btrfs: fix minor typo in comment
[deliverable/linux.git] / fs / btrfs / backref.c
CommitLineData
a542ad1b
JS
1/*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
425d17a2 19#include <linux/vmalloc.h>
a542ad1b
JS
20#include "ctree.h"
21#include "disk-io.h"
22#include "backref.h"
8da6d581
JS
23#include "ulist.h"
24#include "transaction.h"
25#include "delayed-ref.h"
b916a59a 26#include "locking.h"
a542ad1b 27
976b1908
JS
28struct extent_inode_elem {
29 u64 inum;
30 u64 offset;
31 struct extent_inode_elem *next;
32};
33
34static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
35 struct btrfs_file_extent_item *fi,
36 u64 extent_item_pos,
37 struct extent_inode_elem **eie)
38{
39 u64 data_offset;
40 u64 data_len;
41 struct extent_inode_elem *e;
42
43 data_offset = btrfs_file_extent_offset(eb, fi);
44 data_len = btrfs_file_extent_num_bytes(eb, fi);
45
46 if (extent_item_pos < data_offset ||
47 extent_item_pos >= data_offset + data_len)
48 return 1;
49
50 e = kmalloc(sizeof(*e), GFP_NOFS);
51 if (!e)
52 return -ENOMEM;
53
54 e->next = *eie;
55 e->inum = key->objectid;
56 e->offset = key->offset + (extent_item_pos - data_offset);
57 *eie = e;
58
59 return 0;
60}
61
62static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
63 u64 extent_item_pos,
64 struct extent_inode_elem **eie)
65{
66 u64 disk_byte;
67 struct btrfs_key key;
68 struct btrfs_file_extent_item *fi;
69 int slot;
70 int nritems;
71 int extent_type;
72 int ret;
73
74 /*
75 * from the shared data ref, we only have the leaf but we need
76 * the key. thus, we must look into all items and see that we
77 * find one (some) with a reference to our extent item.
78 */
79 nritems = btrfs_header_nritems(eb);
80 for (slot = 0; slot < nritems; ++slot) {
81 btrfs_item_key_to_cpu(eb, &key, slot);
82 if (key.type != BTRFS_EXTENT_DATA_KEY)
83 continue;
84 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
85 extent_type = btrfs_file_extent_type(eb, fi);
86 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
87 continue;
88 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
89 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
90 if (disk_byte != wanted_disk_byte)
91 continue;
92
93 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
94 if (ret < 0)
95 return ret;
96 }
97
98 return 0;
99}
100
8da6d581
JS
101/*
102 * this structure records all encountered refs on the way up to the root
103 */
104struct __prelim_ref {
105 struct list_head list;
106 u64 root_id;
d5c88b73 107 struct btrfs_key key_for_search;
8da6d581
JS
108 int level;
109 int count;
3301958b 110 struct extent_inode_elem *inode_list;
8da6d581
JS
111 u64 parent;
112 u64 wanted_disk_byte;
113};
114
d5c88b73
JS
115/*
116 * the rules for all callers of this function are:
117 * - obtaining the parent is the goal
118 * - if you add a key, you must know that it is a correct key
119 * - if you cannot add the parent or a correct key, then we will look into the
120 * block later to set a correct key
121 *
122 * delayed refs
123 * ============
124 * backref type | shared | indirect | shared | indirect
125 * information | tree | tree | data | data
126 * --------------------+--------+----------+--------+----------
127 * parent logical | y | - | - | -
128 * key to resolve | - | y | y | y
129 * tree block logical | - | - | - | -
130 * root for resolving | y | y | y | y
131 *
132 * - column 1: we've the parent -> done
133 * - column 2, 3, 4: we use the key to find the parent
134 *
135 * on disk refs (inline or keyed)
136 * ==============================
137 * backref type | shared | indirect | shared | indirect
138 * information | tree | tree | data | data
139 * --------------------+--------+----------+--------+----------
140 * parent logical | y | - | y | -
141 * key to resolve | - | - | - | y
142 * tree block logical | y | y | y | y
143 * root for resolving | - | y | y | y
144 *
145 * - column 1, 3: we've the parent -> done
146 * - column 2: we take the first key from the block to find the parent
147 * (see __add_missing_keys)
148 * - column 4: we use the key to find the parent
149 *
150 * additional information that's available but not required to find the parent
151 * block might help in merging entries to gain some speed.
152 */
153
8da6d581 154static int __add_prelim_ref(struct list_head *head, u64 root_id,
d5c88b73
JS
155 struct btrfs_key *key, int level,
156 u64 parent, u64 wanted_disk_byte, int count)
8da6d581
JS
157{
158 struct __prelim_ref *ref;
159
160 /* in case we're adding delayed refs, we're holding the refs spinlock */
161 ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
162 if (!ref)
163 return -ENOMEM;
164
165 ref->root_id = root_id;
166 if (key)
d5c88b73 167 ref->key_for_search = *key;
8da6d581 168 else
d5c88b73 169 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
8da6d581 170
3301958b 171 ref->inode_list = NULL;
8da6d581
JS
172 ref->level = level;
173 ref->count = count;
174 ref->parent = parent;
175 ref->wanted_disk_byte = wanted_disk_byte;
176 list_add_tail(&ref->list, head);
177
178 return 0;
179}
180
181static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
976b1908 182 struct ulist *parents, int level,
69bca40d 183 struct btrfs_key *key_for_search, u64 time_seq,
3d7806ec 184 u64 wanted_disk_byte,
976b1908 185 const u64 *extent_item_pos)
8da6d581 186{
69bca40d
AB
187 int ret = 0;
188 int slot;
189 struct extent_buffer *eb;
190 struct btrfs_key key;
8da6d581 191 struct btrfs_file_extent_item *fi;
3301958b 192 struct extent_inode_elem *eie = NULL;
8da6d581
JS
193 u64 disk_byte;
194
69bca40d
AB
195 if (level != 0) {
196 eb = path->nodes[level];
197 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
3301958b
JS
198 if (ret < 0)
199 return ret;
8da6d581 200 return 0;
69bca40d 201 }
8da6d581
JS
202
203 /*
69bca40d
AB
204 * We normally enter this function with the path already pointing to
205 * the first item to check. But sometimes, we may enter it with
206 * slot==nritems. In that case, go to the next leaf before we continue.
