btrfs: Use WARN_ON()'s return value in place of WARN_ON(1)
[deliverable/linux.git] / fs / btrfs / check-integrity.c
CommitLineData
5db02760
SB
1/*
2 * Copyright (C) STRATO AG 2011. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19/*
20 * This module can be used to catch cases when the btrfs kernel
21 * code executes write requests to the disk that bring the file
22 * system in an inconsistent state. In such a state, a power-loss
23 * or kernel panic event would cause that the data on disk is
24 * lost or at least damaged.
25 *
26 * Code is added that examines all block write requests during
27 * runtime (including writes of the super block). Three rules
28 * are verified and an error is printed on violation of the
29 * rules:
30 * 1. It is not allowed to write a disk block which is
31 * currently referenced by the super block (either directly
32 * or indirectly).
33 * 2. When a super block is written, it is verified that all
34 * referenced (directly or indirectly) blocks fulfill the
35 * following requirements:
36 * 2a. All referenced blocks have either been present when
37 * the file system was mounted, (i.e., they have been
38 * referenced by the super block) or they have been
39 * written since then and the write completion callback
62856a9b
SB
40 * was called and no write error was indicated and a
41 * FLUSH request to the device where these blocks are
42 * located was received and completed.
5db02760
SB
43 * 2b. All referenced blocks need to have a generation
44 * number which is equal to the parent's number.
45 *
46 * One issue that was found using this module was that the log
47 * tree on disk became temporarily corrupted because disk blocks
48 * that had been in use for the log tree had been freed and
49 * reused too early, while being referenced by the written super
50 * block.
51 *
52 * The search term in the kernel log that can be used to filter
53 * on the existence of detected integrity issues is
54 * "btrfs: attempt".
55 *
56 * The integrity check is enabled via mount options. These
57 * mount options are only supported if the integrity check
58 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
59 *
60 * Example #1, apply integrity checks to all metadata:
61 * mount /dev/sdb1 /mnt -o check_int
62 *
63 * Example #2, apply integrity checks to all metadata and
64 * to data extents:
65 * mount /dev/sdb1 /mnt -o check_int_data
66 *
67 * Example #3, apply integrity checks to all metadata and dump
68 * the tree that the super block references to kernel messages
69 * each time after a super block was written:
70 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
71 *
72 * If the integrity check tool is included and activated in
73 * the mount options, plenty of kernel memory is used, and
74 * plenty of additional CPU cycles are spent. Enabling this
75 * functionality is not intended for normal use. In most
76 * cases, unless you are a btrfs developer who needs to verify
77 * the integrity of (super)-block write requests, do not
78 * enable the config option BTRFS_FS_CHECK_INTEGRITY to
79 * include and compile the integrity check tool.
80 */
81
82#include <linux/sched.h>
83#include <linux/slab.h>
84#include <linux/buffer_head.h>
85#include <linux/mutex.h>
86#include <linux/crc32c.h>
87#include <linux/genhd.h>
88#include <linux/blkdev.h>
89#include "ctree.h"
90#include "disk-io.h"
91#include "transaction.h"
92#include "extent_io.h"
5db02760
SB
93#include "volumes.h"
94#include "print-tree.h"
95#include "locking.h"
96#include "check-integrity.h"
606686ee 97#include "rcu-string.h"
5db02760
SB
98
99#define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
100#define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
101#define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
102#define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
103#define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
104#define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
105#define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
106#define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6) /* in characters,
107 * excluding " [...]" */
5db02760
SB
108#define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
109
110/*
111 * The definition of the bitmask fields for the print_mask.
112 * They are specified with the mount option check_integrity_print_mask.
113 */
114#define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE 0x00000001
115#define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION 0x00000002
116#define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE 0x00000004
117#define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE 0x00000008
118#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH 0x00000010
119#define BTRFSIC_PRINT_MASK_END_IO_BIO_BH 0x00000020
120#define BTRFSIC_PRINT_MASK_VERBOSE 0x00000040
121#define BTRFSIC_PRINT_MASK_VERY_VERBOSE 0x00000080
122#define BTRFSIC_PRINT_MASK_INITIAL_TREE 0x00000100
123#define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES 0x00000200
124#define BTRFSIC_PRINT_MASK_INITIAL_DATABASE 0x00000400
125#define BTRFSIC_PRINT_MASK_NUM_COPIES 0x00000800
126#define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS 0x00001000
127
128struct btrfsic_dev_state;
129struct btrfsic_state;
130
131struct btrfsic_block {
132 u32 magic_num; /* only used for debug purposes */
133 unsigned int is_metadata:1; /* if it is meta-data, not data-data */
134 unsigned int is_superblock:1; /* if it is one of the superblocks */
135 unsigned int is_iodone:1; /* if is done by lower subsystem */
136 unsigned int iodone_w_error:1; /* error was indicated to endio */
137 unsigned int never_written:1; /* block was added because it was
138 * referenced, not because it was
139 * written */
cb3806ec 140 unsigned int mirror_num; /* large enough to hold
5db02760
SB
141 * BTRFS_SUPER_MIRROR_MAX */
142 struct btrfsic_dev_state *dev_state;
143 u64 dev_bytenr; /* key, physical byte num on disk */
144 u64 logical_bytenr; /* logical byte num on disk */
145 u64 generation;
146 struct btrfs_disk_key disk_key; /* extra info to print in case of
147 * issues, will not always be correct */
148 struct list_head collision_resolving_node; /* list node */
149 struct list_head all_blocks_node; /* list node */
150
151 /* the following two lists contain block_link items */
152 struct list_head ref_to_list; /* list */
153 struct list_head ref_from_list; /* list */
154 struct btrfsic_block *next_in_same_bio;
155 void *orig_bio_bh_private;
156 union {
157 bio_end_io_t *bio;
158 bh_end_io_t *bh;
159 } orig_bio_bh_end_io;
160 int submit_bio_bh_rw;
161 u64 flush_gen; /* only valid if !never_written */
162};
163
164/*
165 * Elements of this type are allocated dynamically and required because
166 * each block object can refer to and can be ref from multiple blocks.
167 * The key to lookup them in the hashtable is the dev_bytenr of
168 * the block ref to plus the one from the block refered from.
169 * The fact that they are searchable via a hashtable and that a
170 * ref_cnt is maintained is not required for the btrfs integrity
171 * check algorithm itself, it is only used to make the output more
172 * beautiful in case that an error is detected (an error is defined
173 * as a write operation to a block while that block is still referenced).
174 */
175struct btrfsic_block_link {
176 u32 magic_num; /* only used for debug purposes */
177 u32 ref_cnt;
178 struct list_head node_ref_to; /* list node */
179 struct list_head node_ref_from; /* list node */
180 struct list_head collision_resolving_node; /* list node */
181 struct btrfsic_block *block_ref_to;
182 struct btrfsic_block *block_ref_from;
183 u64 parent_generation;
184};
185
186struct btrfsic_dev_state {
187 u32 magic_num; /* only used for debug purposes */
188 struct block_device *bdev;
189 struct btrfsic_state *state;
190 struct list_head collision_resolving_node; /* list node */
191 struct btrfsic_block dummy_block_for_bio_bh_flush;
192 u64 last_flush_gen;
193 char name[BDEVNAME_SIZE];
194};
195
196struct btrfsic_block_hashtable {
197 struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
198};
199
200struct btrfsic_block_link_hashtable {
201 struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
202};
203
204struct btrfsic_dev_state_hashtable {
205 struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
206};
207
208struct btrfsic_block_data_ctx {
209 u64 start; /* virtual bytenr */
210 u64 dev_bytenr; /* physical bytenr on device */
211 u32 len;
212 struct btrfsic_dev_state *dev;
e06baab4
SB
213 char **datav;
214 struct page **pagev;
215 void *mem_to_free;
5db02760
SB
216};
217
218/* This structure is used to implement recursion without occupying
219 * any stack space, refer to btrfsic_process_metablock() */
220struct btrfsic_stack_frame {
221 u32 magic;
222 u32 nr;
223 int error;
224 int i;
225 int limit_nesting;
226 int num_copies;
227 int mirror_num;
228 struct btrfsic_block *block;
229 struct btrfsic_block_data_ctx *block_ctx;
230 struct btrfsic_block *next_block;
231 struct btrfsic_block_data_ctx next_block_ctx;
232 struct btrfs_header *hdr;
233 struct btrfsic_stack_frame *prev;
234};
235
236/* Some state per mounted filesystem */
237struct btrfsic_state {
238 u32 print_mask;
239 int include_extent_data;
240 int csum_size;
241 struct list_head all_blocks_list;
242 struct btrfsic_block_hashtable block_hashtable;
243 struct btrfsic_block_link_hashtable block_link_hashtable;
244 struct btrfs_root *root;
245 u64 max_superblock_generation;
246 struct btrfsic_block *latest_superblock;
e06baab4
SB
247 u32 metablock_size;
248 u32 datablock_size;
5db02760
SB
249};
250
251static void btrfsic_block_init(struct btrfsic_block *b);
252static struct btrfsic_block *btrfsic_block_alloc(void);
253static void btrfsic_block_free(struct btrfsic_block *b);
254static void btrfsic_block_link_init(struct btrfsic_block_link *n);
255static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
256static void btrfsic_block_link_free(struct btrfsic_block_link *n);
257static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
258static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
259static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
260static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
261static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
262 struct btrfsic_block_hashtable *h);
263static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
264static struct btrfsic_block *btrfsic_block_hashtable_lookup(
265 struct block_device *bdev,
266 u64 dev_bytenr,
267 struct btrfsic_block_hashtable *h);
268static void btrfsic_block_link_hashtable_init(
269 struct btrfsic_block_link_hashtable *h);
270static void btrfsic_block_link_hashtable_add(
271 struct btrfsic_block_link *l,
272 struct btrfsic_block_link_hashtable *h);
273static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
274static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
275 struct block_device *bdev_ref_to,
276 u64 dev_bytenr_ref_to,
277 struct block_device *bdev_ref_from,
278 u64 dev_bytenr_ref_from,
279 struct btrfsic_block_link_hashtable *h);
280static void btrfsic_dev_state_hashtable_init(
281 struct btrfsic_dev_state_hashtable *h);
282static void btrfsic_dev_state_hashtable_add(
283 struct btrfsic_dev_state *ds,
284 struct btrfsic_dev_state_hashtable *h);
285static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
286static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
287 struct block_device *bdev,
288 struct btrfsic_dev_state_hashtable *h);
289static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
290static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
291static int btrfsic_process_superblock(struct btrfsic_state *state,
292 struct btrfs_fs_devices *fs_devices);
293static int btrfsic_process_metablock(struct btrfsic_state *state,
294 struct btrfsic_block *block,
295 struct btrfsic_block_data_ctx *block_ctx,
5db02760 296 int limit_nesting, int force_iodone_flag);
e06baab4
SB
297static void btrfsic_read_from_block_data(
298 struct btrfsic_block_data_ctx *block_ctx,
299 void *dst, u32 offset, size_t len);
5db02760
SB
300static int btrfsic_create_link_to_next_block(
301 struct btrfsic_state *state,
302 struct btrfsic_block *block,
303 struct btrfsic_block_data_ctx
304 *block_ctx, u64 next_bytenr,
305 int limit_nesting,
306 struct btrfsic_block_data_ctx *next_block_ctx,
307 struct btrfsic_block **next_blockp,
308 int force_iodone_flag,
309 int *num_copiesp, int *mirror_nump,
310 struct btrfs_disk_key *disk_key,
311 u64 parent_generation);
312static int btrfsic_handle_extent_data(struct btrfsic_state *state,
313 struct btrfsic_block *block,
314 struct btrfsic_block_data_ctx *block_ctx,
315 u32 item_offset, int force_iodone_flag);
316static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
317 struct btrfsic_block_data_ctx *block_ctx_out,
318 int mirror_num);
319static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
320 u32 len, struct block_device *bdev,
321 struct btrfsic_block_data_ctx *block_ctx_out);
322static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
323static int btrfsic_read_block(struct btrfsic_state *state,
324 struct btrfsic_block_data_ctx *block_ctx);
325static void btrfsic_dump_database(struct btrfsic_state *state);
e06baab4 326static void btrfsic_complete_bio_end_io(struct bio *bio, int err);
5db02760 327static int btrfsic_test_for_metadata(struct btrfsic_state *state,
e06baab4 328 char **datav, unsigned int num_pages);
5db02760 329static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
e06baab4
SB
330 u64 dev_bytenr, char **mapped_datav,
331 unsigned int num_pages,
332 struct bio *bio, int *bio_is_patched,
5db02760
SB
333 struct buffer_head *bh,
334 int submit_bio_bh_rw);
335static int btrfsic_process_written_superblock(
336 struct btrfsic_state *state,
337 struct btrfsic_block *const block,
338 struct btrfs_super_block *const super_hdr);
339static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status);
340static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
341static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
342 const struct btrfsic_block *block,
343 int recursion_level);
