btrfs: remove unused parameter blocksize from btrfs_find_tree_block
[deliverable/linux.git] / fs / btrfs / ctree.c
CommitLineData
6cbd5570 1/*
d352ac68 2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6cbd5570
CM
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a6b6e75e 19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
bd989ba3 21#include <linux/rbtree.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
7f5c1516 24#include "transaction.h"
5f39d397 25#include "print-tree.h"
925baedd 26#include "locking.h"
9a8dd150 27
e089f05c
CM
28static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
d4dbff95 31 *root, struct btrfs_key *ins_key,
cc0c5538 32 struct btrfs_path *path, int data_size, int extend);
5f39d397
CM
33static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
971a1f66 35 struct extent_buffer *src, int empty);
5f39d397
CM
36static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
afe5fea7
TI
40static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41 int level, int slot);
5de865ee 42static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
f230475e 43 struct extent_buffer *eb);
d97e63b6 44
df24a2b9 45struct btrfs_path *btrfs_alloc_path(void)
2c90e5d6 46{
df24a2b9 47 struct btrfs_path *path;
e00f7308 48 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
df24a2b9 49 return path;
2c90e5d6
CM
50}
51
b4ce94de
CM
52/*
53 * set all locked nodes in the path to blocking locks. This should
54 * be done before scheduling
55 */
56noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57{
58 int i;
59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
bd681513
CM
60 if (!p->nodes[i] || !p->locks[i])
61 continue;
62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63 if (p->locks[i] == BTRFS_READ_LOCK)
64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65 else if (p->locks[i] == BTRFS_WRITE_LOCK)
66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
b4ce94de
CM
67 }
68}
69
70/*
71 * reset all the locked nodes in the patch to spinning locks.
4008c04a
CM
72 *
73 * held is used to keep lockdep happy, when lockdep is enabled
74 * we set held to a blocking lock before we go around and
75 * retake all the spinlocks in the path. You can safely use NULL
76 * for held
b4ce94de 77 */
4008c04a 78noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
bd681513 79 struct extent_buffer *held, int held_rw)
b4ce94de
CM
80{
81 int i;
4008c04a
CM
82
83#ifdef CONFIG_DEBUG_LOCK_ALLOC
84 /* lockdep really cares that we take all of these spinlocks
85 * in the right order. If any of the locks in the path are not
86 * currently blocking, it is going to complain. So, make really
87 * really sure by forcing the path to blocking before we clear
88 * the path blocking.
89 */
bd681513
CM
90 if (held) {
91 btrfs_set_lock_blocking_rw(held, held_rw);
92 if (held_rw == BTRFS_WRITE_LOCK)
93 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
94 else if (held_rw == BTRFS_READ_LOCK)
95 held_rw = BTRFS_READ_LOCK_BLOCKING;
96 }
4008c04a
CM
97 btrfs_set_path_blocking(p);
98#endif
99
100 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
bd681513
CM
101 if (p->nodes[i] && p->locks[i]) {
102 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
103 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
104 p->locks[i] = BTRFS_WRITE_LOCK;
105 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
106 p->locks[i] = BTRFS_READ_LOCK;
107 }
b4ce94de 108 }
4008c04a
CM
109
110#ifdef CONFIG_DEBUG_LOCK_ALLOC
111 if (held)
bd681513 112 btrfs_clear_lock_blocking_rw(held, held_rw);
4008c04a 113#endif
b4ce94de
CM
114}
115
d352ac68 116/* this also releases the path */
df24a2b9 117void btrfs_free_path(struct btrfs_path *p)
be0e5c09 118{
ff175d57
JJ
119 if (!p)
120 return;
b3b4aa74 121 btrfs_release_path(p);
df24a2b9 122 kmem_cache_free(btrfs_path_cachep, p);
be0e5c09
CM
123}
124
d352ac68
CM
125/*
126 * path release drops references on the extent buffers in the path
127 * and it drops any locks held by this path
128 *
129 * It is safe to call this on paths that no locks or extent buffers held.
130 */
b3b4aa74 131noinline void btrfs_release_path(struct btrfs_path *p)
eb60ceac
CM
132{
133 int i;
a2135011 134
234b63a0 135 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3f157a2f 136 p->slots[i] = 0;
eb60ceac 137 if (!p->nodes[i])
925baedd
CM
138 continue;
139 if (p->locks[i]) {
bd681513 140 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
925baedd
CM
141 p->locks[i] = 0;
142 }
5f39d397 143 free_extent_buffer(p->nodes[i]);
3f157a2f 144 p->nodes[i] = NULL;
eb60ceac
CM
145 }
146}
147
d352ac68
CM
148/*
149 * safely gets a reference on the root node of a tree. A lock
150 * is not taken, so a concurrent writer may put a different node
151 * at the root of the tree. See btrfs_lock_root_node for the
152 * looping required.
153 *
154 * The extent buffer returned by this has a reference taken, so
155 * it won't disappear. It may stop being the root of the tree
156 * at any time because there are no locks held.
157 */
925baedd
CM
158struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
159{
160 struct extent_buffer *eb;
240f62c8 161
3083ee2e
JB
162 while (1) {
163 rcu_read_lock();
164 eb = rcu_dereference(root->node);
165
166 /*
167 * RCU really hurts here, we could free up the root node because
168 * it was cow'ed but we may not get the new root node yet so do
169 * the inc_not_zero dance and if it doesn't work then
170 * synchronize_rcu and try again.
171 */
172 if (atomic_inc_not_zero(&eb->refs)) {
173 rcu_read_unlock();
174 break;
175 }
176 rcu_read_unlock();
177 synchronize_rcu();
178 }
925baedd
CM
179 return eb;
180}
181
d352ac68
CM
182/* loop around taking references on and locking the root node of the
183 * tree until you end up with a lock on the root. A locked buffer
184 * is returned, with a reference held.
185 */
925baedd
CM
186struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
187{
188 struct extent_buffer *eb;
189
d397712b 190 while (1) {
925baedd
CM
191 eb = btrfs_root_node(root);
192 btrfs_tree_lock(eb);
240f62c8 193 if (eb == root->node)
925baedd 194 break;
925baedd
CM
195 btrfs_tree_unlock(eb);
196 free_extent_buffer(eb);
197 }
198 return eb;
199}
200
bd681513
CM
201/* loop around taking references on and locking the root node of the
202 * tree until you end up with a lock on the root. A locked buffer
203 * is returned, with a reference held.
204 */
48a3b636 205static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
bd681513
CM
206{
207 struct extent_buffer *eb;
208
209 while (1) {
210 eb = btrfs_root_node(root);
211 btrfs_tree_read_lock(eb);
212 if (eb == root->node)
213 break;
214 btrfs_tree_read_unlock(eb);
215 free_extent_buffer(eb);
216 }
217 return eb;
218}
219
d352ac68
CM
220/* cowonly root (everything not a reference counted cow subvolume), just get
221 * put onto a simple dirty list. transaction.c walks this to make sure they
222 * get properly updated on disk.
223 */
0b86a832
CM
224static void add_root_to_dirty_list(struct btrfs_root *root)
225{
e5846fc6 226 spin_lock(&root->fs_info->trans_lock);
27cdeb70
MX
227 if (test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state) &&
228 list_empty(&root->dirty_list)) {
0b86a832
CM
229 list_add(&root->dirty_list,
230 &root->fs_info->dirty_cowonly_roots);
231 }
e5846fc6 232 spin_unlock(&root->fs_info->trans_lock);
0b86a832
CM
233}
234
d352ac68
CM
235/*
236 * used by snapshot creation to make a copy of a root for a tree with
237 * a given objectid. The buffer with the new root node is returned in
238 * cow_ret, and this func returns zero on success or a negative error code.
239 */
be20aa9d
CM
240int btrfs_copy_root(struct btrfs_trans_handle *trans,
241 struct btrfs_root *root,
242 struct extent_buffer *buf,
243 struct extent_buffer **cow_ret, u64 new_root_objectid)
244{
245 struct extent_buffer *cow;
be20aa9d
CM
246 int ret = 0;
247 int level;
5d4f98a2 248 struct btrfs_disk_key disk_key;
be20aa9d 249
27cdeb70
MX
250 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
251 trans->transid != root->fs_info->running_transaction->transid);
252 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
253 trans->transid != root->last_trans);
be20aa9d
CM
254
255 level = btrfs_header_level(buf);
5d4f98a2
YZ
256 if (level == 0)
257 btrfs_item_key(buf, &disk_key, 0);
258 else
259 btrfs_node_key(buf, &disk_key, 0);
31840ae1 260
5d4f98a2
YZ
261 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
262 new_root_objectid, &disk_key, level,
5581a51a 263 buf->start, 0);
5d4f98a2 264 if (IS_ERR(cow))
be20aa9d
CM
265 return PTR_ERR(cow);
266
267 copy_extent_buffer(cow, buf, 0, 0, cow->len);
268 btrfs_set_header_bytenr(cow, cow->start);
269 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
270 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
271 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
272 BTRFS_HEADER_FLAG_RELOC);
273 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
274 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
275 else
276 btrfs_set_header_owner(cow, new_root_objectid);
be20aa9d 277
0a4e5586 278 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
2b82032c
YZ
279 BTRFS_FSID_SIZE);
280
be20aa9d 281 WARN_ON(btrfs_header_generation(buf) > trans->transid);
5d4f98a2 282 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 283 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 284 else
e339a6b0 285 ret = btrfs_inc_ref(trans, root, cow, 0);
4aec2b52 286
be20aa9d
CM
287 if (ret)
288 return ret;
289
290 btrfs_mark_buffer_dirty(cow);
291 *cow_ret = cow;
292 return 0;
293}
294
bd989ba3
JS
295enum mod_log_op {
296 MOD_LOG_KEY_REPLACE,
297 MOD_LOG_KEY_ADD,
298 MOD_LOG_KEY_REMOVE,
299 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
300 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
301 MOD_LOG_MOVE_KEYS,
302 MOD_LOG_ROOT_REPLACE,
303};
304
305struct tree_mod_move {
306 int dst_slot;
307 int nr_items;
308};
309
310struct tree_mod_root {
311 u64 logical;
312 u8 level;
313};
314
315struct tree_mod_elem {
316 struct rb_node node;
317 u64 index; /* shifted logical */
097b8a7c 318 u64 seq;
bd989ba3
JS
319 enum mod_log_op op;
320
321 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
322 int slot;
323
324 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
325 u64 generation;
326
327 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
328 struct btrfs_disk_key key;
329 u64 blockptr;
330
331 /* this is used for op == MOD_LOG_MOVE_KEYS */
332 struct tree_mod_move move;
333
334 /* this is used for op == MOD_LOG_ROOT_REPLACE */
335 struct tree_mod_root old_root;
336};
337
097b8a7c 338static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
bd989ba3 339{
097b8a7c 340 read_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
341}
342
097b8a7c
JS
343static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
344{
345 read_unlock(&fs_info->tree_mod_log_lock);
346}
347
348static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
349{
350 write_lock(&fs_info->tree_mod_log_lock);
351}
352
353static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
354{
355 write_unlock(&fs_info->tree_mod_log_lock);
356}
357
fc36ed7e 358/*
fcebe456 359 * Pull a new tree mod seq number for our operation.
fc36ed7e 360 */
fcebe456 361static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
fc36ed7e
JS
362{
363 return atomic64_inc_return(&fs_info->tree_mod_seq);
364}
365
097b8a7c
JS
366/*
367 * This adds a new blocker to the tree mod log's blocker list if the @elem
368 * passed does not already have a sequence number set. So when a caller expects
369 * to record tree modifications, it should ensure to set elem->seq to zero
370 * before calling btrfs_get_tree_mod_seq.
371 * Returns a fresh, unused tree log modification sequence number, even if no new
372 * blocker was added.
373 */
374u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
375 struct seq_list *elem)
bd989ba3 376{
097b8a7c 377 tree_mod_log_write_lock(fs_info);
bd989ba3 378 spin_lock(&fs_info->tree_mod_seq_lock);
097b8a7c 379 if (!elem->seq) {
fcebe456 380 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
097b8a7c
JS
381 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
382 }
bd989ba3 383 spin_unlock(&fs_info->tree_mod_seq_lock);
097b8a7c
JS
384 tree_mod_log_write_unlock(fs_info);
385
fcebe456 386 return elem->seq;
bd989ba3
JS
387}
388
389void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
390 struct seq_list *elem)
391{
392 struct rb_root *tm_root;
393 struct rb_node *node;
394 struct rb_node *next;
395 struct seq_list *cur_elem;
396 struct tree_mod_elem *tm;
397 u64 min_seq = (u64)-1;
398 u64 seq_putting = elem->seq;
399
400 if (!seq_putting)
401 return;
402
bd989ba3
JS
403 spin_lock(&fs_info->tree_mod_seq_lock);
404 list_del(&elem->list);
097b8a7c 405 elem->seq = 0;
bd989ba3
JS
406
407 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
097b8a7c 408 if (cur_elem->seq < min_seq) {
bd989ba3
JS
409 if (seq_putting > cur_elem->seq) {
410 /*
411 * blocker with lower sequence number exists, we
412 * cannot remove anything from the log
413 */
097b8a7c
JS
414 spin_unlock(&fs_info->tree_mod_seq_lock);
415 return;
bd989ba3
JS
416 }
417 min_seq = cur_elem->seq;
418 }
419 }
097b8a7c
JS
420 spin_unlock(&fs_info->tree_mod_seq_lock);
421
bd989ba3
JS
422 /*
423 * anything that's lower than the lowest existing (read: blocked)
424 * sequence number can be removed from the tree.
425 */
097b8a7c 426 tree_mod_log_write_lock(fs_info);
bd989ba3
JS
427 tm_root = &fs_info->tree_mod_log;
428 for (node = rb_first(tm_root); node; node = next) {
429 next = rb_next(node);
430 tm = container_of(node, struct tree_mod_elem, node);
097b8a7c 431 if (tm->seq > min_seq)
bd989ba3
JS
432 continue;
433 rb_erase(node, tm_root);
bd989ba3
JS
434 kfree(tm);
435 }
097b8a7c 436 tree_mod_log_write_unlock(fs_info);
bd989ba3
JS
437}
438
439/*
440 * key order of the log:
441 * index -> sequence
442 *
443 * the index is the shifted logical of the *new* root node for root replace
444 * operations, or the shifted logical of the affected block for all other
445 * operations.
5de865ee
FDBM
446 *
447 * Note: must be called with write lock (tree_mod_log_write_lock).
bd989ba3
JS
448 */
449static noinline int
450__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
451{
452 struct rb_root *tm_root;
453 struct rb_node **new;
454 struct rb_node *parent = NULL;
455 struct tree_mod_elem *cur;
c8cc6341
JB
456
457 BUG_ON(!tm);
458
fcebe456 459 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
bd989ba3 460
bd989ba3
JS
461 tm_root = &fs_info->tree_mod_log;
462 new = &tm_root->rb_node;
463 while (*new) {
464 cur = container_of(*new, struct tree_mod_elem, node);
465 parent = *new;
466 if (cur->index < tm->index)
467 new = &((*new)->rb_left);
468 else if (cur->index > tm->index)
469 new = &((*new)->rb_right);
097b8a7c 470 else if (cur->seq < tm->seq)
bd989ba3 471 new = &((*new)->rb_left);
097b8a7c 472 else if (cur->seq > tm->seq)
bd989ba3 473 new = &((*new)->rb_right);
5de865ee
FDBM
474 else
475 return -EEXIST;
bd989ba3
JS
476 }
477
478 rb_link_node(&tm->node, parent, new);
479 rb_insert_color(&tm->node, tm_root);
5de865ee 480 return 0;
bd989ba3
JS
481}
482
097b8a7c
JS
483/*
484 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
485 * returns zero with the tree_mod_log_lock acquired. The caller must hold
486 * this until all tree mod log insertions are recorded in the rb tree and then
487 * call tree_mod_log_write_unlock() to release.
488 */
e9b7fd4d
JS
489static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
490 struct extent_buffer *eb) {
491 smp_mb();
492 if (list_empty(&(fs_info)->tree_mod_seq_list))
493 return 1;
097b8a7c
JS
494 if (eb && btrfs_header_level(eb) == 0)
495 return 1;
5de865ee
FDBM
496
497 tree_mod_log_write_lock(fs_info);
498 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
499 tree_mod_log_write_unlock(fs_info);
500 return 1;
501 }
502
e9b7fd4d
JS
503 return 0;
504}
505
5de865ee
FDBM
506/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
507static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
508 struct extent_buffer *eb)
509{
510 smp_mb();
511 if (list_empty(&(fs_info)->tree_mod_seq_list))
512 return 0;
513 if (eb && btrfs_header_level(eb) == 0)
514 return 0;
515
516 return 1;
517}
518
519static struct tree_mod_elem *
520alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
521 enum mod_log_op op, gfp_t flags)
bd989ba3 522{
097b8a7c 523 struct tree_mod_elem *tm;
bd989ba3 524
c8cc6341
JB
525 tm = kzalloc(sizeof(*tm), flags);
526 if (!tm)
5de865ee 527 return NULL;
bd989ba3
JS
528
529 tm->index = eb->start >> PAGE_CACHE_SHIFT;
530 if (op != MOD_LOG_KEY_ADD) {
531 btrfs_node_key(eb, &tm->key, slot);
532 tm->blockptr = btrfs_node_blockptr(eb, slot);
533 }
534 tm->op = op;
535 tm->slot = slot;
536 tm->generation = btrfs_node_ptr_generation(eb, slot);
5de865ee 537 RB_CLEAR_NODE(&tm->node);
bd989ba3 538
5de865ee 539 return tm;
097b8a7c
JS
540}
541
542static noinline int
c8cc6341
JB
543tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
544 struct extent_buffer *eb, int slot,
545 enum mod_log_op op, gfp_t flags)
097b8a7c 546{
5de865ee
FDBM
547 struct tree_mod_elem *tm;
548 int ret;
549
550 if (!tree_mod_need_log(fs_info, eb))
551 return 0;
552
553 tm = alloc_tree_mod_elem(eb, slot, op, flags);
554 if (!tm)
555 return -ENOMEM;
556
557 if (tree_mod_dont_log(fs_info, eb)) {
558 kfree(tm);
097b8a7c 559 return 0;
5de865ee
FDBM
560 }
561
562 ret = __tree_mod_log_insert(fs_info, tm);
563 tree_mod_log_write_unlock(fs_info);
564 if (ret)
565 kfree(tm);
097b8a7c 566
5de865ee 567 return ret;
097b8a7c
JS
568}
569
bd989ba3
JS
570static noinline int
571tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
572 struct extent_buffer *eb, int dst_slot, int src_slot,
573 int nr_items, gfp_t flags)
574{
5de865ee
FDBM
575 struct tree_mod_elem *tm = NULL;
576 struct tree_mod_elem **tm_list = NULL;
577 int ret = 0;
bd989ba3 578 int i;
5de865ee 579 int locked = 0;
bd989ba3 580
5de865ee 581 if (!tree_mod_need_log(fs_info, eb))
f395694c 582 return 0;
bd989ba3 583
5de865ee
FDBM
584 tm_list = kzalloc(nr_items * sizeof(struct tree_mod_elem *), flags);
585 if (!tm_list)
586 return -ENOMEM;
587
588 tm = kzalloc(sizeof(*tm), flags);
589 if (!tm) {
590 ret = -ENOMEM;
591 goto free_tms;
592 }
593
594 tm->index = eb->start >> PAGE_CACHE_SHIFT;
595 tm->slot = src_slot;
596 tm->move.dst_slot = dst_slot;
597 tm->move.nr_items = nr_items;
598 tm->op = MOD_LOG_MOVE_KEYS;
599
600 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
601 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
602 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
603 if (!tm_list[i]) {
604 ret = -ENOMEM;
605 goto free_tms;
606 }
607 }
608
609 if (tree_mod_dont_log(fs_info, eb))
610 goto free_tms;
611 locked = 1;
612
01763a2e
JS
613 /*
614 * When we override something during the move, we log these removals.
615 * This can only happen when we move towards the beginning of the
616 * buffer, i.e. dst_slot < src_slot.
617 */
bd989ba3 618 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
5de865ee
FDBM
619 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
620 if (ret)
621 goto free_tms;
bd989ba3
JS
622 }
623
5de865ee
FDBM
624 ret = __tree_mod_log_insert(fs_info, tm);
625 if (ret)
626 goto free_tms;
627 tree_mod_log_write_unlock(fs_info);
628 kfree(tm_list);
f395694c 629
5de865ee
FDBM
630 return 0;
631free_tms:
632 for (i = 0; i < nr_items; i++) {
633 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
634 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
635 kfree(tm_list[i]);
636 }
637 if (locked)
638 tree_mod_log_write_unlock(fs_info);
639 kfree(tm_list);
640 kfree(tm);
bd989ba3 641
5de865ee 642 return ret;
bd989ba3
JS
643}
644
5de865ee
FDBM
645static inline int
646__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
647 struct tree_mod_elem **tm_list,
648 int nritems)
097b8a7c 649{
5de865ee 650 int i, j;
097b8a7c
JS
651 int ret;
652
097b8a7c 653 for (i = nritems - 1; i >= 0; i--) {
5de865ee
FDBM
654 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
655 if (ret) {
656 for (j = nritems - 1; j > i; j--)
657 rb_erase(&tm_list[j]->node,
658 &fs_info->tree_mod_log);
659 return ret;
660 }
097b8a7c 661 }
5de865ee
FDBM
662
663 return 0;
097b8a7c
JS
664}
665
bd989ba3
JS
666static noinline int
667tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
668 struct extent_buffer *old_root,
90f8d62e
JS
669 struct extent_buffer *new_root, gfp_t flags,
670 int log_removal)
bd989ba3 671{
5de865ee
FDBM
672 struct tree_mod_elem *tm = NULL;
673 struct tree_mod_elem **tm_list = NULL;
674 int nritems = 0;
675 int ret = 0;
676 int i;
bd989ba3 677
5de865ee 678 if (!tree_mod_need_log(fs_info, NULL))
097b8a7c
JS
679 return 0;
680
5de865ee
FDBM
681 if (log_removal && btrfs_header_level(old_root) > 0) {
682 nritems = btrfs_header_nritems(old_root);
683 tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
684 flags);
685 if (!tm_list) {
686 ret = -ENOMEM;
687 goto free_tms;
688 }
689 for (i = 0; i < nritems; i++) {
690 tm_list[i] = alloc_tree_mod_elem(old_root, i,
691 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
692 if (!tm_list[i]) {
693 ret = -ENOMEM;
694 goto free_tms;
695 }
696 }
697 }
d9abbf1c 698
c8cc6341 699 tm = kzalloc(sizeof(*tm), flags);
5de865ee
FDBM
700 if (!tm) {
701 ret = -ENOMEM;
702 goto free_tms;
703 }
bd989ba3
JS
704
705 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
706 tm->old_root.logical = old_root->start;
707 tm->old_root.level = btrfs_header_level(old_root);
708 tm->generation = btrfs_header_generation(old_root);
709 tm->op = MOD_LOG_ROOT_REPLACE;
710
5de865ee
FDBM
711 if (tree_mod_dont_log(fs_info, NULL))
712 goto free_tms;
713
714 if (tm_list)
715 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
716 if (!ret)
717 ret = __tree_mod_log_insert(fs_info, tm);
718
719 tree_mod_log_write_unlock(fs_info);
720 if (ret)
721 goto free_tms;
722 kfree(tm_list);
723
724 return ret;
725
726free_tms:
727 if (tm_list) {
728 for (i = 0; i < nritems; i++)
729 kfree(tm_list[i]);
730 kfree(tm_list);
731 }
732 kfree(tm);
733
734 return ret;
bd989ba3
JS
735}
736
737static struct tree_mod_elem *
738__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
739 int smallest)
740{
741 struct rb_root *tm_root;
742 struct rb_node *node;
743 struct tree_mod_elem *cur = NULL;
744 struct tree_mod_elem *found = NULL;
745 u64 index = start >> PAGE_CACHE_SHIFT;
746
097b8a7c 747 tree_mod_log_read_lock(fs_info);
bd989ba3
JS
748 tm_root = &fs_info->tree_mod_log;
749 node = tm_root->rb_node;
750 while (node) {
751 cur = container_of(node, struct tree_mod_elem, node);
752 if (cur->index < index) {
753 node = node->rb_left;
754 } else if (cur->index > index) {
755 node = node->rb_right;
097b8a7c 756 } else if (cur->seq < min_seq) {
bd989ba3
JS
757 node = node->rb_left;
758 } else if (!smallest) {
759 /* we want the node with the highest seq */
760 if (found)
097b8a7c 761 BUG_ON(found->seq > cur->seq);
bd989ba3
JS
762 found = cur;
763 node = node->rb_left;
097b8a7c 764 } else if (cur->seq > min_seq) {
bd989ba3
JS
765 /* we want the node with the smallest seq */
766 if (found)
097b8a7c 767 BUG_ON(found->seq < cur->seq);
bd989ba3
JS
768 found = cur;
769 node = node->rb_right;
770 } else {
771 found = cur;
772 break;
773 }
774 }
097b8a7c 775 tree_mod_log_read_unlock(fs_info);
bd989ba3
JS
776
777 return found;
778}
779
780/*
781 * this returns the element from the log with the smallest time sequence
782 * value that's in the log (the oldest log item). any element with a time
783 * sequence lower than min_seq will be ignored.
784 */
785static struct tree_mod_elem *
786tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
787 u64 min_seq)
788{
789 return __tree_mod_log_search(fs_info, start, min_seq, 1);
790}
791
792/*
793 * this returns the element from the log with the largest time sequence
794 * value that's in the log (the most recent log item). any element with
795 * a time sequence lower than min_seq will be ignored.
