Btrfs: do not do filemap_write_and_wait_range in fsync
[deliverable/linux.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
7#include <linux/module.h>
8#include <linux/spinlock.h>
9#include <linux/blkdev.h>
10#include <linux/swap.h>
d1310b2e
CM
11#include <linux/writeback.h>
12#include <linux/pagevec.h>
268bb0ce 13#include <linux/prefetch.h>
90a887c9 14#include <linux/cleancache.h>
d1310b2e
CM
15#include "extent_io.h"
16#include "extent_map.h"
2db04966 17#include "compat.h"
902b22f3
DW
18#include "ctree.h"
19#include "btrfs_inode.h"
4a54c8c1 20#include "volumes.h"
21adbd5c 21#include "check-integrity.h"
0b32f4bb 22#include "locking.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
26
27static LIST_HEAD(buffers);
28static LIST_HEAD(states);
4bef0848 29
b47eda86 30#define LEAK_DEBUG 0
3935127c 31#if LEAK_DEBUG
d397712b 32static DEFINE_SPINLOCK(leak_lock);
4bef0848 33#endif
d1310b2e 34
d1310b2e
CM
35#define BUFFER_LRU_MAX 64
36
37struct tree_entry {
38 u64 start;
39 u64 end;
d1310b2e
CM
40 struct rb_node rb_node;
41};
42
43struct extent_page_data {
44 struct bio *bio;
45 struct extent_io_tree *tree;
46 get_extent_t *get_extent;
771ed689
CM
47
48 /* tells writepage not to lock the state bits for this range
49 * it still does the unlocking
50 */
ffbd517d
CM
51 unsigned int extent_locked:1;
52
53 /* tells the submit_bio code to use a WRITE_SYNC */
54 unsigned int sync_io:1;
d1310b2e
CM
55};
56
0b32f4bb 57static noinline void flush_write_bio(void *data);
c2d904e0
JM
58static inline struct btrfs_fs_info *
59tree_fs_info(struct extent_io_tree *tree)
60{
61 return btrfs_sb(tree->mapping->host->i_sb);
62}
0b32f4bb 63
d1310b2e
CM
64int __init extent_io_init(void)
65{
9601e3f6
CH
66 extent_state_cache = kmem_cache_create("extent_state",
67 sizeof(struct extent_state), 0,
68 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
69 if (!extent_state_cache)
70 return -ENOMEM;
71
9601e3f6
CH
72 extent_buffer_cache = kmem_cache_create("extent_buffers",
73 sizeof(struct extent_buffer), 0,
74 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
75 if (!extent_buffer_cache)
76 goto free_state_cache;
77 return 0;
78
79free_state_cache:
80 kmem_cache_destroy(extent_state_cache);
81 return -ENOMEM;
82}
83
84void extent_io_exit(void)
85{
86 struct extent_state *state;
2d2ae547 87 struct extent_buffer *eb;
d1310b2e
CM
88
89 while (!list_empty(&states)) {
2d2ae547 90 state = list_entry(states.next, struct extent_state, leak_list);
d397712b
CM
91 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
92 "state %lu in tree %p refs %d\n",
93 (unsigned long long)state->start,
94 (unsigned long long)state->end,
95 state->state, state->tree, atomic_read(&state->refs));
2d2ae547 96 list_del(&state->leak_list);
d1310b2e
CM
97 kmem_cache_free(extent_state_cache, state);
98
99 }
100
2d2ae547
CM
101 while (!list_empty(&buffers)) {
102 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
d397712b
CM
103 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
104 "refs %d\n", (unsigned long long)eb->start,
105 eb->len, atomic_read(&eb->refs));
2d2ae547
CM
106 list_del(&eb->leak_list);
107 kmem_cache_free(extent_buffer_cache, eb);
108 }
d1310b2e
CM
109 if (extent_state_cache)
110 kmem_cache_destroy(extent_state_cache);
111 if (extent_buffer_cache)
112 kmem_cache_destroy(extent_buffer_cache);
113}
114
115void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 116 struct address_space *mapping)
d1310b2e 117{
6bef4d31 118 tree->state = RB_ROOT;
19fe0a8b 119 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
d1310b2e
CM
120 tree->ops = NULL;
121 tree->dirty_bytes = 0;
70dec807 122 spin_lock_init(&tree->lock);
6af118ce 123 spin_lock_init(&tree->buffer_lock);
d1310b2e 124 tree->mapping = mapping;
d1310b2e 125}
d1310b2e 126
b2950863 127static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
128{
129 struct extent_state *state;
3935127c 130#if LEAK_DEBUG
2d2ae547 131 unsigned long flags;
4bef0848 132#endif
d1310b2e
CM
133
134 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 135 if (!state)
d1310b2e
CM
136 return state;
137 state->state = 0;
d1310b2e 138 state->private = 0;
70dec807 139 state->tree = NULL;
3935127c 140#if LEAK_DEBUG
2d2ae547
CM
141 spin_lock_irqsave(&leak_lock, flags);
142 list_add(&state->leak_list, &states);
143 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 144#endif
d1310b2e
CM
145 atomic_set(&state->refs, 1);
146 init_waitqueue_head(&state->wq);
143bede5 147 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
148 return state;
149}
d1310b2e 150
4845e44f 151void free_extent_state(struct extent_state *state)
d1310b2e 152{
d1310b2e
CM
153 if (!state)
154 return;
155 if (atomic_dec_and_test(&state->refs)) {
3935127c 156#if LEAK_DEBUG
2d2ae547 157 unsigned long flags;
4bef0848 158#endif
70dec807 159 WARN_ON(state->tree);
3935127c 160#if LEAK_DEBUG
2d2ae547
CM
161 spin_lock_irqsave(&leak_lock, flags);
162 list_del(&state->leak_list);
163 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 164#endif
143bede5 165 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
166 kmem_cache_free(extent_state_cache, state);
167 }
168}
d1310b2e
CM
169
170static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
171 struct rb_node *node)
172{
d397712b
CM
173 struct rb_node **p = &root->rb_node;
174 struct rb_node *parent = NULL;
d1310b2e
CM
175 struct tree_entry *entry;
176
d397712b 177 while (*p) {
d1310b2e
CM
178 parent = *p;
179 entry = rb_entry(parent, struct tree_entry, rb_node);
180
181 if (offset < entry->start)
182 p = &(*p)->rb_left;
183 else if (offset > entry->end)
184 p = &(*p)->rb_right;
185 else
186 return parent;
187 }
188
d1310b2e
CM
189 rb_link_node(node, parent, p);
190 rb_insert_color(node, root);
191 return NULL;
192}
193
80ea96b1 194static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
d1310b2e
CM
195 struct rb_node **prev_ret,
196 struct rb_node **next_ret)
197{
80ea96b1 198 struct rb_root *root = &tree->state;
d397712b 199 struct rb_node *n = root->rb_node;
d1310b2e
CM
200 struct rb_node *prev = NULL;
201 struct rb_node *orig_prev = NULL;
202 struct tree_entry *entry;
203 struct tree_entry *prev_entry = NULL;
204
d397712b 205 while (n) {
d1310b2e
CM
206 entry = rb_entry(n, struct tree_entry, rb_node);
207 prev = n;
208 prev_entry = entry;
209
210 if (offset < entry->start)
211 n = n->rb_left;
212 else if (offset > entry->end)
213 n = n->rb_right;
d397712b 214 else
d1310b2e
CM
215 return n;
216 }
217
218 if (prev_ret) {
219 orig_prev = prev;
d397712b 220 while (prev && offset > prev_entry->end) {
d1310b2e
CM
221 prev = rb_next(prev);
222 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
223 }
224 *prev_ret = prev;
225 prev = orig_prev;
226 }
227
228 if (next_ret) {
229 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 230 while (prev && offset < prev_entry->start) {
d1310b2e
CM
231 prev = rb_prev(prev);
232 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
233 }
234 *next_ret = prev;
235 }
236 return NULL;
237}
238
80ea96b1
CM
239static inline struct rb_node *tree_search(struct extent_io_tree *tree,
240 u64 offset)
d1310b2e 241{
70dec807 242 struct rb_node *prev = NULL;
d1310b2e 243 struct rb_node *ret;
70dec807 244
80ea96b1 245 ret = __etree_search(tree, offset, &prev, NULL);
d397712b 246 if (!ret)
d1310b2e
CM
247 return prev;
248 return ret;
249}
250
9ed74f2d
JB
251static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
252 struct extent_state *other)
253{
254 if (tree->ops && tree->ops->merge_extent_hook)
255 tree->ops->merge_extent_hook(tree->mapping->host, new,
256 other);
257}
258
d1310b2e
CM
259/*
260 * utility function to look for merge candidates inside a given range.
261 * Any extents with matching state are merged together into a single
262 * extent in the tree. Extents with EXTENT_IO in their state field
263 * are not merged because the end_io handlers need to be able to do
264 * operations on them without sleeping (or doing allocations/splits).
265 *
266 * This should be called with the tree lock held.
267 */
1bf85046
JM
268static void merge_state(struct extent_io_tree *tree,
269 struct extent_state *state)
d1310b2e
CM
270{
271 struct extent_state *other;
272 struct rb_node *other_node;
273
5b21f2ed 274 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 275 return;
d1310b2e
CM
276
277 other_node = rb_prev(&state->rb_node);
278 if (other_node) {
279 other = rb_entry(other_node, struct extent_state, rb_node);
280 if (other->end == state->start - 1 &&
281 other->state == state->state) {
9ed74f2d 282 merge_cb(tree, state, other);
d1310b2e 283 state->start = other->start;
70dec807 284 other->tree = NULL;
d1310b2e
CM
285 rb_erase(&other->rb_node, &tree->state);
286 free_extent_state(other);
287 }
288 }
289 other_node = rb_next(&state->rb_node);
290 if (other_node) {
291 other = rb_entry(other_node, struct extent_state, rb_node);
292 if (other->start == state->end + 1 &&
293 other->state == state->state) {
9ed74f2d 294 merge_cb(tree, state, other);
df98b6e2
JB
295 state->end = other->end;
296 other->tree = NULL;
297 rb_erase(&other->rb_node, &tree->state);
298 free_extent_state(other);
d1310b2e
CM
299 }
300 }
d1310b2e
CM
301}
302
1bf85046 303static void set_state_cb(struct extent_io_tree *tree,
0ca1f7ce 304 struct extent_state *state, int *bits)
291d673e 305{
1bf85046
JM
306 if (tree->ops && tree->ops->set_bit_hook)
307 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
308}
309
310static void clear_state_cb(struct extent_io_tree *tree,
0ca1f7ce 311 struct extent_state *state, int *bits)
291d673e 312{
9ed74f2d
JB
313 if (tree->ops && tree->ops->clear_bit_hook)
314 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
315}
316
3150b699
XG
317static void set_state_bits(struct extent_io_tree *tree,
318 struct extent_state *state, int *bits);
319
d1310b2e
CM
320/*
321 * insert an extent_state struct into the tree. 'bits' are set on the
322 * struct before it is inserted.
323 *
324 * This may return -EEXIST if the extent is already there, in which case the
325 * state struct is freed.
326 *
327 * The tree lock is not taken internally. This is a utility function and
328 * probably isn't what you want to call (see set/clear_extent_bit).
329 */
330static int insert_state(struct extent_io_tree *tree,
331 struct extent_state *state, u64 start, u64 end,
0ca1f7ce 332 int *bits)
d1310b2e
CM
333{
334 struct rb_node *node;
335
336 if (end < start) {
d397712b
CM
337 printk(KERN_ERR "btrfs end < start %llu %llu\n",
338 (unsigned long long)end,
339 (unsigned long long)start);
d1310b2e
CM
340 WARN_ON(1);
341 }
d1310b2e
CM
342 state->start = start;
343 state->end = end;
9ed74f2d 344
3150b699
XG
345 set_state_bits(tree, state, bits);
346
d1310b2e
CM
347 node = tree_insert(&tree->state, end, &state->rb_node);
348 if (node) {
349 struct extent_state *found;
350 found = rb_entry(node, struct extent_state, rb_node);
d397712b
CM
351 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
352 "%llu %llu\n", (unsigned long long)found->start,
353 (unsigned long long)found->end,
354 (unsigned long long)start, (unsigned long long)end);
d1310b2e
CM
355 return -EEXIST;
356 }
70dec807 357 state->tree = tree;
d1310b2e
CM
358 merge_state(tree, state);
359 return 0;
360}
361
1bf85046 362static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
363 u64 split)
364{
365 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 366 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
367}
368
d1310b2e
CM
369/*
370 * split a given extent state struct in two, inserting the preallocated
371 * struct 'prealloc' as the newly created second half. 'split' indicates an
372 * offset inside 'orig' where it should be split.
373 *
374 * Before calling,
375 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
376 * are two extent state structs in the tree:
377 * prealloc: [orig->start, split - 1]
378 * orig: [ split, orig->end ]
379 *
380 * The tree locks are not taken by this function. They need to be held
381 * by the caller.
382 */
383static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
384 struct extent_state *prealloc, u64 split)
385{
386 struct rb_node *node;
9ed74f2d
JB
387
388 split_cb(tree, orig, split);
389
d1310b2e
CM
390 prealloc->start = orig->start;
391 prealloc->end = split - 1;
392 prealloc->state = orig->state;
393 orig->start = split;
394
395 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
396 if (node) {
d1310b2e
CM
397 free_extent_state(prealloc);
398 return -EEXIST;
399 }
70dec807 400 prealloc->tree = tree;
d1310b2e
CM
401 return 0;
402}
403
cdc6a395
LZ
404static struct extent_state *next_state(struct extent_state *state)
405{
406 struct rb_node *next = rb_next(&state->rb_node);
407 if (next)
408 return rb_entry(next, struct extent_state, rb_node);
409 else
410 return NULL;
411}
412
d1310b2e
CM
413/*
414 * utility function to clear some bits in an extent state struct.
1b303fc0 415 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
416 *
417 * If no bits are set on the state struct after clearing things, the
418 * struct is freed and removed from the tree
419 */
cdc6a395
LZ
420static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
421 struct extent_state *state,
422 int *bits, int wake)
d1310b2e 423{
cdc6a395 424 struct extent_state *next;
0ca1f7ce 425 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 426
0ca1f7ce 427 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
428 u64 range = state->end - state->start + 1;
429 WARN_ON(range > tree->dirty_bytes);
430 tree->dirty_bytes -= range;
431 }
291d673e 432 clear_state_cb(tree, state, bits);
32c00aff 433 state->state &= ~bits_to_clear;
d1310b2e
CM
434 if (wake)
435 wake_up(&state->wq);
0ca1f7ce 436 if (state->state == 0) {
cdc6a395 437 next = next_state(state);
70dec807 438 if (state->tree) {
d1310b2e 439 rb_erase(&state->rb_node, &tree->state);
70dec807 440 state->tree = NULL;
d1310b2e
CM
441 free_extent_state(state);
442 } else {
443 WARN_ON(1);
444 }
445 } else {
446 merge_state(tree, state);
cdc6a395 447 next = next_state(state);
d1310b2e 448 }
cdc6a395 449 return next;
d1310b2e
CM
450}
451
8233767a
XG
452static struct extent_state *
453alloc_extent_state_atomic(struct extent_state *prealloc)
454{
455 if (!prealloc)
456 prealloc = alloc_extent_state(GFP_ATOMIC);
457
458 return prealloc;
459}
460
c2d904e0
JM
461void extent_io_tree_panic(struct extent_io_tree *tree, int err)
462{
463 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
464 "Extent tree was modified by another "
465 "thread while locked.");
466}
467
d1310b2e
CM
468/*
469 * clear some bits on a range in the tree. This may require splitting
470 * or inserting elements in the tree, so the gfp mask is used to
471 * indicate which allocations or sleeping are allowed.
472 *
473 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
474 * the given range from the tree regardless of state (ie for truncate).
475 *
476 * the range [start, end] is inclusive.
477 *
6763af84 478 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e
CM
479 */
480int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
2c64c53d
CM
481 int bits, int wake, int delete,
482 struct extent_state **cached_state,
483 gfp_t mask)
d1310b2e
CM
484{
485 struct extent_state *state;
2c64c53d 486 struct extent_state *cached;
d1310b2e
CM
487 struct extent_state *prealloc = NULL;
488 struct rb_node *node;
5c939df5 489 u64 last_end;
d1310b2e 490 int err;
2ac55d41 491 int clear = 0;
d1310b2e 492
0ca1f7ce
YZ
493 if (delete)
494 bits |= ~EXTENT_CTLBITS;
495 bits |= EXTENT_FIRST_DELALLOC;
496
2ac55d41
JB
497 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
498 clear = 1;
d1310b2e
CM
499again:
500 if (!prealloc && (mask & __GFP_WAIT)) {
501 prealloc = alloc_extent_state(mask);
502 if (!prealloc)
503 return -ENOMEM;
504 }
505
cad321ad 506 spin_lock(&tree->lock);
2c64c53d
CM
507 if (cached_state) {
508 cached = *cached_state;
2ac55d41
JB
509
510 if (clear) {
511 *cached_state = NULL;
512 cached_state = NULL;
513 }
514
df98b6e2
JB
515 if (cached && cached->tree && cached->start <= start &&
516 cached->end > start) {
2ac55d41
JB
517 if (clear)
518 atomic_dec(&cached->refs);
2c64c53d 519 state = cached;
42daec29 520 goto hit_next;
2c64c53d 521 }
2ac55d41
JB
522 if (clear)
523 free_extent_state(cached);
2c64c53d 524 }
d1310b2e
CM
525 /*
526 * this search will find the extents that end after
527 * our range starts
528 */
80ea96b1 529 node = tree_search(tree, start);
d1310b2e
CM
530 if (!node)
531 goto out;
532 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 533hit_next:
d1310b2e
CM
534 if (state->start > end)
535 goto out;
536 WARN_ON(state->end < start);
5c939df5 537 last_end = state->end;
d1310b2e 538
0449314a 539 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
540 if (!(state->state & bits)) {
541 state = next_state(state);
0449314a 542 goto next;
cdc6a395 543 }
0449314a 544
d1310b2e
CM
545 /*
546 * | ---- desired range ---- |
547 * | state | or
548 * | ------------- state -------------- |
549 *
550 * We need to split the extent we found, and may flip
551 * bits on second half.
552 *
553 * If the extent we found extends past our range, we
554 * just split and search again. It'll get split again
555 * the next time though.
556 *
557 * If the extent we found is inside our range, we clear
558 * the desired bit on it.