344static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
345 struct btrfsic_block *const block,
346 int recursion_level);
347static void btrfsic_print_add_link(const struct btrfsic_state *state,
348 const struct btrfsic_block_link *l);
349static void btrfsic_print_rem_link(const struct btrfsic_state *state,
350 const struct btrfsic_block_link *l);
351static char btrfsic_get_block_type(const struct btrfsic_state *state,
352 const struct btrfsic_block *block);
353static void btrfsic_dump_tree(const struct btrfsic_state *state);
354static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
355 const struct btrfsic_block *block,
356 int indent_level);
357static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
358 struct btrfsic_state *state,
359 struct btrfsic_block_data_ctx *next_block_ctx,
360 struct btrfsic_block *next_block,
361 struct btrfsic_block *from_block,
362 u64 parent_generation);
363static struct btrfsic_block *btrfsic_block_lookup_or_add(
364 struct btrfsic_state *state,
365 struct btrfsic_block_data_ctx *block_ctx,
366 const char *additional_string,
367 int is_metadata,
368 int is_iodone,
369 int never_written,
370 int mirror_num,
371 int *was_created);
372static int btrfsic_process_superblock_dev_mirror(
373 struct btrfsic_state *state,
374 struct btrfsic_dev_state *dev_state,
375 struct btrfs_device *device,
376 int superblock_mirror_num,
377 struct btrfsic_dev_state **selected_dev_state,
378 struct btrfs_super_block *selected_super);
379static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
380 struct block_device *bdev);
381static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
382 u64 bytenr,
383 struct btrfsic_dev_state *dev_state,
e06baab4 384 u64 dev_bytenr);
5db02760
SB
385
386static struct mutex btrfsic_mutex;
387static int btrfsic_is_initialized;
388static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
389
390
391static void btrfsic_block_init(struct btrfsic_block *b)
392{
393 b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
394 b->dev_state = NULL;
395 b->dev_bytenr = 0;
396 b->logical_bytenr = 0;
397 b->generation = BTRFSIC_GENERATION_UNKNOWN;
398 b->disk_key.objectid = 0;
399 b->disk_key.type = 0;
400 b->disk_key.offset = 0;
401 b->is_metadata = 0;
402 b->is_superblock = 0;
403 b->is_iodone = 0;
404 b->iodone_w_error = 0;
405 b->never_written = 0;
406 b->mirror_num = 0;
407 b->next_in_same_bio = NULL;
408 b->orig_bio_bh_private = NULL;
409 b->orig_bio_bh_end_io.bio = NULL;
410 INIT_LIST_HEAD(&b->collision_resolving_node);
411 INIT_LIST_HEAD(&b->all_blocks_node);
412 INIT_LIST_HEAD(&b->ref_to_list);
413 INIT_LIST_HEAD(&b->ref_from_list);
414 b->submit_bio_bh_rw = 0;
415 b->flush_gen = 0;
416}
417
418static struct btrfsic_block *btrfsic_block_alloc(void)
419{
420 struct btrfsic_block *b;
421
422 b = kzalloc(sizeof(*b), GFP_NOFS);
423 if (NULL != b)
424 btrfsic_block_init(b);
425
426 return b;
427}
428
429static void btrfsic_block_free(struct btrfsic_block *b)
430{
431 BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
432 kfree(b);
433}
434
435static void btrfsic_block_link_init(struct btrfsic_block_link *l)
436{
437 l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
438 l->ref_cnt = 1;
439 INIT_LIST_HEAD(&l->node_ref_to);
440 INIT_LIST_HEAD(&l->node_ref_from);
441 INIT_LIST_HEAD(&l->collision_resolving_node);
442 l->block_ref_to = NULL;
443 l->block_ref_from = NULL;
444}
445
446static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
447{
448 struct btrfsic_block_link *l;
449
450 l = kzalloc(sizeof(*l), GFP_NOFS);
451 if (NULL != l)
452 btrfsic_block_link_init(l);
453
454 return l;
455}
456
457static void btrfsic_block_link_free(struct btrfsic_block_link *l)
458{
459 BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
460 kfree(l);
461}
462
463static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
464{
465 ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
466 ds->bdev = NULL;
467 ds->state = NULL;
468 ds->name[0] = '\0';
469 INIT_LIST_HEAD(&ds->collision_resolving_node);
470 ds->last_flush_gen = 0;
471 btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
472 ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
473 ds->dummy_block_for_bio_bh_flush.dev_state = ds;
474}
475
476static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
477{
478 struct btrfsic_dev_state *ds;
479
480 ds = kzalloc(sizeof(*ds), GFP_NOFS);
481 if (NULL != ds)
482 btrfsic_dev_state_init(ds);
483
484 return ds;
485}
486
487static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
488{
489 BUG_ON(!(NULL == ds ||
490 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
491 kfree(ds);
492}
493
494static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
495{
496 int i;
497
498 for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
499 INIT_LIST_HEAD(h->table + i);
500}
501
502static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
503 struct btrfsic_block_hashtable *h)
504{
505 const unsigned int hashval =
506 (((unsigned int)(b->dev_bytenr >> 16)) ^
507 ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
508 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
509
510 list_add(&b->collision_resolving_node, h->table + hashval);
511}
512
513static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
514{
515 list_del(&b->collision_resolving_node);
516}
517
518static struct btrfsic_block *btrfsic_block_hashtable_lookup(
519 struct block_device *bdev,
520 u64 dev_bytenr,
521 struct btrfsic_block_hashtable *h)
522{
523 const unsigned int hashval =
524 (((unsigned int)(dev_bytenr >> 16)) ^
525 ((unsigned int)((uintptr_t)bdev))) &
526 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
527 struct list_head *elem;
528
529 list_for_each(elem, h->table + hashval) {
530 struct btrfsic_block *const b =
531 list_entry(elem, struct btrfsic_block,
532 collision_resolving_node);
533
534 if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
535 return b;
536 }
537
538 return NULL;
539}
540
541static void btrfsic_block_link_hashtable_init(
542 struct btrfsic_block_link_hashtable *h)
543{
544 int i;
545
546 for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
547 INIT_LIST_HEAD(h->table + i);
548}
549
550static void btrfsic_block_link_hashtable_add(
551 struct btrfsic_block_link *l,
552 struct btrfsic_block_link_hashtable *h)
553{
554 const unsigned int hashval =
555 (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
556 ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
557 ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
558 ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
559 & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
560
561 BUG_ON(NULL == l->block_ref_to);
562 BUG_ON(NULL == l->block_ref_from);
563 list_add(&l->collision_resolving_node, h->table + hashval);
564}
565
566static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
567{
568 list_del(&l->collision_resolving_node);
569}
570
571static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
572 struct block_device *bdev_ref_to,
573 u64 dev_bytenr_ref_to,
574 struct block_device *bdev_ref_from,
575 u64 dev_bytenr_ref_from,
576 struct btrfsic_block_link_hashtable *h)
577{
578 const unsigned int hashval =
579 (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
580 ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
581 ((unsigned int)((uintptr_t)bdev_ref_to)) ^
582 ((unsigned int)((uintptr_t)bdev_ref_from))) &
583 (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
584 struct list_head *elem;
585
586 list_for_each(elem, h->table + hashval) {
587 struct btrfsic_block_link *const l =
588 list_entry(elem, struct btrfsic_block_link,
589 collision_resolving_node);
590
591 BUG_ON(NULL == l->block_ref_to);
592 BUG_ON(NULL == l->block_ref_from);
593 if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
594 l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
595 l->block_ref_from->dev_state->bdev == bdev_ref_from &&
596 l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
597 return l;
598 }
599
600 return NULL;
601}
602
603static void btrfsic_dev_state_hashtable_init(
604 struct btrfsic_dev_state_hashtable *h)
605{
606 int i;
607
608 for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
609 INIT_LIST_HEAD(h->table + i);
610}
611
612static void btrfsic_dev_state_hashtable_add(
613 struct btrfsic_dev_state *ds,
614 struct btrfsic_dev_state_hashtable *h)
615{
616 const unsigned int hashval =
617 (((unsigned int)((uintptr_t)ds->bdev)) &
618 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
619
620 list_add(&ds->collision_resolving_node, h->table + hashval);
621}
622
623static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
624{
625 list_del(&ds->collision_resolving_node);
626}
627
628static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
629 struct block_device *bdev,
630 struct btrfsic_dev_state_hashtable *h)
631{
632 const unsigned int hashval =
633 (((unsigned int)((uintptr_t)bdev)) &
634 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
635 struct list_head *elem;
636
637 list_for_each(elem, h->table + hashval) {
638 struct btrfsic_dev_state *const ds =
639 list_entry(elem, struct btrfsic_dev_state,
640 collision_resolving_node);
641
642 if (ds->bdev == bdev)
643 return ds;
644 }
645
646 return NULL;
647}
648
649static int btrfsic_process_superblock(struct btrfsic_state *state,
650 struct btrfs_fs_devices *fs_devices)
651{
e77266e4 652 int ret = 0;
5db02760
SB
653 struct btrfs_super_block *selected_super;
654 struct list_head *dev_head = &fs_devices->devices;
655 struct btrfs_device *device;
656 struct btrfsic_dev_state *selected_dev_state = NULL;
657 int pass;
658
659 BUG_ON(NULL == state);
e06baab4 660 selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
5db02760
SB
661 if (NULL == selected_super) {
662 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
663 return -1;
664 }
665
666 list_for_each_entry(device, dev_head, dev_list) {
667 int i;
668 struct btrfsic_dev_state *dev_state;
669
670 if (!device->bdev || !device->name)
671 continue;
672
673 dev_state = btrfsic_dev_state_lookup(device->bdev);
674 BUG_ON(NULL == dev_state);
675 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
676 ret = btrfsic_process_superblock_dev_mirror(
677 state, dev_state, device, i,
678 &selected_dev_state, selected_super);
679 if (0 != ret && 0 == i) {
680 kfree(selected_super);
681 return ret;
682 }
683 }
684 }
685
686 if (NULL == state->latest_superblock) {
687 printk(KERN_INFO "btrfsic: no superblock found!\n");
688 kfree(selected_super);
689 return -1;
690 }
691
692 state->csum_size = btrfs_super_csum_size(selected_super);
693
694 for (pass = 0; pass < 3; pass++) {
695 int num_copies;
696 int mirror_num;
697 u64 next_bytenr;
698
699 switch (pass) {
700 case 0:
701 next_bytenr = btrfs_super_root(selected_super);
702 if (state->print_mask &
703 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
c1c9ff7c 704 printk(KERN_INFO "root@%llu\n", next_bytenr);
5db02760
SB
705 break;
706 case 1:
707 next_bytenr = btrfs_super_chunk_root(selected_super);
708 if (state->print_mask &
709 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
c1c9ff7c 710 printk(KERN_INFO "chunk@%llu\n", next_bytenr);
5db02760
SB
711 break;
712 case 2:
713 next_bytenr = btrfs_super_log_root(selected_super);
714 if (0 == next_bytenr)
715 continue;
716 if (state->print_mask &
717 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
c1c9ff7c 718 printk(KERN_INFO "log@%llu\n", next_bytenr);
5db02760
SB
719 break;
720 }
721
722 num_copies =
5d964051 723 btrfs_num_copies(state->root->fs_info,
e06baab4 724 next_bytenr, state->metablock_size);
5db02760
SB
725 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
726 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
c1c9ff7c 727 next_bytenr, num_copies);
5db02760
SB
728
729 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
730 struct btrfsic_block *next_block;
731 struct btrfsic_block_data_ctx tmp_next_block_ctx;
732 struct btrfsic_block_link *l;
5db02760 733
e06baab4
SB
734 ret = btrfsic_map_block(state, next_bytenr,
735 state->metablock_size,
5db02760
SB
736 &tmp_next_block_ctx,
737 mirror_num);
738 if (ret) {
739 printk(KERN_INFO "btrfsic:"
740 " btrfsic_map_block(root @%llu,"
741 " mirror %d) failed!\n",
c1c9ff7c 742 next_bytenr, mirror_num);
5db02760
SB
743 kfree(selected_super);
744 return -1;
745 }
746
747 next_block = btrfsic_block_hashtable_lookup(
748 tmp_next_block_ctx.dev->bdev,
749 tmp_next_block_ctx.dev_bytenr,
750 &state->block_hashtable);
751 BUG_ON(NULL == next_block);
752
753 l = btrfsic_block_link_hashtable_lookup(
754 tmp_next_block_ctx.dev->bdev,
755 tmp_next_block_ctx.dev_bytenr,
756 state->latest_superblock->dev_state->
757 bdev,
758 state->latest_superblock->dev_bytenr,
759 &state->block_link_hashtable);
760 BUG_ON(NULL == l);
761
762 ret = btrfsic_read_block(state, &tmp_next_block_ctx);
e06baab4 763 if (ret < (int)PAGE_CACHE_SIZE) {
5db02760
SB
764 printk(KERN_INFO
765 "btrfsic: read @logical %llu failed!\n",
5db02760
SB
766 tmp_next_block_ctx.start);
767 btrfsic_release_block_ctx(&tmp_next_block_ctx);
768 kfree(selected_super);
769 return -1;
770 }
771
5db02760
SB
772 ret = btrfsic_process_metablock(state,
773 next_block,
774 &tmp_next_block_ctx,
5db02760
SB
775 BTRFS_MAX_LEVEL + 3, 1);
776 btrfsic_release_block_ctx(&tmp_next_block_ctx);
777 }
778 }
779
780 kfree(selected_super);
781 return ret;
782}
783
784static int btrfsic_process_superblock_dev_mirror(
785 struct btrfsic_state *state,
786 struct btrfsic_dev_state *dev_state,
787 struct btrfs_device *device,
788 int superblock_mirror_num,
789 struct btrfsic_dev_state **selected_dev_state,
790 struct btrfs_super_block *selected_super)
791{
792 struct btrfs_super_block *super_tmp;
793 u64 dev_bytenr;
794 struct buffer_head *bh;
795 struct btrfsic_block *superblock_tmp;
796 int pass;
797 struct block_device *const superblock_bdev = device->bdev;
798
799 /* super block bytenr is always the unmapped device bytenr */
800 dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
e06baab4
SB
801 if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
802 return -1;
803 bh = __bread(superblock_bdev, dev_bytenr / 4096,
804 BTRFS_SUPER_INFO_SIZE);
5db02760
SB
805 if (NULL == bh)