796 */
797static struct tree_mod_elem *
798tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
799{
800 return __tree_mod_log_search(fs_info, start, min_seq, 0);
801}
802
5de865ee 803static noinline int
bd989ba3
JS
804tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
805 struct extent_buffer *src, unsigned long dst_offset,
90f8d62e 806 unsigned long src_offset, int nr_items)
bd989ba3 807{
5de865ee
FDBM
808 int ret = 0;
809 struct tree_mod_elem **tm_list = NULL;
810 struct tree_mod_elem **tm_list_add, **tm_list_rem;
bd989ba3 811 int i;
5de865ee 812 int locked = 0;
bd989ba3 813
5de865ee
FDBM
814 if (!tree_mod_need_log(fs_info, NULL))
815 return 0;
bd989ba3 816
c8cc6341 817 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
5de865ee
FDBM
818 return 0;
819
820 tm_list = kzalloc(nr_items * 2 * sizeof(struct tree_mod_elem *),
821 GFP_NOFS);
822 if (!tm_list)
823 return -ENOMEM;
bd989ba3 824
5de865ee
FDBM
825 tm_list_add = tm_list;
826 tm_list_rem = tm_list + nr_items;
bd989ba3 827 for (i = 0; i < nr_items; i++) {
5de865ee
FDBM
828 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
829 MOD_LOG_KEY_REMOVE, GFP_NOFS);
830 if (!tm_list_rem[i]) {
831 ret = -ENOMEM;
832 goto free_tms;
833 }
834
835 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
836 MOD_LOG_KEY_ADD, GFP_NOFS);
837 if (!tm_list_add[i]) {
838 ret = -ENOMEM;
839 goto free_tms;
840 }
841 }
842
843 if (tree_mod_dont_log(fs_info, NULL))
844 goto free_tms;
845 locked = 1;
846
847 for (i = 0; i < nr_items; i++) {
848 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
849 if (ret)
850 goto free_tms;
851 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
852 if (ret)
853 goto free_tms;
bd989ba3 854 }
5de865ee
FDBM
855
856 tree_mod_log_write_unlock(fs_info);
857 kfree(tm_list);
858
859 return 0;
860
861free_tms:
862 for (i = 0; i < nr_items * 2; i++) {
863 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
864 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
865 kfree(tm_list[i]);
866 }
867 if (locked)
868 tree_mod_log_write_unlock(fs_info);
869 kfree(tm_list);
870
871 return ret;
bd989ba3
JS
872}
873
874static inline void
875tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
876 int dst_offset, int src_offset, int nr_items)
877{
878 int ret;
879 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
880 nr_items, GFP_NOFS);
881 BUG_ON(ret < 0);
882}
883
097b8a7c 884static noinline void
bd989ba3 885tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
32adf090 886 struct extent_buffer *eb, int slot, int atomic)
bd989ba3
JS
887{
888 int ret;
889
78357766 890 ret = tree_mod_log_insert_key(fs_info, eb, slot,
c8cc6341
JB
891 MOD_LOG_KEY_REPLACE,
892 atomic ? GFP_ATOMIC : GFP_NOFS);
bd989ba3
JS
893 BUG_ON(ret < 0);
894}
895
5de865ee 896static noinline int
097b8a7c 897tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
bd989ba3 898{
5de865ee
FDBM
899 struct tree_mod_elem **tm_list = NULL;
900 int nritems = 0;
901 int i;
902 int ret = 0;
903
904 if (btrfs_header_level(eb) == 0)
905 return 0;
906
907 if (!tree_mod_need_log(fs_info, NULL))
908 return 0;
909
910 nritems = btrfs_header_nritems(eb);
911 tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
912 GFP_NOFS);
913 if (!tm_list)
914 return -ENOMEM;
915
916 for (i = 0; i < nritems; i++) {
917 tm_list[i] = alloc_tree_mod_elem(eb, i,
918 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
919 if (!tm_list[i]) {
920 ret = -ENOMEM;
921 goto free_tms;
922 }
923 }
924
e9b7fd4d 925 if (tree_mod_dont_log(fs_info, eb))
5de865ee
FDBM
926 goto free_tms;
927
928 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
929 tree_mod_log_write_unlock(fs_info);
930 if (ret)
931 goto free_tms;
932 kfree(tm_list);
933
934 return 0;
935
936free_tms:
937 for (i = 0; i < nritems; i++)
938 kfree(tm_list[i]);
939 kfree(tm_list);
940
941 return ret;
bd989ba3
JS
942}
943
097b8a7c 944static noinline void
bd989ba3 945tree_mod_log_set_root_pointer(struct btrfs_root *root,
90f8d62e
JS
946 struct extent_buffer *new_root_node,
947 int log_removal)
bd989ba3
JS
948{
949 int ret;
bd989ba3 950 ret = tree_mod_log_insert_root(root->fs_info, root->node,
90f8d62e 951 new_root_node, GFP_NOFS, log_removal);
bd989ba3
JS
952 BUG_ON(ret < 0);
953}
954
5d4f98a2
YZ
955/*
956 * check if the tree block can be shared by multiple trees
957 */
958int btrfs_block_can_be_shared(struct btrfs_root *root,
959 struct extent_buffer *buf)
960{
961 /*
962 * Tree blocks not in refernece counted trees and tree roots
963 * are never shared. If a block was allocated after the last
964 * snapshot and the block was not allocated by tree relocation,
965 * we know the block is not shared.
966 */
27cdeb70 967 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
968 buf != root->node && buf != root->commit_root &&
969 (btrfs_header_generation(buf) <=
970 btrfs_root_last_snapshot(&root->root_item) ||
971 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
972 return 1;
973#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
27cdeb70 974 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
975 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
976 return 1;
977#endif
978 return 0;
979}
980
981static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
982 struct btrfs_root *root,
983 struct extent_buffer *buf,
f0486c68
YZ
984 struct extent_buffer *cow,
985 int *last_ref)
5d4f98a2
YZ
986{
987 u64 refs;
988 u64 owner;
989 u64 flags;
990 u64 new_flags = 0;
991 int ret;
992
993 /*
994 * Backrefs update rules:
995 *
996 * Always use full backrefs for extent pointers in tree block
997 * allocated by tree relocation.
998 *
999 * If a shared tree block is no longer referenced by its owner
1000 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
1001 * use full backrefs for extent pointers in tree block.
1002 *
1003 * If a tree block is been relocating
1004 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1005 * use full backrefs for extent pointers in tree block.
1006 * The reason for this is some operations (such as drop tree)
1007 * are only allowed for blocks use full backrefs.
1008 */
1009
1010 if (btrfs_block_can_be_shared(root, buf)) {
1011 ret = btrfs_lookup_extent_info(trans, root, buf->start,
3173a18f
JB
1012 btrfs_header_level(buf), 1,
1013 &refs, &flags);
be1a5564
MF
1014 if (ret)
1015 return ret;
e5df9573
MF
1016 if (refs == 0) {
1017 ret = -EROFS;
1018 btrfs_std_error(root->fs_info, ret);
1019 return ret;
1020 }
5d4f98a2
YZ
1021 } else {
1022 refs = 1;
1023 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1024 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1025 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1026 else
1027 flags = 0;
1028 }
1029
1030 owner = btrfs_header_owner(buf);
1031 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1032 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1033
1034 if (refs > 1) {
1035 if ((owner == root->root_key.objectid ||
1036 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1037 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
e339a6b0 1038 ret = btrfs_inc_ref(trans, root, buf, 1);
79787eaa 1039 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
1040
1041 if (root->root_key.objectid ==
1042 BTRFS_TREE_RELOC_OBJECTID) {
e339a6b0 1043 ret = btrfs_dec_ref(trans, root, buf, 0);
79787eaa 1044 BUG_ON(ret); /* -ENOMEM */
e339a6b0 1045 ret = btrfs_inc_ref(trans, root, cow, 1);
79787eaa 1046 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
1047 }
1048 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1049 } else {
1050
1051 if (root->root_key.objectid ==
1052 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 1053 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 1054 else
e339a6b0 1055 ret = btrfs_inc_ref(trans, root, cow, 0);
79787eaa 1056 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
1057 }
1058 if (new_flags != 0) {
b1c79e09
JB
1059 int level = btrfs_header_level(buf);
1060
5d4f98a2
YZ
1061 ret = btrfs_set_disk_extent_flags(trans, root,
1062 buf->start,
1063 buf->len,
b1c79e09 1064 new_flags, level, 0);
be1a5564
MF
1065 if (ret)
1066 return ret;
5d4f98a2
YZ
1067 }
1068 } else {
1069 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1070 if (root->root_key.objectid ==
1071 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 1072 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 1073 else
e339a6b0 1074 ret = btrfs_inc_ref(trans, root, cow, 0);
79787eaa 1075 BUG_ON(ret); /* -ENOMEM */
e339a6b0 1076 ret = btrfs_dec_ref(trans, root, buf, 1);
79787eaa 1077 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
1078 }
1079 clean_tree_block(trans, root, buf);
f0486c68 1080 *last_ref = 1;
5d4f98a2
YZ
1081 }
1082 return 0;
1083}
1084
d352ac68 1085/*
d397712b
CM
1086 * does the dirty work in cow of a single block. The parent block (if
1087 * supplied) is updated to point to the new cow copy. The new buffer is marked
1088 * dirty and returned locked. If you modify the block it needs to be marked
1089 * dirty again.
d352ac68
CM
1090 *
1091 * search_start -- an allocation hint for the new block
1092 *
d397712b
CM
1093 * empty_size -- a hint that you plan on doing more cow. This is the size in
1094 * bytes the allocator should try to find free next to the block it returns.
1095 * This is just a hint and may be ignored by the allocator.
d352ac68 1096 */
d397712b 1097static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1098 struct btrfs_root *root,
1099 struct extent_buffer *buf,
1100 struct extent_buffer *parent, int parent_slot,
1101 struct extent_buffer **cow_ret,
9fa8cfe7 1102 u64 search_start, u64 empty_size)
02217ed2 1103{
5d4f98a2 1104 struct btrfs_disk_key disk_key;
5f39d397 1105 struct extent_buffer *cow;
be1a5564 1106 int level, ret;
f0486c68 1107 int last_ref = 0;
925baedd 1108 int unlock_orig = 0;
5d4f98a2 1109 u64 parent_start;
7bb86316 1110
925baedd
CM
1111 if (*cow_ret == buf)
1112 unlock_orig = 1;
1113
b9447ef8 1114 btrfs_assert_tree_locked(buf);
925baedd 1115
27cdeb70
MX
1116 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1117 trans->transid != root->fs_info->running_transaction->transid);
1118 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1119 trans->transid != root->last_trans);
5f39d397 1120
7bb86316 1121 level = btrfs_header_level(buf);
31840ae1 1122
5d4f98a2
YZ
1123 if (level == 0)
1124 btrfs_item_key(buf, &disk_key, 0);
1125 else
1126 btrfs_node_key(buf, &disk_key, 0);
1127
1128 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1129 if (parent)
1130 parent_start = parent->start;
1131 else
1132 parent_start = 0;
1133 } else
1134 parent_start = 0;
1135
1136 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
1137 root->root_key.objectid, &disk_key,
5581a51a 1138 level, search_start, empty_size);
54aa1f4d
CM
1139 if (IS_ERR(cow))
1140 return PTR_ERR(cow);
6702ed49 1141
b4ce94de
CM
1142 /* cow is set to blocking by btrfs_init_new_buffer */
1143
5f39d397 1144 copy_extent_buffer(cow, buf, 0, 0, cow->len);
db94535d 1145 btrfs_set_header_bytenr(cow, cow->start);
5f39d397 1146 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
1147 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1148 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1149 BTRFS_HEADER_FLAG_RELOC);
1150 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1151 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1152 else
1153 btrfs_set_header_owner(cow, root->root_key.objectid);
6702ed49 1154
0a4e5586 1155 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
2b82032c
YZ
1156 BTRFS_FSID_SIZE);
1157
be1a5564 1158 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
b68dc2a9 1159 if (ret) {
79787eaa 1160 btrfs_abort_transaction(trans, root, ret);
b68dc2a9
MF
1161 return ret;
1162 }
1a40e23b 1163
27cdeb70 1164 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
83d4cfd4
JB
1165 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1166 if (ret)
1167 return ret;
1168 }
3fd0a558 1169
02217ed2 1170 if (buf == root->node) {
925baedd 1171 WARN_ON(parent && parent != buf);
5d4f98a2
YZ
1172 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1173 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1174 parent_start = buf->start;
1175 else
1176 parent_start = 0;
925baedd 1177
5f39d397 1178 extent_buffer_get(cow);
90f8d62e 1179 tree_mod_log_set_root_pointer(root, cow, 1);
240f62c8 1180 rcu_assign_pointer(root->node, cow);
925baedd 1181
f0486c68 1182 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1183 last_ref);
5f39d397 1184 free_extent_buffer(buf);
0b86a832 1185 add_root_to_dirty_list(root);
02217ed2 1186 } else {
5d4f98a2
YZ
1187 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1188 parent_start = parent->start;
1189 else
1190 parent_start = 0;
1191
1192 WARN_ON(trans->transid != btrfs_header_generation(parent));
f230475e 1193 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
c8cc6341 1194 MOD_LOG_KEY_REPLACE, GFP_NOFS);
5f39d397 1195 btrfs_set_node_blockptr(parent, parent_slot,
db94535d 1196 cow->start);
74493f7a
CM
1197 btrfs_set_node_ptr_generation(parent, parent_slot,
1198 trans->transid);
d6025579 1199 btrfs_mark_buffer_dirty(parent);
5de865ee
FDBM
1200 if (last_ref) {
1201 ret = tree_mod_log_free_eb(root->fs_info, buf);
1202 if (ret) {
1203 btrfs_abort_transaction(trans, root, ret);
1204 return ret;
1205 }
1206 }
f0486c68 1207 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1208 last_ref);
02217ed2 1209 }
925baedd
CM
1210 if (unlock_orig)
1211 btrfs_tree_unlock(buf);
3083ee2e 1212 free_extent_buffer_stale(buf);
ccd467d6 1213 btrfs_mark_buffer_dirty(cow);
2c90e5d6 1214 *cow_ret = cow;
02217ed2
CM
1215 return 0;
1216}
1217
5d9e75c4
JS
1218/*
1219 * returns the logical address of the oldest predecessor of the given root.
1220 * entries older than time_seq are ignored.
1221 */
1222static struct tree_mod_elem *
1223__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
30b0463a 1224 struct extent_buffer *eb_root, u64 time_seq)
5d9e75c4
JS
1225{
1226 struct tree_mod_elem *tm;
1227 struct tree_mod_elem *found = NULL;
30b0463a 1228 u64 root_logical = eb_root->start;
5d9e75c4
JS
1229 int looped = 0;
1230
1231 if (!time_seq)
35a3621b 1232 return NULL;
5d9e75c4
JS
1233
1234 /*
1235 * the very last operation that's logged for a root is the replacement
1236 * operation (if it is replaced at all). this has the index of the *new*
1237 * root, making it the very first operation that's logged for this root.
1238 */
1239 while (1) {
1240 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1241 time_seq);
1242 if (!looped && !tm)
35a3621b 1243 return NULL;
5d9e75c4 1244 /*
28da9fb4
JS
1245 * if there are no tree operation for the oldest root, we simply
1246 * return it. this should only happen if that (old) root is at
1247 * level 0.
5d9e75c4 1248 */
28da9fb4
JS
1249 if (!tm)
1250 break;
5d9e75c4 1251
28da9fb4
JS
1252 /*
1253 * if there's an operation that's not a root replacement, we
1254 * found the oldest version of our root. normally, we'll find a
1255 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1256 */
5d9e75c4
JS
1257 if (tm->op != MOD_LOG_ROOT_REPLACE)
1258 break;
1259
1260 found = tm;
1261 root_logical = tm->old_root.logical;
5d9e75c4
JS
1262 looped = 1;
1263 }
1264
a95236d9
JS
1265 /* if there's no old root to return, return what we found instead */
1266 if (!found)
1267 found = tm;
1268
5d9e75c4
JS
1269 return found;
1270}
1271
1272/*
1273 * tm is a pointer to the first operation to rewind within eb. then, all
1274 * previous operations will be rewinded (until we reach something older than
1275 * time_seq).
1276 */
1277static void
f1ca7e98
JB
1278__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1279 u64 time_seq, struct tree_mod_elem *first_tm)
5d9e75c4
JS
1280{
1281 u32 n;
1282 struct rb_node *next;
1283 struct tree_mod_elem *tm = first_tm;
1284 unsigned long o_dst;
1285 unsigned long o_src;
1286 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1287
1288 n = btrfs_header_nritems(eb);
f1ca7e98 1289 tree_mod_log_read_lock(fs_info);
097b8a7c 1290 while (tm && tm->seq >= time_seq) {
5d9e75c4
JS
1291 /*
1292 * all the operations are recorded with the operator used for
1293 * the modification. as we're going backwards, we do the
1294 * opposite of each operation here.
1295 */
1296 switch (tm->op) {
1297 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1298 BUG_ON(tm->slot < n);
1c697d4a 1299 /* Fallthrough */
95c80bb1 1300 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
4c3e6969 1301 case MOD_LOG_KEY_REMOVE:
5d9e75c4
JS
1302 btrfs_set_node_key(eb, &tm->key, tm->slot);
1303 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1304 btrfs_set_node_ptr_generation(eb, tm->slot,
1305 tm->generation);
4c3e6969 1306 n++;
5d9e75c4
JS
1307 break;
1308 case MOD_LOG_KEY_REPLACE:
1309 BUG_ON(tm->slot >= n);
1310 btrfs_set_node_key(eb, &tm->key, tm->slot);
1311 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1312 btrfs_set_node_ptr_generation(eb, tm->slot,
1313 tm->generation);
1314 break;
1315 case MOD_LOG_KEY_ADD:
19956c7e 1316 /* if a move operation is needed it's in the log */
5d9e75c4
JS
1317 n--;
1318 break;
1319 case MOD_LOG_MOVE_KEYS:
c3193108
JS
1320 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1321 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1322 memmove_extent_buffer(eb, o_dst, o_src,
5d9e75c4
JS
1323 tm->move.nr_items * p_size);
1324 break;
1325 case MOD_LOG_ROOT_REPLACE:
1326 /*
1327 * this operation is special. for roots, this must be
1328 * handled explicitly before rewinding.
1329 * for non-roots, this operation may exist if the node
1330 * was a root: root A -> child B; then A gets empty and
1331 * B is promoted to the new root. in the mod log, we'll
1332 * have a root-replace operation for B, a tree block
1333 * that is no root. we simply ignore that operation.
1334 */
1335 break;
1336 }
1337 next = rb_next(&tm->node);
1338 if (!next)
1339 break;
1340 tm = container_of(next, struct tree_mod_elem, node);
1341 if (tm->index != first_tm->index)
1342 break;
1343 }
f1ca7e98 1344 tree_mod_log_read_unlock(fs_info);
5d9e75c4
JS
1345 btrfs_set_header_nritems(eb, n);
1346}
1347
47fb091f
JS
1348/*
1349 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1350 * is returned. If rewind operations happen, a fresh buffer is returned. The
1351 * returned buffer is always read-locked. If the returned buffer is not the
1352 * input buffer, the lock on the input buffer is released and the input buffer
1353 * is freed (its refcount is decremented).
1354 */
5d9e75c4 1355static struct extent_buffer *
9ec72677
JB
1356tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1357 struct extent_buffer *eb, u64 time_seq)
5d9e75c4
JS
1358{
1359 struct extent_buffer *eb_rewin;
1360 struct tree_mod_elem *tm;
1361
1362 if (!time_seq)
1363 return eb;
1364
1365 if (btrfs_header_level(eb) == 0)
1366 return eb;
1367
1368 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1369 if (!tm)
1370 return eb;
1371
9ec72677
JB
1372 btrfs_set_path_blocking(path);
1373 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1374
5d9e75c4
JS
1375 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1376 BUG_ON(tm->slot != 0);
1377 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1378 fs_info->tree_root->nodesize);
db7f3436 1379 if (!eb_rewin) {
9ec72677 1380 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1381 free_extent_buffer(eb);
1382 return NULL;
1383 }
5d9e75c4
JS
1384 btrfs_set_header_bytenr(eb_rewin, eb->start);
1385 btrfs_set_header_backref_rev(eb_rewin,
1386 btrfs_header_backref_rev(eb));
1387 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
c3193108 1388 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
5d9e75c4
JS
1389 } else {
1390 eb_rewin = btrfs_clone_extent_buffer(eb);
db7f3436 1391 if (!eb_rewin) {
9ec72677 1392 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1393 free_extent_buffer(eb);
1394 return NULL;
1395 }
5d9e75c4
JS
1396 }
1397
9ec72677
JB
1398 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1399 btrfs_tree_read_unlock_blocking(eb);
5d9e75c4
JS
1400 free_extent_buffer(eb);
1401
47fb091f
JS
1402 extent_buffer_get(eb_rewin);
1403 btrfs_tree_read_lock(eb_rewin);
f1ca7e98 1404 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
57911b8b 1405 WARN_ON(btrfs_header_nritems(eb_rewin) >
2a745b14 1406 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
5d9e75c4
JS
1407
1408 return eb_rewin;
1409}
1410
8ba97a15
JS
1411/*
1412 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1413 * value. If there are no changes, the current root->root_node is returned. If
1414 * anything changed in between, there's a fresh buffer allocated on which the
1415 * rewind operations are done. In any case, the returned buffer is read locked.
1416 * Returns NULL on error (with no locks held).
1417 */
5d9e75c4
JS
1418static inline struct extent_buffer *
1419get_old_root(struct btrfs_root *root, u64 time_seq)
1420{
1421 struct tree_mod_elem *tm;
30b0463a
JS
1422 struct extent_buffer *eb = NULL;
1423 struct extent_buffer *eb_root;
7bfdcf7f 1424 struct extent_buffer *old;
a95236d9 1425 struct tree_mod_root *old_root = NULL;
4325edd0 1426 u64 old_generation = 0;
a95236d9 1427 u64 logical;
5d9e75c4 1428
30b0463a
JS
1429 eb_root = btrfs_read_lock_root_node(root);
1430 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
5d9e75c4 1431 if (!tm)
30b0463a 1432 return eb_root;
5d9e75c4 1433
a95236d9
JS
1434 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1435 old_root = &tm->old_root;
1436 old_generation = tm->generation;
1437 logical = old_root->logical;
1438 } else {
30b0463a 1439 logical = eb_root->start;
a95236d9 1440 }
5d9e75c4 1441
a95236d9 1442 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
834328a8 1443 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
30b0463a
JS
1444 btrfs_tree_read_unlock(eb_root);
1445 free_extent_buffer(eb_root);
ce86cd59 1446 old = read_tree_block(root, logical, 0);
fae7f21c 1447 if (WARN_ON(!old || !extent_buffer_uptodate(old))) {
416bc658 1448 free_extent_buffer(old);
efe120a0
FH
1449 btrfs_warn(root->fs_info,
1450 "failed to read tree block %llu from get_old_root", logical);
834328a8 1451 } else {
7bfdcf7f
LB
1452 eb = btrfs_clone_extent_buffer(old);
1453 free_extent_buffer(old);
834328a8
JS
1454 }
1455 } else if (old_root) {
30b0463a
JS
1456 btrfs_tree_read_unlock(eb_root);
1457 free_extent_buffer(eb_root);
28da9fb4 1458 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
834328a8 1459 } else {
9ec72677 1460 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
30b0463a 1461 eb = btrfs_clone_extent_buffer(eb_root);
9ec72677 1462 btrfs_tree_read_unlock_blocking(eb_root);
30b0463a 1463 free_extent_buffer(eb_root);
834328a8
JS
1464 }
1465
8ba97a15
JS
1466 if (!eb)
1467 return NULL;
d6381084 1468 extent_buffer_get(eb);
8ba97a15 1469 btrfs_tree_read_lock(eb);
a95236d9 1470 if (old_root) {
5d9e75c4
JS
1471 btrfs_set_header_bytenr(eb, eb->start);
1472 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
30b0463a 1473 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
a95236d9
JS
1474 btrfs_set_header_level(eb, old_root->level);
1475 btrfs_set_header_generation(eb, old_generation);
5d9e75c4 1476 }
28da9fb4 1477 if (tm)
f1ca7e98 1478 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
28da9fb4
JS
1479 else
1480 WARN_ON(btrfs_header_level(eb) != 0);
57911b8b 1481 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
5d9e75c4
JS
1482
1483 return eb;
1484}
1485
5b6602e7
JS
1486int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1487{
1488 struct tree_mod_elem *tm;
1489 int level;
30b0463a 1490 struct extent_buffer *eb_root = btrfs_root_node(root);
5b6602e7 1491
30b0463a 1492 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
5b6602e7
JS
1493 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1494 level = tm->old_root.level;
1495 } else {
30b0463a 1496 level = btrfs_header_level(eb_root);
5b6602e7 1497 }
30b0463a 1498 free_extent_buffer(eb_root);
5b6602e7
JS
1499
1500 return level;
1501}
1502
5d4f98a2
YZ
1503static inline int should_cow_block(struct btrfs_trans_handle *trans,
1504 struct btrfs_root *root,
1505 struct extent_buffer *buf)
1506{
faa2dbf0
JB
1507#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1508 if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
1509 return 0;
1510#endif
f1ebcc74
LB
1511 /* ensure we can see the force_cow */
1512 smp_rmb();
1513
1514 /*
1515 * We do not need to cow a block if
1516 * 1) this block is not created or changed in this transaction;
1517 * 2) this block does not belong to TREE_RELOC tree;
1518 * 3) the root is not forced COW.
1519 *
1520 * What is forced COW:
1521 * when we create snapshot during commiting the transaction,
1522 * after we've finished coping src root, we must COW the shared
1523 * block to ensure the metadata consistency.
1524 */
5d4f98a2
YZ
1525 if (btrfs_header_generation(buf) == trans->transid &&
1526 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1527 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
f1ebcc74 1528 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
27cdeb70 1529 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
5d4f98a2
YZ
1530 return 0;
1531 return 1;
1532}
1533
d352ac68
CM
1534/*
1535 * cows a single block, see __btrfs_cow_block for the real work.
