Btrfs: fix protection between walking backrefs and root deletion
[deliverable/linux.git] / fs / btrfs / backref.c
CommitLineData
a542ad1b
JS
1/*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
425d17a2 19#include <linux/vmalloc.h>
a542ad1b
JS
20#include "ctree.h"
21#include "disk-io.h"
22#include "backref.h"
8da6d581
JS
23#include "ulist.h"
24#include "transaction.h"
25#include "delayed-ref.h"
b916a59a 26#include "locking.h"
a542ad1b 27
976b1908
JS
28struct extent_inode_elem {
29 u64 inum;
30 u64 offset;
31 struct extent_inode_elem *next;
32};
33
34static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
35 struct btrfs_file_extent_item *fi,
36 u64 extent_item_pos,
37 struct extent_inode_elem **eie)
38{
8ca15e05 39 u64 offset = 0;
976b1908
JS
40 struct extent_inode_elem *e;
41
8ca15e05
JB
42 if (!btrfs_file_extent_compression(eb, fi) &&
43 !btrfs_file_extent_encryption(eb, fi) &&
44 !btrfs_file_extent_other_encoding(eb, fi)) {
45 u64 data_offset;
46 u64 data_len;
976b1908 47
8ca15e05
JB
48 data_offset = btrfs_file_extent_offset(eb, fi);
49 data_len = btrfs_file_extent_num_bytes(eb, fi);
50
51 if (extent_item_pos < data_offset ||
52 extent_item_pos >= data_offset + data_len)
53 return 1;
54 offset = extent_item_pos - data_offset;
55 }
976b1908
JS
56
57 e = kmalloc(sizeof(*e), GFP_NOFS);
58 if (!e)
59 return -ENOMEM;
60
61 e->next = *eie;
62 e->inum = key->objectid;
8ca15e05 63 e->offset = key->offset + offset;
976b1908
JS
64 *eie = e;
65
66 return 0;
67}
68
69static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
70 u64 extent_item_pos,
71 struct extent_inode_elem **eie)
72{
73 u64 disk_byte;
74 struct btrfs_key key;
75 struct btrfs_file_extent_item *fi;
76 int slot;
77 int nritems;
78 int extent_type;
79 int ret;
80
81 /*
82 * from the shared data ref, we only have the leaf but we need
83 * the key. thus, we must look into all items and see that we
84 * find one (some) with a reference to our extent item.
85 */
86 nritems = btrfs_header_nritems(eb);
87 for (slot = 0; slot < nritems; ++slot) {
88 btrfs_item_key_to_cpu(eb, &key, slot);
89 if (key.type != BTRFS_EXTENT_DATA_KEY)
90 continue;
91 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
92 extent_type = btrfs_file_extent_type(eb, fi);
93 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
94 continue;
95 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
96 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
97 if (disk_byte != wanted_disk_byte)
98 continue;
99
100 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
101 if (ret < 0)
102 return ret;
103 }
104
105 return 0;
106}
107
8da6d581
JS
108/*
109 * this structure records all encountered refs on the way up to the root
110 */
111struct __prelim_ref {
112 struct list_head list;
113 u64 root_id;
d5c88b73 114 struct btrfs_key key_for_search;
8da6d581
JS
115 int level;
116 int count;
3301958b 117 struct extent_inode_elem *inode_list;
8da6d581
JS
118 u64 parent;
119 u64 wanted_disk_byte;
120};
121
b9e9a6cb
WS
122static struct kmem_cache *btrfs_prelim_ref_cache;
123
124int __init btrfs_prelim_ref_init(void)
125{
126 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
127 sizeof(struct __prelim_ref),
128 0,
129 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
130 NULL);
131 if (!btrfs_prelim_ref_cache)
132 return -ENOMEM;
133 return 0;
134}
135
136void btrfs_prelim_ref_exit(void)
137{
138 if (btrfs_prelim_ref_cache)
139 kmem_cache_destroy(btrfs_prelim_ref_cache);
140}
141
d5c88b73
JS
142/*
143 * the rules for all callers of this function are:
144 * - obtaining the parent is the goal
145 * - if you add a key, you must know that it is a correct key
146 * - if you cannot add the parent or a correct key, then we will look into the
147 * block later to set a correct key
148 *
149 * delayed refs
150 * ============
151 * backref type | shared | indirect | shared | indirect
152 * information | tree | tree | data | data
153 * --------------------+--------+----------+--------+----------
154 * parent logical | y | - | - | -
155 * key to resolve | - | y | y | y
156 * tree block logical | - | - | - | -
157 * root for resolving | y | y | y | y
158 *
159 * - column 1: we've the parent -> done
160 * - column 2, 3, 4: we use the key to find the parent
161 *
162 * on disk refs (inline or keyed)
163 * ==============================
164 * backref type | shared | indirect | shared | indirect
165 * information | tree | tree | data | data
166 * --------------------+--------+----------+--------+----------
167 * parent logical | y | - | y | -
168 * key to resolve | - | - | - | y
169 * tree block logical | y | y | y | y
170 * root for resolving | - | y | y | y
171 *
172 * - column 1, 3: we've the parent -> done
173 * - column 2: we take the first key from the block to find the parent
174 * (see __add_missing_keys)
175 * - column 4: we use the key to find the parent
176 *
177 * additional information that's available but not required to find the parent
178 * block might help in merging entries to gain some speed.
179 */
180
8da6d581 181static int __add_prelim_ref(struct list_head *head, u64 root_id,
d5c88b73 182 struct btrfs_key *key, int level,
742916b8
WS
183 u64 parent, u64 wanted_disk_byte, int count,
184 gfp_t gfp_mask)
8da6d581
JS
185{
186 struct __prelim_ref *ref;
187
48ec4736
LB
188 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
189 return 0;
190
b9e9a6cb 191 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
8da6d581
JS
192 if (!ref)
193 return -ENOMEM;
194
195 ref->root_id = root_id;
196 if (key)
d5c88b73 197 ref->key_for_search = *key;
8da6d581 198 else
d5c88b73 199 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
8da6d581 200
3301958b 201 ref->inode_list = NULL;
8da6d581
JS
202 ref->level = level;
203 ref->count = count;
204 ref->parent = parent;
205 ref->wanted_disk_byte = wanted_disk_byte;
206 list_add_tail(&ref->list, head);
207
208 return 0;
209}
210
211static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
7ef81ac8
JB
212 struct ulist *parents, struct __prelim_ref *ref,
213 int level, u64 time_seq, const u64 *extent_item_pos)
8da6d581 214{
69bca40d
AB
215 int ret = 0;
216 int slot;
217 struct extent_buffer *eb;
218 struct btrfs_key key;
7ef81ac8 219 struct btrfs_key *key_for_search = &ref->key_for_search;
8da6d581 220 struct btrfs_file_extent_item *fi;
ed8c4913 221 struct extent_inode_elem *eie = NULL, *old = NULL;
8da6d581 222 u64 disk_byte;
7ef81ac8
JB
223 u64 wanted_disk_byte = ref->wanted_disk_byte;
224 u64 count = 0;
8da6d581 225
69bca40d
AB
226 if (level != 0) {
227 eb = path->nodes[level];
228 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
3301958b
JS
229 if (ret < 0)
230 return ret;
8da6d581 231 return 0;
69bca40d 232 }
8da6d581
JS
233
234 /*
69bca40d
AB
235 * We normally enter this function with the path already pointing to
236 * the first item to check. But sometimes, we may enter it with
237 * slot==nritems. In that case, go to the next leaf before we continue.
