct extent_buffer *eb;
220 struct btrfs_key key;
8da6d581 221 struct btrfs_file_extent_item *fi;
ed8c4913 222 struct extent_inode_elem *eie = NULL, *old = NULL;
8da6d581
JS
223 u64 disk_byte;
224
69bca40d
AB
225 if (level != 0) {
226 eb = path->nodes[level];
227 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
3301958b
JS
228 if (ret < 0)
229 return ret;
8da6d581 230 return 0;
69bca40d 231 }
8da6d581
JS
232
233 /*
69bca40d
AB
234 * We normally enter this function with the path already pointing to
235 * the first item to check. But sometimes, we may enter it with
236 * slot==nritems. In that case, go to the next leaf before we continue.
8da6d581 237 */
69bca40d 238 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
3d7806ec 239 ret = btrfs_next_old_leaf(root, path, time_seq);
8da6d581 240
69bca40d 241 while (!ret) {
8da6d581 242 eb = path->nodes[0];
69bca40d
AB
243 slot = path->slots[0];
244
245 btrfs_item_key_to_cpu(eb, &key, slot);
246
247 if (key.objectid != key_for_search->objectid ||
248 key.type != BTRFS_EXTENT_DATA_KEY)
249 break;
250
251 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
252 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
253
254 if (disk_byte == wanted_disk_byte) {
255 eie = NULL;
ed8c4913 256 old = NULL;
69bca40d
AB
257 if (extent_item_pos) {
258 ret = check_extent_in_eb(&key, eb, fi,
259 *extent_item_pos,
260 &eie);
261 if (ret < 0)
262 break;
263 }
ed8c4913
JB
264 if (ret > 0)
265 goto next;
266 ret = ulist_add_merge(parents, eb->start,
267 (uintptr_t)eie,
268 (u64 *)&old, GFP_NOFS);
269 if (ret < 0)
270 break;
271 if (!ret && extent_item_pos) {
272 while (old->next)
273 old = old->next;
274 old->next = eie;
69bca40d 275 }
8da6d581 276 }
ed8c4913 277next:
69bca40d 278 ret = btrfs_next_old_item(root, path, time_seq);
8da6d581
JS
279 }
280
69bca40d
AB
281 if (ret > 0)
282 ret = 0;
283 return ret;
8da6d581
JS
284}
285
286/*
287 * resolve an indirect backref in the form (root_id, key, level)
288 * to a logical address
289 */
290static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
da61d31a
JB
291 struct btrfs_path *path, u64 time_seq,
292 struct __prelim_ref *ref,
293 struct ulist *parents,
294 const u64 *extent_item_pos)
8da6d581 295{
8da6d581
JS
296 struct btrfs_root *root;
297 struct btrfs_key root_key;
8da6d581
JS
298 struct extent_buffer *eb;
299 int ret = 0;
300 int root_level;
301 int level = ref->level;
302
8da6d581
JS
303 root_key.objectid = ref->root_id;
304 root_key.type = BTRFS_ROOT_ITEM_KEY;
305 root_key.offset = (u64)-1;
306 root = btrfs_read_fs_root_no_name(fs_info, &root_key);
307 if (IS_ERR(root)) {
308 ret = PTR_ERR(root);
309 goto out;
310 }
311
5b6602e7 312 root_level = btrfs_old_root_level(root, time_seq);
8da6d581
JS
313
314 if (root_level + 1 == level)
315 goto out;
316
317 path->lowest_level = level;
8445f61c 318 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
8da6d581
JS
319 pr_debug("search slot in root %llu (level %d, ref count %d) returned "
320 "%d for key (%llu %u %llu)\n",
c1c9ff7c
GU
321 ref->root_id, level, ref->count, ret,
322 ref->key_for_search.objectid, ref->key_for_search.type,
323 ref->key_for_search.offset);
8da6d581
JS
324 if (ret < 0)
325 goto out;
326
327 eb = path->nodes[level];
9345457f 328 while (!eb) {
fae7f21c 329 if (WARN_ON(!level)) {
9345457f
JS
330 ret = 1;
331 goto out;
332 }
333 level--;
334 eb = path->nodes[level];
8da6d581
JS
335 }
336
69bca40d
AB
337 ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
338 time_seq, ref->wanted_disk_byte,
339 extent_item_pos);
8da6d581 340out:
da61d31a
JB
341 path->lowest_level = 0;
342 btrfs_release_path(path);
8da6d581
JS
343 return ret;
344}
345
346/*
347 * resolve all indirect backrefs from the list
348 */
349static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
da61d31a 350 struct btrfs_path *path, u64 time_seq,
976b1908
JS
351 struct list_head *head,
352 const u64 *extent_item_pos)
8da6d581
JS
353{
354 int err;
355 int ret = 0;
356 struct __prelim_ref *ref;
357 struct __prelim_ref *ref_safe;
358 struct __prelim_ref *new_ref;
359 struct ulist *parents;
360 struct ulist_node *node;
cd1b413c 361 struct ulist_iterator uiter;
8da6d581
JS
362
363 parents = ulist_alloc(GFP_NOFS);
364 if (!parents)
365 return -ENOMEM;
366
367 /*
368 * _safe allows us to insert directly after the current item without
369 * iterating over the newly inserted items.
370 * we're also allowed to re-assign ref during iteration.
371 */
372 list_for_each_entry_safe(ref, ref_safe, head, list) {
373 if (ref->parent) /* already direct */
374 continue;
375 if (ref->count == 0)
376 continue;
da61d31a
JB
377 err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
378 parents, extent_item_pos);
e36902d4
WS
379 if (err == -ENOMEM)
380 goto out;
ca60ebfa 381 if (err)
8da6d581 382 continue;
8da6d581
JS
383
384 /* we put the first parent into the ref at hand */
cd1b413c
JS
385 ULIST_ITER_INIT(&uiter);
386 node = ulist_next(parents, &uiter);
8da6d581 387 ref->parent = node ? node->val : 0;
995e01b7 388 ref->inode_list = node ?
35a3621b 389 (struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
8da6d581
JS
390
391 /* additional parents require new refs being added here */
cd1b413c 392 while ((node = ulist_next(parents, &uiter))) {
b9e9a6cb
WS
393 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
394 GFP_NOFS);
8da6d581
JS
395 if (!new_ref) {
396 ret = -ENOMEM;
e36902d4 397 goto out;
8da6d581
JS
398 }
399 memcpy(new_ref, ref, sizeof(*ref));
400 new_ref->parent = node->val;
995e01b7
JS
401 new_ref->inode_list = (struct extent_inode_elem *)
402 (uintptr_t)node->aux;
8da6d581
JS
403 list_add(&new_ref->list, &ref->list);
404 }
405 ulist_reinit(parents);
406 }
e36902d4 407out:
8da6d581
JS
408 ulist_free(parents);
409 return ret;
410}
411
d5c88b73
JS
412static inline int ref_for_same_block(struct __prelim_ref *ref1,
413 struct __prelim_ref *ref2)
414{
415 if (ref1->level != ref2->level)
416 return 0;
417 if (ref1->root_id != ref2->root_id)
418 return 0;
419 if (ref1->key_for_search.type != ref2->key_for_search.type)
420 return 0;
421 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
422 return 0;
423 if (ref1->key_for_search.offset != ref2->key_for_search.offset)
424 return 0;
425 if (ref1->parent != ref2->parent)
426 return 0;
427
428 return 1;
429}
430
431/*
432 * read tree blocks and add keys where required.