1536 * This version of it has extra checks so that a block isn't cow'd more than
1537 * once per transaction, as long as it hasn't been written yet
1538 */
d397712b 1539noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1540 struct btrfs_root *root, struct extent_buffer *buf,
1541 struct extent_buffer *parent, int parent_slot,
9fa8cfe7 1542 struct extent_buffer **cow_ret)
6702ed49
CM
1543{
1544 u64 search_start;
f510cfec 1545 int ret;
dc17ff8f 1546
31b1a2bd
JL
1547 if (trans->transaction != root->fs_info->running_transaction)
1548 WARN(1, KERN_CRIT "trans %llu running %llu\n",
c1c9ff7c 1549 trans->transid,
6702ed49 1550 root->fs_info->running_transaction->transid);
31b1a2bd
JL
1551
1552 if (trans->transid != root->fs_info->generation)
1553 WARN(1, KERN_CRIT "trans %llu running %llu\n",
c1c9ff7c 1554 trans->transid, root->fs_info->generation);
dc17ff8f 1555
5d4f98a2 1556 if (!should_cow_block(trans, root, buf)) {
6702ed49
CM
1557 *cow_ret = buf;
1558 return 0;
1559 }
c487685d 1560
0b86a832 1561 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
b4ce94de
CM
1562
1563 if (parent)
1564 btrfs_set_lock_blocking(parent);
1565 btrfs_set_lock_blocking(buf);
1566
f510cfec 1567 ret = __btrfs_cow_block(trans, root, buf, parent,
9fa8cfe7 1568 parent_slot, cow_ret, search_start, 0);
1abe9b8a 1569
1570 trace_btrfs_cow_block(root, buf, *cow_ret);
1571
f510cfec 1572 return ret;
6702ed49
CM
1573}
1574
d352ac68
CM
1575/*
1576 * helper function for defrag to decide if two blocks pointed to by a
1577 * node are actually close by
1578 */
6b80053d 1579static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
6702ed49 1580{
6b80053d 1581 if (blocknr < other && other - (blocknr + blocksize) < 32768)
6702ed49 1582 return 1;
6b80053d 1583 if (blocknr > other && blocknr - (other + blocksize) < 32768)
6702ed49
CM
1584 return 1;
1585 return 0;
1586}
1587
081e9573
CM
1588/*
1589 * compare two keys in a memcmp fashion
1590 */
1591static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1592{
1593 struct btrfs_key k1;
1594
1595 btrfs_disk_key_to_cpu(&k1, disk);
1596
20736aba 1597 return btrfs_comp_cpu_keys(&k1, k2);
081e9573
CM
1598}
1599
f3465ca4
JB
1600/*
1601 * same as comp_keys only with two btrfs_key's
1602 */
5d4f98a2 1603int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
f3465ca4
JB
1604{
1605 if (k1->objectid > k2->objectid)
1606 return 1;
1607 if (k1->objectid < k2->objectid)
1608 return -1;
1609 if (k1->type > k2->type)
1610 return 1;
1611 if (k1->type < k2->type)
1612 return -1;
1613 if (k1->offset > k2->offset)
1614 return 1;
1615 if (k1->offset < k2->offset)
1616 return -1;
1617 return 0;
1618}
081e9573 1619
d352ac68
CM
1620/*
1621 * this is used by the defrag code to go through all the
1622 * leaves pointed to by a node and reallocate them so that
1623 * disk order is close to key order
1624 */
6702ed49 1625int btrfs_realloc_node(struct btrfs_trans_handle *trans,
5f39d397 1626 struct btrfs_root *root, struct extent_buffer *parent,
de78b51a 1627 int start_slot, u64 *last_ret,
a6b6e75e 1628 struct btrfs_key *progress)
6702ed49 1629{
6b80053d 1630 struct extent_buffer *cur;
6702ed49 1631 u64 blocknr;
ca7a79ad 1632 u64 gen;
e9d0b13b
CM
1633 u64 search_start = *last_ret;
1634 u64 last_block = 0;
6702ed49
CM
1635 u64 other;
1636 u32 parent_nritems;
6702ed49
CM
1637 int end_slot;
1638 int i;
1639 int err = 0;
f2183bde 1640 int parent_level;
6b80053d
CM
1641 int uptodate;
1642 u32 blocksize;
081e9573
CM
1643 int progress_passed = 0;
1644 struct btrfs_disk_key disk_key;
6702ed49 1645
5708b959 1646 parent_level = btrfs_header_level(parent);
5708b959 1647
6c1500f2
JL
1648 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1649 WARN_ON(trans->transid != root->fs_info->generation);
86479a04 1650
6b80053d 1651 parent_nritems = btrfs_header_nritems(parent);
707e8a07 1652 blocksize = root->nodesize;
6702ed49
CM
1653 end_slot = parent_nritems;
1654
1655 if (parent_nritems == 1)
1656 return 0;
1657
b4ce94de
CM
1658 btrfs_set_lock_blocking(parent);
1659
6702ed49
CM
1660 for (i = start_slot; i < end_slot; i++) {
1661 int close = 1;
a6b6e75e 1662
081e9573
CM
1663 btrfs_node_key(parent, &disk_key, i);
1664 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1665 continue;
1666
1667 progress_passed = 1;
6b80053d 1668 blocknr = btrfs_node_blockptr(parent, i);
ca7a79ad 1669 gen = btrfs_node_ptr_generation(parent, i);
e9d0b13b
CM
1670 if (last_block == 0)
1671 last_block = blocknr;
5708b959 1672
6702ed49 1673 if (i > 0) {
6b80053d
CM
1674 other = btrfs_node_blockptr(parent, i - 1);
1675 close = close_blocks(blocknr, other, blocksize);
6702ed49 1676 }
0ef3e66b 1677 if (!close && i < end_slot - 2) {
6b80053d
CM
1678 other = btrfs_node_blockptr(parent, i + 1);
1679 close = close_blocks(blocknr, other, blocksize);
6702ed49 1680 }
e9d0b13b
CM
1681 if (close) {
1682 last_block = blocknr;
6702ed49 1683 continue;
e9d0b13b 1684 }
6702ed49 1685
0308af44 1686 cur = btrfs_find_tree_block(root, blocknr);
6b80053d 1687 if (cur)
b9fab919 1688 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
6b80053d
CM
1689 else
1690 uptodate = 0;
5708b959 1691 if (!cur || !uptodate) {
6b80053d 1692 if (!cur) {
ce86cd59 1693 cur = read_tree_block(root, blocknr, gen);
416bc658
JB
1694 if (!cur || !extent_buffer_uptodate(cur)) {
1695 free_extent_buffer(cur);
97d9a8a4 1696 return -EIO;
416bc658 1697 }
6b80053d 1698 } else if (!uptodate) {
018642a1
TI
1699 err = btrfs_read_buffer(cur, gen);
1700 if (err) {
1701 free_extent_buffer(cur);
1702 return err;
1703 }
f2183bde 1704 }
6702ed49 1705 }
e9d0b13b 1706 if (search_start == 0)
6b80053d 1707 search_start = last_block;
e9d0b13b 1708
e7a84565 1709 btrfs_tree_lock(cur);
b4ce94de 1710 btrfs_set_lock_blocking(cur);
6b80053d 1711 err = __btrfs_cow_block(trans, root, cur, parent, i,
e7a84565 1712 &cur, search_start,
6b80053d 1713 min(16 * blocksize,
9fa8cfe7 1714 (end_slot - i) * blocksize));
252c38f0 1715 if (err) {
e7a84565 1716 btrfs_tree_unlock(cur);
6b80053d 1717 free_extent_buffer(cur);
6702ed49 1718 break;
252c38f0 1719 }
e7a84565
CM
1720 search_start = cur->start;
1721 last_block = cur->start;
f2183bde 1722 *last_ret = search_start;
e7a84565
CM
1723 btrfs_tree_unlock(cur);
1724 free_extent_buffer(cur);
6702ed49
CM
1725 }
1726 return err;
1727}
1728
74123bd7
CM
1729/*
1730 * The leaf data grows from end-to-front in the node.
1731 * this returns the address of the start of the last item,
1732 * which is the stop of the leaf data stack
1733 */
123abc88 1734static inline unsigned int leaf_data_end(struct btrfs_root *root,
5f39d397 1735 struct extent_buffer *leaf)
be0e5c09 1736{
5f39d397 1737 u32 nr = btrfs_header_nritems(leaf);
be0e5c09 1738 if (nr == 0)
123abc88 1739 return BTRFS_LEAF_DATA_SIZE(root);
5f39d397 1740 return btrfs_item_offset_nr(leaf, nr - 1);
be0e5c09
CM
1741}
1742
aa5d6bed 1743
74123bd7 1744/*
5f39d397
CM
1745 * search for key in the extent_buffer. The items start at offset p,
1746 * and they are item_size apart. There are 'max' items in p.
1747 *
74123bd7
CM
1748 * the slot in the array is returned via slot, and it points to
1749 * the place where you would insert key if it is not found in
1750 * the array.
1751 *
1752 * slot may point to max if the key is bigger than all of the keys
1753 */
e02119d5
CM
1754static noinline int generic_bin_search(struct extent_buffer *eb,
1755 unsigned long p,
1756 int item_size, struct btrfs_key *key,
1757 int max, int *slot)
be0e5c09
CM
1758{
1759 int low = 0;
1760 int high = max;
1761 int mid;
1762 int ret;
479965d6 1763 struct btrfs_disk_key *tmp = NULL;
5f39d397
CM
1764 struct btrfs_disk_key unaligned;
1765 unsigned long offset;
5f39d397
CM
1766 char *kaddr = NULL;
1767 unsigned long map_start = 0;
1768 unsigned long map_len = 0;
479965d6 1769 int err;
be0e5c09 1770
d397712b 1771 while (low < high) {
be0e5c09 1772 mid = (low + high) / 2;
5f39d397
CM
1773 offset = p + mid * item_size;
1774
a6591715 1775 if (!kaddr || offset < map_start ||
5f39d397
CM
1776 (offset + sizeof(struct btrfs_disk_key)) >
1777 map_start + map_len) {
934d375b
CM
1778
1779 err = map_private_extent_buffer(eb, offset,
479965d6 1780 sizeof(struct btrfs_disk_key),
a6591715 1781 &kaddr, &map_start, &map_len);
479965d6
CM
1782
1783 if (!err) {
1784 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1785 map_start);
1786 } else {
1787 read_extent_buffer(eb, &unaligned,
1788 offset, sizeof(unaligned));
1789 tmp = &unaligned;
1790 }
5f39d397 1791
5f39d397
CM
1792 } else {
1793 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1794 map_start);
1795 }
be0e5c09
CM
1796 ret = comp_keys(tmp, key);
1797
1798 if (ret < 0)
1799 low = mid + 1;
1800 else if (ret > 0)
1801 high = mid;
1802 else {
1803 *slot = mid;
1804 return 0;
1805 }
1806 }
1807 *slot = low;
1808 return 1;
1809}
1810
97571fd0
CM
1811/*
1812 * simple bin_search frontend that does the right thing for
1813 * leaves vs nodes
1814 */
5f39d397
CM
1815static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1816 int level, int *slot)
be0e5c09 1817{
f775738f 1818 if (level == 0)
5f39d397
CM
1819 return generic_bin_search(eb,
1820 offsetof(struct btrfs_leaf, items),
0783fcfc 1821 sizeof(struct btrfs_item),
5f39d397 1822 key, btrfs_header_nritems(eb),
7518a238 1823 slot);
f775738f 1824 else
5f39d397
CM
1825 return generic_bin_search(eb,
1826 offsetof(struct btrfs_node, ptrs),
123abc88 1827 sizeof(struct btrfs_key_ptr),
5f39d397 1828 key, btrfs_header_nritems(eb),
7518a238 1829 slot);
be0e5c09
CM
1830}
1831
5d4f98a2
YZ
1832int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1833 int level, int *slot)
1834{
1835 return bin_search(eb, key, level, slot);
1836}
1837
f0486c68
YZ
1838static void root_add_used(struct btrfs_root *root, u32 size)
1839{
1840 spin_lock(&root->accounting_lock);
1841 btrfs_set_root_used(&root->root_item,
1842 btrfs_root_used(&root->root_item) + size);
1843 spin_unlock(&root->accounting_lock);
1844}
1845
1846static void root_sub_used(struct btrfs_root *root, u32 size)
1847{
1848 spin_lock(&root->accounting_lock);
1849 btrfs_set_root_used(&root->root_item,
1850 btrfs_root_used(&root->root_item) - size);
1851 spin_unlock(&root->accounting_lock);
1852}
1853
d352ac68
CM
1854/* given a node and slot number, this reads the blocks it points to. The
1855 * extent buffer is returned with a reference taken (but unlocked).
1856 * NULL is returned on error.
1857 */
e02119d5 1858static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
5f39d397 1859 struct extent_buffer *parent, int slot)
bb803951 1860{
ca7a79ad 1861 int level = btrfs_header_level(parent);
416bc658
JB
1862 struct extent_buffer *eb;
1863
bb803951
CM
1864 if (slot < 0)
1865 return NULL;
5f39d397 1866 if (slot >= btrfs_header_nritems(parent))
bb803951 1867 return NULL;
ca7a79ad
CM
1868
1869 BUG_ON(level == 0);
1870
416bc658 1871 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
416bc658
JB
1872 btrfs_node_ptr_generation(parent, slot));
1873 if (eb && !extent_buffer_uptodate(eb)) {
1874 free_extent_buffer(eb);
1875 eb = NULL;
1876 }
1877
1878 return eb;
bb803951
CM
1879}
1880
d352ac68
CM
1881/*
1882 * node level balancing, used to make sure nodes are in proper order for
1883 * item deletion. We balance from the top down, so we have to make sure
1884 * that a deletion won't leave an node completely empty later on.
1885 */
e02119d5 1886static noinline int balance_level(struct btrfs_trans_handle *trans,
98ed5174
CM
1887 struct btrfs_root *root,
1888 struct btrfs_path *path, int level)
bb803951 1889{
5f39d397
CM
1890 struct extent_buffer *right = NULL;
1891 struct extent_buffer *mid;
1892 struct extent_buffer *left = NULL;
1893 struct extent_buffer *parent = NULL;
bb803951
CM
1894 int ret = 0;
1895 int wret;
1896 int pslot;
bb803951 1897 int orig_slot = path->slots[level];
79f95c82 1898 u64 orig_ptr;
bb803951
CM
1899
1900 if (level == 0)
1901 return 0;
1902
5f39d397 1903 mid = path->nodes[level];
b4ce94de 1904
bd681513
CM
1905 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1906 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
7bb86316
CM
1907 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1908
1d4f8a0c 1909 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
79f95c82 1910
a05a9bb1 1911 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1912 parent = path->nodes[level + 1];
a05a9bb1
LZ
1913 pslot = path->slots[level + 1];
1914 }
bb803951 1915
40689478
CM
1916 /*
1917 * deal with the case where there is only one pointer in the root
1918 * by promoting the node below to a root
1919 */
5f39d397
CM
1920 if (!parent) {
1921 struct extent_buffer *child;
bb803951 1922
5f39d397 1923 if (btrfs_header_nritems(mid) != 1)
bb803951
CM
1924 return 0;
1925
1926 /* promote the child to a root */
5f39d397 1927 child = read_node_slot(root, mid, 0);
305a26af
MF
1928 if (!child) {
1929 ret = -EROFS;
1930 btrfs_std_error(root->fs_info, ret);
1931 goto enospc;
1932 }
1933
925baedd 1934 btrfs_tree_lock(child);
b4ce94de 1935 btrfs_set_lock_blocking(child);
9fa8cfe7 1936 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
f0486c68
YZ
1937 if (ret) {
1938 btrfs_tree_unlock(child);
1939 free_extent_buffer(child);
1940 goto enospc;
1941 }
2f375ab9 1942
90f8d62e 1943 tree_mod_log_set_root_pointer(root, child, 1);
240f62c8 1944 rcu_assign_pointer(root->node, child);
925baedd 1945
0b86a832 1946 add_root_to_dirty_list(root);
925baedd 1947 btrfs_tree_unlock(child);
b4ce94de 1948
925baedd 1949 path->locks[level] = 0;
bb803951 1950 path->nodes[level] = NULL;
5f39d397 1951 clean_tree_block(trans, root, mid);
925baedd 1952 btrfs_tree_unlock(mid);
bb803951 1953 /* once for the path */
5f39d397 1954 free_extent_buffer(mid);
f0486c68
YZ
1955
1956 root_sub_used(root, mid->len);
5581a51a 1957 btrfs_free_tree_block(trans, root, mid, 0, 1);
bb803951 1958 /* once for the root ptr */
3083ee2e 1959 free_extent_buffer_stale(mid);
f0486c68 1960 return 0;
bb803951 1961 }
5f39d397 1962 if (btrfs_header_nritems(mid) >
123abc88 1963 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
bb803951
CM
1964 return 0;
1965
5f39d397
CM
1966 left = read_node_slot(root, parent, pslot - 1);
1967 if (left) {
925baedd 1968 btrfs_tree_lock(left);
b4ce94de 1969 btrfs_set_lock_blocking(left);
5f39d397 1970 wret = btrfs_cow_block(trans, root, left,
9fa8cfe7 1971 parent, pslot - 1, &left);
54aa1f4d
CM
1972 if (wret) {
1973 ret = wret;
1974 goto enospc;
1975 }
2cc58cf2 1976 }
5f39d397
CM
1977 right = read_node_slot(root, parent, pslot + 1);
1978 if (right) {
925baedd 1979 btrfs_tree_lock(right);
b4ce94de 1980 btrfs_set_lock_blocking(right);
5f39d397 1981 wret = btrfs_cow_block(trans, root, right,
9fa8cfe7 1982 parent, pslot + 1, &right);
2cc58cf2
CM
1983 if (wret) {
1984 ret = wret;
1985 goto enospc;
1986 }
1987 }
1988
1989 /* first, try to make some room in the middle buffer */
5f39d397
CM
1990 if (left) {
1991 orig_slot += btrfs_header_nritems(left);
bce4eae9 1992 wret = push_node_left(trans, root, left, mid, 1);
79f95c82
CM
1993 if (wret < 0)
1994 ret = wret;
bb803951 1995 }
79f95c82
CM
1996
1997 /*
1998 * then try to empty the right most buffer into the middle
1999 */
5f39d397 2000 if (right) {
971a1f66 2001 wret = push_node_left(trans, root, mid, right, 1);
54aa1f4d 2002 if (wret < 0 && wret != -ENOSPC)
79f95c82 2003 ret = wret;
5f39d397 2004 if (btrfs_header_nritems(right) == 0) {
5f39d397 2005 clean_tree_block(trans, root, right);
925baedd 2006 btrfs_tree_unlock(right);
afe5fea7 2007 del_ptr(root, path, level + 1, pslot + 1);
f0486c68 2008 root_sub_used(root, right->len);
5581a51a 2009 btrfs_free_tree_block(trans, root, right, 0, 1);
3083ee2e 2010 free_extent_buffer_stale(right);
f0486c68 2011 right = NULL;
bb803951 2012 } else {
5f39d397
CM
2013 struct btrfs_disk_key right_key;
2014 btrfs_node_key(right, &right_key, 0);
f230475e 2015 tree_mod_log_set_node_key(root->fs_info, parent,
32adf090 2016 pslot + 1, 0);
5f39d397
CM
2017 btrfs_set_node_key(parent, &right_key, pslot + 1);
2018 btrfs_mark_buffer_dirty(parent);
bb803951
CM
2019 }
2020 }
5f39d397 2021 if (btrfs_header_nritems(mid) == 1) {
79f95c82
CM
2022 /*
2023 * we're not allowed to leave a node with one item in the
2024 * tree during a delete. A deletion from lower in the tree
2025 * could try to delete the only pointer in this node.
2026 * So, pull some keys from the left.
2027 * There has to be a left pointer at this point because
2028 * otherwise we would have pulled some pointers from the
2029 * right
2030 */
305a26af
MF
2031 if (!left) {
2032 ret = -EROFS;
2033 btrfs_std_error(root->fs_info, ret);
2034 goto enospc;
2035 }
5f39d397 2036 wret = balance_node_right(trans, root, mid, left);
54aa1f4d 2037 if (wret < 0) {
79f95c82 2038 ret = wret;
54aa1f4d
CM
2039 goto enospc;
2040 }
bce4eae9
CM
2041 if (wret == 1) {
2042 wret = push_node_left(trans, root, left, mid, 1);
2043 if (wret < 0)
2044 ret = wret;
2045 }
79f95c82
CM
2046 BUG_ON(wret == 1);
2047 }
5f39d397 2048 if (btrfs_header_nritems(mid) == 0) {
5f39d397 2049 clean_tree_block(trans, root, mid);
925baedd 2050 btrfs_tree_unlock(mid);
afe5fea7 2051 del_ptr(root, path, level + 1, pslot);
f0486c68 2052 root_sub_used(root, mid->len);
5581a51a 2053 btrfs_free_tree_block(trans, root, mid, 0, 1);
3083ee2e 2054 free_extent_buffer_stale(mid);
f0486c68 2055 mid = NULL;
79f95c82
CM
2056 } else {
2057 /* update the parent key to reflect our changes */
5f39d397
CM
2058 struct btrfs_disk_key mid_key;
2059 btrfs_node_key(mid, &mid_key, 0);
32adf090 2060 tree_mod_log_set_node_key(root->fs_info, parent,
f230475e 2061 pslot, 0);
5f39d397
CM
2062 btrfs_set_node_key(parent, &mid_key, pslot);
2063 btrfs_mark_buffer_dirty(parent);
79f95c82 2064 }
bb803951 2065
79f95c82 2066 /* update the path */
5f39d397
CM
2067 if (left) {
2068 if (btrfs_header_nritems(left) > orig_slot) {
2069 extent_buffer_get(left);
925baedd 2070 /* left was locked after cow */
5f39d397 2071 path->nodes[level] = left;
bb803951
CM
2072 path->slots[level + 1] -= 1;
2073 path->slots[level] = orig_slot;
925baedd
CM
2074 if (mid) {
2075 btrfs_tree_unlock(mid);
5f39d397 2076 free_extent_buffer(mid);
925baedd 2077 }
bb803951 2078 } else {
5f39d397 2079 orig_slot -= btrfs_header_nritems(left);
bb803951
CM
2080 path->slots[level] = orig_slot;
2081 }
2082 }
79f95c82 2083 /* double check we haven't messed things up */
e20d96d6 2084 if (orig_ptr !=
5f39d397 2085 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
79f95c82 2086 BUG();
54aa1f4d 2087enospc:
925baedd
CM
2088 if (right) {
2089 btrfs_tree_unlock(right);
5f39d397 2090 free_extent_buffer(right);
925baedd
CM
2091 }
2092 if (left) {
2093 if (path->nodes[level] != left)
2094 btrfs_tree_unlock(left);
5f39d397 2095 free_extent_buffer(left);
925baedd 2096 }
bb803951
CM
2097 return ret;
2098}
2099
d352ac68
CM
2100/* Node balancing for insertion. Here we only split or push nodes around
2101 * when they are completely full. This is also done top down, so we
2102 * have to be pessimistic.
2103 */
d397712b 2104static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
98ed5174
CM
2105 struct btrfs_root *root,
2106 struct btrfs_path *path, int level)
e66f709b 2107{
5f39d397
CM
2108 struct extent_buffer *right = NULL;
2109 struct extent_buffer *mid;
2110 struct extent_buffer *left = NULL;
2111 struct extent_buffer *parent = NULL;
e66f709b
CM
2112 int ret = 0;
2113 int wret;
2114 int pslot;
2115 int orig_slot = path->slots[level];
e66f709b
CM
2116
2117 if (level == 0)
2118 return 1;
2119
5f39d397 2120 mid = path->nodes[level];
7bb86316 2121 WARN_ON(btrfs_header_generation(mid) != trans->transid);
e66f709b 2122
a05a9bb1 2123 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 2124 parent = path->nodes[level + 1];
a05a9bb1
LZ
2125 pslot = path->slots[level + 1];
2126 }
e66f709b 2127
5f39d397 2128 if (!parent)
e66f709b 2129 return 1;
e66f709b 2130
5f39d397 2131 left = read_node_slot(root, parent, pslot - 1);
e66f709b
CM
2132
2133 /* first, try to make some room in the middle buffer */
5f39d397 2134 if (left) {
e66f709b 2135 u32 left_nr;
925baedd
CM
2136
2137 btrfs_tree_lock(left);
b4ce94de
CM
2138 btrfs_set_lock_blocking(left);
2139
5f39d397 2140 left_nr = btrfs_header_nritems(left);
33ade1f8
CM
2141 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2142 wret = 1;
2143 } else {
5f39d397 2144 ret = btrfs_cow_block(trans, root, left, parent,
9fa8cfe7 2145 pslot - 1, &left);
54aa1f4d
CM
2146 if (ret)
2147 wret = 1;
2148 else {
54aa1f4d 2149 wret = push_node_left(trans, root,
971a1f66 2150 left, mid, 0);
54aa1f4d 2151 }
33ade1f8 2152 }
e66f709b
CM
2153 if (wret < 0)
2154 ret = wret;
2155 if (wret == 0) {
5f39d397 2156 struct btrfs_disk_key disk_key;
e66f709b 2157 orig_slot += left_nr;
5f39d397 2158 btrfs_node_key(mid, &disk_key, 0);
f230475e 2159 tree_mod_log_set_node_key(root->fs_info, parent,
32adf090 2160 pslot, 0);
5f39d397
CM
2161 btrfs_set_node_key(parent, &disk_key, pslot);
2162 btrfs_mark_buffer_dirty(parent);
2163 if (btrfs_header_nritems(left) > orig_slot) {
2164 path->nodes[level] = left;
e66f709b
CM
2165 path->slots[level + 1] -= 1;
2166 path->slots[level] = orig_slot;
925baedd 2167 btrfs_tree_unlock(mid);
5f39d397 2168 free_extent_buffer(mid);
e66f709b
CM
2169 } else {
2170 orig_slot -=
5f39d397 2171 btrfs_header_nritems(left);
e66f709b 2172 path->slots[level] = orig_slot;
925baedd 2173 btrfs_tree_unlock(left);
5f39d397 2174 free_extent_buffer(left);
e66f709b 2175 }
e66f709b
CM
2176 return 0;
2177 }
925baedd 2178 btrfs_tree_unlock(left);
5f39d397 2179 free_extent_buffer(left);
e66f709b 2180 }
925baedd 2181 right = read_node_slot(root, parent, pslot + 1);
e66f709b
CM
2182
2183 /*
2184 * then try to empty the right most buffer into the middle
2185 */
5f39d397 2186 if (right) {
33ade1f8 2187 u32 right_nr;
b4ce94de 2188
925baedd 2189 btrfs_tree_lock(right);
b4ce94de
CM
2190 btrfs_set_lock_blocking(right);
2191
5f39d397 2192 right_nr = btrfs_header_nritems(right);
33ade1f8
CM
2193 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2194 wret = 1;
2195 } else {
5f39d397
CM
2196 ret = btrfs_cow_block(trans, root, right,
2197 parent, pslot + 1,
9fa8cfe7 2198 &right);
54aa1f4d
CM
2199 if (ret)
2200 wret = 1;
2201 else {
54aa1f4d 2202 wret = balance_node_right(trans, root,
5f39d397 2203 right, mid);
54aa1f4d 2204 }
33ade1f8 2205 }
e66f709b
CM
2206 if (wret < 0)
2207 ret = wret;
2208 if (wret == 0) {
5f39d397
CM
2209 struct btrfs_disk_key disk_key;
2210
2211 btrfs_node_key(right, &disk_key, 0);
f230475e 2212 tree_mod_log_set_node_key(root->fs_info, parent,
32adf090 2213 pslot + 1, 0);
5f39d397
CM
2214 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2215 btrfs_mark_buffer_dirty(parent);
2216
2217 if (btrfs_header_nritems(mid) <= orig_slot) {
2218 path->nodes[level] = right;
e66f709b
CM
2219 path->slots[level + 1] += 1;
2220 path->slots[level] = orig_slot -
5f39d397 2221 btrfs_header_nritems(mid);
925baedd 2222 btrfs_tree_unlock(mid);
5f39d397 2223 free_extent_buffer(mid);
e66f709b 2224 } else {
925baedd 2225 btrfs_tree_unlock(right);
5f39d397 2226 free_extent_buffer(right);
e66f709b 2227 }
e66f709b
CM
2228 return 0;
2229 }
925baedd 2230 btrfs_tree_unlock(right);
5f39d397 2231 free_extent_buffer(right);
e66f709b 2232 }
e66f709b
CM
2233 return 1;
2234}
2235
3c69faec 2236/*
d352ac68
CM
2237 * readahead one full node of leaves, finding things that are close
2238 * to the block in 'slot', and triggering ra on them.