8da6d581 238 */
69bca40d 239 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
3d7806ec 240 ret = btrfs_next_old_leaf(root, path, time_seq);
8da6d581 241
7ef81ac8 242 while (!ret && count < ref->count) {
8da6d581 243 eb = path->nodes[0];
69bca40d
AB
244 slot = path->slots[0];
245
246 btrfs_item_key_to_cpu(eb, &key, slot);
247
248 if (key.objectid != key_for_search->objectid ||
249 key.type != BTRFS_EXTENT_DATA_KEY)
250 break;
251
252 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
253 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
254
255 if (disk_byte == wanted_disk_byte) {
256 eie = NULL;
ed8c4913 257 old = NULL;
7ef81ac8 258 count++;
69bca40d
AB
259 if (extent_item_pos) {
260 ret = check_extent_in_eb(&key, eb, fi,
261 *extent_item_pos,
262 &eie);
263 if (ret < 0)
264 break;
265 }
ed8c4913
JB
266 if (ret > 0)
267 goto next;
268 ret = ulist_add_merge(parents, eb->start,
269 (uintptr_t)eie,
270 (u64 *)&old, GFP_NOFS);
271 if (ret < 0)
272 break;
273 if (!ret && extent_item_pos) {
274 while (old->next)
275 old = old->next;
276 old->next = eie;
69bca40d 277 }
8da6d581 278 }
ed8c4913 279next:
69bca40d 280 ret = btrfs_next_old_item(root, path, time_seq);
8da6d581
JS
281 }
282
69bca40d
AB
283 if (ret > 0)
284 ret = 0;
285 return ret;
8da6d581
JS
286}
287
288/*
289 * resolve an indirect backref in the form (root_id, key, level)
290 * to a logical address
291 */
292static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
da61d31a
JB
293 struct btrfs_path *path, u64 time_seq,
294 struct __prelim_ref *ref,
295 struct ulist *parents,
296 const u64 *extent_item_pos)
8da6d581 297{
8da6d581
JS
298 struct btrfs_root *root;
299 struct btrfs_key root_key;
8da6d581
JS
300 struct extent_buffer *eb;
301 int ret = 0;
302 int root_level;
303 int level = ref->level;
538f72cd 304 int index;
8da6d581 305
8da6d581
JS
306 root_key.objectid = ref->root_id;
307 root_key.type = BTRFS_ROOT_ITEM_KEY;
308 root_key.offset = (u64)-1;
538f72cd
WS
309
310 index = srcu_read_lock(&fs_info->subvol_srcu);
311
8da6d581
JS
312 root = btrfs_read_fs_root_no_name(fs_info, &root_key);
313 if (IS_ERR(root)) {
538f72cd 314 srcu_read_unlock(&fs_info->subvol_srcu, index);
8da6d581
JS
315 ret = PTR_ERR(root);
316 goto out;
317 }
318
5b6602e7 319 root_level = btrfs_old_root_level(root, time_seq);
8da6d581 320
538f72cd
WS
321 if (root_level + 1 == level) {
322 srcu_read_unlock(&fs_info->subvol_srcu, index);
8da6d581 323 goto out;
538f72cd 324 }
8da6d581
JS
325
326 path->lowest_level = level;
8445f61c 327 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
538f72cd
WS
328
329 /* root node has been locked, we can release @subvol_srcu safely here */
330 srcu_read_unlock(&fs_info->subvol_srcu, index);
331
8da6d581
JS
332 pr_debug("search slot in root %llu (level %d, ref count %d) returned "
333 "%d for key (%llu %u %llu)\n",
c1c9ff7c
GU
334 ref->root_id, level, ref->count, ret,
335 ref->key_for_search.objectid, ref->key_for_search.type,
336 ref->key_for_search.offset);
8da6d581
JS
337 if (ret < 0)
338 goto out;
339
340 eb = path->nodes[level];
9345457f 341 while (!eb) {
fae7f21c 342 if (WARN_ON(!level)) {
9345457f
JS
343 ret = 1;
344 goto out;
345 }
346 level--;
347 eb = path->nodes[level];
8da6d581
JS
348 }
349
7ef81ac8
JB
350 ret = add_all_parents(root, path, parents, ref, level, time_seq,
351 extent_item_pos);
8da6d581 352out:
da61d31a
JB
353 path->lowest_level = 0;
354 btrfs_release_path(path);
8da6d581
JS
355 return ret;
356}
357
358/*
359 * resolve all indirect backrefs from the list
360 */
361static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
da61d31a 362 struct btrfs_path *path, u64 time_seq,
976b1908
JS
363 struct list_head *head,
364 const u64 *extent_item_pos)
8da6d581
JS
365{
366 int err;
367 int ret = 0;
368 struct __prelim_ref *ref;
369 struct __prelim_ref *ref_safe;
370 struct __prelim_ref *new_ref;
371 struct ulist *parents;
372 struct ulist_node *node;
cd1b413c 373 struct ulist_iterator uiter;
8da6d581
JS
374
375 parents = ulist_alloc(GFP_NOFS);
376 if (!parents)
377 return -ENOMEM;
378
379 /*
380 * _safe allows us to insert directly after the current item without
381 * iterating over the newly inserted items.
382 * we're also allowed to re-assign ref during iteration.
383 */
384 list_for_each_entry_safe(ref, ref_safe, head, list) {
385 if (ref->parent) /* already direct */
386 continue;
387 if (ref->count == 0)
388 continue;
da61d31a
JB
389 err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
390 parents, extent_item_pos);
e36902d4
WS
391 if (err == -ENOMEM)
392 goto out;
ca60ebfa 393 if (err)
8da6d581 394 continue;
8da6d581
JS
395
396 /* we put the first parent into the ref at hand */
cd1b413c
JS
397 ULIST_ITER_INIT(&uiter);
398 node = ulist_next(parents, &uiter);
8da6d581 399 ref->parent = node ? node->val : 0;
995e01b7 400 ref->inode_list = node ?
35a3621b 401 (struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
8da6d581
JS
402
403 /* additional parents require new refs being added here */
cd1b413c 404 while ((node = ulist_next(parents, &uiter))) {
b9e9a6cb
WS
405 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
406 GFP_NOFS);
8da6d581
JS
407 if (!new_ref) {
408 ret = -ENOMEM;
e36902d4 409 goto out;
8da6d581
JS
410 }
411 memcpy(new_ref, ref, sizeof(*ref));
412 new_ref->parent = node->val;
995e01b7
JS
413 new_ref->inode_list = (struct extent_inode_elem *)
414 (uintptr_t)node->aux;
8da6d581
JS
415 list_add(&new_ref->list, &ref->list);
416 }
417 ulist_reinit(parents);
418 }
e36902d4 419out:
8da6d581
JS
420 ulist_free(parents);
421 return ret;
422}
423
d5c88b73
JS
424static inline int ref_for_same_block(struct __prelim_ref *ref1,
425 struct __prelim_ref *ref2)
426{
427 if (ref1->level != ref2->level)
428 return 0;
429 if (ref1->root_id != ref2->root_id)
430 return 0;
431 if (ref1->key_for_search.type != ref2->key_for_search.type)
432 return 0;
433 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
434 return 0;
435 if (ref1->key_for_search.offset != ref2->key_for_search.offset)
436 return 0;
437 if (ref1->parent != ref2->parent)
438 return 0;
439
440 return 1;
441}
442
443/*
444 * read tree blocks and add keys where required.
445 */
446static int __add_missing_keys(struct btrfs_fs_info *fs_info,
447 struct list_head *head)
448{
449 struct list_head *pos;
450 struct extent_buffer *eb;
451
452 list_for_each(pos, head) {
453 struct __prelim_ref *ref;
454 ref = list_entry(pos, struct __prelim_ref, list);
455
456 if (ref->parent)
457 continue;
458 if (ref->key_for_search.type)
459 continue;
460 BUG_ON(!ref->wanted_disk_byte);
461 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
462 fs_info->tree_root->leafsize, 0);
416bc658
JB
463 if (!eb || !extent_buffer_uptodate(eb)) {
464 free_extent_buffer(eb);
465 return -EIO;
466 }
d5c88b73
JS
467 btrfs_tree_read_lock(eb);
468 if (btrfs_header_level(eb) == 0)
469 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
470 else
471 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
472 btrfs_tree_read_unlock(eb);
473 free_extent_buffer(eb);
474 }
475 return 0;
476}
477
8da6d581
JS
478/*
479 * merge two lists of backrefs and adjust counts accordingly
480 *
481 * mode = 1: merge identical keys, if key is set
d5c88b73
JS
482 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
483 * additionally, we could even add a key range for the blocks we
484 * looked into to merge even more (-> replace unresolved refs by those
485 * having a parent).
