Btrfs: fix compiler warnings on 32 bit systems
[deliverable/linux.git] / fs / btrfs / backref.c
CommitLineData
a542ad1b
JS
1/*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include "ctree.h"
20#include "disk-io.h"
21#include "backref.h"
8da6d581
JS
22#include "ulist.h"
23#include "transaction.h"
24#include "delayed-ref.h"
a542ad1b 25
8da6d581
JS
26/*
27 * this structure records all encountered refs on the way up to the root
28 */
29struct __prelim_ref {
30 struct list_head list;
31 u64 root_id;
32 struct btrfs_key key;
33 int level;
34 int count;
35 u64 parent;
36 u64 wanted_disk_byte;
37};
38
39static int __add_prelim_ref(struct list_head *head, u64 root_id,
40 struct btrfs_key *key, int level, u64 parent,
41 u64 wanted_disk_byte, int count)
42{
43 struct __prelim_ref *ref;
44
45 /* in case we're adding delayed refs, we're holding the refs spinlock */
46 ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
47 if (!ref)
48 return -ENOMEM;
49
50 ref->root_id = root_id;
51 if (key)
52 ref->key = *key;
53 else
54 memset(&ref->key, 0, sizeof(ref->key));
55
56 ref->level = level;
57 ref->count = count;
58 ref->parent = parent;
59 ref->wanted_disk_byte = wanted_disk_byte;
60 list_add_tail(&ref->list, head);
61
62 return 0;
63}
64
65static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
66 struct ulist *parents,
67 struct extent_buffer *eb, int level,
68 u64 wanted_objectid, u64 wanted_disk_byte)
69{
70 int ret;
71 int slot;
72 struct btrfs_file_extent_item *fi;
73 struct btrfs_key key;
74 u64 disk_byte;
75
76add_parent:
77 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
78 if (ret < 0)
79 return ret;
80
81 if (level != 0)
82 return 0;
83
84 /*
85 * if the current leaf is full with EXTENT_DATA items, we must
86 * check the next one if that holds a reference as well.
87 * ref->count cannot be used to skip this check.
88 * repeat this until we don't find any additional EXTENT_DATA items.
89 */
90 while (1) {
91 ret = btrfs_next_leaf(root, path);
92 if (ret < 0)
93 return ret;
94 if (ret)
95 return 0;
96
97 eb = path->nodes[0];
98 for (slot = 0; slot < btrfs_header_nritems(eb); ++slot) {
99 btrfs_item_key_to_cpu(eb, &key, slot);
100 if (key.objectid != wanted_objectid ||
101 key.type != BTRFS_EXTENT_DATA_KEY)
102 return 0;
103 fi = btrfs_item_ptr(eb, slot,
104 struct btrfs_file_extent_item);
105 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
106 if (disk_byte == wanted_disk_byte)
107 goto add_parent;
108 }
109 }
110
111 return 0;
112}
113
114/*
115 * resolve an indirect backref in the form (root_id, key, level)
116 * to a logical address
117 */
118static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
119 struct __prelim_ref *ref,
120 struct ulist *parents)
121{
122 struct btrfs_path *path;
123 struct btrfs_root *root;
124 struct btrfs_key root_key;
125 struct btrfs_key key = {0};
126 struct extent_buffer *eb;
127 int ret = 0;
128 int root_level;
129 int level = ref->level;
130
131 path = btrfs_alloc_path();
132 if (!path)
133 return -ENOMEM;
134
135 root_key.objectid = ref->root_id;
136 root_key.type = BTRFS_ROOT_ITEM_KEY;
137 root_key.offset = (u64)-1;
138 root = btrfs_read_fs_root_no_name(fs_info, &root_key);
139 if (IS_ERR(root)) {
140 ret = PTR_ERR(root);
141 goto out;
142 }
143
144 rcu_read_lock();
145 root_level = btrfs_header_level(root->node);
146 rcu_read_unlock();
147
148 if (root_level + 1 == level)
149 goto out;
150
151 path->lowest_level = level;
152 ret = btrfs_search_slot(NULL, root, &ref->key, path, 0, 0);
153 pr_debug("search slot in root %llu (level %d, ref count %d) returned "
154 "%d for key (%llu %u %llu)\n",
155 (unsigned long long)ref->root_id, level, ref->count, ret,
156 (unsigned long long)ref->key.objectid, ref->key.type,
157 (unsigned long long)ref->key.offset);
158 if (ret < 0)
159 goto out;
160
161 eb = path->nodes[level];
162 if (!eb) {
163 WARN_ON(1);
164 ret = 1;
165 goto out;
166 }
167
168 if (level == 0) {
169 if (ret == 1 && path->slots[0] >= btrfs_header_nritems(eb)) {
170 ret = btrfs_next_leaf(root, path);
171 if (ret)
172 goto out;
173 eb = path->nodes[0];
174 }
175
176 btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
177 }
178
179 /* the last two parameters will only be used for level == 0 */
180 ret = add_all_parents(root, path, parents, eb, level, key.objectid,
181 ref->wanted_disk_byte);
182out:
183 btrfs_free_path(path);
184 return ret;
185}
186
187/*
188 * resolve all indirect backrefs from the list
189 */
190static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
191 struct list_head *head)
192{
193 int err;
194 int ret = 0;
195 struct __prelim_ref *ref;
196 struct __prelim_ref *ref_safe;
197 struct __prelim_ref *new_ref;
198 struct ulist *parents;
199 struct ulist_node *node;
200
201 parents = ulist_alloc(GFP_NOFS);
202 if (!parents)
203 return -ENOMEM;
204
205 /*
206 * _safe allows us to insert directly after the current item without
207 * iterating over the newly inserted items.