559 */
560
561 if (state->start < start) {
8233767a
XG
562 prealloc = alloc_extent_state_atomic(prealloc);
563 BUG_ON(!prealloc);
d1310b2e 564 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
565 if (err)
566 extent_io_tree_panic(tree, err);
567
d1310b2e
CM
568 prealloc = NULL;
569 if (err)
570 goto out;
571 if (state->end <= end) {
6763af84 572 clear_state_bit(tree, state, &bits, wake);
5c939df5
YZ
573 if (last_end == (u64)-1)
574 goto out;
575 start = last_end + 1;
d1310b2e
CM
576 }
577 goto search_again;
578 }
579 /*
580 * | ---- desired range ---- |
581 * | state |
582 * We need to split the extent, and clear the bit
583 * on the first half
584 */
585 if (state->start <= end && state->end > end) {
8233767a
XG
586 prealloc = alloc_extent_state_atomic(prealloc);
587 BUG_ON(!prealloc);
d1310b2e 588 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
589 if (err)
590 extent_io_tree_panic(tree, err);
591
d1310b2e
CM
592 if (wake)
593 wake_up(&state->wq);
42daec29 594
6763af84 595 clear_state_bit(tree, prealloc, &bits, wake);
9ed74f2d 596
d1310b2e
CM
597 prealloc = NULL;
598 goto out;
599 }
42daec29 600
cdc6a395 601 state = clear_state_bit(tree, state, &bits, wake);
0449314a 602next:
5c939df5
YZ
603 if (last_end == (u64)-1)
604 goto out;
605 start = last_end + 1;
cdc6a395 606 if (start <= end && state && !need_resched())
692e5759 607 goto hit_next;
d1310b2e
CM
608 goto search_again;
609
610out:
cad321ad 611 spin_unlock(&tree->lock);
d1310b2e
CM
612 if (prealloc)
613 free_extent_state(prealloc);
614
6763af84 615 return 0;
d1310b2e
CM
616
617search_again:
618 if (start > end)
619 goto out;
cad321ad 620 spin_unlock(&tree->lock);
d1310b2e
CM
621 if (mask & __GFP_WAIT)
622 cond_resched();
623 goto again;
624}
d1310b2e 625
143bede5
JM
626static void wait_on_state(struct extent_io_tree *tree,
627 struct extent_state *state)
641f5219
CH
628 __releases(tree->lock)
629 __acquires(tree->lock)
d1310b2e
CM
630{
631 DEFINE_WAIT(wait);
632 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 633 spin_unlock(&tree->lock);
d1310b2e 634 schedule();
cad321ad 635 spin_lock(&tree->lock);
d1310b2e 636 finish_wait(&state->wq, &wait);
d1310b2e
CM
637}
638
639/*
640 * waits for one or more bits to clear on a range in the state tree.
641 * The range [start, end] is inclusive.
642 * The tree lock is taken by this function
643 */
143bede5 644void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
d1310b2e
CM
645{
646 struct extent_state *state;
647 struct rb_node *node;
648
cad321ad 649 spin_lock(&tree->lock);
d1310b2e
CM
650again:
651 while (1) {
652 /*
653 * this search will find all the extents that end after
654 * our range starts
655 */
80ea96b1 656 node = tree_search(tree, start);
d1310b2e
CM
657 if (!node)
658 break;
659
660 state = rb_entry(node, struct extent_state, rb_node);
661
662 if (state->start > end)
663 goto out;
664
665 if (state->state & bits) {
666 start = state->start;
667 atomic_inc(&state->refs);
668 wait_on_state(tree, state);
669 free_extent_state(state);
670 goto again;
671 }
672 start = state->end + 1;
673
674 if (start > end)
675 break;
676
ded91f08 677 cond_resched_lock(&tree->lock);
d1310b2e
CM
678 }
679out:
cad321ad 680 spin_unlock(&tree->lock);
d1310b2e 681}
d1310b2e 682
1bf85046 683static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 684 struct extent_state *state,
0ca1f7ce 685 int *bits)
d1310b2e 686{
0ca1f7ce 687 int bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 688
1bf85046 689 set_state_cb(tree, state, bits);
0ca1f7ce 690 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
691 u64 range = state->end - state->start + 1;
692 tree->dirty_bytes += range;
693 }
0ca1f7ce 694 state->state |= bits_to_set;
d1310b2e
CM
695}
696
2c64c53d
CM
697static void cache_state(struct extent_state *state,
698 struct extent_state **cached_ptr)
699{
700 if (cached_ptr && !(*cached_ptr)) {
701 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
702 *cached_ptr = state;
703 atomic_inc(&state->refs);
704 }
705 }
706}
707
507903b8
AJ
708static void uncache_state(struct extent_state **cached_ptr)
709{
710 if (cached_ptr && (*cached_ptr)) {
711 struct extent_state *state = *cached_ptr;
109b36a2
CM
712 *cached_ptr = NULL;
713 free_extent_state(state);
507903b8
AJ
714 }
715}
716
d1310b2e 717/*
1edbb734
CM
718 * set some bits on a range in the tree. This may require allocations or
719 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 720 *
1edbb734
CM
721 * If any of the exclusive bits are set, this will fail with -EEXIST if some
722 * part of the range already has the desired bits set. The start of the
723 * existing range is returned in failed_start in this case.
d1310b2e 724 *
1edbb734 725 * [start, end] is inclusive This takes the tree lock.
d1310b2e 726 */
1edbb734 727
3fbe5c02
JM
728static int __must_check
729__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
730 int bits, int exclusive_bits, u64 *failed_start,
731 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
732{
733 struct extent_state *state;
734 struct extent_state *prealloc = NULL;
735 struct rb_node *node;
d1310b2e 736 int err = 0;
d1310b2e
CM
737 u64 last_start;
738 u64 last_end;
42daec29 739
0ca1f7ce 740 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e
CM
741again:
742 if (!prealloc && (mask & __GFP_WAIT)) {
743 prealloc = alloc_extent_state(mask);
8233767a 744 BUG_ON(!prealloc);
d1310b2e
CM
745 }
746
cad321ad 747 spin_lock(&tree->lock);
9655d298
CM
748 if (cached_state && *cached_state) {
749 state = *cached_state;
df98b6e2
JB
750 if (state->start <= start && state->end > start &&
751 state->tree) {
9655d298
CM
752 node = &state->rb_node;
753 goto hit_next;
754 }
755 }
d1310b2e
CM
756 /*
757 * this search will find all the extents that end after
758 * our range starts.
759 */
80ea96b1 760 node = tree_search(tree, start);
d1310b2e 761 if (!node) {
8233767a
XG
762 prealloc = alloc_extent_state_atomic(prealloc);
763 BUG_ON(!prealloc);
0ca1f7ce 764 err = insert_state(tree, prealloc, start, end, &bits);
c2d904e0
JM
765 if (err)
766 extent_io_tree_panic(tree, err);
767
d1310b2e 768 prealloc = NULL;
d1310b2e
CM
769 goto out;
770 }
d1310b2e 771 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 772hit_next:
d1310b2e
CM
773 last_start = state->start;
774 last_end = state->end;
775
776 /*
777 * | ---- desired range ---- |
778 * | state |
779 *
780 * Just lock what we found and keep going
781 */
782 if (state->start == start && state->end <= end) {
40431d6c 783 struct rb_node *next_node;
1edbb734 784 if (state->state & exclusive_bits) {
d1310b2e
CM
785 *failed_start = state->start;
786 err = -EEXIST;
787 goto out;
788 }
42daec29 789
1bf85046 790 set_state_bits(tree, state, &bits);
9ed74f2d 791
2c64c53d 792 cache_state(state, cached_state);
d1310b2e 793 merge_state(tree, state);
5c939df5
YZ
794 if (last_end == (u64)-1)
795 goto out;
40431d6c 796
5c939df5 797 start = last_end + 1;
df98b6e2 798 next_node = rb_next(&state->rb_node);
c7f895a2
XG
799 if (next_node && start < end && prealloc && !need_resched()) {
800 state = rb_entry(next_node, struct extent_state,
801 rb_node);
802 if (state->start == start)
803 goto hit_next;
40431d6c 804 }
d1310b2e
CM
805 goto search_again;
806 }
807
808 /*
809 * | ---- desired range ---- |
810 * | state |
811 * or
812 * | ------------- state -------------- |
813 *
814 * We need to split the extent we found, and may flip bits on
815 * second half.
816 *
817 * If the extent we found extends past our
818 * range, we just split and search again. It'll get split
819 * again the next time though.
820 *
821 * If the extent we found is inside our range, we set the
822 * desired bit on it.
823 */
824 if (state->start < start) {
1edbb734 825 if (state->state & exclusive_bits) {
d1310b2e
CM
826 *failed_start = start;
827 err = -EEXIST;
828 goto out;
829 }
8233767a
XG
830
831 prealloc = alloc_extent_state_atomic(prealloc);
832 BUG_ON(!prealloc);
d1310b2e 833 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
834 if (err)
835 extent_io_tree_panic(tree, err);
836
d1310b2e
CM
837 prealloc = NULL;
838 if (err)
839 goto out;
840 if (state->end <= end) {
1bf85046 841 set_state_bits(tree, state, &bits);
2c64c53d 842 cache_state(state, cached_state);
d1310b2e 843 merge_state(tree, state);
5c939df5
YZ
844 if (last_end == (u64)-1)
845 goto out;
846 start = last_end + 1;
d1310b2e
CM
847 }
848 goto search_again;
849 }
850 /*
851 * | ---- desired range ---- |
852 * | state | or | state |
853 *
854 * There's a hole, we need to insert something in it and
855 * ignore the extent we found.
856 */
857 if (state->start > start) {
858 u64 this_end;
859 if (end < last_start)
860 this_end = end;
861 else
d397712b 862 this_end = last_start - 1;
8233767a
XG
863
864 prealloc = alloc_extent_state_atomic(prealloc);
865 BUG_ON(!prealloc);
c7f895a2
XG
866
867 /*
868 * Avoid to free 'prealloc' if it can be merged with
869 * the later extent.
870 */
d1310b2e 871 err = insert_state(tree, prealloc, start, this_end,
0ca1f7ce 872 &bits);
c2d904e0
JM
873 if (err)
874 extent_io_tree_panic(tree, err);
875
9ed74f2d
JB
876 cache_state(prealloc, cached_state);
877 prealloc = NULL;
d1310b2e
CM
878 start = this_end + 1;
879 goto search_again;
880 }
881 /*
882 * | ---- desired range ---- |
883 * | state |
884 * We need to split the extent, and set the bit
885 * on the first half
886 */
887 if (state->start <= end && state->end > end) {
1edbb734 888 if (state->state & exclusive_bits) {
d1310b2e
CM
889 *failed_start = start;
890 err = -EEXIST;
891 goto out;
892 }
8233767a
XG
893
894 prealloc = alloc_extent_state_atomic(prealloc);
895 BUG_ON(!prealloc);
d1310b2e 896 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
897 if (err)
898 extent_io_tree_panic(tree, err);
d1310b2e 899
1bf85046 900 set_state_bits(tree, prealloc, &bits);
2c64c53d 901 cache_state(prealloc, cached_state);
d1310b2e
CM
902 merge_state(tree, prealloc);
903 prealloc = NULL;
904 goto out;
905 }
906
907 goto search_again;
908
909out:
cad321ad 910 spin_unlock(&tree->lock);
d1310b2e
CM
911 if (prealloc)
912 free_extent_state(prealloc);
913
914 return err;
915
916search_again:
917 if (start > end)
918 goto out;
cad321ad 919 spin_unlock(&tree->lock);
d1310b2e
CM
920 if (mask & __GFP_WAIT)
921 cond_resched();
922 goto again;
923}
d1310b2e 924
3fbe5c02
JM
925int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
926 u64 *failed_start, struct extent_state **cached_state,
927 gfp_t mask)
928{
929 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
930 cached_state, mask);
931}
932
933
462d6fac
JB
934/**
935 * convert_extent - convert all bits in a given range from one bit to another
936 * @tree: the io tree to search
937 * @start: the start offset in bytes
938 * @end: the end offset in bytes (inclusive)
939 * @bits: the bits to set in this range
940 * @clear_bits: the bits to clear in this range
941 * @mask: the allocation mask
942 *
943 * This will go through and set bits for the given range. If any states exist
944 * already in this range they are set with the given bit and cleared of the
945 * clear_bits. This is only meant to be used by things that are mergeable, ie
946 * converting from say DELALLOC to DIRTY. This is not meant to be used with
947 * boundary bits like LOCK.
948 */
949int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
950 int bits, int clear_bits, gfp_t mask)
951{
952 struct extent_state *state;
953 struct extent_state *prealloc = NULL;
954 struct rb_node *node;
955 int err = 0;
956 u64 last_start;
957 u64 last_end;
958
959again:
960 if (!prealloc && (mask & __GFP_WAIT)) {
961 prealloc = alloc_extent_state(mask);
962 if (!prealloc)
963 return -ENOMEM;
964 }
965
966 spin_lock(&tree->lock);
967 /*
968 * this search will find all the extents that end after
969 * our range starts.
970 */
971 node = tree_search(tree, start);
972 if (!node) {
973 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
974 if (!prealloc) {
975 err = -ENOMEM;
976 goto out;
977 }
462d6fac
JB
978 err = insert_state(tree, prealloc, start, end, &bits);
979 prealloc = NULL;
c2d904e0
JM
980 if (err)
981 extent_io_tree_panic(tree, err);
462d6fac
JB
982 goto out;
983 }
984 state = rb_entry(node, struct extent_state, rb_node);
985hit_next:
986 last_start = state->start;
987 last_end = state->end;
988
989 /*
990 * | ---- desired range ---- |
991 * | state |
992 *
993 * Just lock what we found and keep going
994 */
995 if (state->start == start && state->end <= end) {
996 struct rb_node *next_node;
997
998 set_state_bits(tree, state, &bits);
999 clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1000 if (last_end == (u64)-1)
1001 goto out;
1002
1003 start = last_end + 1;
1004 next_node = rb_next(&state->rb_node);
1005 if (next_node && start < end && prealloc && !need_resched()) {
1006 state = rb_entry(next_node, struct extent_state,
1007 rb_node);
1008 if (state->start == start)
1009 goto hit_next;
1010 }
1011 goto search_again;
1012 }
1013
1014 /*
1015 * | ---- desired range ---- |
1016 * | state |
1017 * or
1018 * | ------------- state -------------- |
1019 *
1020 * We need to split the extent we found, and may flip bits on
1021 * second half.
1022 *
1023 * If the extent we found extends past our
1024 * range, we just split and search again. It'll get split
1025 * again the next time though.
1026 *
1027 * If the extent we found is inside our range, we set the
1028 * desired bit on it.
1029 */
1030 if (state->start < start) {
1031 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1032 if (!prealloc) {
1033 err = -ENOMEM;
1034 goto out;
1035 }
462d6fac 1036 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1037 if (err)
1038 extent_io_tree_panic(tree, err);
462d6fac
JB
1039 prealloc = NULL;
1040 if (err)
1041 goto out;
1042 if (state->end <= end) {
1043 set_state_bits(tree, state, &bits);
1044 clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1045 if (last_end == (u64)-1)
1046 goto out;
1047 start = last_end + 1;
1048 }
1049 goto search_again;
1050 }
1051 /*
1052 * | ---- desired range ---- |
1053 * | state | or | state |
1054 *
1055 * There's a hole, we need to insert something in it and
1056 * ignore the extent we found.
1057 */
1058 if (state->start > start) {
1059 u64 this_end;
1060 if (end < last_start)
1061 this_end = end;
1062 else
1063 this_end = last_start - 1;
1064
1065 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1066 if (!prealloc) {
1067 err = -ENOMEM;
1068 goto out;
1069 }
462d6fac
JB
1070
1071 /*
1072 * Avoid to free 'prealloc' if it can be merged with
1073 * the later extent.
1074 */
1075 err = insert_state(tree, prealloc, start, this_end,
1076 &bits);
c2d904e0
JM
1077 if (err)
1078 extent_io_tree_panic(tree, err);
462d6fac
JB
1079 prealloc = NULL;
1080 start = this_end + 1;
1081 goto search_again;
1082 }
1083 /*
1084 * | ---- desired range ---- |
1085 * | state |
1086 * We need to split the extent, and set the bit
1087 * on the first half
1088 */
1089 if (state->start <= end && state->end > end) {
1090 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1091 if (!prealloc) {
1092 err = -ENOMEM;
1093 goto out;
1094 }
462d6fac
JB
1095
1096 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1097 if (err)
1098 extent_io_tree_panic(tree, err);
462d6fac
JB
1099
1100 set_state_bits(tree, prealloc, &bits);
1101 clear_state_bit(tree, prealloc, &clear_bits, 0);
462d6fac
JB
1102 prealloc = NULL;
1103 goto out;
1104 }
1105
1106 goto search_again;
1107
1108out:
1109 spin_unlock(&tree->lock);
1110 if (prealloc)
1111 free_extent_state(prealloc);
1112
1113 return err;
1114
1115search_again:
1116 if (start > end)
1117 goto out;
1118 spin_unlock(&tree->lock);
1119 if (mask & __GFP_WAIT)
1120 cond_resched();
1121 goto again;
1122}
1123
d1310b2e
CM
1124/* wrappers around set/clear extent bit */
1125int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1126 gfp_t mask)
1127{
3fbe5c02 1128 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1129 NULL, mask);
d1310b2e 1130}
d1310b2e
CM
1131
1132int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1133 int bits, gfp_t mask)
1134{
3fbe5c02 1135 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1136 NULL, mask);
d1310b2e 1137}
d1310b2e
CM
1138
1139int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1140 int bits, gfp_t mask)
1141{
2c64c53d 1142 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
d1310b2e 1143}
d1310b2e
CM
1144
1145int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1146 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1147{
1148 return set_extent_bit(tree, start, end,
fee187d9 1149 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1150 NULL, cached_state, mask);
d1310b2e 1151}
d1310b2e
CM
1152
1153int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1154 gfp_t mask)
1155{
1156 return clear_extent_bit(tree, start, end,
32c00aff 1157 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1158 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1159}
d1310b2e
CM
1160
1161int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1162 gfp_t mask)
1163{
3fbe5c02 1164 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1165 NULL, mask);
d1310b2e 1166}
d1310b2e 1167
d1310b2e 1168int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1169 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1170{
507903b8 1171 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
3fbe5c02 1172 cached_state, mask);
d1310b2e 1173}
d1310b2e 1174
d397712b 1175static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
2ac55d41
JB
1176 u64 end, struct extent_state **cached_state,
1177 gfp_t mask)
d1310b2e 1178{
2c64c53d 1179 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1180 cached_state, mask);
d1310b2e 1181}
d1310b2e 1182
d352ac68
CM
1183/*
1184 * either insert or lock state struct between start and end use mask to tell
1185 * us if waiting is desired.
1186 */
1edbb734 1187int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
d0082371 1188 int bits, struct extent_state **cached_state)
d1310b2e
CM
1189{
1190 int err;
1191 u64 failed_start;
1192 while (1) {
3fbe5c02
JM
1193 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1194 EXTENT_LOCKED, &failed_start,
1195 cached_state, GFP_NOFS);
d0082371 1196 if (err == -EEXIST) {
d1310b2e
CM
1197 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1198 start = failed_start;
d0082371 1199 } else
d1310b2e 1200 break;
d1310b2e
CM
1201 WARN_ON(start > end);
1202 }
1203 return err;
1204}
d1310b2e 1205
d0082371 1206int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1207{
d0082371 1208 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1209}
1210
d0082371 1211int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1212{
1213 int err;
1214 u64 failed_start;
1215
3fbe5c02
JM
1216 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1217 &failed_start, NULL, GFP_NOFS);
6643558d
YZ
1218 if (err == -EEXIST) {
1219 if (failed_start > start)
1220 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1221 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1222 return 0;
6643558d 1223 }
25179201
JB
1224 return 1;
1225}
25179201 1226
2c64c53d
CM
1227int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1228 struct extent_state **cached, gfp_t mask)
1229{
1230 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1231 mask);
1232}
1233
d0082371 1234int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1235{
2c64c53d 1236 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1237 GFP_NOFS);
d1310b2e 1238}
d1310b2e 1239
d1310b2e
CM
1240/*
1241 * helper function to set both pages and extents in the tree writeback
1242 */
b2950863 1243static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1244{
1245 unsigned long index = start >> PAGE_CACHE_SHIFT;
1246 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1247 struct page *page;
1248
1249 while (index <= end_index) {
1250 page = find_get_page(tree->mapping, index);
79787eaa 1251 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1252 set_page_writeback(page);
1253 page_cache_release(page);
1254 index++;
1255 }
d1310b2e
CM
1256 return 0;
1257}
d1310b2e 1258
d352ac68
CM
1259/* find the first state struct with 'bits' set after 'start', and
1260 * return it. tree->lock must be held. NULL will returned if
1261 * nothing was found after 'start'
1262 */
d7fc640e
CM
1263struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1264 u64 start, int bits)
1265{
1266 struct rb_node *node;
1267 struct extent_state *state;
1268
1269 /*
1270 * this search will find all the extents that end after
1271 * our range starts.