8da6d581
JS
486 * mode = 2: merge identical parents
487 */
692206b1 488static void __merge_refs(struct list_head *head, int mode)
8da6d581
JS
489{
490 struct list_head *pos1;
491
492 list_for_each(pos1, head) {
493 struct list_head *n2;
494 struct list_head *pos2;
495 struct __prelim_ref *ref1;
496
497 ref1 = list_entry(pos1, struct __prelim_ref, list);
498
8da6d581
JS
499 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
500 pos2 = n2, n2 = pos2->next) {
501 struct __prelim_ref *ref2;
d5c88b73 502 struct __prelim_ref *xchg;
3ef5969c 503 struct extent_inode_elem *eie;
8da6d581
JS
504
505 ref2 = list_entry(pos2, struct __prelim_ref, list);
506
507 if (mode == 1) {
d5c88b73 508 if (!ref_for_same_block(ref1, ref2))
8da6d581 509 continue;
d5c88b73
JS
510 if (!ref1->parent && ref2->parent) {
511 xchg = ref1;
512 ref1 = ref2;
513 ref2 = xchg;
514 }
8da6d581
JS
515 } else {
516 if (ref1->parent != ref2->parent)
517 continue;
8da6d581 518 }
3ef5969c
AB
519
520 eie = ref1->inode_list;
521 while (eie && eie->next)
522 eie = eie->next;
523 if (eie)
524 eie->next = ref2->inode_list;
525 else
526 ref1->inode_list = ref2->inode_list;
527 ref1->count += ref2->count;
528
8da6d581 529 list_del(&ref2->list);
b9e9a6cb 530 kmem_cache_free(btrfs_prelim_ref_cache, ref2);
8da6d581
JS
531 }
532
533 }
8da6d581
JS
534}
535
536/*
537 * add all currently queued delayed refs from this head whose seq nr is
538 * smaller or equal that seq to the list
539 */
540static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
8da6d581
JS
541 struct list_head *prefs)
542{
543 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
544 struct rb_node *n = &head->node.rb_node;
d5c88b73
JS
545 struct btrfs_key key;
546 struct btrfs_key op_key = {0};
8da6d581 547 int sgn;
b1375d64 548 int ret = 0;
8da6d581
JS
549
550 if (extent_op && extent_op->update_key)
d5c88b73 551 btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
8da6d581 552
d7df2c79
JB
553 spin_lock(&head->lock);
554 n = rb_first(&head->ref_root);
555 while (n) {
8da6d581
JS
556 struct btrfs_delayed_ref_node *node;
557 node = rb_entry(n, struct btrfs_delayed_ref_node,
558 rb_node);
d7df2c79 559 n = rb_next(n);
8da6d581
JS
560 if (node->seq > seq)
561 continue;
562
563 switch (node->action) {
564 case BTRFS_ADD_DELAYED_EXTENT:
565 case BTRFS_UPDATE_DELAYED_HEAD:
566 WARN_ON(1);
567 continue;
568 case BTRFS_ADD_DELAYED_REF:
569 sgn = 1;
570 break;
571 case BTRFS_DROP_DELAYED_REF:
572 sgn = -1;
573 break;
574 default:
575 BUG_ON(1);
576 }
577 switch (node->type) {
578 case BTRFS_TREE_BLOCK_REF_KEY: {
579 struct btrfs_delayed_tree_ref *ref;
580
581 ref = btrfs_delayed_node_to_tree_ref(node);
d5c88b73 582 ret = __add_prelim_ref(prefs, ref->root, &op_key,
8da6d581 583 ref->level + 1, 0, node->bytenr,
742916b8 584 node->ref_mod * sgn, GFP_ATOMIC);
8da6d581
JS
585 break;
586 }
587 case BTRFS_SHARED_BLOCK_REF_KEY: {
588 struct btrfs_delayed_tree_ref *ref;
589
590 ref = btrfs_delayed_node_to_tree_ref(node);
d5c88b73 591 ret = __add_prelim_ref(prefs, ref->root, NULL,
8da6d581
JS
592 ref->level + 1, ref->parent,
593 node->bytenr,
742916b8 594 node->ref_mod * sgn, GFP_ATOMIC);
8da6d581
JS
595 break;
596 }
597 case BTRFS_EXTENT_DATA_REF_KEY: {
598 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
599 ref = btrfs_delayed_node_to_data_ref(node);
600
601 key.objectid = ref->objectid;
602 key.type = BTRFS_EXTENT_DATA_KEY;
603 key.offset = ref->offset;
604 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
605 node->bytenr,
742916b8 606 node->ref_mod * sgn, GFP_ATOMIC);
8da6d581
JS
607 break;
608 }
609 case BTRFS_SHARED_DATA_REF_KEY: {
610 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
611
612 ref = btrfs_delayed_node_to_data_ref(node);
613
614 key.objectid = ref->objectid;
615 key.type = BTRFS_EXTENT_DATA_KEY;
616 key.offset = ref->offset;
617 ret = __add_prelim_ref(prefs, ref->root, &key, 0,
618 ref->parent, node->bytenr,
742916b8 619 node->ref_mod * sgn, GFP_ATOMIC);
8da6d581
JS
620 break;
621 }
622 default:
623 WARN_ON(1);
624 }
1149ab6b 625 if (ret)
d7df2c79 626 break;
8da6d581 627 }
d7df2c79
JB
628 spin_unlock(&head->lock);
629 return ret;
8da6d581
JS
630}
631
632/*
633 * add all inline backrefs for bytenr to the list
634 */
635static int __add_inline_refs(struct btrfs_fs_info *fs_info,
636 struct btrfs_path *path, u64 bytenr,
d5c88b73 637 int *info_level, struct list_head *prefs)
8da6d581 638{
b1375d64 639 int ret = 0;
8da6d581
JS
640 int slot;
641 struct extent_buffer *leaf;
642 struct btrfs_key key;
261c84b6 643 struct btrfs_key found_key;
8da6d581
JS
644 unsigned long ptr;
645 unsigned long end;
646 struct btrfs_extent_item *ei;
647 u64 flags;
648 u64 item_size;
649
650 /*
651 * enumerate all inline refs
652 */
653 leaf = path->nodes[0];
dadcaf78 654 slot = path->slots[0];
8da6d581
JS
655
656 item_size = btrfs_item_size_nr(leaf, slot);
657 BUG_ON(item_size < sizeof(*ei));
658
659 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
660 flags = btrfs_extent_flags(leaf, ei);
261c84b6 661 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8da6d581
JS
662
663 ptr = (unsigned long)(ei + 1);
664 end = (unsigned long)ei + item_size;
665
261c84b6
JB
666 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
667 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
8da6d581 668 struct btrfs_tree_block_info *info;
8da6d581
JS
669
670 info = (struct btrfs_tree_block_info *)ptr;
671 *info_level = btrfs_tree_block_level(leaf, info);
8da6d581
JS
672 ptr += sizeof(struct btrfs_tree_block_info);
673 BUG_ON(ptr > end);
261c84b6
JB
674 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
675 *info_level = found_key.offset;
8da6d581
JS
676 } else {
677 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
678 }
679
680 while (ptr < end) {
681 struct btrfs_extent_inline_ref *iref;
682 u64 offset;
683 int type;
684
685 iref = (struct btrfs_extent_inline_ref *)ptr;
686 type = btrfs_extent_inline_ref_type(leaf, iref);
687 offset = btrfs_extent_inline_ref_offset(leaf, iref);
688
689 switch (type) {
690 case BTRFS_SHARED_BLOCK_REF_KEY:
d5c88b73 691 ret = __add_prelim_ref(prefs, 0, NULL,
8da6d581 692 *info_level + 1, offset,
742916b8 693 bytenr, 1, GFP_NOFS);
8da6d581
JS
694 break;
695 case BTRFS_SHARED_DATA_REF_KEY: {
696 struct btrfs_shared_data_ref *sdref;
697 int count;
698
699 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
700 count = btrfs_shared_data_ref_count(leaf, sdref);
701 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
742916b8 702 bytenr, count, GFP_NOFS);
8da6d581
JS
703 break;
704 }
705 case BTRFS_TREE_BLOCK_REF_KEY:
d5c88b73
JS
706 ret = __add_prelim_ref(prefs, offset, NULL,
707 *info_level + 1, 0,
742916b8 708 bytenr, 1, GFP_NOFS);
8da6d581
JS
709 break;
710 case BTRFS_EXTENT_DATA_REF_KEY: {
711 struct btrfs_extent_data_ref *dref;
712 int count;
713 u64 root;
714
715 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
