btrfs: sink gfp parameter to set_extent_defrag
[deliverable/linux.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
27a3507d
FM
28static inline bool extent_state_in_tree(const struct extent_state *state)
29{
30 return !RB_EMPTY_NODE(&state->rb_node);
31}
32
6d49ba1b 33#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
34static LIST_HEAD(buffers);
35static LIST_HEAD(states);
4bef0848 36
d397712b 37static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
38
39static inline
40void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41{
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47}
48
49static inline
50void btrfs_leak_debug_del(struct list_head *entry)
51{
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57}
58
59static inline
60void btrfs_leak_debug_check(void)
61{
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
c1c9ff7c 70 atomic_read(&state->refs));
6d49ba1b
ES
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
efe120a0 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
c1c9ff7c
GU
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
8d599ae1 84
a5dee37d
JB
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 88 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 89{
a5dee37d
JB
90 struct inode *inode;
91 u64 isize;
8d599ae1 92
a5dee37d
JB
93 if (!tree->mapping)
94 return;
8d599ae1 95
a5dee37d
JB
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
8d599ae1 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94647322
DS
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
c1c9ff7c 101 caller, btrfs_ino(inode), isize, start, end);
8d599ae1
DS
102 }
103}
6d49ba1b
ES
104#else
105#define btrfs_leak_debug_add(new, head) do {} while (0)
106#define btrfs_leak_debug_del(entry) do {} while (0)
107#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 108#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 109#endif
d1310b2e 110
d1310b2e
CM
111#define BUFFER_LRU_MAX 64
112
113struct tree_entry {
114 u64 start;
115 u64 end;
d1310b2e
CM
116 struct rb_node rb_node;
117};
118
119struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
de0022b9 123 unsigned long bio_flags;
771ed689
CM
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
ffbd517d
CM
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
d1310b2e
CM
132};
133
d38ed27f
QW
134static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137{
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
fefdc557
QW
144 if (!set && (state->state & bits) == 0)
145 return;
d38ed27f
QW
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151}
152
0b32f4bb 153static noinline void flush_write_bio(void *data);
c2d904e0
JM
154static inline struct btrfs_fs_info *
155tree_fs_info(struct extent_io_tree *tree)
156{
a5dee37d
JB
157 if (!tree->mapping)
158 return NULL;
c2d904e0
JM
159 return btrfs_sb(tree->mapping->host->i_sb);
160}
0b32f4bb 161
d1310b2e
CM
162int __init extent_io_init(void)
163{
837e1972 164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
165 sizeof(struct extent_state), 0,
166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
167 if (!extent_state_cache)
168 return -ENOMEM;
169
837e1972 170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
171 sizeof(struct extent_buffer), 0,
172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
173 if (!extent_buffer_cache)
174 goto free_state_cache;
9be3395b
CM
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
b208c2f7
DW
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
d1310b2e
CM
184 return 0;
185
b208c2f7
DW
186free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
9be3395b
CM
190free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
d1310b2e
CM
194free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
9be3395b 196 extent_state_cache = NULL;
d1310b2e
CM
197 return -ENOMEM;
198}
199
200void extent_io_exit(void)
201{
6d49ba1b 202 btrfs_leak_debug_check();
8c0a8537
KS
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
5598e900
KM
209 kmem_cache_destroy(extent_state_cache);
210 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
211 if (btrfs_bioset)
212 bioset_free(btrfs_bioset);
d1310b2e
CM
213}
214
215void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 216 struct address_space *mapping)
d1310b2e 217{
6bef4d31 218 tree->state = RB_ROOT;
d1310b2e
CM
219 tree->ops = NULL;
220 tree->dirty_bytes = 0;
70dec807 221 spin_lock_init(&tree->lock);
d1310b2e 222 tree->mapping = mapping;
d1310b2e 223}
d1310b2e 224
b2950863 225static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
226{
227 struct extent_state *state;
d1310b2e
CM
228
229 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 230 if (!state)
d1310b2e
CM
231 return state;
232 state->state = 0;
47dc196a 233 state->failrec = NULL;
27a3507d 234 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 235 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
236 atomic_set(&state->refs, 1);
237 init_waitqueue_head(&state->wq);
143bede5 238 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
239 return state;
240}
d1310b2e 241
4845e44f 242void free_extent_state(struct extent_state *state)
d1310b2e 243{
d1310b2e
CM
244 if (!state)
245 return;
246 if (atomic_dec_and_test(&state->refs)) {
27a3507d 247 WARN_ON(extent_state_in_tree(state));
6d49ba1b 248 btrfs_leak_debug_del(&state->leak_list);
143bede5 249 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
250 kmem_cache_free(extent_state_cache, state);
251 }
252}
d1310b2e 253
f2071b21
FM
254static struct rb_node *tree_insert(struct rb_root *root,
255 struct rb_node *search_start,
256 u64 offset,
12cfbad9
FDBM
257 struct rb_node *node,
258 struct rb_node ***p_in,
259 struct rb_node **parent_in)
d1310b2e 260{
f2071b21 261 struct rb_node **p;
d397712b 262 struct rb_node *parent = NULL;
d1310b2e
CM
263 struct tree_entry *entry;
264
12cfbad9
FDBM
265 if (p_in && parent_in) {
266 p = *p_in;
267 parent = *parent_in;
268 goto do_insert;
269 }
270
f2071b21 271 p = search_start ? &search_start : &root->rb_node;
d397712b 272 while (*p) {
d1310b2e
CM
273 parent = *p;
274 entry = rb_entry(parent, struct tree_entry, rb_node);
275
276 if (offset < entry->start)
277 p = &(*p)->rb_left;
278 else if (offset > entry->end)
279 p = &(*p)->rb_right;
280 else
281 return parent;
282 }
283
12cfbad9 284do_insert:
d1310b2e
CM
285 rb_link_node(node, parent, p);
286 rb_insert_color(node, root);
287 return NULL;
288}
289
80ea96b1 290static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
291 struct rb_node **prev_ret,
292 struct rb_node **next_ret,
293 struct rb_node ***p_ret,
294 struct rb_node **parent_ret)
d1310b2e 295{
80ea96b1 296 struct rb_root *root = &tree->state;
12cfbad9 297 struct rb_node **n = &root->rb_node;
d1310b2e
CM
298 struct rb_node *prev = NULL;
299 struct rb_node *orig_prev = NULL;
300 struct tree_entry *entry;
301 struct tree_entry *prev_entry = NULL;
302
12cfbad9
FDBM
303 while (*n) {
304 prev = *n;
305 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
306 prev_entry = entry;
307
308 if (offset < entry->start)
12cfbad9 309 n = &(*n)->rb_left;
d1310b2e 310 else if (offset > entry->end)
12cfbad9 311 n = &(*n)->rb_right;
d397712b 312 else
12cfbad9 313 return *n;
d1310b2e
CM
314 }
315
12cfbad9
FDBM
316 if (p_ret)
317 *p_ret = n;
318 if (parent_ret)
319 *parent_ret = prev;
320
d1310b2e
CM
321 if (prev_ret) {
322 orig_prev = prev;
d397712b 323 while (prev && offset > prev_entry->end) {
d1310b2e
CM
324 prev = rb_next(prev);
325 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326 }
327 *prev_ret = prev;
328 prev = orig_prev;
329 }
330
331 if (next_ret) {
332 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 333 while (prev && offset < prev_entry->start) {
d1310b2e
CM
334 prev = rb_prev(prev);
335 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
336 }
337 *next_ret = prev;
338 }
339 return NULL;
340}
341
12cfbad9
FDBM
342static inline struct rb_node *
343tree_search_for_insert(struct extent_io_tree *tree,
344 u64 offset,
345 struct rb_node ***p_ret,
346 struct rb_node **parent_ret)
d1310b2e 347{
70dec807 348 struct rb_node *prev = NULL;
d1310b2e 349 struct rb_node *ret;
70dec807 350
12cfbad9 351 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 352 if (!ret)
d1310b2e
CM
353 return prev;
354 return ret;
355}
356
12cfbad9
FDBM
357static inline struct rb_node *tree_search(struct extent_io_tree *tree,
358 u64 offset)
359{
360 return tree_search_for_insert(tree, offset, NULL, NULL);
361}
362
9ed74f2d
JB
363static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
364 struct extent_state *other)
365{
366 if (tree->ops && tree->ops->merge_extent_hook)
367 tree->ops->merge_extent_hook(tree->mapping->host, new,
368 other);
369}
370
d1310b2e
CM
371/*
372 * utility function to look for merge candidates inside a given range.
373 * Any extents with matching state are merged together into a single
374 * extent in the tree. Extents with EXTENT_IO in their state field
375 * are not merged because the end_io handlers need to be able to do
376 * operations on them without sleeping (or doing allocations/splits).
377 *
378 * This should be called with the tree lock held.
379 */
1bf85046
JM
380static void merge_state(struct extent_io_tree *tree,
381 struct extent_state *state)
d1310b2e
CM
382{
383 struct extent_state *other;
384 struct rb_node *other_node;
385
5b21f2ed 386 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 387 return;
d1310b2e
CM
388
389 other_node = rb_prev(&state->rb_node);
390 if (other_node) {
391 other = rb_entry(other_node, struct extent_state, rb_node);
392 if (other->end == state->start - 1 &&
393 other->state == state->state) {
9ed74f2d 394 merge_cb(tree, state, other);
d1310b2e 395 state->start = other->start;
d1310b2e 396 rb_erase(&other->rb_node, &tree->state);
27a3507d 397 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
398 free_extent_state(other);
399 }
400 }
401 other_node = rb_next(&state->rb_node);
402 if (other_node) {
403 other = rb_entry(other_node, struct extent_state, rb_node);
404 if (other->start == state->end + 1 &&
405 other->state == state->state) {
9ed74f2d 406 merge_cb(tree, state, other);
df98b6e2 407 state->end = other->end;
df98b6e2 408 rb_erase(&other->rb_node, &tree->state);
27a3507d 409 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 410 free_extent_state(other);
d1310b2e
CM
411 }
412 }
d1310b2e
CM
413}
414
1bf85046 415static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 416 struct extent_state *state, unsigned *bits)
291d673e 417{
1bf85046
JM
418 if (tree->ops && tree->ops->set_bit_hook)
419 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
420}
421
422static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 423 struct extent_state *state, unsigned *bits)
291d673e 424{
9ed74f2d
JB
425 if (tree->ops && tree->ops->clear_bit_hook)
426 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
427}
428
3150b699 429static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
430 struct extent_state *state, unsigned *bits,
431 struct extent_changeset *changeset);
3150b699 432
d1310b2e
CM
433/*
434 * insert an extent_state struct into the tree. 'bits' are set on the
435 * struct before it is inserted.
436 *
437 * This may return -EEXIST if the extent is already there, in which case the
438 * state struct is freed.
439 *
440 * The tree lock is not taken internally. This is a utility function and
441 * probably isn't what you want to call (see set/clear_extent_bit).
442 */
443static int insert_state(struct extent_io_tree *tree,
444 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
445 struct rb_node ***p,
446 struct rb_node **parent,
d38ed27f 447 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
448{
449 struct rb_node *node;
450
31b1a2bd 451 if (end < start)
efe120a0 452 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 453 end, start);
d1310b2e
CM
454 state->start = start;
455 state->end = end;
9ed74f2d 456
d38ed27f 457 set_state_bits(tree, state, bits, changeset);
3150b699 458
f2071b21 459 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
460 if (node) {
461 struct extent_state *found;
462 found = rb_entry(node, struct extent_state, rb_node);
efe120a0 463 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
c1c9ff7c
GU
464 "%llu %llu\n",
465 found->start, found->end, start, end);
d1310b2e
CM
466 return -EEXIST;
467 }
468 merge_state(tree, state);
469 return 0;
470}
471
1bf85046 472static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
473 u64 split)
474{
475 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 476 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
477}
478
d1310b2e
CM
479/*
480 * split a given extent state struct in two, inserting the preallocated
481 * struct 'prealloc' as the newly created second half. 'split' indicates an
482 * offset inside 'orig' where it should be split.
483 *
484 * Before calling,
485 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
486 * are two extent state structs in the tree:
487 * prealloc: [orig->start, split - 1]
488 * orig: [ split, orig->end ]
489 *
490 * The tree locks are not taken by this function. They need to be held
491 * by the caller.
492 */
493static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
494 struct extent_state *prealloc, u64 split)
495{
496 struct rb_node *node;
9ed74f2d
JB
497
498 split_cb(tree, orig, split);
499
d1310b2e
CM
500 prealloc->start = orig->start;
501 prealloc->end = split - 1;
502 prealloc->state = orig->state;
503 orig->start = split;
504
f2071b21
FM
505 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
506 &prealloc->rb_node, NULL, NULL);
d1310b2e 507 if (node) {
d1310b2e
CM
508 free_extent_state(prealloc);
509 return -EEXIST;
510 }
511 return 0;
512}
513
cdc6a395
LZ
514static struct extent_state *next_state(struct extent_state *state)
515{
516 struct rb_node *next = rb_next(&state->rb_node);
517 if (next)
518 return rb_entry(next, struct extent_state, rb_node);
519 else
520 return NULL;
521}
522
d1310b2e
CM
523/*
524 * utility function to clear some bits in an extent state struct.
1b303fc0 525 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
526 *
527 * If no bits are set on the state struct after clearing things, the
528 * struct is freed and removed from the tree
529 */
cdc6a395
LZ
530static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
531 struct extent_state *state,
fefdc557
QW
532 unsigned *bits, int wake,
533 struct extent_changeset *changeset)
d1310b2e 534{
cdc6a395 535 struct extent_state *next;
9ee49a04 536 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 537
0ca1f7ce 538 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
539 u64 range = state->end - state->start + 1;
540 WARN_ON(range > tree->dirty_bytes);
541 tree->dirty_bytes -= range;
542 }
291d673e 543 clear_state_cb(tree, state, bits);
fefdc557 544 add_extent_changeset(state, bits_to_clear, changeset, 0);
32c00aff 545 state->state &= ~bits_to_clear;
d1310b2e
CM
546 if (wake)
547 wake_up(&state->wq);
0ca1f7ce 548 if (state->state == 0) {
cdc6a395 549 next = next_state(state);
27a3507d 550 if (extent_state_in_tree(state)) {
d1310b2e 551 rb_erase(&state->rb_node, &tree->state);
27a3507d 552 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
553 free_extent_state(state);
554 } else {
555 WARN_ON(1);
556 }
557 } else {
558 merge_state(tree, state);
cdc6a395 559 next = next_state(state);
d1310b2e 560 }
cdc6a395 561 return next;
d1310b2e
CM
562}
563
8233767a
XG
564static struct extent_state *
565alloc_extent_state_atomic(struct extent_state *prealloc)
566{
567 if (!prealloc)
568 prealloc = alloc_extent_state(GFP_ATOMIC);
569
570 return prealloc;
571}
572
48a3b636 573static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
574{
575 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
576 "Extent tree was modified by another "
577 "thread while locked.");
578}
579
d1310b2e
CM
580/*
581 * clear some bits on a range in the tree. This may require splitting
582 * or inserting elements in the tree, so the gfp mask is used to
583 * indicate which allocations or sleeping are allowed.
584 *
585 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
586 * the given range from the tree regardless of state (ie for truncate).
587 *
588 * the range [start, end] is inclusive.
589 *
6763af84 590 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 591 */
fefdc557
QW
592static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
593 unsigned bits, int wake, int delete,
594 struct extent_state **cached_state,
595 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
596{
597 struct extent_state *state;
2c64c53d 598 struct extent_state *cached;
d1310b2e
CM
599 struct extent_state *prealloc = NULL;
600 struct rb_node *node;
5c939df5 601 u64 last_end;
d1310b2e 602 int err;
2ac55d41 603 int clear = 0;
d1310b2e 604
a5dee37d 605 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 606
7ee9e440
JB
607 if (bits & EXTENT_DELALLOC)
608 bits |= EXTENT_NORESERVE;
609
0ca1f7ce
YZ
610 if (delete)
611 bits |= ~EXTENT_CTLBITS;
612 bits |= EXTENT_FIRST_DELALLOC;
613
2ac55d41
JB
614 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
615 clear = 1;
d1310b2e 616again:
d0164adc 617 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
618 /*
619 * Don't care for allocation failure here because we might end
620 * up not needing the pre-allocated extent state at all, which
621 * is the case if we only have in the tree extent states that
622 * cover our input range and don't cover too any other range.
623 * If we end up needing a new extent state we allocate it later.
624 */
d1310b2e 625 prealloc = alloc_extent_state(mask);
d1310b2e
CM
626 }
627
cad321ad 628 spin_lock(&tree->lock);
2c64c53d
CM
629 if (cached_state) {
630 cached = *cached_state;
2ac55d41
JB
631
632 if (clear) {
633 *cached_state = NULL;
634 cached_state = NULL;
635 }
636
27a3507d
FM
637 if (cached && extent_state_in_tree(cached) &&
638 cached->start <= start && cached->end > start) {
2ac55d41
JB
639 if (clear)
640 atomic_dec(&cached->refs);
2c64c53d 641 state = cached;
42daec29 642 goto hit_next;
2c64c53d 643 }
2ac55d41
JB
644 if (clear)
645 free_extent_state(cached);
2c64c53d 646 }
d1310b2e
CM
647 /*
648 * this search will find the extents that end after
649 * our range starts
650 */
80ea96b1 651 node = tree_search(tree, start);
d1310b2e
CM
652 if (!node)
653 goto out;
654 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 655hit_next:
d1310b2e
CM
656 if (state->start > end)
657 goto out;
658 WARN_ON(state->end < start);
5c939df5 659 last_end = state->end;
d1310b2e 660
0449314a 661 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
662 if (!(state->state & bits)) {
663 state = next_state(state);
0449314a 664 goto next;
cdc6a395 665 }
0449314a 666
d1310b2e
CM
667 /*
668 * | ---- desired range ---- |
669 * | state | or
670 * | ------------- state -------------- |
671 *
672 * We need to split the extent we found, and may flip
673 * bits on second half.
674 *
675 * If the extent we found extends past our range, we
676 * just split and search again. It'll get split again
677 * the next time though.
678 *
679 * If the extent we found is inside our range, we clear
680 * the desired bit on it.
681 */
682
683 if (state->start < start) {
8233767a
XG
684 prealloc = alloc_extent_state_atomic(prealloc);
685 BUG_ON(!prealloc);
d1310b2e 686 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
687 if (err)
688 extent_io_tree_panic(tree, err);
689
d1310b2e
CM
690 prealloc = NULL;
691 if (err)
692 goto out;
693 if (state->end <= end) {
fefdc557
QW
694 state = clear_state_bit(tree, state, &bits, wake,
695 changeset);
d1ac6e41 696 goto next;
d1310b2e
CM
697 }
698 goto search_again;
699 }
700 /*
701 * | ---- desired range ---- |
702 * | state |
703 * We need to split the extent, and clear the bit
704 * on the first half
705 */
706 if (state->start <= end && state->end > end) {
8233767a
XG
707 prealloc = alloc_extent_state_atomic(prealloc);
708 BUG_ON(!prealloc);
d1310b2e 709 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
710 if (err)
711 extent_io_tree_panic(tree, err);
712
d1310b2e
CM
713 if (wake)
714 wake_up(&state->wq);
42daec29 715
fefdc557 716 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 717
d1310b2e
CM
718 prealloc = NULL;
719 goto out;
720 }
42daec29 721
fefdc557 722 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 723next:
5c939df5
YZ
724 if (last_end == (u64)-1)
725 goto out;
726 start = last_end + 1;
cdc6a395 727 if (start <= end && state && !need_resched())
692e5759 728 goto hit_next;
d1310b2e
CM
729 goto search_again;
730
731out:
cad321ad 732 spin_unlock(&tree->lock);
d1310b2e
CM
733 if (prealloc)
734 free_extent_state(prealloc);
735
6763af84 736 return 0;
d1310b2e
CM
737
738search_again:
739 if (start > end)
740 goto out;
cad321ad 741 spin_unlock(&tree->lock);
d0164adc 742 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
743 cond_resched();
744 goto again;
745}
d1310b2e 746
143bede5
JM
747static void wait_on_state(struct extent_io_tree *tree,
748 struct extent_state *state)
641f5219
CH
749 __releases(tree->lock)
750 __acquires(tree->lock)
d1310b2e
CM
751{
752 DEFINE_WAIT(wait);
753 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 754 spin_unlock(&tree->lock);
d1310b2e 755 schedule();
cad321ad 756 spin_lock(&tree->lock);
d1310b2e 757 finish_wait(&state->wq, &wait);
d1310b2e
CM
758}
759
760/*
761 * waits for one or more bits to clear on a range in the state tree.
762 * The range [start, end] is inclusive.
763 * The tree lock is taken by this function
764 */
41074888
DS
765static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
766 unsigned long bits)
d1310b2e
CM
767{
768 struct extent_state *state;
769 struct rb_node *node;
770
a5dee37d 771 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 772
cad321ad 773 spin_lock(&tree->lock);
d1310b2e
CM
774again:
775 while (1) {
776 /*
777 * this search will find all the extents that end after
778 * our range starts
779 */
80ea96b1 780 node = tree_search(tree, start);
c50d3e71 781process_node:
d1310b2e
CM
782 if (!node)
783 break;
784
785 state = rb_entry(node, struct extent_state, rb_node);
786
787 if (state->start > end)
788 goto out;
789
790 if (state->state & bits) {
791 start = state->start;
792 atomic_inc(&state->refs);
793 wait_on_state(tree, state);
794 free_extent_state(state);
795 goto again;
796 }
797 start = state->end + 1;
798
799 if (start > end)
800 break;
801
c50d3e71
FM
802 if (!cond_resched_lock(&tree->lock)) {
803 node = rb_next(node);
804 goto process_node;
805 }
d1310b2e
CM
806 }
807out:
cad321ad 808 spin_unlock(&tree->lock);
d1310b2e 809}
d1310b2e 810
1bf85046 811static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 812 struct extent_state *state,
d38ed27f 813 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 814{
9ee49a04 815 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 816
1bf85046 817 set_state_cb(tree, state, bits);
0ca1f7ce 818 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
819 u64 range = state->end - state->start + 1;
820 tree->dirty_bytes += range;
821 }
d38ed27f 822 add_extent_changeset(state, bits_to_set, changeset, 1);
0ca1f7ce 823 state->state |= bits_to_set;
d1310b2e
CM
824}
825
e38e2ed7
FM
826static void cache_state_if_flags(struct extent_state *state,
827 struct extent_state **cached_ptr,
9ee49a04 828 unsigned flags)
2c64c53d
CM
829{
830 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 831 if (!flags || (state->state & flags)) {
2c64c53d
CM
832 *cached_ptr = state;
833 atomic_inc(&state->refs);
834 }
835 }
836}
837
e38e2ed7
FM
838static void cache_state(struct extent_state *state,
839 struct extent_state **cached_ptr)
840{
841 return cache_state_if_flags(state, cached_ptr,
842 EXTENT_IOBITS | EXTENT_BOUNDARY);
843}
844
d1310b2e 845/*
1edbb734
CM
846 * set some bits on a range in the tree. This may require allocations or
847 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 848 *
1edbb734
CM
849 * If any of the exclusive bits are set, this will fail with -EEXIST if some
850 * part of the range already has the desired bits set. The start of the
851 * existing range is returned in failed_start in this case.
d1310b2e 852 *
1edbb734 853 * [start, end] is inclusive This takes the tree lock.
d1310b2e 854 */
1edbb734 855
3fbe5c02
JM
856static int __must_check
857__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 858 unsigned bits, unsigned exclusive_bits,
41074888 859 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 860 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
861{
862 struct extent_state *state;
863 struct extent_state *prealloc = NULL;
864 struct rb_node *node;
12cfbad9
FDBM
865 struct rb_node **p;
866 struct rb_node *parent;
d1310b2e 867 int err = 0;
d1310b2e
CM
868 u64 last_start;
869 u64 last_end;
42daec29 870
a5dee37d 871 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 872
0ca1f7ce 873 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 874again:
d0164adc 875 if (!prealloc && gfpflags_allow_blocking(mask)) {
d1310b2e 876 prealloc = alloc_extent_state(mask);
8233767a 877 BUG_ON(!prealloc);
d1310b2e
CM
878 }
879
cad321ad 880 spin_lock(&tree->lock);
9655d298
CM
881 if (cached_state && *cached_state) {
882 state = *cached_state;
df98b6e2 883 if (state->start <= start && state->end > start &&
27a3507d 884 extent_state_in_tree(state)) {
9655d298
CM
885 node = &state->rb_node;
886 goto hit_next;
887 }
888 }
d1310b2e
CM
889 /*
890 * this search will find all the extents that end after
891 * our range starts.