1272 */
1273 node = tree_search(tree, start);
d397712b 1274 if (!node)
d7fc640e 1275 goto out;
d7fc640e 1276
d397712b 1277 while (1) {
d7fc640e 1278 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1279 if (state->end >= start && (state->state & bits))
d7fc640e 1280 return state;
d397712b 1281
d7fc640e
CM
1282 node = rb_next(node);
1283 if (!node)
1284 break;
1285 }
1286out:
1287 return NULL;
1288}
d7fc640e 1289
69261c4b
XG
1290/*
1291 * find the first offset in the io tree with 'bits' set. zero is
1292 * returned if we find something, and *start_ret and *end_ret are
1293 * set to reflect the state struct that was found.
1294 *
477d7eaf 1295 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1296 */
1297int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1298 u64 *start_ret, u64 *end_ret, int bits)
1299{
1300 struct extent_state *state;
1301 int ret = 1;
1302
1303 spin_lock(&tree->lock);
1304 state = find_first_extent_bit_state(tree, start, bits);
1305 if (state) {
1306 *start_ret = state->start;
1307 *end_ret = state->end;
1308 ret = 0;
1309 }
1310 spin_unlock(&tree->lock);
1311 return ret;
1312}
1313
d352ac68
CM
1314/*
1315 * find a contiguous range of bytes in the file marked as delalloc, not
1316 * more than 'max_bytes'. start and end are used to return the range,
1317 *
1318 * 1 is returned if we find something, 0 if nothing was in the tree
1319 */
c8b97818 1320static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1321 u64 *start, u64 *end, u64 max_bytes,
1322 struct extent_state **cached_state)
d1310b2e
CM
1323{
1324 struct rb_node *node;
1325 struct extent_state *state;
1326 u64 cur_start = *start;
1327 u64 found = 0;
1328 u64 total_bytes = 0;
1329
cad321ad 1330 spin_lock(&tree->lock);
c8b97818 1331
d1310b2e
CM
1332 /*
1333 * this search will find all the extents that end after
1334 * our range starts.
1335 */
80ea96b1 1336 node = tree_search(tree, cur_start);
2b114d1d 1337 if (!node) {
3b951516
CM
1338 if (!found)
1339 *end = (u64)-1;
d1310b2e
CM
1340 goto out;
1341 }
1342
d397712b 1343 while (1) {
d1310b2e 1344 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1345 if (found && (state->start != cur_start ||
1346 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1347 goto out;
1348 }
1349 if (!(state->state & EXTENT_DELALLOC)) {
1350 if (!found)
1351 *end = state->end;
1352 goto out;
1353 }
c2a128d2 1354 if (!found) {
d1310b2e 1355 *start = state->start;
c2a128d2
JB
1356 *cached_state = state;
1357 atomic_inc(&state->refs);
1358 }
d1310b2e
CM
1359 found++;
1360 *end = state->end;
1361 cur_start = state->end + 1;
1362 node = rb_next(node);
1363 if (!node)
1364 break;
1365 total_bytes += state->end - state->start + 1;
1366 if (total_bytes >= max_bytes)
1367 break;
1368 }
1369out:
cad321ad 1370 spin_unlock(&tree->lock);
d1310b2e
CM
1371 return found;
1372}
1373
143bede5
JM
1374static noinline void __unlock_for_delalloc(struct inode *inode,
1375 struct page *locked_page,
1376 u64 start, u64 end)
c8b97818
CM
1377{
1378 int ret;
1379 struct page *pages[16];
1380 unsigned long index = start >> PAGE_CACHE_SHIFT;
1381 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1382 unsigned long nr_pages = end_index - index + 1;
1383 int i;
1384
1385 if (index == locked_page->index && end_index == index)
143bede5 1386 return;
c8b97818 1387
d397712b 1388 while (nr_pages > 0) {
c8b97818 1389 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1390 min_t(unsigned long, nr_pages,
1391 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1392 for (i = 0; i < ret; i++) {
1393 if (pages[i] != locked_page)
1394 unlock_page(pages[i]);
1395 page_cache_release(pages[i]);
1396 }
1397 nr_pages -= ret;
1398 index += ret;
1399 cond_resched();
1400 }
c8b97818
CM
1401}
1402
1403static noinline int lock_delalloc_pages(struct inode *inode,
1404 struct page *locked_page,
1405 u64 delalloc_start,
1406 u64 delalloc_end)
1407{
1408 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1409 unsigned long start_index = index;
1410 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1411 unsigned long pages_locked = 0;
1412 struct page *pages[16];
1413 unsigned long nrpages;
1414 int ret;
1415 int i;
1416
1417 /* the caller is responsible for locking the start index */
1418 if (index == locked_page->index && index == end_index)
1419 return 0;
1420
1421 /* skip the page at the start index */
1422 nrpages = end_index - index + 1;
d397712b 1423 while (nrpages > 0) {
c8b97818 1424 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1425 min_t(unsigned long,
1426 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1427 if (ret == 0) {
1428 ret = -EAGAIN;
1429 goto done;
1430 }
1431 /* now we have an array of pages, lock them all */
1432 for (i = 0; i < ret; i++) {
1433 /*
1434 * the caller is taking responsibility for
1435 * locked_page
1436 */
771ed689 1437 if (pages[i] != locked_page) {
c8b97818 1438 lock_page(pages[i]);
f2b1c41c
CM
1439 if (!PageDirty(pages[i]) ||
1440 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1441 ret = -EAGAIN;
1442 unlock_page(pages[i]);
1443 page_cache_release(pages[i]);
1444 goto done;
1445 }
1446 }
c8b97818 1447 page_cache_release(pages[i]);
771ed689 1448 pages_locked++;
c8b97818 1449 }
c8b97818
CM
1450 nrpages -= ret;
1451 index += ret;
1452 cond_resched();
1453 }
1454 ret = 0;
1455done:
1456 if (ret && pages_locked) {
1457 __unlock_for_delalloc(inode, locked_page,
1458 delalloc_start,
1459 ((u64)(start_index + pages_locked - 1)) <<
1460 PAGE_CACHE_SHIFT);
1461 }
1462 return ret;
1463}
1464
1465/*
1466 * find a contiguous range of bytes in the file marked as delalloc, not
1467 * more than 'max_bytes'. start and end are used to return the range,
1468 *
1469 * 1 is returned if we find something, 0 if nothing was in the tree
1470 */
1471static noinline u64 find_lock_delalloc_range(struct inode *inode,
1472 struct extent_io_tree *tree,
1473 struct page *locked_page,
1474 u64 *start, u64 *end,
1475 u64 max_bytes)
1476{
1477 u64 delalloc_start;
1478 u64 delalloc_end;
1479 u64 found;
9655d298 1480 struct extent_state *cached_state = NULL;
c8b97818
CM
1481 int ret;
1482 int loops = 0;
1483
1484again:
1485 /* step one, find a bunch of delalloc bytes starting at start */
1486 delalloc_start = *start;
1487 delalloc_end = 0;
1488 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1489 max_bytes, &cached_state);
70b99e69 1490 if (!found || delalloc_end <= *start) {
c8b97818
CM
1491 *start = delalloc_start;
1492 *end = delalloc_end;
c2a128d2 1493 free_extent_state(cached_state);
c8b97818
CM
1494 return found;
1495 }
1496
70b99e69
CM
1497 /*
1498 * start comes from the offset of locked_page. We have to lock
1499 * pages in order, so we can't process delalloc bytes before
1500 * locked_page
1501 */
d397712b 1502 if (delalloc_start < *start)
70b99e69 1503 delalloc_start = *start;
70b99e69 1504
c8b97818
CM
1505 /*
1506 * make sure to limit the number of pages we try to lock down
1507 * if we're looping.
1508 */
d397712b 1509 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
771ed689 1510 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
d397712b 1511
c8b97818
CM
1512 /* step two, lock all the pages after the page that has start */
1513 ret = lock_delalloc_pages(inode, locked_page,
1514 delalloc_start, delalloc_end);
1515 if (ret == -EAGAIN) {
1516 /* some of the pages are gone, lets avoid looping by
1517 * shortening the size of the delalloc range we're searching
1518 */
9655d298 1519 free_extent_state(cached_state);
c8b97818
CM
1520 if (!loops) {
1521 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1522 max_bytes = PAGE_CACHE_SIZE - offset;
1523 loops = 1;
1524 goto again;
1525 } else {
1526 found = 0;
1527 goto out_failed;
1528 }
1529 }
79787eaa 1530 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1531
1532 /* step three, lock the state bits for the whole range */
d0082371 1533 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1534
1535 /* then test to make sure it is all still delalloc */
1536 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1537 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1538 if (!ret) {
9655d298
CM
1539 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1540 &cached_state, GFP_NOFS);
c8b97818
CM
1541 __unlock_for_delalloc(inode, locked_page,
1542 delalloc_start, delalloc_end);
1543 cond_resched();
1544 goto again;
1545 }
9655d298 1546 free_extent_state(cached_state);
c8b97818
CM
1547 *start = delalloc_start;
1548 *end = delalloc_end;
1549out_failed:
1550 return found;
1551}
1552
1553int extent_clear_unlock_delalloc(struct inode *inode,
1554 struct extent_io_tree *tree,
1555 u64 start, u64 end, struct page *locked_page,
a791e35e 1556 unsigned long op)
c8b97818
CM
1557{
1558 int ret;
1559 struct page *pages[16];
1560 unsigned long index = start >> PAGE_CACHE_SHIFT;
1561 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1562 unsigned long nr_pages = end_index - index + 1;
1563 int i;
771ed689 1564 int clear_bits = 0;
c8b97818 1565
a791e35e 1566 if (op & EXTENT_CLEAR_UNLOCK)
771ed689 1567 clear_bits |= EXTENT_LOCKED;
a791e35e 1568 if (op & EXTENT_CLEAR_DIRTY)
c8b97818
CM
1569 clear_bits |= EXTENT_DIRTY;
1570
a791e35e 1571 if (op & EXTENT_CLEAR_DELALLOC)
771ed689
CM
1572 clear_bits |= EXTENT_DELALLOC;
1573
2c64c53d 1574 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
32c00aff
JB
1575 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1576 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1577 EXTENT_SET_PRIVATE2)))
771ed689 1578 return 0;
c8b97818 1579
d397712b 1580 while (nr_pages > 0) {
c8b97818 1581 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1582 min_t(unsigned long,
1583 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1584 for (i = 0; i < ret; i++) {
8b62b72b 1585
a791e35e 1586 if (op & EXTENT_SET_PRIVATE2)
8b62b72b
CM
1587 SetPagePrivate2(pages[i]);
1588
c8b97818
CM
1589 if (pages[i] == locked_page) {
1590 page_cache_release(pages[i]);
1591 continue;
1592 }
a791e35e 1593 if (op & EXTENT_CLEAR_DIRTY)
c8b97818 1594 clear_page_dirty_for_io(pages[i]);
a791e35e 1595 if (op & EXTENT_SET_WRITEBACK)
c8b97818 1596 set_page_writeback(pages[i]);
a791e35e 1597 if (op & EXTENT_END_WRITEBACK)
c8b97818 1598 end_page_writeback(pages[i]);
a791e35e 1599 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
771ed689 1600 unlock_page(pages[i]);
c8b97818
CM
1601 page_cache_release(pages[i]);
1602 }
1603 nr_pages -= ret;
1604 index += ret;
1605 cond_resched();
1606 }
1607 return 0;
1608}
c8b97818 1609
d352ac68
CM
1610/*
1611 * count the number of bytes in the tree that have a given bit(s)
1612 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1613 * cached. The total number found is returned.
1614 */
d1310b2e
CM
1615u64 count_range_bits(struct extent_io_tree *tree,
1616 u64 *start, u64 search_end, u64 max_bytes,
ec29ed5b 1617 unsigned long bits, int contig)
d1310b2e
CM
1618{
1619 struct rb_node *node;
1620 struct extent_state *state;
1621 u64 cur_start = *start;
1622 u64 total_bytes = 0;
ec29ed5b 1623 u64 last = 0;
d1310b2e
CM
1624 int found = 0;
1625
1626 if (search_end <= cur_start) {
d1310b2e
CM
1627 WARN_ON(1);
1628 return 0;
1629 }
1630
cad321ad 1631 spin_lock(&tree->lock);
d1310b2e
CM
1632 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1633 total_bytes = tree->dirty_bytes;
1634 goto out;
1635 }
1636 /*
1637 * this search will find all the extents that end after
1638 * our range starts.
1639 */
80ea96b1 1640 node = tree_search(tree, cur_start);
d397712b 1641 if (!node)
d1310b2e 1642 goto out;
d1310b2e 1643
d397712b 1644 while (1) {
d1310b2e
CM
1645 state = rb_entry(node, struct extent_state, rb_node);
1646 if (state->start > search_end)
1647 break;
ec29ed5b
CM
1648 if (contig && found && state->start > last + 1)
1649 break;
1650 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1651 total_bytes += min(search_end, state->end) + 1 -
1652 max(cur_start, state->start);
1653 if (total_bytes >= max_bytes)
1654 break;
1655 if (!found) {
af60bed2 1656 *start = max(cur_start, state->start);
d1310b2e
CM
1657 found = 1;
1658 }
ec29ed5b
CM
1659 last = state->end;
1660 } else if (contig && found) {
1661 break;
d1310b2e
CM
1662 }
1663 node = rb_next(node);
1664 if (!node)
1665 break;
1666 }
1667out:
cad321ad 1668 spin_unlock(&tree->lock);
d1310b2e
CM
1669 return total_bytes;
1670}
b2950863 1671
d352ac68
CM
1672/*
1673 * set the private field for a given byte offset in the tree. If there isn't
1674 * an extent_state there already, this does nothing.
1675 */
d1310b2e
CM
1676int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1677{
1678 struct rb_node *node;
1679 struct extent_state *state;
1680 int ret = 0;
1681
cad321ad 1682 spin_lock(&tree->lock);
d1310b2e
CM
1683 /*
1684 * this search will find all the extents that end after
1685 * our range starts.
1686 */
80ea96b1 1687 node = tree_search(tree, start);
2b114d1d 1688 if (!node) {
d1310b2e
CM
1689 ret = -ENOENT;
1690 goto out;
1691 }
1692 state = rb_entry(node, struct extent_state, rb_node);
1693 if (state->start != start) {
1694 ret = -ENOENT;
1695 goto out;
1696 }
1697 state->private = private;
1698out:
cad321ad 1699 spin_unlock(&tree->lock);
d1310b2e
CM
1700 return ret;
1701}
1702
1703int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1704{
1705 struct rb_node *node;
1706 struct extent_state *state;
1707 int ret = 0;
1708
cad321ad 1709 spin_lock(&tree->lock);
d1310b2e
CM
1710 /*
1711 * this search will find all the extents that end after
1712 * our range starts.
1713 */
80ea96b1 1714 node = tree_search(tree, start);
2b114d1d 1715 if (!node) {
d1310b2e
CM
1716 ret = -ENOENT;
1717 goto out;
1718 }
1719 state = rb_entry(node, struct extent_state, rb_node);
1720 if (state->start != start) {
1721 ret = -ENOENT;
1722 goto out;
1723 }
1724 *private = state->private;
1725out:
cad321ad 1726 spin_unlock(&tree->lock);
d1310b2e
CM
1727 return ret;
1728}
1729
1730/*
1731 * searches a range in the state tree for a given mask.
70dec807 1732 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1733 * has the bits set. Otherwise, 1 is returned if any bit in the
1734 * range is found set.
1735 */
1736int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9655d298 1737 int bits, int filled, struct extent_state *cached)
d1310b2e
CM
1738{
1739 struct extent_state *state = NULL;
1740 struct rb_node *node;
1741 int bitset = 0;
d1310b2e 1742
cad321ad 1743 spin_lock(&tree->lock);
df98b6e2
JB
1744 if (cached && cached->tree && cached->start <= start &&
1745 cached->end > start)
9655d298
CM
1746 node = &cached->rb_node;
1747 else
1748 node = tree_search(tree, start);
d1310b2e
CM
1749 while (node && start <= end) {
1750 state = rb_entry(node, struct extent_state, rb_node);
1751
1752 if (filled && state->start > start) {
1753 bitset = 0;
1754 break;
1755 }
1756
1757 if (state->start > end)
1758 break;
1759
1760 if (state->state & bits) {
1761 bitset = 1;
1762 if (!filled)
1763 break;
1764 } else if (filled) {
1765 bitset = 0;
1766 break;
1767 }
46562cec
CM
1768
1769 if (state->end == (u64)-1)
1770 break;
1771
d1310b2e
CM
1772 start = state->end + 1;
1773 if (start > end)
1774 break;
1775 node = rb_next(node);
1776 if (!node) {
1777 if (filled)
1778 bitset = 0;
1779 break;
1780 }
1781 }
cad321ad 1782 spin_unlock(&tree->lock);
d1310b2e
CM
1783 return bitset;
1784}
d1310b2e
CM
1785
1786/*
1787 * helper function to set a given page up to date if all the
1788 * extents in the tree for that page are up to date
1789 */
143bede5 1790static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e
CM
1791{
1792 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1793 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1794 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1795 SetPageUptodate(page);
d1310b2e
CM
1796}
1797
1798/*
1799 * helper function to unlock a page if all the extents in the tree
1800 * for that page are unlocked
1801 */
143bede5 1802static void check_page_locked(struct extent_io_tree *tree, struct page *page)
d1310b2e
CM
1803{
1804 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1805 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1806 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
d1310b2e 1807 unlock_page(page);
d1310b2e
CM
1808}
1809
1810/*
1811 * helper function to end page writeback if all the extents
1812 * in the tree for that page are done with writeback
1813 */
143bede5
JM
1814static void check_page_writeback(struct extent_io_tree *tree,
1815 struct page *page)
d1310b2e 1816{
1edbb734 1817 end_page_writeback(page);
d1310b2e
CM
1818}
1819
4a54c8c1
JS
1820/*
1821 * When IO fails, either with EIO or csum verification fails, we
1822 * try other mirrors that might have a good copy of the data. This
1823 * io_failure_record is used to record state as we go through all the
1824 * mirrors. If another mirror has good data, the page is set up to date
1825 * and things continue. If a good mirror can't be found, the original
1826 * bio end_io callback is called to indicate things have failed.
1827 */
1828struct io_failure_record {
1829 struct page *page;
1830 u64 start;
1831 u64 len;
1832 u64 logical;
1833 unsigned long bio_flags;
1834 int this_mirror;
1835 int failed_mirror;
1836 int in_validation;
1837};
1838
1839static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1840 int did_repair)
1841{
1842 int ret;
1843 int err = 0;
1844 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1845
1846 set_state_private(failure_tree, rec->start, 0);
1847 ret = clear_extent_bits(failure_tree, rec->start,
1848 rec->start + rec->len - 1,
1849 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1850 if (ret)
1851 err = ret;
1852
1853 if (did_repair) {
1854 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1855 rec->start + rec->len - 1,
1856 EXTENT_DAMAGED, GFP_NOFS);
1857 if (ret && !err)
1858 err = ret;
1859 }
1860
1861 kfree(rec);
1862 return err;
1863}
1864
1865static void repair_io_failure_callback(struct bio *bio, int err)
1866{
1867 complete(bio->bi_private);
1868}
1869
1870/*
1871 * this bypasses the standard btrfs submit functions deliberately, as
1872 * the standard behavior is to write all copies in a raid setup. here we only
1873 * want to write the one bad copy. so we do the mapping for ourselves and issue
1874 * submit_bio directly.
1875 * to avoid any synchonization issues, wait for the data after writing, which
1876 * actually prevents the read that triggered the error from finishing.