208 * we're also allowed to re-assign ref during iteration.
209 */
210 list_for_each_entry_safe(ref, ref_safe, head, list) {
211 if (ref->parent) /* already direct */
212 continue;
213 if (ref->count == 0)
214 continue;
215 err = __resolve_indirect_ref(fs_info, ref, parents);
216 if (err) {
217 if (ret == 0)
218 ret = err;
219 continue;
220 }
221
222 /* we put the first parent into the ref at hand */
223 node = ulist_next(parents, NULL);
224 ref->parent = node ? node->val : 0;
225
226 /* additional parents require new refs being added here */
227 while ((node = ulist_next(parents, node))) {
228 new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
229 if (!new_ref) {
230 ret = -ENOMEM;
231 break;
232 }
233 memcpy(new_ref, ref, sizeof(*ref));
234 new_ref->parent = node->val;
235 list_add(&new_ref->list, &ref->list);
236 }
237 ulist_reinit(parents);
238 }
239
240 ulist_free(parents);
241 return ret;
242}
243
244/*
245 * merge two lists of backrefs and adjust counts accordingly
246 *
247 * mode = 1: merge identical keys, if key is set
248 * mode = 2: merge identical parents
249 */
250static int __merge_refs(struct list_head *head, int mode)
251{
252 struct list_head *pos1;
253
254 list_for_each(pos1, head) {
255 struct list_head *n2;
256 struct list_head *pos2;
257 struct __prelim_ref *ref1;
258
259 ref1 = list_entry(pos1, struct __prelim_ref, list);
260
261 if (mode == 1 && ref1->key.type == 0)
262 continue;
263 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
264 pos2 = n2, n2 = pos2->next) {
265 struct __prelim_ref *ref2;
266
267 ref2 = list_entry(pos2, struct __prelim_ref, list);
268
269 if (mode == 1) {
270 if (memcmp(&ref1->key, &ref2->key,
271 sizeof(ref1->key)) ||
272 ref1->level != ref2->level ||
273 ref1->root_id != ref2->root_id)
274 continue;
275 ref1->count += ref2->count;
276 } else {
277 if (ref1->parent != ref2->parent)
278 continue;
279 ref1->count += ref2->count;
280 }
281 list_del(&ref2->list);
282 kfree(ref2);
283 }
284
285 }
286 return 0;
287}
288
289/*
290 * add all currently queued delayed refs from this head whose seq nr is
291 * smaller or equal that seq to the list
292 */
293static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
294 struct btrfs_key *info_key,
295 struct list_head *prefs)
296{
297 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
298 struct rb_node *n = &head->node.rb_node;
299 int sgn;
b1375d64 300 int ret = 0;
8da6d581
JS
301
302 if (extent_op && extent_op->update_key)
303 btrfs_disk_key_to_cpu(info_key, &extent_op->key);
304
305 while ((n = rb_prev(n))) {
306 struct btrfs_delayed_ref_node *node;
307 node = rb_entry(n, struct btrfs_delayed_ref_node,
308 rb_node);
309 if (node->bytenr != head->node.bytenr)
310 break;
311 WARN_ON(node->is_head);
312
313 if (node->seq > seq)
314 continue;
315
316 switch (node->action) {
317 case BTRFS_ADD_DELAYED_EXTENT:
318 case BTRFS_UPDATE_DELAYED_HEAD:
319 WARN_ON(1);
320 continue;
321 case BTRFS_ADD_DELAYED_REF:
322 sgn = 1;
323 break;
324 case BTRFS_DROP_DELAYED_REF:
325 sgn = -1;
326 break;
327 default:
328 BUG_ON(1);
329 }
330 switch (node->type) {
331 case BTRFS_TREE_BLOCK_REF_KEY: {
332 struct btrfs_delayed_tree_ref *ref;
333
334 ref = btrfs_delayed_node_to_tree_ref(node);
335 ret = __add_prelim_ref(prefs, ref->root, info_key,
336 ref->level + 1, 0, node->bytenr,
337 node->ref_mod * sgn);
338 break;
339 }
340 case BTRFS_SHARED_BLOCK_REF_KEY: {
341 struct btrfs_delayed_tree_ref *ref;
342
343 ref = btrfs_delayed_node_to_tree_ref(node);
344 ret = __add_prelim_ref(prefs, ref->root, info_key,
345 ref->level + 1, ref->parent,
346 node->bytenr,
347 node->ref_mod * sgn);
348 break;
349 }
350 case BTRFS_EXTENT_DATA_REF_KEY: {
351 struct btrfs_delayed_data_ref *ref;
352 struct btrfs_key key;
353
354 ref = btrfs_delayed_node_to_data_ref(node);
355
356 key.objectid = ref->objectid;
357 key.type = BTRFS_EXTENT_DATA_KEY;
358 key.offset = ref->offset;
359 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
360 node->bytenr,
361 node->ref_mod * sgn);
362 break;
363 }
364 case BTRFS_SHARED_DATA_REF_KEY: {
365 struct btrfs_delayed_data_ref *ref;
366 struct btrfs_key key;
367
368 ref = btrfs_delayed_node_to_data_ref(node);
369
370 key.objectid = ref->objectid;
371 key.type = BTRFS_EXTENT_DATA_KEY;
372 key.offset = ref->offset;
373 ret = __add_prelim_ref(prefs, ref->root, &key, 0,
374 ref->parent, node->bytenr,
375 node->ref_mod * sgn);
376 break;
377 }
378 default:
379 WARN_ON(1);
380 }
381 BUG_ON(ret);
382 }
383
384 return 0;
385}
386
387/*
388 * add all inline backrefs for bytenr to the list
389 */
390static int __add_inline_refs(struct btrfs_fs_info *fs_info,
391 struct btrfs_path *path, u64 bytenr,
392 struct btrfs_key *info_key, int *info_level,
393 struct list_head *prefs)
394{
b1375d64 395 int ret = 0;
8da6d581
JS
396 int slot;
397 struct extent_buffer *leaf;