3c69faec 2239 */
c8c42864
CM
2240static void reada_for_search(struct btrfs_root *root,
2241 struct btrfs_path *path,
2242 int level, int slot, u64 objectid)
3c69faec 2243{
5f39d397 2244 struct extent_buffer *node;
01f46658 2245 struct btrfs_disk_key disk_key;
3c69faec 2246 u32 nritems;
3c69faec 2247 u64 search;
a7175319 2248 u64 target;
6b80053d 2249 u64 nread = 0;
cb25c2ea 2250 u64 gen;
3c69faec 2251 int direction = path->reada;
5f39d397 2252 struct extent_buffer *eb;
6b80053d
CM
2253 u32 nr;
2254 u32 blocksize;
2255 u32 nscan = 0;
db94535d 2256
a6b6e75e 2257 if (level != 1)
6702ed49
CM
2258 return;
2259
2260 if (!path->nodes[level])
3c69faec
CM
2261 return;
2262
5f39d397 2263 node = path->nodes[level];
925baedd 2264
3c69faec 2265 search = btrfs_node_blockptr(node, slot);
707e8a07 2266 blocksize = root->nodesize;
0308af44 2267 eb = btrfs_find_tree_block(root, search);
5f39d397
CM
2268 if (eb) {
2269 free_extent_buffer(eb);
3c69faec
CM
2270 return;
2271 }
2272
a7175319 2273 target = search;
6b80053d 2274
5f39d397 2275 nritems = btrfs_header_nritems(node);
6b80053d 2276 nr = slot;
25b8b936 2277
d397712b 2278 while (1) {
6b80053d
CM
2279 if (direction < 0) {
2280 if (nr == 0)
2281 break;
2282 nr--;
2283 } else if (direction > 0) {
2284 nr++;
2285 if (nr >= nritems)
2286 break;
3c69faec 2287 }
01f46658
CM
2288 if (path->reada < 0 && objectid) {
2289 btrfs_node_key(node, &disk_key, nr);
2290 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2291 break;
2292 }
6b80053d 2293 search = btrfs_node_blockptr(node, nr);
a7175319
CM
2294 if ((search <= target && target - search <= 65536) ||
2295 (search > target && search - target <= 65536)) {
cb25c2ea 2296 gen = btrfs_node_ptr_generation(node, nr);
58dc4ce4 2297 readahead_tree_block(root, search, blocksize);
6b80053d
CM
2298 nread += blocksize;
2299 }
2300 nscan++;
a7175319 2301 if ((nread > 65536 || nscan > 32))
6b80053d 2302 break;
3c69faec
CM
2303 }
2304}
925baedd 2305
0b08851f
JB
2306static noinline void reada_for_balance(struct btrfs_root *root,
2307 struct btrfs_path *path, int level)
b4ce94de
CM
2308{
2309 int slot;
2310 int nritems;
2311 struct extent_buffer *parent;
2312 struct extent_buffer *eb;
2313 u64 gen;
2314 u64 block1 = 0;
2315 u64 block2 = 0;
b4ce94de
CM
2316 int blocksize;
2317
8c594ea8 2318 parent = path->nodes[level + 1];
b4ce94de 2319 if (!parent)
0b08851f 2320 return;
b4ce94de
CM
2321
2322 nritems = btrfs_header_nritems(parent);
8c594ea8 2323 slot = path->slots[level + 1];
707e8a07 2324 blocksize = root->nodesize;
b4ce94de
CM
2325
2326 if (slot > 0) {
2327 block1 = btrfs_node_blockptr(parent, slot - 1);
2328 gen = btrfs_node_ptr_generation(parent, slot - 1);
0308af44 2329 eb = btrfs_find_tree_block(root, block1);
b9fab919
CM
2330 /*
2331 * if we get -eagain from btrfs_buffer_uptodate, we
2332 * don't want to return eagain here. That will loop
2333 * forever
2334 */
2335 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2336 block1 = 0;
2337 free_extent_buffer(eb);
2338 }
8c594ea8 2339 if (slot + 1 < nritems) {
b4ce94de
CM
2340 block2 = btrfs_node_blockptr(parent, slot + 1);
2341 gen = btrfs_node_ptr_generation(parent, slot + 1);
0308af44 2342 eb = btrfs_find_tree_block(root, block2);
b9fab919 2343 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2344 block2 = 0;
2345 free_extent_buffer(eb);
2346 }
8c594ea8 2347
0b08851f 2348 if (block1)
58dc4ce4 2349 readahead_tree_block(root, block1, blocksize);
0b08851f 2350 if (block2)
58dc4ce4 2351 readahead_tree_block(root, block2, blocksize);
b4ce94de
CM
2352}
2353
2354
d352ac68 2355/*
d397712b
CM
2356 * when we walk down the tree, it is usually safe to unlock the higher layers
2357 * in the tree. The exceptions are when our path goes through slot 0, because
2358 * operations on the tree might require changing key pointers higher up in the
2359 * tree.
d352ac68 2360 *
d397712b
CM
2361 * callers might also have set path->keep_locks, which tells this code to keep
2362 * the lock if the path points to the last slot in the block. This is part of
2363 * walking through the tree, and selecting the next slot in the higher block.
d352ac68 2364 *
d397712b
CM
2365 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2366 * if lowest_unlock is 1, level 0 won't be unlocked
d352ac68 2367 */
e02119d5 2368static noinline void unlock_up(struct btrfs_path *path, int level,
f7c79f30
CM
2369 int lowest_unlock, int min_write_lock_level,
2370 int *write_lock_level)
925baedd
CM
2371{
2372 int i;
2373 int skip_level = level;
051e1b9f 2374 int no_skips = 0;
925baedd
CM
2375 struct extent_buffer *t;
2376
2377 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2378 if (!path->nodes[i])
2379 break;
2380 if (!path->locks[i])
2381 break;
051e1b9f 2382 if (!no_skips && path->slots[i] == 0) {
925baedd
CM
2383 skip_level = i + 1;
2384 continue;
2385 }
051e1b9f 2386 if (!no_skips && path->keep_locks) {
925baedd
CM
2387 u32 nritems;
2388 t = path->nodes[i];
2389 nritems = btrfs_header_nritems(t);
051e1b9f 2390 if (nritems < 1 || path->slots[i] >= nritems - 1) {
925baedd
CM
2391 skip_level = i + 1;
2392 continue;
2393 }
2394 }
051e1b9f
CM
2395 if (skip_level < i && i >= lowest_unlock)
2396 no_skips = 1;
2397
925baedd
CM
2398 t = path->nodes[i];
2399 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
bd681513 2400 btrfs_tree_unlock_rw(t, path->locks[i]);
925baedd 2401 path->locks[i] = 0;
f7c79f30
CM
2402 if (write_lock_level &&
2403 i > min_write_lock_level &&
2404 i <= *write_lock_level) {
2405 *write_lock_level = i - 1;
2406 }
925baedd
CM
2407 }
2408 }
2409}
2410
b4ce94de
CM
2411/*
2412 * This releases any locks held in the path starting at level and
2413 * going all the way up to the root.
2414 *
2415 * btrfs_search_slot will keep the lock held on higher nodes in a few
2416 * corner cases, such as COW of the block at slot zero in the node. This
2417 * ignores those rules, and it should only be called when there are no
2418 * more updates to be done higher up in the tree.
2419 */
2420noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2421{
2422 int i;
2423
09a2a8f9 2424 if (path->keep_locks)
b4ce94de
CM
2425 return;
2426
2427 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2428 if (!path->nodes[i])
12f4dacc 2429 continue;
b4ce94de 2430 if (!path->locks[i])
12f4dacc 2431 continue;
bd681513 2432 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
b4ce94de
CM
2433 path->locks[i] = 0;
2434 }
2435}
2436
c8c42864
CM
2437/*
2438 * helper function for btrfs_search_slot. The goal is to find a block
2439 * in cache without setting the path to blocking. If we find the block
2440 * we return zero and the path is unchanged.
2441 *
2442 * If we can't find the block, we set the path blocking and do some
2443 * reada. -EAGAIN is returned and the search must be repeated.
2444 */
2445static int
2446read_block_for_search(struct btrfs_trans_handle *trans,
2447 struct btrfs_root *root, struct btrfs_path *p,
2448 struct extent_buffer **eb_ret, int level, int slot,
5d9e75c4 2449 struct btrfs_key *key, u64 time_seq)
c8c42864
CM
2450{
2451 u64 blocknr;
2452 u64 gen;
c8c42864
CM
2453 struct extent_buffer *b = *eb_ret;
2454 struct extent_buffer *tmp;
76a05b35 2455 int ret;
c8c42864
CM
2456
2457 blocknr = btrfs_node_blockptr(b, slot);
2458 gen = btrfs_node_ptr_generation(b, slot);
c8c42864 2459
0308af44 2460 tmp = btrfs_find_tree_block(root, blocknr);
cb44921a 2461 if (tmp) {
b9fab919 2462 /* first we do an atomic uptodate check */
bdf7c00e
JB
2463 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2464 *eb_ret = tmp;
2465 return 0;
2466 }
2467
2468 /* the pages were up to date, but we failed
2469 * the generation number check. Do a full
2470 * read for the generation number that is correct.
2471 * We must do this without dropping locks so
2472 * we can trust our generation number
2473 */
2474 btrfs_set_path_blocking(p);
2475
2476 /* now we're allowed to do a blocking uptodate check */
2477 ret = btrfs_read_buffer(tmp, gen);
2478 if (!ret) {
2479 *eb_ret = tmp;
2480 return 0;
cb44921a 2481 }
bdf7c00e
JB
2482 free_extent_buffer(tmp);
2483 btrfs_release_path(p);
2484 return -EIO;
c8c42864
CM
2485 }
2486
2487 /*
2488 * reduce lock contention at high levels
2489 * of the btree by dropping locks before
76a05b35
CM
2490 * we read. Don't release the lock on the current
2491 * level because we need to walk this node to figure
2492 * out which blocks to read.
c8c42864 2493 */
8c594ea8
CM
2494 btrfs_unlock_up_safe(p, level + 1);
2495 btrfs_set_path_blocking(p);
2496
cb44921a 2497 free_extent_buffer(tmp);
c8c42864
CM
2498 if (p->reada)
2499 reada_for_search(root, p, level, slot, key->objectid);
2500
b3b4aa74 2501 btrfs_release_path(p);
76a05b35
CM
2502
2503 ret = -EAGAIN;
ce86cd59 2504 tmp = read_tree_block(root, blocknr, 0);
76a05b35
CM
2505 if (tmp) {
2506 /*
2507 * If the read above didn't mark this buffer up to date,
2508 * it will never end up being up to date. Set ret to EIO now
2509 * and give up so that our caller doesn't loop forever
2510 * on our EAGAINs.
2511 */
b9fab919 2512 if (!btrfs_buffer_uptodate(tmp, 0, 0))
76a05b35 2513 ret = -EIO;
c8c42864 2514 free_extent_buffer(tmp);
76a05b35
CM
2515 }
2516 return ret;
c8c42864
CM
2517}
2518
2519/*
2520 * helper function for btrfs_search_slot. This does all of the checks
2521 * for node-level blocks and does any balancing required based on
2522 * the ins_len.
2523 *
2524 * If no extra work was required, zero is returned. If we had to
2525 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2526 * start over
2527 */
2528static int
2529setup_nodes_for_search(struct btrfs_trans_handle *trans,
2530 struct btrfs_root *root, struct btrfs_path *p,
bd681513
CM
2531 struct extent_buffer *b, int level, int ins_len,
2532 int *write_lock_level)
c8c42864
CM
2533{
2534 int ret;
2535 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2536 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2537 int sret;
2538
bd681513
CM
2539 if (*write_lock_level < level + 1) {
2540 *write_lock_level = level + 1;
2541 btrfs_release_path(p);
2542 goto again;
2543 }
2544
c8c42864 2545 btrfs_set_path_blocking(p);
0b08851f 2546 reada_for_balance(root, p, level);
c8c42864 2547 sret = split_node(trans, root, p, level);
bd681513 2548 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2549
2550 BUG_ON(sret > 0);
2551 if (sret) {
2552 ret = sret;
2553 goto done;
2554 }
2555 b = p->nodes[level];
2556 } else if (ins_len < 0 && btrfs_header_nritems(b) <
cfbb9308 2557 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
c8c42864
CM
2558 int sret;
2559
bd681513
CM
2560 if (*write_lock_level < level + 1) {
2561 *write_lock_level = level + 1;
2562 btrfs_release_path(p);
2563 goto again;
2564 }
2565
c8c42864 2566 btrfs_set_path_blocking(p);
0b08851f 2567 reada_for_balance(root, p, level);
c8c42864 2568 sret = balance_level(trans, root, p, level);
bd681513 2569 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2570
2571 if (sret) {
2572 ret = sret;
2573 goto done;
2574 }
2575 b = p->nodes[level];
2576 if (!b) {
b3b4aa74 2577 btrfs_release_path(p);
c8c42864
CM
2578 goto again;
2579 }
2580 BUG_ON(btrfs_header_nritems(b) == 1);
2581 }
2582 return 0;
2583
2584again:
2585 ret = -EAGAIN;
2586done:
2587 return ret;
2588}
2589
d7396f07
FDBM
2590static void key_search_validate(struct extent_buffer *b,
2591 struct btrfs_key *key,
2592 int level)
2593{
2594#ifdef CONFIG_BTRFS_ASSERT
2595 struct btrfs_disk_key disk_key;
2596
2597 btrfs_cpu_key_to_disk(&disk_key, key);
2598
2599 if (level == 0)
2600 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2601 offsetof(struct btrfs_leaf, items[0].key),
2602 sizeof(disk_key)));
2603 else
2604 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2605 offsetof(struct btrfs_node, ptrs[0].key),
2606 sizeof(disk_key)));
2607#endif
2608}
2609
2610static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2611 int level, int *prev_cmp, int *slot)
2612{
2613 if (*prev_cmp != 0) {
2614 *prev_cmp = bin_search(b, key, level, slot);
2615 return *prev_cmp;
2616 }
2617
2618 key_search_validate(b, key, level);
2619 *slot = 0;
2620
2621 return 0;
2622}
2623
3f870c28 2624int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *found_path,
e33d5c3d
KN
2625 u64 iobjectid, u64 ioff, u8 key_type,
2626 struct btrfs_key *found_key)
2627{
2628 int ret;
2629 struct btrfs_key key;
2630 struct extent_buffer *eb;
3f870c28 2631 struct btrfs_path *path;
e33d5c3d
KN
2632
2633 key.type = key_type;
2634 key.objectid = iobjectid;
2635 key.offset = ioff;
2636
3f870c28
KN
2637 if (found_path == NULL) {
2638 path = btrfs_alloc_path();
2639 if (!path)
2640 return -ENOMEM;
2641 } else
2642 path = found_path;
2643
e33d5c3d 2644 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
3f870c28
KN
2645 if ((ret < 0) || (found_key == NULL)) {
2646 if (path != found_path)
2647 btrfs_free_path(path);
e33d5c3d 2648 return ret;
3f870c28 2649 }
e33d5c3d
KN
2650
2651 eb = path->nodes[0];
2652 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2653 ret = btrfs_next_leaf(fs_root, path);
2654 if (ret)
2655 return ret;
2656 eb = path->nodes[0];
2657 }
2658
2659 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2660 if (found_key->type != key.type ||
2661 found_key->objectid != key.objectid)
2662 return 1;
2663
2664 return 0;
2665}
2666
74123bd7
CM
2667/*
2668 * look for key in the tree. path is filled in with nodes along the way
2669 * if key is found, we return zero and you can find the item in the leaf
2670 * level of the path (level 0)
2671 *
2672 * If the key isn't found, the path points to the slot where it should
aa5d6bed
CM
2673 * be inserted, and 1 is returned. If there are other errors during the
2674 * search a negative error number is returned.
97571fd0
CM
2675 *
2676 * if ins_len > 0, nodes and leaves will be split as we walk down the
2677 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2678 * possible)
74123bd7 2679 */
e089f05c
CM
2680int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2681 *root, struct btrfs_key *key, struct btrfs_path *p, int
2682 ins_len, int cow)
be0e5c09 2683{
5f39d397 2684 struct extent_buffer *b;
be0e5c09
CM
2685 int slot;
2686 int ret;
33c66f43 2687 int err;
be0e5c09 2688 int level;
925baedd 2689 int lowest_unlock = 1;
bd681513
CM
2690 int root_lock;
2691 /* everything at write_lock_level or lower must be write locked */
2692 int write_lock_level = 0;
9f3a7427 2693 u8 lowest_level = 0;
f7c79f30 2694 int min_write_lock_level;
d7396f07 2695 int prev_cmp;
9f3a7427 2696
6702ed49 2697 lowest_level = p->lowest_level;
323ac95b 2698 WARN_ON(lowest_level && ins_len > 0);
22b0ebda 2699 WARN_ON(p->nodes[0] != NULL);
eb653de1 2700 BUG_ON(!cow && ins_len);
25179201 2701
bd681513 2702 if (ins_len < 0) {
925baedd 2703 lowest_unlock = 2;
65b51a00 2704
bd681513
CM
2705 /* when we are removing items, we might have to go up to level
2706 * two as we update tree pointers Make sure we keep write
2707 * for those levels as well
2708 */
2709 write_lock_level = 2;
2710 } else if (ins_len > 0) {
2711 /*
2712 * for inserting items, make sure we have a write lock on
2713 * level 1 so we can update keys
2714 */
2715 write_lock_level = 1;
2716 }
2717
2718 if (!cow)
2719 write_lock_level = -1;
2720
09a2a8f9 2721 if (cow && (p->keep_locks || p->lowest_level))
bd681513
CM
2722 write_lock_level = BTRFS_MAX_LEVEL;
2723
f7c79f30
CM
2724 min_write_lock_level = write_lock_level;
2725
bb803951 2726again:
d7396f07 2727 prev_cmp = -1;
bd681513
CM
2728 /*
2729 * we try very hard to do read locks on the root
2730 */
2731 root_lock = BTRFS_READ_LOCK;
2732 level = 0;
5d4f98a2 2733 if (p->search_commit_root) {
bd681513
CM
2734 /*
2735 * the commit roots are read only
2736 * so we always do read locks
2737 */
3f8a18cc
JB
2738 if (p->need_commit_sem)
2739 down_read(&root->fs_info->commit_root_sem);
5d4f98a2
YZ
2740 b = root->commit_root;
2741 extent_buffer_get(b);
bd681513 2742 level = btrfs_header_level(b);
3f8a18cc
JB
2743 if (p->need_commit_sem)
2744 up_read(&root->fs_info->commit_root_sem);
5d4f98a2 2745 if (!p->skip_locking)
bd681513 2746 btrfs_tree_read_lock(b);
5d4f98a2 2747 } else {
bd681513 2748 if (p->skip_locking) {
5d4f98a2 2749 b = btrfs_root_node(root);
bd681513
CM
2750 level = btrfs_header_level(b);
2751 } else {
2752 /* we don't know the level of the root node
2753 * until we actually have it read locked
2754 */
2755 b = btrfs_read_lock_root_node(root);
2756 level = btrfs_header_level(b);
2757 if (level <= write_lock_level) {
2758 /* whoops, must trade for write lock */
2759 btrfs_tree_read_unlock(b);
2760 free_extent_buffer(b);
2761 b = btrfs_lock_root_node(root);
2762 root_lock = BTRFS_WRITE_LOCK;
2763
2764 /* the level might have changed, check again */
2765 level = btrfs_header_level(b);
2766 }
2767 }
5d4f98a2 2768 }
bd681513
CM
2769 p->nodes[level] = b;
2770 if (!p->skip_locking)
2771 p->locks[level] = root_lock;
925baedd 2772
eb60ceac 2773 while (b) {
5f39d397 2774 level = btrfs_header_level(b);
65b51a00
CM
2775
2776 /*
2777 * setup the path here so we can release it under lock
2778 * contention with the cow code
2779 */
02217ed2 2780 if (cow) {
c8c42864
CM
2781 /*
2782 * if we don't really need to cow this block
2783 * then we don't want to set the path blocking,
2784 * so we test it here
2785 */
5d4f98a2 2786 if (!should_cow_block(trans, root, b))
65b51a00 2787 goto cow_done;
5d4f98a2 2788
bd681513
CM
2789 /*
2790 * must have write locks on this node and the
2791 * parent
2792 */
5124e00e
JB
2793 if (level > write_lock_level ||
2794 (level + 1 > write_lock_level &&
2795 level + 1 < BTRFS_MAX_LEVEL &&
2796 p->nodes[level + 1])) {
bd681513
CM
2797 write_lock_level = level + 1;
2798 btrfs_release_path(p);
2799 goto again;
2800 }
2801
160f4089 2802 btrfs_set_path_blocking(p);
33c66f43
YZ
2803 err = btrfs_cow_block(trans, root, b,
2804 p->nodes[level + 1],
2805 p->slots[level + 1], &b);
2806 if (err) {
33c66f43 2807 ret = err;
65b51a00 2808 goto done;
54aa1f4d 2809 }
02217ed2 2810 }
65b51a00 2811cow_done:
eb60ceac 2812 p->nodes[level] = b;
bd681513 2813 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de
CM
2814
2815 /*
2816 * we have a lock on b and as long as we aren't changing
2817 * the tree, there is no way to for the items in b to change.
2818 * It is safe to drop the lock on our parent before we
2819 * go through the expensive btree search on b.
2820 *
eb653de1
FDBM
2821 * If we're inserting or deleting (ins_len != 0), then we might
2822 * be changing slot zero, which may require changing the parent.
2823 * So, we can't drop the lock until after we know which slot
2824 * we're operating on.
b4ce94de 2825 */
eb653de1
FDBM
2826 if (!ins_len && !p->keep_locks) {
2827 int u = level + 1;
2828
2829 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2830 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2831 p->locks[u] = 0;
2832 }
2833 }
b4ce94de 2834
d7396f07 2835 ret = key_search(b, key, level, &prev_cmp, &slot);
b4ce94de 2836
5f39d397 2837 if (level != 0) {
33c66f43
YZ
2838 int dec = 0;
2839 if (ret && slot > 0) {
2840 dec = 1;
be0e5c09 2841 slot -= 1;
33c66f43 2842 }
be0e5c09 2843 p->slots[level] = slot;
33c66f43 2844 err = setup_nodes_for_search(trans, root, p, b, level,
bd681513 2845 ins_len, &write_lock_level);
33c66f43 2846 if (err == -EAGAIN)
c8c42864 2847 goto again;
33c66f43
YZ
2848 if (err) {
2849 ret = err;
c8c42864 2850 goto done;
33c66f43 2851 }
c8c42864
CM
2852 b = p->nodes[level];
2853 slot = p->slots[level];
b4ce94de 2854
bd681513
CM
2855 /*
2856 * slot 0 is special, if we change the key
2857 * we have to update the parent pointer
2858 * which means we must have a write lock
2859 * on the parent
2860 */
eb653de1 2861 if (slot == 0 && ins_len &&
bd681513
CM
2862 write_lock_level < level + 1) {
2863 write_lock_level = level + 1;
2864 btrfs_release_path(p);
2865 goto again;
2866 }
2867
f7c79f30
CM
2868 unlock_up(p, level, lowest_unlock,
2869 min_write_lock_level, &write_lock_level);
f9efa9c7 2870
925baedd 2871 if (level == lowest_level) {
33c66f43
YZ
2872 if (dec)
2873 p->slots[level]++;
5b21f2ed 2874 goto done;
925baedd 2875 }
ca7a79ad 2876
33c66f43 2877 err = read_block_for_search(trans, root, p,
5d9e75c4 2878 &b, level, slot, key, 0);
33c66f43 2879 if (err == -EAGAIN)
c8c42864 2880 goto again;
33c66f43
YZ
2881 if (err) {
2882 ret = err;
76a05b35 2883 goto done;
33c66f43 2884 }
76a05b35 2885
b4ce94de 2886 if (!p->skip_locking) {
bd681513
CM
2887 level = btrfs_header_level(b);
2888 if (level <= write_lock_level) {
2889 err = btrfs_try_tree_write_lock(b);
2890 if (!err) {
2891 btrfs_set_path_blocking(p);
2892 btrfs_tree_lock(b);
2893 btrfs_clear_path_blocking(p, b,
2894 BTRFS_WRITE_LOCK);
2895 }
2896 p->locks[level] = BTRFS_WRITE_LOCK;
2897 } else {
2898 err = btrfs_try_tree_read_lock(b);
2899 if (!err) {
2900 btrfs_set_path_blocking(p);
2901 btrfs_tree_read_lock(b);
2902 btrfs_clear_path_blocking(p, b,
2903 BTRFS_READ_LOCK);
2904 }
2905 p->locks[level] = BTRFS_READ_LOCK;
b4ce94de 2906 }
bd681513 2907 p->nodes[level] = b;
b4ce94de 2908 }
be0e5c09
CM
2909 } else {
2910 p->slots[level] = slot;
87b29b20
YZ
2911 if (ins_len > 0 &&
2912 btrfs_leaf_free_space(root, b) < ins_len) {
bd681513
CM
2913 if (write_lock_level < 1) {
2914 write_lock_level = 1;
2915 btrfs_release_path(p);
2916 goto again;
2917 }
2918
b4ce94de 2919 btrfs_set_path_blocking(p);
33c66f43
YZ
2920 err = split_leaf(trans, root, key,
2921 p, ins_len, ret == 0);
bd681513 2922 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de 2923
33c66f43
YZ
2924 BUG_ON(err > 0);
2925 if (err) {
2926 ret = err;
65b51a00
CM
2927 goto done;
2928 }
5c680ed6 2929 }
459931ec 2930 if (!p->search_for_split)
f7c79f30
CM
2931 unlock_up(p, level, lowest_unlock,
2932 min_write_lock_level, &write_lock_level);
65b51a00 2933 goto done;
be0e5c09
CM
2934 }
2935 }
65b51a00
CM
2936 ret = 1;
2937done:
b4ce94de
CM
2938 /*
2939 * we don't really know what they plan on doing with the path
2940 * from here on, so for now just mark it as blocking
2941 */
b9473439
CM
2942 if (!p->leave_spinning)
2943 btrfs_set_path_blocking(p);
76a05b35 2944 if (ret < 0)
b3b4aa74 2945 btrfs_release_path(p);
65b51a00 2946 return ret;
be0e5c09
CM
2947}
2948
5d9e75c4
JS
2949/*
2950 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2951 * current state of the tree together with the operations recorded in the tree
2952 * modification log to search for the key in a previous version of this tree, as
2953 * denoted by the time_seq parameter.
2954 *
2955 * Naturally, there is no support for insert, delete or cow operations.
2956 *
2957 * The resulting path and return value will be set up as if we called
2958 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2959 */
2960int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2961 struct btrfs_path *p, u64 time_seq)
2962{
2963 struct extent_buffer *b;
2964 int slot;
2965 int ret;
2966 int err;
2967 int level;
2968 int lowest_unlock = 1;
2969 u8 lowest_level = 0;
d4b4087c 2970 int prev_cmp = -1;
5d9e75c4
JS
2971
2972 lowest_level = p->lowest_level;
2973 WARN_ON(p->nodes[0] != NULL);
2974
2975 if (p->search_commit_root) {
2976 BUG_ON(time_seq);
2977 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2978 }
2979
2980again:
5d9e75c4 2981 b = get_old_root(root, time_seq);
5d9e75c4 2982 level = btrfs_header_level(b);
5d9e75c4
JS
2983 p->locks[level] = BTRFS_READ_LOCK;
2984
2985 while (b) {
2986 level = btrfs_header_level(b);
2987 p->nodes[level] = b;
2988 btrfs_clear_path_blocking(p, NULL, 0);
2989
2990 /*
2991 * we have a lock on b and as long as we aren't changing
2992 * the tree, there is no way to for the items in b to change.
2993 * It is safe to drop the lock on our parent before we
2994 * go through the expensive btree search on b.
2995 */
2996 btrfs_unlock_up_safe(p, level + 1);
2997
d4b4087c
JB
2998 /*
2999 * Since we can unwind eb's we want to do a real search every
3000 * time.
3001 */
3002 prev_cmp = -1;
d7396f07 3003 ret = key_search(b, key, level, &prev_cmp, &slot);
5d9e75c4
JS
3004
3005 if (level != 0) {
3006 int dec = 0;
3007 if (ret && slot > 0) {
3008 dec = 1;
3009 slot -= 1;
3010 }
3011 p->slots[level] = slot;
3012 unlock_up(p, level, lowest_unlock, 0, NULL);
3013
3014 if (level == lowest_level) {
3015 if (dec)
3016 p->slots[level]++;
3017 goto done;
3018 }
3019
3020 err = read_block_for_search(NULL, root, p, &b, level,
3021 slot, key, time_seq);
3022 if (err == -EAGAIN)
3023 goto again;
3024 if (err) {
3025 ret = err;
3026 goto done;
3027 }
3028
3029 level = btrfs_header_level(b);
3030 err = btrfs_try_tree_read_lock(b);
3031 if (!err) {
3032 btrfs_set_path_blocking(p);
3033 btrfs_tree_read_lock(b);
3034 btrfs_clear_path_blocking(p, b,
3035 BTRFS_READ_LOCK);
3036 }
9ec72677 3037 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
db7f3436
JB
3038 if (!b) {
3039 ret = -ENOMEM;
3040 goto done;
3041 }
5d9e75c4
JS
3042 p->locks[level] = BTRFS_READ_LOCK;
3043 p->nodes[level] = b;
5d9e75c4
JS
3044 } else {
3045 p->slots[level] = slot;
3046 unlock_up(p, level, lowest_unlock, 0, NULL);
3047 goto done;
3048 }
3049 }
3050 ret = 1;
3051done:
3052 if (!p->leave_spinning)
3053 btrfs_set_path_blocking(p);
3054 if (ret < 0)
3055 btrfs_release_path(p);
3056
3057 return ret;
3058}
3059
2f38b3e1
AJ
3060/*
3061 * helper to use instead of search slot if no exact match is needed but
3062 * instead the next or previous item should be returned.