1877 * currently, there can be no more than two copies of every data bit. thus,
1878 * exactly one rewrite is required.
1879 */
1880int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1881 u64 length, u64 logical, struct page *page,
1882 int mirror_num)
1883{
1884 struct bio *bio;
1885 struct btrfs_device *dev;
1886 DECLARE_COMPLETION_ONSTACK(compl);
1887 u64 map_length = 0;
1888 u64 sector;
1889 struct btrfs_bio *bbio = NULL;
1890 int ret;
1891
1892 BUG_ON(!mirror_num);
1893
1894 bio = bio_alloc(GFP_NOFS, 1);
1895 if (!bio)
1896 return -EIO;
1897 bio->bi_private = &compl;
1898 bio->bi_end_io = repair_io_failure_callback;
1899 bio->bi_size = 0;
1900 map_length = length;
1901
1902 ret = btrfs_map_block(map_tree, WRITE, logical,
1903 &map_length, &bbio, mirror_num);
1904 if (ret) {
1905 bio_put(bio);
1906 return -EIO;
1907 }
1908 BUG_ON(mirror_num != bbio->mirror_num);
1909 sector = bbio->stripes[mirror_num-1].physical >> 9;
1910 bio->bi_sector = sector;
1911 dev = bbio->stripes[mirror_num-1].dev;
1912 kfree(bbio);
1913 if (!dev || !dev->bdev || !dev->writeable) {
1914 bio_put(bio);
1915 return -EIO;
1916 }
1917 bio->bi_bdev = dev->bdev;
1918 bio_add_page(bio, page, length, start-page_offset(page));
21adbd5c 1919 btrfsic_submit_bio(WRITE_SYNC, bio);
4a54c8c1
JS
1920 wait_for_completion(&compl);
1921
1922 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1923 /* try to remap that extent elsewhere? */
1924 bio_put(bio);
1925 return -EIO;
1926 }
1927
1928 printk(KERN_INFO "btrfs read error corrected: ino %lu off %llu (dev %s "
1929 "sector %llu)\n", page->mapping->host->i_ino, start,
1930 dev->name, sector);
1931
1932 bio_put(bio);
1933 return 0;
1934}
1935
ea466794
JB
1936int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
1937 int mirror_num)
1938{
1939 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1940 u64 start = eb->start;
1941 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 1942 int ret = 0;
ea466794
JB
1943
1944 for (i = 0; i < num_pages; i++) {
1945 struct page *p = extent_buffer_page(eb, i);
1946 ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE,
1947 start, p, mirror_num);
1948 if (ret)
1949 break;
1950 start += PAGE_CACHE_SIZE;
1951 }
1952
1953 return ret;
1954}
1955
4a54c8c1
JS
1956/*
1957 * each time an IO finishes, we do a fast check in the IO failure tree
1958 * to see if we need to process or clean up an io_failure_record
1959 */
1960static int clean_io_failure(u64 start, struct page *page)
1961{
1962 u64 private;
1963 u64 private_failure;
1964 struct io_failure_record *failrec;
1965 struct btrfs_mapping_tree *map_tree;
1966 struct extent_state *state;
1967 int num_copies;
1968 int did_repair = 0;
1969 int ret;
1970 struct inode *inode = page->mapping->host;
1971
1972 private = 0;
1973 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1974 (u64)-1, 1, EXTENT_DIRTY, 0);
1975 if (!ret)
1976 return 0;
1977
1978 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1979 &private_failure);
1980 if (ret)
1981 return 0;
1982
1983 failrec = (struct io_failure_record *)(unsigned long) private_failure;
1984 BUG_ON(!failrec->this_mirror);
1985
1986 if (failrec->in_validation) {
1987 /* there was no real error, just free the record */
1988 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1989 failrec->start);
1990 did_repair = 1;
1991 goto out;
1992 }
1993
1994 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1995 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1996 failrec->start,
1997 EXTENT_LOCKED);
1998 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1999
2000 if (state && state->start == failrec->start) {
2001 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
2002 num_copies = btrfs_num_copies(map_tree, failrec->logical,
2003 failrec->len);
2004 if (num_copies > 1) {
2005 ret = repair_io_failure(map_tree, start, failrec->len,
2006 failrec->logical, page,
2007 failrec->failed_mirror);
2008 did_repair = !ret;
2009 }
2010 }
2011
2012out:
2013 if (!ret)
2014 ret = free_io_failure(inode, failrec, did_repair);
2015
2016 return ret;
2017}
2018
2019/*
2020 * this is a generic handler for readpage errors (default
2021 * readpage_io_failed_hook). if other copies exist, read those and write back
2022 * good data to the failed position. does not investigate in remapping the
2023 * failed extent elsewhere, hoping the device will be smart enough to do this as
2024 * needed
2025 */
2026
2027static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2028 u64 start, u64 end, int failed_mirror,
2029 struct extent_state *state)
2030{
2031 struct io_failure_record *failrec = NULL;
2032 u64 private;
2033 struct extent_map *em;
2034 struct inode *inode = page->mapping->host;
2035 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2036 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2037 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2038 struct bio *bio;
2039 int num_copies;
2040 int ret;
2041 int read_mode;
2042 u64 logical;
2043
2044 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2045
2046 ret = get_state_private(failure_tree, start, &private);
2047 if (ret) {
2048 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2049 if (!failrec)
2050 return -ENOMEM;
2051 failrec->start = start;
2052 failrec->len = end - start + 1;
2053 failrec->this_mirror = 0;
2054 failrec->bio_flags = 0;
2055 failrec->in_validation = 0;
2056
2057 read_lock(&em_tree->lock);
2058 em = lookup_extent_mapping(em_tree, start, failrec->len);
2059 if (!em) {
2060 read_unlock(&em_tree->lock);
2061 kfree(failrec);
2062 return -EIO;
2063 }
2064
2065 if (em->start > start || em->start + em->len < start) {
2066 free_extent_map(em);
2067 em = NULL;
2068 }
2069 read_unlock(&em_tree->lock);
2070
2071 if (!em || IS_ERR(em)) {
2072 kfree(failrec);
2073 return -EIO;
2074 }
2075 logical = start - em->start;
2076 logical = em->block_start + logical;
2077 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2078 logical = em->block_start;
2079 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2080 extent_set_compress_type(&failrec->bio_flags,
2081 em->compress_type);
2082 }
2083 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2084 "len=%llu\n", logical, start, failrec->len);
2085 failrec->logical = logical;
2086 free_extent_map(em);
2087
2088 /* set the bits in the private failure tree */
2089 ret = set_extent_bits(failure_tree, start, end,
2090 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2091 if (ret >= 0)
2092 ret = set_state_private(failure_tree, start,
2093 (u64)(unsigned long)failrec);
2094 /* set the bits in the inode's tree */
2095 if (ret >= 0)
2096 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2097 GFP_NOFS);
2098 if (ret < 0) {
2099 kfree(failrec);
2100 return ret;
2101 }
2102 } else {
2103 failrec = (struct io_failure_record *)(unsigned long)private;
2104 pr_debug("bio_readpage_error: (found) logical=%llu, "
2105 "start=%llu, len=%llu, validation=%d\n",
2106 failrec->logical, failrec->start, failrec->len,
2107 failrec->in_validation);
2108 /*
2109 * when data can be on disk more than twice, add to failrec here
2110 * (e.g. with a list for failed_mirror) to make
2111 * clean_io_failure() clean all those errors at once.
2112 */
2113 }
2114 num_copies = btrfs_num_copies(
2115 &BTRFS_I(inode)->root->fs_info->mapping_tree,
2116 failrec->logical, failrec->len);
2117 if (num_copies == 1) {
2118 /*
2119 * we only have a single copy of the data, so don't bother with
2120 * all the retry and error correction code that follows. no
2121 * matter what the error is, it is very likely to persist.
2122 */
2123 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2124 "state=%p, num_copies=%d, next_mirror %d, "
2125 "failed_mirror %d\n", state, num_copies,
2126 failrec->this_mirror, failed_mirror);
2127 free_io_failure(inode, failrec, 0);
2128 return -EIO;
2129 }
2130
2131 if (!state) {
2132 spin_lock(&tree->lock);
2133 state = find_first_extent_bit_state(tree, failrec->start,
2134 EXTENT_LOCKED);
2135 if (state && state->start != failrec->start)
2136 state = NULL;
2137 spin_unlock(&tree->lock);
2138 }
2139
2140 /*
2141 * there are two premises:
2142 * a) deliver good data to the caller
2143 * b) correct the bad sectors on disk
2144 */
2145 if (failed_bio->bi_vcnt > 1) {
2146 /*
2147 * to fulfill b), we need to know the exact failing sectors, as
2148 * we don't want to rewrite any more than the failed ones. thus,
2149 * we need separate read requests for the failed bio
2150 *
2151 * if the following BUG_ON triggers, our validation request got
2152 * merged. we need separate requests for our algorithm to work.
2153 */
2154 BUG_ON(failrec->in_validation);
2155 failrec->in_validation = 1;
2156 failrec->this_mirror = failed_mirror;
2157 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2158 } else {
2159 /*
2160 * we're ready to fulfill a) and b) alongside. get a good copy
2161 * of the failed sector and if we succeed, we have setup
2162 * everything for repair_io_failure to do the rest for us.
2163 */
2164 if (failrec->in_validation) {
2165 BUG_ON(failrec->this_mirror != failed_mirror);
2166 failrec->in_validation = 0;
2167 failrec->this_mirror = 0;
2168 }
2169 failrec->failed_mirror = failed_mirror;
2170 failrec->this_mirror++;
2171 if (failrec->this_mirror == failed_mirror)
2172 failrec->this_mirror++;
2173 read_mode = READ_SYNC;
2174 }
2175
2176 if (!state || failrec->this_mirror > num_copies) {
2177 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2178 "next_mirror %d, failed_mirror %d\n", state,
2179 num_copies, failrec->this_mirror, failed_mirror);
2180 free_io_failure(inode, failrec, 0);
2181 return -EIO;
2182 }
2183
2184 bio = bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
2185 if (!bio) {
2186 free_io_failure(inode, failrec, 0);
2187 return -EIO;
2188 }
4a54c8c1
JS
2189 bio->bi_private = state;
2190 bio->bi_end_io = failed_bio->bi_end_io;
2191 bio->bi_sector = failrec->logical >> 9;
2192 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2193 bio->bi_size = 0;
2194
2195 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2196
2197 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2198 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2199 failrec->this_mirror, num_copies, failrec->in_validation);
2200
013bd4c3
TI
2201 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2202 failrec->this_mirror,
2203 failrec->bio_flags, 0);
2204 return ret;
4a54c8c1
JS
2205}
2206
d1310b2e
CM
2207/* lots and lots of room for performance fixes in the end_bio funcs */
2208
87826df0
JM
2209int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2210{
2211 int uptodate = (err == 0);
2212 struct extent_io_tree *tree;
2213 int ret;
2214
2215 tree = &BTRFS_I(page->mapping->host)->io_tree;
2216
2217 if (tree->ops && tree->ops->writepage_end_io_hook) {
2218 ret = tree->ops->writepage_end_io_hook(page, start,
2219 end, NULL, uptodate);
2220 if (ret)
2221 uptodate = 0;
2222 }
2223
2224 if (!uptodate && tree->ops &&
2225 tree->ops->writepage_io_failed_hook) {
2226 ret = tree->ops->writepage_io_failed_hook(NULL, page,
2227 start, end, NULL);
2228 /* Writeback already completed */
2229 if (ret == 0)
2230 return 1;
2231 }
2232
2233 if (!uptodate) {
2234 clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
2235 ClearPageUptodate(page);
2236 SetPageError(page);
2237 }
2238 return 0;
2239}
2240
d1310b2e
CM
2241/*
2242 * after a writepage IO is done, we need to:
2243 * clear the uptodate bits on error
2244 * clear the writeback bits in the extent tree for this IO
2245 * end_page_writeback if the page has no more pending IO
2246 *
2247 * Scheduling is not allowed, so the extent state tree is expected
2248 * to have one and only one object corresponding to this IO.
2249 */
d1310b2e 2250static void end_bio_extent_writepage(struct bio *bio, int err)
d1310b2e 2251{
d1310b2e 2252 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
902b22f3 2253 struct extent_io_tree *tree;
d1310b2e
CM
2254 u64 start;
2255 u64 end;
2256 int whole_page;
2257
d1310b2e
CM
2258 do {
2259 struct page *page = bvec->bv_page;
902b22f3
DW
2260 tree = &BTRFS_I(page->mapping->host)->io_tree;
2261
d1310b2e
CM
2262 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2263 bvec->bv_offset;
2264 end = start + bvec->bv_len - 1;
2265
2266 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2267 whole_page = 1;
2268 else
2269 whole_page = 0;
2270
2271 if (--bvec >= bio->bi_io_vec)
2272 prefetchw(&bvec->bv_page->flags);
1259ab75 2273
87826df0
JM
2274 if (end_extent_writepage(page, err, start, end))
2275 continue;
70dec807 2276
d1310b2e
CM
2277 if (whole_page)
2278 end_page_writeback(page);
2279 else
2280 check_page_writeback(tree, page);
d1310b2e 2281 } while (bvec >= bio->bi_io_vec);
2b1f55b0 2282
d1310b2e 2283 bio_put(bio);
d1310b2e
CM
2284}
2285
2286/*
2287 * after a readpage IO is done, we need to:
2288 * clear the uptodate bits on error
2289 * set the uptodate bits if things worked
2290 * set the page up to date if all extents in the tree are uptodate
2291 * clear the lock bit in the extent tree
2292 * unlock the page if there are no other extents locked for it
2293 *
2294 * Scheduling is not allowed, so the extent state tree is expected
2295 * to have one and only one object corresponding to this IO.
2296 */
d1310b2e 2297static void end_bio_extent_readpage(struct bio *bio, int err)
d1310b2e
CM
2298{
2299 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4125bf76
CM
2300 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2301 struct bio_vec *bvec = bio->bi_io_vec;
902b22f3 2302 struct extent_io_tree *tree;
d1310b2e
CM
2303 u64 start;
2304 u64 end;
2305 int whole_page;
5cf1ab56 2306 int mirror;
d1310b2e
CM
2307 int ret;
2308
d20f7043
CM
2309 if (err)
2310 uptodate = 0;
2311
d1310b2e
CM
2312 do {
2313 struct page *page = bvec->bv_page;
507903b8
AJ
2314 struct extent_state *cached = NULL;
2315 struct extent_state *state;
2316
4a54c8c1
JS
2317 pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2318 "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
2319 (long int)bio->bi_bdev);
902b22f3
DW
2320 tree = &BTRFS_I(page->mapping->host)->io_tree;
2321
d1310b2e
CM
2322 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2323 bvec->bv_offset;
2324 end = start + bvec->bv_len - 1;
2325
2326 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2327 whole_page = 1;
2328 else
2329 whole_page = 0;
2330
4125bf76 2331 if (++bvec <= bvec_end)
d1310b2e
CM
2332 prefetchw(&bvec->bv_page->flags);
2333
507903b8 2334 spin_lock(&tree->lock);
0d399205 2335 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
109b36a2 2336 if (state && state->start == start) {
507903b8
AJ
2337 /*
2338 * take a reference on the state, unlock will drop
2339 * the ref
2340 */
2341 cache_state(state, &cached);
2342 }
2343 spin_unlock(&tree->lock);
2344
5cf1ab56 2345 mirror = (int)(unsigned long)bio->bi_bdev;
d1310b2e 2346 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
70dec807 2347 ret = tree->ops->readpage_end_io_hook(page, start, end,
5cf1ab56 2348 state, mirror);
d1310b2e
CM
2349 if (ret)
2350 uptodate = 0;
4a54c8c1
JS
2351 else
2352 clean_io_failure(start, page);
d1310b2e 2353 }
ea466794 2354
ea466794 2355 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2356 ret = tree->ops->readpage_io_failed_hook(page, mirror);
ea466794
JB
2357 if (!ret && !err &&
2358 test_bit(BIO_UPTODATE, &bio->bi_flags))
2359 uptodate = 1;
2360 } else if (!uptodate) {
f4a8e656
JS
2361 /*
2362 * The generic bio_readpage_error handles errors the
2363 * following way: If possible, new read requests are
2364 * created and submitted and will end up in
2365 * end_bio_extent_readpage as well (if we're lucky, not
2366 * in the !uptodate case). In that case it returns 0 and
2367 * we just go on with the next page in our bio. If it
2368 * can't handle the error it will return -EIO and we
2369 * remain responsible for that page.
2370 */
5cf1ab56 2371 ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
7e38326f 2372 if (ret == 0) {
3b951516
CM
2373 uptodate =
2374 test_bit(BIO_UPTODATE, &bio->bi_flags);
d20f7043
CM
2375 if (err)
2376 uptodate = 0;
507903b8 2377 uncache_state(&cached);
7e38326f
CM
2378 continue;
2379 }
2380 }
d1310b2e 2381
0b32f4bb 2382 if (uptodate && tree->track_uptodate) {
507903b8 2383 set_extent_uptodate(tree, start, end, &cached,
902b22f3 2384 GFP_ATOMIC);
771ed689 2385 }
507903b8 2386 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
d1310b2e 2387
70dec807
CM
2388 if (whole_page) {
2389 if (uptodate) {
2390 SetPageUptodate(page);
2391 } else {
2392 ClearPageUptodate(page);
2393 SetPageError(page);
2394 }
d1310b2e 2395 unlock_page(page);
70dec807
CM
2396 } else {
2397 if (uptodate) {
2398 check_page_uptodate(tree, page);
2399 } else {
2400 ClearPageUptodate(page);
2401 SetPageError(page);
2402 }
d1310b2e 2403 check_page_locked(tree, page);
70dec807 2404 }
4125bf76 2405 } while (bvec <= bvec_end);
d1310b2e
CM
2406
2407 bio_put(bio);
d1310b2e
CM
2408}
2409
88f794ed
MX
2410struct bio *
2411btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2412 gfp_t gfp_flags)
d1310b2e
CM
2413{
2414 struct bio *bio;
2415
2416 bio = bio_alloc(gfp_flags, nr_vecs);
2417
2418 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2419 while (!bio && (nr_vecs /= 2))
2420 bio = bio_alloc(gfp_flags, nr_vecs);
2421 }
2422
2423 if (bio) {
e1c4b745 2424 bio->bi_size = 0;
d1310b2e
CM
2425 bio->bi_bdev = bdev;
2426 bio->bi_sector = first_sector;
2427 }
2428 return bio;
2429}
2430
79787eaa
JM
2431/*
2432 * Since writes are async, they will only return -ENOMEM.
2433 * Reads can return the full range of I/O error conditions.