892 */
12cfbad9 893 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 894 if (!node) {
8233767a
XG
895 prealloc = alloc_extent_state_atomic(prealloc);
896 BUG_ON(!prealloc);
12cfbad9 897 err = insert_state(tree, prealloc, start, end,
d38ed27f 898 &p, &parent, &bits, changeset);
c2d904e0
JM
899 if (err)
900 extent_io_tree_panic(tree, err);
901
c42ac0bc 902 cache_state(prealloc, cached_state);
d1310b2e 903 prealloc = NULL;
d1310b2e
CM
904 goto out;
905 }
d1310b2e 906 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 907hit_next:
d1310b2e
CM
908 last_start = state->start;
909 last_end = state->end;
910
911 /*
912 * | ---- desired range ---- |
913 * | state |
914 *
915 * Just lock what we found and keep going
916 */
917 if (state->start == start && state->end <= end) {
1edbb734 918 if (state->state & exclusive_bits) {
d1310b2e
CM
919 *failed_start = state->start;
920 err = -EEXIST;
921 goto out;
922 }
42daec29 923
d38ed27f 924 set_state_bits(tree, state, &bits, changeset);
2c64c53d 925 cache_state(state, cached_state);
d1310b2e 926 merge_state(tree, state);
5c939df5
YZ
927 if (last_end == (u64)-1)
928 goto out;
929 start = last_end + 1;
d1ac6e41
LB
930 state = next_state(state);
931 if (start < end && state && state->start == start &&
932 !need_resched())
933 goto hit_next;
d1310b2e
CM
934 goto search_again;
935 }
936
937 /*
938 * | ---- desired range ---- |
939 * | state |
940 * or
941 * | ------------- state -------------- |
942 *
943 * We need to split the extent we found, and may flip bits on
944 * second half.
945 *
946 * If the extent we found extends past our
947 * range, we just split and search again. It'll get split
948 * again the next time though.
949 *
950 * If the extent we found is inside our range, we set the
951 * desired bit on it.
952 */
953 if (state->start < start) {
1edbb734 954 if (state->state & exclusive_bits) {
d1310b2e
CM
955 *failed_start = start;
956 err = -EEXIST;
957 goto out;
958 }
8233767a
XG
959
960 prealloc = alloc_extent_state_atomic(prealloc);
961 BUG_ON(!prealloc);
d1310b2e 962 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
963 if (err)
964 extent_io_tree_panic(tree, err);
965
d1310b2e
CM
966 prealloc = NULL;
967 if (err)
968 goto out;
969 if (state->end <= end) {
d38ed27f 970 set_state_bits(tree, state, &bits, changeset);
2c64c53d 971 cache_state(state, cached_state);
d1310b2e 972 merge_state(tree, state);
5c939df5
YZ
973 if (last_end == (u64)-1)
974 goto out;
975 start = last_end + 1;
d1ac6e41
LB
976 state = next_state(state);
977 if (start < end && state && state->start == start &&
978 !need_resched())
979 goto hit_next;
d1310b2e
CM
980 }
981 goto search_again;
982 }
983 /*
984 * | ---- desired range ---- |
985 * | state | or | state |
986 *
987 * There's a hole, we need to insert something in it and
988 * ignore the extent we found.
989 */
990 if (state->start > start) {
991 u64 this_end;
992 if (end < last_start)
993 this_end = end;
994 else
d397712b 995 this_end = last_start - 1;
8233767a
XG
996
997 prealloc = alloc_extent_state_atomic(prealloc);
998 BUG_ON(!prealloc);
c7f895a2
XG
999
1000 /*
1001 * Avoid to free 'prealloc' if it can be merged with
1002 * the later extent.
1003 */
d1310b2e 1004 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1005 NULL, NULL, &bits, changeset);
c2d904e0
JM
1006 if (err)
1007 extent_io_tree_panic(tree, err);
1008
9ed74f2d
JB
1009 cache_state(prealloc, cached_state);
1010 prealloc = NULL;
d1310b2e
CM
1011 start = this_end + 1;
1012 goto search_again;
1013 }
1014 /*
1015 * | ---- desired range ---- |
1016 * | state |
1017 * We need to split the extent, and set the bit
1018 * on the first half
1019 */
1020 if (state->start <= end && state->end > end) {
1edbb734 1021 if (state->state & exclusive_bits) {
d1310b2e
CM
1022 *failed_start = start;
1023 err = -EEXIST;
1024 goto out;
1025 }
8233767a
XG
1026
1027 prealloc = alloc_extent_state_atomic(prealloc);
1028 BUG_ON(!prealloc);
d1310b2e 1029 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1030 if (err)
1031 extent_io_tree_panic(tree, err);
d1310b2e 1032
d38ed27f 1033 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1034 cache_state(prealloc, cached_state);
d1310b2e
CM
1035 merge_state(tree, prealloc);
1036 prealloc = NULL;
1037 goto out;
1038 }
1039
1040 goto search_again;
1041
1042out:
cad321ad 1043 spin_unlock(&tree->lock);
d1310b2e
CM
1044 if (prealloc)
1045 free_extent_state(prealloc);
1046
1047 return err;
1048
1049search_again:
1050 if (start > end)
1051 goto out;
cad321ad 1052 spin_unlock(&tree->lock);
d0164adc 1053 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
1054 cond_resched();
1055 goto again;
1056}
d1310b2e 1057
41074888 1058int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1059 unsigned bits, u64 * failed_start,
41074888 1060 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1061{
1062 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1063 cached_state, mask, NULL);
3fbe5c02
JM
1064}
1065
1066
462d6fac 1067/**
10983f2e
LB
1068 * convert_extent_bit - convert all bits in a given range from one bit to
1069 * another
462d6fac
JB
1070 * @tree: the io tree to search
1071 * @start: the start offset in bytes
1072 * @end: the end offset in bytes (inclusive)
1073 * @bits: the bits to set in this range
1074 * @clear_bits: the bits to clear in this range
e6138876 1075 * @cached_state: state that we're going to cache
462d6fac
JB
1076 * @mask: the allocation mask
1077 *
1078 * This will go through and set bits for the given range. If any states exist
1079 * already in this range they are set with the given bit and cleared of the
1080 * clear_bits. This is only meant to be used by things that are mergeable, ie
1081 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1082 * boundary bits like LOCK.
1083 */
1084int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1085 unsigned bits, unsigned clear_bits,
e6138876 1086 struct extent_state **cached_state, gfp_t mask)
462d6fac
JB
1087{
1088 struct extent_state *state;
1089 struct extent_state *prealloc = NULL;
1090 struct rb_node *node;
12cfbad9
FDBM
1091 struct rb_node **p;
1092 struct rb_node *parent;
462d6fac
JB
1093 int err = 0;
1094 u64 last_start;
1095 u64 last_end;
c8fd3de7 1096 bool first_iteration = true;
462d6fac 1097
a5dee37d 1098 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1099
462d6fac 1100again:
d0164adc 1101 if (!prealloc && gfpflags_allow_blocking(mask)) {
c8fd3de7
FM
1102 /*
1103 * Best effort, don't worry if extent state allocation fails
1104 * here for the first iteration. We might have a cached state
1105 * that matches exactly the target range, in which case no
1106 * extent state allocations are needed. We'll only know this
1107 * after locking the tree.
1108 */
462d6fac 1109 prealloc = alloc_extent_state(mask);
c8fd3de7 1110 if (!prealloc && !first_iteration)
462d6fac
JB
1111 return -ENOMEM;
1112 }
1113
1114 spin_lock(&tree->lock);
e6138876
JB
1115 if (cached_state && *cached_state) {
1116 state = *cached_state;
1117 if (state->start <= start && state->end > start &&
27a3507d 1118 extent_state_in_tree(state)) {
e6138876
JB
1119 node = &state->rb_node;
1120 goto hit_next;
1121 }
1122 }
1123
462d6fac
JB
1124 /*
1125 * this search will find all the extents that end after
1126 * our range starts.
1127 */
12cfbad9 1128 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1129 if (!node) {
1130 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1131 if (!prealloc) {
1132 err = -ENOMEM;
1133 goto out;
1134 }
12cfbad9 1135 err = insert_state(tree, prealloc, start, end,
d38ed27f 1136 &p, &parent, &bits, NULL);
c2d904e0
JM
1137 if (err)
1138 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1139 cache_state(prealloc, cached_state);
1140 prealloc = NULL;
462d6fac
JB
1141 goto out;
1142 }
1143 state = rb_entry(node, struct extent_state, rb_node);
1144hit_next:
1145 last_start = state->start;
1146 last_end = state->end;
1147
1148 /*
1149 * | ---- desired range ---- |
1150 * | state |
1151 *
1152 * Just lock what we found and keep going
1153 */
1154 if (state->start == start && state->end <= end) {
d38ed27f 1155 set_state_bits(tree, state, &bits, NULL);
e6138876 1156 cache_state(state, cached_state);
fefdc557 1157 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1158 if (last_end == (u64)-1)
1159 goto out;
462d6fac 1160 start = last_end + 1;
d1ac6e41
LB
1161 if (start < end && state && state->start == start &&
1162 !need_resched())
1163 goto hit_next;
462d6fac
JB
1164 goto search_again;
1165 }
1166
1167 /*
1168 * | ---- desired range ---- |
1169 * | state |
1170 * or
1171 * | ------------- state -------------- |
1172 *
1173 * We need to split the extent we found, and may flip bits on
1174 * second half.
1175 *
1176 * If the extent we found extends past our
1177 * range, we just split and search again. It'll get split
1178 * again the next time though.
1179 *
1180 * If the extent we found is inside our range, we set the
1181 * desired bit on it.
1182 */
1183 if (state->start < start) {
1184 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1185 if (!prealloc) {
1186 err = -ENOMEM;
1187 goto out;
1188 }
462d6fac 1189 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1190 if (err)
1191 extent_io_tree_panic(tree, err);
462d6fac
JB
1192 prealloc = NULL;
1193 if (err)
1194 goto out;
1195 if (state->end <= end) {
d38ed27f 1196 set_state_bits(tree, state, &bits, NULL);
e6138876 1197 cache_state(state, cached_state);
fefdc557
QW
1198 state = clear_state_bit(tree, state, &clear_bits, 0,
1199 NULL);
462d6fac
JB
1200 if (last_end == (u64)-1)
1201 goto out;
1202 start = last_end + 1;
d1ac6e41
LB
1203 if (start < end && state && state->start == start &&
1204 !need_resched())
1205 goto hit_next;
462d6fac
JB
1206 }
1207 goto search_again;
1208 }
1209 /*
1210 * | ---- desired range ---- |
1211 * | state | or | state |
1212 *
1213 * There's a hole, we need to insert something in it and
1214 * ignore the extent we found.
1215 */
1216 if (state->start > start) {
1217 u64 this_end;
1218 if (end < last_start)
1219 this_end = end;
1220 else
1221 this_end = last_start - 1;
1222
1223 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1224 if (!prealloc) {
1225 err = -ENOMEM;
1226 goto out;
1227 }
462d6fac
JB
1228
1229 /*
1230 * Avoid to free 'prealloc' if it can be merged with
1231 * the later extent.
1232 */
1233 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1234 NULL, NULL, &bits, NULL);
c2d904e0
JM
1235 if (err)
1236 extent_io_tree_panic(tree, err);
e6138876 1237 cache_state(prealloc, cached_state);
462d6fac
JB
1238 prealloc = NULL;
1239 start = this_end + 1;
1240 goto search_again;
1241 }
1242 /*
1243 * | ---- desired range ---- |
1244 * | state |
1245 * We need to split the extent, and set the bit
1246 * on the first half
1247 */
1248 if (state->start <= end && state->end > end) {
1249 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1250 if (!prealloc) {
1251 err = -ENOMEM;
1252 goto out;
1253 }
462d6fac
JB
1254
1255 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1256 if (err)
1257 extent_io_tree_panic(tree, err);
462d6fac 1258
d38ed27f 1259 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1260 cache_state(prealloc, cached_state);
fefdc557 1261 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1262 prealloc = NULL;
1263 goto out;
1264 }
1265
1266 goto search_again;
1267
1268out:
1269 spin_unlock(&tree->lock);
1270 if (prealloc)
1271 free_extent_state(prealloc);
1272
1273 return err;
1274
1275search_again:
1276 if (start > end)
1277 goto out;
1278 spin_unlock(&tree->lock);
d0164adc 1279 if (gfpflags_allow_blocking(mask))
462d6fac 1280 cond_resched();
c8fd3de7 1281 first_iteration = false;
462d6fac
JB
1282 goto again;
1283}
1284
d1310b2e 1285/* wrappers around set/clear extent bit */
d38ed27f
QW
1286int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1287 unsigned bits, gfp_t mask,
1288 struct extent_changeset *changeset)
1289{
1290 /*
1291 * We don't support EXTENT_LOCKED yet, as current changeset will
1292 * record any bits changed, so for EXTENT_LOCKED case, it will
1293 * either fail with -EEXIST or changeset will record the whole
1294 * range.
1295 */
1296 BUG_ON(bits & EXTENT_LOCKED);
1297
1298 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, mask,
1299 changeset);
1300}
1301
fefdc557
QW
1302int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1303 unsigned bits, int wake, int delete,
1304 struct extent_state **cached, gfp_t mask)
1305{
1306 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1307 cached, mask, NULL);
1308}
1309
fefdc557 1310int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1311 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1312{
1313 /*
1314 * Don't support EXTENT_LOCKED case, same reason as
1315 * set_record_extent_bits().
1316 */
1317 BUG_ON(bits & EXTENT_LOCKED);
1318
f734c44a 1319 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1320 changeset);
1321}
1322
d352ac68
CM
1323/*
1324 * either insert or lock state struct between start and end use mask to tell
1325 * us if waiting is desired.
1326 */
1edbb734 1327int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1328 struct extent_state **cached_state)
d1310b2e
CM
1329{
1330 int err;
1331 u64 failed_start;
9ee49a04 1332
d1310b2e 1333 while (1) {
ff13db41 1334 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1335 EXTENT_LOCKED, &failed_start,
d38ed27f 1336 cached_state, GFP_NOFS, NULL);
d0082371 1337 if (err == -EEXIST) {
d1310b2e
CM
1338 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1339 start = failed_start;
d0082371 1340 } else
d1310b2e 1341 break;
d1310b2e
CM
1342 WARN_ON(start > end);
1343 }
1344 return err;
1345}
d1310b2e 1346
d0082371 1347int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1348{
1349 int err;
1350 u64 failed_start;
1351
3fbe5c02 1352 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1353 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1354 if (err == -EEXIST) {
1355 if (failed_start > start)
1356 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1357 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1358 return 0;
6643558d 1359 }
25179201
JB
1360 return 1;
1361}
25179201 1362
bd1fa4f0 1363void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1364{
09cbfeaf
KS
1365 unsigned long index = start >> PAGE_SHIFT;
1366 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1367 struct page *page;
1368
1369 while (index <= end_index) {
1370 page = find_get_page(inode->i_mapping, index);
1371 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1372 clear_page_dirty_for_io(page);
09cbfeaf 1373 put_page(page);
4adaa611
CM
1374 index++;
1375 }
4adaa611
CM
1376}
1377
f6311572 1378void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1379{
09cbfeaf
KS
1380 unsigned long index = start >> PAGE_SHIFT;
1381 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1382 struct page *page;
1383
1384 while (index <= end_index) {
1385 page = find_get_page(inode->i_mapping, index);
1386 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1387 __set_page_dirty_nobuffers(page);
8d38633c 1388 account_page_redirty(page);
09cbfeaf 1389 put_page(page);
4adaa611
CM
1390 index++;
1391 }
4adaa611
CM
1392}
1393
d1310b2e
CM
1394/*
1395 * helper function to set both pages and extents in the tree writeback
1396 */
35de6db2 1397static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1398{
09cbfeaf
KS
1399 unsigned long index = start >> PAGE_SHIFT;
1400 unsigned long end_index = end >> PAGE_SHIFT;
d1310b2e
CM
1401 struct page *page;
1402
1403 while (index <= end_index) {
1404 page = find_get_page(tree->mapping, index);
79787eaa 1405 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e 1406 set_page_writeback(page);
09cbfeaf 1407 put_page(page);
d1310b2e
CM
1408 index++;
1409 }
d1310b2e 1410}
d1310b2e 1411
d352ac68
CM
1412/* find the first state struct with 'bits' set after 'start', and
1413 * return it. tree->lock must be held. NULL will returned if
1414 * nothing was found after 'start'
1415 */
48a3b636
ES
1416static struct extent_state *
1417find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1418 u64 start, unsigned bits)
d7fc640e
CM
1419{
1420 struct rb_node *node;
1421 struct extent_state *state;
1422
1423 /*
1424 * this search will find all the extents that end after
1425 * our range starts.
1426 */
1427 node = tree_search(tree, start);
d397712b 1428 if (!node)
d7fc640e 1429 goto out;
d7fc640e 1430
d397712b 1431 while (1) {
d7fc640e 1432 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1433 if (state->end >= start && (state->state & bits))
d7fc640e 1434 return state;
d397712b 1435
d7fc640e
CM
1436 node = rb_next(node);
1437 if (!node)
1438 break;
1439 }
1440out:
1441 return NULL;
1442}
d7fc640e 1443
69261c4b
XG
1444/*
1445 * find the first offset in the io tree with 'bits' set. zero is
1446 * returned if we find something, and *start_ret and *end_ret are
1447 * set to reflect the state struct that was found.
1448 *
477d7eaf 1449 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1450 */
1451int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1452 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1453 struct extent_state **cached_state)
69261c4b
XG
1454{
1455 struct extent_state *state;
e6138876 1456 struct rb_node *n;
69261c4b
XG
1457 int ret = 1;
1458
1459 spin_lock(&tree->lock);
e6138876
JB
1460 if (cached_state && *cached_state) {
1461 state = *cached_state;
27a3507d 1462 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1463 n = rb_next(&state->rb_node);
1464 while (n) {
1465 state = rb_entry(n, struct extent_state,
1466 rb_node);
1467 if (state->state & bits)
1468 goto got_it;
1469 n = rb_next(n);
1470 }
1471 free_extent_state(*cached_state);
1472 *cached_state = NULL;
1473 goto out;
1474 }
1475 free_extent_state(*cached_state);
1476 *cached_state = NULL;
1477 }
1478
69261c4b 1479 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1480got_it:
69261c4b 1481 if (state) {
e38e2ed7 1482 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1483 *start_ret = state->start;
1484 *end_ret = state->end;
1485 ret = 0;
1486 }
e6138876 1487out:
69261c4b
XG
1488 spin_unlock(&tree->lock);
1489 return ret;
1490}
1491
d352ac68
CM
1492/*
1493 * find a contiguous range of bytes in the file marked as delalloc, not
1494 * more than 'max_bytes'. start and end are used to return the range,
1495 *
1496 * 1 is returned if we find something, 0 if nothing was in the tree
1497 */
c8b97818 1498static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1499 u64 *start, u64 *end, u64 max_bytes,
1500 struct extent_state **cached_state)
d1310b2e
CM
1501{
1502 struct rb_node *node;
1503 struct extent_state *state;
1504 u64 cur_start = *start;
1505 u64 found = 0;
1506 u64 total_bytes = 0;
1507
cad321ad 1508 spin_lock(&tree->lock);
c8b97818 1509
d1310b2e
CM
1510 /*
1511 * this search will find all the extents that end after
1512 * our range starts.