716 count = btrfs_extent_data_ref_count(leaf, dref);
717 key.objectid = btrfs_extent_data_ref_objectid(leaf,
718 dref);
719 key.type = BTRFS_EXTENT_DATA_KEY;
720 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
721 root = btrfs_extent_data_ref_root(leaf, dref);
d5c88b73 722 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
742916b8 723 bytenr, count, GFP_NOFS);
8da6d581
JS
724 break;
725 }
726 default:
727 WARN_ON(1);
728 }
1149ab6b
WS
729 if (ret)
730 return ret;
8da6d581
JS
731 ptr += btrfs_extent_inline_ref_size(type);
732 }
733
734 return 0;
735}
736
737/*
738 * add all non-inline backrefs for bytenr to the list
739 */
740static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
741 struct btrfs_path *path, u64 bytenr,
d5c88b73 742 int info_level, struct list_head *prefs)
8da6d581
JS
743{
744 struct btrfs_root *extent_root = fs_info->extent_root;
745 int ret;
746 int slot;
747 struct extent_buffer *leaf;
748 struct btrfs_key key;
749
750 while (1) {
751 ret = btrfs_next_item(extent_root, path);
752 if (ret < 0)
753 break;
754 if (ret) {
755 ret = 0;
756 break;
757 }
758
759 slot = path->slots[0];
760 leaf = path->nodes[0];
761 btrfs_item_key_to_cpu(leaf, &key, slot);
762
763 if (key.objectid != bytenr)
764 break;
765 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
766 continue;
767 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
768 break;
769
770 switch (key.type) {
771 case BTRFS_SHARED_BLOCK_REF_KEY:
d5c88b73 772 ret = __add_prelim_ref(prefs, 0, NULL,
8da6d581 773 info_level + 1, key.offset,
742916b8 774 bytenr, 1, GFP_NOFS);
8da6d581
JS
775 break;
776 case BTRFS_SHARED_DATA_REF_KEY: {
777 struct btrfs_shared_data_ref *sdref;
778 int count;
779
780 sdref = btrfs_item_ptr(leaf, slot,
781 struct btrfs_shared_data_ref);
782 count = btrfs_shared_data_ref_count(leaf, sdref);
783 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
742916b8 784 bytenr, count, GFP_NOFS);
8da6d581
JS
785 break;
786 }
787 case BTRFS_TREE_BLOCK_REF_KEY:
d5c88b73
JS
788 ret = __add_prelim_ref(prefs, key.offset, NULL,
789 info_level + 1, 0,
742916b8 790 bytenr, 1, GFP_NOFS);
8da6d581
JS
791 break;
792 case BTRFS_EXTENT_DATA_REF_KEY: {
793 struct btrfs_extent_data_ref *dref;
794 int count;
795 u64 root;
796
797 dref = btrfs_item_ptr(leaf, slot,
798 struct btrfs_extent_data_ref);
799 count = btrfs_extent_data_ref_count(leaf, dref);
800 key.objectid = btrfs_extent_data_ref_objectid(leaf,
801 dref);
802 key.type = BTRFS_EXTENT_DATA_KEY;
803 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
804 root = btrfs_extent_data_ref_root(leaf, dref);
805 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
742916b8 806 bytenr, count, GFP_NOFS);
8da6d581
JS
807 break;
808 }
809 default:
810 WARN_ON(1);
811 }
1149ab6b
WS
812 if (ret)
813 return ret;
814
8da6d581
JS
815 }
816
817 return ret;
818}
819
820/*
821 * this adds all existing backrefs (inline backrefs, backrefs and delayed
822 * refs) for the given bytenr to the refs list, merges duplicates and resolves
823 * indirect refs to their parent bytenr.
824 * When roots are found, they're added to the roots list
825 *
826 * FIXME some caching might speed things up
827 */
828static int find_parent_nodes(struct btrfs_trans_handle *trans,
829 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c
JS
830 u64 time_seq, struct ulist *refs,
831 struct ulist *roots, const u64 *extent_item_pos)
8da6d581
JS
832{
833 struct btrfs_key key;
834 struct btrfs_path *path;
8da6d581 835 struct btrfs_delayed_ref_root *delayed_refs = NULL;
d3b01064 836 struct btrfs_delayed_ref_head *head;
8da6d581
JS
837 int info_level = 0;
838 int ret;
839 struct list_head prefs_delayed;
840 struct list_head prefs;
841 struct __prelim_ref *ref;
842
843 INIT_LIST_HEAD(&prefs);
844 INIT_LIST_HEAD(&prefs_delayed);
845
846 key.objectid = bytenr;
8da6d581 847 key.offset = (u64)-1;
261c84b6
JB
848 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
849 key.type = BTRFS_METADATA_ITEM_KEY;
850 else
851 key.type = BTRFS_EXTENT_ITEM_KEY;
8da6d581
JS
852
853 path = btrfs_alloc_path();
854 if (!path)
855 return -ENOMEM;
da61d31a
JB
856 if (!trans)
857 path->search_commit_root = 1;
8da6d581
JS
858
859 /*
860 * grab both a lock on the path and a lock on the delayed ref head.
861 * We need both to get a consistent picture of how the refs look
862 * at a specified point in time
863 */
864again:
d3b01064
LZ
865 head = NULL;
866
8da6d581
JS
867 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
868 if (ret < 0)
869 goto out;
870 BUG_ON(ret == 0);
871
da61d31a 872 if (trans) {
7a3ae2f8
JS
873 /*
874 * look if there are updates for this ref queued and lock the
875 * head
876 */
877 delayed_refs = &trans->transaction->delayed_refs;
878 spin_lock(&delayed_refs->lock);
879 head = btrfs_find_delayed_ref_head(trans, bytenr);
880 if (head) {
881 if (!mutex_trylock(&head->mutex)) {
882 atomic_inc(&head->node.refs);
883 spin_unlock(&delayed_refs->lock);
884
885 btrfs_release_path(path);
886
887 /*
888 * Mutex was contended, block until it's
889 * released and try again
890 */
891 mutex_lock(&head->mutex);
892 mutex_unlock(&head->mutex);
893 btrfs_put_delayed_ref(&head->node);
894 goto again;
895 }
d7df2c79 896 spin_unlock(&delayed_refs->lock);
097b8a7c 897 ret = __add_delayed_refs(head, time_seq,
8445f61c 898 &prefs_delayed);
155725c9 899 mutex_unlock(&head->mutex);
d7df2c79 900 if (ret)
7a3ae2f8 901 goto out;
d7df2c79
JB
902 } else {
903 spin_unlock(&delayed_refs->lock);
d3b01064 904 }
8da6d581 905 }
8da6d581
JS
906
907 if (path->slots[0]) {
908 struct extent_buffer *leaf;
909 int slot;
910
dadcaf78 911 path->slots[0]--;
8da6d581 912 leaf = path->nodes[0];
dadcaf78 913 slot = path->slots[0];
8da6d581
JS
914 btrfs_item_key_to_cpu(leaf, &key, slot);
915 if (key.objectid == bytenr &&
261c84b6
JB
916 (key.type == BTRFS_EXTENT_ITEM_KEY ||
917 key.type == BTRFS_METADATA_ITEM_KEY)) {
8da6d581 918 ret = __add_inline_refs(fs_info, path, bytenr,
d5c88b73 919 &info_level, &prefs);
8da6d581
JS
920 if (ret)
921 goto out;
d5c88b73 922 ret = __add_keyed_refs(fs_info, path, bytenr,
8da6d581
JS
923 info_level, &prefs);
924 if (ret)
925 goto out;
926 }
927 }
928 btrfs_release_path(path);
929
8da6d581
JS
930 list_splice_init(&prefs_delayed, &prefs);
931
d5c88b73
JS
932 ret = __add_missing_keys(fs_info, &prefs);
933 if (ret)
934 goto out;
935
692206b1 936 __merge_refs(&prefs, 1);
8da6d581 937
da61d31a
JB
938 ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
939 extent_item_pos);
8da6d581
JS
940 if (ret)
941 goto out;
942
692206b1 943 __merge_refs(&prefs, 2);
8da6d581
JS
944
945 while (!list_empty(&prefs)) {
946 ref = list_first_entry(&prefs, struct __prelim_ref, list);
6c1500f2 947 WARN_ON(ref->count < 0);
8da6d581
JS
948 if (ref->count && ref->root_id && ref->parent == 0) {
949 /* no parent == root of tree */
950 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