2434 */
355808c2
JM
2435static int __must_check submit_one_bio(int rw, struct bio *bio,
2436 int mirror_num, unsigned long bio_flags)
d1310b2e 2437{
d1310b2e 2438 int ret = 0;
70dec807
CM
2439 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2440 struct page *page = bvec->bv_page;
2441 struct extent_io_tree *tree = bio->bi_private;
70dec807 2442 u64 start;
70dec807
CM
2443
2444 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
70dec807 2445
902b22f3 2446 bio->bi_private = NULL;
d1310b2e
CM
2447
2448 bio_get(bio);
2449
065631f6 2450 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2451 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2452 mirror_num, bio_flags, start);
0b86a832 2453 else
21adbd5c 2454 btrfsic_submit_bio(rw, bio);
4a54c8c1 2455
d1310b2e
CM
2456 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2457 ret = -EOPNOTSUPP;
2458 bio_put(bio);
2459 return ret;
2460}
2461
3444a972
JM
2462static int merge_bio(struct extent_io_tree *tree, struct page *page,
2463 unsigned long offset, size_t size, struct bio *bio,
2464 unsigned long bio_flags)
2465{
2466 int ret = 0;
2467 if (tree->ops && tree->ops->merge_bio_hook)
2468 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2469 bio_flags);
2470 BUG_ON(ret < 0);
2471 return ret;
2472
2473}
2474
d1310b2e
CM
2475static int submit_extent_page(int rw, struct extent_io_tree *tree,
2476 struct page *page, sector_t sector,
2477 size_t size, unsigned long offset,
2478 struct block_device *bdev,
2479 struct bio **bio_ret,
2480 unsigned long max_pages,
f188591e 2481 bio_end_io_t end_io_func,
c8b97818
CM
2482 int mirror_num,
2483 unsigned long prev_bio_flags,
2484 unsigned long bio_flags)
d1310b2e
CM
2485{
2486 int ret = 0;
2487 struct bio *bio;
2488 int nr;
c8b97818
CM
2489 int contig = 0;
2490 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2491 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2492 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2493
2494 if (bio_ret && *bio_ret) {
2495 bio = *bio_ret;
c8b97818
CM
2496 if (old_compressed)
2497 contig = bio->bi_sector == sector;
2498 else
2499 contig = bio->bi_sector + (bio->bi_size >> 9) ==
2500 sector;
2501
2502 if (prev_bio_flags != bio_flags || !contig ||
3444a972 2503 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2504 bio_add_page(bio, page, page_size, offset) < page_size) {
2505 ret = submit_one_bio(rw, bio, mirror_num,
2506 prev_bio_flags);
79787eaa
JM
2507 if (ret < 0)
2508 return ret;
d1310b2e
CM
2509 bio = NULL;
2510 } else {
2511 return 0;
2512 }
2513 }
c8b97818
CM
2514 if (this_compressed)
2515 nr = BIO_MAX_PAGES;
2516 else
2517 nr = bio_get_nr_vecs(bdev);
2518
88f794ed 2519 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
5df67083
TI
2520 if (!bio)
2521 return -ENOMEM;
70dec807 2522
c8b97818 2523 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2524 bio->bi_end_io = end_io_func;
2525 bio->bi_private = tree;
70dec807 2526
d397712b 2527 if (bio_ret)
d1310b2e 2528 *bio_ret = bio;
d397712b 2529 else
c8b97818 2530 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2531
2532 return ret;
2533}
2534
4f2de97a 2535void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
d1310b2e
CM
2536{
2537 if (!PagePrivate(page)) {
2538 SetPagePrivate(page);
d1310b2e 2539 page_cache_get(page);
4f2de97a
JB
2540 set_page_private(page, (unsigned long)eb);
2541 } else {
2542 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2543 }
2544}
2545
4f2de97a 2546void set_page_extent_mapped(struct page *page)
d1310b2e 2547{
4f2de97a
JB
2548 if (!PagePrivate(page)) {
2549 SetPagePrivate(page);
2550 page_cache_get(page);
2551 set_page_private(page, EXTENT_PAGE_PRIVATE);
2552 }
d1310b2e
CM
2553}
2554
2555/*
2556 * basic readpage implementation. Locked extent state structs are inserted
2557 * into the tree that are removed when the IO is done (by the end_io
2558 * handlers)
79787eaa 2559 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e
CM
2560 */
2561static int __extent_read_full_page(struct extent_io_tree *tree,
2562 struct page *page,
2563 get_extent_t *get_extent,
c8b97818
CM
2564 struct bio **bio, int mirror_num,
2565 unsigned long *bio_flags)
d1310b2e
CM
2566{
2567 struct inode *inode = page->mapping->host;
2568 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2569 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2570 u64 end;
2571 u64 cur = start;
2572 u64 extent_offset;
2573 u64 last_byte = i_size_read(inode);
2574 u64 block_start;
2575 u64 cur_end;
2576 sector_t sector;
2577 struct extent_map *em;
2578 struct block_device *bdev;
11c65dcc 2579 struct btrfs_ordered_extent *ordered;
d1310b2e
CM
2580 int ret;
2581 int nr = 0;
306e16ce 2582 size_t pg_offset = 0;
d1310b2e 2583 size_t iosize;
c8b97818 2584 size_t disk_io_size;
d1310b2e 2585 size_t blocksize = inode->i_sb->s_blocksize;
c8b97818 2586 unsigned long this_bio_flag = 0;
d1310b2e
CM
2587
2588 set_page_extent_mapped(page);
2589
90a887c9
DM
2590 if (!PageUptodate(page)) {
2591 if (cleancache_get_page(page) == 0) {
2592 BUG_ON(blocksize != PAGE_SIZE);
2593 goto out;
2594 }
2595 }
2596
d1310b2e 2597 end = page_end;
11c65dcc 2598 while (1) {
d0082371 2599 lock_extent(tree, start, end);
11c65dcc
JB
2600 ordered = btrfs_lookup_ordered_extent(inode, start);
2601 if (!ordered)
2602 break;
d0082371 2603 unlock_extent(tree, start, end);
11c65dcc
JB
2604 btrfs_start_ordered_extent(inode, ordered, 1);
2605 btrfs_put_ordered_extent(ordered);
2606 }
d1310b2e 2607
c8b97818
CM
2608 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2609 char *userpage;
2610 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2611
2612 if (zero_offset) {
2613 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 2614 userpage = kmap_atomic(page);
c8b97818
CM
2615 memset(userpage + zero_offset, 0, iosize);
2616 flush_dcache_page(page);
7ac687d9 2617 kunmap_atomic(userpage);
c8b97818
CM
2618 }
2619 }
d1310b2e
CM
2620 while (cur <= end) {
2621 if (cur >= last_byte) {
2622 char *userpage;
507903b8
AJ
2623 struct extent_state *cached = NULL;
2624
306e16ce 2625 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 2626 userpage = kmap_atomic(page);
306e16ce 2627 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2628 flush_dcache_page(page);
7ac687d9 2629 kunmap_atomic(userpage);
d1310b2e 2630 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2631 &cached, GFP_NOFS);
2632 unlock_extent_cached(tree, cur, cur + iosize - 1,
2633 &cached, GFP_NOFS);
d1310b2e
CM
2634 break;
2635 }
306e16ce 2636 em = get_extent(inode, page, pg_offset, cur,
d1310b2e 2637 end - cur + 1, 0);
c704005d 2638 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2639 SetPageError(page);
d0082371 2640 unlock_extent(tree, cur, end);
d1310b2e
CM
2641 break;
2642 }
d1310b2e
CM
2643 extent_offset = cur - em->start;
2644 BUG_ON(extent_map_end(em) <= cur);
2645 BUG_ON(end < cur);
2646
261507a0 2647 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
c8b97818 2648 this_bio_flag = EXTENT_BIO_COMPRESSED;
261507a0
LZ
2649 extent_set_compress_type(&this_bio_flag,
2650 em->compress_type);
2651 }
c8b97818 2652
d1310b2e
CM
2653 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2654 cur_end = min(extent_map_end(em) - 1, end);
2655 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
c8b97818
CM
2656 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2657 disk_io_size = em->block_len;
2658 sector = em->block_start >> 9;
2659 } else {
2660 sector = (em->block_start + extent_offset) >> 9;
2661 disk_io_size = iosize;
2662 }
d1310b2e
CM
2663 bdev = em->bdev;
2664 block_start = em->block_start;
d899e052
YZ
2665 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2666 block_start = EXTENT_MAP_HOLE;
d1310b2e
CM
2667 free_extent_map(em);
2668 em = NULL;
2669
2670 /* we've found a hole, just zero and go on */
2671 if (block_start == EXTENT_MAP_HOLE) {
2672 char *userpage;
507903b8
AJ
2673 struct extent_state *cached = NULL;
2674
7ac687d9 2675 userpage = kmap_atomic(page);
306e16ce 2676 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2677 flush_dcache_page(page);
7ac687d9 2678 kunmap_atomic(userpage);
d1310b2e
CM
2679
2680 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2681 &cached, GFP_NOFS);
2682 unlock_extent_cached(tree, cur, cur + iosize - 1,
2683 &cached, GFP_NOFS);
d1310b2e 2684 cur = cur + iosize;
306e16ce 2685 pg_offset += iosize;
d1310b2e
CM
2686 continue;
2687 }
2688 /* the get_extent function already copied into the page */
9655d298
CM
2689 if (test_range_bit(tree, cur, cur_end,
2690 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 2691 check_page_uptodate(tree, page);
d0082371 2692 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 2693 cur = cur + iosize;
306e16ce 2694 pg_offset += iosize;
d1310b2e
CM
2695 continue;
2696 }
70dec807
CM
2697 /* we have an inline extent but it didn't get marked up
2698 * to date. Error out
2699 */
2700 if (block_start == EXTENT_MAP_INLINE) {
2701 SetPageError(page);
d0082371 2702 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 2703 cur = cur + iosize;
306e16ce 2704 pg_offset += iosize;
70dec807
CM
2705 continue;
2706 }
d1310b2e
CM
2707
2708 ret = 0;
2709 if (tree->ops && tree->ops->readpage_io_hook) {
2710 ret = tree->ops->readpage_io_hook(page, cur,
2711 cur + iosize - 1);
2712 }
2713 if (!ret) {
89642229
CM
2714 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2715 pnr -= page->index;
d1310b2e 2716 ret = submit_extent_page(READ, tree, page,
306e16ce 2717 sector, disk_io_size, pg_offset,
89642229 2718 bdev, bio, pnr,
c8b97818
CM
2719 end_bio_extent_readpage, mirror_num,
2720 *bio_flags,
2721 this_bio_flag);
79787eaa 2722 BUG_ON(ret == -ENOMEM);
89642229 2723 nr++;
c8b97818 2724 *bio_flags = this_bio_flag;
d1310b2e
CM
2725 }
2726 if (ret)
2727 SetPageError(page);
2728 cur = cur + iosize;
306e16ce 2729 pg_offset += iosize;
d1310b2e 2730 }
90a887c9 2731out:
d1310b2e
CM
2732 if (!nr) {
2733 if (!PageError(page))
2734 SetPageUptodate(page);
2735 unlock_page(page);
2736 }
2737 return 0;
2738}
2739
2740int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 2741 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
2742{
2743 struct bio *bio = NULL;
c8b97818 2744 unsigned long bio_flags = 0;
d1310b2e
CM
2745 int ret;
2746
8ddc7d9c 2747 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
c8b97818 2748 &bio_flags);
d1310b2e 2749 if (bio)
8ddc7d9c 2750 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
2751 return ret;
2752}
d1310b2e 2753
11c8349b
CM
2754static noinline void update_nr_written(struct page *page,
2755 struct writeback_control *wbc,
2756 unsigned long nr_written)
2757{
2758 wbc->nr_to_write -= nr_written;
2759 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2760 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2761 page->mapping->writeback_index = page->index + nr_written;
2762}
2763
d1310b2e
CM
2764/*
2765 * the writepage semantics are similar to regular writepage. extent
2766 * records are inserted to lock ranges in the tree, and as dirty areas
2767 * are found, they are marked writeback. Then the lock bits are removed
2768 * and the end_io handler clears the writeback ranges
2769 */
2770static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2771 void *data)
2772{
2773 struct inode *inode = page->mapping->host;
2774 struct extent_page_data *epd = data;
2775 struct extent_io_tree *tree = epd->tree;
2776 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2777 u64 delalloc_start;
2778 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2779 u64 end;
2780 u64 cur = start;
2781 u64 extent_offset;
2782 u64 last_byte = i_size_read(inode);
2783 u64 block_start;
2784 u64 iosize;
2785 sector_t sector;
2c64c53d 2786 struct extent_state *cached_state = NULL;
d1310b2e
CM
2787 struct extent_map *em;
2788 struct block_device *bdev;
2789 int ret;
2790 int nr = 0;
7f3c74fb 2791 size_t pg_offset = 0;
d1310b2e
CM
2792 size_t blocksize;
2793 loff_t i_size = i_size_read(inode);
2794 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2795 u64 nr_delalloc;
2796 u64 delalloc_end;
c8b97818
CM
2797 int page_started;
2798 int compressed;
ffbd517d 2799 int write_flags;
771ed689 2800 unsigned long nr_written = 0;
9e487107 2801 bool fill_delalloc = true;
d1310b2e 2802
ffbd517d 2803 if (wbc->sync_mode == WB_SYNC_ALL)
721a9602 2804 write_flags = WRITE_SYNC;
ffbd517d
CM
2805 else
2806 write_flags = WRITE;
2807
1abe9b8a 2808 trace___extent_writepage(page, inode, wbc);
2809
d1310b2e 2810 WARN_ON(!PageLocked(page));
bf0da8c1
CM
2811
2812 ClearPageError(page);
2813
7f3c74fb 2814 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
211c17f5 2815 if (page->index > end_index ||
7f3c74fb 2816 (page->index == end_index && !pg_offset)) {
39be25cd 2817 page->mapping->a_ops->invalidatepage(page, 0);
d1310b2e
CM
2818 unlock_page(page);
2819 return 0;
2820 }
2821
2822 if (page->index == end_index) {
2823 char *userpage;
2824
7ac687d9 2825 userpage = kmap_atomic(page);
7f3c74fb
CM
2826 memset(userpage + pg_offset, 0,
2827 PAGE_CACHE_SIZE - pg_offset);
7ac687d9 2828 kunmap_atomic(userpage);
211c17f5 2829 flush_dcache_page(page);
d1310b2e 2830 }
7f3c74fb 2831 pg_offset = 0;
d1310b2e
CM
2832
2833 set_page_extent_mapped(page);
2834
9e487107
JB
2835 if (!tree->ops || !tree->ops->fill_delalloc)
2836 fill_delalloc = false;
2837
d1310b2e
CM
2838 delalloc_start = start;
2839 delalloc_end = 0;
c8b97818 2840 page_started = 0;
9e487107 2841 if (!epd->extent_locked && fill_delalloc) {
f85d7d6c 2842 u64 delalloc_to_write = 0;
11c8349b
CM
2843 /*
2844 * make sure the wbc mapping index is at least updated
2845 * to this page.
2846 */
2847 update_nr_written(page, wbc, 0);
2848
d397712b 2849 while (delalloc_end < page_end) {
771ed689 2850 nr_delalloc = find_lock_delalloc_range(inode, tree,
c8b97818
CM
2851 page,
2852 &delalloc_start,
d1310b2e
CM
2853 &delalloc_end,
2854 128 * 1024 * 1024);
771ed689
CM
2855 if (nr_delalloc == 0) {
2856 delalloc_start = delalloc_end + 1;
2857 continue;
2858 }
013bd4c3
TI
2859 ret = tree->ops->fill_delalloc(inode, page,
2860 delalloc_start,
2861 delalloc_end,
2862 &page_started,
2863 &nr_written);
79787eaa
JM
2864 /* File system has been set read-only */
2865 if (ret) {
2866 SetPageError(page);
2867 goto done;
2868 }
f85d7d6c
CM
2869 /*
2870 * delalloc_end is already one less than the total
2871 * length, so we don't subtract one from
2872 * PAGE_CACHE_SIZE
2873 */
2874 delalloc_to_write += (delalloc_end - delalloc_start +
2875 PAGE_CACHE_SIZE) >>
2876 PAGE_CACHE_SHIFT;
d1310b2e 2877 delalloc_start = delalloc_end + 1;
d1310b2e 2878 }
f85d7d6c
CM
2879 if (wbc->nr_to_write < delalloc_to_write) {
2880 int thresh = 8192;
2881
2882 if (delalloc_to_write < thresh * 2)
2883 thresh = delalloc_to_write;
2884 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2885 thresh);
2886 }
c8b97818 2887
771ed689
CM
2888 /* did the fill delalloc function already unlock and start
2889 * the IO?
2890 */
2891 if (page_started) {
2892 ret = 0;
11c8349b
CM
2893 /*
2894 * we've unlocked the page, so we can't update
2895 * the mapping's writeback index, just update
2896 * nr_to_write.