8da6d581 207 */
69bca40d 208 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
3d7806ec 209 ret = btrfs_next_old_leaf(root, path, time_seq);
8da6d581 210
69bca40d 211 while (!ret) {
8da6d581 212 eb = path->nodes[0];
69bca40d
AB
213 slot = path->slots[0];
214
215 btrfs_item_key_to_cpu(eb, &key, slot);
216
217 if (key.objectid != key_for_search->objectid ||
218 key.type != BTRFS_EXTENT_DATA_KEY)
219 break;
220
221 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
222 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
223
224 if (disk_byte == wanted_disk_byte) {
225 eie = NULL;
226 if (extent_item_pos) {
227 ret = check_extent_in_eb(&key, eb, fi,
228 *extent_item_pos,
229 &eie);
230 if (ret < 0)
231 break;
232 }
233 if (!ret) {
234 ret = ulist_add(parents, eb->start,
995e01b7 235 (uintptr_t)eie, GFP_NOFS);
69bca40d
AB
236 if (ret < 0)
237 break;
238 if (!extent_item_pos) {
239 ret = btrfs_next_old_leaf(root, path,
240 time_seq);
241 continue;
242 }
243 }
8da6d581 244 }
69bca40d 245 ret = btrfs_next_old_item(root, path, time_seq);
8da6d581
JS
246 }
247
69bca40d
AB
248 if (ret > 0)
249 ret = 0;
250 return ret;
8da6d581
JS
251}
252
253/*
254 * resolve an indirect backref in the form (root_id, key, level)
255 * to a logical address
256 */
257static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
7a3ae2f8 258 int search_commit_root,
8445f61c 259 u64 time_seq,
8da6d581 260 struct __prelim_ref *ref,
976b1908
JS
261 struct ulist *parents,
262 const u64 *extent_item_pos)
8da6d581
JS
263{
264 struct btrfs_path *path;
265 struct btrfs_root *root;
266 struct btrfs_key root_key;
8da6d581
JS
267 struct extent_buffer *eb;
268 int ret = 0;
269 int root_level;
270 int level = ref->level;
271
272 path = btrfs_alloc_path();
273 if (!path)
274 return -ENOMEM;
7a3ae2f8 275 path->search_commit_root = !!search_commit_root;
8da6d581
JS
276
277 root_key.objectid = ref->root_id;
278 root_key.type = BTRFS_ROOT_ITEM_KEY;
279 root_key.offset = (u64)-1;
280 root = btrfs_read_fs_root_no_name(fs_info, &root_key);
281 if (IS_ERR(root)) {
282 ret = PTR_ERR(root);
283 goto out;
284 }
285
5b6602e7 286 root_level = btrfs_old_root_level(root, time_seq);
8da6d581
JS
287
288 if (root_level + 1 == level)
289 goto out;
290
291 path->lowest_level = level;
8445f61c 292 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
8da6d581
JS
293 pr_debug("search slot in root %llu (level %d, ref count %d) returned "
294 "%d for key (%llu %u %llu)\n",
295 (unsigned long long)ref->root_id, level, ref->count, ret,
d5c88b73
JS
296 (unsigned long long)ref->key_for_search.objectid,
297 ref->key_for_search.type,
298 (unsigned long long)ref->key_for_search.offset);
8da6d581
JS
299 if (ret < 0)
300 goto out;
301
302 eb = path->nodes[level];
9345457f
JS
303 while (!eb) {
304 if (!level) {
305 WARN_ON(1);
306 ret = 1;
307 goto out;
308 }
309 level--;
310 eb = path->nodes[level];
8da6d581
JS
311 }
312
69bca40d
AB
313 ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
314 time_seq, ref->wanted_disk_byte,
315 extent_item_pos);
8da6d581
JS
316out:
317 btrfs_free_path(path);
318 return ret;
319}
320
321/*
322 * resolve all indirect backrefs from the list
323 */
324static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
8445f61c 325 int search_commit_root, u64 time_seq,
976b1908
JS
326 struct list_head *head,
327 const u64 *extent_item_pos)
8da6d581
JS
328{
329 int err;
330 int ret = 0;
331 struct __prelim_ref *ref;
332 struct __prelim_ref *ref_safe;
333 struct __prelim_ref *new_ref;
334 struct ulist *parents;
335 struct ulist_node *node;
cd1b413c 336 struct ulist_iterator uiter;
8da6d581
JS
337
338 parents = ulist_alloc(GFP_NOFS);
339 if (!parents)
340 return -ENOMEM;
341
342 /*
343 * _safe allows us to insert directly after the current item without
344 * iterating over the newly inserted items.
345 * we're also allowed to re-assign ref during iteration.
346 */
347 list_for_each_entry_safe(ref, ref_safe, head, list) {
348 if (ref->parent) /* already direct */
349 continue;
350 if (ref->count == 0)
351 continue;
7a3ae2f8 352 err = __resolve_indirect_ref(fs_info, search_commit_root,
8445f61c
JS
353 time_seq, ref, parents,
354 extent_item_pos);
ca60ebfa 355 if (err)
8da6d581 356 continue;
8da6d581
JS
357
358 /* we put the first parent into the ref at hand */
cd1b413c
JS
359 ULIST_ITER_INIT(&uiter);
360 node = ulist_next(parents, &uiter);
8da6d581 361 ref->parent = node ? node->val : 0;
995e01b7
JS
362 ref->inode_list = node ?
363 (struct extent_inode_elem *)(uintptr_t)node->aux : 0;
8da6d581
JS
364
365 /* additional parents require new refs being added here */
cd1b413c 366 while ((node = ulist_next(parents, &uiter))) {
8da6d581
JS
367 new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
368 if (!new_ref) {
369 ret = -ENOMEM;
370 break;
371 }
372 memcpy(new_ref, ref, sizeof(*ref));
373 new_ref->parent = node->val;
995e01b7
JS
374 new_ref->inode_list = (struct extent_inode_elem *)
375 (uintptr_t)node->aux;
8da6d581
JS
376 list_add(&new_ref->list, &ref->list);
377 }
378 ulist_reinit(parents);
379 }
380
381 ulist_free(parents);
382 return ret;
383}
384
d5c88b73
JS
385static inline int ref_for_same_block(struct __prelim_ref *ref1,
386 struct __prelim_ref *ref2)
387{
388 if (ref1->level != ref2->level)
389 return 0;
390 if (ref1->root_id != ref2->root_id)
391 return 0;
392 if (ref1->key_for_search.type != ref2->key_for_search.type)
393 return 0;
394 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
395 return 0;
396 if (ref1->key_for_search.offset != ref2->key_for_search.offset)
397 return 0;
398 if (ref1->parent != ref2->parent)
399 return 0;
400
401 return 1;
402}
403
404/*
405 * read tree blocks and add keys where required.
406 */
407static int __add_missing_keys(struct btrfs_fs_info *fs_info,
408 struct list_head *head)
409{
410 struct list_head *pos;
411 struct extent_buffer *eb;
412
413 list_for_each(pos, head) {
414 struct __prelim_ref *ref;
415 ref = list_entry(pos, struct __prelim_ref, list);
416
417 if (ref->parent)
418 continue;
419 if (ref->key_for_search.type)
420 continue;
421 BUG_ON(!ref->wanted_disk_byte);
422 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
423 fs_info->tree_root->leafsize, 0);
424 BUG_ON(!eb);
425 btrfs_tree_read_lock(eb);
426 if (btrfs_header_level(eb) == 0)
427 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
428 else
429 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
430 btrfs_tree_read_unlock(eb);
431 free_extent_buffer(eb);
432 }
433 return 0;
434}
435
8da6d581
JS
436/*
437 * merge two lists of backrefs and adjust counts accordingly
438 *
439 * mode = 1: merge identical keys, if key is set
d5c88b73
JS
440 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
441 * additionally, we could even add a key range for the blocks we
442 * looked into to merge even more (-> replace unresolved refs by those
443 * having a parent).