806 return -1;
807 super_tmp = (struct btrfs_super_block *)
808 (bh->b_data + (dev_bytenr & 4095));
809
810 if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
3cae210f 811 btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
e06baab4
SB
812 memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
813 btrfs_super_nodesize(super_tmp) != state->metablock_size ||
814 btrfs_super_leafsize(super_tmp) != state->metablock_size ||
815 btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
5db02760
SB
816 brelse(bh);
817 return 0;
818 }
819
820 superblock_tmp =
821 btrfsic_block_hashtable_lookup(superblock_bdev,
822 dev_bytenr,
823 &state->block_hashtable);
824 if (NULL == superblock_tmp) {
825 superblock_tmp = btrfsic_block_alloc();
826 if (NULL == superblock_tmp) {
827 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
828 brelse(bh);
829 return -1;
830 }
831 /* for superblock, only the dev_bytenr makes sense */
832 superblock_tmp->dev_bytenr = dev_bytenr;
833 superblock_tmp->dev_state = dev_state;
834 superblock_tmp->logical_bytenr = dev_bytenr;
835 superblock_tmp->generation = btrfs_super_generation(super_tmp);
836 superblock_tmp->is_metadata = 1;
837 superblock_tmp->is_superblock = 1;
838 superblock_tmp->is_iodone = 1;
839 superblock_tmp->never_written = 0;
840 superblock_tmp->mirror_num = 1 + superblock_mirror_num;
841 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
606686ee
JB
842 printk_in_rcu(KERN_INFO "New initial S-block (bdev %p, %s)"
843 " @%llu (%s/%llu/%d)\n",
844 superblock_bdev,
c1c9ff7c
GU
845 rcu_str_deref(device->name), dev_bytenr,
846 dev_state->name, dev_bytenr,
606686ee 847 superblock_mirror_num);
5db02760
SB
848 list_add(&superblock_tmp->all_blocks_node,
849 &state->all_blocks_list);
850 btrfsic_block_hashtable_add(superblock_tmp,
851 &state->block_hashtable);
852 }
853
854 /* select the one with the highest generation field */
855 if (btrfs_super_generation(super_tmp) >
856 state->max_superblock_generation ||
857 0 == state->max_superblock_generation) {
858 memcpy(selected_super, super_tmp, sizeof(*selected_super));
859 *selected_dev_state = dev_state;
860 state->max_superblock_generation =
861 btrfs_super_generation(super_tmp);
862 state->latest_superblock = superblock_tmp;
863 }
864
865 for (pass = 0; pass < 3; pass++) {
866 u64 next_bytenr;
867 int num_copies;
868 int mirror_num;
869 const char *additional_string = NULL;
870 struct btrfs_disk_key tmp_disk_key;
871
872 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
873 tmp_disk_key.offset = 0;
874 switch (pass) {
875 case 0:
3cae210f
QW
876 btrfs_set_disk_key_objectid(&tmp_disk_key,
877 BTRFS_ROOT_TREE_OBJECTID);
5db02760
SB
878 additional_string = "initial root ";
879 next_bytenr = btrfs_super_root(super_tmp);
880 break;
881 case 1:
3cae210f
QW
882 btrfs_set_disk_key_objectid(&tmp_disk_key,
883 BTRFS_CHUNK_TREE_OBJECTID);
5db02760
SB
884 additional_string = "initial chunk ";
885 next_bytenr = btrfs_super_chunk_root(super_tmp);
886 break;
887 case 2:
3cae210f
QW
888 btrfs_set_disk_key_objectid(&tmp_disk_key,
889 BTRFS_TREE_LOG_OBJECTID);
5db02760
SB
890 additional_string = "initial log ";
891 next_bytenr = btrfs_super_log_root(super_tmp);
892 if (0 == next_bytenr)
893 continue;
894 break;
895 }
896
897 num_copies =
5d964051 898 btrfs_num_copies(state->root->fs_info,
e06baab4 899 next_bytenr, state->metablock_size);
5db02760
SB
900 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
901 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
c1c9ff7c 902 next_bytenr, num_copies);
5db02760
SB
903 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
904 struct btrfsic_block *next_block;
905 struct btrfsic_block_data_ctx tmp_next_block_ctx;
906 struct btrfsic_block_link *l;
907
e06baab4
SB
908 if (btrfsic_map_block(state, next_bytenr,
909 state->metablock_size,
5db02760
SB
910 &tmp_next_block_ctx,
911 mirror_num)) {
912 printk(KERN_INFO "btrfsic: btrfsic_map_block("
913 "bytenr @%llu, mirror %d) failed!\n",
c1c9ff7c 914 next_bytenr, mirror_num);
5db02760
SB
915 brelse(bh);
916 return -1;
917 }
918
919 next_block = btrfsic_block_lookup_or_add(
920 state, &tmp_next_block_ctx,
921 additional_string, 1, 1, 0,
922 mirror_num, NULL);
923 if (NULL == next_block) {
924 btrfsic_release_block_ctx(&tmp_next_block_ctx);
925 brelse(bh);
926 return -1;
927 }
928
929 next_block->disk_key = tmp_disk_key;
930 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
931 l = btrfsic_block_link_lookup_or_add(
932 state, &tmp_next_block_ctx,
933 next_block, superblock_tmp,
934 BTRFSIC_GENERATION_UNKNOWN);
935 btrfsic_release_block_ctx(&tmp_next_block_ctx);
936 if (NULL == l) {
937 brelse(bh);
938 return -1;
939 }
940 }
941 }
942 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
943 btrfsic_dump_tree_sub(state, superblock_tmp, 0);
944
945 brelse(bh);
946 return 0;
947}
948
949static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
950{
951 struct btrfsic_stack_frame *sf;
952
953 sf = kzalloc(sizeof(*sf), GFP_NOFS);
954 if (NULL == sf)
955 printk(KERN_INFO "btrfsic: alloc memory failed!\n");
956 else
957 sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
958 return sf;
959}
960
961static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
962{
963 BUG_ON(!(NULL == sf ||
964 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
965 kfree(sf);
966}
967
968static int btrfsic_process_metablock(
969 struct btrfsic_state *state,
970 struct btrfsic_block *const first_block,
971 struct btrfsic_block_data_ctx *const first_block_ctx,
5db02760
SB
972 int first_limit_nesting, int force_iodone_flag)
973{
974 struct btrfsic_stack_frame initial_stack_frame = { 0 };
975 struct btrfsic_stack_frame *sf;
976 struct btrfsic_stack_frame *next_stack;
e06baab4
SB
977 struct btrfs_header *const first_hdr =
978 (struct btrfs_header *)first_block_ctx->datav[0];
5db02760 979
e06baab4 980 BUG_ON(!first_hdr);
5db02760
SB
981 sf = &initial_stack_frame;
982 sf->error = 0;
983 sf->i = -1;
984 sf->limit_nesting = first_limit_nesting;
985 sf->block = first_block;
986 sf->block_ctx = first_block_ctx;
987 sf->next_block = NULL;
988 sf->hdr = first_hdr;
989 sf->prev = NULL;
990
991continue_with_new_stack_frame:
992 sf->block->generation = le64_to_cpu(sf->hdr->generation);
993 if (0 == sf->hdr->level) {
994 struct btrfs_leaf *const leafhdr =
995 (struct btrfs_leaf *)sf->hdr;
996
997 if (-1 == sf->i) {
3cae210f 998 sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
5db02760
SB
999
1000 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1001 printk(KERN_INFO
1002 "leaf %llu items %d generation %llu"
1003 " owner %llu\n",
c1c9ff7c 1004 sf->block_ctx->start, sf->nr,
3cae210f
QW
1005 btrfs_stack_header_generation(
1006 &leafhdr->header),
3cae210f
QW
1007 btrfs_stack_header_owner(
1008 &leafhdr->header));
5db02760
SB
1009 }
1010
1011continue_with_current_leaf_stack_frame:
1012 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1013 sf->i++;
1014 sf->num_copies = 0;
1015 }
1016
1017 if (sf->i < sf->nr) {
e06baab4
SB
1018 struct btrfs_item disk_item;
1019 u32 disk_item_offset =
1020 (uintptr_t)(leafhdr->items + sf->i) -
1021 (uintptr_t)leafhdr;
1022 struct btrfs_disk_key *disk_key;
5db02760 1023 u8 type;
e06baab4 1024 u32 item_offset;
8ea05e3a 1025 u32 item_size;
5db02760 1026
e06baab4
SB
1027 if (disk_item_offset + sizeof(struct btrfs_item) >
1028 sf->block_ctx->len) {
1029leaf_item_out_of_bounce_error:
1030 printk(KERN_INFO
1031 "btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
1032 sf->block_ctx->start,
1033 sf->block_ctx->dev->name);
1034 goto one_stack_frame_backwards;
1035 }
1036 btrfsic_read_from_block_data(sf->block_ctx,
1037 &disk_item,
1038 disk_item_offset,
1039 sizeof(struct btrfs_item));
3cae210f 1040 item_offset = btrfs_stack_item_offset(&disk_item);
a5f519c9 1041 item_size = btrfs_stack_item_size(&disk_item);
e06baab4 1042 disk_key = &disk_item.key;
3cae210f 1043 type = btrfs_disk_key_type(disk_key);
5db02760
SB
1044
1045 if (BTRFS_ROOT_ITEM_KEY == type) {
e06baab4
SB
1046 struct btrfs_root_item root_item;
1047 u32 root_item_offset;
1048 u64 next_bytenr;
1049
1050 root_item_offset = item_offset +
1051 offsetof(struct btrfs_leaf, items);
8ea05e3a 1052 if (root_item_offset + item_size >
e06baab4
SB
1053 sf->block_ctx->len)
1054 goto leaf_item_out_of_bounce_error;
1055 btrfsic_read_from_block_data(
1056 sf->block_ctx, &root_item,
1057 root_item_offset,
8ea05e3a 1058 item_size);
3cae210f 1059 next_bytenr = btrfs_root_bytenr(&root_item);
5db02760
SB
1060
1061 sf->error =
1062 btrfsic_create_link_to_next_block(
1063 state,
1064 sf->block,
1065 sf->block_ctx,
1066 next_bytenr,
1067 sf->limit_nesting,
1068 &sf->next_block_ctx,
1069 &sf->next_block,
1070 force_iodone_flag,
1071 &sf->num_copies,
1072 &sf->mirror_num,
1073 disk_key,
3cae210f
QW
1074 btrfs_root_generation(
1075 &root_item));
5db02760
SB
1076 if (sf->error)
1077 goto one_stack_frame_backwards;
1078
1079 if (NULL != sf->next_block) {
1080 struct btrfs_header *const next_hdr =
1081 (struct btrfs_header *)
e06baab4 1082 sf->next_block_ctx.datav[0];
5db02760
SB
1083
1084 next_stack =
1085 btrfsic_stack_frame_alloc();
1086 if (NULL == next_stack) {
1087 btrfsic_release_block_ctx(
1088 &sf->
1089 next_block_ctx);
1090 goto one_stack_frame_backwards;
1091 }
1092
1093 next_stack->i = -1;
1094 next_stack->block = sf->next_block;
1095 next_stack->block_ctx =
1096 &sf->next_block_ctx;
1097 next_stack->next_block = NULL;
1098 next_stack->hdr = next_hdr;
1099 next_stack->limit_nesting =
1100 sf->limit_nesting - 1;
1101 next_stack->prev = sf;
1102 sf = next_stack;
1103 goto continue_with_new_stack_frame;
1104 }
1105 } else if (BTRFS_EXTENT_DATA_KEY == type &&
1106 state->include_extent_data) {
1107 sf->error = btrfsic_handle_extent_data(
1108 state,
1109 sf->block,
1110 sf->block_ctx,
1111 item_offset,
1112 force_iodone_flag);
1113 if (sf->error)
1114 goto one_stack_frame_backwards;
1115 }
1116
1117 goto continue_with_current_leaf_stack_frame;
1118 }
1119 } else {
1120 struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1121
1122 if (-1 == sf->i) {
3cae210f 1123 sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
5db02760
SB
1124
1125 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1126 printk(KERN_INFO "node %llu level %d items %d"
1127 " generation %llu owner %llu\n",
5db02760
SB
1128 sf->block_ctx->start,
1129 nodehdr->header.level, sf->nr,
3cae210f
QW
1130 btrfs_stack_header_generation(
1131 &nodehdr->header),
3cae210f
QW
1132 btrfs_stack_header_owner(
1133 &nodehdr->header));
5db02760
SB
1134 }
1135
1136continue_with_current_node_stack_frame:
1137 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1138 sf->i++;
1139 sf->num_copies = 0;
1140 }
1141
1142 if (sf->i < sf->nr) {
e06baab4
SB
1143 struct btrfs_key_ptr key_ptr;
1144 u32 key_ptr_offset;
1145 u64 next_bytenr;
1146
1147 key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1148 (uintptr_t)nodehdr;
1149 if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1150 sf->block_ctx->len) {
1151 printk(KERN_INFO
1152 "btrfsic: node item out of bounce at logical %llu, dev %s\n",
1153 sf->block_ctx->start,
1154 sf->block_ctx->dev->name);
1155 goto one_stack_frame_backwards;
1156 }
1157 btrfsic_read_from_block_data(
1158 sf->block_ctx, &key_ptr, key_ptr_offset,
1159 sizeof(struct btrfs_key_ptr));
3cae210f 1160 next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
5db02760
SB
1161
1162 sf->error = btrfsic_create_link_to_next_block(
1163 state,
1164 sf->block,
1165 sf->block_ctx,
1166 next_bytenr,
1167 sf->limit_nesting,
1168 &sf->next_block_ctx,
1169 &sf->next_block,
1170 force_iodone_flag,
1171 &sf->num_copies,
1172 &sf->mirror_num,
e06baab4 1173 &key_ptr.key,
3cae210f 1174 btrfs_stack_key_generation(&key_ptr));
5db02760
SB
1175 if (sf->error)
1176 goto one_stack_frame_backwards;
1177
1178 if (NULL != sf->next_block) {
1179 struct btrfs_header *const next_hdr =
1180 (struct btrfs_header *)
e06baab4 1181 sf->next_block_ctx.datav[0];
5db02760
SB
1182
1183 next_stack = btrfsic_stack_frame_alloc();
1184 if (NULL == next_stack)
1185 goto one_stack_frame_backwards;
1186
1187 next_stack->i = -1;
1188 next_stack->block = sf->next_block;
1189 next_stack->block_ctx = &sf->next_block_ctx;
1190 next_stack->next_block = NULL;
1191 next_stack->hdr = next_hdr;
1192 next_stack->limit_nesting =
1193 sf->limit_nesting - 1;
1194 next_stack->prev = sf;
1195 sf = next_stack;
1196 goto continue_with_new_stack_frame;
1197 }
1198
1199 goto continue_with_current_node_stack_frame;
1200 }
1201 }
1202
1203one_stack_frame_backwards:
1204 if (NULL != sf->prev) {
1205 struct btrfsic_stack_frame *const prev = sf->prev;
1206
1207 /* the one for the initial block is freed in the caller */
1208 btrfsic_release_block_ctx(sf->block_ctx);
1209
1210 if (sf->error) {
1211 prev->error = sf->error;
1212 btrfsic_stack_frame_free(sf);
1213 sf = prev;
1214 goto one_stack_frame_backwards;
1215 }
1216
1217 btrfsic_stack_frame_free(sf);
1218 sf = prev;
1219 goto continue_with_new_stack_frame;
1220 } else {
1221 BUG_ON(&initial_stack_frame != sf);
1222 }
1223
1224 return sf->error;
1225}
1226
e06baab4
SB
1227static void btrfsic_read_from_block_data(
1228 struct btrfsic_block_data_ctx *block_ctx,
1229 void *dstv, u32 offset, size_t len)
1230{
1231 size_t cur;
1232 size_t offset_in_page;
1233 char *kaddr;
1234 char *dst = (char *)dstv;
1235 size_t start_offset = block_ctx->start & ((u64)PAGE_CACHE_SIZE - 1);
1236 unsigned long i = (start_offset + offset) >> PAGE_CACHE_SHIFT;
1237
1238 WARN_ON(offset + len > block_ctx->len);
778746b5 1239 offset_in_page = (start_offset + offset) & (PAGE_CACHE_SIZE - 1);
e06baab4
SB
1240
1241 while (len > 0) {
1242 cur = min(len, ((size_t)PAGE_CACHE_SIZE - offset_in_page));
1243 BUG_ON(i >= (block_ctx->len + PAGE_CACHE_SIZE - 1) >>
1244 PAGE_CACHE_SHIFT);
1245 kaddr = block_ctx->datav[i];
1246 memcpy(dst, kaddr + offset_in_page, cur);
1247
1248 dst += cur;
1249 len -= cur;
1250 offset_in_page = 0;
1251 i++;
1252 }
1253}
1254
5db02760
SB
1255static int btrfsic_create_link_to_next_block(
1256 struct btrfsic_state *state,
1257 struct btrfsic_block *block,
1258 struct btrfsic_block_data_ctx *block_ctx,
1259 u64 next_bytenr,
1260 int limit_nesting,
1261 struct btrfsic_block_data_ctx *next_block_ctx,