398 struct btrfs_key key;
399 unsigned long ptr;
400 unsigned long end;
401 struct btrfs_extent_item *ei;
402 u64 flags;
403 u64 item_size;
404
405 /*
406 * enumerate all inline refs
407 */
408 leaf = path->nodes[0];
409 slot = path->slots[0] - 1;
410
411 item_size = btrfs_item_size_nr(leaf, slot);
412 BUG_ON(item_size < sizeof(*ei));
413
414 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
415 flags = btrfs_extent_flags(leaf, ei);
416
417 ptr = (unsigned long)(ei + 1);
418 end = (unsigned long)ei + item_size;
419
420 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
421 struct btrfs_tree_block_info *info;
422 struct btrfs_disk_key disk_key;
423
424 info = (struct btrfs_tree_block_info *)ptr;
425 *info_level = btrfs_tree_block_level(leaf, info);
426 btrfs_tree_block_key(leaf, info, &disk_key);
427 btrfs_disk_key_to_cpu(info_key, &disk_key);
428 ptr += sizeof(struct btrfs_tree_block_info);
429 BUG_ON(ptr > end);
430 } else {
431 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
432 }
433
434 while (ptr < end) {
435 struct btrfs_extent_inline_ref *iref;
436 u64 offset;
437 int type;
438
439 iref = (struct btrfs_extent_inline_ref *)ptr;
440 type = btrfs_extent_inline_ref_type(leaf, iref);
441 offset = btrfs_extent_inline_ref_offset(leaf, iref);
442
443 switch (type) {
444 case BTRFS_SHARED_BLOCK_REF_KEY:
445 ret = __add_prelim_ref(prefs, 0, info_key,
446 *info_level + 1, offset,
447 bytenr, 1);
448 break;
449 case BTRFS_SHARED_DATA_REF_KEY: {
450 struct btrfs_shared_data_ref *sdref;
451 int count;
452
453 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
454 count = btrfs_shared_data_ref_count(leaf, sdref);
455 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
456 bytenr, count);
457 break;
458 }
459 case BTRFS_TREE_BLOCK_REF_KEY:
460 ret = __add_prelim_ref(prefs, offset, info_key,
461 *info_level + 1, 0, bytenr, 1);
462 break;
463 case BTRFS_EXTENT_DATA_REF_KEY: {
464 struct btrfs_extent_data_ref *dref;
465 int count;
466 u64 root;
467
468 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
469 count = btrfs_extent_data_ref_count(leaf, dref);
470 key.objectid = btrfs_extent_data_ref_objectid(leaf,
471 dref);
472 key.type = BTRFS_EXTENT_DATA_KEY;
473 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
474 root = btrfs_extent_data_ref_root(leaf, dref);
475 ret = __add_prelim_ref(prefs, root, &key, 0, 0, bytenr,
476 count);
477 break;
478 }
479 default:
480 WARN_ON(1);
481 }
482 BUG_ON(ret);
483 ptr += btrfs_extent_inline_ref_size(type);
484 }
485
486 return 0;
487}
488
489/*
490 * add all non-inline backrefs for bytenr to the list
491 */
492static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
493 struct btrfs_path *path, u64 bytenr,
494 struct btrfs_key *info_key, int info_level,
495 struct list_head *prefs)
496{
497 struct btrfs_root *extent_root = fs_info->extent_root;
498 int ret;
499 int slot;
500 struct extent_buffer *leaf;
501 struct btrfs_key key;
502
503 while (1) {
504 ret = btrfs_next_item(extent_root, path);
505 if (ret < 0)
506 break;
507 if (ret) {
508 ret = 0;
509 break;
510 }
511
512 slot = path->slots[0];
513 leaf = path->nodes[0];
514 btrfs_item_key_to_cpu(leaf, &key, slot);
515
516 if (key.objectid != bytenr)
517 break;
518 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
519 continue;
520 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
521 break;
522
523 switch (key.type) {
524 case BTRFS_SHARED_BLOCK_REF_KEY:
525 ret = __add_prelim_ref(prefs, 0, info_key,
526 info_level + 1, key.offset,
527 bytenr, 1);
528 break;
529 case BTRFS_SHARED_DATA_REF_KEY: {
530 struct btrfs_shared_data_ref *sdref;
531 int count;
532
533 sdref = btrfs_item_ptr(leaf, slot,
534 struct btrfs_shared_data_ref);
535 count = btrfs_shared_data_ref_count(leaf, sdref);
536 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
537 bytenr, count);
538 break;
539 }
540 case BTRFS_TREE_BLOCK_REF_KEY:
541 ret = __add_prelim_ref(prefs, key.offset, info_key,
542 info_level + 1, 0, bytenr, 1);
543 break;
544 case BTRFS_EXTENT_DATA_REF_KEY: {
545 struct btrfs_extent_data_ref *dref;
546 int count;
547 u64 root;
548
549 dref = btrfs_item_ptr(leaf, slot,
550 struct btrfs_extent_data_ref);
551 count = btrfs_extent_data_ref_count(leaf, dref);
552 key.objectid = btrfs_extent_data_ref_objectid(leaf,
553 dref);
554 key.type = BTRFS_EXTENT_DATA_KEY;
555 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
556 root = btrfs_extent_data_ref_root(leaf, dref);
557 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
558 bytenr, count);
559 break;
560 }
561 default:
562 WARN_ON(1);
563 }
564 BUG_ON(ret);
565 }
566
567 return ret;
568}
569
570/*
571 * this adds all existing backrefs (inline backrefs, backrefs and delayed
572 * refs) for the given bytenr to the refs list, merges duplicates and resolves
573 * indirect refs to their parent bytenr.