8da6d581
JS
444 * mode = 2: merge identical parents
445 */
692206b1 446static void __merge_refs(struct list_head *head, int mode)
8da6d581
JS
447{
448 struct list_head *pos1;
449
450 list_for_each(pos1, head) {
451 struct list_head *n2;
452 struct list_head *pos2;
453 struct __prelim_ref *ref1;
454
455 ref1 = list_entry(pos1, struct __prelim_ref, list);
456
8da6d581
JS
457 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
458 pos2 = n2, n2 = pos2->next) {
459 struct __prelim_ref *ref2;
d5c88b73 460 struct __prelim_ref *xchg;
3ef5969c 461 struct extent_inode_elem *eie;
8da6d581
JS
462
463 ref2 = list_entry(pos2, struct __prelim_ref, list);
464
465 if (mode == 1) {
d5c88b73 466 if (!ref_for_same_block(ref1, ref2))
8da6d581 467 continue;
d5c88b73
JS
468 if (!ref1->parent && ref2->parent) {
469 xchg = ref1;
470 ref1 = ref2;
471 ref2 = xchg;
472 }
8da6d581
JS
473 } else {
474 if (ref1->parent != ref2->parent)
475 continue;
8da6d581 476 }
3ef5969c
AB
477
478 eie = ref1->inode_list;
479 while (eie && eie->next)
480 eie = eie->next;
481 if (eie)
482 eie->next = ref2->inode_list;
483 else
484 ref1->inode_list = ref2->inode_list;
485 ref1->count += ref2->count;
486
8da6d581
JS
487 list_del(&ref2->list);
488 kfree(ref2);
489 }
490
491 }
8da6d581
JS
492}
493
494/*
495 * add all currently queued delayed refs from this head whose seq nr is
496 * smaller or equal that seq to the list
497 */
498static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
8da6d581
JS
499 struct list_head *prefs)
500{
501 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
502 struct rb_node *n = &head->node.rb_node;
d5c88b73
JS
503 struct btrfs_key key;
504 struct btrfs_key op_key = {0};
8da6d581 505 int sgn;
b1375d64 506 int ret = 0;
8da6d581
JS
507
508 if (extent_op && extent_op->update_key)
d5c88b73 509 btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
8da6d581
JS
510
511 while ((n = rb_prev(n))) {
512 struct btrfs_delayed_ref_node *node;
513 node = rb_entry(n, struct btrfs_delayed_ref_node,
514 rb_node);
515 if (node->bytenr != head->node.bytenr)
516 break;
517 WARN_ON(node->is_head);
518
519 if (node->seq > seq)
520 continue;
521
522 switch (node->action) {
523 case BTRFS_ADD_DELAYED_EXTENT:
524 case BTRFS_UPDATE_DELAYED_HEAD:
525 WARN_ON(1);
526 continue;
527 case BTRFS_ADD_DELAYED_REF:
528 sgn = 1;
529 break;
530 case BTRFS_DROP_DELAYED_REF:
531 sgn = -1;
532 break;
533 default:
534 BUG_ON(1);
535 }
536 switch (node->type) {
537 case BTRFS_TREE_BLOCK_REF_KEY: {
538 struct btrfs_delayed_tree_ref *ref;
539
540 ref = btrfs_delayed_node_to_tree_ref(node);
d5c88b73 541 ret = __add_prelim_ref(prefs, ref->root, &op_key,
8da6d581
JS
542 ref->level + 1, 0, node->bytenr,
543 node->ref_mod * sgn);
544 break;
545 }
546 case BTRFS_SHARED_BLOCK_REF_KEY: {
547 struct btrfs_delayed_tree_ref *ref;
548
549 ref = btrfs_delayed_node_to_tree_ref(node);
d5c88b73 550 ret = __add_prelim_ref(prefs, ref->root, NULL,
8da6d581
JS
551 ref->level + 1, ref->parent,
552 node->bytenr,
553 node->ref_mod * sgn);
554 break;
555 }
556 case BTRFS_EXTENT_DATA_REF_KEY: {
557 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
558 ref = btrfs_delayed_node_to_data_ref(node);
559
560 key.objectid = ref->objectid;
561 key.type = BTRFS_EXTENT_DATA_KEY;
562 key.offset = ref->offset;
563 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
564 node->bytenr,
565 node->ref_mod * sgn);
566 break;
567 }
568 case BTRFS_SHARED_DATA_REF_KEY: {
569 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
570
571 ref = btrfs_delayed_node_to_data_ref(node);
572
573 key.objectid = ref->objectid;
574 key.type = BTRFS_EXTENT_DATA_KEY;
575 key.offset = ref->offset;
576 ret = __add_prelim_ref(prefs, ref->root, &key, 0,
577 ref->parent, node->bytenr,
578 node->ref_mod * sgn);
579 break;
580 }
581 default:
582 WARN_ON(1);
583 }
1149ab6b
WS
584 if (ret)
585 return ret;
8da6d581
JS
586 }
587
588 return 0;
589}
590
591/*
592 * add all inline backrefs for bytenr to the list
593 */
594static int __add_inline_refs(struct btrfs_fs_info *fs_info,
595 struct btrfs_path *path, u64 bytenr,
d5c88b73 596 int *info_level, struct list_head *prefs)
8da6d581 597{
b1375d64 598 int ret = 0;
8da6d581
JS
599 int slot;
600 struct extent_buffer *leaf;
601 struct btrfs_key key;
602 unsigned long ptr;
603 unsigned long end;
604 struct btrfs_extent_item *ei;
605 u64 flags;
606 u64 item_size;
607
608 /*
609 * enumerate all inline refs
610 */
611 leaf = path->nodes[0];
dadcaf78 612 slot = path->slots[0];
8da6d581
JS
613
614 item_size = btrfs_item_size_nr(leaf, slot);
615 BUG_ON(item_size < sizeof(*ei));
616
617 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
618 flags = btrfs_extent_flags(leaf, ei);
619
620 ptr = (unsigned long)(ei + 1);
621 end = (unsigned long)ei + item_size;
622
623 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
624 struct btrfs_tree_block_info *info;
8da6d581
JS
625
626 info = (struct btrfs_tree_block_info *)ptr;
627 *info_level = btrfs_tree_block_level(leaf, info);
8da6d581
JS
628 ptr += sizeof(struct btrfs_tree_block_info);
629 BUG_ON(ptr > end);
630 } else {
631 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
632 }
633
634 while (ptr < end) {
635 struct btrfs_extent_inline_ref *iref;
636 u64 offset;
637 int type;
638
639 iref = (struct btrfs_extent_inline_ref *)ptr;
640 type = btrfs_extent_inline_ref_type(leaf, iref);
641 offset = btrfs_extent_inline_ref_offset(leaf, iref);
642
643 switch (type) {
644 case BTRFS_SHARED_BLOCK_REF_KEY:
d5c88b73 645 ret = __add_prelim_ref(prefs, 0, NULL,
8da6d581
JS
646 *info_level + 1, offset,
647 bytenr, 1);
648 break;
649 case BTRFS_SHARED_DATA_REF_KEY: {
650 struct btrfs_shared_data_ref *sdref;
651 int count;
652
653 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
654 count = btrfs_shared_data_ref_count(leaf, sdref);
655 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
656 bytenr, count);
657 break;
658 }
659 case BTRFS_TREE_BLOCK_REF_KEY:
d5c88b73
JS
660 ret = __add_prelim_ref(prefs, offset, NULL,
661 *info_level + 1, 0,
662 bytenr, 1);
8da6d581
JS
663 break;
664 case BTRFS_EXTENT_DATA_REF_KEY: {
665 struct btrfs_extent_data_ref *dref;
666 int count;
667 u64 root;
668
669 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
670 count = btrfs_extent_data_ref_count(leaf, dref);
671 key.objectid = btrfs_extent_data_ref_objectid(leaf,
672 dref);
673 key.type = BTRFS_EXTENT_DATA_KEY;
674 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
675 root = btrfs_extent_data_ref_root(leaf, dref);
d5c88b73
JS
676 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
677 bytenr, count);
8da6d581
JS
678 break;
679 }
680 default:
681 WARN_ON(1);
682 }
1149ab6b
WS
683 if (ret)
684 return ret;
8da6d581
JS
685 ptr += btrfs_extent_inline_ref_size(type);
686 }
687
688 return 0;
689}
690
691/*
692 * add all non-inline backrefs for bytenr to the list
693 */
694static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
695 struct btrfs_path *path, u64 bytenr,
d5c88b73 696 int info_level, struct list_head *prefs)
8da6d581
JS
697{
698 struct btrfs_root *extent_root = fs_info->extent_root;
699 int ret;
700 int slot;
701 struct extent_buffer *leaf;
702 struct btrfs_key key;
703
704 while (1) {
705 ret = btrfs_next_item(extent_root, path);
706 if (ret < 0)
707 break;
708 if (ret) {
709 ret = 0;
710 break;
711 }
712
713 slot = path->slots[0];
714 leaf = path->nodes[0];
715 btrfs_item_key_to_cpu(leaf, &key, slot);
716
717 if (key.objectid != bytenr)
718 break;
719 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
720 continue;
721 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
722 break;