3063 * When find_higher is true, the next higher item is returned, the next lower
3064 * otherwise.
3065 * When return_any and find_higher are both true, and no higher item is found,
3066 * return the next lower instead.
3067 * When return_any is true and find_higher is false, and no lower item is found,
3068 * return the next higher instead.
3069 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3070 * < 0 on error
3071 */
3072int btrfs_search_slot_for_read(struct btrfs_root *root,
3073 struct btrfs_key *key, struct btrfs_path *p,
3074 int find_higher, int return_any)
3075{
3076 int ret;
3077 struct extent_buffer *leaf;
3078
3079again:
3080 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3081 if (ret <= 0)
3082 return ret;
3083 /*
3084 * a return value of 1 means the path is at the position where the
3085 * item should be inserted. Normally this is the next bigger item,
3086 * but in case the previous item is the last in a leaf, path points
3087 * to the first free slot in the previous leaf, i.e. at an invalid
3088 * item.
3089 */
3090 leaf = p->nodes[0];
3091
3092 if (find_higher) {
3093 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3094 ret = btrfs_next_leaf(root, p);
3095 if (ret <= 0)
3096 return ret;
3097 if (!return_any)
3098 return 1;
3099 /*
3100 * no higher item found, return the next
3101 * lower instead
3102 */
3103 return_any = 0;
3104 find_higher = 0;
3105 btrfs_release_path(p);
3106 goto again;
3107 }
3108 } else {
e6793769
AJ
3109 if (p->slots[0] == 0) {
3110 ret = btrfs_prev_leaf(root, p);
3111 if (ret < 0)
3112 return ret;
3113 if (!ret) {
23c6bf6a
FDBM
3114 leaf = p->nodes[0];
3115 if (p->slots[0] == btrfs_header_nritems(leaf))
3116 p->slots[0]--;
e6793769 3117 return 0;
2f38b3e1 3118 }
e6793769
AJ
3119 if (!return_any)
3120 return 1;
3121 /*
3122 * no lower item found, return the next
3123 * higher instead
3124 */
3125 return_any = 0;
3126 find_higher = 1;
3127 btrfs_release_path(p);
3128 goto again;
3129 } else {
2f38b3e1
AJ
3130 --p->slots[0];
3131 }
3132 }
3133 return 0;
3134}
3135
74123bd7
CM
3136/*
3137 * adjust the pointers going up the tree, starting at level
3138 * making sure the right key of each node is points to 'key'.
3139 * This is used after shifting pointers to the left, so it stops
3140 * fixing up pointers when a given leaf/node is not in slot 0 of the
3141 * higher levels
aa5d6bed 3142 *
74123bd7 3143 */
d6a0a126 3144static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
143bede5 3145 struct btrfs_disk_key *key, int level)
be0e5c09
CM
3146{
3147 int i;
5f39d397
CM
3148 struct extent_buffer *t;
3149
234b63a0 3150 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
be0e5c09 3151 int tslot = path->slots[i];
eb60ceac 3152 if (!path->nodes[i])
be0e5c09 3153 break;
5f39d397 3154 t = path->nodes[i];
32adf090 3155 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
5f39d397 3156 btrfs_set_node_key(t, key, tslot);
d6025579 3157 btrfs_mark_buffer_dirty(path->nodes[i]);
be0e5c09
CM
3158 if (tslot != 0)
3159 break;
3160 }
3161}
3162
31840ae1
ZY
3163/*
3164 * update item key.
3165 *
3166 * This function isn't completely safe. It's the caller's responsibility
3167 * that the new key won't break the order
3168 */
afe5fea7 3169void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
143bede5 3170 struct btrfs_key *new_key)
31840ae1
ZY
3171{
3172 struct btrfs_disk_key disk_key;
3173 struct extent_buffer *eb;
3174 int slot;
3175
3176 eb = path->nodes[0];
3177 slot = path->slots[0];
3178 if (slot > 0) {
3179 btrfs_item_key(eb, &disk_key, slot - 1);
143bede5 3180 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
31840ae1
ZY
3181 }
3182 if (slot < btrfs_header_nritems(eb) - 1) {
3183 btrfs_item_key(eb, &disk_key, slot + 1);
143bede5 3184 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
31840ae1
ZY
3185 }
3186
3187 btrfs_cpu_key_to_disk(&disk_key, new_key);
3188 btrfs_set_item_key(eb, &disk_key, slot);
3189 btrfs_mark_buffer_dirty(eb);
3190 if (slot == 0)
d6a0a126 3191 fixup_low_keys(root, path, &disk_key, 1);
31840ae1
ZY
3192}
3193
74123bd7
CM
3194/*
3195 * try to push data from one node into the next node left in the
79f95c82 3196 * tree.
aa5d6bed
CM
3197 *
3198 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3199 * error, and > 0 if there was no room in the left hand block.
74123bd7 3200 */
98ed5174
CM
3201static int push_node_left(struct btrfs_trans_handle *trans,
3202 struct btrfs_root *root, struct extent_buffer *dst,
971a1f66 3203 struct extent_buffer *src, int empty)
be0e5c09 3204{
be0e5c09 3205 int push_items = 0;
bb803951
CM
3206 int src_nritems;
3207 int dst_nritems;
aa5d6bed 3208 int ret = 0;
be0e5c09 3209
5f39d397
CM
3210 src_nritems = btrfs_header_nritems(src);
3211 dst_nritems = btrfs_header_nritems(dst);
123abc88 3212 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
7bb86316
CM
3213 WARN_ON(btrfs_header_generation(src) != trans->transid);
3214 WARN_ON(btrfs_header_generation(dst) != trans->transid);
54aa1f4d 3215
bce4eae9 3216 if (!empty && src_nritems <= 8)
971a1f66
CM
3217 return 1;
3218
d397712b 3219 if (push_items <= 0)
be0e5c09
CM
3220 return 1;
3221
bce4eae9 3222 if (empty) {
971a1f66 3223 push_items = min(src_nritems, push_items);
bce4eae9
CM
3224 if (push_items < src_nritems) {
3225 /* leave at least 8 pointers in the node if
3226 * we aren't going to empty it
3227 */
3228 if (src_nritems - push_items < 8) {
3229 if (push_items <= 8)
3230 return 1;
3231 push_items -= 8;
3232 }
3233 }
3234 } else
3235 push_items = min(src_nritems - 8, push_items);
79f95c82 3236
5de865ee
FDBM
3237 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3238 push_items);
3239 if (ret) {
3240 btrfs_abort_transaction(trans, root, ret);
3241 return ret;
3242 }
5f39d397
CM
3243 copy_extent_buffer(dst, src,
3244 btrfs_node_key_ptr_offset(dst_nritems),
3245 btrfs_node_key_ptr_offset(0),
d397712b 3246 push_items * sizeof(struct btrfs_key_ptr));
5f39d397 3247
bb803951 3248 if (push_items < src_nritems) {
57911b8b
JS
3249 /*
3250 * don't call tree_mod_log_eb_move here, key removal was already
3251 * fully logged by tree_mod_log_eb_copy above.
3252 */
5f39d397
CM
3253 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3254 btrfs_node_key_ptr_offset(push_items),
3255 (src_nritems - push_items) *
3256 sizeof(struct btrfs_key_ptr));
3257 }
3258 btrfs_set_header_nritems(src, src_nritems - push_items);
3259 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3260 btrfs_mark_buffer_dirty(src);
3261 btrfs_mark_buffer_dirty(dst);
31840ae1 3262
79f95c82
CM
3263 return ret;
3264}
3265
3266/*
3267 * try to push data from one node into the next node right in the
3268 * tree.
3269 *
3270 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3271 * error, and > 0 if there was no room in the right hand block.
3272 *
3273 * this will only push up to 1/2 the contents of the left node over
3274 */
5f39d397
CM
3275static int balance_node_right(struct btrfs_trans_handle *trans,
3276 struct btrfs_root *root,
3277 struct extent_buffer *dst,
3278 struct extent_buffer *src)
79f95c82 3279{
79f95c82
CM
3280 int push_items = 0;
3281 int max_push;
3282 int src_nritems;
3283 int dst_nritems;
3284 int ret = 0;
79f95c82 3285
7bb86316
CM
3286 WARN_ON(btrfs_header_generation(src) != trans->transid);
3287 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3288
5f39d397
CM
3289 src_nritems = btrfs_header_nritems(src);
3290 dst_nritems = btrfs_header_nritems(dst);
123abc88 3291 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
d397712b 3292 if (push_items <= 0)
79f95c82 3293 return 1;
bce4eae9 3294
d397712b 3295 if (src_nritems < 4)
bce4eae9 3296 return 1;
79f95c82
CM
3297
3298 max_push = src_nritems / 2 + 1;
3299 /* don't try to empty the node */
d397712b 3300 if (max_push >= src_nritems)
79f95c82 3301 return 1;
252c38f0 3302
79f95c82
CM
3303 if (max_push < push_items)
3304 push_items = max_push;
3305
f230475e 3306 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
5f39d397
CM
3307 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3308 btrfs_node_key_ptr_offset(0),
3309 (dst_nritems) *
3310 sizeof(struct btrfs_key_ptr));
d6025579 3311
5de865ee
FDBM
3312 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3313 src_nritems - push_items, push_items);
3314 if (ret) {
3315 btrfs_abort_transaction(trans, root, ret);
3316 return ret;
3317 }
5f39d397
CM
3318 copy_extent_buffer(dst, src,
3319 btrfs_node_key_ptr_offset(0),
3320 btrfs_node_key_ptr_offset(src_nritems - push_items),
d397712b 3321 push_items * sizeof(struct btrfs_key_ptr));
79f95c82 3322
5f39d397
CM
3323 btrfs_set_header_nritems(src, src_nritems - push_items);
3324 btrfs_set_header_nritems(dst, dst_nritems + push_items);
79f95c82 3325
5f39d397
CM
3326 btrfs_mark_buffer_dirty(src);
3327 btrfs_mark_buffer_dirty(dst);
31840ae1 3328
aa5d6bed 3329 return ret;
be0e5c09
CM
3330}
3331
97571fd0
CM
3332/*
3333 * helper function to insert a new root level in the tree.
3334 * A new node is allocated, and a single item is inserted to
3335 * point to the existing root
aa5d6bed
CM
3336 *
3337 * returns zero on success or < 0 on failure.
97571fd0 3338 */
d397712b 3339static noinline int insert_new_root(struct btrfs_trans_handle *trans,
5f39d397 3340 struct btrfs_root *root,
fdd99c72 3341 struct btrfs_path *path, int level)
5c680ed6 3342{
7bb86316 3343 u64 lower_gen;
5f39d397
CM
3344 struct extent_buffer *lower;
3345 struct extent_buffer *c;
925baedd 3346 struct extent_buffer *old;
5f39d397 3347 struct btrfs_disk_key lower_key;
5c680ed6
CM
3348
3349 BUG_ON(path->nodes[level]);
3350 BUG_ON(path->nodes[level-1] != root->node);
3351
7bb86316
CM
3352 lower = path->nodes[level-1];
3353 if (level == 1)
3354 btrfs_item_key(lower, &lower_key, 0);
3355 else
3356 btrfs_node_key(lower, &lower_key, 0);
3357
31840ae1 3358 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
5d4f98a2 3359 root->root_key.objectid, &lower_key,
5581a51a 3360 level, root->node->start, 0);
5f39d397
CM
3361 if (IS_ERR(c))
3362 return PTR_ERR(c);
925baedd 3363
f0486c68
YZ
3364 root_add_used(root, root->nodesize);
3365
5d4f98a2 3366 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
5f39d397
CM
3367 btrfs_set_header_nritems(c, 1);
3368 btrfs_set_header_level(c, level);
db94535d 3369 btrfs_set_header_bytenr(c, c->start);
5f39d397 3370 btrfs_set_header_generation(c, trans->transid);
5d4f98a2 3371 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
5f39d397 3372 btrfs_set_header_owner(c, root->root_key.objectid);
5f39d397 3373
0a4e5586 3374 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
5f39d397 3375 BTRFS_FSID_SIZE);
e17cade2
CM
3376
3377 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
b308bc2f 3378 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
e17cade2 3379
5f39d397 3380 btrfs_set_node_key(c, &lower_key, 0);
db94535d 3381 btrfs_set_node_blockptr(c, 0, lower->start);
7bb86316 3382 lower_gen = btrfs_header_generation(lower);
31840ae1 3383 WARN_ON(lower_gen != trans->transid);
7bb86316
CM
3384
3385 btrfs_set_node_ptr_generation(c, 0, lower_gen);
d5719762 3386
5f39d397 3387 btrfs_mark_buffer_dirty(c);
d5719762 3388
925baedd 3389 old = root->node;
fdd99c72 3390 tree_mod_log_set_root_pointer(root, c, 0);
240f62c8 3391 rcu_assign_pointer(root->node, c);
925baedd
CM
3392
3393 /* the super has an extra ref to root->node */
3394 free_extent_buffer(old);
3395
0b86a832 3396 add_root_to_dirty_list(root);
5f39d397
CM
3397 extent_buffer_get(c);
3398 path->nodes[level] = c;
bd681513 3399 path->locks[level] = BTRFS_WRITE_LOCK;
5c680ed6
CM
3400 path->slots[level] = 0;
3401 return 0;
3402}
3403
74123bd7
CM
3404/*
3405 * worker function to insert a single pointer in a node.
3406 * the node should have enough room for the pointer already
97571fd0 3407 *
74123bd7
CM
3408 * slot and level indicate where you want the key to go, and
3409 * blocknr is the block the key points to.
3410 */
143bede5
JM
3411static void insert_ptr(struct btrfs_trans_handle *trans,
3412 struct btrfs_root *root, struct btrfs_path *path,
3413 struct btrfs_disk_key *key, u64 bytenr,
c3e06965 3414 int slot, int level)
74123bd7 3415{
5f39d397 3416 struct extent_buffer *lower;
74123bd7 3417 int nritems;
f3ea38da 3418 int ret;
5c680ed6
CM
3419
3420 BUG_ON(!path->nodes[level]);
f0486c68 3421 btrfs_assert_tree_locked(path->nodes[level]);
5f39d397
CM
3422 lower = path->nodes[level];
3423 nritems = btrfs_header_nritems(lower);
c293498b 3424 BUG_ON(slot > nritems);
143bede5 3425 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
74123bd7 3426 if (slot != nritems) {
c3e06965 3427 if (level)
f3ea38da
JS
3428 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3429 slot, nritems - slot);
5f39d397
CM
3430 memmove_extent_buffer(lower,
3431 btrfs_node_key_ptr_offset(slot + 1),
3432 btrfs_node_key_ptr_offset(slot),
d6025579 3433 (nritems - slot) * sizeof(struct btrfs_key_ptr));
74123bd7 3434 }
c3e06965 3435 if (level) {
f3ea38da 3436 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
c8cc6341 3437 MOD_LOG_KEY_ADD, GFP_NOFS);
f3ea38da
JS
3438 BUG_ON(ret < 0);
3439 }
5f39d397 3440 btrfs_set_node_key(lower, key, slot);
db94535d 3441 btrfs_set_node_blockptr(lower, slot, bytenr);
74493f7a
CM
3442 WARN_ON(trans->transid == 0);
3443 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
5f39d397
CM
3444 btrfs_set_header_nritems(lower, nritems + 1);
3445 btrfs_mark_buffer_dirty(lower);
74123bd7
CM
3446}
3447
97571fd0
CM
3448/*
3449 * split the node at the specified level in path in two.
3450 * The path is corrected to point to the appropriate node after the split
3451 *
3452 * Before splitting this tries to make some room in the node by pushing
3453 * left and right, if either one works, it returns right away.
aa5d6bed
CM
3454 *
3455 * returns 0 on success and < 0 on failure
97571fd0 3456 */
e02119d5
CM
3457static noinline int split_node(struct btrfs_trans_handle *trans,
3458 struct btrfs_root *root,
3459 struct btrfs_path *path, int level)
be0e5c09 3460{
5f39d397
CM
3461 struct extent_buffer *c;
3462 struct extent_buffer *split;
3463 struct btrfs_disk_key disk_key;
be0e5c09 3464 int mid;
5c680ed6 3465 int ret;
7518a238 3466 u32 c_nritems;
eb60ceac 3467
5f39d397 3468 c = path->nodes[level];
7bb86316 3469 WARN_ON(btrfs_header_generation(c) != trans->transid);
5f39d397 3470 if (c == root->node) {
d9abbf1c 3471 /*
90f8d62e
JS
3472 * trying to split the root, lets make a new one
3473 *
fdd99c72 3474 * tree mod log: We don't log_removal old root in
90f8d62e
JS
3475 * insert_new_root, because that root buffer will be kept as a
3476 * normal node. We are going to log removal of half of the
3477 * elements below with tree_mod_log_eb_copy. We're holding a
3478 * tree lock on the buffer, which is why we cannot race with
3479 * other tree_mod_log users.
d9abbf1c 3480 */
fdd99c72 3481 ret = insert_new_root(trans, root, path, level + 1);
5c680ed6
CM
3482 if (ret)
3483 return ret;
b3612421 3484 } else {
e66f709b 3485 ret = push_nodes_for_insert(trans, root, path, level);
5f39d397
CM
3486 c = path->nodes[level];
3487 if (!ret && btrfs_header_nritems(c) <
c448acf0 3488 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
e66f709b 3489 return 0;
54aa1f4d
CM
3490 if (ret < 0)
3491 return ret;
be0e5c09 3492 }
e66f709b 3493
5f39d397 3494 c_nritems = btrfs_header_nritems(c);
5d4f98a2
YZ
3495 mid = (c_nritems + 1) / 2;
3496 btrfs_node_key(c, &disk_key, mid);
7bb86316 3497
5d4f98a2 3498 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
31840ae1 3499 root->root_key.objectid,
5581a51a 3500 &disk_key, level, c->start, 0);
5f39d397
CM
3501 if (IS_ERR(split))
3502 return PTR_ERR(split);
3503
f0486c68
YZ
3504 root_add_used(root, root->nodesize);
3505
5d4f98a2 3506 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
5f39d397 3507 btrfs_set_header_level(split, btrfs_header_level(c));
db94535d 3508 btrfs_set_header_bytenr(split, split->start);
5f39d397 3509 btrfs_set_header_generation(split, trans->transid);
5d4f98a2 3510 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
3511 btrfs_set_header_owner(split, root->root_key.objectid);
3512 write_extent_buffer(split, root->fs_info->fsid,
0a4e5586 3513 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e17cade2 3514 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
b308bc2f 3515 btrfs_header_chunk_tree_uuid(split),
e17cade2 3516 BTRFS_UUID_SIZE);
54aa1f4d 3517
5de865ee
FDBM
3518 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3519 mid, c_nritems - mid);
3520 if (ret) {
3521 btrfs_abort_transaction(trans, root, ret);
3522 return ret;
3523 }
5f39d397
CM
3524 copy_extent_buffer(split, c,
3525 btrfs_node_key_ptr_offset(0),
3526 btrfs_node_key_ptr_offset(mid),
3527 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3528 btrfs_set_header_nritems(split, c_nritems - mid);
3529 btrfs_set_header_nritems(c, mid);
aa5d6bed
CM
3530 ret = 0;
3531
5f39d397
CM
3532 btrfs_mark_buffer_dirty(c);
3533 btrfs_mark_buffer_dirty(split);
3534
143bede5 3535 insert_ptr(trans, root, path, &disk_key, split->start,
c3e06965 3536 path->slots[level + 1] + 1, level + 1);
aa5d6bed 3537
5de08d7d 3538 if (path->slots[level] >= mid) {
5c680ed6 3539 path->slots[level] -= mid;
925baedd 3540 btrfs_tree_unlock(c);
5f39d397
CM
3541 free_extent_buffer(c);
3542 path->nodes[level] = split;
5c680ed6
CM
3543 path->slots[level + 1] += 1;
3544 } else {
925baedd 3545 btrfs_tree_unlock(split);
5f39d397 3546 free_extent_buffer(split);
be0e5c09 3547 }
aa5d6bed 3548 return ret;
be0e5c09
CM
3549}
3550
74123bd7
CM
3551/*
3552 * how many bytes are required to store the items in a leaf. start
3553 * and nr indicate which items in the leaf to check. This totals up the
3554 * space used both by the item structs and the item data
3555 */
5f39d397 3556static int leaf_space_used(struct extent_buffer *l, int start, int nr)
be0e5c09 3557{
41be1f3b
JB
3558 struct btrfs_item *start_item;
3559 struct btrfs_item *end_item;
3560 struct btrfs_map_token token;
be0e5c09 3561 int data_len;
5f39d397 3562 int nritems = btrfs_header_nritems(l);
d4dbff95 3563 int end = min(nritems, start + nr) - 1;
be0e5c09
CM
3564
3565 if (!nr)
3566 return 0;
41be1f3b 3567 btrfs_init_map_token(&token);
dd3cc16b
RK
3568 start_item = btrfs_item_nr(start);
3569 end_item = btrfs_item_nr(end);
41be1f3b
JB
3570 data_len = btrfs_token_item_offset(l, start_item, &token) +
3571 btrfs_token_item_size(l, start_item, &token);
3572 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
0783fcfc 3573 data_len += sizeof(struct btrfs_item) * nr;
d4dbff95 3574 WARN_ON(data_len < 0);
be0e5c09
CM
3575 return data_len;
3576}
3577
d4dbff95
CM
3578/*
3579 * The space between the end of the leaf items and
3580 * the start of the leaf data. IOW, how much room
3581 * the leaf has left for both items and data
3582 */
d397712b 3583noinline int btrfs_leaf_free_space(struct btrfs_root *root,
e02119d5 3584 struct extent_buffer *leaf)
d4dbff95 3585{
5f39d397
CM
3586 int nritems = btrfs_header_nritems(leaf);
3587 int ret;
3588 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3589 if (ret < 0) {
efe120a0
FH
3590 btrfs_crit(root->fs_info,
3591 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
ae2f5411 3592 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
5f39d397
CM
3593 leaf_space_used(leaf, 0, nritems), nritems);
3594 }
3595 return ret;
d4dbff95
CM
3596}
3597
99d8f83c
CM
3598/*
3599 * min slot controls the lowest index we're willing to push to the
3600 * right. We'll push up to and including min_slot, but no lower
3601 */
44871b1b
CM
3602static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3603 struct btrfs_root *root,
3604 struct btrfs_path *path,
3605 int data_size, int empty,
3606 struct extent_buffer *right,
99d8f83c
CM
3607 int free_space, u32 left_nritems,
3608 u32 min_slot)
00ec4c51 3609{
5f39d397 3610 struct extent_buffer *left = path->nodes[0];
44871b1b 3611 struct extent_buffer *upper = path->nodes[1];
cfed81a0 3612 struct btrfs_map_token token;
5f39d397 3613 struct btrfs_disk_key disk_key;
00ec4c51 3614 int slot;
34a38218 3615 u32 i;
00ec4c51
CM
3616 int push_space = 0;
3617 int push_items = 0;
0783fcfc 3618 struct btrfs_item *item;
34a38218 3619 u32 nr;
7518a238 3620 u32 right_nritems;
5f39d397 3621 u32 data_end;
db94535d 3622 u32 this_item_size;
00ec4c51 3623
cfed81a0
CM
3624 btrfs_init_map_token(&token);
3625
34a38218
CM
3626 if (empty)
3627 nr = 0;
3628 else
99d8f83c 3629 nr = max_t(u32, 1, min_slot);
34a38218 3630
31840ae1 3631 if (path->slots[0] >= left_nritems)
87b29b20 3632 push_space += data_size;
31840ae1 3633
44871b1b 3634 slot = path->slots[1];
34a38218
CM
3635 i = left_nritems - 1;
3636 while (i >= nr) {
dd3cc16b 3637 item = btrfs_item_nr(i);
db94535d 3638
31840ae1
ZY
3639 if (!empty && push_items > 0) {
3640 if (path->slots[0] > i)
3641 break;
3642 if (path->slots[0] == i) {
3643 int space = btrfs_leaf_free_space(root, left);
3644 if (space + push_space * 2 > free_space)
3645 break;
3646 }
3647 }
3648
00ec4c51 3649 if (path->slots[0] == i)
87b29b20 3650 push_space += data_size;
db94535d 3651
db94535d
CM
3652 this_item_size = btrfs_item_size(left, item);
3653 if (this_item_size + sizeof(*item) + push_space > free_space)
00ec4c51 3654 break;
31840ae1 3655
00ec4c51 3656 push_items++;
db94535d 3657 push_space += this_item_size + sizeof(*item);
34a38218
CM
3658 if (i == 0)
3659 break;
3660 i--;
db94535d 3661 }
5f39d397 3662
925baedd
CM
3663 if (push_items == 0)
3664 goto out_unlock;
5f39d397 3665
6c1500f2 3666 WARN_ON(!empty && push_items == left_nritems);
5f39d397 3667
00ec4c51 3668 /* push left to right */
5f39d397 3669 right_nritems = btrfs_header_nritems(right);
34a38218 3670
5f39d397 3671 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
123abc88 3672 push_space -= leaf_data_end(root, left);
5f39d397 3673
00ec4c51 3674 /* make room in the right data area */
5f39d397
CM
3675 data_end = leaf_data_end(root, right);
3676 memmove_extent_buffer(right,
3677 btrfs_leaf_data(right) + data_end - push_space,
3678 btrfs_leaf_data(right) + data_end,
3679 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3680
00ec4c51 3681 /* copy from the left data area */
5f39d397 3682 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
d6025579
CM
3683 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3684 btrfs_leaf_data(left) + leaf_data_end(root, left),
3685 push_space);
5f39d397
CM
3686
3687 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3688 btrfs_item_nr_offset(0),
3689 right_nritems * sizeof(struct btrfs_item));
3690
00ec4c51 3691 /* copy the items from left to right */
5f39d397
CM
3692 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3693 btrfs_item_nr_offset(left_nritems - push_items),
3694 push_items * sizeof(struct btrfs_item));
00ec4c51
CM
3695
3696 /* update the item pointers */
7518a238 3697 right_nritems += push_items;
5f39d397 3698 btrfs_set_header_nritems(right, right_nritems);
123abc88 3699 push_space = BTRFS_LEAF_DATA_SIZE(root);
7518a238 3700 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3701 item = btrfs_item_nr(i);
cfed81a0
CM
3702 push_space -= btrfs_token_item_size(right, item, &token);
3703 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d
CM
3704 }
3705
7518a238 3706 left_nritems -= push_items;
5f39d397 3707 btrfs_set_header_nritems(left, left_nritems);
00ec4c51 3708
34a38218
CM
3709 if (left_nritems)
3710 btrfs_mark_buffer_dirty(left);
f0486c68
YZ
3711 else
3712 clean_tree_block(trans, root, left);
3713
5f39d397 3714 btrfs_mark_buffer_dirty(right);
a429e513 3715
5f39d397
CM
3716 btrfs_item_key(right, &disk_key, 0);
3717 btrfs_set_node_key(upper, &disk_key, slot + 1);
d6025579 3718 btrfs_mark_buffer_dirty(upper);
02217ed2 3719
00ec4c51 3720 /* then fixup the leaf pointer in the path */
7518a238
CM
3721 if (path->slots[0] >= left_nritems) {
3722 path->slots[0] -= left_nritems;
925baedd
CM
3723 if (btrfs_header_nritems(path->nodes[0]) == 0)
3724 clean_tree_block(trans, root, path->nodes[0]);
3725 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3726 free_extent_buffer(path->nodes[0]);
3727 path->nodes[0] = right;
00ec4c51
CM
3728 path->slots[1] += 1;
3729 } else {
925baedd 3730 btrfs_tree_unlock(right);
5f39d397 3731 free_extent_buffer(right);
00ec4c51
CM
3732 }
3733 return 0;
925baedd
CM
3734
3735out_unlock:
3736 btrfs_tree_unlock(right);
3737 free_extent_buffer(right);
3738 return 1;
00ec4c51 3739}
925baedd 3740
44871b1b
CM
3741/*
3742 * push some data in the path leaf to the right, trying to free up at
3743 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3744 *
3745 * returns 1 if the push failed because the other node didn't have enough
3746 * room, 0 if everything worked out and < 0 if there were major errors.