574 * When roots are found, they're added to the roots list
575 *
576 * FIXME some caching might speed things up
577 */
578static int find_parent_nodes(struct btrfs_trans_handle *trans,
579 struct btrfs_fs_info *fs_info, u64 bytenr,
580 u64 seq, struct ulist *refs, struct ulist *roots)
581{
582 struct btrfs_key key;
583 struct btrfs_path *path;
584 struct btrfs_key info_key = { 0 };
585 struct btrfs_delayed_ref_root *delayed_refs = NULL;
586 struct btrfs_delayed_ref_head *head = NULL;
587 int info_level = 0;
588 int ret;
589 struct list_head prefs_delayed;
590 struct list_head prefs;
591 struct __prelim_ref *ref;
592
593 INIT_LIST_HEAD(&prefs);
594 INIT_LIST_HEAD(&prefs_delayed);
595
596 key.objectid = bytenr;
597 key.type = BTRFS_EXTENT_ITEM_KEY;
598 key.offset = (u64)-1;
599
600 path = btrfs_alloc_path();
601 if (!path)
602 return -ENOMEM;
603
604 /*
605 * grab both a lock on the path and a lock on the delayed ref head.
606 * We need both to get a consistent picture of how the refs look
607 * at a specified point in time
608 */
609again:
610 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
611 if (ret < 0)
612 goto out;
613 BUG_ON(ret == 0);
614
615 /*
616 * look if there are updates for this ref queued and lock the head
617 */
618 delayed_refs = &trans->transaction->delayed_refs;
619 spin_lock(&delayed_refs->lock);
620 head = btrfs_find_delayed_ref_head(trans, bytenr);
621 if (head) {
622 if (!mutex_trylock(&head->mutex)) {
623 atomic_inc(&head->node.refs);
624 spin_unlock(&delayed_refs->lock);
625
626 btrfs_release_path(path);
627
628 /*
629 * Mutex was contended, block until it's
630 * released and try again
631 */
632 mutex_lock(&head->mutex);
633 mutex_unlock(&head->mutex);
634 btrfs_put_delayed_ref(&head->node);
635 goto again;
636 }
637 ret = __add_delayed_refs(head, seq, &info_key, &prefs_delayed);
638 if (ret)
639 goto out;
640 }
641 spin_unlock(&delayed_refs->lock);
642
643 if (path->slots[0]) {
644 struct extent_buffer *leaf;
645 int slot;
646
647 leaf = path->nodes[0];
648 slot = path->slots[0] - 1;
649 btrfs_item_key_to_cpu(leaf, &key, slot);
650 if (key.objectid == bytenr &&
651 key.type == BTRFS_EXTENT_ITEM_KEY) {
652 ret = __add_inline_refs(fs_info, path, bytenr,
653 &info_key, &info_level, &prefs);
654 if (ret)
655 goto out;
656 ret = __add_keyed_refs(fs_info, path, bytenr, &info_key,
657 info_level, &prefs);
658 if (ret)
659 goto out;
660 }
661 }
662 btrfs_release_path(path);
663
664 /*
665 * when adding the delayed refs above, the info_key might not have
666 * been known yet. Go over the list and replace the missing keys
667 */
668 list_for_each_entry(ref, &prefs_delayed, list) {
669 if ((ref->key.offset | ref->key.type | ref->key.objectid) == 0)
670 memcpy(&ref->key, &info_key, sizeof(ref->key));
671 }
672 list_splice_init(&prefs_delayed, &prefs);
673
674 ret = __merge_refs(&prefs, 1);
675 if (ret)
676 goto out;
677
678 ret = __resolve_indirect_refs(fs_info, &prefs);
679 if (ret)
680 goto out;
681
682 ret = __merge_refs(&prefs, 2);
683 if (ret)
684 goto out;
685
686 while (!list_empty(&prefs)) {
687 ref = list_first_entry(&prefs, struct __prelim_ref, list);
688 list_del(&ref->list);
689 if (ref->count < 0)
690 WARN_ON(1);
691 if (ref->count && ref->root_id && ref->parent == 0) {
692 /* no parent == root of tree */
693 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
694 BUG_ON(ret < 0);
695 }
696 if (ref->count && ref->parent) {
697 ret = ulist_add(refs, ref->parent, 0, GFP_NOFS);
698 BUG_ON(ret < 0);
699 }
700 kfree(ref);
701 }
702
703out:
704 if (head)
705 mutex_unlock(&head->mutex);
706 btrfs_free_path(path);
707 while (!list_empty(&prefs)) {
708 ref = list_first_entry(&prefs, struct __prelim_ref, list);
709 list_del(&ref->list);
710 kfree(ref);
711 }
712 while (!list_empty(&prefs_delayed)) {
713 ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
714 list);
715 list_del(&ref->list);
716 kfree(ref);
717 }
718
719 return ret;
720}
721
722/*
723 * Finds all leafs with a reference to the specified combination of bytenr and
724 * offset. key_list_head will point to a list of corresponding keys (caller must
725 * free each list element). The leafs will be stored in the leafs ulist, which
726 * must be freed with ulist_free.