2897 */
2898 wbc->nr_to_write -= nr_written;
2899 goto done_unlocked;
771ed689 2900 }
c8b97818 2901 }
247e743c 2902 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
2903 ret = tree->ops->writepage_start_hook(page, start,
2904 page_end);
87826df0
JM
2905 if (ret) {
2906 /* Fixup worker will requeue */
2907 if (ret == -EBUSY)
2908 wbc->pages_skipped++;
2909 else
2910 redirty_page_for_writepage(wbc, page);
11c8349b 2911 update_nr_written(page, wbc, nr_written);
247e743c 2912 unlock_page(page);
771ed689 2913 ret = 0;
11c8349b 2914 goto done_unlocked;
247e743c
CM
2915 }
2916 }
2917
11c8349b
CM
2918 /*
2919 * we don't want to touch the inode after unlocking the page,
2920 * so we update the mapping writeback index now
2921 */
2922 update_nr_written(page, wbc, nr_written + 1);
771ed689 2923
d1310b2e 2924 end = page_end;
d1310b2e 2925 if (last_byte <= start) {
e6dcd2dc
CM
2926 if (tree->ops && tree->ops->writepage_end_io_hook)
2927 tree->ops->writepage_end_io_hook(page, start,
2928 page_end, NULL, 1);
d1310b2e
CM
2929 goto done;
2930 }
2931
d1310b2e
CM
2932 blocksize = inode->i_sb->s_blocksize;
2933
2934 while (cur <= end) {
2935 if (cur >= last_byte) {
e6dcd2dc
CM
2936 if (tree->ops && tree->ops->writepage_end_io_hook)
2937 tree->ops->writepage_end_io_hook(page, cur,
2938 page_end, NULL, 1);
d1310b2e
CM
2939 break;
2940 }
7f3c74fb 2941 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 2942 end - cur + 1, 1);
c704005d 2943 if (IS_ERR_OR_NULL(em)) {
d1310b2e
CM
2944 SetPageError(page);
2945 break;
2946 }
2947
2948 extent_offset = cur - em->start;
2949 BUG_ON(extent_map_end(em) <= cur);
2950 BUG_ON(end < cur);
2951 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2952 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2953 sector = (em->block_start + extent_offset) >> 9;
2954 bdev = em->bdev;
2955 block_start = em->block_start;
c8b97818 2956 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
2957 free_extent_map(em);
2958 em = NULL;
2959
c8b97818
CM
2960 /*
2961 * compressed and inline extents are written through other
2962 * paths in the FS
2963 */
2964 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 2965 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
2966 /*
2967 * end_io notification does not happen here for
2968 * compressed extents
2969 */
2970 if (!compressed && tree->ops &&
2971 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
2972 tree->ops->writepage_end_io_hook(page, cur,
2973 cur + iosize - 1,
2974 NULL, 1);
c8b97818
CM
2975 else if (compressed) {
2976 /* we don't want to end_page_writeback on
2977 * a compressed extent. this happens
2978 * elsewhere
2979 */
2980 nr++;
2981 }
2982
2983 cur += iosize;
7f3c74fb 2984 pg_offset += iosize;
d1310b2e
CM
2985 continue;
2986 }
d1310b2e
CM
2987 /* leave this out until we have a page_mkwrite call */
2988 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
9655d298 2989 EXTENT_DIRTY, 0, NULL)) {
d1310b2e 2990 cur = cur + iosize;
7f3c74fb 2991 pg_offset += iosize;
d1310b2e
CM
2992 continue;
2993 }
c8b97818 2994
d1310b2e
CM
2995 if (tree->ops && tree->ops->writepage_io_hook) {
2996 ret = tree->ops->writepage_io_hook(page, cur,
2997 cur + iosize - 1);
2998 } else {
2999 ret = 0;
3000 }
1259ab75 3001 if (ret) {
d1310b2e 3002 SetPageError(page);
1259ab75 3003 } else {
d1310b2e 3004 unsigned long max_nr = end_index + 1;
7f3c74fb 3005
d1310b2e
CM
3006 set_range_writeback(tree, cur, cur + iosize - 1);
3007 if (!PageWriteback(page)) {
d397712b
CM
3008 printk(KERN_ERR "btrfs warning page %lu not "
3009 "writeback, cur %llu end %llu\n",
3010 page->index, (unsigned long long)cur,
d1310b2e
CM
3011 (unsigned long long)end);
3012 }
3013
ffbd517d
CM
3014 ret = submit_extent_page(write_flags, tree, page,
3015 sector, iosize, pg_offset,
3016 bdev, &epd->bio, max_nr,
c8b97818
CM
3017 end_bio_extent_writepage,
3018 0, 0, 0);
d1310b2e
CM
3019 if (ret)
3020 SetPageError(page);
3021 }
3022 cur = cur + iosize;
7f3c74fb 3023 pg_offset += iosize;
d1310b2e
CM
3024 nr++;
3025 }
3026done:
3027 if (nr == 0) {
3028 /* make sure the mapping tag for page dirty gets cleared */
3029 set_page_writeback(page);
3030 end_page_writeback(page);
3031 }
d1310b2e 3032 unlock_page(page);
771ed689 3033
11c8349b
CM
3034done_unlocked:
3035
2c64c53d
CM
3036 /* drop our reference on any cached states */
3037 free_extent_state(cached_state);
d1310b2e
CM
3038 return 0;
3039}
3040
0b32f4bb
JB
3041static int eb_wait(void *word)
3042{
3043 io_schedule();
3044 return 0;
3045}
3046
3047static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3048{
3049 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3050 TASK_UNINTERRUPTIBLE);
3051}
3052
3053static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3054 struct btrfs_fs_info *fs_info,
3055 struct extent_page_data *epd)
3056{
3057 unsigned long i, num_pages;
3058 int flush = 0;
3059 int ret = 0;
3060
3061 if (!btrfs_try_tree_write_lock(eb)) {
3062 flush = 1;
3063 flush_write_bio(epd);
3064 btrfs_tree_lock(eb);
3065 }
3066
3067 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3068 btrfs_tree_unlock(eb);
3069 if (!epd->sync_io)
3070 return 0;
3071 if (!flush) {
3072 flush_write_bio(epd);
3073 flush = 1;
3074 }
a098d8e8
CM
3075 while (1) {
3076 wait_on_extent_buffer_writeback(eb);
3077 btrfs_tree_lock(eb);
3078 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3079 break;
0b32f4bb 3080 btrfs_tree_unlock(eb);
0b32f4bb
JB
3081 }
3082 }
3083
3084 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3085 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3086 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3087 spin_lock(&fs_info->delalloc_lock);
3088 if (fs_info->dirty_metadata_bytes >= eb->len)
3089 fs_info->dirty_metadata_bytes -= eb->len;
3090 else
3091 WARN_ON(1);
3092 spin_unlock(&fs_info->delalloc_lock);
3093 ret = 1;
3094 }
3095
3096 btrfs_tree_unlock(eb);
3097
3098 if (!ret)
3099 return ret;
3100
3101 num_pages = num_extent_pages(eb->start, eb->len);
3102 for (i = 0; i < num_pages; i++) {
3103 struct page *p = extent_buffer_page(eb, i);
3104
3105 if (!trylock_page(p)) {
3106 if (!flush) {
3107 flush_write_bio(epd);
3108 flush = 1;
3109 }
3110 lock_page(p);
3111 }
3112 }
3113
3114 return ret;
3115}
3116
3117static void end_extent_buffer_writeback(struct extent_buffer *eb)
3118{
3119 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3120 smp_mb__after_clear_bit();
3121 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3122}
3123
3124static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3125{
3126 int uptodate = err == 0;
3127 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3128 struct extent_buffer *eb;
3129 int done;
3130
3131 do {
3132 struct page *page = bvec->bv_page;
3133
3134 bvec--;
3135 eb = (struct extent_buffer *)page->private;
3136 BUG_ON(!eb);
3137 done = atomic_dec_and_test(&eb->io_pages);
3138
3139 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3140 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3141 ClearPageUptodate(page);
3142 SetPageError(page);
3143 }
3144
3145 end_page_writeback(page);
3146
3147 if (!done)
3148 continue;
3149
3150 end_extent_buffer_writeback(eb);
3151 } while (bvec >= bio->bi_io_vec);
3152
3153 bio_put(bio);
3154
3155}
3156
3157static int write_one_eb(struct extent_buffer *eb,
3158 struct btrfs_fs_info *fs_info,
3159 struct writeback_control *wbc,
3160 struct extent_page_data *epd)
3161{
3162 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3163 u64 offset = eb->start;
3164 unsigned long i, num_pages;
3165 int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
d7dbe9e7 3166 int ret = 0;
0b32f4bb
JB
3167
3168 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3169 num_pages = num_extent_pages(eb->start, eb->len);
3170 atomic_set(&eb->io_pages, num_pages);
3171 for (i = 0; i < num_pages; i++) {
3172 struct page *p = extent_buffer_page(eb, i);
3173
3174 clear_page_dirty_for_io(p);
3175 set_page_writeback(p);
3176 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3177 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3178 -1, end_bio_extent_buffer_writepage,
3179 0, 0, 0);
3180 if (ret) {
3181 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3182 SetPageError(p);
3183 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3184 end_extent_buffer_writeback(eb);
3185 ret = -EIO;
3186 break;
3187 }
3188 offset += PAGE_CACHE_SIZE;
3189 update_nr_written(p, wbc, 1);
3190 unlock_page(p);
3191 }
3192
3193 if (unlikely(ret)) {
3194 for (; i < num_pages; i++) {
3195 struct page *p = extent_buffer_page(eb, i);
3196 unlock_page(p);
3197 }
3198 }
3199
3200 return ret;
3201}
3202
3203int btree_write_cache_pages(struct address_space *mapping,
3204 struct writeback_control *wbc)
3205{
3206 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3207 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3208 struct extent_buffer *eb, *prev_eb = NULL;
3209 struct extent_page_data epd = {
3210 .bio = NULL,
3211 .tree = tree,
3212 .extent_locked = 0,
3213 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3214 };
3215 int ret = 0;
3216 int done = 0;
3217 int nr_to_write_done = 0;
3218 struct pagevec pvec;
3219 int nr_pages;
3220 pgoff_t index;
3221 pgoff_t end; /* Inclusive */
3222 int scanned = 0;
3223 int tag;
3224
3225 pagevec_init(&pvec, 0);
3226 if (wbc->range_cyclic) {
3227 index = mapping->writeback_index; /* Start from prev offset */
3228 end = -1;
3229 } else {
3230 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3231 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3232 scanned = 1;
3233 }
3234 if (wbc->sync_mode == WB_SYNC_ALL)
3235 tag = PAGECACHE_TAG_TOWRITE;
3236 else
3237 tag = PAGECACHE_TAG_DIRTY;
3238retry:
3239 if (wbc->sync_mode == WB_SYNC_ALL)
3240 tag_pages_for_writeback(mapping, index, end);
3241 while (!done && !nr_to_write_done && (index <= end) &&
3242 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3243 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3244 unsigned i;
3245
3246 scanned = 1;
3247 for (i = 0; i < nr_pages; i++) {
3248 struct page *page = pvec.pages[i];
3249
3250 if (!PagePrivate(page))
3251 continue;
3252
3253 if (!wbc->range_cyclic && page->index > end) {
3254 done = 1;
3255 break;
3256 }
3257
3258 eb = (struct extent_buffer *)page->private;
3259 if (!eb) {
3260 WARN_ON(1);
3261 continue;
3262 }
3263
3264 if (eb == prev_eb)
3265 continue;
3266
3267 if (!atomic_inc_not_zero(&eb->refs)) {
3268 WARN_ON(1);
3269 continue;
3270 }
3271
3272 prev_eb = eb;
3273 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3274 if (!ret) {
3275 free_extent_buffer(eb);
3276 continue;
3277 }
3278
3279 ret = write_one_eb(eb, fs_info, wbc, &epd);
3280 if (ret) {
3281 done = 1;
3282 free_extent_buffer(eb);
3283 break;
3284 }
3285 free_extent_buffer(eb);
3286
3287 /*
3288 * the filesystem may choose to bump up nr_to_write.
3289 * We have to make sure to honor the new nr_to_write
3290 * at any time
3291 */
3292 nr_to_write_done = wbc->nr_to_write <= 0;
3293 }
3294 pagevec_release(&pvec);
3295 cond_resched();
3296 }
3297 if (!scanned && !done) {
3298 /*
3299 * We hit the last page and there is more work to be done: wrap
3300 * back to the start of the file
3301 */
3302 scanned = 1;
3303 index = 0;
3304 goto retry;
3305 }
3306 flush_write_bio(&epd);
3307 return ret;
3308}
3309
d1310b2e 3310/**
4bef0848 3311 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3312 * @mapping: address space structure to write
3313 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3314 * @writepage: function called for each page
3315 * @data: data passed to writepage function
3316 *
3317 * If a page is already under I/O, write_cache_pages() skips it, even
3318 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3319 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3320 * and msync() need to guarantee that all the data which was dirty at the time
3321 * the call was made get new I/O started against them. If wbc->sync_mode is
3322 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3323 * existing IO to complete.
3324 */
b2950863 3325static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3326 struct address_space *mapping,
3327 struct writeback_control *wbc,
d2c3f4f6
CM
3328 writepage_t writepage, void *data,
3329 void (*flush_fn)(void *))
d1310b2e 3330{
d1310b2e
CM
3331 int ret = 0;
3332 int done = 0;
f85d7d6c 3333 int nr_to_write_done = 0;
d1310b2e
CM
3334 struct pagevec pvec;
3335 int nr_pages;
3336 pgoff_t index;
3337 pgoff_t end; /* Inclusive */
3338 int scanned = 0;
f7aaa06b 3339 int tag;
d1310b2e 3340
d1310b2e
CM
3341 pagevec_init(&pvec, 0);
3342 if (wbc->range_cyclic) {
3343 index = mapping->writeback_index; /* Start from prev offset */
3344 end = -1;
3345 } else {
3346 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3347 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3348 scanned = 1;
3349 }
f7aaa06b
JB
3350 if (wbc->sync_mode == WB_SYNC_ALL)
3351 tag = PAGECACHE_TAG_TOWRITE;
3352 else
3353 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3354retry:
f7aaa06b
JB
3355 if (wbc->sync_mode == WB_SYNC_ALL)
3356 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3357 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3358 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3359 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3360 unsigned i;
3361
3362 scanned = 1;
3363 for (i = 0; i < nr_pages; i++) {
3364 struct page *page = pvec.pages[i];
3365
3366 /*
3367 * At this point we hold neither mapping->tree_lock nor
3368 * lock on the page itself: the page may be truncated or
3369 * invalidated (changing page->mapping to NULL), or even
3370 * swizzled back from swapper_space to tmpfs file
3371 * mapping
3372 */
01d658f2
CM
3373 if (tree->ops &&
3374 tree->ops->write_cache_pages_lock_hook) {
3375 tree->ops->write_cache_pages_lock_hook(page,
3376 data, flush_fn);
3377 } else {
3378 if (!trylock_page(page)) {
3379 flush_fn(data);
3380 lock_page(page);
3381 }
3382 }
d1310b2e
CM
3383
3384 if (unlikely(page->mapping != mapping)) {
3385 unlock_page(page);
3386 continue;
3387 }
3388
3389 if (!wbc->range_cyclic && page->index > end) {
3390 done = 1;
3391 unlock_page(page);
3392 continue;
3393 }
3394
d2c3f4f6 3395 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3396 if (PageWriteback(page))
3397 flush_fn(data);
d1310b2e 3398 wait_on_page_writeback(page);
d2c3f4f6 3399 }
d1310b2e
CM
3400
3401 if (PageWriteback(page) ||
3402 !clear_page_dirty_for_io(page)) {
3403 unlock_page(page);
3404 continue;
3405 }
3406
3407 ret = (*writepage)(page, wbc, data);
3408
3409 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3410 unlock_page(page);
3411 ret = 0;
3412 }
f85d7d6c 3413 if (ret)
d1310b2e 3414 done = 1;
f85d7d6c
CM
3415
3416 /*
3417 * the filesystem may choose to bump up nr_to_write.
3418 * We have to make sure to honor the new nr_to_write
3419 * at any time
3420 */
3421 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3422 }
3423 pagevec_release(&pvec);
3424 cond_resched();
3425 }
3426 if (!scanned && !done) {
3427 /*
3428 * We hit the last page and there is more work to be done: wrap
3429 * back to the start of the file
3430 */
3431 scanned = 1;
3432 index = 0;
3433 goto retry;
3434 }
d1310b2e
CM
3435 return ret;
3436}
d1310b2e 3437
ffbd517d 3438static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 3439{
d2c3f4f6 3440 if (epd->bio) {
355808c2
JM
3441 int rw = WRITE;
3442 int ret;
3443
ffbd517d 3444 if (epd->sync_io)
355808c2
JM
3445 rw = WRITE_SYNC;
3446
3447 ret = submit_one_bio(rw, epd->bio, 0, 0);
79787eaa 3448 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
3449 epd->bio = NULL;
3450 }
3451}
3452
ffbd517d
CM
3453static noinline void flush_write_bio(void *data)
3454{
3455 struct extent_page_data *epd = data;
3456 flush_epd_write_bio(epd);
3457}
3458
d1310b2e
CM
3459int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3460 get_extent_t *get_extent,
3461 struct writeback_control *wbc)
3462{
3463 int ret;
d1310b2e
CM
3464 struct extent_page_data epd = {
3465 .bio = NULL,
3466 .tree = tree,
3467 .get_extent = get_extent,
771ed689 3468 .extent_locked = 0,
ffbd517d 3469 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 3470 };
d1310b2e 3471
d1310b2e
CM
3472 ret = __extent_writepage(page, wbc, &epd);
3473
ffbd517d 3474 flush_epd_write_bio(&epd);
d1310b2e
CM
3475 return ret;
3476}
d1310b2e 3477
771ed689
CM
3478int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3479 u64 start, u64 end, get_extent_t *get_extent,
3480 int mode)
3481{
3482 int ret = 0;
3483 struct address_space *mapping = inode->i_mapping;
3484 struct page *page;
3485 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3486 PAGE_CACHE_SHIFT;
3487
3488 struct extent_page_data epd = {
3489 .bio = NULL,
3490 .tree = tree,
3491 .get_extent = get_extent,
3492 .extent_locked = 1,
ffbd517d 3493 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
3494 };
3495 struct writeback_control wbc_writepages = {
771ed689 3496 .sync_mode = mode,
771ed689
CM
3497 .nr_to_write = nr_pages * 2,
3498 .range_start = start,
3499 .range_end = end + 1,
3500 };
3501
d397712b 3502 while (start <= end) {
771ed689
CM
3503 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3504 if (clear_page_dirty_for_io(page))
3505 ret = __extent_writepage(page, &wbc_writepages, &epd);
3506 else {
3507 if (tree->ops && tree->ops->writepage_end_io_hook)
3508 tree->ops->writepage_end_io_hook(page, start,
3509 start + PAGE_CACHE_SIZE - 1,
3510 NULL, 1);
3511 unlock_page(page);
3512 }
3513 page_cache_release(page);
3514 start += PAGE_CACHE_SIZE;
3515 }
3516
ffbd517d 3517 flush_epd_write_bio(&epd);
771ed689
CM
3518 return ret;
3519}
d1310b2e
CM
3520
3521int extent_writepages(struct extent_io_tree *tree,
3522 struct address_space *mapping,
3523 get_extent_t *get_extent,
3524 struct writeback_control *wbc)
3525{
3526 int ret = 0;
3527 struct extent_page_data epd = {
3528 .bio = NULL,
3529 .tree = tree,
3530 .get_extent = get_extent,
771ed689 3531 .extent_locked = 0,
ffbd517d 3532 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
3533 };
3534
4bef0848 3535 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
3536 __extent_writepage, &epd,
3537 flush_write_bio);
ffbd517d 3538 flush_epd_write_bio(&epd);
d1310b2e
CM
3539 return ret;
3540}
d1310b2e
CM
3541
3542int extent_readpages(struct extent_io_tree *tree,
3543 struct address_space *mapping,
3544 struct list_head *pages, unsigned nr_pages,
3545 get_extent_t get_extent)
3546{
3547 struct bio *bio = NULL;
3548 unsigned page_idx;
c8b97818 3549 unsigned long bio_flags = 0;
d1310b2e 3550
d1310b2e
CM
3551 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3552 struct page *page = list_entry(pages->prev, struct page, lru);
3553
3554 prefetchw(&page->flags);
3555 list_del(&page->lru);
28ecb609 3556 if (!add_to_page_cache_lru(page, mapping,
43e817a1 3557 page->index, GFP_NOFS)) {
f188591e 3558 __extent_read_full_page(tree, page, get_extent,
c8b97818 3559 &bio, 0, &bio_flags);
d1310b2e
CM
3560 }
3561 page_cache_release(page);
3562 }
d1310b2e
CM
3563 BUG_ON(!list_empty(pages));
3564 if (bio)
79787eaa 3565 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
3566 return 0;
3567}
d1310b2e
CM
3568
3569/*
3570 * basic invalidatepage code, this waits on any locked or writeback
3571 * ranges corresponding to the page, and then deletes any extent state
3572 * records from the tree
3573 */
3574int extent_invalidatepage(struct extent_io_tree *tree,
3575 struct page *page, unsigned long offset)
3576{
2ac55d41 3577 struct extent_state *cached_state = NULL;
d1310b2e
CM
3578 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3579 u64 end = start + PAGE_CACHE_SIZE - 1;
3580 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3581
d397712b 3582 start += (offset + blocksize - 1) & ~(blocksize - 1);
d1310b2e
CM
3583 if (start > end)
3584 return 0;
3585
d0082371 3586 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 3587 wait_on_page_writeback(page);
d1310b2e 3588 clear_extent_bit(tree, start, end,
32c00aff
JB
3589 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3590 EXTENT_DO_ACCOUNTING,
2ac55d41 3591 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
3592 return 0;
3593}
d1310b2e 3594
7b13b7b1
CM
3595/*
3596 * a helper for releasepage, this tests for areas of the page that
3597 * are locked or under IO and drops the related state bits if it is safe
3598 * to drop the page.
3599 */
3600int try_release_extent_state(struct extent_map_tree *map,
3601 struct extent_io_tree *tree, struct page *page,
3602 gfp_t mask)
3603{
3604 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3605 u64 end = start + PAGE_CACHE_SIZE - 1;
3606 int ret = 1;
3607
211f90e6 3608 if (test_range_bit(tree, start, end,
8b62b72b 3609 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
3610 ret = 0;
3611 else {
3612 if ((mask & GFP_NOFS) == GFP_NOFS)
3613 mask = GFP_NOFS;
11ef160f
CM
3614 /*
3615 * at this point we can safely clear everything except the
3616 * locked bit and the nodatasum bit
3617 */
e3f24cc5 3618 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
3619 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3620 0, 0, NULL, mask);
e3f24cc5
CM
3621
3622 /* if clear_extent_bit failed for enomem reasons,
3623 * we can't allow the release to continue.