f1723939
WS
951 if (ret < 0)
952 goto out;
8da6d581
JS
953 }
954 if (ref->count && ref->parent) {
976b1908 955 struct extent_inode_elem *eie = NULL;
3301958b 956 if (extent_item_pos && !ref->inode_list) {
976b1908
JS
957 u32 bsz;
958 struct extent_buffer *eb;
959 bsz = btrfs_level_size(fs_info->extent_root,
960 info_level);
961 eb = read_tree_block(fs_info->extent_root,
962 ref->parent, bsz, 0);
416bc658
JB
963 if (!eb || !extent_buffer_uptodate(eb)) {
964 free_extent_buffer(eb);
c16c2e2e
WS
965 ret = -EIO;
966 goto out;
416bc658 967 }
976b1908
JS
968 ret = find_extent_in_eb(eb, bytenr,
969 *extent_item_pos, &eie);
970 free_extent_buffer(eb);
f5929cd8
FDBM
971 if (ret < 0)
972 goto out;
973 ref->inode_list = eie;
976b1908 974 }
3301958b 975 ret = ulist_add_merge(refs, ref->parent,
995e01b7 976 (uintptr_t)ref->inode_list,
34d73f54 977 (u64 *)&eie, GFP_NOFS);
f1723939
WS
978 if (ret < 0)
979 goto out;
3301958b
JS
980 if (!ret && extent_item_pos) {
981 /*
982 * we've recorded that parent, so we must extend
983 * its inode list here
984 */
985 BUG_ON(!eie);
986 while (eie->next)
987 eie = eie->next;
988 eie->next = ref->inode_list;
989 }
8da6d581 990 }
a4fdb61e 991 list_del(&ref->list);
b9e9a6cb 992 kmem_cache_free(btrfs_prelim_ref_cache, ref);
8da6d581
JS
993 }
994
995out:
8da6d581
JS
996 btrfs_free_path(path);
997 while (!list_empty(&prefs)) {
998 ref = list_first_entry(&prefs, struct __prelim_ref, list);
999 list_del(&ref->list);
b9e9a6cb 1000 kmem_cache_free(btrfs_prelim_ref_cache, ref);
8da6d581
JS
1001 }
1002 while (!list_empty(&prefs_delayed)) {
1003 ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1004 list);
1005 list_del(&ref->list);
b9e9a6cb 1006 kmem_cache_free(btrfs_prelim_ref_cache, ref);
8da6d581
JS
1007 }
1008
1009 return ret;
1010}
1011
976b1908
JS
1012static void free_leaf_list(struct ulist *blocks)
1013{
1014 struct ulist_node *node = NULL;
1015 struct extent_inode_elem *eie;
1016 struct extent_inode_elem *eie_next;
1017 struct ulist_iterator uiter;
1018
1019 ULIST_ITER_INIT(&uiter);
1020 while ((node = ulist_next(blocks, &uiter))) {
1021 if (!node->aux)
1022 continue;
995e01b7 1023 eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
976b1908
JS
1024 for (; eie; eie = eie_next) {
1025 eie_next = eie->next;
1026 kfree(eie);
1027 }
1028 node->aux = 0;
1029 }
1030
1031 ulist_free(blocks);
1032}
1033
8da6d581
JS
1034/*
1035 * Finds all leafs with a reference to the specified combination of bytenr and
1036 * offset. key_list_head will point to a list of corresponding keys (caller must
1037 * free each list element). The leafs will be stored in the leafs ulist, which
1038 * must be freed with ulist_free.
1039 *
1040 * returns 0 on success, <0 on error
1041 */
1042static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1043 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1044 u64 time_seq, struct ulist **leafs,
976b1908 1045 const u64 *extent_item_pos)
8da6d581
JS
1046{
1047 struct ulist *tmp;
1048 int ret;
1049
1050 tmp = ulist_alloc(GFP_NOFS);
1051 if (!tmp)
1052 return -ENOMEM;
1053 *leafs = ulist_alloc(GFP_NOFS);
1054 if (!*leafs) {
1055 ulist_free(tmp);
1056 return -ENOMEM;
1057 }
1058
097b8a7c 1059 ret = find_parent_nodes(trans, fs_info, bytenr,
8445f61c 1060 time_seq, *leafs, tmp, extent_item_pos);
8da6d581
JS
1061 ulist_free(tmp);
1062
1063 if (ret < 0 && ret != -ENOENT) {
976b1908 1064 free_leaf_list(*leafs);
8da6d581
JS
1065 return ret;
1066 }
1067
1068 return 0;
1069}
1070
1071/*
1072 * walk all backrefs for a given extent to find all roots that reference this
1073 * extent. Walking a backref means finding all extents that reference this
1074 * extent and in turn walk the backrefs of those, too. Naturally this is a
1075 * recursive process, but here it is implemented in an iterative fashion: We
1076 * find all referencing extents for the extent in question and put them on a
1077 * list. In turn, we find all referencing extents for those, further appending
1078 * to the list. The way we iterate the list allows adding more elements after
1079 * the current while iterating. The process stops when we reach the end of the
1080 * list. Found roots are added to the roots list.
1081 *
1082 * returns 0 on success, < 0 on error.
1083 */
1084int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1085 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1086 u64 time_seq, struct ulist **roots)
8da6d581
JS
1087{
1088 struct ulist *tmp;
1089 struct ulist_node *node = NULL;
cd1b413c 1090 struct ulist_iterator uiter;
8da6d581
JS
1091 int ret;
1092
1093 tmp = ulist_alloc(GFP_NOFS);
1094 if (!tmp)
1095 return -ENOMEM;
1096 *roots = ulist_alloc(GFP_NOFS);
1097 if (!*roots) {
1098 ulist_free(tmp);
1099 return -ENOMEM;
1100 }
1101
cd1b413c 1102 ULIST_ITER_INIT(&uiter);
8da6d581 1103 while (1) {
097b8a7c 1104 ret = find_parent_nodes(trans, fs_info, bytenr,
8445f61c 1105 time_seq, tmp, *roots, NULL);
8da6d581
JS
1106 if (ret < 0 && ret != -ENOENT) {
1107 ulist_free(tmp);
1108 ulist_free(*roots);
1109 return ret;
1110 }
cd1b413c 1111 node = ulist_next(tmp, &uiter);
8da6d581
JS
1112 if (!node)
1113 break;
1114 bytenr = node->val;
1115 }
1116
1117 ulist_free(tmp);
1118 return 0;
1119}
1120
a542ad1b
JS
1121/*
1122 * this makes the path point to (inum INODE_ITEM ioff)
1123 */
1124int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1125 struct btrfs_path *path)
1126{
1127 struct btrfs_key key;
e33d5c3d
KN
1128 return btrfs_find_item(fs_root, path, inum, ioff,
1129 BTRFS_INODE_ITEM_KEY, &key);
a542ad1b
JS
1130}
1131
1132static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1133 struct btrfs_path *path,
1134 struct btrfs_key *found_key)
1135{
e33d5c3d
KN
1136 return btrfs_find_item(fs_root, path, inum, ioff,
1137 BTRFS_INODE_REF_KEY, found_key);
a542ad1b
JS
1138}
1139
f186373f
MF
1140int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1141 u64 start_off, struct btrfs_path *path,
1142 struct btrfs_inode_extref **ret_extref,
1143 u64 *found_off)
1144{
1145 int ret, slot;
1146 struct btrfs_key key;
1147 struct btrfs_key found_key;
1148 struct btrfs_inode_extref *extref;
1149 struct extent_buffer *leaf;
1150 unsigned long ptr;
1151
1152 key.objectid = inode_objectid;
1153 btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1154 key.offset = start_off;
1155
1156 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1157 if (ret < 0)
1158 return ret;
1159
1160 while (1) {
1161 leaf = path->nodes[0];
1162 slot = path->slots[0];
1163 if (slot >= btrfs_header_nritems(leaf)) {
1164 /*
1165 * If the item at offset is not found,
1166 * btrfs_search_slot will point us to the slot
1167 * where it should be inserted. In our case
1168 * that will be the slot directly before the
1169 * next INODE_REF_KEY_V2 item. In the case
1170 * that we're pointing to the last slot in a
1171 * leaf, we must move one leaf over.