727 *
728 * returns 0 on success, <0 on error
729 */
730static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
731 struct btrfs_fs_info *fs_info, u64 bytenr,
732 u64 num_bytes, u64 seq, struct ulist **leafs)
733{
734 struct ulist *tmp;
735 int ret;
736
737 tmp = ulist_alloc(GFP_NOFS);
738 if (!tmp)
739 return -ENOMEM;
740 *leafs = ulist_alloc(GFP_NOFS);
741 if (!*leafs) {
742 ulist_free(tmp);
743 return -ENOMEM;
744 }
745
746 ret = find_parent_nodes(trans, fs_info, bytenr, seq, *leafs, tmp);
747 ulist_free(tmp);
748
749 if (ret < 0 && ret != -ENOENT) {
750 ulist_free(*leafs);
751 return ret;
752 }
753
754 return 0;
755}
756
757/*
758 * walk all backrefs for a given extent to find all roots that reference this
759 * extent. Walking a backref means finding all extents that reference this
760 * extent and in turn walk the backrefs of those, too. Naturally this is a
761 * recursive process, but here it is implemented in an iterative fashion: We
762 * find all referencing extents for the extent in question and put them on a
763 * list. In turn, we find all referencing extents for those, further appending
764 * to the list. The way we iterate the list allows adding more elements after
765 * the current while iterating. The process stops when we reach the end of the
766 * list. Found roots are added to the roots list.
767 *
768 * returns 0 on success, < 0 on error.
769 */
770int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
771 struct btrfs_fs_info *fs_info, u64 bytenr,
772 u64 num_bytes, u64 seq, struct ulist **roots)
773{
774 struct ulist *tmp;
775 struct ulist_node *node = NULL;
776 int ret;
777
778 tmp = ulist_alloc(GFP_NOFS);
779 if (!tmp)
780 return -ENOMEM;
781 *roots = ulist_alloc(GFP_NOFS);
782 if (!*roots) {
783 ulist_free(tmp);
784 return -ENOMEM;
785 }
786
787 while (1) {
788 ret = find_parent_nodes(trans, fs_info, bytenr, seq,
789 tmp, *roots);
790 if (ret < 0 && ret != -ENOENT) {
791 ulist_free(tmp);
792 ulist_free(*roots);
793 return ret;
794 }
795 node = ulist_next(tmp, node);
796 if (!node)
797 break;
798 bytenr = node->val;
799 }
800
801 ulist_free(tmp);
802 return 0;
803}
804
805
a542ad1b
JS
806static int __inode_info(u64 inum, u64 ioff, u8 key_type,
807 struct btrfs_root *fs_root, struct btrfs_path *path,
808 struct btrfs_key *found_key)
809{
810 int ret;
811 struct btrfs_key key;
812 struct extent_buffer *eb;
813
814 key.type = key_type;
815 key.objectid = inum;
816 key.offset = ioff;
817
818 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
819 if (ret < 0)
820 return ret;
821
822 eb = path->nodes[0];
823 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
824 ret = btrfs_next_leaf(fs_root, path);
825 if (ret)
826 return ret;
827 eb = path->nodes[0];
828 }
829
830 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
831 if (found_key->type != key.type || found_key->objectid != key.objectid)
832 return 1;
833
834 return 0;
835}
836
837/*
838 * this makes the path point to (inum INODE_ITEM ioff)
839 */
840int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
841 struct btrfs_path *path)
842{
843 struct btrfs_key key;
844 return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
845 &key);
846}
847
848static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
849 struct btrfs_path *path,
850 struct btrfs_key *found_key)
851{
852 return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
853 found_key);
854}
855
856/*
857 * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
858 * of the path are separated by '/' and the path is guaranteed to be
859 * 0-terminated. the path is only given within the current file system.
860 * Therefore, it never starts with a '/'. the caller is responsible to provide
861 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
862 * the start point of the resulting string is returned. this pointer is within
863 * dest, normally.
864 * in case the path buffer would overflow, the pointer is decremented further
865 * as if output was written to the buffer, though no more output is actually
866 * generated. that way, the caller can determine how much space would be
867 * required for the path to fit into the buffer. in that case, the returned
868 * value will be smaller than dest. callers must check this!
869 */
870static char *iref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
871 struct btrfs_inode_ref *iref,
872 struct extent_buffer *eb_in, u64 parent,
873 char *dest, u32 size)
874{
875 u32 len;
876 int slot;
877 u64 next_inum;
878 int ret;
879 s64 bytes_left = size - 1;
880 struct extent_buffer *eb = eb_in;
881 struct btrfs_key found_key;
882
883 if (bytes_left >= 0)
884 dest[bytes_left] = '\0';
885
886 while (1) {
887 len = btrfs_inode_ref_name_len(eb, iref);
888 bytes_left -= len;
889 if (bytes_left >= 0)
890 read_extent_buffer(eb, dest + bytes_left,
891 (unsigned long)(iref + 1), len);
892 if (eb != eb_in)
893 free_extent_buffer(eb);
894 ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
8f24b496
JS
895 if (ret > 0)
896 ret = -ENOENT;
a542ad1b
JS
897 if (ret)
898 break;
899 next_inum = found_key.offset;
900
901 /* regular exit ahead */
902 if (parent == next_inum)
903 break;
904
905 slot = path->slots[0];
906 eb = path->nodes[0];
907 /* make sure we can use eb after releasing the path */
908 if (eb != eb_in)
909 atomic_inc(&eb->refs);
910 btrfs_release_path(path);
911
912 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
913 parent = next_inum;
914 --bytes_left;
915 if (bytes_left >= 0)
916 dest[bytes_left] = '/';
917 }
918
919 btrfs_release_path(path);
920
921 if (ret)
922 return ERR_PTR(ret);
923
924 return dest + bytes_left;
925}
926
927/*
928 * this makes the path point to (logical EXTENT_ITEM *)
929 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
930 * tree blocks and <0 on error.