1513 */
80ea96b1 1514 node = tree_search(tree, cur_start);
2b114d1d 1515 if (!node) {
3b951516
CM
1516 if (!found)
1517 *end = (u64)-1;
d1310b2e
CM
1518 goto out;
1519 }
1520
d397712b 1521 while (1) {
d1310b2e 1522 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1523 if (found && (state->start != cur_start ||
1524 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1525 goto out;
1526 }
1527 if (!(state->state & EXTENT_DELALLOC)) {
1528 if (!found)
1529 *end = state->end;
1530 goto out;
1531 }
c2a128d2 1532 if (!found) {
d1310b2e 1533 *start = state->start;
c2a128d2
JB
1534 *cached_state = state;
1535 atomic_inc(&state->refs);
1536 }
d1310b2e
CM
1537 found++;
1538 *end = state->end;
1539 cur_start = state->end + 1;
1540 node = rb_next(node);
d1310b2e 1541 total_bytes += state->end - state->start + 1;
7bf811a5 1542 if (total_bytes >= max_bytes)
573aecaf 1543 break;
573aecaf 1544 if (!node)
d1310b2e
CM
1545 break;
1546 }
1547out:
cad321ad 1548 spin_unlock(&tree->lock);
d1310b2e
CM
1549 return found;
1550}
1551
143bede5
JM
1552static noinline void __unlock_for_delalloc(struct inode *inode,
1553 struct page *locked_page,
1554 u64 start, u64 end)
c8b97818
CM
1555{
1556 int ret;
1557 struct page *pages[16];
09cbfeaf
KS
1558 unsigned long index = start >> PAGE_SHIFT;
1559 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818
CM
1560 unsigned long nr_pages = end_index - index + 1;
1561 int i;
1562
1563 if (index == locked_page->index && end_index == index)
143bede5 1564 return;
c8b97818 1565
d397712b 1566 while (nr_pages > 0) {
c8b97818 1567 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1568 min_t(unsigned long, nr_pages,
1569 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1570 for (i = 0; i < ret; i++) {
1571 if (pages[i] != locked_page)
1572 unlock_page(pages[i]);
09cbfeaf 1573 put_page(pages[i]);
c8b97818
CM
1574 }
1575 nr_pages -= ret;
1576 index += ret;
1577 cond_resched();
1578 }
c8b97818
CM
1579}
1580
1581static noinline int lock_delalloc_pages(struct inode *inode,
1582 struct page *locked_page,
1583 u64 delalloc_start,
1584 u64 delalloc_end)
1585{
09cbfeaf 1586 unsigned long index = delalloc_start >> PAGE_SHIFT;
c8b97818 1587 unsigned long start_index = index;
09cbfeaf 1588 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818
CM
1589 unsigned long pages_locked = 0;
1590 struct page *pages[16];
1591 unsigned long nrpages;
1592 int ret;
1593 int i;
1594
1595 /* the caller is responsible for locking the start index */
1596 if (index == locked_page->index && index == end_index)
1597 return 0;
1598
1599 /* skip the page at the start index */
1600 nrpages = end_index - index + 1;
d397712b 1601 while (nrpages > 0) {
c8b97818 1602 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1603 min_t(unsigned long,
1604 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1605 if (ret == 0) {
1606 ret = -EAGAIN;
1607 goto done;
1608 }
1609 /* now we have an array of pages, lock them all */
1610 for (i = 0; i < ret; i++) {
1611 /*
1612 * the caller is taking responsibility for
1613 * locked_page
1614 */
771ed689 1615 if (pages[i] != locked_page) {
c8b97818 1616 lock_page(pages[i]);
f2b1c41c
CM
1617 if (!PageDirty(pages[i]) ||
1618 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1619 ret = -EAGAIN;
1620 unlock_page(pages[i]);
09cbfeaf 1621 put_page(pages[i]);
771ed689
CM
1622 goto done;
1623 }
1624 }
09cbfeaf 1625 put_page(pages[i]);
771ed689 1626 pages_locked++;
c8b97818 1627 }
c8b97818
CM
1628 nrpages -= ret;
1629 index += ret;
1630 cond_resched();
1631 }
1632 ret = 0;
1633done:
1634 if (ret && pages_locked) {
1635 __unlock_for_delalloc(inode, locked_page,
1636 delalloc_start,
1637 ((u64)(start_index + pages_locked - 1)) <<
09cbfeaf 1638 PAGE_SHIFT);
c8b97818
CM
1639 }
1640 return ret;
1641}
1642
1643/*
1644 * find a contiguous range of bytes in the file marked as delalloc, not
1645 * more than 'max_bytes'. start and end are used to return the range,
1646 *
1647 * 1 is returned if we find something, 0 if nothing was in the tree
1648 */
294e30fe
JB
1649STATIC u64 find_lock_delalloc_range(struct inode *inode,
1650 struct extent_io_tree *tree,
1651 struct page *locked_page, u64 *start,
1652 u64 *end, u64 max_bytes)
c8b97818
CM
1653{
1654 u64 delalloc_start;
1655 u64 delalloc_end;
1656 u64 found;
9655d298 1657 struct extent_state *cached_state = NULL;
c8b97818
CM
1658 int ret;
1659 int loops = 0;
1660
1661again:
1662 /* step one, find a bunch of delalloc bytes starting at start */
1663 delalloc_start = *start;
1664 delalloc_end = 0;
1665 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1666 max_bytes, &cached_state);
70b99e69 1667 if (!found || delalloc_end <= *start) {
c8b97818
CM
1668 *start = delalloc_start;
1669 *end = delalloc_end;
c2a128d2 1670 free_extent_state(cached_state);
385fe0be 1671 return 0;
c8b97818
CM
1672 }
1673
70b99e69
CM
1674 /*
1675 * start comes from the offset of locked_page. We have to lock
1676 * pages in order, so we can't process delalloc bytes before
1677 * locked_page
1678 */
d397712b 1679 if (delalloc_start < *start)
70b99e69 1680 delalloc_start = *start;
70b99e69 1681
c8b97818
CM
1682 /*
1683 * make sure to limit the number of pages we try to lock down
c8b97818 1684 */
7bf811a5
JB
1685 if (delalloc_end + 1 - delalloc_start > max_bytes)
1686 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1687
c8b97818
CM
1688 /* step two, lock all the pages after the page that has start */
1689 ret = lock_delalloc_pages(inode, locked_page,
1690 delalloc_start, delalloc_end);
1691 if (ret == -EAGAIN) {
1692 /* some of the pages are gone, lets avoid looping by
1693 * shortening the size of the delalloc range we're searching
1694 */
9655d298 1695 free_extent_state(cached_state);
7d788742 1696 cached_state = NULL;
c8b97818 1697 if (!loops) {
09cbfeaf 1698 max_bytes = PAGE_SIZE;
c8b97818
CM
1699 loops = 1;
1700 goto again;
1701 } else {
1702 found = 0;
1703 goto out_failed;
1704 }
1705 }
79787eaa 1706 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1707
1708 /* step three, lock the state bits for the whole range */
ff13db41 1709 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1710
1711 /* then test to make sure it is all still delalloc */
1712 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1713 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1714 if (!ret) {
9655d298
CM
1715 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1716 &cached_state, GFP_NOFS);
c8b97818
CM
1717 __unlock_for_delalloc(inode, locked_page,
1718 delalloc_start, delalloc_end);
1719 cond_resched();
1720 goto again;
1721 }
9655d298 1722 free_extent_state(cached_state);
c8b97818
CM
1723 *start = delalloc_start;
1724 *end = delalloc_end;
1725out_failed:
1726 return found;
1727}
1728
a9d93e17 1729void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
c2790a2e 1730 struct page *locked_page,
9ee49a04 1731 unsigned clear_bits,
c2790a2e 1732 unsigned long page_ops)
c8b97818 1733{
c2790a2e 1734 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
c8b97818
CM
1735 int ret;
1736 struct page *pages[16];
09cbfeaf
KS
1737 unsigned long index = start >> PAGE_SHIFT;
1738 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818
CM
1739 unsigned long nr_pages = end_index - index + 1;
1740 int i;
771ed689 1741
2c64c53d 1742 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
c2790a2e 1743 if (page_ops == 0)
a9d93e17 1744 return;
c8b97818 1745
704de49d
FM
1746 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1747 mapping_set_error(inode->i_mapping, -EIO);
1748
d397712b 1749 while (nr_pages > 0) {
c8b97818 1750 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1751 min_t(unsigned long,
1752 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1753 for (i = 0; i < ret; i++) {
8b62b72b 1754
c2790a2e 1755 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1756 SetPagePrivate2(pages[i]);
1757
c8b97818 1758 if (pages[i] == locked_page) {
09cbfeaf 1759 put_page(pages[i]);
c8b97818
CM
1760 continue;
1761 }
c2790a2e 1762 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1763 clear_page_dirty_for_io(pages[i]);
c2790a2e 1764 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1765 set_page_writeback(pages[i]);
704de49d
FM
1766 if (page_ops & PAGE_SET_ERROR)
1767 SetPageError(pages[i]);
c2790a2e 1768 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1769 end_page_writeback(pages[i]);
c2790a2e 1770 if (page_ops & PAGE_UNLOCK)
771ed689 1771 unlock_page(pages[i]);
09cbfeaf 1772 put_page(pages[i]);
c8b97818
CM
1773 }
1774 nr_pages -= ret;
1775 index += ret;
1776 cond_resched();
1777 }
c8b97818 1778}
c8b97818 1779
d352ac68
CM
1780/*
1781 * count the number of bytes in the tree that have a given bit(s)
1782 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1783 * cached. The total number found is returned.
1784 */
d1310b2e
CM
1785u64 count_range_bits(struct extent_io_tree *tree,
1786 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1787 unsigned bits, int contig)
d1310b2e
CM
1788{
1789 struct rb_node *node;
1790 struct extent_state *state;
1791 u64 cur_start = *start;
1792 u64 total_bytes = 0;
ec29ed5b 1793 u64 last = 0;
d1310b2e
CM
1794 int found = 0;
1795
fae7f21c 1796 if (WARN_ON(search_end <= cur_start))
d1310b2e 1797 return 0;
d1310b2e 1798
cad321ad 1799 spin_lock(&tree->lock);
d1310b2e
CM
1800 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1801 total_bytes = tree->dirty_bytes;
1802 goto out;
1803 }
1804 /*
1805 * this search will find all the extents that end after
1806 * our range starts.
1807 */
80ea96b1 1808 node = tree_search(tree, cur_start);
d397712b 1809 if (!node)
d1310b2e 1810 goto out;
d1310b2e 1811
d397712b 1812 while (1) {
d1310b2e
CM
1813 state = rb_entry(node, struct extent_state, rb_node);
1814 if (state->start > search_end)
1815 break;
ec29ed5b
CM
1816 if (contig && found && state->start > last + 1)
1817 break;
1818 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1819 total_bytes += min(search_end, state->end) + 1 -
1820 max(cur_start, state->start);
1821 if (total_bytes >= max_bytes)
1822 break;
1823 if (!found) {
af60bed2 1824 *start = max(cur_start, state->start);
d1310b2e
CM
1825 found = 1;
1826 }
ec29ed5b
CM
1827 last = state->end;
1828 } else if (contig && found) {
1829 break;
d1310b2e
CM
1830 }
1831 node = rb_next(node);
1832 if (!node)
1833 break;
1834 }
1835out:
cad321ad 1836 spin_unlock(&tree->lock);
d1310b2e
CM
1837 return total_bytes;
1838}
b2950863 1839
d352ac68
CM
1840/*
1841 * set the private field for a given byte offset in the tree. If there isn't
1842 * an extent_state there already, this does nothing.
1843 */
f827ba9a 1844static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1845 struct io_failure_record *failrec)
d1310b2e
CM
1846{
1847 struct rb_node *node;
1848 struct extent_state *state;
1849 int ret = 0;
1850
cad321ad 1851 spin_lock(&tree->lock);
d1310b2e
CM
1852 /*
1853 * this search will find all the extents that end after
1854 * our range starts.
1855 */
80ea96b1 1856 node = tree_search(tree, start);
2b114d1d 1857 if (!node) {
d1310b2e
CM
1858 ret = -ENOENT;
1859 goto out;
1860 }
1861 state = rb_entry(node, struct extent_state, rb_node);
1862 if (state->start != start) {
1863 ret = -ENOENT;
1864 goto out;
1865 }
47dc196a 1866 state->failrec = failrec;
d1310b2e 1867out:
cad321ad 1868 spin_unlock(&tree->lock);
d1310b2e
CM
1869 return ret;
1870}
1871
f827ba9a 1872static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1873 struct io_failure_record **failrec)
d1310b2e
CM
1874{
1875 struct rb_node *node;
1876 struct extent_state *state;
1877 int ret = 0;
1878
cad321ad 1879 spin_lock(&tree->lock);
d1310b2e
CM
1880 /*
1881 * this search will find all the extents that end after
1882 * our range starts.
1883 */
80ea96b1 1884 node = tree_search(tree, start);
2b114d1d 1885 if (!node) {
d1310b2e
CM
1886 ret = -ENOENT;
1887 goto out;
1888 }
1889 state = rb_entry(node, struct extent_state, rb_node);
1890 if (state->start != start) {
1891 ret = -ENOENT;
1892 goto out;
1893 }
47dc196a 1894 *failrec = state->failrec;
d1310b2e 1895out:
cad321ad 1896 spin_unlock(&tree->lock);
d1310b2e
CM
1897 return ret;
1898}
1899
1900/*
1901 * searches a range in the state tree for a given mask.
70dec807 1902 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1903 * has the bits set. Otherwise, 1 is returned if any bit in the
1904 * range is found set.
1905 */
1906int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1907 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1908{
1909 struct extent_state *state = NULL;
1910 struct rb_node *node;
1911 int bitset = 0;
d1310b2e 1912
cad321ad 1913 spin_lock(&tree->lock);
27a3507d 1914 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1915 cached->end > start)
9655d298
CM
1916 node = &cached->rb_node;
1917 else
1918 node = tree_search(tree, start);
d1310b2e
CM
1919 while (node && start <= end) {
1920 state = rb_entry(node, struct extent_state, rb_node);
1921
1922 if (filled && state->start > start) {
1923 bitset = 0;
1924 break;
1925 }
1926
1927 if (state->start > end)
1928 break;
1929
1930 if (state->state & bits) {
1931 bitset = 1;
1932 if (!filled)
1933 break;
1934 } else if (filled) {
1935 bitset = 0;
1936 break;
1937 }
46562cec
CM
1938
1939 if (state->end == (u64)-1)
1940 break;
1941
d1310b2e
CM
1942 start = state->end + 1;
1943 if (start > end)
1944 break;
1945 node = rb_next(node);
1946 if (!node) {
1947 if (filled)
1948 bitset = 0;
1949 break;
1950 }
1951 }
cad321ad 1952 spin_unlock(&tree->lock);
d1310b2e
CM
1953 return bitset;
1954}
d1310b2e
CM
1955
1956/*
1957 * helper function to set a given page up to date if all the
1958 * extents in the tree for that page are up to date
1959 */
143bede5 1960static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1961{
4eee4fa4 1962 u64 start = page_offset(page);
09cbfeaf 1963 u64 end = start + PAGE_SIZE - 1;
9655d298 1964 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1965 SetPageUptodate(page);
d1310b2e
CM
1966}
1967
8b110e39 1968int free_io_failure(struct inode *inode, struct io_failure_record *rec)
4a54c8c1
JS
1969{
1970 int ret;
1971 int err = 0;
1972 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1973
47dc196a 1974 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
1975 ret = clear_extent_bits(failure_tree, rec->start,
1976 rec->start + rec->len - 1,
91166212 1977 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
1978 if (ret)
1979 err = ret;
1980
53b381b3
DW
1981 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1982 rec->start + rec->len - 1,
91166212 1983 EXTENT_DAMAGED);
53b381b3
DW
1984 if (ret && !err)
1985 err = ret;
4a54c8c1
JS
1986
1987 kfree(rec);
1988 return err;
1989}
1990
4a54c8c1
JS
1991/*
1992 * this bypasses the standard btrfs submit functions deliberately, as
1993 * the standard behavior is to write all copies in a raid setup. here we only
1994 * want to write the one bad copy. so we do the mapping for ourselves and issue
1995 * submit_bio directly.
3ec706c8 1996 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1997 * actually prevents the read that triggered the error from finishing.
1998 * currently, there can be no more than two copies of every data bit. thus,
1999 * exactly one rewrite is required.
2000 */
1203b681
MX
2001int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2002 struct page *page, unsigned int pg_offset, int mirror_num)
4a54c8c1 2003{
1203b681 2004 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2005 struct bio *bio;
2006 struct btrfs_device *dev;
4a54c8c1
JS
2007 u64 map_length = 0;
2008 u64 sector;
2009 struct btrfs_bio *bbio = NULL;
53b381b3 2010 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2011 int ret;
2012
908960c6 2013 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
2014 BUG_ON(!mirror_num);
2015
53b381b3
DW
2016 /* we can't repair anything in raid56 yet */
2017 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2018 return 0;
2019
9be3395b 2020 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2021 if (!bio)
2022 return -EIO;
4f024f37 2023 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2024 map_length = length;
2025
3ec706c8 2026 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2027 &map_length, &bbio, mirror_num);
2028 if (ret) {
2029 bio_put(bio);
2030 return -EIO;
2031 }
2032 BUG_ON(mirror_num != bbio->mirror_num);
2033 sector = bbio->stripes[mirror_num-1].physical >> 9;
4f024f37 2034 bio->bi_iter.bi_sector = sector;
4a54c8c1 2035 dev = bbio->stripes[mirror_num-1].dev;
6e9606d2 2036 btrfs_put_bbio(bbio);
4a54c8c1
JS
2037 if (!dev || !dev->bdev || !dev->writeable) {
2038 bio_put(bio);
2039 return -EIO;
2040 }
2041 bio->bi_bdev = dev->bdev;
ffdd2018 2042 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2043
33879d45 2044 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
4a54c8c1
JS
2045 /* try to remap that extent elsewhere? */
2046 bio_put(bio);
442a4f63 2047 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2048 return -EIO;
2049 }
2050
b14af3b4
DS
2051 btrfs_info_rl_in_rcu(fs_info,
2052 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
1203b681
MX
2053 btrfs_ino(inode), start,
2054 rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2055 bio_put(bio);
2056 return 0;
2057}
2058
ea466794
JB
2059int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2060 int mirror_num)
2061{
ea466794
JB
2062 u64 start = eb->start;
2063 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2064 int ret = 0;
ea466794 2065
908960c6
ID
2066 if (root->fs_info->sb->s_flags & MS_RDONLY)
2067 return -EROFS;
2068
ea466794 2069 for (i = 0; i < num_pages; i++) {
fb85fc9a 2070 struct page *p = eb->pages[i];
1203b681
MX
2071
2072 ret = repair_io_failure(root->fs_info->btree_inode, start,
09cbfeaf 2073 PAGE_SIZE, start, p,
1203b681 2074 start - page_offset(p), mirror_num);
ea466794
JB
2075 if (ret)
2076 break;
09cbfeaf 2077 start += PAGE_SIZE;
ea466794
JB
2078 }
2079
2080 return ret;
2081}
2082
4a54c8c1
JS
2083/*
2084 * each time an IO finishes, we do a fast check in the IO failure tree
2085 * to see if we need to process or clean up an io_failure_record
2086 */
8b110e39
MX
2087int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2088 unsigned int pg_offset)
4a54c8c1
JS
2089{
2090 u64 private;
4a54c8c1 2091 struct io_failure_record *failrec;
908960c6 2092 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2093 struct extent_state *state;
2094 int num_copies;
4a54c8c1 2095 int ret;
4a54c8c1
JS
2096
2097 private = 0;
2098 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2099 (u64)-1, 1, EXTENT_DIRTY, 0);
2100 if (!ret)
2101 return 0;
2102
47dc196a
DS
2103 ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2104 &failrec);
4a54c8c1
JS
2105 if (ret)
2106 return 0;
2107
4a54c8c1
JS
2108 BUG_ON(!failrec->this_mirror);
2109
2110 if (failrec->in_validation) {
2111 /* there was no real error, just free the record */
2112 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2113 failrec->start);
4a54c8c1
JS
2114 goto out;
2115 }
908960c6
ID
2116 if (fs_info->sb->s_flags & MS_RDONLY)
2117 goto out;
4a54c8c1
JS
2118
2119 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2120 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2121 failrec->start,
2122 EXTENT_LOCKED);
2123 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2124
883d0de4
MX
2125 if (state && state->start <= failrec->start &&
2126 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2127 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2128 failrec->len);
4a54c8c1 2129 if (num_copies > 1) {
1203b681 2130 repair_io_failure(inode, start, failrec->len,
454ff3de 2131 failrec->logical, page,
1203b681 2132 pg_offset, failrec->failed_mirror);
4a54c8c1
JS
2133 }
2134 }
2135
2136out:
454ff3de 2137 free_io_failure(inode, failrec);
4a54c8c1 2138
454ff3de 2139 return 0;
4a54c8c1
JS
2140}
2141
f612496b
MX
2142/*
2143 * Can be called when
2144 * - hold extent lock
2145 * - under ordered extent
2146 * - the inode is freeing
2147 */
2148void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2149{
2150 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2151 struct io_failure_record *failrec;
2152 struct extent_state *state, *next;
2153
2154 if (RB_EMPTY_ROOT(&failure_tree->state))
2155 return;
2156
2157 spin_lock(&failure_tree->lock);
2158 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2159 while (state) {
2160 if (state->start > end)
2161 break;
2162
2163 ASSERT(state->end <= end);
2164
2165 next = next_state(state);
2166
47dc196a 2167 failrec = state->failrec;
f612496b
MX
2168 free_extent_state(state);
2169 kfree(failrec);
2170
2171 state = next;
2172 }
2173 spin_unlock(&failure_tree->lock);
2174}
2175
2fe6303e 2176int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2177 struct io_failure_record **failrec_ret)
4a54c8c1 2178{
2fe6303e 2179 struct io_failure_record *failrec;
4a54c8c1 2180 struct extent_map *em;
4a54c8c1
JS
2181 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2182 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2183 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2184 int ret;
4a54c8c1
JS
2185 u64 logical;
2186
47dc196a 2187 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2188 if (ret) {
2189 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2190 if (!failrec)
2191 return -ENOMEM;
2fe6303e 2192
4a54c8c1
JS
2193 failrec->start = start;
2194 failrec->len = end - start + 1;
2195 failrec->this_mirror = 0;
2196 failrec->bio_flags = 0;
2197 failrec->in_validation = 0;
2198
2199 read_lock(&em_tree->lock);
2200 em = lookup_extent_mapping(em_tree, start, failrec->len);
2201 if (!em) {
2202 read_unlock(&em_tree->lock);
2203 kfree(failrec);
2204 return -EIO;
2205 }
2206
68ba990f 2207 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2208 free_extent_map(em);
2209 em = NULL;
2210 }
2211 read_unlock(&em_tree->lock);
7a2d6a64 2212 if (!em) {
4a54c8c1
JS
2213 kfree(failrec);
2214 return -EIO;
2215 }
2fe6303e 2216
4a54c8c1
JS
2217 logical = start - em->start;
2218 logical = em->block_start + logical;
2219 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2220 logical = em->block_start;
2221 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2222 extent_set_compress_type(&failrec->bio_flags,
2223 em->compress_type);
2224 }
2fe6303e
MX
2225
2226 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2227 logical, start, failrec->len);
2228
4a54c8c1
JS
2229 failrec->logical = logical;
2230 free_extent_map(em);
2231
2232 /* set the bits in the private failure tree */
2233 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2234 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2235 if (ret >= 0)
47dc196a 2236 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2237 /* set the bits in the inode's tree */
2238 if (ret >= 0)
ceeb0ae7 2239 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2240 if (ret < 0) {
2241 kfree(failrec);
2242 return ret;
2243 }
2244 } else {
2fe6303e 2245 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
4a54c8c1
JS
2246 failrec->logical, failrec->start, failrec->len,
2247 failrec->in_validation);
2248 /*
2249 * when data can be on disk more than twice, add to failrec here
2250 * (e.g. with a list for failed_mirror) to make
2251 * clean_io_failure() clean all those errors at once.
2252 */
2253 }
2fe6303e
MX
2254
2255 *failrec_ret = failrec;
2256
2257 return 0;
2258}
2259
2260int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2261 struct io_failure_record *failrec, int failed_mirror)
2262{
2263 int num_copies;
2264
5d964051
SB
2265 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2266 failrec->logical, failrec->len);
4a54c8c1
JS
2267 if (num_copies == 1) {
2268 /*
2269 * we only have a single copy of the data, so don't bother with
2270 * all the retry and error correction code that follows. no
2271 * matter what the error is, it is very likely to persist.
2272 */
2fe6303e 2273 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
09a7f7a2 2274 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2275 return 0;
4a54c8c1
JS
2276 }
2277
4a54c8c1
JS
2278 /*
2279 * there are two premises:
2280 * a) deliver good data to the caller
2281 * b) correct the bad sectors on disk
2282 */
2283 if (failed_bio->bi_vcnt > 1) {
2284 /*
2285 * to fulfill b), we need to know the exact failing sectors, as
2286 * we don't want to rewrite any more than the failed ones. thus,
2287 * we need separate read requests for the failed bio
2288 *
2289 * if the following BUG_ON triggers, our validation request got
2290 * merged. we need separate requests for our algorithm to work.
2291 */
2292 BUG_ON(failrec->in_validation);
2293 failrec->in_validation = 1;
2294 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2295 } else {
2296 /*
2297 * we're ready to fulfill a) and b) alongside. get a good copy
2298 * of the failed sector and if we succeed, we have setup
2299 * everything for repair_io_failure to do the rest for us.