1262 struct btrfsic_block **next_blockp,
1263 int force_iodone_flag,
1264 int *num_copiesp, int *mirror_nump,
1265 struct btrfs_disk_key *disk_key,
1266 u64 parent_generation)
1267{
1268 struct btrfsic_block *next_block = NULL;
1269 int ret;
1270 struct btrfsic_block_link *l;
1271 int did_alloc_block_link;
1272 int block_was_created;
1273
1274 *next_blockp = NULL;
1275 if (0 == *num_copiesp) {
1276 *num_copiesp =
5d964051 1277 btrfs_num_copies(state->root->fs_info,
e06baab4 1278 next_bytenr, state->metablock_size);
5db02760
SB
1279 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1280 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
c1c9ff7c 1281 next_bytenr, *num_copiesp);
5db02760
SB
1282 *mirror_nump = 1;
1283 }
1284
1285 if (*mirror_nump > *num_copiesp)
1286 return 0;
1287
1288 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1289 printk(KERN_INFO
1290 "btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1291 *mirror_nump);
1292 ret = btrfsic_map_block(state, next_bytenr,
e06baab4 1293 state->metablock_size,
5db02760
SB
1294 next_block_ctx, *mirror_nump);
1295 if (ret) {
1296 printk(KERN_INFO
1297 "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
c1c9ff7c 1298 next_bytenr, *mirror_nump);
5db02760
SB
1299 btrfsic_release_block_ctx(next_block_ctx);
1300 *next_blockp = NULL;
1301 return -1;
1302 }
1303
1304 next_block = btrfsic_block_lookup_or_add(state,
1305 next_block_ctx, "referenced ",
1306 1, force_iodone_flag,
1307 !force_iodone_flag,
1308 *mirror_nump,
1309 &block_was_created);
1310 if (NULL == next_block) {
1311 btrfsic_release_block_ctx(next_block_ctx);
1312 *next_blockp = NULL;
1313 return -1;
1314 }
1315 if (block_was_created) {
1316 l = NULL;
1317 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1318 } else {
1319 if (next_block->logical_bytenr != next_bytenr &&
1320 !(!next_block->is_metadata &&
1321 0 == next_block->logical_bytenr)) {
1322 printk(KERN_INFO
1323 "Referenced block @%llu (%s/%llu/%d)"
1324 " found in hash table, %c,"
1325 " bytenr mismatch (!= stored %llu).\n",
c1c9ff7c
GU
1326 next_bytenr, next_block_ctx->dev->name,
1327 next_block_ctx->dev_bytenr, *mirror_nump,
5db02760 1328 btrfsic_get_block_type(state, next_block),
c1c9ff7c 1329 next_block->logical_bytenr);
5db02760
SB
1330 } else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1331 printk(KERN_INFO
1332 "Referenced block @%llu (%s/%llu/%d)"
1333 " found in hash table, %c.\n",
c1c9ff7c
GU
1334 next_bytenr, next_block_ctx->dev->name,
1335 next_block_ctx->dev_bytenr, *mirror_nump,
5db02760
SB
1336 btrfsic_get_block_type(state, next_block));
1337 next_block->logical_bytenr = next_bytenr;
1338
1339 next_block->mirror_num = *mirror_nump;
1340 l = btrfsic_block_link_hashtable_lookup(
1341 next_block_ctx->dev->bdev,
1342 next_block_ctx->dev_bytenr,
1343 block_ctx->dev->bdev,
1344 block_ctx->dev_bytenr,
1345 &state->block_link_hashtable);
1346 }
1347
1348 next_block->disk_key = *disk_key;
1349 if (NULL == l) {
1350 l = btrfsic_block_link_alloc();
1351 if (NULL == l) {
1352 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
1353 btrfsic_release_block_ctx(next_block_ctx);
1354 *next_blockp = NULL;
1355 return -1;
1356 }
1357
1358 did_alloc_block_link = 1;
1359 l->block_ref_to = next_block;
1360 l->block_ref_from = block;
1361 l->ref_cnt = 1;
1362 l->parent_generation = parent_generation;
1363
1364 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1365 btrfsic_print_add_link(state, l);
1366
1367 list_add(&l->node_ref_to, &block->ref_to_list);
1368 list_add(&l->node_ref_from, &next_block->ref_from_list);
1369
1370 btrfsic_block_link_hashtable_add(l,
1371 &state->block_link_hashtable);
1372 } else {
1373 did_alloc_block_link = 0;
1374 if (0 == limit_nesting) {
1375 l->ref_cnt++;
1376 l->parent_generation = parent_generation;
1377 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1378 btrfsic_print_add_link(state, l);
1379 }
1380 }
1381
1382 if (limit_nesting > 0 && did_alloc_block_link) {
1383 ret = btrfsic_read_block(state, next_block_ctx);
e06baab4 1384 if (ret < (int)next_block_ctx->len) {
5db02760
SB
1385 printk(KERN_INFO
1386 "btrfsic: read block @logical %llu failed!\n",
c1c9ff7c 1387 next_bytenr);
5db02760
SB
1388 btrfsic_release_block_ctx(next_block_ctx);
1389 *next_blockp = NULL;
1390 return -1;
1391 }
1392
1393 *next_blockp = next_block;
1394 } else {
1395 *next_blockp = NULL;
1396 }
1397 (*mirror_nump)++;
1398
1399 return 0;
1400}
1401
1402static int btrfsic_handle_extent_data(
1403 struct btrfsic_state *state,
1404 struct btrfsic_block *block,
1405 struct btrfsic_block_data_ctx *block_ctx,
1406 u32 item_offset, int force_iodone_flag)
1407{
1408 int ret;
e06baab4
SB
1409 struct btrfs_file_extent_item file_extent_item;
1410 u64 file_extent_item_offset;
1411 u64 next_bytenr;
1412 u64 num_bytes;
1413 u64 generation;
5db02760
SB
1414 struct btrfsic_block_link *l;
1415
e06baab4
SB
1416 file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1417 item_offset;
86ff7ffc
SB
1418 if (file_extent_item_offset +
1419 offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1420 block_ctx->len) {
1421 printk(KERN_INFO
1422 "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1423 block_ctx->start, block_ctx->dev->name);
1424 return -1;
1425 }
1426
1427 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1428 file_extent_item_offset,
1429 offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1430 if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
3cae210f 1431 btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
86ff7ffc
SB
1432 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1433 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu\n",
1434 file_extent_item.type,
3cae210f
QW
1435 btrfs_stack_file_extent_disk_bytenr(
1436 &file_extent_item));
86ff7ffc
SB
1437 return 0;
1438 }
1439
e06baab4
SB
1440 if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1441 block_ctx->len) {
1442 printk(KERN_INFO
1443 "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1444 block_ctx->start, block_ctx->dev->name);
1445 return -1;
1446 }
1447 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1448 file_extent_item_offset,
1449 sizeof(struct btrfs_file_extent_item));
3cae210f
QW
1450 next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item) +
1451 btrfs_stack_file_extent_offset(&file_extent_item);
1452 generation = btrfs_stack_file_extent_generation(&file_extent_item);
1453 num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1454 generation = btrfs_stack_file_extent_generation(&file_extent_item);
e06baab4 1455
5db02760
SB
1456 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1457 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu,"
1458 " offset = %llu, num_bytes = %llu\n",
e06baab4 1459 file_extent_item.type,
3cae210f 1460 btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
3cae210f 1461 btrfs_stack_file_extent_offset(&file_extent_item),
c1c9ff7c 1462 num_bytes);
5db02760
SB
1463 while (num_bytes > 0) {
1464 u32 chunk_len;
1465 int num_copies;
1466 int mirror_num;
1467
e06baab4
SB
1468 if (num_bytes > state->datablock_size)
1469 chunk_len = state->datablock_size;
5db02760
SB
1470 else
1471 chunk_len = num_bytes;
1472
1473 num_copies =
5d964051 1474 btrfs_num_copies(state->root->fs_info,
e06baab4 1475 next_bytenr, state->datablock_size);
5db02760
SB
1476 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1477 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
c1c9ff7c 1478 next_bytenr, num_copies);
5db02760
SB
1479 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1480 struct btrfsic_block_data_ctx next_block_ctx;
1481 struct btrfsic_block *next_block;
1482 int block_was_created;
1483
1484 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1485 printk(KERN_INFO "btrfsic_handle_extent_data("
1486 "mirror_num=%d)\n", mirror_num);
1487 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1488 printk(KERN_INFO
1489 "\tdisk_bytenr = %llu, num_bytes %u\n",
c1c9ff7c 1490 next_bytenr, chunk_len);
5db02760
SB
1491 ret = btrfsic_map_block(state, next_bytenr,
1492 chunk_len, &next_block_ctx,
1493 mirror_num);
1494 if (ret) {
1495 printk(KERN_INFO
1496 "btrfsic: btrfsic_map_block(@%llu,"
1497 " mirror=%d) failed!\n",
c1c9ff7c 1498 next_bytenr, mirror_num);
5db02760
SB
1499 return -1;
1500 }
1501
1502 next_block = btrfsic_block_lookup_or_add(
1503 state,
1504 &next_block_ctx,
1505 "referenced ",
1506 0,
1507 force_iodone_flag,
1508 !force_iodone_flag,
1509 mirror_num,
1510 &block_was_created);
1511 if (NULL == next_block) {
1512 printk(KERN_INFO
1513 "btrfsic: error, kmalloc failed!\n");
1514 btrfsic_release_block_ctx(&next_block_ctx);
1515 return -1;
1516 }
1517 if (!block_was_created) {
1518 if (next_block->logical_bytenr != next_bytenr &&
1519 !(!next_block->is_metadata &&
1520 0 == next_block->logical_bytenr)) {
1521 printk(KERN_INFO
1522 "Referenced block"
1523 " @%llu (%s/%llu/%d)"
1524 " found in hash table, D,"
1525 " bytenr mismatch"
1526 " (!= stored %llu).\n",
c1c9ff7c 1527 next_bytenr,
5db02760 1528 next_block_ctx.dev->name,
5db02760
SB
1529 next_block_ctx.dev_bytenr,
1530 mirror_num,
5db02760
SB
1531 next_block->logical_bytenr);
1532 }
1533 next_block->logical_bytenr = next_bytenr;
1534 next_block->mirror_num = mirror_num;
1535 }
1536
1537 l = btrfsic_block_link_lookup_or_add(state,
1538 &next_block_ctx,
1539 next_block, block,
1540 generation);
1541 btrfsic_release_block_ctx(&next_block_ctx);
1542 if (NULL == l)
1543 return -1;
1544 }
1545
1546 next_bytenr += chunk_len;
1547 num_bytes -= chunk_len;
1548 }
1549
1550 return 0;
1551}
1552
1553static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1554 struct btrfsic_block_data_ctx *block_ctx_out,
1555 int mirror_num)
1556{
1557 int ret;
1558 u64 length;
1559 struct btrfs_bio *multi = NULL;
1560 struct btrfs_device *device;
1561
1562 length = len;
3ec706c8 1563 ret = btrfs_map_block(state->root->fs_info, READ,
5db02760
SB
1564 bytenr, &length, &multi, mirror_num);
1565
61891923
SB
1566 if (ret) {
1567 block_ctx_out->start = 0;
1568 block_ctx_out->dev_bytenr = 0;
1569 block_ctx_out->len = 0;
1570 block_ctx_out->dev = NULL;
1571 block_ctx_out->datav = NULL;
1572 block_ctx_out->pagev = NULL;
1573 block_ctx_out->mem_to_free = NULL;
1574
1575 return ret;
1576 }
1577
5db02760
SB
1578 device = multi->stripes[0].dev;
1579 block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
1580 block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1581 block_ctx_out->start = bytenr;
1582 block_ctx_out->len = len;
e06baab4
SB
1583 block_ctx_out->datav = NULL;
1584 block_ctx_out->pagev = NULL;
1585 block_ctx_out->mem_to_free = NULL;
5db02760 1586
61891923 1587 kfree(multi);
5db02760
SB
1588 if (NULL == block_ctx_out->dev) {
1589 ret = -ENXIO;
1590 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n");
1591 }
1592
1593 return ret;
1594}
1595
1596static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
1597 u32 len, struct block_device *bdev,
1598 struct btrfsic_block_data_ctx *block_ctx_out)
1599{
1600 block_ctx_out->dev = btrfsic_dev_state_lookup(bdev);
1601 block_ctx_out->dev_bytenr = bytenr;
1602 block_ctx_out->start = bytenr;
1603 block_ctx_out->len = len;
e06baab4
SB
1604 block_ctx_out->datav = NULL;
1605 block_ctx_out->pagev = NULL;
1606 block_ctx_out->mem_to_free = NULL;
5db02760
SB
1607 if (NULL != block_ctx_out->dev) {
1608 return 0;
1609 } else {
1610 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#2)!\n");
1611 return -ENXIO;
1612 }
1613}
1614
1615static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1616{
e06baab4
SB
1617 if (block_ctx->mem_to_free) {
1618 unsigned int num_pages;
1619
1620 BUG_ON(!block_ctx->datav);
1621 BUG_ON(!block_ctx->pagev);
1622 num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1623 PAGE_CACHE_SHIFT;
1624 while (num_pages > 0) {
1625 num_pages--;
1626 if (block_ctx->datav[num_pages]) {
1627 kunmap(block_ctx->pagev[num_pages]);
1628 block_ctx->datav[num_pages] = NULL;
1629 }
1630 if (block_ctx->pagev[num_pages]) {
1631 __free_page(block_ctx->pagev[num_pages]);
1632 block_ctx->pagev[num_pages] = NULL;
1633 }
1634 }
1635
1636 kfree(block_ctx->mem_to_free);
1637 block_ctx->mem_to_free = NULL;
1638 block_ctx->pagev = NULL;
1639 block_ctx->datav = NULL;
5db02760
SB
1640 }
1641}
1642
1643static int btrfsic_read_block(struct btrfsic_state *state,
1644 struct btrfsic_block_data_ctx *block_ctx)
1645{
e06baab4
SB
1646 unsigned int num_pages;
1647 unsigned int i;
1648 u64 dev_bytenr;
1649 int ret;
1650
1651 BUG_ON(block_ctx->datav);
1652 BUG_ON(block_ctx->pagev);
1653 BUG_ON(block_ctx->mem_to_free);
1654 if (block_ctx->dev_bytenr & ((u64)PAGE_CACHE_SIZE - 1)) {
5db02760
SB
1655 printk(KERN_INFO
1656 "btrfsic: read_block() with unaligned bytenr %llu\n",
c1c9ff7c 1657 block_ctx->dev_bytenr);
5db02760
SB
1658 return -1;
1659 }
e06baab4
SB
1660
1661 num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1662 PAGE_CACHE_SHIFT;
1663 block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) +
1664 sizeof(*block_ctx->pagev)) *
1665 num_pages, GFP_NOFS);
1666 if (!block_ctx->mem_to_free)
5db02760 1667 return -1;
e06baab4
SB
1668 block_ctx->datav = block_ctx->mem_to_free;
1669 block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1670 for (i = 0; i < num_pages; i++) {
1671 block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1672 if (!block_ctx->pagev[i])
1673 return -1;
5db02760
SB
1674 }
1675
e06baab4
SB
1676 dev_bytenr = block_ctx->dev_bytenr;
1677 for (i = 0; i < num_pages;) {
1678 struct bio *bio;
1679 unsigned int j;
1680 DECLARE_COMPLETION_ONSTACK(complete);
1681
9be3395b 1682 bio = btrfs_io_bio_alloc(GFP_NOFS, num_pages - i);
e06baab4
SB
1683 if (!bio) {
1684 printk(KERN_INFO
1685 "btrfsic: bio_alloc() for %u pages failed!\n",
1686 num_pages - i);
1687 return -1;
1688 }
1689 bio->bi_bdev = block_ctx->dev->bdev;
1690 bio->bi_sector = dev_bytenr >> 9;
1691 bio->bi_end_io = btrfsic_complete_bio_end_io;
1692 bio->bi_private = &complete;
1693
1694 for (j = i; j < num_pages; j++) {
1695 ret = bio_add_page(bio, block_ctx->pagev[j],
1696 PAGE_CACHE_SIZE, 0);
1697 if (PAGE_CACHE_SIZE != ret)
1698 break;
1699 }
1700 if (j == i) {
1701 printk(KERN_INFO
1702 "btrfsic: error, failed to add a single page!\n");