931 */
932int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
933 struct btrfs_path *path, struct btrfs_key *found_key)
934{
935 int ret;
936 u64 flags;
937 u32 item_size;
938 struct extent_buffer *eb;
939 struct btrfs_extent_item *ei;
940 struct btrfs_key key;
941
942 key.type = BTRFS_EXTENT_ITEM_KEY;
943 key.objectid = logical;
944 key.offset = (u64)-1;
945
946 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
947 if (ret < 0)
948 return ret;
949 ret = btrfs_previous_item(fs_info->extent_root, path,
950 0, BTRFS_EXTENT_ITEM_KEY);
951 if (ret < 0)
952 return ret;
953
954 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
955 if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
956 found_key->objectid > logical ||
4692cf58
JS
957 found_key->objectid + found_key->offset <= logical) {
958 pr_debug("logical %llu is not within any extent\n",
959 (unsigned long long)logical);
a542ad1b 960 return -ENOENT;
4692cf58 961 }
a542ad1b
JS
962
963 eb = path->nodes[0];
964 item_size = btrfs_item_size_nr(eb, path->slots[0]);
965 BUG_ON(item_size < sizeof(*ei));
966
967 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
968 flags = btrfs_extent_flags(eb, ei);
969
4692cf58
JS
970 pr_debug("logical %llu is at position %llu within the extent (%llu "
971 "EXTENT_ITEM %llu) flags %#llx size %u\n",
972 (unsigned long long)logical,
973 (unsigned long long)(logical - found_key->objectid),
974 (unsigned long long)found_key->objectid,
975 (unsigned long long)found_key->offset,
976 (unsigned long long)flags, item_size);
a542ad1b
JS
977 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
978 return BTRFS_EXTENT_FLAG_TREE_BLOCK;
979 if (flags & BTRFS_EXTENT_FLAG_DATA)
980 return BTRFS_EXTENT_FLAG_DATA;
981
982 return -EIO;
983}
984
985/*
986 * helper function to iterate extent inline refs. ptr must point to a 0 value
987 * for the first call and may be modified. it is used to track state.
988 * if more refs exist, 0 is returned and the next call to
989 * __get_extent_inline_ref must pass the modified ptr parameter to get the
990 * next ref. after the last ref was processed, 1 is returned.
991 * returns <0 on error
992 */
993static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
994 struct btrfs_extent_item *ei, u32 item_size,
995 struct btrfs_extent_inline_ref **out_eiref,
996 int *out_type)
997{
998 unsigned long end;
999 u64 flags;
1000 struct btrfs_tree_block_info *info;
1001
1002 if (!*ptr) {
1003 /* first call */
1004 flags = btrfs_extent_flags(eb, ei);
1005 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1006 info = (struct btrfs_tree_block_info *)(ei + 1);
1007 *out_eiref =
1008 (struct btrfs_extent_inline_ref *)(info + 1);
1009 } else {
1010 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1011 }
1012 *ptr = (unsigned long)*out_eiref;
1013 if ((void *)*ptr >= (void *)ei + item_size)
1014 return -ENOENT;
1015 }
1016
1017 end = (unsigned long)ei + item_size;
1018 *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1019 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1020
1021 *ptr += btrfs_extent_inline_ref_size(*out_type);
1022 WARN_ON(*ptr > end);
1023 if (*ptr == end)
1024 return 1; /* last */
1025
1026 return 0;
1027}
1028
1029/*
1030 * reads the tree block backref for an extent. tree level and root are returned
1031 * through out_level and out_root. ptr must point to a 0 value for the first
1032 * call and may be modified (see __get_extent_inline_ref comment).
1033 * returns 0 if data was provided, 1 if there was no more data to provide or
1034 * <0 on error.
1035 */
1036int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1037 struct btrfs_extent_item *ei, u32 item_size,
1038 u64 *out_root, u8 *out_level)
1039{
1040 int ret;
1041 int type;
1042 struct btrfs_tree_block_info *info;
1043 struct btrfs_extent_inline_ref *eiref;
1044
1045 if (*ptr == (unsigned long)-1)
1046 return 1;
1047
1048 while (1) {
1049 ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1050 &eiref, &type);
1051 if (ret < 0)
1052 return ret;
1053
1054 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1055 type == BTRFS_SHARED_BLOCK_REF_KEY)
1056 break;
1057
1058 if (ret == 1)
1059 return 1;
1060 }
1061
1062 /* we can treat both ref types equally here */
1063 info = (struct btrfs_tree_block_info *)(ei + 1);
1064 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1065 *out_level = btrfs_tree_block_level(eb, info);
1066
1067 if (ret == 1)
1068 *ptr = (unsigned long)-1;
1069
1070 return 0;
1071}
1072
4692cf58
JS
1073static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1074 struct btrfs_path *path, u64 logical,
1075 u64 orig_extent_item_objectid,
1076 u64 extent_item_pos, u64 root,
1077 iterate_extent_inodes_t *iterate, void *ctx)
a542ad1b
JS
1078{
1079 u64 disk_byte;
1080 struct btrfs_key key;
1081 struct btrfs_file_extent_item *fi;
1082 struct extent_buffer *eb;
1083 int slot;
1084 int nritems;
4692cf58
JS
1085 int ret = 0;
1086 int extent_type;
1087 u64 data_offset;
1088 u64 data_len;
a542ad1b
JS
1089
1090 eb = read_tree_block(fs_info->tree_root, logical,
1091 fs_info->tree_root->leafsize, 0);
1092 if (!eb)
1093 return -EIO;
1094
1095 /*
1096 * from the shared data ref, we only have the leaf but we need
1097 * the key. thus, we must look into all items and see that we
1098 * find one (some) with a reference to our extent item.