3624 */
3625 if (ret < 0)
3626 ret = 0;
3627 else
3628 ret = 1;
7b13b7b1
CM
3629 }
3630 return ret;
3631}
7b13b7b1 3632
d1310b2e
CM
3633/*
3634 * a helper for releasepage. As long as there are no locked extents
3635 * in the range corresponding to the page, both state records and extent
3636 * map records are removed
3637 */
3638int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
3639 struct extent_io_tree *tree, struct page *page,
3640 gfp_t mask)
d1310b2e
CM
3641{
3642 struct extent_map *em;
3643 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3644 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 3645
70dec807
CM
3646 if ((mask & __GFP_WAIT) &&
3647 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 3648 u64 len;
70dec807 3649 while (start <= end) {
39b5637f 3650 len = end - start + 1;
890871be 3651 write_lock(&map->lock);
39b5637f 3652 em = lookup_extent_mapping(map, start, len);
285190d9 3653 if (!em) {
890871be 3654 write_unlock(&map->lock);
70dec807
CM
3655 break;
3656 }
7f3c74fb
CM
3657 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3658 em->start != start) {
890871be 3659 write_unlock(&map->lock);
70dec807
CM
3660 free_extent_map(em);
3661 break;
3662 }
3663 if (!test_range_bit(tree, em->start,
3664 extent_map_end(em) - 1,
8b62b72b 3665 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 3666 0, NULL)) {
70dec807
CM
3667 remove_extent_mapping(map, em);
3668 /* once for the rb tree */
3669 free_extent_map(em);
3670 }
3671 start = extent_map_end(em);
890871be 3672 write_unlock(&map->lock);
70dec807
CM
3673
3674 /* once for us */
d1310b2e
CM
3675 free_extent_map(em);
3676 }
d1310b2e 3677 }
7b13b7b1 3678 return try_release_extent_state(map, tree, page, mask);
d1310b2e 3679}
d1310b2e 3680
ec29ed5b
CM
3681/*
3682 * helper function for fiemap, which doesn't want to see any holes.
3683 * This maps until we find something past 'last'
3684 */
3685static struct extent_map *get_extent_skip_holes(struct inode *inode,
3686 u64 offset,
3687 u64 last,
3688 get_extent_t *get_extent)
3689{
3690 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3691 struct extent_map *em;
3692 u64 len;
3693
3694 if (offset >= last)
3695 return NULL;
3696
3697 while(1) {
3698 len = last - offset;
3699 if (len == 0)
3700 break;
3701 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3702 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 3703 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
3704 return em;
3705
3706 /* if this isn't a hole return it */
3707 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3708 em->block_start != EXTENT_MAP_HOLE) {
3709 return em;
3710 }
3711
3712 /* this is a hole, advance to the next extent */
3713 offset = extent_map_end(em);
3714 free_extent_map(em);
3715 if (offset >= last)
3716 break;
3717 }
3718 return NULL;
3719}
3720
1506fcc8
YS
3721int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3722 __u64 start, __u64 len, get_extent_t *get_extent)
3723{
975f84fe 3724 int ret = 0;
1506fcc8
YS
3725 u64 off = start;
3726 u64 max = start + len;
3727 u32 flags = 0;
975f84fe
JB
3728 u32 found_type;
3729 u64 last;
ec29ed5b 3730 u64 last_for_get_extent = 0;
1506fcc8 3731 u64 disko = 0;
ec29ed5b 3732 u64 isize = i_size_read(inode);
975f84fe 3733 struct btrfs_key found_key;
1506fcc8 3734 struct extent_map *em = NULL;
2ac55d41 3735 struct extent_state *cached_state = NULL;
975f84fe
JB
3736 struct btrfs_path *path;
3737 struct btrfs_file_extent_item *item;
1506fcc8 3738 int end = 0;
ec29ed5b
CM
3739 u64 em_start = 0;
3740 u64 em_len = 0;
3741 u64 em_end = 0;
1506fcc8 3742 unsigned long emflags;
1506fcc8
YS
3743
3744 if (len == 0)
3745 return -EINVAL;
3746
975f84fe
JB
3747 path = btrfs_alloc_path();
3748 if (!path)
3749 return -ENOMEM;
3750 path->leave_spinning = 1;
3751
4d479cf0
JB
3752 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3753 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3754
ec29ed5b
CM
3755 /*
3756 * lookup the last file extent. We're not using i_size here
3757 * because there might be preallocation past i_size
3758 */
975f84fe 3759 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
33345d01 3760 path, btrfs_ino(inode), -1, 0);
975f84fe
JB
3761 if (ret < 0) {
3762 btrfs_free_path(path);
3763 return ret;
3764 }
3765 WARN_ON(!ret);
3766 path->slots[0]--;
3767 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3768 struct btrfs_file_extent_item);
3769 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3770 found_type = btrfs_key_type(&found_key);
3771
ec29ed5b 3772 /* No extents, but there might be delalloc bits */
33345d01 3773 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 3774 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
3775 /* have to trust i_size as the end */
3776 last = (u64)-1;
3777 last_for_get_extent = isize;
3778 } else {
3779 /*
3780 * remember the start of the last extent. There are a
3781 * bunch of different factors that go into the length of the
3782 * extent, so its much less complex to remember where it started
3783 */
3784 last = found_key.offset;
3785 last_for_get_extent = last + 1;
975f84fe 3786 }
975f84fe
JB
3787 btrfs_free_path(path);
3788
ec29ed5b
CM
3789 /*
3790 * we might have some extents allocated but more delalloc past those
3791 * extents. so, we trust isize unless the start of the last extent is
3792 * beyond isize
3793 */
3794 if (last < isize) {
3795 last = (u64)-1;
3796 last_for_get_extent = isize;
3797 }
3798
2ac55d41 3799 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
d0082371 3800 &cached_state);
ec29ed5b 3801
4d479cf0 3802 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 3803 get_extent);
1506fcc8
YS
3804 if (!em)
3805 goto out;
3806 if (IS_ERR(em)) {
3807 ret = PTR_ERR(em);
3808 goto out;
3809 }
975f84fe 3810
1506fcc8 3811 while (!end) {
ea8efc74
CM
3812 u64 offset_in_extent;
3813
3814 /* break if the extent we found is outside the range */
3815 if (em->start >= max || extent_map_end(em) < off)
3816 break;
3817
3818 /*
3819 * get_extent may return an extent that starts before our
3820 * requested range. We have to make sure the ranges
3821 * we return to fiemap always move forward and don't
3822 * overlap, so adjust the offsets here
3823 */
3824 em_start = max(em->start, off);
1506fcc8 3825
ea8efc74
CM
3826 /*
3827 * record the offset from the start of the extent
3828 * for adjusting the disk offset below
3829 */
3830 offset_in_extent = em_start - em->start;
ec29ed5b 3831 em_end = extent_map_end(em);
ea8efc74 3832 em_len = em_end - em_start;
ec29ed5b 3833 emflags = em->flags;
1506fcc8
YS
3834 disko = 0;
3835 flags = 0;
3836
ea8efc74
CM
3837 /*
3838 * bump off for our next call to get_extent
3839 */
3840 off = extent_map_end(em);
3841 if (off >= max)
3842 end = 1;
3843
93dbfad7 3844 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
3845 end = 1;
3846 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 3847 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
3848 flags |= (FIEMAP_EXTENT_DATA_INLINE |
3849 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 3850 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
3851 flags |= (FIEMAP_EXTENT_DELALLOC |
3852 FIEMAP_EXTENT_UNKNOWN);
93dbfad7 3853 } else {
ea8efc74 3854 disko = em->block_start + offset_in_extent;
1506fcc8
YS
3855 }
3856 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3857 flags |= FIEMAP_EXTENT_ENCODED;
3858
1506fcc8
YS
3859 free_extent_map(em);
3860 em = NULL;
ec29ed5b
CM
3861 if ((em_start >= last) || em_len == (u64)-1 ||
3862 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
3863 flags |= FIEMAP_EXTENT_LAST;
3864 end = 1;
3865 }
3866
ec29ed5b
CM
3867 /* now scan forward to see if this is really the last extent. */
3868 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3869 get_extent);
3870 if (IS_ERR(em)) {
3871 ret = PTR_ERR(em);
3872 goto out;
3873 }
3874 if (!em) {
975f84fe
JB
3875 flags |= FIEMAP_EXTENT_LAST;
3876 end = 1;
3877 }
ec29ed5b
CM
3878 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3879 em_len, flags);
3880 if (ret)
3881 goto out_free;
1506fcc8
YS
3882 }
3883out_free:
3884 free_extent_map(em);
3885out:
2ac55d41
JB
3886 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3887 &cached_state, GFP_NOFS);
1506fcc8
YS
3888 return ret;
3889}
3890
4a54c8c1 3891inline struct page *extent_buffer_page(struct extent_buffer *eb,
d1310b2e
CM
3892 unsigned long i)
3893{
727011e0 3894 return eb->pages[i];
d1310b2e
CM
3895}
3896
4a54c8c1 3897inline unsigned long num_extent_pages(u64 start, u64 len)
728131d8 3898{
6af118ce
CM
3899 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3900 (start >> PAGE_CACHE_SHIFT);
728131d8
CM
3901}
3902
727011e0
CM
3903static void __free_extent_buffer(struct extent_buffer *eb)
3904{
3905#if LEAK_DEBUG
3906 unsigned long flags;
3907 spin_lock_irqsave(&leak_lock, flags);
3908 list_del(&eb->leak_list);
3909 spin_unlock_irqrestore(&leak_lock, flags);
3910#endif
3911 if (eb->pages && eb->pages != eb->inline_pages)
3912 kfree(eb->pages);
3913 kmem_cache_free(extent_buffer_cache, eb);
3914}
3915
d1310b2e
CM
3916static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3917 u64 start,
3918 unsigned long len,
3919 gfp_t mask)
3920{
3921 struct extent_buffer *eb = NULL;
3935127c 3922#if LEAK_DEBUG
2d2ae547 3923 unsigned long flags;
4bef0848 3924#endif
d1310b2e 3925
d1310b2e 3926 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
91ca338d
TI
3927 if (eb == NULL)
3928 return NULL;
d1310b2e
CM
3929 eb->start = start;
3930 eb->len = len;
4f2de97a 3931 eb->tree = tree;
bd681513
CM
3932 rwlock_init(&eb->lock);
3933 atomic_set(&eb->write_locks, 0);
3934 atomic_set(&eb->read_locks, 0);
3935 atomic_set(&eb->blocking_readers, 0);
3936 atomic_set(&eb->blocking_writers, 0);
3937 atomic_set(&eb->spinning_readers, 0);
3938 atomic_set(&eb->spinning_writers, 0);
5b25f70f 3939 eb->lock_nested = 0;
bd681513
CM
3940 init_waitqueue_head(&eb->write_lock_wq);
3941 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 3942
3935127c 3943#if LEAK_DEBUG
2d2ae547
CM
3944 spin_lock_irqsave(&leak_lock, flags);
3945 list_add(&eb->leak_list, &buffers);
3946 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 3947#endif
3083ee2e 3948 spin_lock_init(&eb->refs_lock);
d1310b2e 3949 atomic_set(&eb->refs, 1);
0b32f4bb 3950 atomic_set(&eb->io_pages, 0);
727011e0
CM
3951
3952 if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) {
3953 struct page **pages;
3954 int num_pages = (len + PAGE_CACHE_SIZE - 1) >>
3955 PAGE_CACHE_SHIFT;
3956 pages = kzalloc(num_pages, mask);
3957 if (!pages) {
3958 __free_extent_buffer(eb);
3959 return NULL;
3960 }
3961 eb->pages = pages;
3962 } else {
3963 eb->pages = eb->inline_pages;
3964 }
d1310b2e
CM
3965
3966 return eb;
3967}
3968
0b32f4bb 3969static int extent_buffer_under_io(struct extent_buffer *eb)
d1310b2e 3970{
0b32f4bb
JB
3971 return (atomic_read(&eb->io_pages) ||
3972 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
3973 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
d1310b2e
CM
3974}
3975
897ca6e9
MX
3976/*
3977 * Helper for releasing extent buffer page.
3978 */
3979static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3980 unsigned long start_idx)
3981{
3982 unsigned long index;
39bab87b 3983 unsigned long num_pages;
897ca6e9
MX
3984 struct page *page;
3985
0b32f4bb 3986 BUG_ON(extent_buffer_under_io(eb));
897ca6e9 3987
39bab87b
WSH
3988 num_pages = num_extent_pages(eb->start, eb->len);
3989 index = start_idx + num_pages;
897ca6e9
MX
3990 if (start_idx >= index)
3991 return;
3992
3993 do {
3994 index--;
3995 page = extent_buffer_page(eb, index);
4f2de97a
JB
3996 if (page) {
3997 spin_lock(&page->mapping->private_lock);
3998 /*
3999 * We do this since we'll remove the pages after we've
4000 * removed the eb from the radix tree, so we could race
4001 * and have this page now attached to the new eb. So
4002 * only clear page_private if it's still connected to
4003 * this eb.
4004 */
4005 if (PagePrivate(page) &&
4006 page->private == (unsigned long)eb) {
0b32f4bb 4007 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3083ee2e
JB
4008 BUG_ON(PageDirty(page));
4009 BUG_ON(PageWriteback(page));
4f2de97a
JB
4010 /*
4011 * We need to make sure we haven't be attached
4012 * to a new eb.
4013 */
4014 ClearPagePrivate(page);
4015 set_page_private(page, 0);
4016 /* One for the page private */
4017 page_cache_release(page);
4018 }
4019 spin_unlock(&page->mapping->private_lock);
4020
4021 /* One for when we alloced the page */
897ca6e9 4022 page_cache_release(page);
4f2de97a 4023 }
897ca6e9
MX
4024 } while (index != start_idx);
4025}
4026
4027/*
4028 * Helper for releasing the extent buffer.
4029 */
4030static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4031{
4032 btrfs_release_extent_buffer_page(eb, 0);
4033 __free_extent_buffer(eb);
4034}
4035
0b32f4bb
JB
4036static void check_buffer_tree_ref(struct extent_buffer *eb)
4037{
4038 /* the ref bit is tricky. We have to make sure it is set
4039 * if we have the buffer dirty. Otherwise the
4040 * code to free a buffer can end up dropping a dirty
4041 * page
4042 *
4043 * Once the ref bit is set, it won't go away while the
4044 * buffer is dirty or in writeback, and it also won't
4045 * go away while we have the reference count on the
4046 * eb bumped.
4047 *
4048 * We can't just set the ref bit without bumping the
4049 * ref on the eb because free_extent_buffer might
4050 * see the ref bit and try to clear it. If this happens
4051 * free_extent_buffer might end up dropping our original
4052 * ref by mistake and freeing the page before we are able
4053 * to add one more ref.
4054 *
4055 * So bump the ref count first, then set the bit. If someone
4056 * beat us to it, drop the ref we added.
4057 */
4058 if (!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4059 atomic_inc(&eb->refs);
4060 if (test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4061 atomic_dec(&eb->refs);
4062 }
4063}
4064
5df4235e
JB
4065static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4066{
4067 unsigned long num_pages, i;
4068
0b32f4bb
JB
4069 check_buffer_tree_ref(eb);
4070
5df4235e
JB
4071 num_pages = num_extent_pages(eb->start, eb->len);
4072 for (i = 0; i < num_pages; i++) {
4073 struct page *p = extent_buffer_page(eb, i);
4074 mark_page_accessed(p);
4075 }
4076}
4077
d1310b2e 4078struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
727011e0 4079 u64 start, unsigned long len)
d1310b2e
CM
4080{
4081 unsigned long num_pages = num_extent_pages(start, len);
4082 unsigned long i;
4083 unsigned long index = start >> PAGE_CACHE_SHIFT;
4084 struct extent_buffer *eb;
6af118ce 4085 struct extent_buffer *exists = NULL;
d1310b2e
CM
4086 struct page *p;
4087 struct address_space *mapping = tree->mapping;
4088 int uptodate = 1;
19fe0a8b 4089 int ret;
d1310b2e 4090
19fe0a8b
MX
4091 rcu_read_lock();
4092 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4093 if (eb && atomic_inc_not_zero(&eb->refs)) {
4094 rcu_read_unlock();
5df4235e 4095 mark_extent_buffer_accessed(eb);
6af118ce
CM
4096 return eb;
4097 }
19fe0a8b 4098 rcu_read_unlock();
6af118ce 4099
ba144192 4100 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
2b114d1d 4101 if (!eb)
d1310b2e
CM
4102 return NULL;
4103
727011e0 4104 for (i = 0; i < num_pages; i++, index++) {
a6591715 4105 p = find_or_create_page(mapping, index, GFP_NOFS);
d1310b2e
CM
4106 if (!p) {
4107 WARN_ON(1);
6af118ce 4108 goto free_eb;
d1310b2e 4109 }
4f2de97a
JB
4110
4111 spin_lock(&mapping->private_lock);
4112 if (PagePrivate(p)) {
4113 /*
4114 * We could have already allocated an eb for this page
4115 * and attached one so lets see if we can get a ref on
4116 * the existing eb, and if we can we know it's good and
4117 * we can just return that one, else we know we can just
4118 * overwrite page->private.
4119 */
4120 exists = (struct extent_buffer *)p->private;
4121 if (atomic_inc_not_zero(&exists->refs)) {
4122 spin_unlock(&mapping->private_lock);
4123 unlock_page(p);
17de39ac 4124 page_cache_release(p);
5df4235e 4125 mark_extent_buffer_accessed(exists);
4f2de97a
JB
4126 goto free_eb;
4127 }
4128
0b32f4bb 4129 /*
4f2de97a
JB
4130 * Do this so attach doesn't complain and we need to
4131 * drop the ref the old guy had.
4132 */
4133 ClearPagePrivate(p);
0b32f4bb 4134 WARN_ON(PageDirty(p));
4f2de97a 4135 page_cache_release(p);
d1310b2e 4136 }
4f2de97a
JB
4137 attach_extent_buffer_page(eb, p);
4138 spin_unlock(&mapping->private_lock);
0b32f4bb 4139 WARN_ON(PageDirty(p));
d1310b2e 4140 mark_page_accessed(p);
727011e0 4141 eb->pages[i] = p;
d1310b2e
CM
4142 if (!PageUptodate(p))
4143 uptodate = 0;
eb14ab8e
CM
4144
4145 /*
4146 * see below about how we avoid a nasty race with release page
4147 * and why we unlock later
4148 */
d1310b2e
CM
4149 }
4150 if (uptodate)
b4ce94de 4151 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4152again:
19fe0a8b
MX
4153 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4154 if (ret)
4155 goto free_eb;
4156
6af118ce 4157 spin_lock(&tree->buffer_lock);
19fe0a8b
MX
4158 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4159 if (ret == -EEXIST) {
4160 exists = radix_tree_lookup(&tree->buffer,
4161 start >> PAGE_CACHE_SHIFT);
115391d2
JB
4162 if (!atomic_inc_not_zero(&exists->refs)) {
4163 spin_unlock(&tree->buffer_lock);
4164 radix_tree_preload_end();
115391d2
JB
4165 exists = NULL;
4166 goto again;
4167 }
6af118ce 4168 spin_unlock(&tree->buffer_lock);
19fe0a8b 4169 radix_tree_preload_end();
5df4235e 4170 mark_extent_buffer_accessed(exists);
6af118ce
CM
4171 goto free_eb;
4172 }
6af118ce 4173 /* add one reference for the tree */
3083ee2e 4174 spin_lock(&eb->refs_lock);
0b32f4bb 4175 check_buffer_tree_ref(eb);
3083ee2e 4176 spin_unlock(&eb->refs_lock);
f044ba78 4177 spin_unlock(&tree->buffer_lock);
19fe0a8b 4178 radix_tree_preload_end();
eb14ab8e
CM
4179
4180 /*
4181 * there is a race where release page may have
4182 * tried to find this extent buffer in the radix
4183 * but failed. It will tell the VM it is safe to
4184 * reclaim the, and it will clear the page private bit.