433 */
434static int __add_missing_keys(struct btrfs_fs_info *fs_info,
435 struct list_head *head)
436{
437 struct list_head *pos;
438 struct extent_buffer *eb;
439
440 list_for_each(pos, head) {
441 struct __prelim_ref *ref;
442 ref = list_entry(pos, struct __prelim_ref, list);
443
444 if (ref->parent)
445 continue;
446 if (ref->key_for_search.type)
447 continue;
448 BUG_ON(!ref->wanted_disk_byte);
449 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
450 fs_info->tree_root->leafsize, 0);
416bc658
JB
451 if (!eb || !extent_buffer_uptodate(eb)) {
452 free_extent_buffer(eb);
453 return -EIO;
454 }
d5c88b73
JS
455 btrfs_tree_read_lock(eb);
456 if (btrfs_header_level(eb) == 0)
457 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
458 else
459 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
460 btrfs_tree_read_unlock(eb);
461 free_extent_buffer(eb);
462 }
463 return 0;
464}
465
8da6d581
JS
466/*
467 * merge two lists of backrefs and adjust counts accordingly
468 *
469 * mode = 1: merge identical keys, if key is set
d5c88b73
JS
470 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
471 * additionally, we could even add a key range for the blocks we
472 * looked into to merge even more (-> replace unresolved refs by those
473 * having a parent).
8da6d581
JS
474 * mode = 2: merge identical parents
475 */
692206b1 476static void __merge_refs(struct list_head *head, int mode)
8da6d581
JS
477{
478 struct list_head *pos1;
479
480 list_for_each(pos1, head) {
481 struct list_head *n2;
482 struct list_head *pos2;
483 struct __prelim_ref *ref1;
484
485 ref1 = list_entry(pos1, struct __prelim_ref, list);
486
8da6d581
JS
487 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
488 pos2 = n2, n2 = pos2->next) {
489 struct __prelim_ref *ref2;
d5c88b73 490 struct __prelim_ref *xchg;
3ef5969c 491 struct extent_inode_elem *eie;
8da6d581
JS
492
493 ref2 = list_entry(pos2, struct __prelim_ref, list);
494
495 if (mode == 1) {
d5c88b73 496 if (!ref_for_same_block(ref1, ref2))
8da6d581 497 continue;
d5c88b73
JS
498 if (!ref1->parent && ref2->parent) {
499 xchg = ref1;
500 ref1 = ref2;
501 ref2 = xchg;
502 }
8da6d581
JS
503 } else {
504 if (ref1->parent != ref2->parent)
505 continue;
8da6d581 506 }
3ef5969c
AB
507
508 eie = ref1->inode_list;
509 while (eie && eie->next)
510 eie = eie->next;
511 if (eie)
512 eie->next = ref2->inode_list;
513 else
514 ref1->inode_list = ref2->inode_list;
515 ref1->count += ref2->count;
516
8da6d581 517 list_del(&ref2->list);
b9e9a6cb 518 kmem_cache_free(btrfs_prelim_ref_cache, ref2);
8da6d581
JS
519 }
520
521 }
8da6d581
JS
522}
523
524/*
525 * add all currently queued delayed refs from this head whose seq nr is
526 * smaller or equal that seq to the list
527 */
528static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
8da6d581
JS
529 struct list_head *prefs)
530{
531 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
532 struct rb_node *n = &head->node.rb_node;
d5c88b73
JS
533 struct btrfs_key key;
534 struct btrfs_key op_key = {0};
8da6d581 535 int sgn;
b1375d64 536 int ret = 0;
8da6d581
JS
537
538 if (extent_op && extent_op->update_key)
d5c88b73 539 btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
8da6d581 540
d7df2c79
JB
541 spin_lock(&head->lock);
542 n = rb_first(&head->ref_root);
543 while (n) {
8da6d581
JS
544 struct btrfs_delayed_ref_node *node;
545 node = rb_entry(n, struct btrfs_delayed_ref_node,
546 rb_node);
d7df2c79 547 n = rb_next(n);
8da6d581
JS
548 if (node->seq > seq)
549 continue;
550
551 switch (node->action) {
552 case BTRFS_ADD_DELAYED_EXTENT:
553 case BTRFS_UPDATE_DELAYED_HEAD:
554 WARN_ON(1);
555 continue;
556 case BTRFS_ADD_DELAYED_REF:
557 sgn = 1;
558 break;
559 case BTRFS_DROP_DELAYED_REF:
560 sgn = -1;
561 break;
562 default:
563 BUG_ON(1);
564 }
565 switch (node->type) {
566 case BTRFS_TREE_BLOCK_REF_KEY: {
567 struct btrfs_delayed_tree_ref *ref;
568
569 ref = btrfs_delayed_node_to_tree_ref(node);
d5c88b73 570 ret = __add_prelim_ref(prefs, ref->root, &op_key,
8da6d581 571 ref->level + 1, 0, node->bytenr,
742916b8 572 node->ref_mod * sgn, GFP_ATOMIC);
8da6d581
JS
573 break;
574 }
575 case BTRFS_SHARED_BLOCK_REF_KEY: {
576 struct btrfs_delayed_tree_ref *ref;
577
578 ref = btrfs_delayed_node_to_tree_ref(node);
d5c88b73 579 ret = __add_prelim_ref(prefs, ref->root, NULL,
8da6d581
JS
580 ref->level + 1, ref->parent,
581 node->bytenr,
742916b8 582 node->ref_mod * sgn, GFP_ATOMIC);
8da6d581
JS
583 break;
584 }
585 case BTRFS_EXTENT_DATA_REF_KEY: {
586 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
587 ref = btrfs_delayed_node_to_data_ref(node);
588
589 key.objectid = ref->objectid;
590 key.type = BTRFS_EXTENT_DATA_KEY;
591 key.offset = ref->offset;
592 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
593 node->bytenr,
742916b8 594 node->ref_mod * sgn, GFP_ATOMIC);
8da6d581
JS
595 break;
596 }
597 case BTRFS_SHARED_DATA_REF_KEY: {
598 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
599
600 ref = btrfs_delayed_node_to_data_ref(node);
601
602 key.objectid = ref->objectid;
603 key.type = BTRFS_EXTENT_DATA_KEY;
604 key.offset = ref->offset;
605 ret = __add_prelim_ref(prefs, ref->root, &key, 0,
606 ref->parent, node->bytenr,
742916b8 607 node->ref_mod * sgn, GFP_ATOMIC);
8da6d581
JS
608 break;
609 }
610 default:
611 WARN_ON(1);
612 }
1149ab6b 613 if (ret)
d7df2c79 614 break;
8da6d581 615 }
d7df2c79
JB
616 spin_unlock(&head->lock);
617 return ret;
8da6d581
JS
618}
619
620/*
621 * add all inline backrefs for bytenr to the list
622 */
623static int __add_inline_refs(struct btrfs_fs_info *fs_info,
624 struct btrfs_path *path, u64 bytenr,
d5c88b73 625 int *info_level, struct list_head *prefs)
8da6d581 626{
b1375d64 627 int ret = 0;
8da6d581
JS
628 int slot;
629 struct extent_buffer *leaf;
630 struct btrfs_key key;
261c84b6 631 struct btrfs_key found_key;
8da6d581
JS
632 unsigned long ptr;
633 unsigned long end;
634 struct btrfs_extent_item *ei;
635 u64 flags;
636 u64 item_size;
637
638 /*
639 * enumerate all inline refs
640 */
641 leaf = path->nodes[0];
dadcaf78 642 slot = path->slots[0];
8da6d581
JS
643
644 item_size = btrfs_item_size_nr(leaf, slot);
645 BUG_ON(item_size < sizeof(*ei));
646
647 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