1172 */
1173 ret = btrfs_next_leaf(root, path);
1174 if (ret) {
1175 if (ret >= 1)
1176 ret = -ENOENT;
1177 break;
1178 }
1179 continue;
1180 }
1181
1182 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1183
1184 /*
1185 * Check that we're still looking at an extended ref key for
1186 * this particular objectid. If we have different
1187 * objectid or type then there are no more to be found
1188 * in the tree and we can exit.
1189 */
1190 ret = -ENOENT;
1191 if (found_key.objectid != inode_objectid)
1192 break;
1193 if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1194 break;
1195
1196 ret = 0;
1197 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1198 extref = (struct btrfs_inode_extref *)ptr;
1199 *ret_extref = extref;
1200 if (found_off)
1201 *found_off = found_key.offset;
1202 break;
1203 }
1204
1205 return ret;
1206}
1207
48a3b636
ES
1208/*
1209 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1210 * Elements of the path are separated by '/' and the path is guaranteed to be
1211 * 0-terminated. the path is only given within the current file system.
1212 * Therefore, it never starts with a '/'. the caller is responsible to provide
1213 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1214 * the start point of the resulting string is returned. this pointer is within
1215 * dest, normally.
1216 * in case the path buffer would overflow, the pointer is decremented further
1217 * as if output was written to the buffer, though no more output is actually
1218 * generated. that way, the caller can determine how much space would be
1219 * required for the path to fit into the buffer. in that case, the returned
1220 * value will be smaller than dest. callers must check this!
1221 */
96b5bd77
JS
1222char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1223 u32 name_len, unsigned long name_off,
1224 struct extent_buffer *eb_in, u64 parent,
1225 char *dest, u32 size)
a542ad1b 1226{
a542ad1b
JS
1227 int slot;
1228 u64 next_inum;
1229 int ret;
661bec6b 1230 s64 bytes_left = ((s64)size) - 1;
a542ad1b
JS
1231 struct extent_buffer *eb = eb_in;
1232 struct btrfs_key found_key;
b916a59a 1233 int leave_spinning = path->leave_spinning;
d24bec3a 1234 struct btrfs_inode_ref *iref;
a542ad1b
JS
1235
1236 if (bytes_left >= 0)
1237 dest[bytes_left] = '\0';
1238
b916a59a 1239 path->leave_spinning = 1;
a542ad1b 1240 while (1) {
d24bec3a 1241 bytes_left -= name_len;
a542ad1b
JS
1242 if (bytes_left >= 0)
1243 read_extent_buffer(eb, dest + bytes_left,
d24bec3a 1244 name_off, name_len);
b916a59a
JS
1245 if (eb != eb_in) {
1246 btrfs_tree_read_unlock_blocking(eb);
a542ad1b 1247 free_extent_buffer(eb);
b916a59a 1248 }
a542ad1b 1249 ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
8f24b496
JS
1250 if (ret > 0)
1251 ret = -ENOENT;
a542ad1b
JS
1252 if (ret)
1253 break;
d24bec3a 1254
a542ad1b
JS
1255 next_inum = found_key.offset;
1256
1257 /* regular exit ahead */
1258 if (parent == next_inum)
1259 break;
1260
1261 slot = path->slots[0];
1262 eb = path->nodes[0];
1263 /* make sure we can use eb after releasing the path */
b916a59a 1264 if (eb != eb_in) {
a542ad1b 1265 atomic_inc(&eb->refs);
b916a59a
JS
1266 btrfs_tree_read_lock(eb);
1267 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1268 }
a542ad1b 1269 btrfs_release_path(path);
a542ad1b 1270 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
d24bec3a
MF
1271
1272 name_len = btrfs_inode_ref_name_len(eb, iref);
1273 name_off = (unsigned long)(iref + 1);
1274
a542ad1b
JS
1275 parent = next_inum;
1276 --bytes_left;
1277 if (bytes_left >= 0)
1278 dest[bytes_left] = '/';
1279 }
1280
1281 btrfs_release_path(path);
b916a59a 1282 path->leave_spinning = leave_spinning;
a542ad1b
JS
1283
1284 if (ret)
1285 return ERR_PTR(ret);
1286
1287 return dest + bytes_left;
1288}
1289
1290/*
1291 * this makes the path point to (logical EXTENT_ITEM *)
1292 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1293 * tree blocks and <0 on error.
1294 */
1295int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
69917e43
LB
1296 struct btrfs_path *path, struct btrfs_key *found_key,
1297 u64 *flags_ret)
a542ad1b
JS
1298{
1299 int ret;
1300 u64 flags;
261c84b6 1301 u64 size = 0;
a542ad1b
JS
1302 u32 item_size;
1303 struct extent_buffer *eb;
1304 struct btrfs_extent_item *ei;
1305 struct btrfs_key key;
1306
261c84b6
JB
1307 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1308 key.type = BTRFS_METADATA_ITEM_KEY;
1309 else
1310 key.type = BTRFS_EXTENT_ITEM_KEY;
a542ad1b
JS
1311 key.objectid = logical;
1312 key.offset = (u64)-1;
1313
1314 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1315 if (ret < 0)
1316 return ret;
a542ad1b 1317
580f0a67
JB
1318 while (1) {
1319 u32 nritems;
1320 if (path->slots[0] == 0) {
1321 btrfs_set_path_blocking(path);
1322 ret = btrfs_prev_leaf(fs_info->extent_root, path);
1323 if (ret != 0) {
1324 if (ret > 0) {
1325 pr_debug("logical %llu is not within "
1326 "any extent\n", logical);
1327 ret = -ENOENT;
1328 }
1329 return ret;
1330 }
1331 } else {
1332 path->slots[0]--;
1333 }
1334 nritems = btrfs_header_nritems(path->nodes[0]);
1335 if (nritems == 0) {
1336 pr_debug("logical %llu is not within any extent\n",
1337 logical);
1338 return -ENOENT;
1339 }
1340 if (path->slots[0] == nritems)
1341 path->slots[0]--;
1342
1343 btrfs_item_key_to_cpu(path->nodes[0], found_key,
1344 path->slots[0]);
1345 if (found_key->type == BTRFS_EXTENT_ITEM_KEY ||
1346 found_key->type == BTRFS_METADATA_ITEM_KEY)
1347 break;
1348 }
1349
261c84b6
JB
1350 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1351 size = fs_info->extent_root->leafsize;
1352 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1353 size = found_key->offset;
1354
580f0a67 1355 if (found_key->objectid > logical ||
261c84b6 1356 found_key->objectid + size <= logical) {
c1c9ff7c 1357 pr_debug("logical %llu is not within any extent\n", logical);
a542ad1b 1358 return -ENOENT;
4692cf58 1359 }
a542ad1b
JS
1360
1361 eb = path->nodes[0];
1362 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1363 BUG_ON(item_size < sizeof(*ei));
1364
1365 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1366 flags = btrfs_extent_flags(eb, ei);
1367
4692cf58
JS
1368 pr_debug("logical %llu is at position %llu within the extent (%llu "
1369 "EXTENT_ITEM %llu) flags %#llx size %u\n",
c1c9ff7c
GU
1370 logical, logical - found_key->objectid, found_key->objectid,
1371 found_key->offset, flags, item_size);
69917e43
LB
1372
1373 WARN_ON(!flags_ret);
1374 if (flags_ret) {
1375 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1376 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1377 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1378 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1379 else
1380 BUG_ON(1);
1381 return 0;
1382 }
a542ad1b
JS
1383
1384 return -EIO;
1385}
1386
1387/*
1388 * helper function to iterate extent inline refs. ptr must point to a 0 value
1389 * for the first call and may be modified. it is used to track state.