99d8f83c
CM
3747 *
3748 * this will push starting from min_slot to the end of the leaf. It won't
3749 * push any slot lower than min_slot
44871b1b
CM
3750 */
3751static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3752 *root, struct btrfs_path *path,
3753 int min_data_size, int data_size,
3754 int empty, u32 min_slot)
44871b1b
CM
3755{
3756 struct extent_buffer *left = path->nodes[0];
3757 struct extent_buffer *right;
3758 struct extent_buffer *upper;
3759 int slot;
3760 int free_space;
3761 u32 left_nritems;
3762 int ret;
3763
3764 if (!path->nodes[1])
3765 return 1;
3766
3767 slot = path->slots[1];
3768 upper = path->nodes[1];
3769 if (slot >= btrfs_header_nritems(upper) - 1)
3770 return 1;
3771
3772 btrfs_assert_tree_locked(path->nodes[1]);
3773
3774 right = read_node_slot(root, upper, slot + 1);
91ca338d
TI
3775 if (right == NULL)
3776 return 1;
3777
44871b1b
CM
3778 btrfs_tree_lock(right);
3779 btrfs_set_lock_blocking(right);
3780
3781 free_space = btrfs_leaf_free_space(root, right);
3782 if (free_space < data_size)
3783 goto out_unlock;
3784
3785 /* cow and double check */
3786 ret = btrfs_cow_block(trans, root, right, upper,
3787 slot + 1, &right);
3788 if (ret)
3789 goto out_unlock;
3790
3791 free_space = btrfs_leaf_free_space(root, right);
3792 if (free_space < data_size)
3793 goto out_unlock;
3794
3795 left_nritems = btrfs_header_nritems(left);
3796 if (left_nritems == 0)
3797 goto out_unlock;
3798
2ef1fed2
FDBM
3799 if (path->slots[0] == left_nritems && !empty) {
3800 /* Key greater than all keys in the leaf, right neighbor has
3801 * enough room for it and we're not emptying our leaf to delete
3802 * it, therefore use right neighbor to insert the new item and
3803 * no need to touch/dirty our left leaft. */
3804 btrfs_tree_unlock(left);
3805 free_extent_buffer(left);
3806 path->nodes[0] = right;
3807 path->slots[0] = 0;
3808 path->slots[1]++;
3809 return 0;
3810 }
3811
99d8f83c
CM
3812 return __push_leaf_right(trans, root, path, min_data_size, empty,
3813 right, free_space, left_nritems, min_slot);
44871b1b
CM
3814out_unlock:
3815 btrfs_tree_unlock(right);
3816 free_extent_buffer(right);
3817 return 1;
3818}
3819
74123bd7
CM
3820/*
3821 * push some data in the path leaf to the left, trying to free up at
3822 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3823 *
3824 * max_slot can put a limit on how far into the leaf we'll push items. The
3825 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3826 * items
74123bd7 3827 */
44871b1b
CM
3828static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3829 struct btrfs_root *root,
3830 struct btrfs_path *path, int data_size,
3831 int empty, struct extent_buffer *left,
99d8f83c
CM
3832 int free_space, u32 right_nritems,
3833 u32 max_slot)
be0e5c09 3834{
5f39d397
CM
3835 struct btrfs_disk_key disk_key;
3836 struct extent_buffer *right = path->nodes[0];
be0e5c09 3837 int i;
be0e5c09
CM
3838 int push_space = 0;
3839 int push_items = 0;
0783fcfc 3840 struct btrfs_item *item;
7518a238 3841 u32 old_left_nritems;
34a38218 3842 u32 nr;
aa5d6bed 3843 int ret = 0;
db94535d
CM
3844 u32 this_item_size;
3845 u32 old_left_item_size;
cfed81a0
CM
3846 struct btrfs_map_token token;
3847
3848 btrfs_init_map_token(&token);
be0e5c09 3849
34a38218 3850 if (empty)
99d8f83c 3851 nr = min(right_nritems, max_slot);
34a38218 3852 else
99d8f83c 3853 nr = min(right_nritems - 1, max_slot);
34a38218
CM
3854
3855 for (i = 0; i < nr; i++) {
dd3cc16b 3856 item = btrfs_item_nr(i);
db94535d 3857
31840ae1
ZY
3858 if (!empty && push_items > 0) {
3859 if (path->slots[0] < i)
3860 break;
3861 if (path->slots[0] == i) {
3862 int space = btrfs_leaf_free_space(root, right);
3863 if (space + push_space * 2 > free_space)
3864 break;
3865 }
3866 }
3867
be0e5c09 3868 if (path->slots[0] == i)
87b29b20 3869 push_space += data_size;
db94535d
CM
3870
3871 this_item_size = btrfs_item_size(right, item);
3872 if (this_item_size + sizeof(*item) + push_space > free_space)
be0e5c09 3873 break;
db94535d 3874
be0e5c09 3875 push_items++;
db94535d
CM
3876 push_space += this_item_size + sizeof(*item);
3877 }
3878
be0e5c09 3879 if (push_items == 0) {
925baedd
CM
3880 ret = 1;
3881 goto out;
be0e5c09 3882 }
fae7f21c 3883 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
5f39d397 3884
be0e5c09 3885 /* push data from right to left */
5f39d397
CM
3886 copy_extent_buffer(left, right,
3887 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3888 btrfs_item_nr_offset(0),
3889 push_items * sizeof(struct btrfs_item));
3890
123abc88 3891 push_space = BTRFS_LEAF_DATA_SIZE(root) -
d397712b 3892 btrfs_item_offset_nr(right, push_items - 1);
5f39d397
CM
3893
3894 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
d6025579
CM
3895 leaf_data_end(root, left) - push_space,
3896 btrfs_leaf_data(right) +
5f39d397 3897 btrfs_item_offset_nr(right, push_items - 1),
d6025579 3898 push_space);
5f39d397 3899 old_left_nritems = btrfs_header_nritems(left);
87b29b20 3900 BUG_ON(old_left_nritems <= 0);
eb60ceac 3901
db94535d 3902 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
0783fcfc 3903 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
5f39d397 3904 u32 ioff;
db94535d 3905
dd3cc16b 3906 item = btrfs_item_nr(i);
db94535d 3907
cfed81a0
CM
3908 ioff = btrfs_token_item_offset(left, item, &token);
3909 btrfs_set_token_item_offset(left, item,
3910 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3911 &token);
be0e5c09 3912 }
5f39d397 3913 btrfs_set_header_nritems(left, old_left_nritems + push_items);
be0e5c09
CM
3914
3915 /* fixup right node */
31b1a2bd
JL
3916 if (push_items > right_nritems)
3917 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
d397712b 3918 right_nritems);
34a38218
CM
3919
3920 if (push_items < right_nritems) {
3921 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3922 leaf_data_end(root, right);
3923 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3924 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3925 btrfs_leaf_data(right) +
3926 leaf_data_end(root, right), push_space);
3927
3928 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
5f39d397
CM
3929 btrfs_item_nr_offset(push_items),
3930 (btrfs_header_nritems(right) - push_items) *
3931 sizeof(struct btrfs_item));
34a38218 3932 }
eef1c494
Y
3933 right_nritems -= push_items;
3934 btrfs_set_header_nritems(right, right_nritems);
123abc88 3935 push_space = BTRFS_LEAF_DATA_SIZE(root);
5f39d397 3936 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3937 item = btrfs_item_nr(i);
db94535d 3938
cfed81a0
CM
3939 push_space = push_space - btrfs_token_item_size(right,
3940 item, &token);
3941 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d 3942 }
eb60ceac 3943
5f39d397 3944 btrfs_mark_buffer_dirty(left);
34a38218
CM
3945 if (right_nritems)
3946 btrfs_mark_buffer_dirty(right);
f0486c68
YZ
3947 else
3948 clean_tree_block(trans, root, right);
098f59c2 3949
5f39d397 3950 btrfs_item_key(right, &disk_key, 0);
d6a0a126 3951 fixup_low_keys(root, path, &disk_key, 1);
be0e5c09
CM
3952
3953 /* then fixup the leaf pointer in the path */
3954 if (path->slots[0] < push_items) {
3955 path->slots[0] += old_left_nritems;
925baedd 3956 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3957 free_extent_buffer(path->nodes[0]);
3958 path->nodes[0] = left;
be0e5c09
CM
3959 path->slots[1] -= 1;
3960 } else {
925baedd 3961 btrfs_tree_unlock(left);
5f39d397 3962 free_extent_buffer(left);
be0e5c09
CM
3963 path->slots[0] -= push_items;
3964 }
eb60ceac 3965 BUG_ON(path->slots[0] < 0);
aa5d6bed 3966 return ret;
925baedd
CM
3967out:
3968 btrfs_tree_unlock(left);
3969 free_extent_buffer(left);
3970 return ret;
be0e5c09
CM
3971}
3972
44871b1b
CM
3973/*
3974 * push some data in the path leaf to the left, trying to free up at
3975 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3976 *
3977 * max_slot can put a limit on how far into the leaf we'll push items. The
3978 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3979 * items
44871b1b
CM
3980 */
3981static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3982 *root, struct btrfs_path *path, int min_data_size,
3983 int data_size, int empty, u32 max_slot)
44871b1b
CM
3984{
3985 struct extent_buffer *right = path->nodes[0];
3986 struct extent_buffer *left;
3987 int slot;
3988 int free_space;
3989 u32 right_nritems;
3990 int ret = 0;
3991
3992 slot = path->slots[1];
3993 if (slot == 0)
3994 return 1;
3995 if (!path->nodes[1])
3996 return 1;
3997
3998 right_nritems = btrfs_header_nritems(right);
3999 if (right_nritems == 0)
4000 return 1;
4001
4002 btrfs_assert_tree_locked(path->nodes[1]);
4003
4004 left = read_node_slot(root, path->nodes[1], slot - 1);
91ca338d
TI
4005 if (left == NULL)
4006 return 1;
4007
44871b1b
CM
4008 btrfs_tree_lock(left);
4009 btrfs_set_lock_blocking(left);
4010
4011 free_space = btrfs_leaf_free_space(root, left);
4012 if (free_space < data_size) {
4013 ret = 1;
4014 goto out;
4015 }
4016
4017 /* cow and double check */
4018 ret = btrfs_cow_block(trans, root, left,
4019 path->nodes[1], slot - 1, &left);
4020 if (ret) {
4021 /* we hit -ENOSPC, but it isn't fatal here */
79787eaa
JM
4022 if (ret == -ENOSPC)
4023 ret = 1;
44871b1b
CM
4024 goto out;
4025 }
4026
4027 free_space = btrfs_leaf_free_space(root, left);
4028 if (free_space < data_size) {
4029 ret = 1;
4030 goto out;
4031 }
4032
99d8f83c
CM
4033 return __push_leaf_left(trans, root, path, min_data_size,
4034 empty, left, free_space, right_nritems,
4035 max_slot);
44871b1b
CM
4036out:
4037 btrfs_tree_unlock(left);
4038 free_extent_buffer(left);
4039 return ret;
4040}
4041
4042/*
4043 * split the path's leaf in two, making sure there is at least data_size
4044 * available for the resulting leaf level of the path.
44871b1b 4045 */
143bede5
JM
4046static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4047 struct btrfs_root *root,
4048 struct btrfs_path *path,
4049 struct extent_buffer *l,
4050 struct extent_buffer *right,
4051 int slot, int mid, int nritems)
44871b1b
CM
4052{
4053 int data_copy_size;
4054 int rt_data_off;
4055 int i;
44871b1b 4056 struct btrfs_disk_key disk_key;
cfed81a0
CM
4057 struct btrfs_map_token token;
4058
4059 btrfs_init_map_token(&token);
44871b1b
CM
4060
4061 nritems = nritems - mid;
4062 btrfs_set_header_nritems(right, nritems);
4063 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4064
4065 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4066 btrfs_item_nr_offset(mid),
4067 nritems * sizeof(struct btrfs_item));
4068
4069 copy_extent_buffer(right, l,
4070 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4071 data_copy_size, btrfs_leaf_data(l) +
4072 leaf_data_end(root, l), data_copy_size);
4073
4074 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4075 btrfs_item_end_nr(l, mid);
4076
4077 for (i = 0; i < nritems; i++) {
dd3cc16b 4078 struct btrfs_item *item = btrfs_item_nr(i);
44871b1b
CM
4079 u32 ioff;
4080
cfed81a0
CM
4081 ioff = btrfs_token_item_offset(right, item, &token);
4082 btrfs_set_token_item_offset(right, item,
4083 ioff + rt_data_off, &token);
44871b1b
CM
4084 }
4085
44871b1b 4086 btrfs_set_header_nritems(l, mid);
44871b1b 4087 btrfs_item_key(right, &disk_key, 0);
143bede5 4088 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 4089 path->slots[1] + 1, 1);
44871b1b
CM
4090
4091 btrfs_mark_buffer_dirty(right);
4092 btrfs_mark_buffer_dirty(l);
4093 BUG_ON(path->slots[0] != slot);
4094
44871b1b
CM
4095 if (mid <= slot) {
4096 btrfs_tree_unlock(path->nodes[0]);
4097 free_extent_buffer(path->nodes[0]);
4098 path->nodes[0] = right;
4099 path->slots[0] -= mid;
4100 path->slots[1] += 1;
4101 } else {
4102 btrfs_tree_unlock(right);
4103 free_extent_buffer(right);
4104 }
4105
4106 BUG_ON(path->slots[0] < 0);
44871b1b
CM
4107}
4108
99d8f83c
CM
4109/*
4110 * double splits happen when we need to insert a big item in the middle
4111 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4112 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4113 * A B C
4114 *
4115 * We avoid this by trying to push the items on either side of our target
4116 * into the adjacent leaves. If all goes well we can avoid the double split
4117 * completely.
4118 */
4119static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4120 struct btrfs_root *root,
4121 struct btrfs_path *path,
4122 int data_size)
4123{
4124 int ret;
4125 int progress = 0;
4126 int slot;
4127 u32 nritems;
5a4267ca 4128 int space_needed = data_size;
99d8f83c
CM
4129
4130 slot = path->slots[0];
5a4267ca
FDBM
4131 if (slot < btrfs_header_nritems(path->nodes[0]))
4132 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
99d8f83c
CM
4133
4134 /*
4135 * try to push all the items after our slot into the
4136 * right leaf
4137 */
5a4267ca 4138 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4139 if (ret < 0)
4140 return ret;
4141
4142 if (ret == 0)
4143 progress++;
4144
4145 nritems = btrfs_header_nritems(path->nodes[0]);
4146 /*
4147 * our goal is to get our slot at the start or end of a leaf. If
4148 * we've done so we're done
4149 */
4150 if (path->slots[0] == 0 || path->slots[0] == nritems)
4151 return 0;
4152
4153 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4154 return 0;
4155
4156 /* try to push all the items before our slot into the next leaf */
4157 slot = path->slots[0];
5a4267ca 4158 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4159 if (ret < 0)
4160 return ret;
4161
4162 if (ret == 0)
4163 progress++;
4164
4165 if (progress)
4166 return 0;
4167 return 1;
4168}
4169
74123bd7
CM
4170/*
4171 * split the path's leaf in two, making sure there is at least data_size
4172 * available for the resulting leaf level of the path.
aa5d6bed
CM
4173 *
4174 * returns 0 if all went well and < 0 on failure.
74123bd7 4175 */
e02119d5
CM
4176static noinline int split_leaf(struct btrfs_trans_handle *trans,
4177 struct btrfs_root *root,
4178 struct btrfs_key *ins_key,
4179 struct btrfs_path *path, int data_size,
4180 int extend)
be0e5c09 4181{
5d4f98a2 4182 struct btrfs_disk_key disk_key;
5f39d397 4183 struct extent_buffer *l;
7518a238 4184 u32 nritems;
eb60ceac
CM
4185 int mid;
4186 int slot;
5f39d397 4187 struct extent_buffer *right;
d4dbff95 4188 int ret = 0;
aa5d6bed 4189 int wret;
5d4f98a2 4190 int split;
cc0c5538 4191 int num_doubles = 0;
99d8f83c 4192 int tried_avoid_double = 0;
aa5d6bed 4193
a5719521
YZ
4194 l = path->nodes[0];
4195 slot = path->slots[0];
4196 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4197 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4198 return -EOVERFLOW;
4199
40689478 4200 /* first try to make some room by pushing left and right */
33157e05 4201 if (data_size && path->nodes[1]) {
5a4267ca
FDBM
4202 int space_needed = data_size;
4203
4204 if (slot < btrfs_header_nritems(l))
4205 space_needed -= btrfs_leaf_free_space(root, l);
4206
4207 wret = push_leaf_right(trans, root, path, space_needed,
4208 space_needed, 0, 0);
d397712b 4209 if (wret < 0)
eaee50e8 4210 return wret;
3685f791 4211 if (wret) {
5a4267ca
FDBM
4212 wret = push_leaf_left(trans, root, path, space_needed,
4213 space_needed, 0, (u32)-1);
3685f791
CM
4214 if (wret < 0)
4215 return wret;
4216 }
4217 l = path->nodes[0];
aa5d6bed 4218
3685f791 4219 /* did the pushes work? */
87b29b20 4220 if (btrfs_leaf_free_space(root, l) >= data_size)
3685f791 4221 return 0;
3326d1b0 4222 }
aa5d6bed 4223
5c680ed6 4224 if (!path->nodes[1]) {
fdd99c72 4225 ret = insert_new_root(trans, root, path, 1);
5c680ed6
CM
4226 if (ret)
4227 return ret;
4228 }
cc0c5538 4229again:
5d4f98a2 4230 split = 1;
cc0c5538 4231 l = path->nodes[0];
eb60ceac 4232 slot = path->slots[0];
5f39d397 4233 nritems = btrfs_header_nritems(l);
d397712b 4234 mid = (nritems + 1) / 2;
54aa1f4d 4235
5d4f98a2
YZ
4236 if (mid <= slot) {
4237 if (nritems == 1 ||
4238 leaf_space_used(l, mid, nritems - mid) + data_size >
4239 BTRFS_LEAF_DATA_SIZE(root)) {
4240 if (slot >= nritems) {
4241 split = 0;
4242 } else {
4243 mid = slot;
4244 if (mid != nritems &&
4245 leaf_space_used(l, mid, nritems - mid) +
4246 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
99d8f83c
CM
4247 if (data_size && !tried_avoid_double)
4248 goto push_for_double;
5d4f98a2
YZ
4249 split = 2;
4250 }
4251 }
4252 }
4253 } else {
4254 if (leaf_space_used(l, 0, mid) + data_size >
4255 BTRFS_LEAF_DATA_SIZE(root)) {
4256 if (!extend && data_size && slot == 0) {
4257 split = 0;
4258 } else if ((extend || !data_size) && slot == 0) {
4259 mid = 1;
4260 } else {
4261 mid = slot;
4262 if (mid != nritems &&
4263 leaf_space_used(l, mid, nritems - mid) +
4264 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
99d8f83c
CM
4265 if (data_size && !tried_avoid_double)
4266 goto push_for_double;
67871254 4267 split = 2;
5d4f98a2
YZ
4268 }
4269 }
4270 }
4271 }
4272
4273 if (split == 0)
4274 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4275 else
4276 btrfs_item_key(l, &disk_key, mid);
4277
707e8a07 4278 right = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
31840ae1 4279 root->root_key.objectid,
5581a51a 4280 &disk_key, 0, l->start, 0);
f0486c68 4281 if (IS_ERR(right))
5f39d397 4282 return PTR_ERR(right);
f0486c68 4283
707e8a07 4284 root_add_used(root, root->nodesize);
5f39d397
CM
4285
4286 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
db94535d 4287 btrfs_set_header_bytenr(right, right->start);
5f39d397 4288 btrfs_set_header_generation(right, trans->transid);
5d4f98a2 4289 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
4290 btrfs_set_header_owner(right, root->root_key.objectid);
4291 btrfs_set_header_level(right, 0);
4292 write_extent_buffer(right, root->fs_info->fsid,
0a4e5586 4293 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e17cade2
CM
4294
4295 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
b308bc2f 4296 btrfs_header_chunk_tree_uuid(right),
e17cade2 4297 BTRFS_UUID_SIZE);
44871b1b 4298
5d4f98a2
YZ
4299 if (split == 0) {
4300 if (mid <= slot) {
4301 btrfs_set_header_nritems(right, 0);
143bede5 4302 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 4303 path->slots[1] + 1, 1);
5d4f98a2
YZ
4304 btrfs_tree_unlock(path->nodes[0]);
4305 free_extent_buffer(path->nodes[0]);
4306 path->nodes[0] = right;
4307 path->slots[0] = 0;
4308 path->slots[1] += 1;
4309 } else {
4310 btrfs_set_header_nritems(right, 0);
143bede5 4311 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 4312 path->slots[1], 1);
5d4f98a2
YZ
4313 btrfs_tree_unlock(path->nodes[0]);
4314 free_extent_buffer(path->nodes[0]);
4315 path->nodes[0] = right;
4316 path->slots[0] = 0;
143bede5 4317 if (path->slots[1] == 0)
d6a0a126 4318 fixup_low_keys(root, path, &disk_key, 1);
d4dbff95 4319 }
5d4f98a2
YZ
4320 btrfs_mark_buffer_dirty(right);
4321 return ret;
d4dbff95 4322 }
74123bd7 4323
143bede5 4324 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
31840ae1 4325
5d4f98a2 4326 if (split == 2) {
cc0c5538
CM
4327 BUG_ON(num_doubles != 0);
4328 num_doubles++;
4329 goto again;
a429e513 4330 }
44871b1b 4331
143bede5 4332 return 0;
99d8f83c
CM
4333
4334push_for_double:
4335 push_for_double_split(trans, root, path, data_size);
4336 tried_avoid_double = 1;
4337 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4338 return 0;
4339 goto again;
be0e5c09
CM
4340}
4341
ad48fd75
YZ
4342static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4343 struct btrfs_root *root,
4344 struct btrfs_path *path, int ins_len)
459931ec 4345{
ad48fd75 4346 struct btrfs_key key;
459931ec 4347 struct extent_buffer *leaf;
ad48fd75
YZ
4348 struct btrfs_file_extent_item *fi;
4349 u64 extent_len = 0;
4350 u32 item_size;
4351 int ret;
459931ec
CM
4352
4353 leaf = path->nodes[0];
ad48fd75
YZ
4354 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4355
4356 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4357 key.type != BTRFS_EXTENT_CSUM_KEY);
4358
4359 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4360 return 0;
459931ec
CM
4361
4362 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ad48fd75
YZ
4363 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4364 fi = btrfs_item_ptr(leaf, path->slots[0],
4365 struct btrfs_file_extent_item);
4366 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4367 }
b3b4aa74 4368 btrfs_release_path(path);
459931ec 4369
459931ec 4370 path->keep_locks = 1;
ad48fd75
YZ
4371 path->search_for_split = 1;
4372 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
459931ec 4373 path->search_for_split = 0;
ad48fd75
YZ
4374 if (ret < 0)
4375 goto err;
459931ec 4376
ad48fd75
YZ
4377 ret = -EAGAIN;
4378 leaf = path->nodes[0];
459931ec 4379 /* if our item isn't there or got smaller, return now */
ad48fd75
YZ
4380 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4381 goto err;
4382
109f6aef
CM
4383 /* the leaf has changed, it now has room. return now */
4384 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4385 goto err;
4386
ad48fd75
YZ
4387 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4388 fi = btrfs_item_ptr(leaf, path->slots[0],
4389 struct btrfs_file_extent_item);
4390 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4391 goto err;
459931ec
CM
4392 }
4393
b9473439 4394 btrfs_set_path_blocking(path);
ad48fd75 4395 ret = split_leaf(trans, root, &key, path, ins_len, 1);
f0486c68
YZ
4396 if (ret)
4397 goto err;
459931ec 4398
ad48fd75 4399 path->keep_locks = 0;
b9473439 4400 btrfs_unlock_up_safe(path, 1);
ad48fd75
YZ
4401 return 0;
4402err:
4403 path->keep_locks = 0;
4404 return ret;
4405}
4406
4407static noinline int split_item(struct btrfs_trans_handle *trans,
4408 struct btrfs_root *root,
4409 struct btrfs_path *path,
4410 struct btrfs_key *new_key,
4411 unsigned long split_offset)
4412{
4413 struct extent_buffer *leaf;
4414 struct btrfs_item *item;
4415 struct btrfs_item *new_item;
4416 int slot;
4417 char *buf;
4418 u32 nritems;
4419 u32 item_size;
4420 u32 orig_offset;
4421 struct btrfs_disk_key disk_key;
4422
b9473439
CM
4423 leaf = path->nodes[0];
4424 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4425
b4ce94de
CM
4426 btrfs_set_path_blocking(path);
4427
dd3cc16b 4428 item = btrfs_item_nr(path->slots[0]);
459931ec
CM
4429 orig_offset = btrfs_item_offset(leaf, item);
4430 item_size = btrfs_item_size(leaf, item);
4431
459931ec 4432 buf = kmalloc(item_size, GFP_NOFS);
ad48fd75
YZ
4433 if (!buf)
4434 return -ENOMEM;
4435
459931ec
CM
4436 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4437 path->slots[0]), item_size);
459931ec 4438
ad48fd75 4439 slot = path->slots[0] + 1;
459931ec 4440 nritems = btrfs_header_nritems(leaf);
459931ec
CM
4441 if (slot != nritems) {
4442 /* shift the items */
4443 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
ad48fd75
YZ
4444 btrfs_item_nr_offset(slot),
4445 (nritems - slot) * sizeof(struct btrfs_item));
459931ec
CM
4446 }
4447
4448 btrfs_cpu_key_to_disk(&disk_key, new_key);
4449 btrfs_set_item_key(leaf, &disk_key, slot);
4450
dd3cc16b 4451 new_item = btrfs_item_nr(slot);
459931ec
CM
4452
4453 btrfs_set_item_offset(leaf, new_item, orig_offset);
4454 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4455
4456 btrfs_set_item_offset(leaf, item,
4457 orig_offset + item_size - split_offset);
4458 btrfs_set_item_size(leaf, item, split_offset);
4459
4460 btrfs_set_header_nritems(leaf, nritems + 1);
4461
4462 /* write the data for the start of the original item */
4463 write_extent_buffer(leaf, buf,
4464 btrfs_item_ptr_offset(leaf, path->slots[0]),
4465 split_offset);
4466
4467 /* write the data for the new item */
4468 write_extent_buffer(leaf, buf + split_offset,
4469 btrfs_item_ptr_offset(leaf, slot),
4470 item_size - split_offset);
4471 btrfs_mark_buffer_dirty(leaf);
4472
ad48fd75 4473 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
459931ec 4474 kfree(buf);
ad48fd75
YZ
4475 return 0;
4476}
4477
4478/*
4479 * This function splits a single item into two items,
4480 * giving 'new_key' to the new item and splitting the
4481 * old one at split_offset (from the start of the item).