648 flags = btrfs_extent_flags(leaf, ei);
261c84b6 649 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8da6d581
JS
650
651 ptr = (unsigned long)(ei + 1);
652 end = (unsigned long)ei + item_size;
653
261c84b6
JB
654 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
655 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
8da6d581 656 struct btrfs_tree_block_info *info;
8da6d581
JS
657
658 info = (struct btrfs_tree_block_info *)ptr;
659 *info_level = btrfs_tree_block_level(leaf, info);
8da6d581
JS
660 ptr += sizeof(struct btrfs_tree_block_info);
661 BUG_ON(ptr > end);
261c84b6
JB
662 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
663 *info_level = found_key.offset;
8da6d581
JS
664 } else {
665 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
666 }
667
668 while (ptr < end) {
669 struct btrfs_extent_inline_ref *iref;
670 u64 offset;
671 int type;
672
673 iref = (struct btrfs_extent_inline_ref *)ptr;
674 type = btrfs_extent_inline_ref_type(leaf, iref);
675 offset = btrfs_extent_inline_ref_offset(leaf, iref);
676
677 switch (type) {
678 case BTRFS_SHARED_BLOCK_REF_KEY:
d5c88b73 679 ret = __add_prelim_ref(prefs, 0, NULL,
8da6d581 680 *info_level + 1, offset,
742916b8 681 bytenr, 1, GFP_NOFS);
8da6d581
JS
682 break;
683 case BTRFS_SHARED_DATA_REF_KEY: {
684 struct btrfs_shared_data_ref *sdref;
685 int count;
686
687 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
688 count = btrfs_shared_data_ref_count(leaf, sdref);
689 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
742916b8 690 bytenr, count, GFP_NOFS);
8da6d581
JS
691 break;
692 }
693 case BTRFS_TREE_BLOCK_REF_KEY:
d5c88b73
JS
694 ret = __add_prelim_ref(prefs, offset, NULL,
695 *info_level + 1, 0,
742916b8 696 bytenr, 1, GFP_NOFS);
8da6d581
JS
697 break;
698 case BTRFS_EXTENT_DATA_REF_KEY: {
699 struct btrfs_extent_data_ref *dref;
700 int count;
701 u64 root;
702
703 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
704 count = btrfs_extent_data_ref_count(leaf, dref);
705 key.objectid = btrfs_extent_data_ref_objectid(leaf,
706 dref);
707 key.type = BTRFS_EXTENT_DATA_KEY;
708 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
709 root = btrfs_extent_data_ref_root(leaf, dref);
d5c88b73 710 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
742916b8 711 bytenr, count, GFP_NOFS);
8da6d581
JS
712 break;
713 }
714 default:
715 WARN_ON(1);
716 }
1149ab6b
WS
717 if (ret)
718 return ret;
8da6d581
JS
719 ptr += btrfs_extent_inline_ref_size(type);
720 }
721
722 return 0;
723}
724
725/*
726 * add all non-inline backrefs for bytenr to the list
727 */
728static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
729 struct btrfs_path *path, u64 bytenr,
d5c88b73 730 int info_level, struct list_head *prefs)
8da6d581
JS
731{
732 struct btrfs_root *extent_root = fs_info->extent_root;
733 int ret;
734 int slot;
735 struct extent_buffer *leaf;
736 struct btrfs_key key;
737
738 while (1) {
739 ret = btrfs_next_item(extent_root, path);
740 if (ret < 0)
741 break;
742 if (ret) {
743 ret = 0;
744 break;
745 }
746
747 slot = path->slots[0];
748 leaf = path->nodes[0];
749 btrfs_item_key_to_cpu(leaf, &key, slot);
750
751 if (key.objectid != bytenr)
752 break;
753 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
754 continue;
755 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
756 break;
757
758 switch (key.type) {
759 case BTRFS_SHARED_BLOCK_REF_KEY:
d5c88b73 760 ret = __add_prelim_ref(prefs, 0, NULL,
8da6d581 761 info_level + 1, key.offset,
742916b8 762 bytenr, 1, GFP_NOFS);
8da6d581
JS
763 break;
764 case BTRFS_SHARED_DATA_REF_KEY: {
765 struct btrfs_shared_data_ref *sdref;
766 int count;
767
768 sdref = btrfs_item_ptr(leaf, slot,
769 struct btrfs_shared_data_ref);
770 count = btrfs_shared_data_ref_count(leaf, sdref);
771 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
742916b8 772 bytenr, count, GFP_NOFS);
8da6d581
JS
773 break;
774 }
775 case BTRFS_TREE_BLOCK_REF_KEY:
d5c88b73
JS
776 ret = __add_prelim_ref(prefs, key.offset, NULL,
777 info_level + 1, 0,
742916b8 778 bytenr, 1, GFP_NOFS);
8da6d581
JS
779 break;
780 case BTRFS_EXTENT_DATA_REF_KEY: {
781 struct btrfs_extent_data_ref *dref;
782 int count;
783 u64 root;
784
785 dref = btrfs_item_ptr(leaf, slot,
786 struct btrfs_extent_data_ref);
787 count = btrfs_extent_data_ref_count(leaf, dref);
788 key.objectid = btrfs_extent_data_ref_objectid(leaf,
789 dref);
790 key.type = BTRFS_EXTENT_DATA_KEY;
791 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
792 root = btrfs_extent_data_ref_root(leaf, dref);
793 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
742916b8 794 bytenr, count, GFP_NOFS);
8da6d581
JS
795 break;
796 }
797 default:
798 WARN_ON(1);
799 }
1149ab6b
WS
800 if (ret)
801 return ret;
802
8da6d581
JS
803 }
804
805 return ret;
806}
807
808/*
809 * this adds all existing backrefs (inline backrefs, backrefs and delayed
810 * refs) for the given bytenr to the refs list, merges duplicates and resolves
811 * indirect refs to their parent bytenr.
812 * When roots are found, they're added to the roots list
813 *
814 * FIXME some caching might speed things up
815 */
816static int find_parent_nodes(struct btrfs_trans_handle *trans,
817 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c
JS
818 u64 time_seq, struct ulist *refs,
819 struct ulist *roots, const u64 *extent_item_pos)
8da6d581
JS
820{
821 struct btrfs_key key;
822 struct btrfs_path *path;
8da6d581 823 struct btrfs_delayed_ref_root *delayed_refs = NULL;
d3b01064 824 struct btrfs_delayed_ref_head *head;
8da6d581
JS
825 int info_level = 0;
826 int ret;
827 struct list_head prefs_delayed;
828 struct list_head prefs;
829 struct __prelim_ref *ref;
830
831 INIT_LIST_HEAD(&prefs);
832 INIT_LIST_HEAD(&prefs_delayed);
833
834 key.objectid = bytenr;
8da6d581 835 key.offset = (u64)-1;
261c84b6
JB
836 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
837 key.type = BTRFS_METADATA_ITEM_KEY;
838 else
839 key.type = BTRFS_EXTENT_ITEM_KEY;
8da6d581
JS
840
841 path = btrfs_alloc_path();
842 if (!path)
843 return -ENOMEM;
da61d31a
JB
844 if (!trans)
845 path->search_commit_root = 1;
8da6d581
JS
846
847 /*
848 * grab both a lock on the path and a lock on the delayed ref head.