2300 */
2301 if (failrec->in_validation) {
2302 BUG_ON(failrec->this_mirror != failed_mirror);
2303 failrec->in_validation = 0;
2304 failrec->this_mirror = 0;
2305 }
2306 failrec->failed_mirror = failed_mirror;
2307 failrec->this_mirror++;
2308 if (failrec->this_mirror == failed_mirror)
2309 failrec->this_mirror++;
4a54c8c1
JS
2310 }
2311
facc8a22 2312 if (failrec->this_mirror > num_copies) {
2fe6303e 2313 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
4a54c8c1 2314 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2315 return 0;
4a54c8c1
JS
2316 }
2317
2fe6303e
MX
2318 return 1;
2319}
2320
2321
2322struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2323 struct io_failure_record *failrec,
2324 struct page *page, int pg_offset, int icsum,
8b110e39 2325 bio_end_io_t *endio_func, void *data)
2fe6303e
MX
2326{
2327 struct bio *bio;
2328 struct btrfs_io_bio *btrfs_failed_bio;
2329 struct btrfs_io_bio *btrfs_bio;
2330
9be3395b 2331 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2fe6303e
MX
2332 if (!bio)
2333 return NULL;
2334
2335 bio->bi_end_io = endio_func;
4f024f37 2336 bio->bi_iter.bi_sector = failrec->logical >> 9;
4a54c8c1 2337 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
4f024f37 2338 bio->bi_iter.bi_size = 0;
8b110e39 2339 bio->bi_private = data;
4a54c8c1 2340
facc8a22
MX
2341 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2342 if (btrfs_failed_bio->csum) {
2343 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2344 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2345
2346 btrfs_bio = btrfs_io_bio(bio);
2347 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2348 icsum *= csum_size;
2349 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2350 csum_size);
2351 }
2352
2fe6303e
MX
2353 bio_add_page(bio, page, failrec->len, pg_offset);
2354
2355 return bio;
2356}
2357
2358/*
2359 * this is a generic handler for readpage errors (default
2360 * readpage_io_failed_hook). if other copies exist, read those and write back
2361 * good data to the failed position. does not investigate in remapping the
2362 * failed extent elsewhere, hoping the device will be smart enough to do this as
2363 * needed
2364 */
2365
2366static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2367 struct page *page, u64 start, u64 end,
2368 int failed_mirror)
2369{
2370 struct io_failure_record *failrec;
2371 struct inode *inode = page->mapping->host;
2372 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2373 struct bio *bio;
2374 int read_mode;
2375 int ret;
2376
2377 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2378
2379 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2380 if (ret)
2381 return ret;
2382
2383 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2384 if (!ret) {
2385 free_io_failure(inode, failrec);
2386 return -EIO;
2387 }
2388
2389 if (failed_bio->bi_vcnt > 1)
2390 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2391 else
2392 read_mode = READ_SYNC;
2393
2394 phy_offset >>= inode->i_sb->s_blocksize_bits;
2395 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2396 start - page_offset(page),
8b110e39
MX
2397 (int)phy_offset, failed_bio->bi_end_io,
2398 NULL);
2fe6303e
MX
2399 if (!bio) {
2400 free_io_failure(inode, failrec);
2401 return -EIO;
2402 }
4a54c8c1 2403
2fe6303e
MX
2404 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2405 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2406
013bd4c3
TI
2407 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2408 failrec->this_mirror,
2409 failrec->bio_flags, 0);
6c387ab2 2410 if (ret) {
454ff3de 2411 free_io_failure(inode, failrec);
6c387ab2
MX
2412 bio_put(bio);
2413 }
2414
013bd4c3 2415 return ret;
4a54c8c1
JS
2416}
2417
d1310b2e
CM
2418/* lots and lots of room for performance fixes in the end_bio funcs */
2419
b5227c07 2420void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2421{
2422 int uptodate = (err == 0);
2423 struct extent_io_tree *tree;
3e2426bd 2424 int ret = 0;
87826df0
JM
2425
2426 tree = &BTRFS_I(page->mapping->host)->io_tree;
2427
2428 if (tree->ops && tree->ops->writepage_end_io_hook) {
2429 ret = tree->ops->writepage_end_io_hook(page, start,
2430 end, NULL, uptodate);
2431 if (ret)
2432 uptodate = 0;
2433 }
2434
87826df0 2435 if (!uptodate) {
87826df0
JM
2436 ClearPageUptodate(page);
2437 SetPageError(page);
5dca6eea
LB
2438 ret = ret < 0 ? ret : -EIO;
2439 mapping_set_error(page->mapping, ret);
87826df0 2440 }
87826df0
JM
2441}
2442
d1310b2e
CM
2443/*
2444 * after a writepage IO is done, we need to:
2445 * clear the uptodate bits on error
2446 * clear the writeback bits in the extent tree for this IO
2447 * end_page_writeback if the page has no more pending IO
2448 *
2449 * Scheduling is not allowed, so the extent state tree is expected
2450 * to have one and only one object corresponding to this IO.
2451 */
4246a0b6 2452static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2453{
2c30c71b 2454 struct bio_vec *bvec;
d1310b2e
CM
2455 u64 start;
2456 u64 end;
2c30c71b 2457 int i;
d1310b2e 2458
2c30c71b 2459 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2460 struct page *page = bvec->bv_page;
902b22f3 2461
17a5adcc
AO
2462 /* We always issue full-page reads, but if some block
2463 * in a page fails to read, blk_update_request() will
2464 * advance bv_offset and adjust bv_len to compensate.
2465 * Print a warning for nonzero offsets, and an error
2466 * if they don't add up to a full page. */
09cbfeaf
KS
2467 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2468 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
efe120a0
FH
2469 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2470 "partial page write in btrfs with offset %u and length %u",
2471 bvec->bv_offset, bvec->bv_len);
2472 else
2473 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2474 "incomplete page write in btrfs with offset %u and "
2475 "length %u",
2476 bvec->bv_offset, bvec->bv_len);
2477 }
d1310b2e 2478
17a5adcc
AO
2479 start = page_offset(page);
2480 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2481
b5227c07 2482 end_extent_writepage(page, bio->bi_error, start, end);
17a5adcc 2483 end_page_writeback(page);
2c30c71b 2484 }
2b1f55b0 2485
d1310b2e 2486 bio_put(bio);
d1310b2e
CM
2487}
2488
883d0de4
MX
2489static void
2490endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2491 int uptodate)
2492{
2493 struct extent_state *cached = NULL;
2494 u64 end = start + len - 1;
2495
2496 if (uptodate && tree->track_uptodate)
2497 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2498 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2499}
2500
d1310b2e
CM
2501/*
2502 * after a readpage IO is done, we need to:
2503 * clear the uptodate bits on error
2504 * set the uptodate bits if things worked
2505 * set the page up to date if all extents in the tree are uptodate
2506 * clear the lock bit in the extent tree
2507 * unlock the page if there are no other extents locked for it
2508 *
2509 * Scheduling is not allowed, so the extent state tree is expected
2510 * to have one and only one object corresponding to this IO.
2511 */
4246a0b6 2512static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2513{
2c30c71b 2514 struct bio_vec *bvec;
4246a0b6 2515 int uptodate = !bio->bi_error;
facc8a22 2516 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2517 struct extent_io_tree *tree;
facc8a22 2518 u64 offset = 0;
d1310b2e
CM
2519 u64 start;
2520 u64 end;
facc8a22 2521 u64 len;
883d0de4
MX
2522 u64 extent_start = 0;
2523 u64 extent_len = 0;
5cf1ab56 2524 int mirror;
d1310b2e 2525 int ret;
2c30c71b 2526 int i;
d1310b2e 2527
2c30c71b 2528 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2529 struct page *page = bvec->bv_page;
a71754fc 2530 struct inode *inode = page->mapping->host;
507903b8 2531
be3940c0 2532 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
4246a0b6
CH
2533 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2534 bio->bi_error, io_bio->mirror_num);
a71754fc 2535 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2536
17a5adcc
AO
2537 /* We always issue full-page reads, but if some block
2538 * in a page fails to read, blk_update_request() will
2539 * advance bv_offset and adjust bv_len to compensate.
2540 * Print a warning for nonzero offsets, and an error
2541 * if they don't add up to a full page. */
09cbfeaf
KS
2542 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2543 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
efe120a0
FH
2544 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2545 "partial page read in btrfs with offset %u and length %u",
2546 bvec->bv_offset, bvec->bv_len);
2547 else
2548 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2549 "incomplete page read in btrfs with offset %u and "
2550 "length %u",
2551 bvec->bv_offset, bvec->bv_len);
2552 }
d1310b2e 2553
17a5adcc
AO
2554 start = page_offset(page);
2555 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2556 len = bvec->bv_len;
d1310b2e 2557
9be3395b 2558 mirror = io_bio->mirror_num;
f2a09da9
MX
2559 if (likely(uptodate && tree->ops &&
2560 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2561 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2562 page, start, end,
2563 mirror);
5ee0844d 2564 if (ret)
d1310b2e 2565 uptodate = 0;
5ee0844d 2566 else
1203b681 2567 clean_io_failure(inode, start, page, 0);
d1310b2e 2568 }
ea466794 2569
f2a09da9
MX
2570 if (likely(uptodate))
2571 goto readpage_ok;
2572
2573 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2574 ret = tree->ops->readpage_io_failed_hook(page, mirror);
4246a0b6 2575 if (!ret && !bio->bi_error)
ea466794 2576 uptodate = 1;
f2a09da9 2577 } else {
f4a8e656
JS
2578 /*
2579 * The generic bio_readpage_error handles errors the
2580 * following way: If possible, new read requests are
2581 * created and submitted and will end up in
2582 * end_bio_extent_readpage as well (if we're lucky, not
2583 * in the !uptodate case). In that case it returns 0 and
2584 * we just go on with the next page in our bio. If it
2585 * can't handle the error it will return -EIO and we
2586 * remain responsible for that page.
2587 */
facc8a22
MX
2588 ret = bio_readpage_error(bio, offset, page, start, end,
2589 mirror);
7e38326f 2590 if (ret == 0) {
4246a0b6 2591 uptodate = !bio->bi_error;
38c1c2e4 2592 offset += len;
7e38326f
CM
2593 continue;
2594 }
2595 }
f2a09da9 2596readpage_ok:
883d0de4 2597 if (likely(uptodate)) {
a71754fc 2598 loff_t i_size = i_size_read(inode);
09cbfeaf 2599 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2600 unsigned off;
a71754fc
JB
2601
2602 /* Zero out the end if this page straddles i_size */
09cbfeaf 2603 off = i_size & (PAGE_SIZE-1);
a583c026 2604 if (page->index == end_index && off)
09cbfeaf 2605 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2606 SetPageUptodate(page);
70dec807 2607 } else {
17a5adcc
AO
2608 ClearPageUptodate(page);
2609 SetPageError(page);
70dec807 2610 }
17a5adcc 2611 unlock_page(page);
facc8a22 2612 offset += len;
883d0de4
MX
2613
2614 if (unlikely(!uptodate)) {
2615 if (extent_len) {
2616 endio_readpage_release_extent(tree,
2617 extent_start,
2618 extent_len, 1);
2619 extent_start = 0;
2620 extent_len = 0;
2621 }
2622 endio_readpage_release_extent(tree, start,
2623 end - start + 1, 0);
2624 } else if (!extent_len) {
2625 extent_start = start;
2626 extent_len = end + 1 - start;
2627 } else if (extent_start + extent_len == start) {
2628 extent_len += end + 1 - start;
2629 } else {
2630 endio_readpage_release_extent(tree, extent_start,
2631 extent_len, uptodate);
2632 extent_start = start;
2633 extent_len = end + 1 - start;
2634 }
2c30c71b 2635 }
d1310b2e 2636
883d0de4
MX
2637 if (extent_len)
2638 endio_readpage_release_extent(tree, extent_start, extent_len,
2639 uptodate);
facc8a22 2640 if (io_bio->end_io)
4246a0b6 2641 io_bio->end_io(io_bio, bio->bi_error);
d1310b2e 2642 bio_put(bio);
d1310b2e
CM
2643}
2644
9be3395b
CM
2645/*
2646 * this allocates from the btrfs_bioset. We're returning a bio right now
2647 * but you can call btrfs_io_bio for the appropriate container_of magic
2648 */
88f794ed
MX
2649struct bio *
2650btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2651 gfp_t gfp_flags)
d1310b2e 2652{
facc8a22 2653 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2654 struct bio *bio;
2655
9be3395b 2656 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2657
2658 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2659 while (!bio && (nr_vecs /= 2)) {
2660 bio = bio_alloc_bioset(gfp_flags,
2661 nr_vecs, btrfs_bioset);
2662 }
d1310b2e
CM
2663 }
2664
2665 if (bio) {
2666 bio->bi_bdev = bdev;
4f024f37 2667 bio->bi_iter.bi_sector = first_sector;
facc8a22
MX
2668 btrfs_bio = btrfs_io_bio(bio);
2669 btrfs_bio->csum = NULL;
2670 btrfs_bio->csum_allocated = NULL;
2671 btrfs_bio->end_io = NULL;
d1310b2e
CM
2672 }
2673 return bio;
2674}
2675
9be3395b
CM
2676struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2677{
23ea8e5a
MX
2678 struct btrfs_io_bio *btrfs_bio;
2679 struct bio *new;
9be3395b 2680
23ea8e5a
MX
2681 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2682 if (new) {
2683 btrfs_bio = btrfs_io_bio(new);
2684 btrfs_bio->csum = NULL;
2685 btrfs_bio->csum_allocated = NULL;
2686 btrfs_bio->end_io = NULL;
3a9508b0
CM
2687
2688#ifdef CONFIG_BLK_CGROUP
da2f0f74
CM
2689 /* FIXME, put this into bio_clone_bioset */
2690 if (bio->bi_css)
2691 bio_associate_blkcg(new, bio->bi_css);
3a9508b0 2692#endif
23ea8e5a
MX
2693 }
2694 return new;
2695}
9be3395b
CM
2696
2697/* this also allocates from the btrfs_bioset */
2698struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2699{
facc8a22
MX
2700 struct btrfs_io_bio *btrfs_bio;
2701 struct bio *bio;
2702
2703 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2704 if (bio) {
2705 btrfs_bio = btrfs_io_bio(bio);
2706 btrfs_bio->csum = NULL;
2707 btrfs_bio->csum_allocated = NULL;
2708 btrfs_bio->end_io = NULL;
2709 }
2710 return bio;
9be3395b
CM
2711}
2712
2713
355808c2
JM
2714static int __must_check submit_one_bio(int rw, struct bio *bio,
2715 int mirror_num, unsigned long bio_flags)
d1310b2e 2716{
d1310b2e 2717 int ret = 0;
70dec807
CM
2718 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2719 struct page *page = bvec->bv_page;
2720 struct extent_io_tree *tree = bio->bi_private;
70dec807 2721 u64 start;
70dec807 2722
4eee4fa4 2723 start = page_offset(page) + bvec->bv_offset;
70dec807 2724
902b22f3 2725 bio->bi_private = NULL;
d1310b2e
CM
2726
2727 bio_get(bio);
2728
065631f6 2729 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2730 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2731 mirror_num, bio_flags, start);
0b86a832 2732 else
21adbd5c 2733 btrfsic_submit_bio(rw, bio);
4a54c8c1 2734
d1310b2e
CM
2735 bio_put(bio);
2736 return ret;
2737}
2738
64a16701 2739static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2740 unsigned long offset, size_t size, struct bio *bio,
2741 unsigned long bio_flags)
2742{
2743 int ret = 0;
2744 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2745 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2746 bio_flags);
2747 BUG_ON(ret < 0);
2748 return ret;
2749
2750}
2751
d1310b2e 2752static int submit_extent_page(int rw, struct extent_io_tree *tree,
da2f0f74 2753 struct writeback_control *wbc,
d1310b2e
CM
2754 struct page *page, sector_t sector,
2755 size_t size, unsigned long offset,
2756 struct block_device *bdev,
2757 struct bio **bio_ret,
2758 unsigned long max_pages,
f188591e 2759 bio_end_io_t end_io_func,
c8b97818
CM
2760 int mirror_num,
2761 unsigned long prev_bio_flags,
005efedf
FM
2762 unsigned long bio_flags,
2763 bool force_bio_submit)
d1310b2e
CM
2764{
2765 int ret = 0;
2766 struct bio *bio;
c8b97818 2767 int contig = 0;
c8b97818 2768 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
09cbfeaf 2769 size_t page_size = min_t(size_t, size, PAGE_SIZE);
d1310b2e
CM
2770
2771 if (bio_ret && *bio_ret) {
2772 bio = *bio_ret;
c8b97818 2773 if (old_compressed)
4f024f37 2774 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2775 else
f73a1c7d 2776 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2777
2778 if (prev_bio_flags != bio_flags || !contig ||
005efedf 2779 force_bio_submit ||
64a16701 2780 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2781 bio_add_page(bio, page, page_size, offset) < page_size) {
2782 ret = submit_one_bio(rw, bio, mirror_num,
2783 prev_bio_flags);
289454ad
NA
2784 if (ret < 0) {
2785 *bio_ret = NULL;
79787eaa 2786 return ret;
289454ad 2787 }
d1310b2e
CM
2788 bio = NULL;
2789 } else {
da2f0f74
CM
2790 if (wbc)
2791 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2792 return 0;
2793 }
2794 }
c8b97818 2795
b54ffb73
KO
2796 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2797 GFP_NOFS | __GFP_HIGH);
5df67083
TI
2798 if (!bio)
2799 return -ENOMEM;
70dec807 2800
c8b97818 2801 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2802 bio->bi_end_io = end_io_func;
2803 bio->bi_private = tree;
da2f0f74
CM
2804 if (wbc) {
2805 wbc_init_bio(wbc, bio);
2806 wbc_account_io(wbc, page, page_size);
2807 }
70dec807 2808
d397712b 2809 if (bio_ret)
d1310b2e 2810 *bio_ret = bio;
d397712b 2811 else
c8b97818 2812 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2813
2814 return ret;
2815}
2816
48a3b636
ES
2817static void attach_extent_buffer_page(struct extent_buffer *eb,
2818 struct page *page)
d1310b2e
CM
2819{
2820 if (!PagePrivate(page)) {
2821 SetPagePrivate(page);
09cbfeaf 2822 get_page(page);
4f2de97a
JB
2823 set_page_private(page, (unsigned long)eb);
2824 } else {
2825 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2826 }
2827}
2828
4f2de97a 2829void set_page_extent_mapped(struct page *page)
d1310b2e 2830{
4f2de97a
JB
2831 if (!PagePrivate(page)) {
2832 SetPagePrivate(page);
09cbfeaf 2833 get_page(page);
4f2de97a
JB
2834 set_page_private(page, EXTENT_PAGE_PRIVATE);
2835 }
d1310b2e
CM
2836}
2837
125bac01
MX
2838static struct extent_map *
2839__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2840 u64 start, u64 len, get_extent_t *get_extent,
2841 struct extent_map **em_cached)
2842{
2843 struct extent_map *em;
2844
2845 if (em_cached && *em_cached) {
2846 em = *em_cached;
cbc0e928 2847 if (extent_map_in_tree(em) && start >= em->start &&
125bac01
MX
2848 start < extent_map_end(em)) {
2849 atomic_inc(&em->refs);
2850 return em;
2851 }
2852
2853 free_extent_map(em);
2854 *em_cached = NULL;
2855 }
2856
2857 em = get_extent(inode, page, pg_offset, start, len, 0);
2858 if (em_cached && !IS_ERR_OR_NULL(em)) {
2859 BUG_ON(*em_cached);
2860 atomic_inc(&em->refs);
2861 *em_cached = em;
2862 }
2863 return em;
2864}
d1310b2e
CM
2865/*
2866 * basic readpage implementation. Locked extent state structs are inserted
2867 * into the tree that are removed when the IO is done (by the end_io
2868 * handlers)
79787eaa 2869 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e 2870 */
9974090b
MX
2871static int __do_readpage(struct extent_io_tree *tree,
2872 struct page *page,
2873 get_extent_t *get_extent,
125bac01 2874 struct extent_map **em_cached,
9974090b 2875 struct bio **bio, int mirror_num,
005efedf
FM
2876 unsigned long *bio_flags, int rw,
2877 u64 *prev_em_start)
d1310b2e
CM
2878{
2879 struct inode *inode = page->mapping->host;
4eee4fa4 2880 u64 start = page_offset(page);
09cbfeaf 2881 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
2882 u64 end;
2883 u64 cur = start;
2884 u64 extent_offset;
2885 u64 last_byte = i_size_read(inode);
2886 u64 block_start;
2887 u64 cur_end;
2888 sector_t sector;
2889 struct extent_map *em;
2890 struct block_device *bdev;
2891 int ret;
2892 int nr = 0;
306e16ce 2893 size_t pg_offset = 0;
d1310b2e 2894 size_t iosize;
c8b97818 2895 size_t disk_io_size;
d1310b2e 2896 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 2897 unsigned long this_bio_flag = 0;
d1310b2e
CM
2898
2899 set_page_extent_mapped(page);
2900
9974090b 2901 end = page_end;
90a887c9
DM
2902 if (!PageUptodate(page)) {
2903 if (cleancache_get_page(page) == 0) {
2904 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2905 unlock_extent(tree, start, end);
90a887c9
DM
2906 goto out;
2907 }
2908 }
2909
09cbfeaf 2910 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 2911 char *userpage;
09cbfeaf 2912 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
c8b97818
CM
2913
2914 if (zero_offset) {
09cbfeaf 2915 iosize = PAGE_SIZE - zero_offset;
7ac687d9 2916 userpage = kmap_atomic(page);
c8b97818
CM
2917 memset(userpage + zero_offset, 0, iosize);
2918 flush_dcache_page(page);
7ac687d9 2919 kunmap_atomic(userpage);
c8b97818
CM
2920 }
2921 }
d1310b2e 2922 while (cur <= end) {
09cbfeaf 2923 unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
005efedf 2924 bool force_bio_submit = false;
c8f2f24b 2925
d1310b2e
CM
2926 if (cur >= last_byte) {
2927 char *userpage;
507903b8
AJ
2928 struct extent_state *cached = NULL;
2929
09cbfeaf 2930 iosize = PAGE_SIZE - pg_offset;
7ac687d9 2931 userpage = kmap_atomic(page);
306e16ce 2932 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2933 flush_dcache_page(page);
7ac687d9 2934 kunmap_atomic(userpage);
d1310b2e 2935 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2936 &cached, GFP_NOFS);
7f042a83
FM
2937 unlock_extent_cached(tree, cur,
2938 cur + iosize - 1,
2939 &cached, GFP_NOFS);
d1310b2e
CM
2940 break;
2941 }
125bac01
MX
2942 em = __get_extent_map(inode, page, pg_offset, cur,
2943 end - cur + 1, get_extent, em_cached);
c704005d 2944 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2945 SetPageError(page);
7f042a83 2946 unlock_extent(tree, cur, end);
d1310b2e
CM
2947 break;
2948 }
d1310b2e
CM
2949 extent_offset = cur - em->start;
2950 BUG_ON(extent_map_end(em) <= cur);
2951 BUG_ON(end < cur);
2952
261507a0 2953 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2954 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2955 extent_set_compress_type(&this_bio_flag,
2956 em->compress_type);
2957 }
c8b97818 2958
d1310b2e
CM
2959 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2960 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2961 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2962 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2963 disk_io_size = em->block_len;
2964 sector = em->block_start >> 9;
2965 } else {
2966 sector = (em->block_start + extent_offset) >> 9;
2967 disk_io_size = iosize;
2968 }
d1310b2e
CM
2969 bdev = em->bdev;
2970 block_start = em->block_start;
d899e052
YZ
2971 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2972 block_start = EXTENT_MAP_HOLE;
005efedf
FM
2973
2974 /*
2975 * If we have a file range that points to a compressed extent
2976 * and it's followed by a consecutive file range that points to
2977 * to the same compressed extent (possibly with a different
2978 * offset and/or length, so it either points to the whole extent
2979 * or only part of it), we must make sure we do not submit a
2980 * single bio to populate the pages for the 2 ranges because
2981 * this makes the compressed extent read zero out the pages
2982 * belonging to the 2nd range. Imagine the following scenario:
2983 *
2984 * File layout
2985 * [0 - 8K] [8K - 24K]
2986 * | |
2987 * | |
2988 * points to extent X, points to extent X,
2989 * offset 4K, length of 8K offset 0, length 16K
2990 *
2991 * [extent X, compressed length = 4K uncompressed length = 16K]
2992 *
2993 * If the bio to read the compressed extent covers both ranges,
2994 * it will decompress extent X into the pages belonging to the
2995 * first range and then it will stop, zeroing out the remaining
2996 * pages that belong to the other range that points to extent X.