1099 */
1100 nritems = btrfs_header_nritems(eb);
1101 for (slot = 0; slot < nritems; ++slot) {
1102 btrfs_item_key_to_cpu(eb, &key, slot);
1103 if (key.type != BTRFS_EXTENT_DATA_KEY)
1104 continue;
1105 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4692cf58
JS
1106 extent_type = btrfs_file_extent_type(eb, fi);
1107 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1108 continue;
1109 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
a542ad1b 1110 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
4692cf58
JS
1111 if (disk_byte != orig_extent_item_objectid)
1112 continue;
a542ad1b 1113
4692cf58
JS
1114 data_offset = btrfs_file_extent_offset(eb, fi);
1115 data_len = btrfs_file_extent_num_bytes(eb, fi);
1116
1117 if (extent_item_pos < data_offset ||
1118 extent_item_pos >= data_offset + data_len)
1119 continue;
1120
1121 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1122 "root %llu\n", orig_extent_item_objectid,
1123 key.objectid, key.offset, root);
1124 ret = iterate(key.objectid,
1125 key.offset + (extent_item_pos - data_offset),
1126 root, ctx);
1127 if (ret) {
1128 pr_debug("stopping iteration because ret=%d\n", ret);
1129 break;
1130 }
a542ad1b
JS
1131 }
1132
1133 free_extent_buffer(eb);
4692cf58 1134
a542ad1b
JS
1135 return ret;
1136}
1137
1138/*
1139 * calls iterate() for every inode that references the extent identified by
4692cf58 1140 * the given parameters.
a542ad1b 1141 * when the iterator function returns a non-zero value, iteration stops.
4692cf58 1142 * path is guaranteed to be in released state when iterate() is called.
a542ad1b
JS
1143 */
1144int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1145 struct btrfs_path *path,
4692cf58 1146 u64 extent_item_objectid, u64 extent_item_pos,
a542ad1b
JS
1147 iterate_extent_inodes_t *iterate, void *ctx)
1148{
a542ad1b 1149 int ret;
a542ad1b
JS
1150 struct list_head data_refs = LIST_HEAD_INIT(data_refs);
1151 struct list_head shared_refs = LIST_HEAD_INIT(shared_refs);
4692cf58
JS
1152 struct btrfs_trans_handle *trans;
1153 struct ulist *refs;
1154 struct ulist *roots;
1155 struct ulist_node *ref_node = NULL;
1156 struct ulist_node *root_node = NULL;
1157 struct seq_list seq_elem;
1158 struct btrfs_delayed_ref_root *delayed_refs;
a542ad1b 1159
4692cf58
JS
1160 trans = btrfs_join_transaction(fs_info->extent_root);
1161 if (IS_ERR(trans))
1162 return PTR_ERR(trans);
a542ad1b 1163
4692cf58
JS
1164 pr_debug("resolving all inodes for extent %llu\n",
1165 extent_item_objectid);
a542ad1b 1166
4692cf58
JS
1167 delayed_refs = &trans->transaction->delayed_refs;
1168 spin_lock(&delayed_refs->lock);
1169 btrfs_get_delayed_seq(delayed_refs, &seq_elem);
1170 spin_unlock(&delayed_refs->lock);
a542ad1b 1171
4692cf58
JS
1172 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1173 extent_item_pos, seq_elem.seq,
1174 &refs);
a542ad1b 1175
4692cf58
JS
1176 if (ret)
1177 goto out;
a542ad1b 1178
4692cf58
JS
1179 while (!ret && (ref_node = ulist_next(refs, ref_node))) {
1180 ret = btrfs_find_all_roots(trans, fs_info, ref_node->val, -1,
1181 seq_elem.seq, &roots);
1182 if (ret)
1183 break;
1184 while (!ret && (root_node = ulist_next(roots, root_node))) {
1185 pr_debug("root %llu references leaf %llu\n",
1186 root_node->val, ref_node->val);
1187 ret = iterate_leaf_refs(fs_info, path, ref_node->val,
1188 extent_item_objectid,
1189 extent_item_pos, root_node->val,
1190 iterate, ctx);
1191 }
a542ad1b
JS
1192 }
1193
4692cf58
JS
1194 ulist_free(refs);
1195 ulist_free(roots);
1196out:
1197 btrfs_put_delayed_seq(delayed_refs, &seq_elem);
1198 btrfs_end_transaction(trans, fs_info->extent_root);
a542ad1b
JS
1199 return ret;
1200}
1201
1202int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1203 struct btrfs_path *path,
1204 iterate_extent_inodes_t *iterate, void *ctx)
1205{
1206 int ret;
4692cf58 1207 u64 extent_item_pos;
a542ad1b
JS
1208 struct btrfs_key found_key;
1209
1210 ret = extent_from_logical(fs_info, logical, path,
1211 &found_key);
4692cf58 1212 btrfs_release_path(path);
a542ad1b
JS
1213 if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1214 ret = -EINVAL;
1215 if (ret < 0)
1216 return ret;
1217
4692cf58 1218 extent_item_pos = logical - found_key.objectid;
a542ad1b 1219 ret = iterate_extent_inodes(fs_info, path, found_key.objectid,
4692cf58 1220 extent_item_pos, iterate, ctx);
a542ad1b
JS
1221
1222 return ret;
1223}
1224
1225static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1226 struct btrfs_path *path,
1227 iterate_irefs_t *iterate, void *ctx)
1228{
1229 int ret;
1230 int slot;
1231 u32 cur;
1232 u32 len;
1233 u32 name_len;
1234 u64 parent = 0;
1235 int found = 0;
1236 struct extent_buffer *eb;
1237 struct btrfs_item *item;
1238 struct btrfs_inode_ref *iref;
1239 struct btrfs_key found_key;
1240
1241 while (1) {
1242 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1243 &found_key);
1244 if (ret < 0)
1245 break;
1246 if (ret) {
1247 ret = found ? 0 : -ENOENT;
1248 break;
1249 }
1250 ++found;
1251
1252 parent = found_key.offset;