1390 * if more refs exist, 0 is returned and the next call to
1391 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1392 * next ref. after the last ref was processed, 1 is returned.
1393 * returns <0 on error
1394 */
1395static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1396 struct btrfs_extent_item *ei, u32 item_size,
1397 struct btrfs_extent_inline_ref **out_eiref,
1398 int *out_type)
1399{
1400 unsigned long end;
1401 u64 flags;
1402 struct btrfs_tree_block_info *info;
1403
1404 if (!*ptr) {
1405 /* first call */
1406 flags = btrfs_extent_flags(eb, ei);
1407 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1408 info = (struct btrfs_tree_block_info *)(ei + 1);
1409 *out_eiref =
1410 (struct btrfs_extent_inline_ref *)(info + 1);
1411 } else {
1412 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1413 }
1414 *ptr = (unsigned long)*out_eiref;
1415 if ((void *)*ptr >= (void *)ei + item_size)
1416 return -ENOENT;
1417 }
1418
1419 end = (unsigned long)ei + item_size;
1420 *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1421 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1422
1423 *ptr += btrfs_extent_inline_ref_size(*out_type);
1424 WARN_ON(*ptr > end);
1425 if (*ptr == end)
1426 return 1; /* last */
1427
1428 return 0;
1429}
1430
1431/*
1432 * reads the tree block backref for an extent. tree level and root are returned
1433 * through out_level and out_root. ptr must point to a 0 value for the first
1434 * call and may be modified (see __get_extent_inline_ref comment).
1435 * returns 0 if data was provided, 1 if there was no more data to provide or
1436 * <0 on error.
1437 */
1438int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1439 struct btrfs_extent_item *ei, u32 item_size,
1440 u64 *out_root, u8 *out_level)
1441{
1442 int ret;
1443 int type;
1444 struct btrfs_tree_block_info *info;
1445 struct btrfs_extent_inline_ref *eiref;
1446
1447 if (*ptr == (unsigned long)-1)
1448 return 1;
1449
1450 while (1) {
1451 ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1452 &eiref, &type);
1453 if (ret < 0)
1454 return ret;
1455
1456 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1457 type == BTRFS_SHARED_BLOCK_REF_KEY)
1458 break;
1459
1460 if (ret == 1)
1461 return 1;
1462 }
1463
1464 /* we can treat both ref types equally here */
1465 info = (struct btrfs_tree_block_info *)(ei + 1);
1466 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1467 *out_level = btrfs_tree_block_level(eb, info);
1468
1469 if (ret == 1)
1470 *ptr = (unsigned long)-1;
1471
1472 return 0;
1473}
1474
976b1908
JS
1475static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1476 u64 root, u64 extent_item_objectid,
4692cf58 1477 iterate_extent_inodes_t *iterate, void *ctx)
a542ad1b 1478{
976b1908 1479 struct extent_inode_elem *eie;
4692cf58 1480 int ret = 0;
4692cf58 1481
976b1908 1482 for (eie = inode_list; eie; eie = eie->next) {
4692cf58 1483 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
976b1908
JS
1484 "root %llu\n", extent_item_objectid,
1485 eie->inum, eie->offset, root);
1486 ret = iterate(eie->inum, eie->offset, root, ctx);
4692cf58 1487 if (ret) {
976b1908
JS
1488 pr_debug("stopping iteration for %llu due to ret=%d\n",
1489 extent_item_objectid, ret);
4692cf58
JS
1490 break;
1491 }
a542ad1b
JS
1492 }
1493
a542ad1b
JS
1494 return ret;
1495}
1496
1497/*
1498 * calls iterate() for every inode that references the extent identified by
4692cf58 1499 * the given parameters.
a542ad1b
JS
1500 * when the iterator function returns a non-zero value, iteration stops.
1501 */
1502int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
4692cf58 1503 u64 extent_item_objectid, u64 extent_item_pos,
7a3ae2f8 1504 int search_commit_root,
a542ad1b
JS
1505 iterate_extent_inodes_t *iterate, void *ctx)
1506{
a542ad1b 1507 int ret;
da61d31a 1508 struct btrfs_trans_handle *trans = NULL;
7a3ae2f8
JS
1509 struct ulist *refs = NULL;
1510 struct ulist *roots = NULL;
4692cf58
JS
1511 struct ulist_node *ref_node = NULL;
1512 struct ulist_node *root_node = NULL;
8445f61c 1513 struct seq_list tree_mod_seq_elem = {};
cd1b413c
JS
1514 struct ulist_iterator ref_uiter;
1515 struct ulist_iterator root_uiter;
a542ad1b 1516
4692cf58
JS
1517 pr_debug("resolving all inodes for extent %llu\n",
1518 extent_item_objectid);
a542ad1b 1519
da61d31a 1520 if (!search_commit_root) {
7a3ae2f8
JS
1521 trans = btrfs_join_transaction(fs_info->extent_root);
1522 if (IS_ERR(trans))
1523 return PTR_ERR(trans);
8445f61c 1524 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
7a3ae2f8 1525 }
a542ad1b 1526
4692cf58 1527 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
097b8a7c 1528 tree_mod_seq_elem.seq, &refs,
8445f61c 1529 &extent_item_pos);
4692cf58
JS
1530 if (ret)
1531 goto out;
a542ad1b 1532
cd1b413c
JS
1533 ULIST_ITER_INIT(&ref_uiter);
1534 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
976b1908 1535 ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
097b8a7c 1536 tree_mod_seq_elem.seq, &roots);
4692cf58
JS
1537 if (ret)
1538 break;
cd1b413c
JS
1539 ULIST_ITER_INIT(&root_uiter);
1540 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
976b1908 1541 pr_debug("root %llu references leaf %llu, data list "
34d73f54 1542 "%#llx\n", root_node->val, ref_node->val,
c1c9ff7c 1543 ref_node->aux);
995e01b7
JS
1544 ret = iterate_leaf_refs((struct extent_inode_elem *)
1545 (uintptr_t)ref_node->aux,
1546 root_node->val,
1547 extent_item_objectid,
1548 iterate, ctx);
4692cf58 1549 }
976b1908 1550 ulist_free(roots);
a542ad1b
JS
1551 }
1552
976b1908 1553 free_leaf_list(refs);
4692cf58 1554out:
7a3ae2f8 1555 if (!search_commit_root) {
8445f61c 1556 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
7a3ae2f8
JS
1557 btrfs_end_transaction(trans, fs_info->extent_root);
1558 }
1559
a542ad1b
JS
1560 return ret;
1561}
1562
1563int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1564 struct btrfs_path *path,
1565 iterate_extent_inodes_t *iterate, void *ctx)
1566{
1567 int ret;
4692cf58 1568 u64 extent_item_pos;
69917e43 1569 u64 flags = 0;
a542ad1b 1570 struct btrfs_key found_key;
7a3ae2f8 1571 int search_commit_root = path->search_commit_root;
a542ad1b 1572
69917e43 1573 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
4692cf58 1574 btrfs_release_path(path);
a542ad1b
JS
1575 if (ret < 0)
1576 return ret;
69917e43 1577 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3627bf45 1578 return -EINVAL;
a542ad1b 1579
4692cf58 1580 extent_item_pos = logical - found_key.objectid;
7a3ae2f8
JS
1581 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1582 extent_item_pos, search_commit_root,
1583 iterate, ctx);
a542ad1b
JS
1584
1585 return ret;
1586}
1587
d24bec3a
MF
1588typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1589 struct extent_buffer *eb, void *ctx);
1590
1591static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1592 struct btrfs_path *path,
1593 iterate_irefs_t *iterate, void *ctx)
a542ad1b 1594{
aefc1eb1 1595 int ret = 0;
a542ad1b
JS
1596 int slot;
1597 u32 cur;
1598 u32 len;
1599 u32 name_len;
1600 u64 parent = 0;
1601 int found = 0;
1602 struct extent_buffer *eb;
1603 struct btrfs_item *item;
1604 struct btrfs_inode_ref *iref;
1605 struct btrfs_key found_key;
1606
aefc1eb1 1607 while (!ret) {
a542ad1b 1608 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