2997 * So here we make sure we submit 2 bios, one for the first
2998 * range and another one for the third range. Both will target
2999 * the same physical extent from disk, but we can't currently
3000 * make the compressed bio endio callback populate the pages
3001 * for both ranges because each compressed bio is tightly
3002 * coupled with a single extent map, and each range can have
3003 * an extent map with a different offset value relative to the
3004 * uncompressed data of our extent and different lengths. This
3005 * is a corner case so we prioritize correctness over
3006 * non-optimal behavior (submitting 2 bios for the same extent).
3007 */
3008 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3009 prev_em_start && *prev_em_start != (u64)-1 &&
3010 *prev_em_start != em->orig_start)
3011 force_bio_submit = true;
3012
3013 if (prev_em_start)
3014 *prev_em_start = em->orig_start;
3015
d1310b2e
CM
3016 free_extent_map(em);
3017 em = NULL;
3018
3019 /* we've found a hole, just zero and go on */
3020 if (block_start == EXTENT_MAP_HOLE) {
3021 char *userpage;
507903b8
AJ
3022 struct extent_state *cached = NULL;
3023
7ac687d9 3024 userpage = kmap_atomic(page);
306e16ce 3025 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3026 flush_dcache_page(page);
7ac687d9 3027 kunmap_atomic(userpage);
d1310b2e
CM
3028
3029 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3030 &cached, GFP_NOFS);
7f042a83
FM
3031 unlock_extent_cached(tree, cur,
3032 cur + iosize - 1,
3033 &cached, GFP_NOFS);
d1310b2e 3034 cur = cur + iosize;
306e16ce 3035 pg_offset += iosize;
d1310b2e
CM
3036 continue;
3037 }
3038 /* the get_extent function already copied into the page */
9655d298
CM
3039 if (test_range_bit(tree, cur, cur_end,
3040 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3041 check_page_uptodate(tree, page);
7f042a83 3042 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3043 cur = cur + iosize;
306e16ce 3044 pg_offset += iosize;
d1310b2e
CM
3045 continue;
3046 }
70dec807
CM
3047 /* we have an inline extent but it didn't get marked up
3048 * to date. Error out
3049 */
3050 if (block_start == EXTENT_MAP_INLINE) {
3051 SetPageError(page);
7f042a83 3052 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3053 cur = cur + iosize;
306e16ce 3054 pg_offset += iosize;
70dec807
CM
3055 continue;
3056 }
d1310b2e 3057
c8f2f24b 3058 pnr -= page->index;
da2f0f74 3059 ret = submit_extent_page(rw, tree, NULL, page,
306e16ce 3060 sector, disk_io_size, pg_offset,
89642229 3061 bdev, bio, pnr,
c8b97818
CM
3062 end_bio_extent_readpage, mirror_num,
3063 *bio_flags,
005efedf
FM
3064 this_bio_flag,
3065 force_bio_submit);
c8f2f24b
JB
3066 if (!ret) {
3067 nr++;
3068 *bio_flags = this_bio_flag;
3069 } else {
d1310b2e 3070 SetPageError(page);
7f042a83 3071 unlock_extent(tree, cur, cur + iosize - 1);
edd33c99 3072 }
d1310b2e 3073 cur = cur + iosize;
306e16ce 3074 pg_offset += iosize;
d1310b2e 3075 }
90a887c9 3076out:
d1310b2e
CM
3077 if (!nr) {
3078 if (!PageError(page))
3079 SetPageUptodate(page);
3080 unlock_page(page);
3081 }
3082 return 0;
3083}
3084
9974090b
MX
3085static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3086 struct page *pages[], int nr_pages,
3087 u64 start, u64 end,
3088 get_extent_t *get_extent,
125bac01 3089 struct extent_map **em_cached,
9974090b 3090 struct bio **bio, int mirror_num,
808f80b4
FM
3091 unsigned long *bio_flags, int rw,
3092 u64 *prev_em_start)
9974090b
MX
3093{
3094 struct inode *inode;
3095 struct btrfs_ordered_extent *ordered;
3096 int index;
3097
3098 inode = pages[0]->mapping->host;
3099 while (1) {
3100 lock_extent(tree, start, end);
3101 ordered = btrfs_lookup_ordered_range(inode, start,
3102 end - start + 1);
3103 if (!ordered)
3104 break;
3105 unlock_extent(tree, start, end);
3106 btrfs_start_ordered_extent(inode, ordered, 1);
3107 btrfs_put_ordered_extent(ordered);
3108 }
3109
3110 for (index = 0; index < nr_pages; index++) {
125bac01 3111 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
808f80b4 3112 mirror_num, bio_flags, rw, prev_em_start);
09cbfeaf 3113 put_page(pages[index]);
9974090b
MX
3114 }
3115}
3116
3117static void __extent_readpages(struct extent_io_tree *tree,
3118 struct page *pages[],
3119 int nr_pages, get_extent_t *get_extent,
125bac01 3120 struct extent_map **em_cached,
9974090b 3121 struct bio **bio, int mirror_num,
808f80b4
FM
3122 unsigned long *bio_flags, int rw,
3123 u64 *prev_em_start)
9974090b 3124{
35a3621b 3125 u64 start = 0;
9974090b
MX
3126 u64 end = 0;
3127 u64 page_start;
3128 int index;
35a3621b 3129 int first_index = 0;
9974090b
MX
3130
3131 for (index = 0; index < nr_pages; index++) {
3132 page_start = page_offset(pages[index]);
3133 if (!end) {
3134 start = page_start;
09cbfeaf 3135 end = start + PAGE_SIZE - 1;
9974090b
MX
3136 first_index = index;
3137 } else if (end + 1 == page_start) {
09cbfeaf 3138 end += PAGE_SIZE;
9974090b
MX
3139 } else {
3140 __do_contiguous_readpages(tree, &pages[first_index],
3141 index - first_index, start,
125bac01
MX
3142 end, get_extent, em_cached,
3143 bio, mirror_num, bio_flags,
808f80b4 3144 rw, prev_em_start);
9974090b 3145 start = page_start;
09cbfeaf 3146 end = start + PAGE_SIZE - 1;
9974090b
MX
3147 first_index = index;
3148 }
3149 }
3150
3151 if (end)
3152 __do_contiguous_readpages(tree, &pages[first_index],
3153 index - first_index, start,
125bac01 3154 end, get_extent, em_cached, bio,
808f80b4
FM
3155 mirror_num, bio_flags, rw,
3156 prev_em_start);
9974090b
MX
3157}
3158
3159static int __extent_read_full_page(struct extent_io_tree *tree,
3160 struct page *page,
3161 get_extent_t *get_extent,
3162 struct bio **bio, int mirror_num,
3163 unsigned long *bio_flags, int rw)
3164{
3165 struct inode *inode = page->mapping->host;
3166 struct btrfs_ordered_extent *ordered;
3167 u64 start = page_offset(page);
09cbfeaf 3168 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3169 int ret;
3170
3171 while (1) {
3172 lock_extent(tree, start, end);
dbfdb6d1 3173 ordered = btrfs_lookup_ordered_range(inode, start,
09cbfeaf 3174 PAGE_SIZE);
9974090b
MX
3175 if (!ordered)
3176 break;
3177 unlock_extent(tree, start, end);
3178 btrfs_start_ordered_extent(inode, ordered, 1);
3179 btrfs_put_ordered_extent(ordered);
3180 }
3181
125bac01 3182 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
005efedf 3183 bio_flags, rw, NULL);
9974090b
MX
3184 return ret;
3185}
3186
d1310b2e 3187int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3188 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3189{
3190 struct bio *bio = NULL;
c8b97818 3191 unsigned long bio_flags = 0;
d1310b2e
CM
3192 int ret;
3193
8ddc7d9c 3194 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 3195 &bio_flags, READ);
d1310b2e 3196 if (bio)
8ddc7d9c 3197 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
3198 return ret;
3199}
d1310b2e 3200
11c8349b
CM
3201static noinline void update_nr_written(struct page *page,
3202 struct writeback_control *wbc,
3203 unsigned long nr_written)
3204{
3205 wbc->nr_to_write -= nr_written;
3206 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3207 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3208 page->mapping->writeback_index = page->index + nr_written;
3209}
3210
d1310b2e 3211/*
40f76580
CM
3212 * helper for __extent_writepage, doing all of the delayed allocation setup.
3213 *
3214 * This returns 1 if our fill_delalloc function did all the work required
3215 * to write the page (copy into inline extent). In this case the IO has
3216 * been started and the page is already unlocked.
3217 *
3218 * This returns 0 if all went well (page still locked)
3219 * This returns < 0 if there were errors (page still locked)
d1310b2e 3220 */
40f76580
CM
3221static noinline_for_stack int writepage_delalloc(struct inode *inode,
3222 struct page *page, struct writeback_control *wbc,
3223 struct extent_page_data *epd,
3224 u64 delalloc_start,
3225 unsigned long *nr_written)
3226{
3227 struct extent_io_tree *tree = epd->tree;
09cbfeaf 3228 u64 page_end = delalloc_start + PAGE_SIZE - 1;
40f76580
CM
3229 u64 nr_delalloc;
3230 u64 delalloc_to_write = 0;
3231 u64 delalloc_end = 0;
3232 int ret;
3233 int page_started = 0;
3234
3235 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3236 return 0;
3237
3238 while (delalloc_end < page_end) {
3239 nr_delalloc = find_lock_delalloc_range(inode, tree,
3240 page,
3241 &delalloc_start,
3242 &delalloc_end,
dcab6a3b 3243 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3244 if (nr_delalloc == 0) {
3245 delalloc_start = delalloc_end + 1;
3246 continue;
3247 }
3248 ret = tree->ops->fill_delalloc(inode, page,
3249 delalloc_start,
3250 delalloc_end,
3251 &page_started,
3252 nr_written);
3253 /* File system has been set read-only */
3254 if (ret) {
3255 SetPageError(page);
3256 /* fill_delalloc should be return < 0 for error
3257 * but just in case, we use > 0 here meaning the
3258 * IO is started, so we don't want to return > 0
3259 * unless things are going well.
3260 */
3261 ret = ret < 0 ? ret : -EIO;
3262 goto done;
3263 }
3264 /*
ea1754a0
KS
3265 * delalloc_end is already one less than the total length, so
3266 * we don't subtract one from PAGE_SIZE
40f76580
CM
3267 */
3268 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3269 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3270 delalloc_start = delalloc_end + 1;
3271 }
3272 if (wbc->nr_to_write < delalloc_to_write) {
3273 int thresh = 8192;
3274
3275 if (delalloc_to_write < thresh * 2)
3276 thresh = delalloc_to_write;
3277 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3278 thresh);
3279 }
3280
3281 /* did the fill delalloc function already unlock and start
3282 * the IO?
3283 */
3284 if (page_started) {
3285 /*
3286 * we've unlocked the page, so we can't update
3287 * the mapping's writeback index, just update
3288 * nr_to_write.
3289 */
3290 wbc->nr_to_write -= *nr_written;
3291 return 1;
3292 }
3293
3294 ret = 0;
3295
3296done:
3297 return ret;
3298}
3299
3300/*
3301 * helper for __extent_writepage. This calls the writepage start hooks,
3302 * and does the loop to map the page into extents and bios.
3303 *
3304 * We return 1 if the IO is started and the page is unlocked,
3305 * 0 if all went well (page still locked)
3306 * < 0 if there were errors (page still locked)
3307 */
3308static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3309 struct page *page,
3310 struct writeback_control *wbc,
3311 struct extent_page_data *epd,
3312 loff_t i_size,
3313 unsigned long nr_written,
3314 int write_flags, int *nr_ret)
d1310b2e 3315{
d1310b2e 3316 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3317 u64 start = page_offset(page);
09cbfeaf 3318 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3319 u64 end;
3320 u64 cur = start;
3321 u64 extent_offset;
d1310b2e
CM
3322 u64 block_start;
3323 u64 iosize;
3324 sector_t sector;
2c64c53d 3325 struct extent_state *cached_state = NULL;
d1310b2e
CM
3326 struct extent_map *em;
3327 struct block_device *bdev;
7f3c74fb 3328 size_t pg_offset = 0;
d1310b2e 3329 size_t blocksize;
40f76580
CM
3330 int ret = 0;
3331 int nr = 0;
3332 bool compressed;
c8b97818 3333
247e743c 3334 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3335 ret = tree->ops->writepage_start_hook(page, start,
3336 page_end);
87826df0
JM
3337 if (ret) {
3338 /* Fixup worker will requeue */
3339 if (ret == -EBUSY)
3340 wbc->pages_skipped++;
3341 else
3342 redirty_page_for_writepage(wbc, page);
40f76580 3343
11c8349b 3344 update_nr_written(page, wbc, nr_written);
247e743c 3345 unlock_page(page);
40f76580 3346 ret = 1;
11c8349b 3347 goto done_unlocked;
247e743c
CM
3348 }
3349 }
3350
11c8349b
CM
3351 /*
3352 * we don't want to touch the inode after unlocking the page,
3353 * so we update the mapping writeback index now
3354 */
3355 update_nr_written(page, wbc, nr_written + 1);
771ed689 3356
d1310b2e 3357 end = page_end;
40f76580 3358 if (i_size <= start) {
e6dcd2dc
CM
3359 if (tree->ops && tree->ops->writepage_end_io_hook)
3360 tree->ops->writepage_end_io_hook(page, start,
3361 page_end, NULL, 1);
d1310b2e
CM
3362 goto done;
3363 }
3364
d1310b2e
CM
3365 blocksize = inode->i_sb->s_blocksize;
3366
3367 while (cur <= end) {
40f76580
CM
3368 u64 em_end;
3369 if (cur >= i_size) {
e6dcd2dc
CM
3370 if (tree->ops && tree->ops->writepage_end_io_hook)
3371 tree->ops->writepage_end_io_hook(page, cur,
3372 page_end, NULL, 1);
d1310b2e
CM
3373 break;
3374 }
7f3c74fb 3375 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3376 end - cur + 1, 1);
c704005d 3377 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3378 SetPageError(page);
61391d56 3379 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3380 break;
3381 }
3382
3383 extent_offset = cur - em->start;
40f76580
CM
3384 em_end = extent_map_end(em);
3385 BUG_ON(em_end <= cur);
d1310b2e 3386 BUG_ON(end < cur);
40f76580 3387 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3388 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3389 sector = (em->block_start + extent_offset) >> 9;
3390 bdev = em->bdev;
3391 block_start = em->block_start;
c8b97818 3392 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3393 free_extent_map(em);
3394 em = NULL;
3395
c8b97818
CM
3396 /*
3397 * compressed and inline extents are written through other
3398 * paths in the FS
3399 */
3400 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3401 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3402 /*
3403 * end_io notification does not happen here for
3404 * compressed extents
3405 */
3406 if (!compressed && tree->ops &&
3407 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3408 tree->ops->writepage_end_io_hook(page, cur,
3409 cur + iosize - 1,
3410 NULL, 1);
c8b97818
CM
3411 else if (compressed) {
3412 /* we don't want to end_page_writeback on
3413 * a compressed extent. this happens
3414 * elsewhere
3415 */
3416 nr++;
3417 }
3418
3419 cur += iosize;
7f3c74fb 3420 pg_offset += iosize;
d1310b2e
CM
3421 continue;
3422 }
c8b97818 3423
d1310b2e
CM
3424 if (tree->ops && tree->ops->writepage_io_hook) {
3425 ret = tree->ops->writepage_io_hook(page, cur,
3426 cur + iosize - 1);
3427 } else {
3428 ret = 0;
3429 }
1259ab75 3430 if (ret) {
d1310b2e 3431 SetPageError(page);
1259ab75 3432 } else {
09cbfeaf 3433 unsigned long max_nr = (i_size >> PAGE_SHIFT) + 1;
7f3c74fb 3434
d1310b2e
CM
3435 set_range_writeback(tree, cur, cur + iosize - 1);
3436 if (!PageWriteback(page)) {
efe120a0
FH
3437 btrfs_err(BTRFS_I(inode)->root->fs_info,
3438 "page %lu not writeback, cur %llu end %llu",
c1c9ff7c 3439 page->index, cur, end);
d1310b2e
CM
3440 }
3441
da2f0f74 3442 ret = submit_extent_page(write_flags, tree, wbc, page,
ffbd517d
CM
3443 sector, iosize, pg_offset,
3444 bdev, &epd->bio, max_nr,
c8b97818 3445 end_bio_extent_writepage,
005efedf 3446 0, 0, 0, false);
d1310b2e
CM
3447 if (ret)
3448 SetPageError(page);
3449 }
3450 cur = cur + iosize;
7f3c74fb 3451 pg_offset += iosize;
d1310b2e
CM
3452 nr++;
3453 }
40f76580
CM
3454done:
3455 *nr_ret = nr;
3456
3457done_unlocked:
3458
3459 /* drop our reference on any cached states */
3460 free_extent_state(cached_state);
3461 return ret;
3462}
3463
3464/*
3465 * the writepage semantics are similar to regular writepage. extent
3466 * records are inserted to lock ranges in the tree, and as dirty areas
3467 * are found, they are marked writeback. Then the lock bits are removed
3468 * and the end_io handler clears the writeback ranges
3469 */
3470static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3471 void *data)
3472{
3473 struct inode *inode = page->mapping->host;
3474 struct extent_page_data *epd = data;
3475 u64 start = page_offset(page);
09cbfeaf 3476 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3477 int ret;
3478 int nr = 0;
3479 size_t pg_offset = 0;
3480 loff_t i_size = i_size_read(inode);
09cbfeaf 3481 unsigned long end_index = i_size >> PAGE_SHIFT;
40f76580
CM
3482 int write_flags;
3483 unsigned long nr_written = 0;
3484
3485 if (wbc->sync_mode == WB_SYNC_ALL)
3486 write_flags = WRITE_SYNC;
3487 else
3488 write_flags = WRITE;
3489
3490 trace___extent_writepage(page, inode, wbc);
3491
3492 WARN_ON(!PageLocked(page));
3493
3494 ClearPageError(page);
3495
09cbfeaf 3496 pg_offset = i_size & (PAGE_SIZE - 1);
40f76580
CM
3497 if (page->index > end_index ||
3498 (page->index == end_index && !pg_offset)) {
09cbfeaf 3499 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3500 unlock_page(page);
3501 return 0;
3502 }
3503
3504 if (page->index == end_index) {
3505 char *userpage;
3506
3507 userpage = kmap_atomic(page);
3508 memset(userpage + pg_offset, 0,
09cbfeaf 3509 PAGE_SIZE - pg_offset);
40f76580
CM
3510 kunmap_atomic(userpage);
3511 flush_dcache_page(page);
3512 }
3513
3514 pg_offset = 0;
3515
3516 set_page_extent_mapped(page);
3517
3518 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3519 if (ret == 1)
3520 goto done_unlocked;
3521 if (ret)
3522 goto done;
3523
3524 ret = __extent_writepage_io(inode, page, wbc, epd,
3525 i_size, nr_written, write_flags, &nr);
3526 if (ret == 1)
3527 goto done_unlocked;
3528
d1310b2e
CM
3529done:
3530 if (nr == 0) {
3531 /* make sure the mapping tag for page dirty gets cleared */
3532 set_page_writeback(page);
3533 end_page_writeback(page);
3534 }
61391d56
FM
3535 if (PageError(page)) {
3536 ret = ret < 0 ? ret : -EIO;
3537 end_extent_writepage(page, ret, start, page_end);
3538 }
d1310b2e 3539 unlock_page(page);
40f76580 3540 return ret;
771ed689 3541
11c8349b 3542done_unlocked:
d1310b2e
CM
3543 return 0;
3544}
3545
fd8b2b61 3546void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3547{
74316201
N
3548 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3549 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3550}
3551
0e378df1
CM
3552static noinline_for_stack int
3553lock_extent_buffer_for_io(struct extent_buffer *eb,
3554 struct btrfs_fs_info *fs_info,
3555 struct extent_page_data *epd)
0b32f4bb
JB
3556{
3557 unsigned long i, num_pages;
3558 int flush = 0;
3559 int ret = 0;
3560
3561 if (!btrfs_try_tree_write_lock(eb)) {
3562 flush = 1;
3563 flush_write_bio(epd);
3564 btrfs_tree_lock(eb);
3565 }
3566
3567 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3568 btrfs_tree_unlock(eb);
3569 if (!epd->sync_io)
3570 return 0;
3571 if (!flush) {
3572 flush_write_bio(epd);
3573 flush = 1;
3574 }
a098d8e8
CM
3575 while (1) {
3576 wait_on_extent_buffer_writeback(eb);
3577 btrfs_tree_lock(eb);
3578 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3579 break;
0b32f4bb 3580 btrfs_tree_unlock(eb);
0b32f4bb
JB
3581 }
3582 }
3583
51561ffe
JB
3584 /*
3585 * We need to do this to prevent races in people who check if the eb is
3586 * under IO since we can end up having no IO bits set for a short period
3587 * of time.
3588 */
3589 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3590 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3591 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3592 spin_unlock(&eb->refs_lock);
0b32f4bb 3593 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3594 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3595 -eb->len,
3596 fs_info->dirty_metadata_batch);
0b32f4bb 3597 ret = 1;
51561ffe
JB
3598 } else {
3599 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3600 }
3601
3602 btrfs_tree_unlock(eb);
3603
3604 if (!ret)
3605 return ret;
3606
3607 num_pages = num_extent_pages(eb->start, eb->len);
3608 for (i = 0; i < num_pages; i++) {
fb85fc9a 3609 struct page *p = eb->pages[i];
0b32f4bb
JB
3610
3611 if (!trylock_page(p)) {
3612 if (!flush) {
3613 flush_write_bio(epd);
3614 flush = 1;
3615 }
3616 lock_page(p);
3617 }
3618 }
3619
3620 return ret;
3621}
3622
3623static void end_extent_buffer_writeback(struct extent_buffer *eb)
3624{
3625 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3626 smp_mb__after_atomic();
0b32f4bb
JB
3627 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3628}
3629
656f30db
FM
3630static void set_btree_ioerr(struct page *page)
3631{
3632 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3633 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3634
3635 SetPageError(page);
3636 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3637 return;
3638
3639 /*
3640 * If writeback for a btree extent that doesn't belong to a log tree
3641 * failed, increment the counter transaction->eb_write_errors.
3642 * We do this because while the transaction is running and before it's
3643 * committing (when we call filemap_fdata[write|wait]_range against
3644 * the btree inode), we might have
3645 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3646 * returns an error or an error happens during writeback, when we're
3647 * committing the transaction we wouldn't know about it, since the pages
3648 * can be no longer dirty nor marked anymore for writeback (if a
3649 * subsequent modification to the extent buffer didn't happen before the
3650 * transaction commit), which makes filemap_fdata[write|wait]_range not
3651 * able to find the pages tagged with SetPageError at transaction
3652 * commit time. So if this happens we must abort the transaction,
3653 * otherwise we commit a super block with btree roots that point to
3654 * btree nodes/leafs whose content on disk is invalid - either garbage
3655 * or the content of some node/leaf from a past generation that got
3656 * cowed or deleted and is no longer valid.