723
724 switch (key.type) {
725 case BTRFS_SHARED_BLOCK_REF_KEY:
d5c88b73 726 ret = __add_prelim_ref(prefs, 0, NULL,
8da6d581
JS
727 info_level + 1, key.offset,
728 bytenr, 1);
729 break;
730 case BTRFS_SHARED_DATA_REF_KEY: {
731 struct btrfs_shared_data_ref *sdref;
732 int count;
733
734 sdref = btrfs_item_ptr(leaf, slot,
735 struct btrfs_shared_data_ref);
736 count = btrfs_shared_data_ref_count(leaf, sdref);
737 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
738 bytenr, count);
739 break;
740 }
741 case BTRFS_TREE_BLOCK_REF_KEY:
d5c88b73
JS
742 ret = __add_prelim_ref(prefs, key.offset, NULL,
743 info_level + 1, 0,
744 bytenr, 1);
8da6d581
JS
745 break;
746 case BTRFS_EXTENT_DATA_REF_KEY: {
747 struct btrfs_extent_data_ref *dref;
748 int count;
749 u64 root;
750
751 dref = btrfs_item_ptr(leaf, slot,
752 struct btrfs_extent_data_ref);
753 count = btrfs_extent_data_ref_count(leaf, dref);
754 key.objectid = btrfs_extent_data_ref_objectid(leaf,
755 dref);
756 key.type = BTRFS_EXTENT_DATA_KEY;
757 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
758 root = btrfs_extent_data_ref_root(leaf, dref);
759 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
d5c88b73 760 bytenr, count);
8da6d581
JS
761 break;
762 }
763 default:
764 WARN_ON(1);
765 }
1149ab6b
WS
766 if (ret)
767 return ret;
768
8da6d581
JS
769 }
770
771 return ret;
772}
773
774/*
775 * this adds all existing backrefs (inline backrefs, backrefs and delayed
776 * refs) for the given bytenr to the refs list, merges duplicates and resolves
777 * indirect refs to their parent bytenr.
778 * When roots are found, they're added to the roots list
779 *
780 * FIXME some caching might speed things up
781 */
782static int find_parent_nodes(struct btrfs_trans_handle *trans,
783 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c
JS
784 u64 time_seq, struct ulist *refs,
785 struct ulist *roots, const u64 *extent_item_pos)
8da6d581
JS
786{
787 struct btrfs_key key;
788 struct btrfs_path *path;
8da6d581 789 struct btrfs_delayed_ref_root *delayed_refs = NULL;
d3b01064 790 struct btrfs_delayed_ref_head *head;
8da6d581
JS
791 int info_level = 0;
792 int ret;
7a3ae2f8 793 int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT);
8da6d581
JS
794 struct list_head prefs_delayed;
795 struct list_head prefs;
796 struct __prelim_ref *ref;
797
798 INIT_LIST_HEAD(&prefs);
799 INIT_LIST_HEAD(&prefs_delayed);
800
801 key.objectid = bytenr;
802 key.type = BTRFS_EXTENT_ITEM_KEY;
803 key.offset = (u64)-1;
804
805 path = btrfs_alloc_path();
806 if (!path)
807 return -ENOMEM;
7a3ae2f8 808 path->search_commit_root = !!search_commit_root;
8da6d581
JS
809
810 /*
811 * grab both a lock on the path and a lock on the delayed ref head.
812 * We need both to get a consistent picture of how the refs look
813 * at a specified point in time
814 */
815again:
d3b01064
LZ
816 head = NULL;
817
8da6d581
JS
818 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
819 if (ret < 0)
820 goto out;
821 BUG_ON(ret == 0);
822
7a3ae2f8
JS
823 if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) {
824 /*
825 * look if there are updates for this ref queued and lock the
826 * head
827 */
828 delayed_refs = &trans->transaction->delayed_refs;
829 spin_lock(&delayed_refs->lock);
830 head = btrfs_find_delayed_ref_head(trans, bytenr);
831 if (head) {
832 if (!mutex_trylock(&head->mutex)) {
833 atomic_inc(&head->node.refs);
834 spin_unlock(&delayed_refs->lock);
835
836 btrfs_release_path(path);
837
838 /*
839 * Mutex was contended, block until it's
840 * released and try again
841 */
842 mutex_lock(&head->mutex);
843 mutex_unlock(&head->mutex);
844 btrfs_put_delayed_ref(&head->node);
845 goto again;
846 }
097b8a7c 847 ret = __add_delayed_refs(head, time_seq,
8445f61c 848 &prefs_delayed);
155725c9 849 mutex_unlock(&head->mutex);
7a3ae2f8
JS
850 if (ret) {
851 spin_unlock(&delayed_refs->lock);
852 goto out;
853 }
d3b01064 854 }
7a3ae2f8 855 spin_unlock(&delayed_refs->lock);
8da6d581 856 }
8da6d581
JS
857
858 if (path->slots[0]) {
859 struct extent_buffer *leaf;
860 int slot;
861
dadcaf78 862 path->slots[0]--;
8da6d581 863 leaf = path->nodes[0];
dadcaf78 864 slot = path->slots[0];
8da6d581
JS
865 btrfs_item_key_to_cpu(leaf, &key, slot);
866 if (key.objectid == bytenr &&
867 key.type == BTRFS_EXTENT_ITEM_KEY) {
868 ret = __add_inline_refs(fs_info, path, bytenr,
d5c88b73 869 &info_level, &prefs);
8da6d581
JS
870 if (ret)
871 goto out;
d5c88b73 872 ret = __add_keyed_refs(fs_info, path, bytenr,
8da6d581
JS
873 info_level, &prefs);
874 if (ret)
875 goto out;
876 }
877 }
878 btrfs_release_path(path);
879
8da6d581
JS
880 list_splice_init(&prefs_delayed, &prefs);
881
d5c88b73
JS
882 ret = __add_missing_keys(fs_info, &prefs);
883 if (ret)
884 goto out;
885
692206b1 886 __merge_refs(&prefs, 1);
8da6d581 887
8445f61c
JS
888 ret = __resolve_indirect_refs(fs_info, search_commit_root, time_seq,
889 &prefs, extent_item_pos);
8da6d581
JS
890 if (ret)
891 goto out;
892
692206b1 893 __merge_refs(&prefs, 2);
8da6d581
JS
894
895 while (!list_empty(&prefs)) {
896 ref = list_first_entry(&prefs, struct __prelim_ref, list);
897 list_del(&ref->list);
6c1500f2 898 WARN_ON(ref->count < 0);
8da6d581
JS
899 if (ref->count && ref->root_id && ref->parent == 0) {
900 /* no parent == root of tree */
901 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
f1723939
WS
902 if (ret < 0)
903 goto out;
8da6d581
JS
904 }
905 if (ref->count && ref->parent) {
976b1908 906 struct extent_inode_elem *eie = NULL;
3301958b 907 if (extent_item_pos && !ref->inode_list) {
976b1908
JS
908 u32 bsz;
909 struct extent_buffer *eb;
910 bsz = btrfs_level_size(fs_info->extent_root,
911 info_level);
912 eb = read_tree_block(fs_info->extent_root,
913 ref->parent, bsz, 0);
914 BUG_ON(!eb);
915 ret = find_extent_in_eb(eb, bytenr,
916 *extent_item_pos, &eie);
3301958b 917 ref->inode_list = eie;
976b1908
JS
918 free_extent_buffer(eb);
919 }
3301958b 920 ret = ulist_add_merge(refs, ref->parent,
995e01b7 921 (uintptr_t)ref->inode_list,
34d73f54 922 (u64 *)&eie, GFP_NOFS);
f1723939
WS
923 if (ret < 0)
924 goto out;
3301958b
JS
925 if (!ret && extent_item_pos) {
926 /*
927 * we've recorded that parent, so we must extend
928 * its inode list here
929 */
930 BUG_ON(!eie);
931 while (eie->next)
932 eie = eie->next;
933 eie->next = ref->inode_list;
934 }
8da6d581
JS
935 }
936 kfree(ref);
937 }
938
939out:
8da6d581
JS
940 btrfs_free_path(path);
941 while (!list_empty(&prefs)) {
942 ref = list_first_entry(&prefs, struct __prelim_ref, list);
943 list_del(&ref->list);
944 kfree(ref);
945 }
946 while (!list_empty(&prefs_delayed)) {
947 ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
948 list);
949 list_del(&ref->list);
950 kfree(ref);
951 }
952
953 return ret;
954}
955
976b1908
JS
956static void free_leaf_list(struct ulist *blocks)
957{
958 struct ulist_node *node = NULL;
959 struct extent_inode_elem *eie;
960 struct extent_inode_elem *eie_next;
961 struct ulist_iterator uiter;
962
963 ULIST_ITER_INIT(&uiter);
964 while ((node = ulist_next(blocks, &uiter))) {
965 if (!node->aux)
966 continue;
995e01b7 967 eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
976b1908
JS
968 for (; eie; eie = eie_next) {
969 eie_next = eie->next;
970 kfree(eie);
971 }
972 node->aux = 0;
973 }
974
975 ulist_free(blocks);
976}
977
8da6d581
JS
978/*
979 * Finds all leafs with a reference to the specified combination of bytenr and
980 * offset. key_list_head will point to a list of corresponding keys (caller must
981 * free each list element). The leafs will be stored in the leafs ulist, which
982 * must be freed with ulist_free.