849 * We need both to get a consistent picture of how the refs look
850 * at a specified point in time
851 */
852again:
d3b01064
LZ
853 head = NULL;
854
8da6d581
JS
855 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
856 if (ret < 0)
857 goto out;
858 BUG_ON(ret == 0);
859
da61d31a 860 if (trans) {
7a3ae2f8
JS
861 /*
862 * look if there are updates for this ref queued and lock the
863 * head
864 */
865 delayed_refs = &trans->transaction->delayed_refs;
866 spin_lock(&delayed_refs->lock);
867 head = btrfs_find_delayed_ref_head(trans, bytenr);
868 if (head) {
869 if (!mutex_trylock(&head->mutex)) {
870 atomic_inc(&head->node.refs);
871 spin_unlock(&delayed_refs->lock);
872
873 btrfs_release_path(path);
874
875 /*
876 * Mutex was contended, block until it's
877 * released and try again
878 */
879 mutex_lock(&head->mutex);
880 mutex_unlock(&head->mutex);
881 btrfs_put_delayed_ref(&head->node);
882 goto again;
883 }
d7df2c79 884 spin_unlock(&delayed_refs->lock);
097b8a7c 885 ret = __add_delayed_refs(head, time_seq,
8445f61c 886 &prefs_delayed);
155725c9 887 mutex_unlock(&head->mutex);
d7df2c79 888 if (ret)
7a3ae2f8 889 goto out;
d7df2c79
JB
890 } else {
891 spin_unlock(&delayed_refs->lock);
d3b01064 892 }
8da6d581 893 }
8da6d581
JS
894
895 if (path->slots[0]) {
896 struct extent_buffer *leaf;
897 int slot;
898
dadcaf78 899 path->slots[0]--;
8da6d581 900 leaf = path->nodes[0];
dadcaf78 901 slot = path->slots[0];
8da6d581
JS
902 btrfs_item_key_to_cpu(leaf, &key, slot);
903 if (key.objectid == bytenr &&
261c84b6
JB
904 (key.type == BTRFS_EXTENT_ITEM_KEY ||
905 key.type == BTRFS_METADATA_ITEM_KEY)) {
8da6d581 906 ret = __add_inline_refs(fs_info, path, bytenr,
d5c88b73 907 &info_level, &prefs);
8da6d581
JS
908 if (ret)
909 goto out;
d5c88b73 910 ret = __add_keyed_refs(fs_info, path, bytenr,
8da6d581
JS
911 info_level, &prefs);
912 if (ret)
913 goto out;
914 }
915 }
916 btrfs_release_path(path);
917
8da6d581
JS
918 list_splice_init(&prefs_delayed, &prefs);
919
d5c88b73
JS
920 ret = __add_missing_keys(fs_info, &prefs);
921 if (ret)
922 goto out;
923
692206b1 924 __merge_refs(&prefs, 1);
8da6d581 925
da61d31a
JB
926 ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
927 extent_item_pos);
8da6d581
JS
928 if (ret)
929 goto out;
930
692206b1 931 __merge_refs(&prefs, 2);
8da6d581
JS
932
933 while (!list_empty(&prefs)) {
934 ref = list_first_entry(&prefs, struct __prelim_ref, list);
6c1500f2 935 WARN_ON(ref->count < 0);
8da6d581
JS
936 if (ref->count && ref->root_id && ref->parent == 0) {
937 /* no parent == root of tree */
938 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
f1723939
WS
939 if (ret < 0)
940 goto out;
8da6d581
JS
941 }
942 if (ref->count && ref->parent) {
976b1908 943 struct extent_inode_elem *eie = NULL;
3301958b 944 if (extent_item_pos && !ref->inode_list) {
976b1908
JS
945 u32 bsz;
946 struct extent_buffer *eb;
947 bsz = btrfs_level_size(fs_info->extent_root,
948 info_level);
949 eb = read_tree_block(fs_info->extent_root,
950 ref->parent, bsz, 0);
416bc658
JB
951 if (!eb || !extent_buffer_uptodate(eb)) {
952 free_extent_buffer(eb);
c16c2e2e
WS
953 ret = -EIO;
954 goto out;
416bc658 955 }
976b1908
JS
956 ret = find_extent_in_eb(eb, bytenr,
957 *extent_item_pos, &eie);
958 free_extent_buffer(eb);
f5929cd8
FDBM
959 if (ret < 0)
960 goto out;
961 ref->inode_list = eie;
976b1908 962 }
3301958b 963 ret = ulist_add_merge(refs, ref->parent,
995e01b7 964 (uintptr_t)ref->inode_list,
34d73f54 965 (u64 *)&eie, GFP_NOFS);
f1723939
WS
966 if (ret < 0)
967 goto out;
3301958b
JS
968 if (!ret && extent_item_pos) {
969 /*
970 * we've recorded that parent, so we must extend
971 * its inode list here
972 */
973 BUG_ON(!eie);
974 while (eie->next)
975 eie = eie->next;
976 eie->next = ref->inode_list;
977 }
8da6d581 978 }
a4fdb61e 979 list_del(&ref->list);
b9e9a6cb 980 kmem_cache_free(btrfs_prelim_ref_cache, ref);
8da6d581
JS
981 }
982
983out:
8da6d581
JS
984 btrfs_free_path(path);
985 while (!list_empty(&prefs)) {
986 ref = list_first_entry(&prefs, struct __prelim_ref, list);
987 list_del(&ref->list);
b9e9a6cb 988 kmem_cache_free(btrfs_prelim_ref_cache, ref);
8da6d581
JS
989 }
990 while (!list_empty(&prefs_delayed)) {
991 ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
992 list);
993 list_del(&ref->list);
b9e9a6cb 994 kmem_cache_free(btrfs_prelim_ref_cache, ref);
8da6d581
JS
995 }
996
997 return ret;
998}
999
976b1908
JS
1000static void free_leaf_list(struct ulist *blocks)
1001{
1002 struct ulist_node *node = NULL;
1003 struct extent_inode_elem *eie;
1004 struct extent_inode_elem *eie_next;
1005 struct ulist_iterator uiter;
1006
1007 ULIST_ITER_INIT(&uiter);
1008 while ((node = ulist_next(blocks, &uiter))) {
1009 if (!node->aux)
1010 continue;
995e01b7 1011 eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
976b1908
JS
1012 for (; eie; eie = eie_next) {
1013 eie_next = eie->next;
1014 kfree(eie);
1015 }
1016 node->aux = 0;
1017 }
1018
1019 ulist_free(blocks);
1020}
1021
8da6d581
JS
1022/*
1023 * Finds all leafs with a reference to the specified combination of bytenr and
1024 * offset. key_list_head will point to a list of corresponding keys (caller must
1025 * free each list element). The leafs will be stored in the leafs ulist, which
1026 * must be freed with ulist_free.