4482 *
4483 * The path may be released by this operation. After
4484 * the split, the path is pointing to the old item. The
4485 * new item is going to be in the same node as the old one.
4486 *
4487 * Note, the item being split must be smaller enough to live alone on
4488 * a tree block with room for one extra struct btrfs_item
4489 *
4490 * This allows us to split the item in place, keeping a lock on the
4491 * leaf the entire time.
4492 */
4493int btrfs_split_item(struct btrfs_trans_handle *trans,
4494 struct btrfs_root *root,
4495 struct btrfs_path *path,
4496 struct btrfs_key *new_key,
4497 unsigned long split_offset)
4498{
4499 int ret;
4500 ret = setup_leaf_for_split(trans, root, path,
4501 sizeof(struct btrfs_item));
4502 if (ret)
4503 return ret;
4504
4505 ret = split_item(trans, root, path, new_key, split_offset);
459931ec
CM
4506 return ret;
4507}
4508
ad48fd75
YZ
4509/*
4510 * This function duplicate a item, giving 'new_key' to the new item.
4511 * It guarantees both items live in the same tree leaf and the new item
4512 * is contiguous with the original item.
4513 *
4514 * This allows us to split file extent in place, keeping a lock on the
4515 * leaf the entire time.
4516 */
4517int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4518 struct btrfs_root *root,
4519 struct btrfs_path *path,
4520 struct btrfs_key *new_key)
4521{
4522 struct extent_buffer *leaf;
4523 int ret;
4524 u32 item_size;
4525
4526 leaf = path->nodes[0];
4527 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4528 ret = setup_leaf_for_split(trans, root, path,
4529 item_size + sizeof(struct btrfs_item));
4530 if (ret)
4531 return ret;
4532
4533 path->slots[0]++;
afe5fea7 4534 setup_items_for_insert(root, path, new_key, &item_size,
143bede5
JM
4535 item_size, item_size +
4536 sizeof(struct btrfs_item), 1);
ad48fd75
YZ
4537 leaf = path->nodes[0];
4538 memcpy_extent_buffer(leaf,
4539 btrfs_item_ptr_offset(leaf, path->slots[0]),
4540 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4541 item_size);
4542 return 0;
4543}
4544
d352ac68
CM
4545/*
4546 * make the item pointed to by the path smaller. new_size indicates
4547 * how small to make it, and from_end tells us if we just chop bytes
4548 * off the end of the item or if we shift the item to chop bytes off
4549 * the front.
4550 */
afe5fea7 4551void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
143bede5 4552 u32 new_size, int from_end)
b18c6685 4553{
b18c6685 4554 int slot;
5f39d397
CM
4555 struct extent_buffer *leaf;
4556 struct btrfs_item *item;
b18c6685
CM
4557 u32 nritems;
4558 unsigned int data_end;
4559 unsigned int old_data_start;
4560 unsigned int old_size;
4561 unsigned int size_diff;
4562 int i;
cfed81a0
CM
4563 struct btrfs_map_token token;
4564
4565 btrfs_init_map_token(&token);
b18c6685 4566
5f39d397 4567 leaf = path->nodes[0];
179e29e4
CM
4568 slot = path->slots[0];
4569
4570 old_size = btrfs_item_size_nr(leaf, slot);
4571 if (old_size == new_size)
143bede5 4572 return;
b18c6685 4573
5f39d397 4574 nritems = btrfs_header_nritems(leaf);
b18c6685
CM
4575 data_end = leaf_data_end(root, leaf);
4576
5f39d397 4577 old_data_start = btrfs_item_offset_nr(leaf, slot);
179e29e4 4578
b18c6685
CM
4579 size_diff = old_size - new_size;
4580
4581 BUG_ON(slot < 0);
4582 BUG_ON(slot >= nritems);
4583
4584 /*
4585 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4586 */
4587 /* first correct the data pointers */
4588 for (i = slot; i < nritems; i++) {
5f39d397 4589 u32 ioff;
dd3cc16b 4590 item = btrfs_item_nr(i);
db94535d 4591
cfed81a0
CM
4592 ioff = btrfs_token_item_offset(leaf, item, &token);
4593 btrfs_set_token_item_offset(leaf, item,
4594 ioff + size_diff, &token);
b18c6685 4595 }
db94535d 4596
b18c6685 4597 /* shift the data */
179e29e4
CM
4598 if (from_end) {
4599 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4600 data_end + size_diff, btrfs_leaf_data(leaf) +
4601 data_end, old_data_start + new_size - data_end);
4602 } else {
4603 struct btrfs_disk_key disk_key;
4604 u64 offset;
4605
4606 btrfs_item_key(leaf, &disk_key, slot);
4607
4608 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4609 unsigned long ptr;
4610 struct btrfs_file_extent_item *fi;
4611
4612 fi = btrfs_item_ptr(leaf, slot,
4613 struct btrfs_file_extent_item);
4614 fi = (struct btrfs_file_extent_item *)(
4615 (unsigned long)fi - size_diff);
4616
4617 if (btrfs_file_extent_type(leaf, fi) ==
4618 BTRFS_FILE_EXTENT_INLINE) {
4619 ptr = btrfs_item_ptr_offset(leaf, slot);
4620 memmove_extent_buffer(leaf, ptr,
d397712b
CM
4621 (unsigned long)fi,
4622 offsetof(struct btrfs_file_extent_item,
179e29e4
CM
4623 disk_bytenr));
4624 }
4625 }
4626
4627 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4628 data_end + size_diff, btrfs_leaf_data(leaf) +
4629 data_end, old_data_start - data_end);
4630
4631 offset = btrfs_disk_key_offset(&disk_key);
4632 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4633 btrfs_set_item_key(leaf, &disk_key, slot);
4634 if (slot == 0)
d6a0a126 4635 fixup_low_keys(root, path, &disk_key, 1);
179e29e4 4636 }
5f39d397 4637
dd3cc16b 4638 item = btrfs_item_nr(slot);
5f39d397
CM
4639 btrfs_set_item_size(leaf, item, new_size);
4640 btrfs_mark_buffer_dirty(leaf);
b18c6685 4641
5f39d397
CM
4642 if (btrfs_leaf_free_space(root, leaf) < 0) {
4643 btrfs_print_leaf(root, leaf);
b18c6685 4644 BUG();
5f39d397 4645 }
b18c6685
CM
4646}
4647
d352ac68 4648/*
8f69dbd2 4649 * make the item pointed to by the path bigger, data_size is the added size.
d352ac68 4650 */
4b90c680 4651void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
143bede5 4652 u32 data_size)
6567e837 4653{
6567e837 4654 int slot;
5f39d397
CM
4655 struct extent_buffer *leaf;
4656 struct btrfs_item *item;
6567e837
CM
4657 u32 nritems;
4658 unsigned int data_end;
4659 unsigned int old_data;
4660 unsigned int old_size;
4661 int i;
cfed81a0
CM
4662 struct btrfs_map_token token;
4663
4664 btrfs_init_map_token(&token);
6567e837 4665
5f39d397 4666 leaf = path->nodes[0];
6567e837 4667
5f39d397 4668 nritems = btrfs_header_nritems(leaf);
6567e837
CM
4669 data_end = leaf_data_end(root, leaf);
4670
5f39d397
CM
4671 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4672 btrfs_print_leaf(root, leaf);
6567e837 4673 BUG();
5f39d397 4674 }
6567e837 4675 slot = path->slots[0];
5f39d397 4676 old_data = btrfs_item_end_nr(leaf, slot);
6567e837
CM
4677
4678 BUG_ON(slot < 0);
3326d1b0
CM
4679 if (slot >= nritems) {
4680 btrfs_print_leaf(root, leaf);
efe120a0 4681 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
d397712b 4682 slot, nritems);
3326d1b0
CM
4683 BUG_ON(1);
4684 }
6567e837
CM
4685
4686 /*
4687 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4688 */
4689 /* first correct the data pointers */
4690 for (i = slot; i < nritems; i++) {
5f39d397 4691 u32 ioff;
dd3cc16b 4692 item = btrfs_item_nr(i);
db94535d 4693
cfed81a0
CM
4694 ioff = btrfs_token_item_offset(leaf, item, &token);
4695 btrfs_set_token_item_offset(leaf, item,
4696 ioff - data_size, &token);
6567e837 4697 }
5f39d397 4698
6567e837 4699 /* shift the data */
5f39d397 4700 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
6567e837
CM
4701 data_end - data_size, btrfs_leaf_data(leaf) +
4702 data_end, old_data - data_end);
5f39d397 4703
6567e837 4704 data_end = old_data;
5f39d397 4705 old_size = btrfs_item_size_nr(leaf, slot);
dd3cc16b 4706 item = btrfs_item_nr(slot);
5f39d397
CM
4707 btrfs_set_item_size(leaf, item, old_size + data_size);
4708 btrfs_mark_buffer_dirty(leaf);
6567e837 4709
5f39d397
CM
4710 if (btrfs_leaf_free_space(root, leaf) < 0) {
4711 btrfs_print_leaf(root, leaf);
6567e837 4712 BUG();
5f39d397 4713 }
6567e837
CM
4714}
4715
74123bd7 4716/*
44871b1b
CM
4717 * this is a helper for btrfs_insert_empty_items, the main goal here is
4718 * to save stack depth by doing the bulk of the work in a function
4719 * that doesn't call btrfs_search_slot
74123bd7 4720 */
afe5fea7 4721void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
143bede5
JM
4722 struct btrfs_key *cpu_key, u32 *data_size,
4723 u32 total_data, u32 total_size, int nr)
be0e5c09 4724{
5f39d397 4725 struct btrfs_item *item;
9c58309d 4726 int i;
7518a238 4727 u32 nritems;
be0e5c09 4728 unsigned int data_end;
e2fa7227 4729 struct btrfs_disk_key disk_key;
44871b1b
CM
4730 struct extent_buffer *leaf;
4731 int slot;
cfed81a0
CM
4732 struct btrfs_map_token token;
4733
24cdc847
FM
4734 if (path->slots[0] == 0) {
4735 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4736 fixup_low_keys(root, path, &disk_key, 1);
4737 }
4738 btrfs_unlock_up_safe(path, 1);
4739
cfed81a0 4740 btrfs_init_map_token(&token);
e2fa7227 4741
5f39d397 4742 leaf = path->nodes[0];
44871b1b 4743 slot = path->slots[0];
74123bd7 4744
5f39d397 4745 nritems = btrfs_header_nritems(leaf);
123abc88 4746 data_end = leaf_data_end(root, leaf);
eb60ceac 4747
f25956cc 4748 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3326d1b0 4749 btrfs_print_leaf(root, leaf);
efe120a0 4750 btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
9c58309d 4751 total_size, btrfs_leaf_free_space(root, leaf));
be0e5c09 4752 BUG();
d4dbff95 4753 }
5f39d397 4754
be0e5c09 4755 if (slot != nritems) {
5f39d397 4756 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
be0e5c09 4757
5f39d397
CM
4758 if (old_data < data_end) {
4759 btrfs_print_leaf(root, leaf);
efe120a0 4760 btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
5f39d397
CM
4761 slot, old_data, data_end);
4762 BUG_ON(1);
4763 }
be0e5c09
CM
4764 /*
4765 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4766 */
4767 /* first correct the data pointers */
0783fcfc 4768 for (i = slot; i < nritems; i++) {
5f39d397 4769 u32 ioff;
db94535d 4770
dd3cc16b 4771 item = btrfs_item_nr( i);
cfed81a0
CM
4772 ioff = btrfs_token_item_offset(leaf, item, &token);
4773 btrfs_set_token_item_offset(leaf, item,
4774 ioff - total_data, &token);
0783fcfc 4775 }
be0e5c09 4776 /* shift the items */
9c58309d 4777 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
5f39d397 4778 btrfs_item_nr_offset(slot),
d6025579 4779 (nritems - slot) * sizeof(struct btrfs_item));
be0e5c09
CM
4780
4781 /* shift the data */
5f39d397 4782 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
9c58309d 4783 data_end - total_data, btrfs_leaf_data(leaf) +
d6025579 4784 data_end, old_data - data_end);
be0e5c09
CM
4785 data_end = old_data;
4786 }
5f39d397 4787
62e2749e 4788 /* setup the item for the new data */
9c58309d
CM
4789 for (i = 0; i < nr; i++) {
4790 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4791 btrfs_set_item_key(leaf, &disk_key, slot + i);
dd3cc16b 4792 item = btrfs_item_nr(slot + i);
cfed81a0
CM
4793 btrfs_set_token_item_offset(leaf, item,
4794 data_end - data_size[i], &token);
9c58309d 4795 data_end -= data_size[i];
cfed81a0 4796 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
9c58309d 4797 }
44871b1b 4798
9c58309d 4799 btrfs_set_header_nritems(leaf, nritems + nr);
b9473439 4800 btrfs_mark_buffer_dirty(leaf);
aa5d6bed 4801
5f39d397
CM
4802 if (btrfs_leaf_free_space(root, leaf) < 0) {
4803 btrfs_print_leaf(root, leaf);
be0e5c09 4804 BUG();
5f39d397 4805 }
44871b1b
CM
4806}
4807
4808/*
4809 * Given a key and some data, insert items into the tree.
4810 * This does all the path init required, making room in the tree if needed.
4811 */
4812int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4813 struct btrfs_root *root,
4814 struct btrfs_path *path,
4815 struct btrfs_key *cpu_key, u32 *data_size,
4816 int nr)
4817{
44871b1b
CM
4818 int ret = 0;
4819 int slot;
4820 int i;
4821 u32 total_size = 0;
4822 u32 total_data = 0;
4823
4824 for (i = 0; i < nr; i++)
4825 total_data += data_size[i];
4826
4827 total_size = total_data + (nr * sizeof(struct btrfs_item));
4828 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4829 if (ret == 0)
4830 return -EEXIST;
4831 if (ret < 0)
143bede5 4832 return ret;
44871b1b 4833
44871b1b
CM
4834 slot = path->slots[0];
4835 BUG_ON(slot < 0);
4836
afe5fea7 4837 setup_items_for_insert(root, path, cpu_key, data_size,
44871b1b 4838 total_data, total_size, nr);
143bede5 4839 return 0;
62e2749e
CM
4840}
4841
4842/*
4843 * Given a key and some data, insert an item into the tree.
4844 * This does all the path init required, making room in the tree if needed.
4845 */
e089f05c
CM
4846int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4847 *root, struct btrfs_key *cpu_key, void *data, u32
4848 data_size)
62e2749e
CM
4849{
4850 int ret = 0;
2c90e5d6 4851 struct btrfs_path *path;
5f39d397
CM
4852 struct extent_buffer *leaf;
4853 unsigned long ptr;
62e2749e 4854
2c90e5d6 4855 path = btrfs_alloc_path();
db5b493a
TI
4856 if (!path)
4857 return -ENOMEM;
2c90e5d6 4858 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
62e2749e 4859 if (!ret) {
5f39d397
CM
4860 leaf = path->nodes[0];
4861 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4862 write_extent_buffer(leaf, data, ptr, data_size);
4863 btrfs_mark_buffer_dirty(leaf);
62e2749e 4864 }
2c90e5d6 4865 btrfs_free_path(path);
aa5d6bed 4866 return ret;
be0e5c09
CM
4867}
4868
74123bd7 4869/*
5de08d7d 4870 * delete the pointer from a given node.
74123bd7 4871 *
d352ac68
CM
4872 * the tree should have been previously balanced so the deletion does not
4873 * empty a node.
74123bd7 4874 */
afe5fea7
TI
4875static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4876 int level, int slot)
be0e5c09 4877{
5f39d397 4878 struct extent_buffer *parent = path->nodes[level];
7518a238 4879 u32 nritems;
f3ea38da 4880 int ret;
be0e5c09 4881
5f39d397 4882 nritems = btrfs_header_nritems(parent);
d397712b 4883 if (slot != nritems - 1) {
0e411ece 4884 if (level)
f3ea38da
JS
4885 tree_mod_log_eb_move(root->fs_info, parent, slot,
4886 slot + 1, nritems - slot - 1);
5f39d397
CM
4887 memmove_extent_buffer(parent,
4888 btrfs_node_key_ptr_offset(slot),
4889 btrfs_node_key_ptr_offset(slot + 1),
d6025579
CM
4890 sizeof(struct btrfs_key_ptr) *
4891 (nritems - slot - 1));
57ba86c0
CM
4892 } else if (level) {
4893 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
c8cc6341 4894 MOD_LOG_KEY_REMOVE, GFP_NOFS);
57ba86c0 4895 BUG_ON(ret < 0);
bb803951 4896 }
f3ea38da 4897
7518a238 4898 nritems--;
5f39d397 4899 btrfs_set_header_nritems(parent, nritems);
7518a238 4900 if (nritems == 0 && parent == root->node) {
5f39d397 4901 BUG_ON(btrfs_header_level(root->node) != 1);
bb803951 4902 /* just turn the root into a leaf and break */
5f39d397 4903 btrfs_set_header_level(root->node, 0);
bb803951 4904 } else if (slot == 0) {
5f39d397
CM
4905 struct btrfs_disk_key disk_key;
4906
4907 btrfs_node_key(parent, &disk_key, 0);
d6a0a126 4908 fixup_low_keys(root, path, &disk_key, level + 1);
be0e5c09 4909 }
d6025579 4910 btrfs_mark_buffer_dirty(parent);
be0e5c09
CM
4911}
4912
323ac95b
CM
4913/*
4914 * a helper function to delete the leaf pointed to by path->slots[1] and
5d4f98a2 4915 * path->nodes[1].
323ac95b
CM
4916 *
4917 * This deletes the pointer in path->nodes[1] and frees the leaf
4918 * block extent. zero is returned if it all worked out, < 0 otherwise.
4919 *
4920 * The path must have already been setup for deleting the leaf, including
4921 * all the proper balancing. path->nodes[1] must be locked.
4922 */
143bede5
JM
4923static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4924 struct btrfs_root *root,
4925 struct btrfs_path *path,
4926 struct extent_buffer *leaf)
323ac95b 4927{
5d4f98a2 4928 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
afe5fea7 4929 del_ptr(root, path, 1, path->slots[1]);
323ac95b 4930
4d081c41
CM
4931 /*
4932 * btrfs_free_extent is expensive, we want to make sure we
4933 * aren't holding any locks when we call it
4934 */
4935 btrfs_unlock_up_safe(path, 0);
4936
f0486c68
YZ
4937 root_sub_used(root, leaf->len);
4938
3083ee2e 4939 extent_buffer_get(leaf);
5581a51a 4940 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3083ee2e 4941 free_extent_buffer_stale(leaf);
323ac95b 4942}
74123bd7
CM
4943/*
4944 * delete the item at the leaf level in path. If that empties
4945 * the leaf, remove it from the tree
4946 */
85e21bac
CM
4947int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4948 struct btrfs_path *path, int slot, int nr)
be0e5c09 4949{
5f39d397
CM
4950 struct extent_buffer *leaf;
4951 struct btrfs_item *item;
85e21bac
CM
4952 int last_off;
4953 int dsize = 0;
aa5d6bed
CM
4954 int ret = 0;
4955 int wret;
85e21bac 4956 int i;
7518a238 4957 u32 nritems;
cfed81a0
CM
4958 struct btrfs_map_token token;
4959
4960 btrfs_init_map_token(&token);
be0e5c09 4961
5f39d397 4962 leaf = path->nodes[0];
85e21bac
CM
4963 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4964
4965 for (i = 0; i < nr; i++)
4966 dsize += btrfs_item_size_nr(leaf, slot + i);
4967
5f39d397 4968 nritems = btrfs_header_nritems(leaf);
be0e5c09 4969
85e21bac 4970 if (slot + nr != nritems) {
123abc88 4971 int data_end = leaf_data_end(root, leaf);
5f39d397
CM
4972
4973 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
d6025579
CM
4974 data_end + dsize,
4975 btrfs_leaf_data(leaf) + data_end,
85e21bac 4976 last_off - data_end);
5f39d397 4977
85e21bac 4978 for (i = slot + nr; i < nritems; i++) {
5f39d397 4979 u32 ioff;
db94535d 4980
dd3cc16b 4981 item = btrfs_item_nr(i);
cfed81a0
CM
4982 ioff = btrfs_token_item_offset(leaf, item, &token);
4983 btrfs_set_token_item_offset(leaf, item,
4984 ioff + dsize, &token);
0783fcfc 4985 }
db94535d 4986
5f39d397 4987 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
85e21bac 4988 btrfs_item_nr_offset(slot + nr),
d6025579 4989 sizeof(struct btrfs_item) *
85e21bac 4990 (nritems - slot - nr));
be0e5c09 4991 }
85e21bac
CM
4992 btrfs_set_header_nritems(leaf, nritems - nr);
4993 nritems -= nr;
5f39d397 4994
74123bd7 4995 /* delete the leaf if we've emptied it */
7518a238 4996 if (nritems == 0) {
5f39d397
CM
4997 if (leaf == root->node) {
4998 btrfs_set_header_level(leaf, 0);
9a8dd150 4999 } else {
f0486c68
YZ
5000 btrfs_set_path_blocking(path);
5001 clean_tree_block(trans, root, leaf);
143bede5 5002 btrfs_del_leaf(trans, root, path, leaf);
9a8dd150 5003 }
be0e5c09 5004 } else {
7518a238 5005 int used = leaf_space_used(leaf, 0, nritems);
aa5d6bed 5006 if (slot == 0) {
5f39d397
CM
5007 struct btrfs_disk_key disk_key;
5008
5009 btrfs_item_key(leaf, &disk_key, 0);
d6a0a126 5010 fixup_low_keys(root, path, &disk_key, 1);
aa5d6bed 5011 }
aa5d6bed 5012
74123bd7 5013 /* delete the leaf if it is mostly empty */
d717aa1d 5014 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
be0e5c09
CM
5015 /* push_leaf_left fixes the path.
5016 * make sure the path still points to our leaf
5017 * for possible call to del_ptr below
5018 */
4920c9ac 5019 slot = path->slots[1];
5f39d397
CM
5020 extent_buffer_get(leaf);
5021
b9473439 5022 btrfs_set_path_blocking(path);
99d8f83c
CM
5023 wret = push_leaf_left(trans, root, path, 1, 1,
5024 1, (u32)-1);
54aa1f4d 5025 if (wret < 0 && wret != -ENOSPC)
aa5d6bed 5026 ret = wret;
5f39d397
CM
5027
5028 if (path->nodes[0] == leaf &&
5029 btrfs_header_nritems(leaf)) {
99d8f83c
CM
5030 wret = push_leaf_right(trans, root, path, 1,
5031 1, 1, 0);
54aa1f4d 5032 if (wret < 0 && wret != -ENOSPC)
aa5d6bed
CM
5033 ret = wret;
5034 }
5f39d397
CM
5035
5036 if (btrfs_header_nritems(leaf) == 0) {
323ac95b 5037 path->slots[1] = slot;
143bede5 5038 btrfs_del_leaf(trans, root, path, leaf);
5f39d397 5039 free_extent_buffer(leaf);
143bede5 5040 ret = 0;
5de08d7d 5041 } else {
925baedd
CM
5042 /* if we're still in the path, make sure
5043 * we're dirty. Otherwise, one of the
5044 * push_leaf functions must have already
5045 * dirtied this buffer
5046 */
5047 if (path->nodes[0] == leaf)
5048 btrfs_mark_buffer_dirty(leaf);
5f39d397 5049 free_extent_buffer(leaf);
be0e5c09 5050 }
d5719762 5051 } else {
5f39d397 5052 btrfs_mark_buffer_dirty(leaf);
be0e5c09
CM
5053 }
5054 }
aa5d6bed 5055 return ret;
be0e5c09
CM
5056}
5057
7bb86316 5058/*
925baedd 5059 * search the tree again to find a leaf with lesser keys
7bb86316
CM
5060 * returns 0 if it found something or 1 if there are no lesser leaves.
5061 * returns < 0 on io errors.
d352ac68
CM
5062 *
5063 * This may release the path, and so you may lose any locks held at the
5064 * time you call it.
7bb86316 5065 */
16e7549f 5066int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
7bb86316 5067{
925baedd
CM
5068 struct btrfs_key key;
5069 struct btrfs_disk_key found_key;
5070 int ret;
7bb86316 5071
925baedd 5072 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
7bb86316 5073
e8b0d724 5074 if (key.offset > 0) {
925baedd 5075 key.offset--;
e8b0d724 5076 } else if (key.type > 0) {
925baedd 5077 key.type--;
e8b0d724
FDBM
5078 key.offset = (u64)-1;
5079 } else if (key.objectid > 0) {
925baedd 5080 key.objectid--;
e8b0d724
FDBM
5081 key.type = (u8)-1;
5082 key.offset = (u64)-1;
5083 } else {
925baedd 5084 return 1;
e8b0d724 5085 }
7bb86316 5086
b3b4aa74 5087 btrfs_release_path(path);
925baedd
CM
5088 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5089 if (ret < 0)
5090 return ret;
5091 btrfs_item_key(path->nodes[0], &found_key, 0);
5092 ret = comp_keys(&found_key, &key);
337c6f68
FM
5093 /*
5094 * We might have had an item with the previous key in the tree right
5095 * before we released our path. And after we released our path, that
5096 * item might have been pushed to the first slot (0) of the leaf we
5097 * were holding due to a tree balance. Alternatively, an item with the
5098 * previous key can exist as the only element of a leaf (big fat item).
5099 * Therefore account for these 2 cases, so that our callers (like
5100 * btrfs_previous_item) don't miss an existing item with a key matching
5101 * the previous key we computed above.
5102 */
5103 if (ret <= 0)
925baedd
CM
5104 return 0;
5105 return 1;
7bb86316
CM
5106}
5107
3f157a2f
CM
5108/*
5109 * A helper function to walk down the tree starting at min_key, and looking
de78b51a
ES
5110 * for nodes or leaves that are have a minimum transaction id.
5111 * This is used by the btree defrag code, and tree logging
3f157a2f
CM
5112 *
5113 * This does not cow, but it does stuff the starting key it finds back
5114 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5115 * key and get a writable path.
5116 *
5117 * This does lock as it descends, and path->keep_locks should be set
5118 * to 1 by the caller.
5119 *
5120 * This honors path->lowest_level to prevent descent past a given level
5121 * of the tree.
5122 *
d352ac68
CM
5123 * min_trans indicates the oldest transaction that you are interested
5124 * in walking through. Any nodes or leaves older than min_trans are
5125 * skipped over (without reading them).
5126 *
3f157a2f
CM
5127 * returns zero if something useful was found, < 0 on error and 1 if there
5128 * was nothing in the tree that matched the search criteria.