983 *
984 * returns 0 on success, <0 on error
985 */
986static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
987 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 988 u64 time_seq, struct ulist **leafs,
976b1908 989 const u64 *extent_item_pos)
8da6d581
JS
990{
991 struct ulist *tmp;
992 int ret;
993
994 tmp = ulist_alloc(GFP_NOFS);
995 if (!tmp)
996 return -ENOMEM;
997 *leafs = ulist_alloc(GFP_NOFS);
998 if (!*leafs) {
999 ulist_free(tmp);
1000 return -ENOMEM;
1001 }
1002
097b8a7c 1003 ret = find_parent_nodes(trans, fs_info, bytenr,
8445f61c 1004 time_seq, *leafs, tmp, extent_item_pos);
8da6d581
JS
1005 ulist_free(tmp);
1006
1007 if (ret < 0 && ret != -ENOENT) {
976b1908 1008 free_leaf_list(*leafs);
8da6d581
JS
1009 return ret;
1010 }
1011
1012 return 0;
1013}
1014
1015/*
1016 * walk all backrefs for a given extent to find all roots that reference this
1017 * extent. Walking a backref means finding all extents that reference this
1018 * extent and in turn walk the backrefs of those, too. Naturally this is a
1019 * recursive process, but here it is implemented in an iterative fashion: We
1020 * find all referencing extents for the extent in question and put them on a
1021 * list. In turn, we find all referencing extents for those, further appending
1022 * to the list. The way we iterate the list allows adding more elements after
1023 * the current while iterating. The process stops when we reach the end of the
1024 * list. Found roots are added to the roots list.
1025 *
1026 * returns 0 on success, < 0 on error.
1027 */
1028int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1029 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1030 u64 time_seq, struct ulist **roots)
8da6d581
JS
1031{
1032 struct ulist *tmp;
1033 struct ulist_node *node = NULL;
cd1b413c 1034 struct ulist_iterator uiter;
8da6d581
JS
1035 int ret;
1036
1037 tmp = ulist_alloc(GFP_NOFS);
1038 if (!tmp)
1039 return -ENOMEM;
1040 *roots = ulist_alloc(GFP_NOFS);
1041 if (!*roots) {
1042 ulist_free(tmp);
1043 return -ENOMEM;
1044 }
1045
cd1b413c 1046 ULIST_ITER_INIT(&uiter);
8da6d581 1047 while (1) {
097b8a7c 1048 ret = find_parent_nodes(trans, fs_info, bytenr,
8445f61c 1049 time_seq, tmp, *roots, NULL);
8da6d581
JS
1050 if (ret < 0 && ret != -ENOENT) {
1051 ulist_free(tmp);
1052 ulist_free(*roots);
1053 return ret;
1054 }
cd1b413c 1055 node = ulist_next(tmp, &uiter);
8da6d581
JS
1056 if (!node)
1057 break;
1058 bytenr = node->val;
1059 }
1060
1061 ulist_free(tmp);
1062 return 0;
1063}
1064
1065
a542ad1b
JS
1066static int __inode_info(u64 inum, u64 ioff, u8 key_type,
1067 struct btrfs_root *fs_root, struct btrfs_path *path,
1068 struct btrfs_key *found_key)
1069{
1070 int ret;
1071 struct btrfs_key key;
1072 struct extent_buffer *eb;
1073
1074 key.type = key_type;
1075 key.objectid = inum;
1076 key.offset = ioff;
1077
1078 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1079 if (ret < 0)
1080 return ret;
1081
1082 eb = path->nodes[0];
1083 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1084 ret = btrfs_next_leaf(fs_root, path);
1085 if (ret)
1086 return ret;
1087 eb = path->nodes[0];
1088 }
1089
1090 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1091 if (found_key->type != key.type || found_key->objectid != key.objectid)
1092 return 1;
1093
1094 return 0;
1095}
1096
1097/*
1098 * this makes the path point to (inum INODE_ITEM ioff)
1099 */
1100int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1101 struct btrfs_path *path)
1102{
1103 struct btrfs_key key;
1104 return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
1105 &key);
1106}
1107
1108static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1109 struct btrfs_path *path,
1110 struct btrfs_key *found_key)
1111{
1112 return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
1113 found_key);
1114}
1115
f186373f
MF
1116int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1117 u64 start_off, struct btrfs_path *path,
1118 struct btrfs_inode_extref **ret_extref,
1119 u64 *found_off)
1120{
1121 int ret, slot;
1122 struct btrfs_key key;
1123 struct btrfs_key found_key;
1124 struct btrfs_inode_extref *extref;
1125 struct extent_buffer *leaf;
1126 unsigned long ptr;
1127
1128 key.objectid = inode_objectid;
1129 btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1130 key.offset = start_off;
1131
1132 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1133 if (ret < 0)
1134 return ret;
1135
1136 while (1) {
1137 leaf = path->nodes[0];
1138 slot = path->slots[0];
1139 if (slot >= btrfs_header_nritems(leaf)) {
1140 /*
1141 * If the item at offset is not found,
1142 * btrfs_search_slot will point us to the slot
1143 * where it should be inserted. In our case
1144 * that will be the slot directly before the
1145 * next INODE_REF_KEY_V2 item. In the case
1146 * that we're pointing to the last slot in a
1147 * leaf, we must move one leaf over.