d24bec3a 1609 &found_key);
a542ad1b
JS
1610 if (ret < 0)
1611 break;
1612 if (ret) {
1613 ret = found ? 0 : -ENOENT;
1614 break;
1615 }
1616 ++found;
1617
1618 parent = found_key.offset;
1619 slot = path->slots[0];
3fe81ce2
FDBM
1620 eb = btrfs_clone_extent_buffer(path->nodes[0]);
1621 if (!eb) {
1622 ret = -ENOMEM;
1623 break;
1624 }
1625 extent_buffer_get(eb);
b916a59a
JS
1626 btrfs_tree_read_lock(eb);
1627 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
a542ad1b
JS
1628 btrfs_release_path(path);
1629
dd3cc16b 1630 item = btrfs_item_nr(slot);
a542ad1b
JS
1631 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1632
1633 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1634 name_len = btrfs_inode_ref_name_len(eb, iref);
1635 /* path must be released before calling iterate()! */
4692cf58 1636 pr_debug("following ref at offset %u for inode %llu in "
c1c9ff7c
GU
1637 "tree %llu\n", cur, found_key.objectid,
1638 fs_root->objectid);
d24bec3a
MF
1639 ret = iterate(parent, name_len,
1640 (unsigned long)(iref + 1), eb, ctx);
aefc1eb1 1641 if (ret)
a542ad1b 1642 break;
a542ad1b
JS
1643 len = sizeof(*iref) + name_len;
1644 iref = (struct btrfs_inode_ref *)((char *)iref + len);
1645 }
b916a59a 1646 btrfs_tree_read_unlock_blocking(eb);
a542ad1b
JS
1647 free_extent_buffer(eb);
1648 }
1649
1650 btrfs_release_path(path);
1651
1652 return ret;
1653}
1654
d24bec3a
MF
1655static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1656 struct btrfs_path *path,
1657 iterate_irefs_t *iterate, void *ctx)
1658{
1659 int ret;
1660 int slot;
1661 u64 offset = 0;
1662 u64 parent;
1663 int found = 0;
1664 struct extent_buffer *eb;
1665 struct btrfs_inode_extref *extref;
1666 struct extent_buffer *leaf;
1667 u32 item_size;
1668 u32 cur_offset;
1669 unsigned long ptr;
1670
1671 while (1) {
1672 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1673 &offset);
1674 if (ret < 0)
1675 break;
1676 if (ret) {
1677 ret = found ? 0 : -ENOENT;
1678 break;
1679 }
1680 ++found;
1681
1682 slot = path->slots[0];
3fe81ce2
FDBM
1683 eb = btrfs_clone_extent_buffer(path->nodes[0]);
1684 if (!eb) {
1685 ret = -ENOMEM;
1686 break;
1687 }
1688 extent_buffer_get(eb);
d24bec3a
MF
1689
1690 btrfs_tree_read_lock(eb);
1691 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1692 btrfs_release_path(path);
1693
1694 leaf = path->nodes[0];
e94acd86
VG
1695 item_size = btrfs_item_size_nr(leaf, slot);
1696 ptr = btrfs_item_ptr_offset(leaf, slot);
d24bec3a
MF
1697 cur_offset = 0;
1698
1699 while (cur_offset < item_size) {
1700 u32 name_len;
1701
1702 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1703 parent = btrfs_inode_extref_parent(eb, extref);
1704 name_len = btrfs_inode_extref_name_len(eb, extref);
1705 ret = iterate(parent, name_len,
1706 (unsigned long)&extref->name, eb, ctx);
1707 if (ret)
1708 break;
1709
1710 cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1711 cur_offset += sizeof(*extref);
1712 }
1713 btrfs_tree_read_unlock_blocking(eb);
1714 free_extent_buffer(eb);
1715
1716 offset++;
1717 }
1718
1719 btrfs_release_path(path);
1720
1721 return ret;
1722}
1723
1724static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1725 struct btrfs_path *path, iterate_irefs_t *iterate,
1726 void *ctx)
1727{
1728 int ret;
1729 int found_refs = 0;
1730
1731 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1732 if (!ret)
1733 ++found_refs;
1734 else if (ret != -ENOENT)
1735 return ret;
1736
1737 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1738 if (ret == -ENOENT && found_refs)
1739 return 0;
1740
1741 return ret;
1742}
1743
a542ad1b
JS
1744/*
1745 * returns 0 if the path could be dumped (probably truncated)
1746 * returns <0 in case of an error
1747 */
d24bec3a
MF
1748static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1749 struct extent_buffer *eb, void *ctx)
a542ad1b
JS
1750{
1751 struct inode_fs_paths *ipath = ctx;
1752 char *fspath;
1753 char *fspath_min;
1754 int i = ipath->fspath->elem_cnt;
1755 const int s_ptr = sizeof(char *);
1756 u32 bytes_left;
1757
1758 bytes_left = ipath->fspath->bytes_left > s_ptr ?
1759 ipath->fspath->bytes_left - s_ptr : 0;
1760
740c3d22 1761 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
96b5bd77
JS
1762 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1763 name_off, eb, inum, fspath_min, bytes_left);
a542ad1b
JS
1764 if (IS_ERR(fspath))
1765 return PTR_ERR(fspath);
1766
1767 if (fspath > fspath_min) {
745c4d8e 1768 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
a542ad1b
JS
1769 ++ipath->fspath->elem_cnt;
1770 ipath->fspath->bytes_left = fspath - fspath_min;
1771 } else {
1772 ++ipath->fspath->elem_missed;
1773 ipath->fspath->bytes_missing += fspath_min - fspath;
1774 ipath->fspath->bytes_left = 0;
1775 }
1776
1777 return 0;
1778}
1779
1780/*
1781 * this dumps all file system paths to the inode into the ipath struct, provided
1782 * is has been created large enough. each path is zero-terminated and accessed
740c3d22 1783 * from ipath->fspath->val[i].
a542ad1b 1784 * when it returns, there are ipath->fspath->elem_cnt number of paths available
740c3d22 1785 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
a542ad1b
JS
1786 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1787 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1788 * have been needed to return all paths.
1789 */
1790int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1791{
1792 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
d24bec3a 1793 inode_to_path, ipath);
a542ad1b
JS
1794}
1795
a542ad1b
JS
1796struct btrfs_data_container *init_data_container(u32 total_bytes)
1797{
1798 struct btrfs_data_container *data;
1799 size_t alloc_bytes;
1800
1801 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
425d17a2 1802 data = vmalloc(alloc_bytes);
a542ad1b
JS
1803 if (!data)
1804 return ERR_PTR(-ENOMEM);
1805
1806 if (total_bytes >= sizeof(*data)) {
1807 data->bytes_left = total_bytes - sizeof(*data);
1808 data->bytes_missing = 0;
1809 } else {
1810 data->bytes_missing = sizeof(*data) - total_bytes;
1811 data->bytes_left = 0;
1812 }
1813
1814 data->elem_cnt = 0;
1815 data->elem_missed = 0;
1816
1817 return data;
1818}
1819
1820/*
1821 * allocates space to return multiple file system paths for an inode.
1822 * total_bytes to allocate are passed, note that space usable for actual path
1823 * information will be total_bytes - sizeof(struct inode_fs_paths).
1824 * the returned pointer must be freed with free_ipath() in the end.
1825 */
1826struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1827 struct btrfs_path *path)
1828{
1829 struct inode_fs_paths *ifp;
1830 struct btrfs_data_container *fspath;
1831
1832 fspath = init_data_container(total_bytes);
1833 if (IS_ERR(fspath))
1834 return (void *)fspath;
1835
1836 ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1837 if (!ifp) {
1838 kfree(fspath);
1839 return ERR_PTR(-ENOMEM);
1840 }
1841
1842 ifp->btrfs_path = path;
1843 ifp->fspath = fspath;
1844 ifp->fs_root = fs_root;
1845
1846 return ifp;
1847}
1848
1849void free_ipath(struct inode_fs_paths *ipath)
1850{
4735fb28
JJ
1851 if (!ipath)
1852 return;
425d17a2 1853 vfree(ipath->fspath);
a542ad1b
JS
1854 kfree(ipath);
1855}
This page took 0.20348 seconds and 5 git commands to generate.