5129 */
5130int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
de78b51a 5131 struct btrfs_path *path,
3f157a2f
CM
5132 u64 min_trans)
5133{
5134 struct extent_buffer *cur;
5135 struct btrfs_key found_key;
5136 int slot;
9652480b 5137 int sret;
3f157a2f
CM
5138 u32 nritems;
5139 int level;
5140 int ret = 1;
f98de9b9 5141 int keep_locks = path->keep_locks;
3f157a2f 5142
f98de9b9 5143 path->keep_locks = 1;
3f157a2f 5144again:
bd681513 5145 cur = btrfs_read_lock_root_node(root);
3f157a2f 5146 level = btrfs_header_level(cur);
e02119d5 5147 WARN_ON(path->nodes[level]);
3f157a2f 5148 path->nodes[level] = cur;
bd681513 5149 path->locks[level] = BTRFS_READ_LOCK;
3f157a2f
CM
5150
5151 if (btrfs_header_generation(cur) < min_trans) {
5152 ret = 1;
5153 goto out;
5154 }
d397712b 5155 while (1) {
3f157a2f
CM
5156 nritems = btrfs_header_nritems(cur);
5157 level = btrfs_header_level(cur);
9652480b 5158 sret = bin_search(cur, min_key, level, &slot);
3f157a2f 5159
323ac95b
CM
5160 /* at the lowest level, we're done, setup the path and exit */
5161 if (level == path->lowest_level) {
e02119d5
CM
5162 if (slot >= nritems)
5163 goto find_next_key;
3f157a2f
CM
5164 ret = 0;
5165 path->slots[level] = slot;
5166 btrfs_item_key_to_cpu(cur, &found_key, slot);
5167 goto out;
5168 }
9652480b
Y
5169 if (sret && slot > 0)
5170 slot--;
3f157a2f 5171 /*
de78b51a
ES
5172 * check this node pointer against the min_trans parameters.
5173 * If it is too old, old, skip to the next one.
3f157a2f 5174 */
d397712b 5175 while (slot < nritems) {
3f157a2f 5176 u64 gen;
e02119d5 5177
3f157a2f
CM
5178 gen = btrfs_node_ptr_generation(cur, slot);
5179 if (gen < min_trans) {
5180 slot++;
5181 continue;
5182 }
de78b51a 5183 break;
3f157a2f 5184 }
e02119d5 5185find_next_key:
3f157a2f
CM
5186 /*
5187 * we didn't find a candidate key in this node, walk forward
5188 * and find another one
5189 */
5190 if (slot >= nritems) {
e02119d5 5191 path->slots[level] = slot;
b4ce94de 5192 btrfs_set_path_blocking(path);
e02119d5 5193 sret = btrfs_find_next_key(root, path, min_key, level,
de78b51a 5194 min_trans);
e02119d5 5195 if (sret == 0) {
b3b4aa74 5196 btrfs_release_path(path);
3f157a2f
CM
5197 goto again;
5198 } else {
5199 goto out;
5200 }
5201 }
5202 /* save our key for returning back */
5203 btrfs_node_key_to_cpu(cur, &found_key, slot);
5204 path->slots[level] = slot;
5205 if (level == path->lowest_level) {
5206 ret = 0;
3f157a2f
CM
5207 goto out;
5208 }
b4ce94de 5209 btrfs_set_path_blocking(path);
3f157a2f 5210 cur = read_node_slot(root, cur, slot);
79787eaa 5211 BUG_ON(!cur); /* -ENOMEM */
3f157a2f 5212
bd681513 5213 btrfs_tree_read_lock(cur);
b4ce94de 5214
bd681513 5215 path->locks[level - 1] = BTRFS_READ_LOCK;
3f157a2f 5216 path->nodes[level - 1] = cur;
f7c79f30 5217 unlock_up(path, level, 1, 0, NULL);
bd681513 5218 btrfs_clear_path_blocking(path, NULL, 0);
3f157a2f
CM
5219 }
5220out:
f98de9b9
FM
5221 path->keep_locks = keep_locks;
5222 if (ret == 0) {
5223 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5224 btrfs_set_path_blocking(path);
3f157a2f 5225 memcpy(min_key, &found_key, sizeof(found_key));
f98de9b9 5226 }
3f157a2f
CM
5227 return ret;
5228}
5229
7069830a
AB
5230static void tree_move_down(struct btrfs_root *root,
5231 struct btrfs_path *path,
5232 int *level, int root_level)
5233{
74dd17fb 5234 BUG_ON(*level == 0);
7069830a
AB
5235 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5236 path->slots[*level]);
5237 path->slots[*level - 1] = 0;
5238 (*level)--;
5239}
5240
5241static int tree_move_next_or_upnext(struct btrfs_root *root,
5242 struct btrfs_path *path,
5243 int *level, int root_level)
5244{
5245 int ret = 0;
5246 int nritems;
5247 nritems = btrfs_header_nritems(path->nodes[*level]);
5248
5249 path->slots[*level]++;
5250
74dd17fb 5251 while (path->slots[*level] >= nritems) {
7069830a
AB
5252 if (*level == root_level)
5253 return -1;
5254
5255 /* move upnext */
5256 path->slots[*level] = 0;
5257 free_extent_buffer(path->nodes[*level]);
5258 path->nodes[*level] = NULL;
5259 (*level)++;
5260 path->slots[*level]++;
5261
5262 nritems = btrfs_header_nritems(path->nodes[*level]);
5263 ret = 1;
5264 }
5265 return ret;
5266}
5267
5268/*
5269 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5270 * or down.
5271 */
5272static int tree_advance(struct btrfs_root *root,
5273 struct btrfs_path *path,
5274 int *level, int root_level,
5275 int allow_down,
5276 struct btrfs_key *key)
5277{
5278 int ret;
5279
5280 if (*level == 0 || !allow_down) {
5281 ret = tree_move_next_or_upnext(root, path, level, root_level);
5282 } else {
5283 tree_move_down(root, path, level, root_level);
5284 ret = 0;
5285 }
5286 if (ret >= 0) {
5287 if (*level == 0)
5288 btrfs_item_key_to_cpu(path->nodes[*level], key,
5289 path->slots[*level]);
5290 else
5291 btrfs_node_key_to_cpu(path->nodes[*level], key,
5292 path->slots[*level]);
5293 }
5294 return ret;
5295}
5296
5297static int tree_compare_item(struct btrfs_root *left_root,
5298 struct btrfs_path *left_path,
5299 struct btrfs_path *right_path,
5300 char *tmp_buf)
5301{
5302 int cmp;
5303 int len1, len2;
5304 unsigned long off1, off2;
5305
5306 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5307 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5308 if (len1 != len2)
5309 return 1;
5310
5311 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5312 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5313 right_path->slots[0]);
5314
5315 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5316
5317 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5318 if (cmp)
5319 return 1;
5320 return 0;
5321}
5322
5323#define ADVANCE 1
5324#define ADVANCE_ONLY_NEXT -1
5325
5326/*
5327 * This function compares two trees and calls the provided callback for
5328 * every changed/new/deleted item it finds.
5329 * If shared tree blocks are encountered, whole subtrees are skipped, making
5330 * the compare pretty fast on snapshotted subvolumes.
5331 *
5332 * This currently works on commit roots only. As commit roots are read only,
5333 * we don't do any locking. The commit roots are protected with transactions.
5334 * Transactions are ended and rejoined when a commit is tried in between.
5335 *
5336 * This function checks for modifications done to the trees while comparing.
5337 * If it detects a change, it aborts immediately.
5338 */
5339int btrfs_compare_trees(struct btrfs_root *left_root,
5340 struct btrfs_root *right_root,
5341 btrfs_changed_cb_t changed_cb, void *ctx)
5342{
5343 int ret;
5344 int cmp;
7069830a
AB
5345 struct btrfs_path *left_path = NULL;
5346 struct btrfs_path *right_path = NULL;
5347 struct btrfs_key left_key;
5348 struct btrfs_key right_key;
5349 char *tmp_buf = NULL;
5350 int left_root_level;
5351 int right_root_level;
5352 int left_level;
5353 int right_level;
5354 int left_end_reached;
5355 int right_end_reached;
5356 int advance_left;
5357 int advance_right;
5358 u64 left_blockptr;
5359 u64 right_blockptr;
6baa4293
FM
5360 u64 left_gen;
5361 u64 right_gen;
7069830a
AB
5362
5363 left_path = btrfs_alloc_path();
5364 if (!left_path) {
5365 ret = -ENOMEM;
5366 goto out;
5367 }
5368 right_path = btrfs_alloc_path();
5369 if (!right_path) {
5370 ret = -ENOMEM;
5371 goto out;
5372 }
5373
707e8a07 5374 tmp_buf = kmalloc(left_root->nodesize, GFP_NOFS);
7069830a
AB
5375 if (!tmp_buf) {
5376 ret = -ENOMEM;
5377 goto out;
5378 }
5379
5380 left_path->search_commit_root = 1;
5381 left_path->skip_locking = 1;
5382 right_path->search_commit_root = 1;
5383 right_path->skip_locking = 1;
5384
7069830a
AB
5385 /*
5386 * Strategy: Go to the first items of both trees. Then do
5387 *
5388 * If both trees are at level 0
5389 * Compare keys of current items
5390 * If left < right treat left item as new, advance left tree
5391 * and repeat
5392 * If left > right treat right item as deleted, advance right tree
5393 * and repeat
5394 * If left == right do deep compare of items, treat as changed if
5395 * needed, advance both trees and repeat
5396 * If both trees are at the same level but not at level 0
5397 * Compare keys of current nodes/leafs
5398 * If left < right advance left tree and repeat
5399 * If left > right advance right tree and repeat
5400 * If left == right compare blockptrs of the next nodes/leafs
5401 * If they match advance both trees but stay at the same level
5402 * and repeat
5403 * If they don't match advance both trees while allowing to go
5404 * deeper and repeat
5405 * If tree levels are different
5406 * Advance the tree that needs it and repeat
5407 *
5408 * Advancing a tree means:
5409 * If we are at level 0, try to go to the next slot. If that's not
5410 * possible, go one level up and repeat. Stop when we found a level
5411 * where we could go to the next slot. We may at this point be on a
5412 * node or a leaf.
5413 *
5414 * If we are not at level 0 and not on shared tree blocks, go one
5415 * level deeper.
5416 *
5417 * If we are not at level 0 and on shared tree blocks, go one slot to
5418 * the right if possible or go up and right.
5419 */
5420
3f8a18cc 5421 down_read(&left_root->fs_info->commit_root_sem);
7069830a
AB
5422 left_level = btrfs_header_level(left_root->commit_root);
5423 left_root_level = left_level;
5424 left_path->nodes[left_level] = left_root->commit_root;
5425 extent_buffer_get(left_path->nodes[left_level]);
5426
5427 right_level = btrfs_header_level(right_root->commit_root);
5428 right_root_level = right_level;
5429 right_path->nodes[right_level] = right_root->commit_root;
5430 extent_buffer_get(right_path->nodes[right_level]);
3f8a18cc 5431 up_read(&left_root->fs_info->commit_root_sem);
7069830a
AB
5432
5433 if (left_level == 0)
5434 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5435 &left_key, left_path->slots[left_level]);
5436 else
5437 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5438 &left_key, left_path->slots[left_level]);
5439 if (right_level == 0)
5440 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5441 &right_key, right_path->slots[right_level]);
5442 else
5443 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5444 &right_key, right_path->slots[right_level]);
5445
5446 left_end_reached = right_end_reached = 0;
5447 advance_left = advance_right = 0;
5448
5449 while (1) {
7069830a
AB
5450 if (advance_left && !left_end_reached) {
5451 ret = tree_advance(left_root, left_path, &left_level,
5452 left_root_level,
5453 advance_left != ADVANCE_ONLY_NEXT,
5454 &left_key);
5455 if (ret < 0)
5456 left_end_reached = ADVANCE;
5457 advance_left = 0;
5458 }
5459 if (advance_right && !right_end_reached) {
5460 ret = tree_advance(right_root, right_path, &right_level,
5461 right_root_level,
5462 advance_right != ADVANCE_ONLY_NEXT,
5463 &right_key);
5464 if (ret < 0)
5465 right_end_reached = ADVANCE;
5466 advance_right = 0;
5467 }
5468
5469 if (left_end_reached && right_end_reached) {
5470 ret = 0;
5471 goto out;
5472 } else if (left_end_reached) {
5473 if (right_level == 0) {
5474 ret = changed_cb(left_root, right_root,
5475 left_path, right_path,
5476 &right_key,
5477 BTRFS_COMPARE_TREE_DELETED,
5478 ctx);
5479 if (ret < 0)
5480 goto out;
5481 }
5482 advance_right = ADVANCE;
5483 continue;
5484 } else if (right_end_reached) {
5485 if (left_level == 0) {
5486 ret = changed_cb(left_root, right_root,
5487 left_path, right_path,
5488 &left_key,
5489 BTRFS_COMPARE_TREE_NEW,
5490 ctx);
5491 if (ret < 0)
5492 goto out;
5493 }
5494 advance_left = ADVANCE;
5495 continue;
5496 }
5497
5498 if (left_level == 0 && right_level == 0) {
5499 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5500 if (cmp < 0) {
5501 ret = changed_cb(left_root, right_root,
5502 left_path, right_path,
5503 &left_key,
5504 BTRFS_COMPARE_TREE_NEW,
5505 ctx);
5506 if (ret < 0)
5507 goto out;
5508 advance_left = ADVANCE;
5509 } else if (cmp > 0) {
5510 ret = changed_cb(left_root, right_root,
5511 left_path, right_path,
5512 &right_key,
5513 BTRFS_COMPARE_TREE_DELETED,
5514 ctx);
5515 if (ret < 0)
5516 goto out;
5517 advance_right = ADVANCE;
5518 } else {
ba5e8f2e
JB
5519 enum btrfs_compare_tree_result cmp;
5520
74dd17fb 5521 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7069830a
AB
5522 ret = tree_compare_item(left_root, left_path,
5523 right_path, tmp_buf);
ba5e8f2e
JB
5524 if (ret)
5525 cmp = BTRFS_COMPARE_TREE_CHANGED;
5526 else
5527 cmp = BTRFS_COMPARE_TREE_SAME;
5528 ret = changed_cb(left_root, right_root,
5529 left_path, right_path,
5530 &left_key, cmp, ctx);
5531 if (ret < 0)
5532 goto out;
7069830a
AB
5533 advance_left = ADVANCE;
5534 advance_right = ADVANCE;
5535 }
5536 } else if (left_level == right_level) {
5537 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5538 if (cmp < 0) {
5539 advance_left = ADVANCE;
5540 } else if (cmp > 0) {
5541 advance_right = ADVANCE;
5542 } else {
5543 left_blockptr = btrfs_node_blockptr(
5544 left_path->nodes[left_level],
5545 left_path->slots[left_level]);
5546 right_blockptr = btrfs_node_blockptr(
5547 right_path->nodes[right_level],
5548 right_path->slots[right_level]);
6baa4293
FM
5549 left_gen = btrfs_node_ptr_generation(
5550 left_path->nodes[left_level],
5551 left_path->slots[left_level]);
5552 right_gen = btrfs_node_ptr_generation(
5553 right_path->nodes[right_level],
5554 right_path->slots[right_level]);
5555 if (left_blockptr == right_blockptr &&
5556 left_gen == right_gen) {
7069830a
AB
5557 /*
5558 * As we're on a shared block, don't
5559 * allow to go deeper.
5560 */
5561 advance_left = ADVANCE_ONLY_NEXT;
5562 advance_right = ADVANCE_ONLY_NEXT;
5563 } else {
5564 advance_left = ADVANCE;
5565 advance_right = ADVANCE;
5566 }
5567 }
5568 } else if (left_level < right_level) {
5569 advance_right = ADVANCE;
5570 } else {
5571 advance_left = ADVANCE;
5572 }
5573 }
5574
5575out:
5576 btrfs_free_path(left_path);
5577 btrfs_free_path(right_path);
5578 kfree(tmp_buf);
7069830a
AB
5579 return ret;
5580}
5581
3f157a2f
CM
5582/*
5583 * this is similar to btrfs_next_leaf, but does not try to preserve
5584 * and fixup the path. It looks for and returns the next key in the
de78b51a 5585 * tree based on the current path and the min_trans parameters.
3f157a2f
CM
5586 *
5587 * 0 is returned if another key is found, < 0 if there are any errors
5588 * and 1 is returned if there are no higher keys in the tree
5589 *
5590 * path->keep_locks should be set to 1 on the search made before
5591 * calling this function.
5592 */
e7a84565 5593int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
de78b51a 5594 struct btrfs_key *key, int level, u64 min_trans)
e7a84565 5595{
e7a84565
CM
5596 int slot;
5597 struct extent_buffer *c;
5598
934d375b 5599 WARN_ON(!path->keep_locks);
d397712b 5600 while (level < BTRFS_MAX_LEVEL) {
e7a84565
CM
5601 if (!path->nodes[level])
5602 return 1;
5603
5604 slot = path->slots[level] + 1;
5605 c = path->nodes[level];
3f157a2f 5606next:
e7a84565 5607 if (slot >= btrfs_header_nritems(c)) {
33c66f43
YZ
5608 int ret;
5609 int orig_lowest;
5610 struct btrfs_key cur_key;
5611 if (level + 1 >= BTRFS_MAX_LEVEL ||
5612 !path->nodes[level + 1])
e7a84565 5613 return 1;
33c66f43
YZ
5614
5615 if (path->locks[level + 1]) {
5616 level++;
5617 continue;
5618 }
5619
5620 slot = btrfs_header_nritems(c) - 1;
5621 if (level == 0)
5622 btrfs_item_key_to_cpu(c, &cur_key, slot);
5623 else
5624 btrfs_node_key_to_cpu(c, &cur_key, slot);
5625
5626 orig_lowest = path->lowest_level;
b3b4aa74 5627 btrfs_release_path(path);
33c66f43
YZ
5628 path->lowest_level = level;
5629 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5630 0, 0);
5631 path->lowest_level = orig_lowest;
5632 if (ret < 0)
5633 return ret;
5634
5635 c = path->nodes[level];
5636 slot = path->slots[level];
5637 if (ret == 0)
5638 slot++;
5639 goto next;
e7a84565 5640 }
33c66f43 5641
e7a84565
CM
5642 if (level == 0)
5643 btrfs_item_key_to_cpu(c, key, slot);
3f157a2f 5644 else {
3f157a2f
CM
5645 u64 gen = btrfs_node_ptr_generation(c, slot);
5646
3f157a2f
CM
5647 if (gen < min_trans) {
5648 slot++;
5649 goto next;
5650 }
e7a84565 5651 btrfs_node_key_to_cpu(c, key, slot);
3f157a2f 5652 }
e7a84565
CM
5653 return 0;
5654 }
5655 return 1;
5656}
5657
97571fd0 5658/*
925baedd 5659 * search the tree again to find a leaf with greater keys
0f70abe2
CM
5660 * returns 0 if it found something or 1 if there are no greater leaves.
5661 * returns < 0 on io errors.
97571fd0 5662 */
234b63a0 5663int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3d7806ec
JS
5664{
5665 return btrfs_next_old_leaf(root, path, 0);
5666}
5667
5668int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5669 u64 time_seq)
d97e63b6
CM
5670{
5671 int slot;
8e73f275 5672 int level;
5f39d397 5673 struct extent_buffer *c;
8e73f275 5674 struct extent_buffer *next;
925baedd
CM
5675 struct btrfs_key key;
5676 u32 nritems;
5677 int ret;
8e73f275 5678 int old_spinning = path->leave_spinning;
bd681513 5679 int next_rw_lock = 0;
925baedd
CM
5680
5681 nritems = btrfs_header_nritems(path->nodes[0]);
d397712b 5682 if (nritems == 0)
925baedd 5683 return 1;
925baedd 5684
8e73f275
CM
5685 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5686again:
5687 level = 1;
5688 next = NULL;
bd681513 5689 next_rw_lock = 0;
b3b4aa74 5690 btrfs_release_path(path);
8e73f275 5691
a2135011 5692 path->keep_locks = 1;
31533fb2 5693 path->leave_spinning = 1;
8e73f275 5694
3d7806ec
JS
5695 if (time_seq)
5696 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5697 else
5698 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
925baedd
CM
5699 path->keep_locks = 0;
5700
5701 if (ret < 0)
5702 return ret;
5703
a2135011 5704 nritems = btrfs_header_nritems(path->nodes[0]);
168fd7d2
CM
5705 /*
5706 * by releasing the path above we dropped all our locks. A balance
5707 * could have added more items next to the key that used to be
5708 * at the very end of the block. So, check again here and
5709 * advance the path if there are now more items available.
5710 */
a2135011 5711 if (nritems > 0 && path->slots[0] < nritems - 1) {
e457afec
YZ
5712 if (ret == 0)
5713 path->slots[0]++;
8e73f275 5714 ret = 0;
925baedd
CM
5715 goto done;
5716 }
0b43e04f
LB
5717 /*
5718 * So the above check misses one case:
5719 * - after releasing the path above, someone has removed the item that
5720 * used to be at the very end of the block, and balance between leafs
5721 * gets another one with bigger key.offset to replace it.
5722 *
5723 * This one should be returned as well, or we can get leaf corruption
5724 * later(esp. in __btrfs_drop_extents()).
5725 *
5726 * And a bit more explanation about this check,
5727 * with ret > 0, the key isn't found, the path points to the slot
5728 * where it should be inserted, so the path->slots[0] item must be the
5729 * bigger one.
5730 */
5731 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5732 ret = 0;
5733 goto done;
5734 }
d97e63b6 5735
d397712b 5736 while (level < BTRFS_MAX_LEVEL) {
8e73f275
CM
5737 if (!path->nodes[level]) {
5738 ret = 1;
5739 goto done;
5740 }
5f39d397 5741
d97e63b6
CM
5742 slot = path->slots[level] + 1;
5743 c = path->nodes[level];
5f39d397 5744 if (slot >= btrfs_header_nritems(c)) {
d97e63b6 5745 level++;
8e73f275
CM
5746 if (level == BTRFS_MAX_LEVEL) {
5747 ret = 1;
5748 goto done;
5749 }
d97e63b6
CM
5750 continue;
5751 }
5f39d397 5752
925baedd 5753 if (next) {
bd681513 5754 btrfs_tree_unlock_rw(next, next_rw_lock);
5f39d397 5755 free_extent_buffer(next);
925baedd 5756 }
5f39d397 5757
8e73f275 5758 next = c;
bd681513 5759 next_rw_lock = path->locks[level];
8e73f275 5760 ret = read_block_for_search(NULL, root, path, &next, level,
5d9e75c4 5761 slot, &key, 0);
8e73f275
CM
5762 if (ret == -EAGAIN)
5763 goto again;
5f39d397 5764
76a05b35 5765 if (ret < 0) {
b3b4aa74 5766 btrfs_release_path(path);
76a05b35
CM
5767 goto done;
5768 }
5769
5cd57b2c 5770 if (!path->skip_locking) {
bd681513 5771 ret = btrfs_try_tree_read_lock(next);
d42244a0
JS
5772 if (!ret && time_seq) {
5773 /*
5774 * If we don't get the lock, we may be racing
5775 * with push_leaf_left, holding that lock while
5776 * itself waiting for the leaf we've currently
5777 * locked. To solve this situation, we give up
5778 * on our lock and cycle.
5779 */
cf538830 5780 free_extent_buffer(next);
d42244a0
JS
5781 btrfs_release_path(path);
5782 cond_resched();
5783 goto again;
5784 }
8e73f275
CM
5785 if (!ret) {
5786 btrfs_set_path_blocking(path);
bd681513 5787 btrfs_tree_read_lock(next);
31533fb2 5788 btrfs_clear_path_blocking(path, next,
bd681513 5789 BTRFS_READ_LOCK);
8e73f275 5790 }
31533fb2 5791 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5792 }
d97e63b6
CM
5793 break;
5794 }
5795 path->slots[level] = slot;
d397712b 5796 while (1) {
d97e63b6
CM
5797 level--;
5798 c = path->nodes[level];
925baedd 5799 if (path->locks[level])
bd681513 5800 btrfs_tree_unlock_rw(c, path->locks[level]);
8e73f275 5801
5f39d397 5802 free_extent_buffer(c);
d97e63b6
CM
5803 path->nodes[level] = next;
5804 path->slots[level] = 0;
a74a4b97 5805 if (!path->skip_locking)
bd681513 5806 path->locks[level] = next_rw_lock;
d97e63b6
CM
5807 if (!level)
5808 break;
b4ce94de 5809
8e73f275 5810 ret = read_block_for_search(NULL, root, path, &next, level,
5d9e75c4 5811 0, &key, 0);
8e73f275
CM
5812 if (ret == -EAGAIN)
5813 goto again;
5814
76a05b35 5815 if (ret < 0) {
b3b4aa74 5816 btrfs_release_path(path);
76a05b35
CM
5817 goto done;
5818 }
5819
5cd57b2c 5820 if (!path->skip_locking) {
bd681513 5821 ret = btrfs_try_tree_read_lock(next);
8e73f275
CM
5822 if (!ret) {
5823 btrfs_set_path_blocking(path);
bd681513 5824 btrfs_tree_read_lock(next);
31533fb2 5825 btrfs_clear_path_blocking(path, next,
bd681513
CM
5826 BTRFS_READ_LOCK);
5827 }
31533fb2 5828 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5829 }
d97e63b6 5830 }
8e73f275 5831 ret = 0;
925baedd 5832done:
f7c79f30 5833 unlock_up(path, 0, 1, 0, NULL);
8e73f275
CM
5834 path->leave_spinning = old_spinning;
5835 if (!old_spinning)
5836 btrfs_set_path_blocking(path);
5837
5838 return ret;
d97e63b6 5839}
0b86a832 5840
3f157a2f
CM
5841/*
5842 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5843 * searching until it gets past min_objectid or finds an item of 'type'
5844 *
5845 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5846 */
0b86a832
CM
5847int btrfs_previous_item(struct btrfs_root *root,
5848 struct btrfs_path *path, u64 min_objectid,
5849 int type)
5850{
5851 struct btrfs_key found_key;
5852 struct extent_buffer *leaf;
e02119d5 5853 u32 nritems;
0b86a832
CM
5854 int ret;
5855
d397712b 5856 while (1) {
0b86a832 5857 if (path->slots[0] == 0) {
b4ce94de 5858 btrfs_set_path_blocking(path);
0b86a832
CM
5859 ret = btrfs_prev_leaf(root, path);
5860 if (ret != 0)
5861 return ret;
5862 } else {
5863 path->slots[0]--;
5864 }
5865 leaf = path->nodes[0];
e02119d5
CM
5866 nritems = btrfs_header_nritems(leaf);
5867 if (nritems == 0)
5868 return 1;
5869 if (path->slots[0] == nritems)
5870 path->slots[0]--;
5871
0b86a832 5872 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
e02119d5
CM
5873 if (found_key.objectid < min_objectid)
5874 break;
0a4eefbb
YZ
5875 if (found_key.type == type)
5876 return 0;
e02119d5
CM
5877 if (found_key.objectid == min_objectid &&
5878 found_key.type < type)
5879 break;
0b86a832
CM
5880 }
5881 return 1;
5882}
ade2e0b3
WS
5883
5884/*
5885 * search in extent tree to find a previous Metadata/Data extent item with
5886 * min objecitd.
5887 *
5888 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5889 */
5890int btrfs_previous_extent_item(struct btrfs_root *root,
5891 struct btrfs_path *path, u64 min_objectid)
5892{
5893 struct btrfs_key found_key;
5894 struct extent_buffer *leaf;
5895 u32 nritems;
5896 int ret;
5897
5898 while (1) {
5899 if (path->slots[0] == 0) {
5900 btrfs_set_path_blocking(path);
5901 ret = btrfs_prev_leaf(root, path);
5902 if (ret != 0)
5903 return ret;
5904 } else {
5905 path->slots[0]--;
5906 }
5907 leaf = path->nodes[0];
5908 nritems = btrfs_header_nritems(leaf);
5909 if (nritems == 0)
5910 return 1;
5911 if (path->slots[0] == nritems)
5912 path->slots[0]--;
5913
5914 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5915 if (found_key.objectid < min_objectid)
5916 break;
5917 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5918 found_key.type == BTRFS_METADATA_ITEM_KEY)
5919 return 0;
5920 if (found_key.objectid == min_objectid &&
5921 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5922 break;
5923 }
5924 return 1;
5925}
This page took 0.663747 seconds and 5 git commands to generate.