1148 */
1149 ret = btrfs_next_leaf(root, path);
1150 if (ret) {
1151 if (ret >= 1)
1152 ret = -ENOENT;
1153 break;
1154 }
1155 continue;
1156 }
1157
1158 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1159
1160 /*
1161 * Check that we're still looking at an extended ref key for
1162 * this particular objectid. If we have different
1163 * objectid or type then there are no more to be found
1164 * in the tree and we can exit.
1165 */
1166 ret = -ENOENT;
1167 if (found_key.objectid != inode_objectid)
1168 break;
1169 if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1170 break;
1171
1172 ret = 0;
1173 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1174 extref = (struct btrfs_inode_extref *)ptr;
1175 *ret_extref = extref;
1176 if (found_off)
1177 *found_off = found_key.offset;
1178 break;
1179 }
1180
1181 return ret;
1182}
1183
96b5bd77
JS
1184char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1185 u32 name_len, unsigned long name_off,
1186 struct extent_buffer *eb_in, u64 parent,
1187 char *dest, u32 size)
a542ad1b 1188{
a542ad1b
JS
1189 int slot;
1190 u64 next_inum;
1191 int ret;
661bec6b 1192 s64 bytes_left = ((s64)size) - 1;
a542ad1b
JS
1193 struct extent_buffer *eb = eb_in;
1194 struct btrfs_key found_key;
b916a59a 1195 int leave_spinning = path->leave_spinning;
d24bec3a 1196 struct btrfs_inode_ref *iref;
a542ad1b
JS
1197
1198 if (bytes_left >= 0)
1199 dest[bytes_left] = '\0';
1200
b916a59a 1201 path->leave_spinning = 1;
a542ad1b 1202 while (1) {
d24bec3a 1203 bytes_left -= name_len;
a542ad1b
JS
1204 if (bytes_left >= 0)
1205 read_extent_buffer(eb, dest + bytes_left,
d24bec3a 1206 name_off, name_len);
b916a59a
JS
1207 if (eb != eb_in) {
1208 btrfs_tree_read_unlock_blocking(eb);
a542ad1b 1209 free_extent_buffer(eb);
b916a59a 1210 }
a542ad1b 1211 ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
8f24b496
JS
1212 if (ret > 0)
1213 ret = -ENOENT;
a542ad1b
JS
1214 if (ret)
1215 break;
d24bec3a 1216
a542ad1b
JS
1217 next_inum = found_key.offset;
1218
1219 /* regular exit ahead */
1220 if (parent == next_inum)
1221 break;
1222
1223 slot = path->slots[0];
1224 eb = path->nodes[0];
1225 /* make sure we can use eb after releasing the path */
b916a59a 1226 if (eb != eb_in) {
a542ad1b 1227 atomic_inc(&eb->refs);
b916a59a
JS
1228 btrfs_tree_read_lock(eb);
1229 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1230 }
a542ad1b 1231 btrfs_release_path(path);
a542ad1b 1232 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
d24bec3a
MF
1233
1234 name_len = btrfs_inode_ref_name_len(eb, iref);
1235 name_off = (unsigned long)(iref + 1);
1236
a542ad1b
JS
1237 parent = next_inum;
1238 --bytes_left;
1239 if (bytes_left >= 0)
1240 dest[bytes_left] = '/';
1241 }
1242
1243 btrfs_release_path(path);
b916a59a 1244 path->leave_spinning = leave_spinning;
a542ad1b
JS
1245
1246 if (ret)
1247 return ERR_PTR(ret);
1248
1249 return dest + bytes_left;
1250}
1251
d24bec3a
MF
1252/*
1253 * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
1254 * of the path are separated by '/' and the path is guaranteed to be
1255 * 0-terminated. the path is only given within the current file system.
1256 * Therefore, it never starts with a '/'. the caller is responsible to provide
1257 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1258 * the start point of the resulting string is returned. this pointer is within
1259 * dest, normally.
1260 * in case the path buffer would overflow, the pointer is decremented further
1261 * as if output was written to the buffer, though no more output is actually
1262 * generated. that way, the caller can determine how much space would be
1263 * required for the path to fit into the buffer. in that case, the returned
1264 * value will be smaller than dest. callers must check this!
1265 */
1266char *btrfs_iref_to_path(struct btrfs_root *fs_root,
1267 struct btrfs_path *path,
1268 struct btrfs_inode_ref *iref,
1269 struct extent_buffer *eb_in, u64 parent,
1270 char *dest, u32 size)
1271{
96b5bd77
JS
1272 return btrfs_ref_to_path(fs_root, path,
1273 btrfs_inode_ref_name_len(eb_in, iref),
1274 (unsigned long)(iref + 1),
1275 eb_in, parent, dest, size);
d24bec3a
MF
1276}
1277
a542ad1b
JS
1278/*
1279 * this makes the path point to (logical EXTENT_ITEM *)
1280 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1281 * tree blocks and <0 on error.
1282 */
1283int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
69917e43
LB
1284 struct btrfs_path *path, struct btrfs_key *found_key,
1285 u64 *flags_ret)
a542ad1b
JS
1286{
1287 int ret;
1288 u64 flags;
1289 u32 item_size;
1290 struct extent_buffer *eb;
1291 struct btrfs_extent_item *ei;
1292 struct btrfs_key key;
1293
1294 key.type = BTRFS_EXTENT_ITEM_KEY;
1295 key.objectid = logical;
1296 key.offset = (u64)-1;
1297
1298 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1299 if (ret < 0)
1300 return ret;
1301 ret = btrfs_previous_item(fs_info->extent_root, path,
1302 0, BTRFS_EXTENT_ITEM_KEY);
1303 if (ret < 0)
1304 return ret;
1305
1306 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1307 if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
1308 found_key->objectid > logical ||
4692cf58
JS
1309 found_key->objectid + found_key->offset <= logical) {
1310 pr_debug("logical %llu is not within any extent\n",
1311 (unsigned long long)logical);
a542ad1b 1312 return -ENOENT;
4692cf58 1313 }
a542ad1b
JS
1314
1315 eb = path->nodes[0];
1316 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1317 BUG_ON(item_size < sizeof(*ei));
1318
1319 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1320 flags = btrfs_extent_flags(eb, ei);
1321
4692cf58
JS
1322 pr_debug("logical %llu is at position %llu within the extent (%llu "
1323 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1324 (unsigned long long)logical,
1325 (unsigned long long)(logical - found_key->objectid),
1326 (unsigned long long)found_key->objectid,
1327 (unsigned long long)found_key->offset,
1328 (unsigned long long)flags, item_size);
69917e43
LB
1329
1330 WARN_ON(!flags_ret);
1331 if (flags_ret) {
1332 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1333 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1334 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1335 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1336 else
1337 BUG_ON(1);
1338 return 0;
1339 }
a542ad1b
JS
1340
1341 return -EIO;
1342}
1343
1344/*
1345 * helper function to iterate extent inline refs. ptr must point to a 0 value
1346 * for the first call and may be modified. it is used to track state.
1347 * if more refs exist, 0 is returned and the next call to
1348 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1349 * next ref. after the last ref was processed, 1 is returned.
1350 * returns <0 on error
1351 */
1352static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1353 struct btrfs_extent_item *ei, u32 item_size,
1354 struct btrfs_extent_inline_ref **out_eiref,
1355 int *out_type)
1356{
1357 unsigned long end;
1358 u64 flags;
1359 struct btrfs_tree_block_info *info;
1360
1361 if (!*ptr) {
1362 /* first call */
1363 flags = btrfs_extent_flags(eb, ei);
1364 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1365 info = (struct btrfs_tree_block_info *)(ei + 1);
1366 *out_eiref =
1367 (struct btrfs_extent_inline_ref *)(info + 1);
1368 } else {
1369 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1370 }
1371 *ptr = (unsigned long)*out_eiref;
1372 if ((void *)*ptr >= (void *)ei + item_size)
1373 return -ENOENT;
1374 }
1375
1376 end = (unsigned long)ei + item_size;
1377 *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1378 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1379
1380 *ptr += btrfs_extent_inline_ref_size(*out_type);
1381 WARN_ON(*ptr > end);
1382 if (*ptr == end)
1383 return 1; /* last */
1384
1385 return 0;
1386}
1387
1388/*
1389 * reads the tree block backref for an extent. tree level and root are returned
1390 * through out_level and out_root. ptr must point to a 0 value for the first
1391 * call and may be modified (see __get_extent_inline_ref comment).