1703 return -1;
1704 }
1705 submit_bio(READ, bio);
1706
1707 /* this will also unplug the queue */
1708 wait_for_completion(&complete);
1709
1710 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1711 printk(KERN_INFO
1712 "btrfsic: read error at logical %llu dev %s!\n",
1713 block_ctx->start, block_ctx->dev->name);
1714 bio_put(bio);
1715 return -1;
1716 }
1717 bio_put(bio);
1718 dev_bytenr += (j - i) * PAGE_CACHE_SIZE;
1719 i = j;
1720 }
1721 for (i = 0; i < num_pages; i++) {
1722 block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1723 if (!block_ctx->datav[i]) {
1724 printk(KERN_INFO "btrfsic: kmap() failed (dev %s)!\n",
1725 block_ctx->dev->name);
1726 return -1;
1727 }
1728 }
5db02760
SB
1729
1730 return block_ctx->len;
1731}
1732
e06baab4
SB
1733static void btrfsic_complete_bio_end_io(struct bio *bio, int err)
1734{
1735 complete((struct completion *)bio->bi_private);
1736}
1737
5db02760
SB
1738static void btrfsic_dump_database(struct btrfsic_state *state)
1739{
1740 struct list_head *elem_all;
1741
1742 BUG_ON(NULL == state);
1743
1744 printk(KERN_INFO "all_blocks_list:\n");
1745 list_for_each(elem_all, &state->all_blocks_list) {
1746 const struct btrfsic_block *const b_all =
1747 list_entry(elem_all, struct btrfsic_block,
1748 all_blocks_node);
1749 struct list_head *elem_ref_to;
1750 struct list_head *elem_ref_from;
1751
1752 printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n",
1753 btrfsic_get_block_type(state, b_all),
c1c9ff7c
GU
1754 b_all->logical_bytenr, b_all->dev_state->name,
1755 b_all->dev_bytenr, b_all->mirror_num);
5db02760
SB
1756
1757 list_for_each(elem_ref_to, &b_all->ref_to_list) {
1758 const struct btrfsic_block_link *const l =
1759 list_entry(elem_ref_to,
1760 struct btrfsic_block_link,
1761 node_ref_to);
1762
1763 printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1764 " refers %u* to"
1765 " %c @%llu (%s/%llu/%d)\n",
1766 btrfsic_get_block_type(state, b_all),
c1c9ff7c
GU
1767 b_all->logical_bytenr, b_all->dev_state->name,
1768 b_all->dev_bytenr, b_all->mirror_num,
5db02760
SB
1769 l->ref_cnt,
1770 btrfsic_get_block_type(state, l->block_ref_to),
5db02760
SB
1771 l->block_ref_to->logical_bytenr,
1772 l->block_ref_to->dev_state->name,
c1c9ff7c 1773 l->block_ref_to->dev_bytenr,
5db02760
SB
1774 l->block_ref_to->mirror_num);
1775 }
1776
1777 list_for_each(elem_ref_from, &b_all->ref_from_list) {
1778 const struct btrfsic_block_link *const l =
1779 list_entry(elem_ref_from,
1780 struct btrfsic_block_link,
1781 node_ref_from);
1782
1783 printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1784 " is ref %u* from"
1785 " %c @%llu (%s/%llu/%d)\n",
1786 btrfsic_get_block_type(state, b_all),
c1c9ff7c
GU
1787 b_all->logical_bytenr, b_all->dev_state->name,
1788 b_all->dev_bytenr, b_all->mirror_num,
5db02760
SB
1789 l->ref_cnt,
1790 btrfsic_get_block_type(state, l->block_ref_from),
5db02760
SB
1791 l->block_ref_from->logical_bytenr,
1792 l->block_ref_from->dev_state->name,
5db02760
SB
1793 l->block_ref_from->dev_bytenr,
1794 l->block_ref_from->mirror_num);
1795 }
1796
1797 printk(KERN_INFO "\n");
1798 }
1799}
1800
1801/*
1802 * Test whether the disk block contains a tree block (leaf or node)
1803 * (note that this test fails for the super block)
1804 */
1805static int btrfsic_test_for_metadata(struct btrfsic_state *state,
e06baab4 1806 char **datav, unsigned int num_pages)
5db02760
SB
1807{
1808 struct btrfs_header *h;
1809 u8 csum[BTRFS_CSUM_SIZE];
1810 u32 crc = ~(u32)0;
e06baab4 1811 unsigned int i;
5db02760 1812
e06baab4
SB
1813 if (num_pages * PAGE_CACHE_SIZE < state->metablock_size)
1814 return 1; /* not metadata */
1815 num_pages = state->metablock_size >> PAGE_CACHE_SHIFT;
1816 h = (struct btrfs_header *)datav[0];
5db02760
SB
1817
1818 if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE))
e06baab4 1819 return 1;
5db02760 1820
e06baab4
SB
1821 for (i = 0; i < num_pages; i++) {
1822 u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1823 size_t sublen = i ? PAGE_CACHE_SIZE :
1824 (PAGE_CACHE_SIZE - BTRFS_CSUM_SIZE);
1825
1826 crc = crc32c(crc, data, sublen);
1827 }
5db02760
SB
1828 btrfs_csum_final(crc, csum);
1829 if (memcmp(csum, h->csum, state->csum_size))
e06baab4 1830 return 1;
5db02760 1831
e06baab4 1832 return 0; /* is metadata */
5db02760
SB
1833}
1834
1835static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
e06baab4
SB
1836 u64 dev_bytenr, char **mapped_datav,
1837 unsigned int num_pages,
1838 struct bio *bio, int *bio_is_patched,
5db02760
SB
1839 struct buffer_head *bh,
1840 int submit_bio_bh_rw)
1841{
1842 int is_metadata;
1843 struct btrfsic_block *block;
1844 struct btrfsic_block_data_ctx block_ctx;
1845 int ret;
1846 struct btrfsic_state *state = dev_state->state;
1847 struct block_device *bdev = dev_state->bdev;
e06baab4 1848 unsigned int processed_len;
5db02760 1849
5db02760
SB
1850 if (NULL != bio_is_patched)
1851 *bio_is_patched = 0;
1852
e06baab4
SB
1853again:
1854 if (num_pages == 0)
1855 return;
1856
1857 processed_len = 0;
1858 is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1859 num_pages));
1860
5db02760
SB
1861 block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1862 &state->block_hashtable);
1863 if (NULL != block) {
0b485143 1864 u64 bytenr = 0;
5db02760
SB
1865 struct list_head *elem_ref_to;
1866 struct list_head *tmp_ref_to;
1867
1868 if (block->is_superblock) {
3cae210f
QW
1869 bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1870 mapped_datav[0]);
e06baab4
SB
1871 if (num_pages * PAGE_CACHE_SIZE <
1872 BTRFS_SUPER_INFO_SIZE) {
1873 printk(KERN_INFO
1874 "btrfsic: cannot work with too short bios!\n");
1875 return;
1876 }
5db02760 1877 is_metadata = 1;
e06baab4
SB
1878 BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_CACHE_SIZE - 1));
1879 processed_len = BTRFS_SUPER_INFO_SIZE;
5db02760
SB
1880 if (state->print_mask &
1881 BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1882 printk(KERN_INFO
1883 "[before new superblock is written]:\n");
1884 btrfsic_dump_tree_sub(state, block, 0);
1885 }
1886 }
1887 if (is_metadata) {
1888 if (!block->is_superblock) {
e06baab4
SB
1889 if (num_pages * PAGE_CACHE_SIZE <
1890 state->metablock_size) {
1891 printk(KERN_INFO
1892 "btrfsic: cannot work with too short bios!\n");
1893 return;
1894 }
1895 processed_len = state->metablock_size;
3cae210f
QW
1896 bytenr = btrfs_stack_header_bytenr(
1897 (struct btrfs_header *)
1898 mapped_datav[0]);
5db02760
SB
1899 btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1900 dev_state,
e06baab4 1901 dev_bytenr);
5db02760 1902 }
301993a4
SB
1903 if (block->logical_bytenr != bytenr &&
1904 !(!block->is_metadata &&
1905 block->logical_bytenr == 0))
5db02760
SB
1906 printk(KERN_INFO
1907 "Written block @%llu (%s/%llu/%d)"
1908 " found in hash table, %c,"
1909 " bytenr mismatch"
1910 " (!= stored %llu).\n",
c1c9ff7c 1911 bytenr, dev_state->name, dev_bytenr,
5db02760
SB
1912 block->mirror_num,
1913 btrfsic_get_block_type(state, block),
5db02760 1914 block->logical_bytenr);
301993a4 1915 else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
5db02760
SB
1916 printk(KERN_INFO
1917 "Written block @%llu (%s/%llu/%d)"
1918 " found in hash table, %c.\n",
c1c9ff7c 1919 bytenr, dev_state->name, dev_bytenr,
5db02760
SB
1920 block->mirror_num,
1921 btrfsic_get_block_type(state, block));
301993a4 1922 block->logical_bytenr = bytenr;
5db02760 1923 } else {
e06baab4
SB
1924 if (num_pages * PAGE_CACHE_SIZE <
1925 state->datablock_size) {
1926 printk(KERN_INFO
1927 "btrfsic: cannot work with too short bios!\n");
1928 return;
1929 }
1930 processed_len = state->datablock_size;
5db02760
SB
1931 bytenr = block->logical_bytenr;
1932 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1933 printk(KERN_INFO
1934 "Written block @%llu (%s/%llu/%d)"
1935 " found in hash table, %c.\n",
c1c9ff7c 1936 bytenr, dev_state->name, dev_bytenr,
5db02760
SB
1937 block->mirror_num,
1938 btrfsic_get_block_type(state, block));
1939 }
1940
1941 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1942 printk(KERN_INFO
1943 "ref_to_list: %cE, ref_from_list: %cE\n",
1944 list_empty(&block->ref_to_list) ? ' ' : '!',
1945 list_empty(&block->ref_from_list) ? ' ' : '!');
1946 if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1947 printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1948 " @%llu (%s/%llu/%d), old(gen=%llu,"
1949 " objectid=%llu, type=%d, offset=%llu),"
1950 " new(gen=%llu),"
1951 " which is referenced by most recent superblock"
1952 " (superblockgen=%llu)!\n",
c1c9ff7c
GU
1953 btrfsic_get_block_type(state, block), bytenr,
1954 dev_state->name, dev_bytenr, block->mirror_num,
1955 block->generation,
3cae210f 1956 btrfs_disk_key_objectid(&block->disk_key),
5db02760 1957 block->disk_key.type,
3cae210f 1958 btrfs_disk_key_offset(&block->disk_key),
3cae210f
QW
1959 btrfs_stack_header_generation(
1960 (struct btrfs_header *) mapped_datav[0]),
5db02760
SB
1961 state->max_superblock_generation);
1962 btrfsic_dump_tree(state);
1963 }
1964
1965 if (!block->is_iodone && !block->never_written) {
1966 printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1967 " @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu,"
1968 " which is not yet iodone!\n",
c1c9ff7c
GU
1969 btrfsic_get_block_type(state, block), bytenr,
1970 dev_state->name, dev_bytenr, block->mirror_num,
1971 block->generation,
3cae210f
QW
1972 btrfs_stack_header_generation(
1973 (struct btrfs_header *)
1974 mapped_datav[0]));
5db02760
SB
1975 /* it would not be safe to go on */
1976 btrfsic_dump_tree(state);
e06baab4 1977 goto continue_loop;
5db02760
SB
1978 }
1979
1980 /*
1981 * Clear all references of this block. Do not free
1982 * the block itself even if is not referenced anymore
1983 * because it still carries valueable information
1984 * like whether it was ever written and IO completed.
1985 */
1986 list_for_each_safe(elem_ref_to, tmp_ref_to,
1987 &block->ref_to_list) {
1988 struct btrfsic_block_link *const l =
1989 list_entry(elem_ref_to,
1990 struct btrfsic_block_link,
1991 node_ref_to);
1992
1993 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1994 btrfsic_print_rem_link(state, l);
1995 l->ref_cnt--;
1996 if (0 == l->ref_cnt) {
1997 list_del(&l->node_ref_to);
1998 list_del(&l->node_ref_from);
1999 btrfsic_block_link_hashtable_remove(l);
2000 btrfsic_block_link_free(l);
2001 }
2002 }
2003
2004 if (block->is_superblock)
e06baab4
SB
2005 ret = btrfsic_map_superblock(state, bytenr,
2006 processed_len,
5db02760
SB
2007 bdev, &block_ctx);
2008 else
e06baab4 2009 ret = btrfsic_map_block(state, bytenr, processed_len,
5db02760
SB
2010 &block_ctx, 0);
2011 if (ret) {
2012 printk(KERN_INFO
2013 "btrfsic: btrfsic_map_block(root @%llu)"
c1c9ff7c 2014 " failed!\n", bytenr);
e06baab4 2015 goto continue_loop;
5db02760 2016 }
e06baab4 2017 block_ctx.datav = mapped_datav;
5db02760
SB
2018 /* the following is required in case of writes to mirrors,
2019 * use the same that was used for the lookup */
2020 block_ctx.dev = dev_state;
2021 block_ctx.dev_bytenr = dev_bytenr;
2022
2023 if (is_metadata || state->include_extent_data) {
2024 block->never_written = 0;
2025 block->iodone_w_error = 0;
2026 if (NULL != bio) {
2027 block->is_iodone = 0;
2028 BUG_ON(NULL == bio_is_patched);
2029 if (!*bio_is_patched) {
2030 block->orig_bio_bh_private =
2031 bio->bi_private;
2032 block->orig_bio_bh_end_io.bio =
2033 bio->bi_end_io;
2034 block->next_in_same_bio = NULL;
2035 bio->bi_private = block;
2036 bio->bi_end_io = btrfsic_bio_end_io;
2037 *bio_is_patched = 1;
2038 } else {
2039 struct btrfsic_block *chained_block =
2040 (struct btrfsic_block *)
2041 bio->bi_private;
2042
2043 BUG_ON(NULL == chained_block);
2044 block->orig_bio_bh_private =
2045 chained_block->orig_bio_bh_private;
2046 block->orig_bio_bh_end_io.bio =
2047 chained_block->orig_bio_bh_end_io.
2048 bio;
2049 block->next_in_same_bio = chained_block;
2050 bio->bi_private = block;
2051 }
2052 } else if (NULL != bh) {
2053 block->is_iodone = 0;
2054 block->orig_bio_bh_private = bh->b_private;
2055 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2056 block->next_in_same_bio = NULL;
2057 bh->b_private = block;
2058 bh->b_end_io = btrfsic_bh_end_io;
2059 } else {
2060 block->is_iodone = 1;
2061 block->orig_bio_bh_private = NULL;
2062 block->orig_bio_bh_end_io.bio = NULL;
2063 block->next_in_same_bio = NULL;
2064 }
2065 }
2066
2067 block->flush_gen = dev_state->last_flush_gen + 1;
2068 block->submit_bio_bh_rw = submit_bio_bh_rw;
2069 if (is_metadata) {
2070 block->logical_bytenr = bytenr;
2071 block->is_metadata = 1;
2072 if (block->is_superblock) {
e06baab4
SB
2073 BUG_ON(PAGE_CACHE_SIZE !=
2074 BTRFS_SUPER_INFO_SIZE);
5db02760
SB
2075 ret = btrfsic_process_written_superblock(
2076 state,
2077 block,
2078 (struct btrfs_super_block *)
e06baab4 2079 mapped_datav[0]);
5db02760
SB
2080 if (state->print_mask &
2081 BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
2082 printk(KERN_INFO
2083 "[after new superblock is written]:\n");
2084 btrfsic_dump_tree_sub(state, block, 0);
2085 }
2086 } else {
2087 block->mirror_num = 0; /* unknown */
2088 ret = btrfsic_process_metablock(
2089 state,
2090 block,
2091 &block_ctx,
5db02760
SB
2092 0, 0);
2093 }
2094 if (ret)
2095 printk(KERN_INFO
2096 "btrfsic: btrfsic_process_metablock"
2097 "(root @%llu) failed!\n",
c1c9ff7c 2098 dev_bytenr);
5db02760
SB
2099 } else {
2100 block->is_metadata = 0;
2101 block->mirror_num = 0; /* unknown */
2102 block->generation = BTRFSIC_GENERATION_UNKNOWN;
2103 if (!state->include_extent_data
2104 && list_empty(&block->ref_from_list)) {
2105 /*
2106 * disk block is overwritten with extent
2107 * data (not meta data) and we are configured
2108 * to not include extent data: take the
2109 * chance and free the block's memory
2110 */
2111 btrfsic_block_hashtable_remove(block);
2112 list_del(&block->all_blocks_node);
2113 btrfsic_block_free(block);
2114 }
2115 }
2116 btrfsic_release_block_ctx(&block_ctx);
2117 } else {
2118 /* block has not been found in hash table */
2119 u64 bytenr;
2120
2121 if (!is_metadata) {
e06baab4 2122 processed_len = state->datablock_size;
5db02760
SB
2123 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2124 printk(KERN_INFO "Written block (%s/%llu/?)"