3657 *
3658 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3659 * not be enough - we need to distinguish between log tree extents vs
3660 * non-log tree extents, and the next filemap_fdatawait_range() call
3661 * will catch and clear such errors in the mapping - and that call might
3662 * be from a log sync and not from a transaction commit. Also, checking
3663 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3664 * not done and would not be reliable - the eb might have been released
3665 * from memory and reading it back again means that flag would not be
3666 * set (since it's a runtime flag, not persisted on disk).
3667 *
3668 * Using the flags below in the btree inode also makes us achieve the
3669 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3670 * writeback for all dirty pages and before filemap_fdatawait_range()
3671 * is called, the writeback for all dirty pages had already finished
3672 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3673 * filemap_fdatawait_range() would return success, as it could not know
3674 * that writeback errors happened (the pages were no longer tagged for
3675 * writeback).
3676 */
3677 switch (eb->log_index) {
3678 case -1:
3679 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3680 break;
3681 case 0:
3682 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3683 break;
3684 case 1:
3685 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3686 break;
3687 default:
3688 BUG(); /* unexpected, logic error */
3689 }
3690}
3691
4246a0b6 3692static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3693{
2c30c71b 3694 struct bio_vec *bvec;
0b32f4bb 3695 struct extent_buffer *eb;
2c30c71b 3696 int i, done;
0b32f4bb 3697
2c30c71b 3698 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3699 struct page *page = bvec->bv_page;
3700
0b32f4bb
JB
3701 eb = (struct extent_buffer *)page->private;
3702 BUG_ON(!eb);
3703 done = atomic_dec_and_test(&eb->io_pages);
3704
4246a0b6
CH
3705 if (bio->bi_error ||
3706 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3707 ClearPageUptodate(page);
656f30db 3708 set_btree_ioerr(page);
0b32f4bb
JB
3709 }
3710
3711 end_page_writeback(page);
3712
3713 if (!done)
3714 continue;
3715
3716 end_extent_buffer_writeback(eb);
2c30c71b 3717 }
0b32f4bb
JB
3718
3719 bio_put(bio);
0b32f4bb
JB
3720}
3721
0e378df1 3722static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3723 struct btrfs_fs_info *fs_info,
3724 struct writeback_control *wbc,
3725 struct extent_page_data *epd)
3726{
3727 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3728 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb
JB
3729 u64 offset = eb->start;
3730 unsigned long i, num_pages;
de0022b9 3731 unsigned long bio_flags = 0;
d4c7ca86 3732 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3733 int ret = 0;
0b32f4bb 3734
656f30db 3735 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3736 num_pages = num_extent_pages(eb->start, eb->len);
3737 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3738 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3739 bio_flags = EXTENT_BIO_TREE_LOG;
3740
0b32f4bb 3741 for (i = 0; i < num_pages; i++) {
fb85fc9a 3742 struct page *p = eb->pages[i];
0b32f4bb
JB
3743
3744 clear_page_dirty_for_io(p);
3745 set_page_writeback(p);
da2f0f74 3746 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
09cbfeaf 3747 PAGE_SIZE, 0, bdev, &epd->bio,
0b32f4bb 3748 -1, end_bio_extent_buffer_writepage,
005efedf 3749 0, epd->bio_flags, bio_flags, false);
de0022b9 3750 epd->bio_flags = bio_flags;
0b32f4bb 3751 if (ret) {
656f30db 3752 set_btree_ioerr(p);
55e3bd2e 3753 end_page_writeback(p);
0b32f4bb
JB
3754 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3755 end_extent_buffer_writeback(eb);
3756 ret = -EIO;
3757 break;
3758 }
09cbfeaf 3759 offset += PAGE_SIZE;
0b32f4bb
JB
3760 update_nr_written(p, wbc, 1);
3761 unlock_page(p);
3762 }
3763
3764 if (unlikely(ret)) {
3765 for (; i < num_pages; i++) {
bbf65cf0 3766 struct page *p = eb->pages[i];
81465028 3767 clear_page_dirty_for_io(p);
0b32f4bb
JB
3768 unlock_page(p);
3769 }
3770 }
3771
3772 return ret;
3773}
3774
3775int btree_write_cache_pages(struct address_space *mapping,
3776 struct writeback_control *wbc)
3777{
3778 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3779 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3780 struct extent_buffer *eb, *prev_eb = NULL;
3781 struct extent_page_data epd = {
3782 .bio = NULL,
3783 .tree = tree,
3784 .extent_locked = 0,
3785 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3786 .bio_flags = 0,
0b32f4bb
JB
3787 };
3788 int ret = 0;
3789 int done = 0;
3790 int nr_to_write_done = 0;
3791 struct pagevec pvec;
3792 int nr_pages;
3793 pgoff_t index;
3794 pgoff_t end; /* Inclusive */
3795 int scanned = 0;
3796 int tag;
3797
3798 pagevec_init(&pvec, 0);
3799 if (wbc->range_cyclic) {
3800 index = mapping->writeback_index; /* Start from prev offset */
3801 end = -1;
3802 } else {
09cbfeaf
KS
3803 index = wbc->range_start >> PAGE_SHIFT;
3804 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3805 scanned = 1;
3806 }
3807 if (wbc->sync_mode == WB_SYNC_ALL)
3808 tag = PAGECACHE_TAG_TOWRITE;
3809 else
3810 tag = PAGECACHE_TAG_DIRTY;
3811retry:
3812 if (wbc->sync_mode == WB_SYNC_ALL)
3813 tag_pages_for_writeback(mapping, index, end);
3814 while (!done && !nr_to_write_done && (index <= end) &&
3815 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3816 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3817 unsigned i;
3818
3819 scanned = 1;
3820 for (i = 0; i < nr_pages; i++) {
3821 struct page *page = pvec.pages[i];
3822
3823 if (!PagePrivate(page))
3824 continue;
3825
3826 if (!wbc->range_cyclic && page->index > end) {
3827 done = 1;
3828 break;
3829 }
3830
b5bae261
JB
3831 spin_lock(&mapping->private_lock);
3832 if (!PagePrivate(page)) {
3833 spin_unlock(&mapping->private_lock);
3834 continue;
3835 }
3836
0b32f4bb 3837 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3838
3839 /*
3840 * Shouldn't happen and normally this would be a BUG_ON
3841 * but no sense in crashing the users box for something
3842 * we can survive anyway.
3843 */
fae7f21c 3844 if (WARN_ON(!eb)) {
b5bae261 3845 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3846 continue;
3847 }
3848
b5bae261
JB
3849 if (eb == prev_eb) {
3850 spin_unlock(&mapping->private_lock);
0b32f4bb 3851 continue;
b5bae261 3852 }
0b32f4bb 3853
b5bae261
JB
3854 ret = atomic_inc_not_zero(&eb->refs);
3855 spin_unlock(&mapping->private_lock);
3856 if (!ret)
0b32f4bb 3857 continue;
0b32f4bb
JB
3858
3859 prev_eb = eb;
3860 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3861 if (!ret) {
3862 free_extent_buffer(eb);
3863 continue;
3864 }
3865
3866 ret = write_one_eb(eb, fs_info, wbc, &epd);
3867 if (ret) {
3868 done = 1;
3869 free_extent_buffer(eb);
3870 break;
3871 }
3872 free_extent_buffer(eb);
3873
3874 /*
3875 * the filesystem may choose to bump up nr_to_write.
3876 * We have to make sure to honor the new nr_to_write
3877 * at any time
3878 */
3879 nr_to_write_done = wbc->nr_to_write <= 0;
3880 }
3881 pagevec_release(&pvec);
3882 cond_resched();
3883 }
3884 if (!scanned && !done) {
3885 /*
3886 * We hit the last page and there is more work to be done: wrap
3887 * back to the start of the file
3888 */
3889 scanned = 1;
3890 index = 0;
3891 goto retry;
3892 }
3893 flush_write_bio(&epd);
3894 return ret;
3895}
3896
d1310b2e 3897/**
4bef0848 3898 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3899 * @mapping: address space structure to write
3900 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3901 * @writepage: function called for each page
3902 * @data: data passed to writepage function
3903 *
3904 * If a page is already under I/O, write_cache_pages() skips it, even
3905 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3906 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3907 * and msync() need to guarantee that all the data which was dirty at the time
3908 * the call was made get new I/O started against them. If wbc->sync_mode is
3909 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3910 * existing IO to complete.
3911 */
b2950863 3912static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3913 struct address_space *mapping,
3914 struct writeback_control *wbc,
d2c3f4f6
CM
3915 writepage_t writepage, void *data,
3916 void (*flush_fn)(void *))
d1310b2e 3917{
7fd1a3f7 3918 struct inode *inode = mapping->host;
d1310b2e
CM
3919 int ret = 0;
3920 int done = 0;
61391d56 3921 int err = 0;
f85d7d6c 3922 int nr_to_write_done = 0;
d1310b2e
CM
3923 struct pagevec pvec;
3924 int nr_pages;
3925 pgoff_t index;
3926 pgoff_t end; /* Inclusive */
3927 int scanned = 0;
f7aaa06b 3928 int tag;
d1310b2e 3929
7fd1a3f7
JB
3930 /*
3931 * We have to hold onto the inode so that ordered extents can do their
3932 * work when the IO finishes. The alternative to this is failing to add
3933 * an ordered extent if the igrab() fails there and that is a huge pain
3934 * to deal with, so instead just hold onto the inode throughout the
3935 * writepages operation. If it fails here we are freeing up the inode
3936 * anyway and we'd rather not waste our time writing out stuff that is
3937 * going to be truncated anyway.
3938 */
3939 if (!igrab(inode))
3940 return 0;
3941
d1310b2e
CM
3942 pagevec_init(&pvec, 0);
3943 if (wbc->range_cyclic) {
3944 index = mapping->writeback_index; /* Start from prev offset */
3945 end = -1;
3946 } else {
09cbfeaf
KS
3947 index = wbc->range_start >> PAGE_SHIFT;
3948 end = wbc->range_end >> PAGE_SHIFT;
d1310b2e
CM
3949 scanned = 1;
3950 }
f7aaa06b
JB
3951 if (wbc->sync_mode == WB_SYNC_ALL)
3952 tag = PAGECACHE_TAG_TOWRITE;
3953 else
3954 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3955retry:
f7aaa06b
JB
3956 if (wbc->sync_mode == WB_SYNC_ALL)
3957 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3958 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3959 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3960 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3961 unsigned i;
3962
3963 scanned = 1;
3964 for (i = 0; i < nr_pages; i++) {
3965 struct page *page = pvec.pages[i];
3966
3967 /*
3968 * At this point we hold neither mapping->tree_lock nor
3969 * lock on the page itself: the page may be truncated or
3970 * invalidated (changing page->mapping to NULL), or even
3971 * swizzled back from swapper_space to tmpfs file
3972 * mapping
3973 */
c8f2f24b
JB
3974 if (!trylock_page(page)) {
3975 flush_fn(data);
3976 lock_page(page);
01d658f2 3977 }
d1310b2e
CM
3978
3979 if (unlikely(page->mapping != mapping)) {
3980 unlock_page(page);
3981 continue;
3982 }
3983
3984 if (!wbc->range_cyclic && page->index > end) {
3985 done = 1;
3986 unlock_page(page);
3987 continue;
3988 }
3989
d2c3f4f6 3990 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3991 if (PageWriteback(page))
3992 flush_fn(data);
d1310b2e 3993 wait_on_page_writeback(page);
d2c3f4f6 3994 }
d1310b2e
CM
3995
3996 if (PageWriteback(page) ||
3997 !clear_page_dirty_for_io(page)) {
3998 unlock_page(page);
3999 continue;
4000 }
4001
4002 ret = (*writepage)(page, wbc, data);
4003
4004 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4005 unlock_page(page);
4006 ret = 0;
4007 }
61391d56
FM
4008 if (!err && ret < 0)
4009 err = ret;
f85d7d6c
CM
4010
4011 /*
4012 * the filesystem may choose to bump up nr_to_write.
4013 * We have to make sure to honor the new nr_to_write
4014 * at any time
4015 */
4016 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4017 }
4018 pagevec_release(&pvec);
4019 cond_resched();
4020 }
61391d56 4021 if (!scanned && !done && !err) {
d1310b2e
CM
4022 /*
4023 * We hit the last page and there is more work to be done: wrap
4024 * back to the start of the file
4025 */
4026 scanned = 1;
4027 index = 0;
4028 goto retry;
4029 }
7fd1a3f7 4030 btrfs_add_delayed_iput(inode);
61391d56 4031 return err;
d1310b2e 4032}
d1310b2e 4033
ffbd517d 4034static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 4035{
d2c3f4f6 4036 if (epd->bio) {
355808c2
JM
4037 int rw = WRITE;
4038 int ret;
4039
ffbd517d 4040 if (epd->sync_io)
355808c2
JM
4041 rw = WRITE_SYNC;
4042
de0022b9 4043 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 4044 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4045 epd->bio = NULL;
4046 }
4047}
4048
ffbd517d
CM
4049static noinline void flush_write_bio(void *data)
4050{
4051 struct extent_page_data *epd = data;
4052 flush_epd_write_bio(epd);
4053}
4054
d1310b2e
CM
4055int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4056 get_extent_t *get_extent,
4057 struct writeback_control *wbc)
4058{
4059 int ret;
d1310b2e
CM
4060 struct extent_page_data epd = {
4061 .bio = NULL,
4062 .tree = tree,
4063 .get_extent = get_extent,
771ed689 4064 .extent_locked = 0,
ffbd517d 4065 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4066 .bio_flags = 0,
d1310b2e 4067 };
d1310b2e 4068
d1310b2e
CM
4069 ret = __extent_writepage(page, wbc, &epd);
4070
ffbd517d 4071 flush_epd_write_bio(&epd);
d1310b2e
CM
4072 return ret;
4073}
d1310b2e 4074
771ed689
CM
4075int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4076 u64 start, u64 end, get_extent_t *get_extent,
4077 int mode)
4078{
4079 int ret = 0;
4080 struct address_space *mapping = inode->i_mapping;
4081 struct page *page;
09cbfeaf
KS
4082 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4083 PAGE_SHIFT;
771ed689
CM
4084
4085 struct extent_page_data epd = {
4086 .bio = NULL,
4087 .tree = tree,
4088 .get_extent = get_extent,
4089 .extent_locked = 1,
ffbd517d 4090 .sync_io = mode == WB_SYNC_ALL,
de0022b9 4091 .bio_flags = 0,
771ed689
CM
4092 };
4093 struct writeback_control wbc_writepages = {
771ed689 4094 .sync_mode = mode,
771ed689
CM
4095 .nr_to_write = nr_pages * 2,
4096 .range_start = start,
4097 .range_end = end + 1,
4098 };
4099
d397712b 4100 while (start <= end) {
09cbfeaf 4101 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4102 if (clear_page_dirty_for_io(page))
4103 ret = __extent_writepage(page, &wbc_writepages, &epd);
4104 else {
4105 if (tree->ops && tree->ops->writepage_end_io_hook)
4106 tree->ops->writepage_end_io_hook(page, start,
09cbfeaf 4107 start + PAGE_SIZE - 1,
771ed689
CM
4108 NULL, 1);
4109 unlock_page(page);
4110 }
09cbfeaf
KS
4111 put_page(page);
4112 start += PAGE_SIZE;
771ed689
CM
4113 }
4114
ffbd517d 4115 flush_epd_write_bio(&epd);
771ed689
CM
4116 return ret;
4117}
d1310b2e
CM
4118
4119int extent_writepages(struct extent_io_tree *tree,
4120 struct address_space *mapping,
4121 get_extent_t *get_extent,
4122 struct writeback_control *wbc)
4123{
4124 int ret = 0;
4125 struct extent_page_data epd = {
4126 .bio = NULL,
4127 .tree = tree,
4128 .get_extent = get_extent,
771ed689 4129 .extent_locked = 0,
ffbd517d 4130 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4131 .bio_flags = 0,
d1310b2e
CM
4132 };
4133
4bef0848 4134 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
4135 __extent_writepage, &epd,
4136 flush_write_bio);
ffbd517d 4137 flush_epd_write_bio(&epd);
d1310b2e
CM
4138 return ret;
4139}
d1310b2e
CM
4140
4141int extent_readpages(struct extent_io_tree *tree,
4142 struct address_space *mapping,
4143 struct list_head *pages, unsigned nr_pages,
4144 get_extent_t get_extent)
4145{
4146 struct bio *bio = NULL;
4147 unsigned page_idx;
c8b97818 4148 unsigned long bio_flags = 0;
67c9684f
LB
4149 struct page *pagepool[16];
4150 struct page *page;
125bac01 4151 struct extent_map *em_cached = NULL;
67c9684f 4152 int nr = 0;
808f80b4 4153 u64 prev_em_start = (u64)-1;
d1310b2e 4154
d1310b2e 4155 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4156 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4157
4158 prefetchw(&page->flags);
4159 list_del(&page->lru);
67c9684f 4160 if (add_to_page_cache_lru(page, mapping,
43e817a1 4161 page->index, GFP_NOFS)) {
09cbfeaf 4162 put_page(page);
67c9684f 4163 continue;
d1310b2e 4164 }
67c9684f
LB
4165
4166 pagepool[nr++] = page;
4167 if (nr < ARRAY_SIZE(pagepool))
4168 continue;
125bac01 4169 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
808f80b4 4170 &bio, 0, &bio_flags, READ, &prev_em_start);
67c9684f 4171 nr = 0;
d1310b2e 4172 }
9974090b 4173 if (nr)
125bac01 4174 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
808f80b4 4175 &bio, 0, &bio_flags, READ, &prev_em_start);
67c9684f 4176
125bac01
MX
4177 if (em_cached)
4178 free_extent_map(em_cached);
4179
d1310b2e
CM
4180 BUG_ON(!list_empty(pages));
4181 if (bio)
79787eaa 4182 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
4183 return 0;
4184}
d1310b2e
CM
4185
4186/*
4187 * basic invalidatepage code, this waits on any locked or writeback
4188 * ranges corresponding to the page, and then deletes any extent state
4189 * records from the tree
4190 */
4191int extent_invalidatepage(struct extent_io_tree *tree,
4192 struct page *page, unsigned long offset)
4193{
2ac55d41 4194 struct extent_state *cached_state = NULL;
4eee4fa4 4195 u64 start = page_offset(page);
09cbfeaf 4196 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4197 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4198
fda2832f 4199 start += ALIGN(offset, blocksize);
d1310b2e
CM
4200 if (start > end)
4201 return 0;
4202
ff13db41 4203 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4204 wait_on_page_writeback(page);
d1310b2e 4205 clear_extent_bit(tree, start, end,
32c00aff
JB
4206 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4207 EXTENT_DO_ACCOUNTING,
2ac55d41 4208 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4209 return 0;
4210}
d1310b2e 4211
7b13b7b1
CM
4212/*
4213 * a helper for releasepage, this tests for areas of the page that
4214 * are locked or under IO and drops the related state bits if it is safe
4215 * to drop the page.
4216 */
48a3b636
ES
4217static int try_release_extent_state(struct extent_map_tree *map,
4218 struct extent_io_tree *tree,
4219 struct page *page, gfp_t mask)
7b13b7b1 4220{
4eee4fa4 4221 u64 start = page_offset(page);
09cbfeaf 4222 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4223 int ret = 1;
4224
211f90e6 4225 if (test_range_bit(tree, start, end,
8b62b72b 4226 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4227 ret = 0;
4228 else {
4229 if ((mask & GFP_NOFS) == GFP_NOFS)
4230 mask = GFP_NOFS;
11ef160f
CM
4231 /*
4232 * at this point we can safely clear everything except the
4233 * locked bit and the nodatasum bit
4234 */
e3f24cc5 4235 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4236 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4237 0, 0, NULL, mask);
e3f24cc5
CM
4238
4239 /* if clear_extent_bit failed for enomem reasons,
4240 * we can't allow the release to continue.
4241 */
4242 if (ret < 0)
4243 ret = 0;
4244 else
4245 ret = 1;
7b13b7b1
CM
4246 }
4247 return ret;
4248}
7b13b7b1 4249
d1310b2e
CM
4250/*
4251 * a helper for releasepage. As long as there are no locked extents
4252 * in the range corresponding to the page, both state records and extent
4253 * map records are removed
4254 */
4255int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4256 struct extent_io_tree *tree, struct page *page,
4257 gfp_t mask)
d1310b2e
CM
4258{
4259 struct extent_map *em;
4eee4fa4 4260 u64 start = page_offset(page);
09cbfeaf 4261 u64 end = start + PAGE_SIZE - 1;
7b13b7b1 4262
d0164adc 4263 if (gfpflags_allow_blocking(mask) &&
ee22184b 4264 page->mapping->host->i_size > SZ_16M) {
39b5637f 4265 u64 len;
70dec807 4266 while (start <= end) {
39b5637f 4267 len = end - start + 1;
890871be 4268 write_lock(&map->lock);
39b5637f 4269 em = lookup_extent_mapping(map, start, len);
285190d9 4270 if (!em) {
890871be 4271 write_unlock(&map->lock);
70dec807
CM
4272 break;
4273 }
7f3c74fb
CM
4274 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4275 em->start != start) {
890871be 4276 write_unlock(&map->lock);
70dec807
CM
4277 free_extent_map(em);
4278 break;
4279 }
4280 if (!test_range_bit(tree, em->start,
4281 extent_map_end(em) - 1,
8b62b72b 4282 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4283 0, NULL)) {
70dec807
CM
4284 remove_extent_mapping(map, em);
4285 /* once for the rb tree */
4286 free_extent_map(em);
4287 }
4288 start = extent_map_end(em);
890871be 4289 write_unlock(&map->lock);
70dec807
CM
4290
4291 /* once for us */
d1310b2e
CM
4292 free_extent_map(em);
4293 }
d1310b2e 4294 }
7b13b7b1 4295 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4296}
d1310b2e 4297
ec29ed5b
CM
4298/*
4299 * helper function for fiemap, which doesn't want to see any holes.