1392 * returns 0 if data was provided, 1 if there was no more data to provide or
1393 * <0 on error.
1394 */
1395int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1396 struct btrfs_extent_item *ei, u32 item_size,
1397 u64 *out_root, u8 *out_level)
1398{
1399 int ret;
1400 int type;
1401 struct btrfs_tree_block_info *info;
1402 struct btrfs_extent_inline_ref *eiref;
1403
1404 if (*ptr == (unsigned long)-1)
1405 return 1;
1406
1407 while (1) {
1408 ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1409 &eiref, &type);
1410 if (ret < 0)
1411 return ret;
1412
1413 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1414 type == BTRFS_SHARED_BLOCK_REF_KEY)
1415 break;
1416
1417 if (ret == 1)
1418 return 1;
1419 }
1420
1421 /* we can treat both ref types equally here */
1422 info = (struct btrfs_tree_block_info *)(ei + 1);
1423 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1424 *out_level = btrfs_tree_block_level(eb, info);
1425
1426 if (ret == 1)
1427 *ptr = (unsigned long)-1;
1428
1429 return 0;
1430}
1431
976b1908
JS
1432static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1433 u64 root, u64 extent_item_objectid,
4692cf58 1434 iterate_extent_inodes_t *iterate, void *ctx)
a542ad1b 1435{
976b1908 1436 struct extent_inode_elem *eie;
4692cf58 1437 int ret = 0;
4692cf58 1438
976b1908 1439 for (eie = inode_list; eie; eie = eie->next) {
4692cf58 1440 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
976b1908
JS
1441 "root %llu\n", extent_item_objectid,
1442 eie->inum, eie->offset, root);
1443 ret = iterate(eie->inum, eie->offset, root, ctx);
4692cf58 1444 if (ret) {
976b1908
JS
1445 pr_debug("stopping iteration for %llu due to ret=%d\n",
1446 extent_item_objectid, ret);
4692cf58
JS
1447 break;
1448 }
a542ad1b
JS
1449 }
1450
a542ad1b
JS
1451 return ret;
1452}
1453
1454/*
1455 * calls iterate() for every inode that references the extent identified by
4692cf58 1456 * the given parameters.
a542ad1b
JS
1457 * when the iterator function returns a non-zero value, iteration stops.
1458 */
1459int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
4692cf58 1460 u64 extent_item_objectid, u64 extent_item_pos,
7a3ae2f8 1461 int search_commit_root,
a542ad1b
JS
1462 iterate_extent_inodes_t *iterate, void *ctx)
1463{
a542ad1b 1464 int ret;
a542ad1b
JS
1465 struct list_head data_refs = LIST_HEAD_INIT(data_refs);
1466 struct list_head shared_refs = LIST_HEAD_INIT(shared_refs);
4692cf58 1467 struct btrfs_trans_handle *trans;
7a3ae2f8
JS
1468 struct ulist *refs = NULL;
1469 struct ulist *roots = NULL;
4692cf58
JS
1470 struct ulist_node *ref_node = NULL;
1471 struct ulist_node *root_node = NULL;
8445f61c 1472 struct seq_list tree_mod_seq_elem = {};
cd1b413c
JS
1473 struct ulist_iterator ref_uiter;
1474 struct ulist_iterator root_uiter;
a542ad1b 1475
4692cf58
JS
1476 pr_debug("resolving all inodes for extent %llu\n",
1477 extent_item_objectid);
a542ad1b 1478
7a3ae2f8
JS
1479 if (search_commit_root) {
1480 trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT;
1481 } else {
1482 trans = btrfs_join_transaction(fs_info->extent_root);
1483 if (IS_ERR(trans))
1484 return PTR_ERR(trans);
8445f61c 1485 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
7a3ae2f8 1486 }
a542ad1b 1487
4692cf58 1488 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
097b8a7c 1489 tree_mod_seq_elem.seq, &refs,
8445f61c 1490 &extent_item_pos);
4692cf58
JS
1491 if (ret)
1492 goto out;
a542ad1b 1493
cd1b413c
JS
1494 ULIST_ITER_INIT(&ref_uiter);
1495 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
976b1908 1496 ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
097b8a7c 1497 tree_mod_seq_elem.seq, &roots);
4692cf58
JS
1498 if (ret)
1499 break;
cd1b413c
JS
1500 ULIST_ITER_INIT(&root_uiter);
1501 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
976b1908 1502 pr_debug("root %llu references leaf %llu, data list "
34d73f54 1503 "%#llx\n", root_node->val, ref_node->val,
995e01b7
JS
1504 (long long)ref_node->aux);
1505 ret = iterate_leaf_refs((struct extent_inode_elem *)
1506 (uintptr_t)ref_node->aux,
1507 root_node->val,
1508 extent_item_objectid,
1509 iterate, ctx);
4692cf58 1510 }
976b1908 1511 ulist_free(roots);
a542ad1b
JS
1512 }
1513
976b1908 1514 free_leaf_list(refs);
4692cf58 1515out:
7a3ae2f8 1516 if (!search_commit_root) {
8445f61c 1517 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
7a3ae2f8
JS
1518 btrfs_end_transaction(trans, fs_info->extent_root);
1519 }
1520
a542ad1b
JS
1521 return ret;
1522}
1523
1524int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1525 struct btrfs_path *path,
1526 iterate_extent_inodes_t *iterate, void *ctx)
1527{
1528 int ret;
4692cf58 1529 u64 extent_item_pos;
69917e43 1530 u64 flags = 0;
a542ad1b 1531 struct btrfs_key found_key;
7a3ae2f8 1532 int search_commit_root = path->search_commit_root;
a542ad1b 1533
69917e43 1534 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
4692cf58 1535 btrfs_release_path(path);
a542ad1b
JS
1536 if (ret < 0)
1537 return ret;
69917e43 1538 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3627bf45 1539 return -EINVAL;
a542ad1b 1540
4692cf58 1541 extent_item_pos = logical - found_key.objectid;
7a3ae2f8
JS
1542 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1543 extent_item_pos, search_commit_root,
1544 iterate, ctx);
a542ad1b
JS
1545
1546 return ret;
1547}
1548
d24bec3a
MF
1549typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1550 struct extent_buffer *eb, void *ctx);
1551
1552static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1553 struct btrfs_path *path,
1554 iterate_irefs_t *iterate, void *ctx)
a542ad1b 1555{
aefc1eb1 1556 int ret = 0;
a542ad1b
JS
1557 int slot;
1558 u32 cur;
1559 u32 len;
1560 u32 name_len;
1561 u64 parent = 0;
1562 int found = 0;
1563 struct extent_buffer *eb;
1564 struct btrfs_item *item;
1565 struct btrfs_inode_ref *iref;
1566 struct btrfs_key found_key;
1567
aefc1eb1 1568 while (!ret) {
b916a59a 1569 path->leave_spinning = 1;
a542ad1b 1570 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
d24bec3a 1571 &found_key);
a542ad1b
JS
1572 if (ret < 0)
1573 break;
1574 if (ret) {
1575 ret = found ? 0 : -ENOENT;
1576 break;
1577 }
1578 ++found;
1579
1580 parent = found_key.offset;
1581 slot = path->slots[0];
1582 eb = path->nodes[0];
1583 /* make sure we can use eb after releasing the path */
1584 atomic_inc(&eb->refs);
b916a59a
JS
1585 btrfs_tree_read_lock(eb);
1586 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
a542ad1b
JS
1587 btrfs_release_path(path);
1588
1589 item = btrfs_item_nr(eb, slot);
1590 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1591