1027 *
1028 * returns 0 on success, <0 on error
1029 */
1030static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1031 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1032 u64 time_seq, struct ulist **leafs,
976b1908 1033 const u64 *extent_item_pos)
8da6d581
JS
1034{
1035 struct ulist *tmp;
1036 int ret;
1037
1038 tmp = ulist_alloc(GFP_NOFS);
1039 if (!tmp)
1040 return -ENOMEM;
1041 *leafs = ulist_alloc(GFP_NOFS);
1042 if (!*leafs) {
1043 ulist_free(tmp);
1044 return -ENOMEM;
1045 }
1046
097b8a7c 1047 ret = find_parent_nodes(trans, fs_info, bytenr,
8445f61c 1048 time_seq, *leafs, tmp, extent_item_pos);
8da6d581
JS
1049 ulist_free(tmp);
1050
1051 if (ret < 0 && ret != -ENOENT) {
976b1908 1052 free_leaf_list(*leafs);
8da6d581
JS
1053 return ret;
1054 }
1055
1056 return 0;
1057}
1058
1059/*
1060 * walk all backrefs for a given extent to find all roots that reference this
1061 * extent. Walking a backref means finding all extents that reference this
1062 * extent and in turn walk the backrefs of those, too. Naturally this is a
1063 * recursive process, but here it is implemented in an iterative fashion: We
1064 * find all referencing extents for the extent in question and put them on a
1065 * list. In turn, we find all referencing extents for those, further appending
1066 * to the list. The way we iterate the list allows adding more elements after
1067 * the current while iterating. The process stops when we reach the end of the
1068 * list. Found roots are added to the roots list.
1069 *
1070 * returns 0 on success, < 0 on error.
1071 */
1072int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1073 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1074 u64 time_seq, struct ulist **roots)
8da6d581
JS
1075{
1076 struct ulist *tmp;
1077 struct ulist_node *node = NULL;
cd1b413c 1078 struct ulist_iterator uiter;
8da6d581
JS
1079 int ret;
1080
1081 tmp = ulist_alloc(GFP_NOFS);
1082 if (!tmp)
1083 return -ENOMEM;
1084 *roots = ulist_alloc(GFP_NOFS);
1085 if (!*roots) {
1086 ulist_free(tmp);
1087 return -ENOMEM;
1088 }
1089
cd1b413c 1090 ULIST_ITER_INIT(&uiter);
8da6d581 1091 while (1) {
097b8a7c 1092 ret = find_parent_nodes(trans, fs_info, bytenr,
8445f61c 1093 time_seq, tmp, *roots, NULL);
8da6d581
JS
1094 if (ret < 0 && ret != -ENOENT) {
1095 ulist_free(tmp);
1096 ulist_free(*roots);
1097 return ret;
1098 }
cd1b413c 1099 node = ulist_next(tmp, &uiter);
8da6d581
JS
1100 if (!node)
1101 break;
1102 bytenr = node->val;
1103 }
1104
1105 ulist_free(tmp);
1106 return 0;
1107}
1108
a542ad1b
JS
1109/*
1110 * this makes the path point to (inum INODE_ITEM ioff)
1111 */
1112int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1113 struct btrfs_path *path)
1114{
1115 struct btrfs_key key;
e33d5c3d
KN
1116 return btrfs_find_item(fs_root, path, inum, ioff,
1117 BTRFS_INODE_ITEM_KEY, &key);
a542ad1b
JS
1118}
1119
1120static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1121 struct btrfs_path *path,
1122 struct btrfs_key *found_key)
1123{
e33d5c3d
KN
1124 return btrfs_find_item(fs_root, path, inum, ioff,
1125 BTRFS_INODE_REF_KEY, found_key);
a542ad1b
JS
1126}
1127
f186373f
MF
1128int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1129 u64 start_off, struct btrfs_path *path,
1130 struct btrfs_inode_extref **ret_extref,
1131 u64 *found_off)
1132{
1133 int ret, slot;
1134 struct btrfs_key key;
1135 struct btrfs_key found_key;
1136 struct btrfs_inode_extref *extref;
1137 struct extent_buffer *leaf;
1138 unsigned long ptr;
1139
1140 key.objectid = inode_objectid;
1141 btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1142 key.offset = start_off;
1143
1144 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1145 if (ret < 0)
1146 return ret;
1147
1148 while (1) {
1149 leaf = path->nodes[0];
1150 slot = path->slots[0];
1151 if (slot >= btrfs_header_nritems(leaf)) {
1152 /*
1153 * If the item at offset is not found,
1154 * btrfs_search_slot will point us to the slot
1155 * where it should be inserted. In our case
1156 * that will be the slot directly before the
1157 * next INODE_REF_KEY_V2 item. In the case
1158 * that we're pointing to the last slot in a
1159 * leaf, we must move one leaf over.
1160 */
1161 ret = btrfs_next_leaf(root, path);
1162 if (ret) {
1163 if (ret >= 1)
1164 ret = -ENOENT;
1165 break;
1166 }
1167 continue;
1168 }
1169
1170 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1171
1172 /*
1173 * Check that we're still looking at an extended ref key for
1174 * this particular objectid. If we have different
1175 * objectid or type then there are no more to be found
1176 * in the tree and we can exit.
1177 */
1178 ret = -ENOENT;
1179 if (found_key.objectid != inode_objectid)
1180 break;
1181 if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1182 break;
1183
1184 ret = 0;
1185 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1186 extref = (struct btrfs_inode_extref *)ptr;
1187 *ret_extref = extref;
1188 if (found_off)
1189 *found_off = found_key.offset;
1190 break;
1191 }
1192
1193 return ret;
1194}
1195
48a3b636
ES
1196/*
1197 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1198 * Elements of the path are separated by '/' and the path is guaranteed to be
1199 * 0-terminated. the path is only given within the current file system.
1200 * Therefore, it never starts with a '/'. the caller is responsible to provide
1201 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1202 * the start point of the resulting string is returned. this pointer is within
1203 * dest, normally.
1204 * in case the path buffer would overflow, the pointer is decremented further
1205 * as if output was written to the buffer, though no more output is actually
1206 * generated. that way, the caller can determine how much space would be
1207 * required for the path to fit into the buffer. in that case, the returned
1208 * value will be smaller than dest. callers must check this!