4300 * This maps until we find something past 'last'
4301 */
4302static struct extent_map *get_extent_skip_holes(struct inode *inode,
4303 u64 offset,
4304 u64 last,
4305 get_extent_t *get_extent)
4306{
4307 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4308 struct extent_map *em;
4309 u64 len;
4310
4311 if (offset >= last)
4312 return NULL;
4313
67871254 4314 while (1) {
ec29ed5b
CM
4315 len = last - offset;
4316 if (len == 0)
4317 break;
fda2832f 4318 len = ALIGN(len, sectorsize);
ec29ed5b 4319 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 4320 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4321 return em;
4322
4323 /* if this isn't a hole return it */
4324 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4325 em->block_start != EXTENT_MAP_HOLE) {
4326 return em;
4327 }
4328
4329 /* this is a hole, advance to the next extent */
4330 offset = extent_map_end(em);
4331 free_extent_map(em);
4332 if (offset >= last)
4333 break;
4334 }
4335 return NULL;
4336}
4337
1506fcc8
YS
4338int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4339 __u64 start, __u64 len, get_extent_t *get_extent)
4340{
975f84fe 4341 int ret = 0;
1506fcc8
YS
4342 u64 off = start;
4343 u64 max = start + len;
4344 u32 flags = 0;
975f84fe
JB
4345 u32 found_type;
4346 u64 last;
ec29ed5b 4347 u64 last_for_get_extent = 0;
1506fcc8 4348 u64 disko = 0;
ec29ed5b 4349 u64 isize = i_size_read(inode);
975f84fe 4350 struct btrfs_key found_key;
1506fcc8 4351 struct extent_map *em = NULL;
2ac55d41 4352 struct extent_state *cached_state = NULL;
975f84fe 4353 struct btrfs_path *path;
dc046b10 4354 struct btrfs_root *root = BTRFS_I(inode)->root;
1506fcc8 4355 int end = 0;
ec29ed5b
CM
4356 u64 em_start = 0;
4357 u64 em_len = 0;
4358 u64 em_end = 0;
1506fcc8
YS
4359
4360 if (len == 0)
4361 return -EINVAL;
4362
975f84fe
JB
4363 path = btrfs_alloc_path();
4364 if (!path)
4365 return -ENOMEM;
4366 path->leave_spinning = 1;
4367
2c91943b
QW
4368 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4369 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4d479cf0 4370
ec29ed5b
CM
4371 /*
4372 * lookup the last file extent. We're not using i_size here
4373 * because there might be preallocation past i_size
4374 */
dc046b10
JB
4375 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4376 0);
975f84fe
JB
4377 if (ret < 0) {
4378 btrfs_free_path(path);
4379 return ret;
4380 }
4381 WARN_ON(!ret);
4382 path->slots[0]--;
975f84fe 4383 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4384 found_type = found_key.type;
975f84fe 4385
ec29ed5b 4386 /* No extents, but there might be delalloc bits */
33345d01 4387 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4388 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4389 /* have to trust i_size as the end */
4390 last = (u64)-1;
4391 last_for_get_extent = isize;
4392 } else {
4393 /*
4394 * remember the start of the last extent. There are a
4395 * bunch of different factors that go into the length of the
4396 * extent, so its much less complex to remember where it started
4397 */
4398 last = found_key.offset;
4399 last_for_get_extent = last + 1;
975f84fe 4400 }
fe09e16c 4401 btrfs_release_path(path);
975f84fe 4402
ec29ed5b
CM
4403 /*
4404 * we might have some extents allocated but more delalloc past those
4405 * extents. so, we trust isize unless the start of the last extent is
4406 * beyond isize
4407 */
4408 if (last < isize) {
4409 last = (u64)-1;
4410 last_for_get_extent = isize;
4411 }
4412
ff13db41 4413 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4414 &cached_state);
ec29ed5b 4415
4d479cf0 4416 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4417 get_extent);
1506fcc8
YS
4418 if (!em)
4419 goto out;
4420 if (IS_ERR(em)) {
4421 ret = PTR_ERR(em);
4422 goto out;
4423 }
975f84fe 4424
1506fcc8 4425 while (!end) {
b76bb701 4426 u64 offset_in_extent = 0;
ea8efc74
CM
4427
4428 /* break if the extent we found is outside the range */
4429 if (em->start >= max || extent_map_end(em) < off)
4430 break;
4431
4432 /*
4433 * get_extent may return an extent that starts before our
4434 * requested range. We have to make sure the ranges
4435 * we return to fiemap always move forward and don't
4436 * overlap, so adjust the offsets here
4437 */
4438 em_start = max(em->start, off);
1506fcc8 4439
ea8efc74
CM
4440 /*
4441 * record the offset from the start of the extent
b76bb701
JB
4442 * for adjusting the disk offset below. Only do this if the
4443 * extent isn't compressed since our in ram offset may be past
4444 * what we have actually allocated on disk.
ea8efc74 4445 */
b76bb701
JB
4446 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4447 offset_in_extent = em_start - em->start;
ec29ed5b 4448 em_end = extent_map_end(em);
ea8efc74 4449 em_len = em_end - em_start;
1506fcc8
YS
4450 disko = 0;
4451 flags = 0;
4452
ea8efc74
CM
4453 /*
4454 * bump off for our next call to get_extent
4455 */
4456 off = extent_map_end(em);
4457 if (off >= max)
4458 end = 1;
4459
93dbfad7 4460 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4461 end = 1;
4462 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4463 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4464 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4465 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4466 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4467 flags |= (FIEMAP_EXTENT_DELALLOC |
4468 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4469 } else if (fieinfo->fi_extents_max) {
4470 u64 bytenr = em->block_start -
4471 (em->start - em->orig_start);
fe09e16c 4472
ea8efc74 4473 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4474
4475 /*
4476 * As btrfs supports shared space, this information
4477 * can be exported to userspace tools via
dc046b10
JB
4478 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4479 * then we're just getting a count and we can skip the
4480 * lookup stuff.
fe09e16c 4481 */
dc046b10
JB
4482 ret = btrfs_check_shared(NULL, root->fs_info,
4483 root->objectid,
4484 btrfs_ino(inode), bytenr);
4485 if (ret < 0)
fe09e16c 4486 goto out_free;
dc046b10 4487 if (ret)
fe09e16c 4488 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4489 ret = 0;
1506fcc8
YS
4490 }
4491 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4492 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4493 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4494 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4495
1506fcc8
YS
4496 free_extent_map(em);
4497 em = NULL;
ec29ed5b
CM
4498 if ((em_start >= last) || em_len == (u64)-1 ||
4499 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4500 flags |= FIEMAP_EXTENT_LAST;
4501 end = 1;
4502 }
4503
ec29ed5b
CM
4504 /* now scan forward to see if this is really the last extent. */
4505 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4506 get_extent);
4507 if (IS_ERR(em)) {
4508 ret = PTR_ERR(em);
4509 goto out;
4510 }
4511 if (!em) {
975f84fe
JB
4512 flags |= FIEMAP_EXTENT_LAST;
4513 end = 1;
4514 }
ec29ed5b
CM
4515 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4516 em_len, flags);
26e726af
CS
4517 if (ret) {
4518 if (ret == 1)
4519 ret = 0;
ec29ed5b 4520 goto out_free;
26e726af 4521 }
1506fcc8
YS
4522 }
4523out_free:
4524 free_extent_map(em);
4525out:
fe09e16c 4526 btrfs_free_path(path);
a52f4cd2 4527 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4528 &cached_state, GFP_NOFS);
1506fcc8
YS
4529 return ret;
4530}
4531
727011e0
CM
4532static void __free_extent_buffer(struct extent_buffer *eb)
4533{
6d49ba1b 4534 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4535 kmem_cache_free(extent_buffer_cache, eb);
4536}
4537
a26e8c9f 4538int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4539{
4540 return (atomic_read(&eb->io_pages) ||
4541 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4542 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4543}
4544
4545/*
4546 * Helper for releasing extent buffer page.
4547 */
a50924e3 4548static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4549{
4550 unsigned long index;
db7f3436
JB
4551 struct page *page;
4552 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4553
4554 BUG_ON(extent_buffer_under_io(eb));
4555
a50924e3
DS
4556 index = num_extent_pages(eb->start, eb->len);
4557 if (index == 0)
db7f3436
JB
4558 return;
4559
4560 do {
4561 index--;
fb85fc9a 4562 page = eb->pages[index];
5d2361db
FL
4563 if (!page)
4564 continue;
4565 if (mapped)
db7f3436 4566 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4567 /*
4568 * We do this since we'll remove the pages after we've
4569 * removed the eb from the radix tree, so we could race
4570 * and have this page now attached to the new eb. So
4571 * only clear page_private if it's still connected to
4572 * this eb.
4573 */
4574 if (PagePrivate(page) &&
4575 page->private == (unsigned long)eb) {
4576 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4577 BUG_ON(PageDirty(page));
4578 BUG_ON(PageWriteback(page));
db7f3436 4579 /*
5d2361db
FL
4580 * We need to make sure we haven't be attached
4581 * to a new eb.
db7f3436 4582 */
5d2361db
FL
4583 ClearPagePrivate(page);
4584 set_page_private(page, 0);
4585 /* One for the page private */
09cbfeaf 4586 put_page(page);
db7f3436 4587 }
5d2361db
FL
4588
4589 if (mapped)
4590 spin_unlock(&page->mapping->private_lock);
4591
4592 /* One for when we alloced the page */
09cbfeaf 4593 put_page(page);
a50924e3 4594 } while (index != 0);
db7f3436
JB
4595}
4596
4597/*
4598 * Helper for releasing the extent buffer.
4599 */
4600static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4601{
a50924e3 4602 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4603 __free_extent_buffer(eb);
4604}
4605
f28491e0
JB
4606static struct extent_buffer *
4607__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4608 unsigned long len)
d1310b2e
CM
4609{
4610 struct extent_buffer *eb = NULL;
4611
d1b5c567 4612 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4613 eb->start = start;
4614 eb->len = len;
f28491e0 4615 eb->fs_info = fs_info;
815a51c7 4616 eb->bflags = 0;
bd681513
CM
4617 rwlock_init(&eb->lock);
4618 atomic_set(&eb->write_locks, 0);
4619 atomic_set(&eb->read_locks, 0);
4620 atomic_set(&eb->blocking_readers, 0);
4621 atomic_set(&eb->blocking_writers, 0);
4622 atomic_set(&eb->spinning_readers, 0);
4623 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4624 eb->lock_nested = 0;
bd681513
CM
4625 init_waitqueue_head(&eb->write_lock_wq);
4626 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4627
6d49ba1b
ES
4628 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4629
3083ee2e 4630 spin_lock_init(&eb->refs_lock);
d1310b2e 4631 atomic_set(&eb->refs, 1);
0b32f4bb 4632 atomic_set(&eb->io_pages, 0);
727011e0 4633
b8dae313
DS
4634 /*
4635 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4636 */
4637 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4638 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4639 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4640
4641 return eb;
4642}
4643
815a51c7
JS
4644struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4645{
4646 unsigned long i;
4647 struct page *p;
4648 struct extent_buffer *new;
4649 unsigned long num_pages = num_extent_pages(src->start, src->len);
4650
3f556f78 4651 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4652 if (new == NULL)
4653 return NULL;
4654
4655 for (i = 0; i < num_pages; i++) {
9ec72677 4656 p = alloc_page(GFP_NOFS);
db7f3436
JB
4657 if (!p) {
4658 btrfs_release_extent_buffer(new);
4659 return NULL;
4660 }
815a51c7
JS
4661 attach_extent_buffer_page(new, p);
4662 WARN_ON(PageDirty(p));
4663 SetPageUptodate(p);
4664 new->pages[i] = p;
4665 }
4666
4667 copy_extent_buffer(new, src, 0, 0, src->len);
4668 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4669 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4670
4671 return new;
4672}
4673
0f331229
OS
4674struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4675 u64 start, unsigned long len)
815a51c7
JS
4676{
4677 struct extent_buffer *eb;
3f556f78 4678 unsigned long num_pages;
815a51c7
JS
4679 unsigned long i;
4680
0f331229 4681 num_pages = num_extent_pages(start, len);
3f556f78
DS
4682
4683 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4684 if (!eb)
4685 return NULL;
4686
4687 for (i = 0; i < num_pages; i++) {
9ec72677 4688 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4689 if (!eb->pages[i])
4690 goto err;
4691 }
4692 set_extent_buffer_uptodate(eb);
4693 btrfs_set_header_nritems(eb, 0);
4694 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4695
4696 return eb;
4697err:
84167d19
SB
4698 for (; i > 0; i--)
4699 __free_page(eb->pages[i - 1]);
815a51c7
JS
4700 __free_extent_buffer(eb);
4701 return NULL;
4702}
4703
0f331229
OS
4704struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4705 u64 start)
4706{
4707 unsigned long len;
4708
4709 if (!fs_info) {
4710 /*
4711 * Called only from tests that don't always have a fs_info
4712 * available, but we know that nodesize is 4096
4713 */
4714 len = 4096;
4715 } else {
4716 len = fs_info->tree_root->nodesize;
4717 }
4718
4719 return __alloc_dummy_extent_buffer(fs_info, start, len);
4720}
4721
0b32f4bb
JB
4722static void check_buffer_tree_ref(struct extent_buffer *eb)
4723{
242e18c7 4724 int refs;
0b32f4bb
JB
4725 /* the ref bit is tricky. We have to make sure it is set
4726 * if we have the buffer dirty. Otherwise the
4727 * code to free a buffer can end up dropping a dirty
4728 * page
4729 *
4730 * Once the ref bit is set, it won't go away while the
4731 * buffer is dirty or in writeback, and it also won't
4732 * go away while we have the reference count on the
4733 * eb bumped.
4734 *
4735 * We can't just set the ref bit without bumping the
4736 * ref on the eb because free_extent_buffer might
4737 * see the ref bit and try to clear it. If this happens
4738 * free_extent_buffer might end up dropping our original
4739 * ref by mistake and freeing the page before we are able
4740 * to add one more ref.
4741 *
4742 * So bump the ref count first, then set the bit. If someone
4743 * beat us to it, drop the ref we added.
4744 */
242e18c7
CM
4745 refs = atomic_read(&eb->refs);
4746 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4747 return;
4748
594831c4
JB
4749 spin_lock(&eb->refs_lock);
4750 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4751 atomic_inc(&eb->refs);
594831c4 4752 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4753}
4754
2457aec6
MG
4755static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4756 struct page *accessed)
5df4235e
JB
4757{
4758 unsigned long num_pages, i;
4759
0b32f4bb
JB
4760 check_buffer_tree_ref(eb);
4761
5df4235e
JB
4762 num_pages = num_extent_pages(eb->start, eb->len);
4763 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4764 struct page *p = eb->pages[i];
4765
2457aec6
MG
4766 if (p != accessed)
4767 mark_page_accessed(p);
5df4235e
JB
4768 }
4769}
4770
f28491e0
JB
4771struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4772 u64 start)
452c75c3
CS
4773{
4774 struct extent_buffer *eb;
4775
4776 rcu_read_lock();
f28491e0 4777 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4778 start >> PAGE_SHIFT);
452c75c3
CS
4779 if (eb && atomic_inc_not_zero(&eb->refs)) {
4780 rcu_read_unlock();
062c19e9
FM
4781 /*
4782 * Lock our eb's refs_lock to avoid races with
4783 * free_extent_buffer. When we get our eb it might be flagged
4784 * with EXTENT_BUFFER_STALE and another task running
4785 * free_extent_buffer might have seen that flag set,
4786 * eb->refs == 2, that the buffer isn't under IO (dirty and
4787 * writeback flags not set) and it's still in the tree (flag
4788 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4789 * of decrementing the extent buffer's reference count twice.
4790 * So here we could race and increment the eb's reference count,
4791 * clear its stale flag, mark it as dirty and drop our reference
4792 * before the other task finishes executing free_extent_buffer,
4793 * which would later result in an attempt to free an extent
4794 * buffer that is dirty.
4795 */
4796 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4797 spin_lock(&eb->refs_lock);
4798 spin_unlock(&eb->refs_lock);
4799 }
2457aec6 4800 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4801 return eb;
4802 }
4803 rcu_read_unlock();
4804
4805 return NULL;
4806}
4807
faa2dbf0
JB
4808#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4809struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4810 u64 start)
faa2dbf0
JB
4811{
4812 struct extent_buffer *eb, *exists = NULL;
4813 int ret;
4814
4815 eb = find_extent_buffer(fs_info, start);
4816 if (eb)
4817 return eb;
3f556f78 4818 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4819 if (!eb)
4820 return NULL;
4821 eb->fs_info = fs_info;
4822again:
4823 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4824 if (ret)
4825 goto free_eb;
4826 spin_lock(&fs_info->buffer_lock);
4827 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4828 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
4829 spin_unlock(&fs_info->buffer_lock);
4830 radix_tree_preload_end();
4831 if (ret == -EEXIST) {
4832 exists = find_extent_buffer(fs_info, start);
4833 if (exists)
4834 goto free_eb;
4835 else
4836 goto again;
4837 }
4838 check_buffer_tree_ref(eb);
4839 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4840
4841 /*
4842 * We will free dummy extent buffer's if they come into
4843 * free_extent_buffer with a ref count of 2, but if we are using this we
4844 * want the buffers to stay in memory until we're done with them, so
4845 * bump the ref count again.
4846 */
4847 atomic_inc(&eb->refs);
4848 return eb;
4849free_eb:
4850 btrfs_release_extent_buffer(eb);
4851 return exists;
4852}
4853#endif
4854
f28491e0 4855struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4856 u64 start)
d1310b2e 4857{
ce3e6984 4858 unsigned long len = fs_info->tree_root->nodesize;
d1310b2e
CM
4859 unsigned long num_pages = num_extent_pages(start, len);
4860 unsigned long i;
09cbfeaf 4861 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 4862 struct extent_buffer *eb;
6af118ce 4863 struct extent_buffer *exists = NULL;
d1310b2e 4864 struct page *p;
f28491e0 4865 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4866 int uptodate = 1;
19fe0a8b 4867 int ret;
d1310b2e 4868
f28491e0 4869 eb = find_extent_buffer(fs_info, start);
452c75c3 4870 if (eb)
6af118ce 4871 return eb;
6af118ce 4872
23d79d81 4873 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4874 if (!eb)
d1310b2e
CM
4875 return NULL;
4876
727011e0 4877 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 4878 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4804b382 4879 if (!p)
6af118ce 4880 goto free_eb;
4f2de97a
JB
4881
4882 spin_lock(&mapping->private_lock);
4883 if (PagePrivate(p)) {
4884 /*
4885 * We could have already allocated an eb for this page
4886 * and attached one so lets see if we can get a ref on
4887 * the existing eb, and if we can we know it's good and
4888 * we can just return that one, else we know we can just
4889 * overwrite page->private.
4890 */
4891 exists = (struct extent_buffer *)p->private;
4892 if (atomic_inc_not_zero(&exists->refs)) {
4893 spin_unlock(&mapping->private_lock);
4894 unlock_page(p);
09cbfeaf 4895 put_page(p);
2457aec6 4896 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
4897 goto free_eb;
4898 }
5ca64f45 4899 exists = NULL;
4f2de97a 4900
0b32f4bb 4901 /*
4f2de97a
JB
4902 * Do this so attach doesn't complain and we need to
4903 * drop the ref the old guy had.
4904 */
4905 ClearPagePrivate(p);
0b32f4bb 4906 WARN_ON(PageDirty(p));
09cbfeaf 4907 put_page(p);
d1310b2e 4908 }
4f2de97a
JB
4909 attach_extent_buffer_page(eb, p);
4910 spin_unlock(&mapping->private_lock);
0b32f4bb 4911 WARN_ON(PageDirty(p));
727011e0 4912 eb->pages[i] = p;
d1310b2e
CM
4913 if (!PageUptodate(p))
4914 uptodate = 0;
eb14ab8e
CM
4915
4916 /*
4917 * see below about how we avoid a nasty race with release page
4918 * and why we unlock later
4919 */
d1310b2e
CM
4920 }
4921 if (uptodate)
b4ce94de 4922 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4923again:
19fe0a8b
MX
4924 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4925 if (ret)
4926 goto free_eb;
4927
f28491e0
JB
4928 spin_lock(&fs_info->buffer_lock);
4929 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4930 start >> PAGE_SHIFT, eb);
f28491e0 4931 spin_unlock(&fs_info->buffer_lock);
452c75c3 4932 radix_tree_preload_end();
19fe0a8b 4933 if (ret == -EEXIST) {
f28491e0 4934 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
4935 if (exists)
4936 goto free_eb;
4937 else
115391d2 4938 goto again;
6af118ce 4939 }
6af118ce 4940 /* add one reference for the tree */
0b32f4bb 4941 check_buffer_tree_ref(eb);
34b41ace 4942 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
4943
4944 /*
4945 * there is a race where release page may have
4946 * tried to find this extent buffer in the radix
4947 * but failed. It will tell the VM it is safe to
4948 * reclaim the, and it will clear the page private bit.
4949 * We must make sure to set the page private bit properly
4950 * after the extent buffer is in the radix tree so
4951 * it doesn't get lost
4952 */
727011e0
CM
4953 SetPageChecked(eb->pages[0]);
4954 for (i = 1; i < num_pages; i++) {
fb85fc9a 4955 p = eb->pages[i];
727011e0
CM
4956 ClearPageChecked(p);
4957 unlock_page(p);
4958 }
4959 unlock_page(eb->pages[0]);
d1310b2e
CM
4960 return eb;
4961
6af118ce 4962free_eb:
5ca64f45 4963 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
4964 for (i = 0; i < num_pages; i++) {
4965 if (eb->pages[i])
4966 unlock_page(eb->pages[i]);
4967 }
eb14ab8e 4968
897ca6e9 4969 btrfs_release_extent_buffer(eb);
6af118ce 4970 return exists;
d1310b2e 4971}
d1310b2e 4972
3083ee2e
JB
4973static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4974{
4975 struct extent_buffer *eb =
4976 container_of(head, struct extent_buffer, rcu_head);
4977
4978 __free_extent_buffer(eb);
4979}
4980
3083ee2e 4981/* Expects to have eb->eb_lock already held */
f7a52a40 4982static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
4983{
4984 WARN_ON(atomic_read(&eb->refs) == 0);
4985 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 4986 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 4987 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 4988
815a51c7 4989 spin_unlock(&eb->refs_lock);
3083ee2e 4990
f28491e0
JB
4991 spin_lock(&fs_info->buffer_lock);
4992 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 4993 eb->start >> PAGE_SHIFT);
f28491e0 4994 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
4995 } else {
4996 spin_unlock(&eb->refs_lock);
815a51c7 4997 }
3083ee2e
JB
4998
4999 /* Should be safe to release our pages at this point */
a50924e3 5000 btrfs_release_extent_buffer_page(eb);
bcb7e449
JB
5001#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5002 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5003 __free_extent_buffer(eb);
5004 return 1;
5005 }
5006#endif
3083ee2e 5007 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5008 return 1;
3083ee2e
JB
5009 }
5010 spin_unlock(&eb->refs_lock);
e64860aa
JB
5011
5012 return 0;
3083ee2e
JB
5013}
5014
d1310b2e
CM
5015void free_extent_buffer(struct extent_buffer *eb)
5016{
242e18c7
CM
5017 int refs;
5018 int old;
d1310b2e
CM
5019 if (!eb)
5020 return;
5021
242e18c7
CM
5022 while (1) {
5023 refs = atomic_read(&eb->refs);
5024 if (refs <= 3)
5025 break;
5026 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5027 if (old == refs)
5028 return;
5029 }
5030
3083ee2e 5031 spin_lock(&eb->refs_lock);
815a51c7
JS
5032 if (atomic_read(&eb->refs) == 2 &&
5033 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5034 atomic_dec(&eb->refs);
5035
3083ee2e
JB
5036 if (atomic_read(&eb->refs) == 2 &&
5037 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5038 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5039 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5040 atomic_dec(&eb->refs);
5041
5042 /*
5043 * I know this is terrible, but it's temporary until we stop tracking
5044 * the uptodate bits and such for the extent buffers.