2125 " !found in hash table, D.\n",
c1c9ff7c 2126 dev_state->name, dev_bytenr);
e06baab4
SB
2127 if (!state->include_extent_data) {
2128 /* ignore that written D block */
2129 goto continue_loop;
2130 }
5db02760
SB
2131
2132 /* this is getting ugly for the
2133 * include_extent_data case... */
2134 bytenr = 0; /* unknown */
2135 block_ctx.start = bytenr;
e06baab4
SB
2136 block_ctx.len = processed_len;
2137 block_ctx.mem_to_free = NULL;
2138 block_ctx.pagev = NULL;
5db02760 2139 } else {
e06baab4 2140 processed_len = state->metablock_size;
3cae210f
QW
2141 bytenr = btrfs_stack_header_bytenr(
2142 (struct btrfs_header *)
2143 mapped_datav[0]);
5db02760 2144 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
e06baab4 2145 dev_bytenr);
5db02760
SB
2146 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2147 printk(KERN_INFO
2148 "Written block @%llu (%s/%llu/?)"
2149 " !found in hash table, M.\n",
c1c9ff7c 2150 bytenr, dev_state->name, dev_bytenr);
5db02760 2151
e06baab4
SB
2152 ret = btrfsic_map_block(state, bytenr, processed_len,
2153 &block_ctx, 0);
5db02760
SB
2154 if (ret) {
2155 printk(KERN_INFO
2156 "btrfsic: btrfsic_map_block(root @%llu)"
2157 " failed!\n",
c1c9ff7c 2158 dev_bytenr);
e06baab4 2159 goto continue_loop;
5db02760
SB
2160 }
2161 }
e06baab4 2162 block_ctx.datav = mapped_datav;
5db02760
SB
2163 /* the following is required in case of writes to mirrors,
2164 * use the same that was used for the lookup */
2165 block_ctx.dev = dev_state;
2166 block_ctx.dev_bytenr = dev_bytenr;
2167
2168 block = btrfsic_block_alloc();
2169 if (NULL == block) {
2170 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2171 btrfsic_release_block_ctx(&block_ctx);
e06baab4 2172 goto continue_loop;
5db02760
SB
2173 }
2174 block->dev_state = dev_state;
2175 block->dev_bytenr = dev_bytenr;
2176 block->logical_bytenr = bytenr;
2177 block->is_metadata = is_metadata;
2178 block->never_written = 0;
2179 block->iodone_w_error = 0;
2180 block->mirror_num = 0; /* unknown */
2181 block->flush_gen = dev_state->last_flush_gen + 1;
2182 block->submit_bio_bh_rw = submit_bio_bh_rw;
2183 if (NULL != bio) {
2184 block->is_iodone = 0;
2185 BUG_ON(NULL == bio_is_patched);
2186 if (!*bio_is_patched) {
2187 block->orig_bio_bh_private = bio->bi_private;
2188 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2189 block->next_in_same_bio = NULL;
2190 bio->bi_private = block;
2191 bio->bi_end_io = btrfsic_bio_end_io;
2192 *bio_is_patched = 1;
2193 } else {
2194 struct btrfsic_block *chained_block =
2195 (struct btrfsic_block *)
2196 bio->bi_private;
2197
2198 BUG_ON(NULL == chained_block);
2199 block->orig_bio_bh_private =
2200 chained_block->orig_bio_bh_private;
2201 block->orig_bio_bh_end_io.bio =
2202 chained_block->orig_bio_bh_end_io.bio;
2203 block->next_in_same_bio = chained_block;
2204 bio->bi_private = block;
2205 }
2206 } else if (NULL != bh) {
2207 block->is_iodone = 0;
2208 block->orig_bio_bh_private = bh->b_private;
2209 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2210 block->next_in_same_bio = NULL;
2211 bh->b_private = block;
2212 bh->b_end_io = btrfsic_bh_end_io;
2213 } else {
2214 block->is_iodone = 1;
2215 block->orig_bio_bh_private = NULL;
2216 block->orig_bio_bh_end_io.bio = NULL;
2217 block->next_in_same_bio = NULL;
2218 }
2219 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2220 printk(KERN_INFO
2221 "New written %c-block @%llu (%s/%llu/%d)\n",
2222 is_metadata ? 'M' : 'D',
c1c9ff7c
GU
2223 block->logical_bytenr, block->dev_state->name,
2224 block->dev_bytenr, block->mirror_num);
5db02760
SB
2225 list_add(&block->all_blocks_node, &state->all_blocks_list);
2226 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2227
2228 if (is_metadata) {
2229 ret = btrfsic_process_metablock(state, block,
e06baab4 2230 &block_ctx, 0, 0);
5db02760
SB
2231 if (ret)
2232 printk(KERN_INFO
2233 "btrfsic: process_metablock(root @%llu)"
2234 " failed!\n",
c1c9ff7c 2235 dev_bytenr);
5db02760
SB
2236 }
2237 btrfsic_release_block_ctx(&block_ctx);
2238 }
e06baab4
SB
2239
2240continue_loop:
2241 BUG_ON(!processed_len);
2242 dev_bytenr += processed_len;
2243 mapped_datav += processed_len >> PAGE_CACHE_SHIFT;
2244 num_pages -= processed_len >> PAGE_CACHE_SHIFT;
2245 goto again;
5db02760
SB
2246}
2247
2248static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status)
2249{
2250 struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2251 int iodone_w_error;
2252
2253 /* mutex is not held! This is not save if IO is not yet completed
2254 * on umount */
2255 iodone_w_error = 0;
2256 if (bio_error_status)
2257 iodone_w_error = 1;
2258
2259 BUG_ON(NULL == block);
2260 bp->bi_private = block->orig_bio_bh_private;
2261 bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2262
2263 do {
2264 struct btrfsic_block *next_block;
2265 struct btrfsic_dev_state *const dev_state = block->dev_state;
2266
2267 if ((dev_state->state->print_mask &
2268 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2269 printk(KERN_INFO
2270 "bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2271 bio_error_status,
2272 btrfsic_get_block_type(dev_state->state, block),
c1c9ff7c
GU
2273 block->logical_bytenr, dev_state->name,
2274 block->dev_bytenr, block->mirror_num);
5db02760
SB
2275 next_block = block->next_in_same_bio;
2276 block->iodone_w_error = iodone_w_error;
2277 if (block->submit_bio_bh_rw & REQ_FLUSH) {
2278 dev_state->last_flush_gen++;
2279 if ((dev_state->state->print_mask &
2280 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2281 printk(KERN_INFO
2282 "bio_end_io() new %s flush_gen=%llu\n",
2283 dev_state->name,
5db02760
SB
2284 dev_state->last_flush_gen);
2285 }
2286 if (block->submit_bio_bh_rw & REQ_FUA)
2287 block->flush_gen = 0; /* FUA completed means block is
2288 * on disk */
2289 block->is_iodone = 1; /* for FLUSH, this releases the block */
2290 block = next_block;
2291 } while (NULL != block);
2292
2293 bp->bi_end_io(bp, bio_error_status);
2294}
2295
2296static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2297{
2298 struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2299 int iodone_w_error = !uptodate;
2300 struct btrfsic_dev_state *dev_state;
2301
2302 BUG_ON(NULL == block);
2303 dev_state = block->dev_state;
2304 if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2305 printk(KERN_INFO
2306 "bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2307 iodone_w_error,
2308 btrfsic_get_block_type(dev_state->state, block),
c1c9ff7c
GU
2309 block->logical_bytenr, block->dev_state->name,
2310 block->dev_bytenr, block->mirror_num);
5db02760
SB
2311
2312 block->iodone_w_error = iodone_w_error;
2313 if (block->submit_bio_bh_rw & REQ_FLUSH) {
2314 dev_state->last_flush_gen++;
2315 if ((dev_state->state->print_mask &
2316 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2317 printk(KERN_INFO
2318 "bh_end_io() new %s flush_gen=%llu\n",
c1c9ff7c 2319 dev_state->name, dev_state->last_flush_gen);
5db02760
SB
2320 }
2321 if (block->submit_bio_bh_rw & REQ_FUA)
2322 block->flush_gen = 0; /* FUA completed means block is on disk */
2323
2324 bh->b_private = block->orig_bio_bh_private;
2325 bh->b_end_io = block->orig_bio_bh_end_io.bh;
2326 block->is_iodone = 1; /* for FLUSH, this releases the block */
2327 bh->b_end_io(bh, uptodate);
2328}
2329
2330static int btrfsic_process_written_superblock(
2331 struct btrfsic_state *state,
2332 struct btrfsic_block *const superblock,
2333 struct btrfs_super_block *const super_hdr)
2334{
2335 int pass;
2336
2337 superblock->generation = btrfs_super_generation(super_hdr);
2338 if (!(superblock->generation > state->max_superblock_generation ||
2339 0 == state->max_superblock_generation)) {
2340 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2341 printk(KERN_INFO
2342 "btrfsic: superblock @%llu (%s/%llu/%d)"
2343 " with old gen %llu <= %llu\n",
c1c9ff7c 2344 superblock->logical_bytenr,
5db02760 2345 superblock->dev_state->name,
c1c9ff7c 2346 superblock->dev_bytenr, superblock->mirror_num,
5db02760 2347 btrfs_super_generation(super_hdr),
5db02760
SB
2348 state->max_superblock_generation);
2349 } else {
2350 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2351 printk(KERN_INFO
2352 "btrfsic: got new superblock @%llu (%s/%llu/%d)"
2353 " with new gen %llu > %llu\n",
c1c9ff7c 2354 superblock->logical_bytenr,
5db02760 2355 superblock->dev_state->name,
c1c9ff7c 2356 superblock->dev_bytenr, superblock->mirror_num,
5db02760 2357 btrfs_super_generation(super_hdr),
5db02760
SB
2358 state->max_superblock_generation);
2359
2360 state->max_superblock_generation =
2361 btrfs_super_generation(super_hdr);
2362 state->latest_superblock = superblock;
2363 }
2364
2365 for (pass = 0; pass < 3; pass++) {
2366 int ret;
2367 u64 next_bytenr;
2368 struct btrfsic_block *next_block;
2369 struct btrfsic_block_data_ctx tmp_next_block_ctx;
2370 struct btrfsic_block_link *l;
2371 int num_copies;
2372 int mirror_num;
2373 const char *additional_string = NULL;
35a3621b 2374 struct btrfs_disk_key tmp_disk_key = {0};
5db02760 2375
3cae210f
QW
2376 btrfs_set_disk_key_objectid(&tmp_disk_key,
2377 BTRFS_ROOT_ITEM_KEY);
2378 btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
5db02760
SB
2379
2380 switch (pass) {
2381 case 0:
3cae210f
QW
2382 btrfs_set_disk_key_objectid(&tmp_disk_key,
2383 BTRFS_ROOT_TREE_OBJECTID);
5db02760
SB
2384 additional_string = "root ";
2385 next_bytenr = btrfs_super_root(super_hdr);
2386 if (state->print_mask &
2387 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
c1c9ff7c 2388 printk(KERN_INFO "root@%llu\n", next_bytenr);
5db02760
SB
2389 break;
2390 case 1:
3cae210f
QW
2391 btrfs_set_disk_key_objectid(&tmp_disk_key,
2392 BTRFS_CHUNK_TREE_OBJECTID);
5db02760
SB
2393 additional_string = "chunk ";
2394 next_bytenr = btrfs_super_chunk_root(super_hdr);
2395 if (state->print_mask &
2396 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
c1c9ff7c 2397 printk(KERN_INFO "chunk@%llu\n", next_bytenr);
5db02760
SB
2398 break;
2399 case 2:
3cae210f
QW
2400 btrfs_set_disk_key_objectid(&tmp_disk_key,
2401 BTRFS_TREE_LOG_OBJECTID);
5db02760
SB
2402 additional_string = "log ";
2403 next_bytenr = btrfs_super_log_root(super_hdr);
2404 if (0 == next_bytenr)
2405 continue;
2406 if (state->print_mask &
2407 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
c1c9ff7c 2408 printk(KERN_INFO "log@%llu\n", next_bytenr);
5db02760
SB
2409 break;
2410 }
2411
2412 num_copies =
5d964051 2413 btrfs_num_copies(state->root->fs_info,
e06baab4 2414 next_bytenr, BTRFS_SUPER_INFO_SIZE);
5db02760
SB
2415 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2416 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
c1c9ff7c 2417 next_bytenr, num_copies);
5db02760
SB
2418 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2419 int was_created;
2420
2421 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2422 printk(KERN_INFO
2423 "btrfsic_process_written_superblock("
2424 "mirror_num=%d)\n", mirror_num);
e06baab4
SB
2425 ret = btrfsic_map_block(state, next_bytenr,
2426 BTRFS_SUPER_INFO_SIZE,
5db02760
SB
2427 &tmp_next_block_ctx,
2428 mirror_num);
2429 if (ret) {
2430 printk(KERN_INFO
2431 "btrfsic: btrfsic_map_block(@%llu,"
2432 " mirror=%d) failed!\n",
c1c9ff7c 2433 next_bytenr, mirror_num);
5db02760
SB
2434 return -1;
2435 }
2436
2437 next_block = btrfsic_block_lookup_or_add(
2438 state,
2439 &tmp_next_block_ctx,
2440 additional_string,
2441 1, 0, 1,
2442 mirror_num,
2443 &was_created);
2444 if (NULL == next_block) {
2445 printk(KERN_INFO
2446 "btrfsic: error, kmalloc failed!\n");
2447 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2448 return -1;
2449 }
2450
2451 next_block->disk_key = tmp_disk_key;
2452 if (was_created)
2453 next_block->generation =
2454 BTRFSIC_GENERATION_UNKNOWN;
2455 l = btrfsic_block_link_lookup_or_add(
2456 state,
2457 &tmp_next_block_ctx,
2458 next_block,
2459 superblock,
2460 BTRFSIC_GENERATION_UNKNOWN);
2461 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2462 if (NULL == l)
2463 return -1;
2464 }
2465 }
2466
fae7f21c 2467 if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
5db02760 2468 btrfsic_dump_tree(state);
5db02760
SB
2469
2470 return 0;
2471}
2472
2473static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2474 struct btrfsic_block *const block,
2475 int recursion_level)
2476{
2477 struct list_head *elem_ref_to;
2478 int ret = 0;
2479
2480 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2481 /*
2482 * Note that this situation can happen and does not
2483 * indicate an error in regular cases. It happens
2484 * when disk blocks are freed and later reused.
2485 * The check-integrity module is not aware of any
2486 * block free operations, it just recognizes block
2487 * write operations. Therefore it keeps the linkage
2488 * information for a block until a block is
2489 * rewritten. This can temporarily cause incorrect
2490 * and even circular linkage informations. This
2491 * causes no harm unless such blocks are referenced
2492 * by the most recent super block.