1209 */
96b5bd77
JS
1210char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1211 u32 name_len, unsigned long name_off,
1212 struct extent_buffer *eb_in, u64 parent,
1213 char *dest, u32 size)
a542ad1b 1214{
a542ad1b
JS
1215 int slot;
1216 u64 next_inum;
1217 int ret;
661bec6b 1218 s64 bytes_left = ((s64)size) - 1;
a542ad1b
JS
1219 struct extent_buffer *eb = eb_in;
1220 struct btrfs_key found_key;
b916a59a 1221 int leave_spinning = path->leave_spinning;
d24bec3a 1222 struct btrfs_inode_ref *iref;
a542ad1b
JS
1223
1224 if (bytes_left >= 0)
1225 dest[bytes_left] = '\0';
1226
b916a59a 1227 path->leave_spinning = 1;
a542ad1b 1228 while (1) {
d24bec3a 1229 bytes_left -= name_len;
a542ad1b
JS
1230 if (bytes_left >= 0)
1231 read_extent_buffer(eb, dest + bytes_left,
d24bec3a 1232 name_off, name_len);
b916a59a
JS
1233 if (eb != eb_in) {
1234 btrfs_tree_read_unlock_blocking(eb);
a542ad1b 1235 free_extent_buffer(eb);
b916a59a 1236 }
a542ad1b 1237 ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
8f24b496
JS
1238 if (ret > 0)
1239 ret = -ENOENT;
a542ad1b
JS
1240 if (ret)
1241 break;
d24bec3a 1242
a542ad1b
JS
1243 next_inum = found_key.offset;
1244
1245 /* regular exit ahead */
1246 if (parent == next_inum)
1247 break;
1248
1249 slot = path->slots[0];
1250 eb = path->nodes[0];
1251 /* make sure we can use eb after releasing the path */
b916a59a 1252 if (eb != eb_in) {
a542ad1b 1253 atomic_inc(&eb->refs);
b916a59a
JS
1254 btrfs_tree_read_lock(eb);
1255 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1256 }
a542ad1b 1257 btrfs_release_path(path);
a542ad1b 1258 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
d24bec3a
MF
1259
1260 name_len = btrfs_inode_ref_name_len(eb, iref);
1261 name_off = (unsigned long)(iref + 1);
1262
a542ad1b
JS
1263 parent = next_inum;
1264 --bytes_left;
1265 if (bytes_left >= 0)
1266 dest[bytes_left] = '/';
1267 }
1268
1269 btrfs_release_path(path);
b916a59a 1270 path->leave_spinning = leave_spinning;
a542ad1b
JS
1271
1272 if (ret)
1273 return ERR_PTR(ret);
1274
1275 return dest + bytes_left;
1276}
1277
1278/*
1279 * this makes the path point to (logical EXTENT_ITEM *)
1280 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1281 * tree blocks and <0 on error.
1282 */
1283int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
69917e43
LB
1284 struct btrfs_path *path, struct btrfs_key *found_key,
1285 u64 *flags_ret)
a542ad1b
JS
1286{
1287 int ret;
1288 u64 flags;
261c84b6 1289 u64 size = 0;
a542ad1b
JS
1290 u32 item_size;
1291 struct extent_buffer *eb;
1292 struct btrfs_extent_item *ei;
1293 struct btrfs_key key;
1294
261c84b6
JB
1295 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1296 key.type = BTRFS_METADATA_ITEM_KEY;
1297 else
1298 key.type = BTRFS_EXTENT_ITEM_KEY;
a542ad1b
JS
1299 key.objectid = logical;
1300 key.offset = (u64)-1;
1301
1302 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1303 if (ret < 0)
1304 return ret;
a542ad1b 1305
580f0a67
JB
1306 while (1) {
1307 u32 nritems;
1308 if (path->slots[0] == 0) {
1309 btrfs_set_path_blocking(path);
1310 ret = btrfs_prev_leaf(fs_info->extent_root, path);
1311 if (ret != 0) {
1312 if (ret > 0) {
1313 pr_debug("logical %llu is not within "
1314 "any extent\n", logical);
1315 ret = -ENOENT;
1316 }
1317 return ret;
1318 }
1319 } else {
1320 path->slots[0]--;
1321 }
1322 nritems = btrfs_header_nritems(path->nodes[0]);
1323 if (nritems == 0) {
1324 pr_debug("logical %llu is not within any extent\n",
1325 logical);
1326 return -ENOENT;
1327 }
1328 if (path->slots[0] == nritems)
1329 path->slots[0]--;
1330
1331 btrfs_item_key_to_cpu(path->nodes[0], found_key,
1332 path->slots[0]);
1333 if (found_key->type == BTRFS_EXTENT_ITEM_KEY ||
1334 found_key->type == BTRFS_METADATA_ITEM_KEY)
1335 break;
1336 }
1337
261c84b6
JB
1338 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1339 size = fs_info->extent_root->leafsize;
1340 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1341 size = found_key->offset;
1342
580f0a67 1343 if (found_key->objectid > logical ||
261c84b6 1344 found_key->objectid + size <= logical) {
c1c9ff7c 1345 pr_debug("logical %llu is not within any extent\n", logical);
a542ad1b 1346 return -ENOENT;
4692cf58 1347 }
a542ad1b
JS
1348
1349 eb = path->nodes[0];
1350 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1351 BUG_ON(item_size < sizeof(*ei));
1352
1353 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1354 flags = btrfs_extent_flags(eb, ei);
1355
4692cf58
JS
1356 pr_debug("logical %llu is at position %llu within the extent (%llu "
1357 "EXTENT_ITEM %llu) flags %#llx size %u\n",
c1c9ff7c
GU
1358 logical, logical - found_key->objectid, found_key->objectid,
1359 found_key->offset, flags, item_size);
69917e43
LB
1360
1361 WARN_ON(!flags_ret);
1362 if (flags_ret) {
1363 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1364 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1365 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1366 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1367 else
1368 BUG_ON(1);
1369 return 0;
1370 }
a542ad1b
JS
1371
1372 return -EIO;
1373}
1374
1375/*
1376 * helper function to iterate extent inline refs. ptr must point to a 0 value
1377 * for the first call and may be modified. it is used to track state.
1378 * if more refs exist, 0 is returned and the next call to
1379 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1380 * next ref. after the last ref was processed, 1 is returned.
1381 * returns <0 on error
1382 */
1383static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1384 struct btrfs_extent_item *ei, u32 item_size,
1385 struct btrfs_extent_inline_ref **out_eiref,
1386 int *out_type)
1387{
1388 unsigned long end;
1389 u64 flags;
1390 struct btrfs_tree_block_info *info;
1391
1392 if (!*ptr) {
1393 /* first call */
1394 flags = btrfs_extent_flags(eb, ei);
1395 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1396 info = (struct btrfs_tree_block_info *)(ei + 1);
1397 *out_eiref =
1398 (struct btrfs_extent_inline_ref *)(info + 1);
1399 } else {
1400 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1401 }
1402 *ptr = (unsigned long)*out_eiref;
1403 if ((void *)*ptr >= (void *)ei + item_size)
1404 return -ENOENT;
1405 }
1406
1407 end = (unsigned long)ei + item_size;
1408 *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1409 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1410
1411 *ptr += btrfs_extent_inline_ref_size(*out_type);
1412 WARN_ON(*ptr > end);
1413 if (*ptr == end)
1414 return 1; /* last */
1415
1416 return 0;
1417}
1418
1419/*
1420 * reads the tree block backref for an extent. tree level and root are returned
1421 * through out_level and out_root. ptr must point to a 0 value for the first
1422 * call and may be modified (see __get_extent_inline_ref comment).
1423 * returns 0 if data was provided, 1 if there was no more data to provide or
1424 * <0 on error.