1253 slot = path->slots[0];
1254 eb = path->nodes[0];
1255 /* make sure we can use eb after releasing the path */
1256 atomic_inc(&eb->refs);
1257 btrfs_release_path(path);
1258
1259 item = btrfs_item_nr(eb, slot);
1260 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1261
1262 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1263 name_len = btrfs_inode_ref_name_len(eb, iref);
1264 /* path must be released before calling iterate()! */
4692cf58
JS
1265 pr_debug("following ref at offset %u for inode %llu in "
1266 "tree %llu\n", cur,
1267 (unsigned long long)found_key.objectid,
1268 (unsigned long long)fs_root->objectid);
a542ad1b
JS
1269 ret = iterate(parent, iref, eb, ctx);
1270 if (ret) {
1271 free_extent_buffer(eb);
1272 break;
1273 }
1274 len = sizeof(*iref) + name_len;
1275 iref = (struct btrfs_inode_ref *)((char *)iref + len);
1276 }
1277 free_extent_buffer(eb);
1278 }
1279
1280 btrfs_release_path(path);
1281
1282 return ret;
1283}
1284
1285/*
1286 * returns 0 if the path could be dumped (probably truncated)
1287 * returns <0 in case of an error
1288 */
1289static int inode_to_path(u64 inum, struct btrfs_inode_ref *iref,
1290 struct extent_buffer *eb, void *ctx)
1291{
1292 struct inode_fs_paths *ipath = ctx;
1293 char *fspath;
1294 char *fspath_min;
1295 int i = ipath->fspath->elem_cnt;
1296 const int s_ptr = sizeof(char *);
1297 u32 bytes_left;
1298
1299 bytes_left = ipath->fspath->bytes_left > s_ptr ?
1300 ipath->fspath->bytes_left - s_ptr : 0;
1301
740c3d22 1302 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
a542ad1b
JS
1303 fspath = iref_to_path(ipath->fs_root, ipath->btrfs_path, iref, eb,
1304 inum, fspath_min, bytes_left);
1305 if (IS_ERR(fspath))
1306 return PTR_ERR(fspath);
1307
1308 if (fspath > fspath_min) {
4692cf58 1309 pr_debug("path resolved: %s\n", fspath);
745c4d8e 1310 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
a542ad1b
JS
1311 ++ipath->fspath->elem_cnt;
1312 ipath->fspath->bytes_left = fspath - fspath_min;
1313 } else {
4692cf58
JS
1314 pr_debug("missed path, not enough space. missing bytes: %lu, "
1315 "constructed so far: %s\n",
1316 (unsigned long)(fspath_min - fspath), fspath_min);
a542ad1b
JS
1317 ++ipath->fspath->elem_missed;
1318 ipath->fspath->bytes_missing += fspath_min - fspath;
1319 ipath->fspath->bytes_left = 0;
1320 }
1321
1322 return 0;
1323}
1324
1325/*
1326 * this dumps all file system paths to the inode into the ipath struct, provided
1327 * is has been created large enough. each path is zero-terminated and accessed
740c3d22 1328 * from ipath->fspath->val[i].
a542ad1b 1329 * when it returns, there are ipath->fspath->elem_cnt number of paths available
740c3d22 1330 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
a542ad1b
JS
1331 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1332 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1333 * have been needed to return all paths.
1334 */
1335int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1336{
1337 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1338 inode_to_path, ipath);
1339}
1340
1341/*
1342 * allocates space to return multiple file system paths for an inode.
1343 * total_bytes to allocate are passed, note that space usable for actual path
1344 * information will be total_bytes - sizeof(struct inode_fs_paths).
1345 * the returned pointer must be freed with free_ipath() in the end.
1346 */
1347struct btrfs_data_container *init_data_container(u32 total_bytes)
1348{
1349 struct btrfs_data_container *data;
1350 size_t alloc_bytes;
1351
1352 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1353 data = kmalloc(alloc_bytes, GFP_NOFS);
1354 if (!data)
1355 return ERR_PTR(-ENOMEM);
1356
1357 if (total_bytes >= sizeof(*data)) {
1358 data->bytes_left = total_bytes - sizeof(*data);
1359 data->bytes_missing = 0;
1360 } else {
1361 data->bytes_missing = sizeof(*data) - total_bytes;
1362 data->bytes_left = 0;
1363 }
1364
1365 data->elem_cnt = 0;
1366 data->elem_missed = 0;
1367
1368 return data;
1369}
1370
1371/*
1372 * allocates space to return multiple file system paths for an inode.
1373 * total_bytes to allocate are passed, note that space usable for actual path
1374 * information will be total_bytes - sizeof(struct inode_fs_paths).
1375 * the returned pointer must be freed with free_ipath() in the end.
1376 */
1377struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1378 struct btrfs_path *path)
1379{
1380 struct inode_fs_paths *ifp;
1381 struct btrfs_data_container *fspath;
1382
1383 fspath = init_data_container(total_bytes);
1384 if (IS_ERR(fspath))
1385 return (void *)fspath;
1386
1387 ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1388 if (!ifp) {
1389 kfree(fspath);
1390 return ERR_PTR(-ENOMEM);
1391 }
1392
1393 ifp->btrfs_path = path;
1394 ifp->fspath = fspath;
1395 ifp->fs_root = fs_root;
1396
1397 return ifp;
1398}
1399
1400void free_ipath(struct inode_fs_paths *ipath)
1401{
1402 kfree(ipath);
1403}
This page took 0.081642 seconds and 5 git commands to generate.