2493 */
2494 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2495 printk(KERN_INFO
2496 "btrfsic: abort cyclic linkage (case 1).\n");
2497
2498 return ret;
2499 }
2500
2501 /*
2502 * This algorithm is recursive because the amount of used stack
2503 * space is very small and the max recursion depth is limited.
2504 */
2505 list_for_each(elem_ref_to, &block->ref_to_list) {
2506 const struct btrfsic_block_link *const l =
2507 list_entry(elem_ref_to, struct btrfsic_block_link,
2508 node_ref_to);
2509
2510 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2511 printk(KERN_INFO
2512 "rl=%d, %c @%llu (%s/%llu/%d)"
2513 " %u* refers to %c @%llu (%s/%llu/%d)\n",
2514 recursion_level,
2515 btrfsic_get_block_type(state, block),
c1c9ff7c
GU
2516 block->logical_bytenr, block->dev_state->name,
2517 block->dev_bytenr, block->mirror_num,
5db02760
SB
2518 l->ref_cnt,
2519 btrfsic_get_block_type(state, l->block_ref_to),
5db02760
SB
2520 l->block_ref_to->logical_bytenr,
2521 l->block_ref_to->dev_state->name,
c1c9ff7c 2522 l->block_ref_to->dev_bytenr,
5db02760
SB
2523 l->block_ref_to->mirror_num);
2524 if (l->block_ref_to->never_written) {
2525 printk(KERN_INFO "btrfs: attempt to write superblock"
2526 " which references block %c @%llu (%s/%llu/%d)"
2527 " which is never written!\n",
2528 btrfsic_get_block_type(state, l->block_ref_to),
5db02760
SB
2529 l->block_ref_to->logical_bytenr,
2530 l->block_ref_to->dev_state->name,
c1c9ff7c 2531 l->block_ref_to->dev_bytenr,
5db02760
SB
2532 l->block_ref_to->mirror_num);
2533 ret = -1;
2534 } else if (!l->block_ref_to->is_iodone) {
2535 printk(KERN_INFO "btrfs: attempt to write superblock"
2536 " which references block %c @%llu (%s/%llu/%d)"
2537 " which is not yet iodone!\n",
2538 btrfsic_get_block_type(state, l->block_ref_to),
5db02760
SB
2539 l->block_ref_to->logical_bytenr,
2540 l->block_ref_to->dev_state->name,
c1c9ff7c 2541 l->block_ref_to->dev_bytenr,
5db02760
SB
2542 l->block_ref_to->mirror_num);
2543 ret = -1;
62856a9b
SB
2544 } else if (l->block_ref_to->iodone_w_error) {
2545 printk(KERN_INFO "btrfs: attempt to write superblock"
2546 " which references block %c @%llu (%s/%llu/%d)"
2547 " which has write error!\n",
2548 btrfsic_get_block_type(state, l->block_ref_to),
62856a9b
SB
2549 l->block_ref_to->logical_bytenr,
2550 l->block_ref_to->dev_state->name,
c1c9ff7c 2551 l->block_ref_to->dev_bytenr,
62856a9b
SB
2552 l->block_ref_to->mirror_num);
2553 ret = -1;
5db02760
SB
2554 } else if (l->parent_generation !=
2555 l->block_ref_to->generation &&
2556 BTRFSIC_GENERATION_UNKNOWN !=
2557 l->parent_generation &&
2558 BTRFSIC_GENERATION_UNKNOWN !=
2559 l->block_ref_to->generation) {
2560 printk(KERN_INFO "btrfs: attempt to write superblock"
2561 " which references block %c @%llu (%s/%llu/%d)"
2562 " with generation %llu !="
2563 " parent generation %llu!\n",
2564 btrfsic_get_block_type(state, l->block_ref_to),
5db02760
SB
2565 l->block_ref_to->logical_bytenr,
2566 l->block_ref_to->dev_state->name,
c1c9ff7c 2567 l->block_ref_to->dev_bytenr,
5db02760 2568 l->block_ref_to->mirror_num,
c1c9ff7c
GU
2569 l->block_ref_to->generation,
2570 l->parent_generation);
5db02760
SB
2571 ret = -1;
2572 } else if (l->block_ref_to->flush_gen >
2573 l->block_ref_to->dev_state->last_flush_gen) {
2574 printk(KERN_INFO "btrfs: attempt to write superblock"
2575 " which references block %c @%llu (%s/%llu/%d)"
2576 " which is not flushed out of disk's write cache"
2577 " (block flush_gen=%llu,"
2578 " dev->flush_gen=%llu)!\n",
2579 btrfsic_get_block_type(state, l->block_ref_to),
5db02760
SB
2580 l->block_ref_to->logical_bytenr,
2581 l->block_ref_to->dev_state->name,
c1c9ff7c
GU
2582 l->block_ref_to->dev_bytenr,
2583 l->block_ref_to->mirror_num, block->flush_gen,
5db02760
SB
2584 l->block_ref_to->dev_state->last_flush_gen);
2585 ret = -1;
2586 } else if (-1 == btrfsic_check_all_ref_blocks(state,
2587 l->block_ref_to,
2588 recursion_level +
2589 1)) {
2590 ret = -1;
2591 }
2592 }
2593
2594 return ret;
2595}
2596
2597static int btrfsic_is_block_ref_by_superblock(
2598 const struct btrfsic_state *state,
2599 const struct btrfsic_block *block,
2600 int recursion_level)
2601{
2602 struct list_head *elem_ref_from;
2603
2604 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2605 /* refer to comment at "abort cyclic linkage (case 1)" */
2606 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2607 printk(KERN_INFO
2608 "btrfsic: abort cyclic linkage (case 2).\n");
2609
2610 return 0;
2611 }
2612
2613 /*
2614 * This algorithm is recursive because the amount of used stack space
2615 * is very small and the max recursion depth is limited.
2616 */
2617 list_for_each(elem_ref_from, &block->ref_from_list) {
2618 const struct btrfsic_block_link *const l =
2619 list_entry(elem_ref_from, struct btrfsic_block_link,
2620 node_ref_from);
2621
2622 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2623 printk(KERN_INFO
2624 "rl=%d, %c @%llu (%s/%llu/%d)"
2625 " is ref %u* from %c @%llu (%s/%llu/%d)\n",
2626 recursion_level,
2627 btrfsic_get_block_type(state, block),
c1c9ff7c
GU
2628 block->logical_bytenr, block->dev_state->name,
2629 block->dev_bytenr, block->mirror_num,
5db02760
SB
2630 l->ref_cnt,
2631 btrfsic_get_block_type(state, l->block_ref_from),
5db02760
SB
2632 l->block_ref_from->logical_bytenr,
2633 l->block_ref_from->dev_state->name,
5db02760
SB
2634 l->block_ref_from->dev_bytenr,
2635 l->block_ref_from->mirror_num);
2636 if (l->block_ref_from->is_superblock &&
2637 state->latest_superblock->dev_bytenr ==
2638 l->block_ref_from->dev_bytenr &&
2639 state->latest_superblock->dev_state->bdev ==
2640 l->block_ref_from->dev_state->bdev)
2641 return 1;
2642 else if (btrfsic_is_block_ref_by_superblock(state,
2643 l->block_ref_from,
2644 recursion_level +
2645 1))
2646 return 1;
2647 }
2648
2649 return 0;
2650}
2651
2652static void btrfsic_print_add_link(const struct btrfsic_state *state,
2653 const struct btrfsic_block_link *l)
2654{
2655 printk(KERN_INFO
2656 "Add %u* link from %c @%llu (%s/%llu/%d)"
2657 " to %c @%llu (%s/%llu/%d).\n",
2658 l->ref_cnt,
2659 btrfsic_get_block_type(state, l->block_ref_from),
c1c9ff7c 2660 l->block_ref_from->logical_bytenr,
5db02760 2661 l->block_ref_from->dev_state->name,
c1c9ff7c 2662 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
5db02760 2663 btrfsic_get_block_type(state, l->block_ref_to),
c1c9ff7c
GU
2664 l->block_ref_to->logical_bytenr,
2665 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
5db02760
SB
2666 l->block_ref_to->mirror_num);
2667}
2668
2669static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2670 const struct btrfsic_block_link *l)
2671{
2672 printk(KERN_INFO
2673 "Rem %u* link from %c @%llu (%s/%llu/%d)"
2674 " to %c @%llu (%s/%llu/%d).\n",
2675 l->ref_cnt,
2676 btrfsic_get_block_type(state, l->block_ref_from),
c1c9ff7c 2677 l->block_ref_from->logical_bytenr,
5db02760 2678 l->block_ref_from->dev_state->name,
c1c9ff7c 2679 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
5db02760 2680 btrfsic_get_block_type(state, l->block_ref_to),
c1c9ff7c
GU
2681 l->block_ref_to->logical_bytenr,
2682 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
5db02760
SB
2683 l->block_ref_to->mirror_num);
2684}
2685
2686static char btrfsic_get_block_type(const struct btrfsic_state *state,
2687 const struct btrfsic_block *block)
2688{
2689 if (block->is_superblock &&
2690 state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2691 state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2692 return 'S';
2693 else if (block->is_superblock)
2694 return 's';
2695 else if (block->is_metadata)
2696 return 'M';
2697 else
2698 return 'D';
2699}
2700
2701static void btrfsic_dump_tree(const struct btrfsic_state *state)
2702{
2703 btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2704}
2705
2706static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2707 const struct btrfsic_block *block,
2708 int indent_level)
2709{
2710 struct list_head *elem_ref_to;
2711 int indent_add;
2712 static char buf[80];
2713 int cursor_position;
2714
2715 /*
2716 * Should better fill an on-stack buffer with a complete line and
2717 * dump it at once when it is time to print a newline character.
2718 */
2719
2720 /*
2721 * This algorithm is recursive because the amount of used stack space
2722 * is very small and the max recursion depth is limited.
2723 */
2724 indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)",
2725 btrfsic_get_block_type(state, block),
c1c9ff7c
GU
2726 block->logical_bytenr, block->dev_state->name,
2727 block->dev_bytenr, block->mirror_num);
5db02760
SB
2728 if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2729 printk("[...]\n");
2730 return;
2731 }
2732 printk(buf);
2733 indent_level += indent_add;
2734 if (list_empty(&block->ref_to_list)) {
2735 printk("\n");
2736 return;
2737 }
2738 if (block->mirror_num > 1 &&
2739 !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2740 printk(" [...]\n");
2741 return;
2742 }
2743
2744 cursor_position = indent_level;
2745 list_for_each(elem_ref_to, &block->ref_to_list) {
2746 const struct btrfsic_block_link *const l =
2747 list_entry(elem_ref_to, struct btrfsic_block_link,
2748 node_ref_to);
2749
2750 while (cursor_position < indent_level) {
2751 printk(" ");
2752 cursor_position++;
2753 }
2754 if (l->ref_cnt > 1)
2755 indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2756 else
2757 indent_add = sprintf(buf, " --> ");
2758 if (indent_level + indent_add >
2759 BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2760 printk("[...]\n");
2761 cursor_position = 0;
2762 continue;
2763 }
2764
2765 printk(buf);
2766
2767 btrfsic_dump_tree_sub(state, l->block_ref_to,
2768 indent_level + indent_add);
2769 cursor_position = 0;
2770 }
2771}
2772
2773static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2774 struct btrfsic_state *state,
2775 struct btrfsic_block_data_ctx *next_block_ctx,
2776 struct btrfsic_block *next_block,
2777 struct btrfsic_block *from_block,
2778 u64 parent_generation)
2779{
2780 struct btrfsic_block_link *l;
2781
2782 l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2783 next_block_ctx->dev_bytenr,
2784 from_block->dev_state->bdev,
2785 from_block->dev_bytenr,
2786 &state->block_link_hashtable);
2787 if (NULL == l) {
2788 l = btrfsic_block_link_alloc();
2789 if (NULL == l) {
2790 printk(KERN_INFO
2791 "btrfsic: error, kmalloc" " failed!\n");
2792 return NULL;
2793 }
2794
2795 l->block_ref_to = next_block;
2796 l->block_ref_from = from_block;
2797 l->ref_cnt = 1;
2798 l->parent_generation = parent_generation;
2799
2800 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2801 btrfsic_print_add_link(state, l);
2802
2803 list_add(&l->node_ref_to, &from_block->ref_to_list);
2804 list_add(&l->node_ref_from, &next_block->ref_from_list);
2805
2806 btrfsic_block_link_hashtable_add(l,
2807 &state->block_link_hashtable);
2808 } else {
2809 l->ref_cnt++;
2810 l->parent_generation = parent_generation;
2811 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2812 btrfsic_print_add_link(state, l);
2813 }
2814
2815 return l;
2816}
2817
2818static struct btrfsic_block *btrfsic_block_lookup_or_add(
2819 struct btrfsic_state *state,
2820 struct btrfsic_block_data_ctx *block_ctx,
2821 const char *additional_string,
2822 int is_metadata,
2823 int is_iodone,
2824 int never_written,
2825 int mirror_num,
2826 int *was_created)
2827{
2828 struct btrfsic_block *block;
2829
2830 block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2831 block_ctx->dev_bytenr,
2832 &state->block_hashtable);
2833 if (NULL == block) {
2834 struct btrfsic_dev_state *dev_state;
2835
2836 block = btrfsic_block_alloc();
2837 if (NULL == block) {
2838 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2839 return NULL;
2840 }
2841 dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
2842 if (NULL == dev_state) {
2843 printk(KERN_INFO
2844 "btrfsic: error, lookup dev_state failed!\n");
2845 btrfsic_block_free(block);
2846 return NULL;
2847 }
2848 block->dev_state = dev_state;
2849 block->dev_bytenr = block_ctx->dev_bytenr;
2850 block->logical_bytenr = block_ctx->start;
2851 block->is_metadata = is_metadata;
2852 block->is_iodone = is_iodone;
2853 block->never_written = never_written;
2854 block->mirror_num = mirror_num;
2855 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2856 printk(KERN_INFO
2857 "New %s%c-block @%llu (%s/%llu/%d)\n",
2858 additional_string,
2859 btrfsic_get_block_type(state, block),
c1c9ff7c
GU
2860 block->logical_bytenr, dev_state->name,
2861 block->dev_bytenr, mirror_num);
5db02760
SB
2862 list_add(&block->all_blocks_node, &state->all_blocks_list);
2863 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2864 if (NULL != was_created)
2865 *was_created = 1;
2866 } else {
2867 if (NULL != was_created)
2868 *was_created = 0;
2869 }
2870
2871 return block;
2872}
2873
2874static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2875 u64 bytenr,
2876 struct btrfsic_dev_state *dev_state,
e06baab4 2877 u64 dev_bytenr)
5db02760
SB
2878{
2879 int num_copies;
2880 int mirror_num;
2881 int ret;
2882 struct btrfsic_block_data_ctx block_ctx;
2883 int match = 0;