1425 */
1426int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1427 struct btrfs_extent_item *ei, u32 item_size,
1428 u64 *out_root, u8 *out_level)
1429{
1430 int ret;
1431 int type;
1432 struct btrfs_tree_block_info *info;
1433 struct btrfs_extent_inline_ref *eiref;
1434
1435 if (*ptr == (unsigned long)-1)
1436 return 1;
1437
1438 while (1) {
1439 ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1440 &eiref, &type);
1441 if (ret < 0)
1442 return ret;
1443
1444 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1445 type == BTRFS_SHARED_BLOCK_REF_KEY)
1446 break;
1447
1448 if (ret == 1)
1449 return 1;
1450 }
1451
1452 /* we can treat both ref types equally here */
1453 info = (struct btrfs_tree_block_info *)(ei + 1);
1454 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1455 *out_level = btrfs_tree_block_level(eb, info);
1456
1457 if (ret == 1)
1458 *ptr = (unsigned long)-1;
1459
1460 return 0;
1461}
1462
976b1908
JS
1463static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1464 u64 root, u64 extent_item_objectid,
4692cf58 1465 iterate_extent_inodes_t *iterate, void *ctx)
a542ad1b 1466{
976b1908 1467 struct extent_inode_elem *eie;
4692cf58 1468 int ret = 0;
4692cf58 1469
976b1908 1470 for (eie = inode_list; eie; eie = eie->next) {
4692cf58 1471 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
976b1908
JS
1472 "root %llu\n", extent_item_objectid,
1473 eie->inum, eie->offset, root);
1474 ret = iterate(eie->inum, eie->offset, root, ctx);
4692cf58 1475 if (ret) {
976b1908
JS
1476 pr_debug("stopping iteration for %llu due to ret=%d\n",
1477 extent_item_objectid, ret);
4692cf58
JS
1478 break;
1479 }
a542ad1b
JS
1480 }
1481
a542ad1b
JS
1482 return ret;
1483}
1484
1485/*
1486 * calls iterate() for every inode that references the extent identified by
4692cf58 1487 * the given parameters.
a542ad1b
JS
1488 * when the iterator function returns a non-zero value, iteration stops.
1489 */
1490int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
4692cf58 1491 u64 extent_item_objectid, u64 extent_item_pos,
7a3ae2f8 1492 int search_commit_root,
a542ad1b
JS
1493 iterate_extent_inodes_t *iterate, void *ctx)
1494{
a542ad1b 1495 int ret;
da61d31a 1496 struct btrfs_trans_handle *trans = NULL;
7a3ae2f8
JS
1497 struct ulist *refs = NULL;
1498 struct ulist *roots = NULL;
4692cf58
JS
1499 struct ulist_node *ref_node = NULL;
1500 struct ulist_node *root_node = NULL;
8445f61c 1501 struct seq_list tree_mod_seq_elem = {};
cd1b413c
JS
1502 struct ulist_iterator ref_uiter;
1503 struct ulist_iterator root_uiter;
a542ad1b 1504
4692cf58
JS
1505 pr_debug("resolving all inodes for extent %llu\n",
1506 extent_item_objectid);
a542ad1b 1507
da61d31a 1508 if (!search_commit_root) {
7a3ae2f8
JS
1509 trans = btrfs_join_transaction(fs_info->extent_root);
1510 if (IS_ERR(trans))
1511 return PTR_ERR(trans);
8445f61c 1512 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
7a3ae2f8 1513 }
a542ad1b 1514
4692cf58 1515 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
097b8a7c 1516 tree_mod_seq_elem.seq, &refs,
8445f61c 1517 &extent_item_pos);
4692cf58
JS
1518 if (ret)
1519 goto out;
a542ad1b 1520
cd1b413c
JS
1521 ULIST_ITER_INIT(&ref_uiter);
1522 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
976b1908 1523 ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
097b8a7c 1524 tree_mod_seq_elem.seq, &roots);
4692cf58
JS
1525 if (ret)
1526 break;
cd1b413c
JS
1527 ULIST_ITER_INIT(&root_uiter);
1528 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
976b1908 1529 pr_debug("root %llu references leaf %llu, data list "
34d73f54 1530 "%#llx\n", root_node->val, ref_node->val,
c1c9ff7c 1531 ref_node->aux);
995e01b7
JS
1532 ret = iterate_leaf_refs((struct extent_inode_elem *)
1533 (uintptr_t)ref_node->aux,
1534 root_node->val,
1535 extent_item_objectid,
1536 iterate, ctx);
4692cf58 1537 }
976b1908 1538 ulist_free(roots);
a542ad1b
JS
1539 }
1540
976b1908 1541 free_leaf_list(refs);
4692cf58 1542out:
7a3ae2f8 1543 if (!search_commit_root) {
8445f61c 1544 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
7a3ae2f8
JS
1545 btrfs_end_transaction(trans, fs_info->extent_root);
1546 }
1547
a542ad1b
JS
1548 return ret;
1549}
1550
1551int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1552 struct btrfs_path *path,
1553 iterate_extent_inodes_t *iterate, void *ctx)
1554{
1555 int ret;
4692cf58 1556 u64 extent_item_pos;
69917e43 1557 u64 flags = 0;
a542ad1b 1558 struct btrfs_key found_key;
7a3ae2f8 1559 int search_commit_root = path->search_commit_root;
a542ad1b 1560
69917e43 1561 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
4692cf58 1562 btrfs_release_path(path);
a542ad1b
JS
1563 if (ret < 0)
1564 return ret;
69917e43 1565 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3627bf45 1566 return -EINVAL;
a542ad1b 1567
4692cf58 1568 extent_item_pos = logical - found_key.objectid;
7a3ae2f8
JS
1569 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1570 extent_item_pos, search_commit_root,
1571 iterate, ctx);
a542ad1b
JS
1572
1573 return ret;
1574}
1575
d24bec3a
MF
1576typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1577 struct extent_buffer *eb, void *ctx);
1578
1579static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1580 struct btrfs_path *path,
1581 iterate_irefs_t *iterate, void *ctx)
a542ad1b 1582{
aefc1eb1 1583 int ret = 0;
a542ad1b
JS
1584 int slot;
1585 u32 cur;
1586 u32 len;
1587 u32 name_len;
1588 u64 parent = 0;
1589 int found = 0;
1590 struct extent_buffer *eb;
1591 struct btrfs_item *item;
1592 struct btrfs_inode_ref *iref;
1593 struct btrfs_key found_key;
1594
aefc1eb1 1595 while (!ret) {
a542ad1b 1596 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
d24bec3a 1597 &found_key);
a542ad1b
JS
1598 if (ret < 0)
1599 break;
1600 if (ret) {
1601 ret = found ? 0 : -ENOENT;
1602 break;
1603 }
1604 ++found;
1605
1606 parent = found_key.offset;
1607 slot = path->slots[0];
3fe81ce2
FDBM
1608 eb = btrfs_clone_extent_buffer(path->nodes[0]);
1609 if (!eb) {
1610 ret = -ENOMEM;
1611 break;
1612 }
1613 extent_buffer_get(eb);
b916a59a
JS
1614 btrfs_tree_read_lock(eb);
1615 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
a542ad1b
JS
1616 btrfs_release_path(path);
1617
dd3cc16b 1618 item = btrfs_item_nr(slot);
a542ad1b
JS
1619 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1620
1621 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1622 name_len = btrfs_inode_ref_name_len(eb, iref);
1623 /* path must be released before calling iterate()! */