1592 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1593 name_len = btrfs_inode_ref_name_len(eb, iref);
1594 /* path must be released before calling iterate()! */
4692cf58
JS
1595 pr_debug("following ref at offset %u for inode %llu in "
1596 "tree %llu\n", cur,
1597 (unsigned long long)found_key.objectid,
1598 (unsigned long long)fs_root->objectid);
d24bec3a
MF
1599 ret = iterate(parent, name_len,
1600 (unsigned long)(iref + 1), eb, ctx);
aefc1eb1 1601 if (ret)
a542ad1b 1602 break;
a542ad1b
JS
1603 len = sizeof(*iref) + name_len;
1604 iref = (struct btrfs_inode_ref *)((char *)iref + len);
1605 }
b916a59a 1606 btrfs_tree_read_unlock_blocking(eb);
a542ad1b
JS
1607 free_extent_buffer(eb);
1608 }
1609
1610 btrfs_release_path(path);
1611
1612 return ret;
1613}
1614
d24bec3a
MF
1615static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1616 struct btrfs_path *path,
1617 iterate_irefs_t *iterate, void *ctx)
1618{
1619 int ret;
1620 int slot;
1621 u64 offset = 0;
1622 u64 parent;
1623 int found = 0;
1624 struct extent_buffer *eb;
1625 struct btrfs_inode_extref *extref;
1626 struct extent_buffer *leaf;
1627 u32 item_size;
1628 u32 cur_offset;
1629 unsigned long ptr;
1630
1631 while (1) {
1632 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1633 &offset);
1634 if (ret < 0)
1635 break;
1636 if (ret) {
1637 ret = found ? 0 : -ENOENT;
1638 break;
1639 }
1640 ++found;
1641
1642 slot = path->slots[0];
1643 eb = path->nodes[0];
1644 /* make sure we can use eb after releasing the path */
1645 atomic_inc(&eb->refs);
1646
1647 btrfs_tree_read_lock(eb);
1648 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1649 btrfs_release_path(path);
1650
1651 leaf = path->nodes[0];
1652 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1653 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1654 cur_offset = 0;
1655
1656 while (cur_offset < item_size) {
1657 u32 name_len;
1658
1659 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1660 parent = btrfs_inode_extref_parent(eb, extref);
1661 name_len = btrfs_inode_extref_name_len(eb, extref);
1662 ret = iterate(parent, name_len,
1663 (unsigned long)&extref->name, eb, ctx);
1664 if (ret)
1665 break;
1666
1667 cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1668 cur_offset += sizeof(*extref);
1669 }
1670 btrfs_tree_read_unlock_blocking(eb);
1671 free_extent_buffer(eb);
1672
1673 offset++;
1674 }
1675
1676 btrfs_release_path(path);
1677
1678 return ret;
1679}
1680
1681static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1682 struct btrfs_path *path, iterate_irefs_t *iterate,
1683 void *ctx)
1684{
1685 int ret;
1686 int found_refs = 0;
1687
1688 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1689 if (!ret)
1690 ++found_refs;
1691 else if (ret != -ENOENT)
1692 return ret;
1693
1694 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1695 if (ret == -ENOENT && found_refs)
1696 return 0;
1697
1698 return ret;
1699}
1700
a542ad1b
JS
1701/*
1702 * returns 0 if the path could be dumped (probably truncated)
1703 * returns <0 in case of an error
1704 */
d24bec3a
MF
1705static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1706 struct extent_buffer *eb, void *ctx)
a542ad1b
JS
1707{
1708 struct inode_fs_paths *ipath = ctx;
1709 char *fspath;
1710 char *fspath_min;
1711 int i = ipath->fspath->elem_cnt;
1712 const int s_ptr = sizeof(char *);
1713 u32 bytes_left;
1714
1715 bytes_left = ipath->fspath->bytes_left > s_ptr ?
1716 ipath->fspath->bytes_left - s_ptr : 0;
1717
740c3d22 1718 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
96b5bd77
JS
1719 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1720 name_off, eb, inum, fspath_min, bytes_left);
a542ad1b
JS
1721 if (IS_ERR(fspath))
1722 return PTR_ERR(fspath);
1723
1724 if (fspath > fspath_min) {
745c4d8e 1725 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
a542ad1b
JS
1726 ++ipath->fspath->elem_cnt;
1727 ipath->fspath->bytes_left = fspath - fspath_min;
1728 } else {
1729 ++ipath->fspath->elem_missed;
1730 ipath->fspath->bytes_missing += fspath_min - fspath;
1731 ipath->fspath->bytes_left = 0;
1732 }
1733
1734 return 0;
1735}
1736
1737/*
1738 * this dumps all file system paths to the inode into the ipath struct, provided
1739 * is has been created large enough. each path is zero-terminated and accessed
740c3d22 1740 * from ipath->fspath->val[i].
a542ad1b 1741 * when it returns, there are ipath->fspath->elem_cnt number of paths available
740c3d22 1742 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
a542ad1b
JS
1743 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1744 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1745 * have been needed to return all paths.
1746 */
1747int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1748{
1749 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
d24bec3a 1750 inode_to_path, ipath);
a542ad1b
JS
1751}
1752
a542ad1b
JS
1753struct btrfs_data_container *init_data_container(u32 total_bytes)
1754{
1755 struct btrfs_data_container *data;
1756 size_t alloc_bytes;
1757
1758 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
425d17a2 1759 data = vmalloc(alloc_bytes);
a542ad1b
JS
1760 if (!data)
1761 return ERR_PTR(-ENOMEM);
1762
1763 if (total_bytes >= sizeof(*data)) {
1764 data->bytes_left = total_bytes - sizeof(*data);
1765 data->bytes_missing = 0;
1766 } else {
1767 data->bytes_missing = sizeof(*data) - total_bytes;
1768 data->bytes_left = 0;
1769 }
1770
1771 data->elem_cnt = 0;
1772 data->elem_missed = 0;
1773
1774 return data;
1775}
1776
1777/*
1778 * allocates space to return multiple file system paths for an inode.
1779 * total_bytes to allocate are passed, note that space usable for actual path
1780 * information will be total_bytes - sizeof(struct inode_fs_paths).
1781 * the returned pointer must be freed with free_ipath() in the end.
1782 */
1783struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1784 struct btrfs_path *path)
1785{
1786 struct inode_fs_paths *ifp;
1787 struct btrfs_data_container *fspath;
1788
1789 fspath = init_data_container(total_bytes);
1790 if (IS_ERR(fspath))
1791 return (void *)fspath;
1792
1793 ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1794 if (!ifp) {
1795 kfree(fspath);
1796 return ERR_PTR(-ENOMEM);
1797 }
1798
1799 ifp->btrfs_path = path;
1800 ifp->fspath = fspath;
1801 ifp->fs_root = fs_root;
1802
1803 return ifp;
1804}
1805
1806void free_ipath(struct inode_fs_paths *ipath)
1807{
4735fb28
JJ
1808 if (!ipath)
1809 return;
425d17a2 1810 vfree(ipath->fspath);
a542ad1b
JS
1811 kfree(ipath);
1812}
This page took 0.202373 seconds and 5 git commands to generate.