2884
5d964051 2885 num_copies = btrfs_num_copies(state->root->fs_info,
e06baab4 2886 bytenr, state->metablock_size);
5db02760
SB
2887
2888 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
e06baab4 2889 ret = btrfsic_map_block(state, bytenr, state->metablock_size,
5db02760
SB
2890 &block_ctx, mirror_num);
2891 if (ret) {
2892 printk(KERN_INFO "btrfsic:"
2893 " btrfsic_map_block(logical @%llu,"
2894 " mirror %d) failed!\n",
c1c9ff7c 2895 bytenr, mirror_num);
5db02760
SB
2896 continue;
2897 }
2898
2899 if (dev_state->bdev == block_ctx.dev->bdev &&
2900 dev_bytenr == block_ctx.dev_bytenr) {
2901 match++;
2902 btrfsic_release_block_ctx(&block_ctx);
2903 break;
2904 }
2905 btrfsic_release_block_ctx(&block_ctx);
2906 }
2907
fae7f21c 2908 if (WARN_ON(!match)) {
5db02760
SB
2909 printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio,"
2910 " buffer->log_bytenr=%llu, submit_bio(bdev=%s,"
2911 " phys_bytenr=%llu)!\n",
c1c9ff7c 2912 bytenr, dev_state->name, dev_bytenr);
5db02760 2913 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
e06baab4
SB
2914 ret = btrfsic_map_block(state, bytenr,
2915 state->metablock_size,
5db02760
SB
2916 &block_ctx, mirror_num);
2917 if (ret)
2918 continue;
2919
2920 printk(KERN_INFO "Read logical bytenr @%llu maps to"
2921 " (%s/%llu/%d)\n",
c1c9ff7c
GU
2922 bytenr, block_ctx.dev->name,
2923 block_ctx.dev_bytenr, mirror_num);
5db02760 2924 }
5db02760
SB
2925 }
2926}
2927
2928static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
2929 struct block_device *bdev)
2930{
2931 struct btrfsic_dev_state *ds;
2932
2933 ds = btrfsic_dev_state_hashtable_lookup(bdev,
2934 &btrfsic_dev_state_hashtable);
2935 return ds;
2936}
2937
2938int btrfsic_submit_bh(int rw, struct buffer_head *bh)
2939{
2940 struct btrfsic_dev_state *dev_state;
2941
2942 if (!btrfsic_is_initialized)
2943 return submit_bh(rw, bh);
2944
2945 mutex_lock(&btrfsic_mutex);
2946 /* since btrfsic_submit_bh() might also be called before
2947 * btrfsic_mount(), this might return NULL */
2948 dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
2949
2950 /* Only called to write the superblock (incl. FLUSH/FUA) */
2951 if (NULL != dev_state &&
2952 (rw & WRITE) && bh->b_size > 0) {
2953 u64 dev_bytenr;
2954
2955 dev_bytenr = 4096 * bh->b_blocknr;
2956 if (dev_state->state->print_mask &
2957 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2958 printk(KERN_INFO
fce29364 2959 "submit_bh(rw=0x%x, blocknr=%llu (bytenr %llu),"
8d78eb16 2960 " size=%zu, data=%p, bdev=%p)\n",
fce29364 2961 rw, (unsigned long long)bh->b_blocknr,
8d78eb16 2962 dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev);
5db02760 2963 btrfsic_process_written_block(dev_state, dev_bytenr,
e06baab4 2964 &bh->b_data, 1, NULL,
5db02760
SB
2965 NULL, bh, rw);
2966 } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
2967 if (dev_state->state->print_mask &
2968 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2969 printk(KERN_INFO
e06baab4 2970 "submit_bh(rw=0x%x FLUSH, bdev=%p)\n",
5db02760
SB
2971 rw, bh->b_bdev);
2972 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2973 if ((dev_state->state->print_mask &
2974 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2975 BTRFSIC_PRINT_MASK_VERBOSE)))
2976 printk(KERN_INFO
2977 "btrfsic_submit_bh(%s) with FLUSH"
2978 " but dummy block already in use"
2979 " (ignored)!\n",
2980 dev_state->name);
2981 } else {
2982 struct btrfsic_block *const block =
2983 &dev_state->dummy_block_for_bio_bh_flush;
2984
2985 block->is_iodone = 0;
2986 block->never_written = 0;
2987 block->iodone_w_error = 0;
2988 block->flush_gen = dev_state->last_flush_gen + 1;
2989 block->submit_bio_bh_rw = rw;
2990 block->orig_bio_bh_private = bh->b_private;
2991 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2992 block->next_in_same_bio = NULL;
2993 bh->b_private = block;
2994 bh->b_end_io = btrfsic_bh_end_io;
2995 }
2996 }
2997 mutex_unlock(&btrfsic_mutex);
2998 return submit_bh(rw, bh);
2999}
3000
3001void btrfsic_submit_bio(int rw, struct bio *bio)
3002{
3003 struct btrfsic_dev_state *dev_state;
3004
3005 if (!btrfsic_is_initialized) {
3006 submit_bio(rw, bio);
3007 return;
3008 }
3009
3010 mutex_lock(&btrfsic_mutex);
3011 /* since btrfsic_submit_bio() is also called before
3012 * btrfsic_mount(), this might return NULL */
3013 dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
3014 if (NULL != dev_state &&
3015 (rw & WRITE) && NULL != bio->bi_io_vec) {
3016 unsigned int i;
3017 u64 dev_bytenr;
3018 int bio_is_patched;
e06baab4 3019 char **mapped_datav;
5db02760
SB
3020
3021 dev_bytenr = 512 * bio->bi_sector;
3022 bio_is_patched = 0;
3023 if (dev_state->state->print_mask &
3024 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3025 printk(KERN_INFO
3026 "submit_bio(rw=0x%x, bi_vcnt=%u,"
fce29364
GU
3027 " bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n",
3028 rw, bio->bi_vcnt,
3029 (unsigned long long)bio->bi_sector, dev_bytenr,
3030 bio->bi_bdev);
5db02760 3031
e06baab4
SB
3032 mapped_datav = kmalloc(sizeof(*mapped_datav) * bio->bi_vcnt,
3033 GFP_NOFS);
3034 if (!mapped_datav)
3035 goto leave;
5db02760 3036 for (i = 0; i < bio->bi_vcnt; i++) {
e06baab4
SB
3037 BUG_ON(bio->bi_io_vec[i].bv_len != PAGE_CACHE_SIZE);
3038 mapped_datav[i] = kmap(bio->bi_io_vec[i].bv_page);
3039 if (!mapped_datav[i]) {
3040 while (i > 0) {
3041 i--;
3042 kunmap(bio->bi_io_vec[i].bv_page);
3043 }
3044 kfree(mapped_datav);
3045 goto leave;
3046 }
5db02760
SB
3047 if ((BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3048 BTRFSIC_PRINT_MASK_VERBOSE) ==
3049 (dev_state->state->print_mask &
3050 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3051 BTRFSIC_PRINT_MASK_VERBOSE)))
3052 printk(KERN_INFO
e06baab4 3053 "#%u: page=%p, len=%u, offset=%u\n",
5db02760 3054 i, bio->bi_io_vec[i].bv_page,
5db02760
SB
3055 bio->bi_io_vec[i].bv_len,
3056 bio->bi_io_vec[i].bv_offset);
e06baab4
SB
3057 }
3058 btrfsic_process_written_block(dev_state, dev_bytenr,
3059 mapped_datav, bio->bi_vcnt,
3060 bio, &bio_is_patched,
3061 NULL, rw);
3062 while (i > 0) {
3063 i--;
5db02760 3064 kunmap(bio->bi_io_vec[i].bv_page);
5db02760 3065 }
e06baab4 3066 kfree(mapped_datav);
5db02760
SB
3067 } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
3068 if (dev_state->state->print_mask &
3069 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3070 printk(KERN_INFO
e06baab4 3071 "submit_bio(rw=0x%x FLUSH, bdev=%p)\n",
5db02760
SB
3072 rw, bio->bi_bdev);
3073 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
3074 if ((dev_state->state->print_mask &
3075 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3076 BTRFSIC_PRINT_MASK_VERBOSE)))
3077 printk(KERN_INFO
3078 "btrfsic_submit_bio(%s) with FLUSH"
3079 " but dummy block already in use"
3080 " (ignored)!\n",
3081 dev_state->name);
3082 } else {
3083 struct btrfsic_block *const block =
3084 &dev_state->dummy_block_for_bio_bh_flush;
3085
3086 block->is_iodone = 0;
3087 block->never_written = 0;
3088 block->iodone_w_error = 0;
3089 block->flush_gen = dev_state->last_flush_gen + 1;
3090 block->submit_bio_bh_rw = rw;
3091 block->orig_bio_bh_private = bio->bi_private;
3092 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
3093 block->next_in_same_bio = NULL;
3094 bio->bi_private = block;
3095 bio->bi_end_io = btrfsic_bio_end_io;
3096 }
3097 }
e06baab4 3098leave:
5db02760
SB
3099 mutex_unlock(&btrfsic_mutex);
3100
3101 submit_bio(rw, bio);
3102}
3103
3104int btrfsic_mount(struct btrfs_root *root,
3105 struct btrfs_fs_devices *fs_devices,
3106 int including_extent_data, u32 print_mask)
3107{
3108 int ret;
3109 struct btrfsic_state *state;
3110 struct list_head *dev_head = &fs_devices->devices;
3111 struct btrfs_device *device;
3112
e06baab4
SB
3113 if (root->nodesize != root->leafsize) {
3114 printk(KERN_INFO
3115 "btrfsic: cannot handle nodesize %d != leafsize %d!\n",
3116 root->nodesize, root->leafsize);
3117 return -1;
3118 }
3119 if (root->nodesize & ((u64)PAGE_CACHE_SIZE - 1)) {
3120 printk(KERN_INFO
3121 "btrfsic: cannot handle nodesize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
778746b5 3122 root->nodesize, PAGE_CACHE_SIZE);
e06baab4
SB
3123 return -1;
3124 }
3125 if (root->leafsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3126 printk(KERN_INFO
3127 "btrfsic: cannot handle leafsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
778746b5 3128 root->leafsize, PAGE_CACHE_SIZE);
e06baab4
SB
3129 return -1;
3130 }
3131 if (root->sectorsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3132 printk(KERN_INFO
3133 "btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
778746b5 3134 root->sectorsize, PAGE_CACHE_SIZE);
e06baab4
SB
3135 return -1;
3136 }
5db02760
SB
3137 state = kzalloc(sizeof(*state), GFP_NOFS);
3138 if (NULL == state) {
3139 printk(KERN_INFO "btrfs check-integrity: kmalloc() failed!\n");
3140 return -1;
3141 }
3142
3143 if (!btrfsic_is_initialized) {
3144 mutex_init(&btrfsic_mutex);
3145 btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
3146 btrfsic_is_initialized = 1;
3147 }
3148 mutex_lock(&btrfsic_mutex);
3149 state->root = root;
3150 state->print_mask = print_mask;
3151 state->include_extent_data = including_extent_data;
3152 state->csum_size = 0;
e06baab4
SB
3153 state->metablock_size = root->nodesize;
3154 state->datablock_size = root->sectorsize;
5db02760
SB
3155 INIT_LIST_HEAD(&state->all_blocks_list);
3156 btrfsic_block_hashtable_init(&state->block_hashtable);
3157 btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
3158 state->max_superblock_generation = 0;
3159 state->latest_superblock = NULL;
3160
3161 list_for_each_entry(device, dev_head, dev_list) {
3162 struct btrfsic_dev_state *ds;
3163 char *p;
3164
3165 if (!device->bdev || !device->name)
3166 continue;
3167
3168 ds = btrfsic_dev_state_alloc();
3169 if (NULL == ds) {
3170 printk(KERN_INFO
3171 "btrfs check-integrity: kmalloc() failed!\n");
3172 mutex_unlock(&btrfsic_mutex);
3173 return -1;
3174 }
3175 ds->bdev = device->bdev;
3176 ds->state = state;
3177 bdevname(ds->bdev, ds->name);
3178 ds->name[BDEVNAME_SIZE - 1] = '\0';
3179 for (p = ds->name; *p != '\0'; p++);
3180 while (p > ds->name && *p != '/')
3181 p--;
3182 if (*p == '/')
3183 p++;
3184 strlcpy(ds->name, p, sizeof(ds->name));
3185 btrfsic_dev_state_hashtable_add(ds,
3186 &btrfsic_dev_state_hashtable);
3187 }
3188
3189 ret = btrfsic_process_superblock(state, fs_devices);
3190 if (0 != ret) {
3191 mutex_unlock(&btrfsic_mutex);
3192 btrfsic_unmount(root, fs_devices);
3193 return ret;
3194 }
3195
3196 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
3197 btrfsic_dump_database(state);
3198 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
3199 btrfsic_dump_tree(state);
3200
3201 mutex_unlock(&btrfsic_mutex);
3202 return 0;
3203}
3204
3205void btrfsic_unmount(struct btrfs_root *root,
3206 struct btrfs_fs_devices *fs_devices)
3207{
3208 struct list_head *elem_all;
3209 struct list_head *tmp_all;
3210 struct btrfsic_state *state;
3211 struct list_head *dev_head = &fs_devices->devices;
3212 struct btrfs_device *device;
3213
3214 if (!btrfsic_is_initialized)
3215 return;
3216
3217 mutex_lock(&btrfsic_mutex);
3218
3219 state = NULL;
3220 list_for_each_entry(device, dev_head, dev_list) {
3221 struct btrfsic_dev_state *ds;
3222
3223 if (!device->bdev || !device->name)
3224 continue;
3225
3226 ds = btrfsic_dev_state_hashtable_lookup(
3227 device->bdev,
3228 &btrfsic_dev_state_hashtable);
3229 if (NULL != ds) {
3230 state = ds->state;
3231 btrfsic_dev_state_hashtable_remove(ds);
3232 btrfsic_dev_state_free(ds);
3233 }
3234 }
3235
3236 if (NULL == state) {
3237 printk(KERN_INFO
3238 "btrfsic: error, cannot find state information"
3239 " on umount!\n");
3240 mutex_unlock(&btrfsic_mutex);
3241 return;
3242 }
3243
3244 /*
3245 * Don't care about keeping the lists' state up to date,
3246 * just free all memory that was allocated dynamically.
3247 * Free the blocks and the block_links.
3248 */
3249 list_for_each_safe(elem_all, tmp_all, &state->all_blocks_list) {
3250 struct btrfsic_block *const b_all =
3251 list_entry(elem_all, struct btrfsic_block,
3252 all_blocks_node);
3253 struct list_head *elem_ref_to;
3254 struct list_head *tmp_ref_to;
3255
3256 list_for_each_safe(elem_ref_to, tmp_ref_to,
3257 &b_all->ref_to_list) {
3258 struct btrfsic_block_link *const l =
3259 list_entry(elem_ref_to,
3260 struct btrfsic_block_link,
3261 node_ref_to);
3262
3263 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3264 btrfsic_print_rem_link(state, l);
3265
3266 l->ref_cnt--;
3267 if (0 == l->ref_cnt)
3268 btrfsic_block_link_free(l);
3269 }
3270
48235a68 3271 if (b_all->is_iodone || b_all->never_written)
5db02760
SB
3272 btrfsic_block_free(b_all);
3273 else
3274 printk(KERN_INFO "btrfs: attempt to free %c-block"
3275 " @%llu (%s/%llu/%d) on umount which is"
3276 " not yet iodone!\n",
3277 btrfsic_get_block_type(state, b_all),
c1c9ff7c
GU
3278 b_all->logical_bytenr, b_all->dev_state->name,
3279 b_all->dev_bytenr, b_all->mirror_num);
5db02760
SB
3280 }
3281
3282 mutex_unlock(&btrfsic_mutex);
3283
3284 kfree(state);
3285}
This page took 0.328421 seconds and 5 git commands to generate.