4692cf58 1624 pr_debug("following ref at offset %u for inode %llu in "
c1c9ff7c
GU
1625 "tree %llu\n", cur, found_key.objectid,
1626 fs_root->objectid);
d24bec3a
MF
1627 ret = iterate(parent, name_len,
1628 (unsigned long)(iref + 1), eb, ctx);
aefc1eb1 1629 if (ret)
a542ad1b 1630 break;
a542ad1b
JS
1631 len = sizeof(*iref) + name_len;
1632 iref = (struct btrfs_inode_ref *)((char *)iref + len);
1633 }
b916a59a 1634 btrfs_tree_read_unlock_blocking(eb);
a542ad1b
JS
1635 free_extent_buffer(eb);
1636 }
1637
1638 btrfs_release_path(path);
1639
1640 return ret;
1641}
1642
d24bec3a
MF
1643static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1644 struct btrfs_path *path,
1645 iterate_irefs_t *iterate, void *ctx)
1646{
1647 int ret;
1648 int slot;
1649 u64 offset = 0;
1650 u64 parent;
1651 int found = 0;
1652 struct extent_buffer *eb;
1653 struct btrfs_inode_extref *extref;
1654 struct extent_buffer *leaf;
1655 u32 item_size;
1656 u32 cur_offset;
1657 unsigned long ptr;
1658
1659 while (1) {
1660 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1661 &offset);
1662 if (ret < 0)
1663 break;
1664 if (ret) {
1665 ret = found ? 0 : -ENOENT;
1666 break;
1667 }
1668 ++found;
1669
1670 slot = path->slots[0];
3fe81ce2
FDBM
1671 eb = btrfs_clone_extent_buffer(path->nodes[0]);
1672 if (!eb) {
1673 ret = -ENOMEM;
1674 break;
1675 }
1676 extent_buffer_get(eb);
d24bec3a
MF
1677
1678 btrfs_tree_read_lock(eb);
1679 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1680 btrfs_release_path(path);
1681
1682 leaf = path->nodes[0];
e94acd86
VG
1683 item_size = btrfs_item_size_nr(leaf, slot);
1684 ptr = btrfs_item_ptr_offset(leaf, slot);
d24bec3a
MF
1685 cur_offset = 0;
1686
1687 while (cur_offset < item_size) {
1688 u32 name_len;
1689
1690 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1691 parent = btrfs_inode_extref_parent(eb, extref);
1692 name_len = btrfs_inode_extref_name_len(eb, extref);
1693 ret = iterate(parent, name_len,
1694 (unsigned long)&extref->name, eb, ctx);
1695 if (ret)
1696 break;
1697
1698 cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1699 cur_offset += sizeof(*extref);
1700 }
1701 btrfs_tree_read_unlock_blocking(eb);
1702 free_extent_buffer(eb);
1703
1704 offset++;
1705 }
1706
1707 btrfs_release_path(path);
1708
1709 return ret;
1710}
1711
1712static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1713 struct btrfs_path *path, iterate_irefs_t *iterate,
1714 void *ctx)
1715{
1716 int ret;
1717 int found_refs = 0;
1718
1719 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1720 if (!ret)
1721 ++found_refs;
1722 else if (ret != -ENOENT)
1723 return ret;
1724
1725 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1726 if (ret == -ENOENT && found_refs)
1727 return 0;
1728
1729 return ret;
1730}
1731
a542ad1b
JS
1732/*
1733 * returns 0 if the path could be dumped (probably truncated)
1734 * returns <0 in case of an error
1735 */
d24bec3a
MF
1736static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1737 struct extent_buffer *eb, void *ctx)
a542ad1b
JS
1738{
1739 struct inode_fs_paths *ipath = ctx;
1740 char *fspath;
1741 char *fspath_min;
1742 int i = ipath->fspath->elem_cnt;
1743 const int s_ptr = sizeof(char *);
1744 u32 bytes_left;
1745
1746 bytes_left = ipath->fspath->bytes_left > s_ptr ?
1747 ipath->fspath->bytes_left - s_ptr : 0;
1748
740c3d22 1749 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
96b5bd77
JS
1750 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1751 name_off, eb, inum, fspath_min, bytes_left);
a542ad1b
JS
1752 if (IS_ERR(fspath))
1753 return PTR_ERR(fspath);
1754
1755 if (fspath > fspath_min) {
745c4d8e 1756 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
a542ad1b
JS
1757 ++ipath->fspath->elem_cnt;
1758 ipath->fspath->bytes_left = fspath - fspath_min;
1759 } else {
1760 ++ipath->fspath->elem_missed;
1761 ipath->fspath->bytes_missing += fspath_min - fspath;
1762 ipath->fspath->bytes_left = 0;
1763 }
1764
1765 return 0;
1766}
1767
1768/*
1769 * this dumps all file system paths to the inode into the ipath struct, provided
1770 * is has been created large enough. each path is zero-terminated and accessed
740c3d22 1771 * from ipath->fspath->val[i].
a542ad1b 1772 * when it returns, there are ipath->fspath->elem_cnt number of paths available
740c3d22 1773 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
a542ad1b
JS
1774 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1775 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1776 * have been needed to return all paths.
1777 */
1778int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1779{
1780 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
d24bec3a 1781 inode_to_path, ipath);
a542ad1b
JS
1782}
1783
a542ad1b
JS
1784struct btrfs_data_container *init_data_container(u32 total_bytes)
1785{
1786 struct btrfs_data_container *data;
1787 size_t alloc_bytes;
1788
1789 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
425d17a2 1790 data = vmalloc(alloc_bytes);
a542ad1b
JS
1791 if (!data)
1792 return ERR_PTR(-ENOMEM);
1793
1794 if (total_bytes >= sizeof(*data)) {
1795 data->bytes_left = total_bytes - sizeof(*data);
1796 data->bytes_missing = 0;
1797 } else {
1798 data->bytes_missing = sizeof(*data) - total_bytes;
1799 data->bytes_left = 0;
1800 }
1801
1802 data->elem_cnt = 0;
1803 data->elem_missed = 0;
1804
1805 return data;
1806}
1807
1808/*
1809 * allocates space to return multiple file system paths for an inode.
1810 * total_bytes to allocate are passed, note that space usable for actual path
1811 * information will be total_bytes - sizeof(struct inode_fs_paths).
1812 * the returned pointer must be freed with free_ipath() in the end.
1813 */
1814struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1815 struct btrfs_path *path)
1816{
1817 struct inode_fs_paths *ifp;
1818 struct btrfs_data_container *fspath;
1819
1820 fspath = init_data_container(total_bytes);
1821 if (IS_ERR(fspath))
1822 return (void *)fspath;
1823
1824 ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1825 if (!ifp) {
1826 kfree(fspath);
1827 return ERR_PTR(-ENOMEM);
1828 }
1829
1830 ifp->btrfs_path = path;
1831 ifp->fspath = fspath;
1832 ifp->fs_root = fs_root;
1833
1834 return ifp;
1835}
1836
1837void free_ipath(struct inode_fs_paths *ipath)
1838{
4735fb28
JJ
1839 if (!ipath)
1840 return;
425d17a2 1841 vfree(ipath->fspath);
a542ad1b
JS
1842 kfree(ipath);
1843}
This page took 0.219858 seconds and 5 git commands to generate.