5045 */
f7a52a40 5046 release_extent_buffer(eb);
3083ee2e
JB
5047}
5048
5049void free_extent_buffer_stale(struct extent_buffer *eb)
5050{
5051 if (!eb)
d1310b2e
CM
5052 return;
5053
3083ee2e
JB
5054 spin_lock(&eb->refs_lock);
5055 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5056
0b32f4bb 5057 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5058 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5059 atomic_dec(&eb->refs);
f7a52a40 5060 release_extent_buffer(eb);
d1310b2e 5061}
d1310b2e 5062
1d4284bd 5063void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5064{
d1310b2e
CM
5065 unsigned long i;
5066 unsigned long num_pages;
5067 struct page *page;
5068
d1310b2e
CM
5069 num_pages = num_extent_pages(eb->start, eb->len);
5070
5071 for (i = 0; i < num_pages; i++) {
fb85fc9a 5072 page = eb->pages[i];
b9473439 5073 if (!PageDirty(page))
d2c3f4f6
CM
5074 continue;
5075
a61e6f29 5076 lock_page(page);
eb14ab8e
CM
5077 WARN_ON(!PagePrivate(page));
5078
d1310b2e 5079 clear_page_dirty_for_io(page);
0ee0fda0 5080 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5081 if (!PageDirty(page)) {
5082 radix_tree_tag_clear(&page->mapping->page_tree,
5083 page_index(page),
5084 PAGECACHE_TAG_DIRTY);
5085 }
0ee0fda0 5086 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5087 ClearPageError(page);
a61e6f29 5088 unlock_page(page);
d1310b2e 5089 }
0b32f4bb 5090 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5091}
d1310b2e 5092
0b32f4bb 5093int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5094{
5095 unsigned long i;
5096 unsigned long num_pages;
b9473439 5097 int was_dirty = 0;
d1310b2e 5098
0b32f4bb
JB
5099 check_buffer_tree_ref(eb);
5100
b9473439 5101 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5102
d1310b2e 5103 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5104 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5105 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5106
b9473439 5107 for (i = 0; i < num_pages; i++)
fb85fc9a 5108 set_page_dirty(eb->pages[i]);
b9473439 5109 return was_dirty;
d1310b2e 5110}
d1310b2e 5111
69ba3927 5112void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5113{
5114 unsigned long i;
5115 struct page *page;
5116 unsigned long num_pages;
5117
b4ce94de 5118 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5119 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5120 for (i = 0; i < num_pages; i++) {
fb85fc9a 5121 page = eb->pages[i];
33958dc6
CM
5122 if (page)
5123 ClearPageUptodate(page);
1259ab75 5124 }
1259ab75
CM
5125}
5126
09c25a8c 5127void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5128{
5129 unsigned long i;
5130 struct page *page;
5131 unsigned long num_pages;
5132
0b32f4bb 5133 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5134 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5135 for (i = 0; i < num_pages; i++) {
fb85fc9a 5136 page = eb->pages[i];
d1310b2e
CM
5137 SetPageUptodate(page);
5138 }
d1310b2e 5139}
d1310b2e 5140
0b32f4bb 5141int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5142{
0b32f4bb 5143 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5144}
d1310b2e
CM
5145
5146int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 5147 struct extent_buffer *eb, u64 start, int wait,
f188591e 5148 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
5149{
5150 unsigned long i;
5151 unsigned long start_i;
5152 struct page *page;
5153 int err;
5154 int ret = 0;
ce9adaa5
CM
5155 int locked_pages = 0;
5156 int all_uptodate = 1;
d1310b2e 5157 unsigned long num_pages;
727011e0 5158 unsigned long num_reads = 0;
a86c12c7 5159 struct bio *bio = NULL;
c8b97818 5160 unsigned long bio_flags = 0;
a86c12c7 5161
b4ce94de 5162 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5163 return 0;
5164
d1310b2e
CM
5165 if (start) {
5166 WARN_ON(start < eb->start);
09cbfeaf
KS
5167 start_i = (start >> PAGE_SHIFT) -
5168 (eb->start >> PAGE_SHIFT);
d1310b2e
CM
5169 } else {
5170 start_i = 0;
5171 }
5172
5173 num_pages = num_extent_pages(eb->start, eb->len);
5174 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5175 page = eb->pages[i];
bb82ab88 5176 if (wait == WAIT_NONE) {
2db04966 5177 if (!trylock_page(page))
ce9adaa5 5178 goto unlock_exit;
d1310b2e
CM
5179 } else {
5180 lock_page(page);
5181 }
ce9adaa5 5182 locked_pages++;
727011e0
CM
5183 if (!PageUptodate(page)) {
5184 num_reads++;
ce9adaa5 5185 all_uptodate = 0;
727011e0 5186 }
ce9adaa5
CM
5187 }
5188 if (all_uptodate) {
5189 if (start_i == 0)
b4ce94de 5190 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5191 goto unlock_exit;
5192 }
5193
656f30db 5194 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5195 eb->read_mirror = 0;
0b32f4bb 5196 atomic_set(&eb->io_pages, num_reads);
ce9adaa5 5197 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5198 page = eb->pages[i];
ce9adaa5 5199 if (!PageUptodate(page)) {
f188591e 5200 ClearPageError(page);
a86c12c7 5201 err = __extent_read_full_page(tree, page,
f188591e 5202 get_extent, &bio,
d4c7ca86
JB
5203 mirror_num, &bio_flags,
5204 READ | REQ_META);
d397712b 5205 if (err)
d1310b2e 5206 ret = err;
d1310b2e
CM
5207 } else {
5208 unlock_page(page);
5209 }
5210 }
5211
355808c2 5212 if (bio) {
d4c7ca86
JB
5213 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5214 bio_flags);
79787eaa
JM
5215 if (err)
5216 return err;
355808c2 5217 }
a86c12c7 5218
bb82ab88 5219 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5220 return ret;
d397712b 5221
d1310b2e 5222 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5223 page = eb->pages[i];
d1310b2e 5224 wait_on_page_locked(page);
d397712b 5225 if (!PageUptodate(page))
d1310b2e 5226 ret = -EIO;
d1310b2e 5227 }
d397712b 5228
d1310b2e 5229 return ret;
ce9adaa5
CM
5230
5231unlock_exit:
5232 i = start_i;
d397712b 5233 while (locked_pages > 0) {
fb85fc9a 5234 page = eb->pages[i];
ce9adaa5
CM
5235 i++;
5236 unlock_page(page);
5237 locked_pages--;
5238 }
5239 return ret;
d1310b2e 5240}
d1310b2e
CM
5241
5242void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5243 unsigned long start,
5244 unsigned long len)
5245{
5246 size_t cur;
5247 size_t offset;
5248 struct page *page;
5249 char *kaddr;
5250 char *dst = (char *)dstv;
09cbfeaf
KS
5251 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5252 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5253
5254 WARN_ON(start > eb->len);
5255 WARN_ON(start + len > eb->start + eb->len);
5256
09cbfeaf 5257 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5258
d397712b 5259 while (len > 0) {
fb85fc9a 5260 page = eb->pages[i];
d1310b2e 5261
09cbfeaf 5262 cur = min(len, (PAGE_SIZE - offset));
a6591715 5263 kaddr = page_address(page);
d1310b2e 5264 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5265
5266 dst += cur;
5267 len -= cur;
5268 offset = 0;
5269 i++;
5270 }
5271}
d1310b2e 5272
550ac1d8
GH
5273int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5274 unsigned long start,
5275 unsigned long len)
5276{
5277 size_t cur;
5278 size_t offset;
5279 struct page *page;
5280 char *kaddr;
5281 char __user *dst = (char __user *)dstv;
09cbfeaf
KS
5282 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5283 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5284 int ret = 0;
5285
5286 WARN_ON(start > eb->len);
5287 WARN_ON(start + len > eb->start + eb->len);
5288
09cbfeaf 5289 offset = (start_offset + start) & (PAGE_SIZE - 1);
550ac1d8
GH
5290
5291 while (len > 0) {
fb85fc9a 5292 page = eb->pages[i];
550ac1d8 5293
09cbfeaf 5294 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5295 kaddr = page_address(page);
5296 if (copy_to_user(dst, kaddr + offset, cur)) {
5297 ret = -EFAULT;
5298 break;
5299 }
5300
5301 dst += cur;
5302 len -= cur;
5303 offset = 0;
5304 i++;
5305 }
5306
5307 return ret;
5308}
5309
d1310b2e 5310int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 5311 unsigned long min_len, char **map,
d1310b2e 5312 unsigned long *map_start,
a6591715 5313 unsigned long *map_len)
d1310b2e 5314{
09cbfeaf 5315 size_t offset = start & (PAGE_SIZE - 1);
d1310b2e
CM
5316 char *kaddr;
5317 struct page *p;
09cbfeaf
KS
5318 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5319 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5320 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5321 PAGE_SHIFT;
d1310b2e
CM
5322
5323 if (i != end_i)
5324 return -EINVAL;
5325
5326 if (i == 0) {
5327 offset = start_offset;
5328 *map_start = 0;
5329 } else {
5330 offset = 0;
09cbfeaf 5331 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5332 }
d397712b 5333
d1310b2e 5334 if (start + min_len > eb->len) {
31b1a2bd 5335 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
c1c9ff7c
GU
5336 "wanted %lu %lu\n",
5337 eb->start, eb->len, start, min_len);
85026533 5338 return -EINVAL;
d1310b2e
CM
5339 }
5340
fb85fc9a 5341 p = eb->pages[i];
a6591715 5342 kaddr = page_address(p);
d1310b2e 5343 *map = kaddr + offset;
09cbfeaf 5344 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5345 return 0;
5346}
d1310b2e 5347
d1310b2e
CM
5348int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5349 unsigned long start,
5350 unsigned long len)
5351{
5352 size_t cur;
5353 size_t offset;
5354 struct page *page;
5355 char *kaddr;
5356 char *ptr = (char *)ptrv;
09cbfeaf
KS
5357 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5358 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5359 int ret = 0;
5360
5361 WARN_ON(start > eb->len);
5362 WARN_ON(start + len > eb->start + eb->len);
5363
09cbfeaf 5364 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5365
d397712b 5366 while (len > 0) {
fb85fc9a 5367 page = eb->pages[i];
d1310b2e 5368
09cbfeaf 5369 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5370
a6591715 5371 kaddr = page_address(page);
d1310b2e 5372 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5373 if (ret)
5374 break;
5375
5376 ptr += cur;
5377 len -= cur;
5378 offset = 0;
5379 i++;
5380 }
5381 return ret;
5382}
d1310b2e
CM
5383
5384void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5385 unsigned long start, unsigned long len)
5386{
5387 size_t cur;
5388 size_t offset;
5389 struct page *page;
5390 char *kaddr;
5391 char *src = (char *)srcv;
09cbfeaf
KS
5392 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5393 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5394
5395 WARN_ON(start > eb->len);
5396 WARN_ON(start + len > eb->start + eb->len);
5397
09cbfeaf 5398 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5399
d397712b 5400 while (len > 0) {
fb85fc9a 5401 page = eb->pages[i];
d1310b2e
CM
5402 WARN_ON(!PageUptodate(page));
5403
09cbfeaf 5404 cur = min(len, PAGE_SIZE - offset);
a6591715 5405 kaddr = page_address(page);
d1310b2e 5406 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5407
5408 src += cur;
5409 len -= cur;
5410 offset = 0;
5411 i++;
5412 }
5413}
d1310b2e
CM
5414
5415void memset_extent_buffer(struct extent_buffer *eb, char c,
5416 unsigned long start, unsigned long len)
5417{
5418 size_t cur;
5419 size_t offset;
5420 struct page *page;
5421 char *kaddr;
09cbfeaf
KS
5422 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5423 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5424
5425 WARN_ON(start > eb->len);
5426 WARN_ON(start + len > eb->start + eb->len);
5427
09cbfeaf 5428 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5429
d397712b 5430 while (len > 0) {
fb85fc9a 5431 page = eb->pages[i];
d1310b2e
CM
5432 WARN_ON(!PageUptodate(page));
5433
09cbfeaf 5434 cur = min(len, PAGE_SIZE - offset);
a6591715 5435 kaddr = page_address(page);
d1310b2e 5436 memset(kaddr + offset, c, cur);
d1310b2e
CM
5437
5438 len -= cur;
5439 offset = 0;
5440 i++;
5441 }
5442}
d1310b2e
CM
5443
5444void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5445 unsigned long dst_offset, unsigned long src_offset,
5446 unsigned long len)
5447{
5448 u64 dst_len = dst->len;
5449 size_t cur;
5450 size_t offset;
5451 struct page *page;
5452 char *kaddr;
09cbfeaf
KS
5453 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5454 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5455
5456 WARN_ON(src->len != dst_len);
5457
5458 offset = (start_offset + dst_offset) &
09cbfeaf 5459 (PAGE_SIZE - 1);
d1310b2e 5460
d397712b 5461 while (len > 0) {
fb85fc9a 5462 page = dst->pages[i];
d1310b2e
CM
5463 WARN_ON(!PageUptodate(page));
5464
09cbfeaf 5465 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5466
a6591715 5467 kaddr = page_address(page);
d1310b2e 5468 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5469
5470 src_offset += cur;
5471 len -= cur;
5472 offset = 0;
5473 i++;
5474 }
5475}
d1310b2e 5476
3e1e8bb7
OS
5477/*
5478 * The extent buffer bitmap operations are done with byte granularity because
5479 * bitmap items are not guaranteed to be aligned to a word and therefore a
5480 * single word in a bitmap may straddle two pages in the extent buffer.
5481 */
5482#define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE)
5483#define BYTE_MASK ((1 << BITS_PER_BYTE) - 1)
5484#define BITMAP_FIRST_BYTE_MASK(start) \
5485 ((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK)
5486#define BITMAP_LAST_BYTE_MASK(nbits) \
5487 (BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1)))
5488
5489/*
5490 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5491 * given bit number
5492 * @eb: the extent buffer
5493 * @start: offset of the bitmap item in the extent buffer
5494 * @nr: bit number
5495 * @page_index: return index of the page in the extent buffer that contains the
5496 * given bit number
5497 * @page_offset: return offset into the page given by page_index
5498 *
5499 * This helper hides the ugliness of finding the byte in an extent buffer which
5500 * contains a given bit.
5501 */
5502static inline void eb_bitmap_offset(struct extent_buffer *eb,
5503 unsigned long start, unsigned long nr,
5504 unsigned long *page_index,
5505 size_t *page_offset)
5506{
09cbfeaf 5507 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
3e1e8bb7
OS
5508 size_t byte_offset = BIT_BYTE(nr);
5509 size_t offset;
5510
5511 /*
5512 * The byte we want is the offset of the extent buffer + the offset of
5513 * the bitmap item in the extent buffer + the offset of the byte in the
5514 * bitmap item.
5515 */
5516 offset = start_offset + start + byte_offset;
5517
09cbfeaf
KS
5518 *page_index = offset >> PAGE_SHIFT;
5519 *page_offset = offset & (PAGE_SIZE - 1);
3e1e8bb7
OS
5520}
5521
5522/**
5523 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5524 * @eb: the extent buffer
5525 * @start: offset of the bitmap item in the extent buffer
5526 * @nr: bit number to test
5527 */
5528int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5529 unsigned long nr)
5530{
5531 char *kaddr;
5532 struct page *page;
5533 unsigned long i;
5534 size_t offset;
5535
5536 eb_bitmap_offset(eb, start, nr, &i, &offset);
5537 page = eb->pages[i];
5538 WARN_ON(!PageUptodate(page));
5539 kaddr = page_address(page);
5540 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5541}
5542
5543/**
5544 * extent_buffer_bitmap_set - set an area of a bitmap
5545 * @eb: the extent buffer
5546 * @start: offset of the bitmap item in the extent buffer
5547 * @pos: bit number of the first bit
5548 * @len: number of bits to set
5549 */
5550void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5551 unsigned long pos, unsigned long len)
5552{
5553 char *kaddr;
5554 struct page *page;
5555 unsigned long i;
5556 size_t offset;
5557 const unsigned int size = pos + len;
5558 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5559 unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5560
5561 eb_bitmap_offset(eb, start, pos, &i, &offset);
5562 page = eb->pages[i];
5563 WARN_ON(!PageUptodate(page));
5564 kaddr = page_address(page);
5565
5566 while (len >= bits_to_set) {
5567 kaddr[offset] |= mask_to_set;
5568 len -= bits_to_set;
5569 bits_to_set = BITS_PER_BYTE;
5570 mask_to_set = ~0U;
09cbfeaf 5571 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5572 offset = 0;
5573 page = eb->pages[++i];
5574 WARN_ON(!PageUptodate(page));
5575 kaddr = page_address(page);
5576 }
5577 }
5578 if (len) {
5579 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5580 kaddr[offset] |= mask_to_set;
5581 }
5582}
5583
5584
5585/**
5586 * extent_buffer_bitmap_clear - clear an area of a bitmap
5587 * @eb: the extent buffer
5588 * @start: offset of the bitmap item in the extent buffer
5589 * @pos: bit number of the first bit
5590 * @len: number of bits to clear
5591 */
5592void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5593 unsigned long pos, unsigned long len)
5594{
5595 char *kaddr;
5596 struct page *page;
5597 unsigned long i;
5598 size_t offset;
5599 const unsigned int size = pos + len;
5600 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5601 unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5602
5603 eb_bitmap_offset(eb, start, pos, &i, &offset);
5604 page = eb->pages[i];
5605 WARN_ON(!PageUptodate(page));
5606 kaddr = page_address(page);
5607
5608 while (len >= bits_to_clear) {
5609 kaddr[offset] &= ~mask_to_clear;
5610 len -= bits_to_clear;
5611 bits_to_clear = BITS_PER_BYTE;
5612 mask_to_clear = ~0U;
09cbfeaf 5613 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5614 offset = 0;
5615 page = eb->pages[++i];
5616 WARN_ON(!PageUptodate(page));
5617 kaddr = page_address(page);
5618 }
5619 }
5620 if (len) {
5621 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5622 kaddr[offset] &= ~mask_to_clear;
5623 }
5624}
5625
3387206f
ST
5626static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5627{
5628 unsigned long distance = (src > dst) ? src - dst : dst - src;
5629 return distance < len;
5630}
5631
d1310b2e
CM
5632static void copy_pages(struct page *dst_page, struct page *src_page,
5633 unsigned long dst_off, unsigned long src_off,
5634 unsigned long len)
5635{
a6591715 5636 char *dst_kaddr = page_address(dst_page);
d1310b2e 5637 char *src_kaddr;
727011e0 5638 int must_memmove = 0;
d1310b2e 5639
3387206f 5640 if (dst_page != src_page) {
a6591715 5641 src_kaddr = page_address(src_page);
3387206f 5642 } else {
d1310b2e 5643 src_kaddr = dst_kaddr;
727011e0
CM
5644 if (areas_overlap(src_off, dst_off, len))
5645 must_memmove = 1;
3387206f 5646 }
d1310b2e 5647
727011e0
CM
5648 if (must_memmove)
5649 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5650 else
5651 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5652}
5653
5654void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5655 unsigned long src_offset, unsigned long len)
5656{
5657 size_t cur;
5658 size_t dst_off_in_page;
5659 size_t src_off_in_page;
09cbfeaf 5660 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5661 unsigned long dst_i;
5662 unsigned long src_i;
5663
5664 if (src_offset + len > dst->len) {
f14d104d
DS
5665 btrfs_err(dst->fs_info,
5666 "memmove bogus src_offset %lu move "
5667 "len %lu dst len %lu", src_offset, len, dst->len);
d1310b2e
CM
5668 BUG_ON(1);
5669 }
5670 if (dst_offset + len > dst->len) {
f14d104d
DS
5671 btrfs_err(dst->fs_info,
5672 "memmove bogus dst_offset %lu move "
5673 "len %lu dst len %lu", dst_offset, len, dst->len);
d1310b2e
CM
5674 BUG_ON(1);
5675 }
5676
d397712b 5677 while (len > 0) {
d1310b2e 5678 dst_off_in_page = (start_offset + dst_offset) &
09cbfeaf 5679 (PAGE_SIZE - 1);
d1310b2e 5680 src_off_in_page = (start_offset + src_offset) &
09cbfeaf 5681 (PAGE_SIZE - 1);
d1310b2e 5682
09cbfeaf
KS
5683 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5684 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5685
09cbfeaf 5686 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5687 src_off_in_page));
5688 cur = min_t(unsigned long, cur,
09cbfeaf 5689 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5690
fb85fc9a 5691 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5692 dst_off_in_page, src_off_in_page, cur);
5693
5694 src_offset += cur;
5695 dst_offset += cur;
5696 len -= cur;
5697 }
5698}
d1310b2e
CM
5699
5700void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5701 unsigned long src_offset, unsigned long len)
5702{
5703 size_t cur;
5704 size_t dst_off_in_page;
5705 size_t src_off_in_page;
5706 unsigned long dst_end = dst_offset + len - 1;
5707 unsigned long src_end = src_offset + len - 1;
09cbfeaf 5708 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5709 unsigned long dst_i;
5710 unsigned long src_i;
5711
5712 if (src_offset + len > dst->len) {
f14d104d
DS
5713 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5714 "len %lu len %lu", src_offset, len, dst->len);
d1310b2e
CM
5715 BUG_ON(1);
5716 }
5717 if (dst_offset + len > dst->len) {
f14d104d
DS
5718 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5719 "len %lu len %lu", dst_offset, len, dst->len);
d1310b2e
CM
5720 BUG_ON(1);
5721 }
727011e0 5722 if (dst_offset < src_offset) {
d1310b2e
CM
5723 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5724 return;
5725 }
d397712b 5726 while (len > 0) {
09cbfeaf
KS
5727 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5728 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e
CM
5729
5730 dst_off_in_page = (start_offset + dst_end) &
09cbfeaf 5731 (PAGE_SIZE - 1);
d1310b2e 5732 src_off_in_page = (start_offset + src_end) &
09cbfeaf 5733 (PAGE_SIZE - 1);
d1310b2e
CM
5734
5735 cur = min_t(unsigned long, len, src_off_in_page + 1);
5736 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5737 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5738 dst_off_in_page - cur + 1,
5739 src_off_in_page - cur + 1, cur);
5740
5741 dst_end -= cur;
5742 src_end -= cur;
5743 len -= cur;
5744 }
5745}
6af118ce 5746
f7a52a40 5747int try_release_extent_buffer(struct page *page)
19fe0a8b 5748{
6af118ce 5749 struct extent_buffer *eb;
6af118ce 5750
3083ee2e
JB
5751 /*
5752 * We need to make sure noboody is attaching this page to an eb right
5753 * now.
5754 */
5755 spin_lock(&page->mapping->private_lock);
5756 if (!PagePrivate(page)) {
5757 spin_unlock(&page->mapping->private_lock);
4f2de97a 5758 return 1;
45f49bce 5759 }
6af118ce 5760
3083ee2e
JB
5761 eb = (struct extent_buffer *)page->private;
5762 BUG_ON(!eb);
19fe0a8b
MX
5763
5764 /*
3083ee2e
JB
5765 * This is a little awful but should be ok, we need to make sure that
5766 * the eb doesn't disappear out from under us while we're looking at
5767 * this page.
19fe0a8b 5768 */
3083ee2e 5769 spin_lock(&eb->refs_lock);
0b32f4bb 5770 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5771 spin_unlock(&eb->refs_lock);
5772 spin_unlock(&page->mapping->private_lock);
5773 return 0;
b9473439 5774 }
3083ee2e 5775 spin_unlock(&page->mapping->private_lock);
897ca6e9 5776
19fe0a8b 5777 /*
3083ee2e
JB
5778 * If tree ref isn't set then we know the ref on this eb is a real ref,
5779 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5780 */
3083ee2e
JB
5781 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5782 spin_unlock(&eb->refs_lock);
5783 return 0;
b9473439 5784 }
19fe0a8b 5785
f7a52a40 5786 return release_extent_buffer(eb);
6af118ce 5787}
This page took 0.975666 seconds and 5 git commands to generate.