4185 * We must make sure to set the page private bit properly
4186 * after the extent buffer is in the radix tree so
4187 * it doesn't get lost
4188 */
727011e0
CM
4189 SetPageChecked(eb->pages[0]);
4190 for (i = 1; i < num_pages; i++) {
4191 p = extent_buffer_page(eb, i);
727011e0
CM
4192 ClearPageChecked(p);
4193 unlock_page(p);
4194 }
4195 unlock_page(eb->pages[0]);
d1310b2e
CM
4196 return eb;
4197
6af118ce 4198free_eb:
727011e0
CM
4199 for (i = 0; i < num_pages; i++) {
4200 if (eb->pages[i])
4201 unlock_page(eb->pages[i]);
4202 }
eb14ab8e 4203
17de39ac 4204 WARN_ON(!atomic_dec_and_test(&eb->refs));
897ca6e9 4205 btrfs_release_extent_buffer(eb);
6af118ce 4206 return exists;
d1310b2e 4207}
d1310b2e
CM
4208
4209struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
f09d1f60 4210 u64 start, unsigned long len)
d1310b2e 4211{
d1310b2e 4212 struct extent_buffer *eb;
d1310b2e 4213
19fe0a8b
MX
4214 rcu_read_lock();
4215 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4216 if (eb && atomic_inc_not_zero(&eb->refs)) {
4217 rcu_read_unlock();
5df4235e 4218 mark_extent_buffer_accessed(eb);
19fe0a8b
MX
4219 return eb;
4220 }
4221 rcu_read_unlock();
0f9dd46c 4222
19fe0a8b 4223 return NULL;
d1310b2e 4224}
d1310b2e 4225
3083ee2e
JB
4226static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4227{
4228 struct extent_buffer *eb =
4229 container_of(head, struct extent_buffer, rcu_head);
4230
4231 __free_extent_buffer(eb);
4232}
4233
3083ee2e
JB
4234/* Expects to have eb->eb_lock already held */
4235static void release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
4236{
4237 WARN_ON(atomic_read(&eb->refs) == 0);
4238 if (atomic_dec_and_test(&eb->refs)) {
4239 struct extent_io_tree *tree = eb->tree;
3083ee2e
JB
4240
4241 spin_unlock(&eb->refs_lock);
4242
3083ee2e
JB
4243 spin_lock(&tree->buffer_lock);
4244 radix_tree_delete(&tree->buffer,
4245 eb->start >> PAGE_CACHE_SHIFT);
4246 spin_unlock(&tree->buffer_lock);
4247
4248 /* Should be safe to release our pages at this point */
4249 btrfs_release_extent_buffer_page(eb, 0);
4250
4251 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4252 return;
4253 }
4254 spin_unlock(&eb->refs_lock);
4255}
4256
d1310b2e
CM
4257void free_extent_buffer(struct extent_buffer *eb)
4258{
d1310b2e
CM
4259 if (!eb)
4260 return;
4261
3083ee2e
JB
4262 spin_lock(&eb->refs_lock);
4263 if (atomic_read(&eb->refs) == 2 &&
4264 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 4265 !extent_buffer_under_io(eb) &&
3083ee2e
JB
4266 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4267 atomic_dec(&eb->refs);
4268
4269 /*
4270 * I know this is terrible, but it's temporary until we stop tracking
4271 * the uptodate bits and such for the extent buffers.
4272 */
4273 release_extent_buffer(eb, GFP_ATOMIC);
4274}
4275
4276void free_extent_buffer_stale(struct extent_buffer *eb)
4277{
4278 if (!eb)
d1310b2e
CM
4279 return;
4280
3083ee2e
JB
4281 spin_lock(&eb->refs_lock);
4282 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4283
0b32f4bb 4284 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
4285 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4286 atomic_dec(&eb->refs);
4287 release_extent_buffer(eb, GFP_NOFS);
d1310b2e 4288}
d1310b2e 4289
1d4284bd 4290void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 4291{
d1310b2e
CM
4292 unsigned long i;
4293 unsigned long num_pages;
4294 struct page *page;
4295
d1310b2e
CM
4296 num_pages = num_extent_pages(eb->start, eb->len);
4297
4298 for (i = 0; i < num_pages; i++) {
4299 page = extent_buffer_page(eb, i);
b9473439 4300 if (!PageDirty(page))
d2c3f4f6
CM
4301 continue;
4302
a61e6f29 4303 lock_page(page);
eb14ab8e
CM
4304 WARN_ON(!PagePrivate(page));
4305
d1310b2e 4306 clear_page_dirty_for_io(page);
0ee0fda0 4307 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
4308 if (!PageDirty(page)) {
4309 radix_tree_tag_clear(&page->mapping->page_tree,
4310 page_index(page),
4311 PAGECACHE_TAG_DIRTY);
4312 }
0ee0fda0 4313 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 4314 ClearPageError(page);
a61e6f29 4315 unlock_page(page);
d1310b2e 4316 }
0b32f4bb 4317 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 4318}
d1310b2e 4319
0b32f4bb 4320int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
4321{
4322 unsigned long i;
4323 unsigned long num_pages;
b9473439 4324 int was_dirty = 0;
d1310b2e 4325
0b32f4bb
JB
4326 check_buffer_tree_ref(eb);
4327
b9473439 4328 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 4329
d1310b2e 4330 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 4331 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
4332 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4333
b9473439 4334 for (i = 0; i < num_pages; i++)
0b32f4bb 4335 set_page_dirty(extent_buffer_page(eb, i));
b9473439 4336 return was_dirty;
d1310b2e 4337}
d1310b2e 4338
0b32f4bb 4339static int range_straddles_pages(u64 start, u64 len)
19b6caf4
CM
4340{
4341 if (len < PAGE_CACHE_SIZE)
4342 return 1;
4343 if (start & (PAGE_CACHE_SIZE - 1))
4344 return 1;
4345 if ((start + len) & (PAGE_CACHE_SIZE - 1))
4346 return 1;
4347 return 0;
4348}
4349
0b32f4bb 4350int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
4351{
4352 unsigned long i;
4353 struct page *page;
4354 unsigned long num_pages;
4355
b4ce94de 4356 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 4357 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75
CM
4358 for (i = 0; i < num_pages; i++) {
4359 page = extent_buffer_page(eb, i);
33958dc6
CM
4360 if (page)
4361 ClearPageUptodate(page);
1259ab75
CM
4362 }
4363 return 0;
4364}
4365
0b32f4bb 4366int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
4367{
4368 unsigned long i;
4369 struct page *page;
4370 unsigned long num_pages;
4371
0b32f4bb 4372 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4373 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e
CM
4374 for (i = 0; i < num_pages; i++) {
4375 page = extent_buffer_page(eb, i);
d1310b2e
CM
4376 SetPageUptodate(page);
4377 }
4378 return 0;
4379}
d1310b2e 4380
ce9adaa5
CM
4381int extent_range_uptodate(struct extent_io_tree *tree,
4382 u64 start, u64 end)
4383{
4384 struct page *page;
4385 int ret;
4386 int pg_uptodate = 1;
4387 int uptodate;
4388 unsigned long index;
4389
0b32f4bb 4390 if (range_straddles_pages(start, end - start + 1)) {
19b6caf4
CM
4391 ret = test_range_bit(tree, start, end,
4392 EXTENT_UPTODATE, 1, NULL);
4393 if (ret)
4394 return 1;
4395 }
d397712b 4396 while (start <= end) {
ce9adaa5
CM
4397 index = start >> PAGE_CACHE_SHIFT;
4398 page = find_get_page(tree->mapping, index);
8bedd51b
MH
4399 if (!page)
4400 return 1;
ce9adaa5
CM
4401 uptodate = PageUptodate(page);
4402 page_cache_release(page);
4403 if (!uptodate) {
4404 pg_uptodate = 0;
4405 break;
4406 }
4407 start += PAGE_CACHE_SIZE;
4408 }
4409 return pg_uptodate;
4410}
4411
0b32f4bb 4412int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 4413{
0b32f4bb 4414 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4415}
d1310b2e
CM
4416
4417int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 4418 struct extent_buffer *eb, u64 start, int wait,
f188591e 4419 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
4420{
4421 unsigned long i;
4422 unsigned long start_i;
4423 struct page *page;
4424 int err;
4425 int ret = 0;
ce9adaa5
CM
4426 int locked_pages = 0;
4427 int all_uptodate = 1;
d1310b2e 4428 unsigned long num_pages;
727011e0 4429 unsigned long num_reads = 0;
a86c12c7 4430 struct bio *bio = NULL;
c8b97818 4431 unsigned long bio_flags = 0;
a86c12c7 4432
b4ce94de 4433 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
4434 return 0;
4435
d1310b2e
CM
4436 if (start) {
4437 WARN_ON(start < eb->start);
4438 start_i = (start >> PAGE_CACHE_SHIFT) -
4439 (eb->start >> PAGE_CACHE_SHIFT);
4440 } else {
4441 start_i = 0;
4442 }
4443
4444 num_pages = num_extent_pages(eb->start, eb->len);
4445 for (i = start_i; i < num_pages; i++) {
4446 page = extent_buffer_page(eb, i);
bb82ab88 4447 if (wait == WAIT_NONE) {
2db04966 4448 if (!trylock_page(page))
ce9adaa5 4449 goto unlock_exit;
d1310b2e
CM
4450 } else {
4451 lock_page(page);
4452 }
ce9adaa5 4453 locked_pages++;
727011e0
CM
4454 if (!PageUptodate(page)) {
4455 num_reads++;
ce9adaa5 4456 all_uptodate = 0;
727011e0 4457 }
ce9adaa5
CM
4458 }
4459 if (all_uptodate) {
4460 if (start_i == 0)
b4ce94de 4461 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
4462 goto unlock_exit;
4463 }
4464
ea466794 4465 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 4466 eb->read_mirror = 0;
0b32f4bb 4467 atomic_set(&eb->io_pages, num_reads);
ce9adaa5
CM
4468 for (i = start_i; i < num_pages; i++) {
4469 page = extent_buffer_page(eb, i);
ce9adaa5 4470 if (!PageUptodate(page)) {
f188591e 4471 ClearPageError(page);
a86c12c7 4472 err = __extent_read_full_page(tree, page,
f188591e 4473 get_extent, &bio,
c8b97818 4474 mirror_num, &bio_flags);
d397712b 4475 if (err)
d1310b2e 4476 ret = err;
d1310b2e
CM
4477 } else {
4478 unlock_page(page);
4479 }
4480 }
4481
355808c2
JM
4482 if (bio) {
4483 err = submit_one_bio(READ, bio, mirror_num, bio_flags);
79787eaa
JM
4484 if (err)
4485 return err;
355808c2 4486 }
a86c12c7 4487
bb82ab88 4488 if (ret || wait != WAIT_COMPLETE)
d1310b2e 4489 return ret;
d397712b 4490
d1310b2e
CM
4491 for (i = start_i; i < num_pages; i++) {
4492 page = extent_buffer_page(eb, i);
4493 wait_on_page_locked(page);
d397712b 4494 if (!PageUptodate(page))
d1310b2e 4495 ret = -EIO;
d1310b2e 4496 }
d397712b 4497
d1310b2e 4498 return ret;
ce9adaa5
CM
4499
4500unlock_exit:
4501 i = start_i;
d397712b 4502 while (locked_pages > 0) {
ce9adaa5
CM
4503 page = extent_buffer_page(eb, i);
4504 i++;
4505 unlock_page(page);
4506 locked_pages--;
4507 }
4508 return ret;
d1310b2e 4509}
d1310b2e
CM
4510
4511void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4512 unsigned long start,
4513 unsigned long len)
4514{
4515 size_t cur;
4516 size_t offset;
4517 struct page *page;
4518 char *kaddr;
4519 char *dst = (char *)dstv;
4520 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4521 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
4522
4523 WARN_ON(start > eb->len);
4524 WARN_ON(start + len > eb->start + eb->len);
4525
4526 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4527
d397712b 4528 while (len > 0) {
d1310b2e 4529 page = extent_buffer_page(eb, i);
d1310b2e
CM
4530
4531 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 4532 kaddr = page_address(page);
d1310b2e 4533 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
4534
4535 dst += cur;
4536 len -= cur;
4537 offset = 0;
4538 i++;
4539 }
4540}
d1310b2e
CM
4541
4542int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 4543 unsigned long min_len, char **map,
d1310b2e 4544 unsigned long *map_start,
a6591715 4545 unsigned long *map_len)
d1310b2e
CM
4546{
4547 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4548 char *kaddr;
4549 struct page *p;
4550 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4551 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4552 unsigned long end_i = (start_offset + start + min_len - 1) >>
4553 PAGE_CACHE_SHIFT;
4554
4555 if (i != end_i)
4556 return -EINVAL;
4557
4558 if (i == 0) {
4559 offset = start_offset;
4560 *map_start = 0;
4561 } else {
4562 offset = 0;
4563 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4564 }
d397712b 4565
d1310b2e 4566 if (start + min_len > eb->len) {
d397712b
CM
4567 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4568 "wanted %lu %lu\n", (unsigned long long)eb->start,
4569 eb->len, start, min_len);
d1310b2e 4570 WARN_ON(1);
85026533 4571 return -EINVAL;
d1310b2e
CM
4572 }
4573
4574 p = extent_buffer_page(eb, i);
a6591715 4575 kaddr = page_address(p);
d1310b2e
CM
4576 *map = kaddr + offset;
4577 *map_len = PAGE_CACHE_SIZE - offset;
4578 return 0;
4579}
d1310b2e 4580
d1310b2e
CM
4581int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4582 unsigned long start,
4583 unsigned long len)
4584{
4585 size_t cur;
4586 size_t offset;
4587 struct page *page;
4588 char *kaddr;
4589 char *ptr = (char *)ptrv;
4590 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4591 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4592 int ret = 0;
4593
4594 WARN_ON(start > eb->len);
4595 WARN_ON(start + len > eb->start + eb->len);
4596
4597 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4598
d397712b 4599 while (len > 0) {
d1310b2e 4600 page = extent_buffer_page(eb, i);
d1310b2e
CM
4601
4602 cur = min(len, (PAGE_CACHE_SIZE - offset));
4603
a6591715 4604 kaddr = page_address(page);
d1310b2e 4605 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
4606 if (ret)
4607 break;
4608
4609 ptr += cur;
4610 len -= cur;
4611 offset = 0;
4612 i++;
4613 }
4614 return ret;
4615}
d1310b2e
CM
4616
4617void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4618 unsigned long start, unsigned long len)
4619{
4620 size_t cur;
4621 size_t offset;
4622 struct page *page;
4623 char *kaddr;
4624 char *src = (char *)srcv;
4625 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4626 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4627
4628 WARN_ON(start > eb->len);
4629 WARN_ON(start + len > eb->start + eb->len);
4630
4631 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4632
d397712b 4633 while (len > 0) {
d1310b2e
CM
4634 page = extent_buffer_page(eb, i);
4635 WARN_ON(!PageUptodate(page));
4636
4637 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4638 kaddr = page_address(page);
d1310b2e 4639 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
4640
4641 src += cur;
4642 len -= cur;
4643 offset = 0;
4644 i++;
4645 }
4646}
d1310b2e
CM
4647
4648void memset_extent_buffer(struct extent_buffer *eb, char c,
4649 unsigned long start, unsigned long len)
4650{
4651 size_t cur;
4652 size_t offset;
4653 struct page *page;
4654 char *kaddr;
4655 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4656 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4657
4658 WARN_ON(start > eb->len);
4659 WARN_ON(start + len > eb->start + eb->len);
4660
4661 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4662
d397712b 4663 while (len > 0) {
d1310b2e
CM
4664 page = extent_buffer_page(eb, i);
4665 WARN_ON(!PageUptodate(page));
4666
4667 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4668 kaddr = page_address(page);
d1310b2e 4669 memset(kaddr + offset, c, cur);
d1310b2e
CM
4670
4671 len -= cur;
4672 offset = 0;
4673 i++;
4674 }
4675}
d1310b2e
CM
4676
4677void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4678 unsigned long dst_offset, unsigned long src_offset,
4679 unsigned long len)
4680{
4681 u64 dst_len = dst->len;
4682 size_t cur;
4683 size_t offset;
4684 struct page *page;
4685 char *kaddr;
4686 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4687 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4688
4689 WARN_ON(src->len != dst_len);
4690
4691 offset = (start_offset + dst_offset) &
4692 ((unsigned long)PAGE_CACHE_SIZE - 1);
4693
d397712b 4694 while (len > 0) {
d1310b2e
CM
4695 page = extent_buffer_page(dst, i);
4696 WARN_ON(!PageUptodate(page));
4697
4698 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4699
a6591715 4700 kaddr = page_address(page);
d1310b2e 4701 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
4702
4703 src_offset += cur;
4704 len -= cur;
4705 offset = 0;
4706 i++;
4707 }
4708}
d1310b2e
CM
4709
4710static void move_pages(struct page *dst_page, struct page *src_page,
4711 unsigned long dst_off, unsigned long src_off,
4712 unsigned long len)
4713{
a6591715 4714 char *dst_kaddr = page_address(dst_page);
d1310b2e
CM
4715 if (dst_page == src_page) {
4716 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4717 } else {
a6591715 4718 char *src_kaddr = page_address(src_page);
d1310b2e
CM
4719 char *p = dst_kaddr + dst_off + len;
4720 char *s = src_kaddr + src_off + len;
4721
4722 while (len--)
4723 *--p = *--s;
d1310b2e 4724 }
d1310b2e
CM
4725}
4726
3387206f
ST
4727static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4728{
4729 unsigned long distance = (src > dst) ? src - dst : dst - src;
4730 return distance < len;
4731}
4732
d1310b2e
CM
4733static void copy_pages(struct page *dst_page, struct page *src_page,
4734 unsigned long dst_off, unsigned long src_off,
4735 unsigned long len)
4736{
a6591715 4737 char *dst_kaddr = page_address(dst_page);
d1310b2e 4738 char *src_kaddr;
727011e0 4739 int must_memmove = 0;
d1310b2e 4740
3387206f 4741 if (dst_page != src_page) {
a6591715 4742 src_kaddr = page_address(src_page);
3387206f 4743 } else {
d1310b2e 4744 src_kaddr = dst_kaddr;
727011e0
CM
4745 if (areas_overlap(src_off, dst_off, len))
4746 must_memmove = 1;
3387206f 4747 }
d1310b2e 4748
727011e0
CM
4749 if (must_memmove)
4750 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4751 else
4752 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
4753}
4754
4755void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4756 unsigned long src_offset, unsigned long len)
4757{
4758 size_t cur;
4759 size_t dst_off_in_page;
4760 size_t src_off_in_page;
4761 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4762 unsigned long dst_i;
4763 unsigned long src_i;
4764
4765 if (src_offset + len > dst->len) {
d397712b
CM
4766 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4767 "len %lu dst len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
4768 BUG_ON(1);
4769 }
4770 if (dst_offset + len > dst->len) {
d397712b
CM
4771 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4772 "len %lu dst len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
4773 BUG_ON(1);
4774 }
4775
d397712b 4776 while (len > 0) {
d1310b2e
CM
4777 dst_off_in_page = (start_offset + dst_offset) &
4778 ((unsigned long)PAGE_CACHE_SIZE - 1);
4779 src_off_in_page = (start_offset + src_offset) &
4780 ((unsigned long)PAGE_CACHE_SIZE - 1);
4781
4782 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4783 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4784
4785 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4786 src_off_in_page));
4787 cur = min_t(unsigned long, cur,
4788 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4789
4790 copy_pages(extent_buffer_page(dst, dst_i),
4791 extent_buffer_page(dst, src_i),
4792 dst_off_in_page, src_off_in_page, cur);
4793
4794 src_offset += cur;
4795 dst_offset += cur;
4796 len -= cur;
4797 }
4798}
d1310b2e
CM
4799
4800void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4801 unsigned long src_offset, unsigned long len)
4802{
4803 size_t cur;
4804 size_t dst_off_in_page;
4805 size_t src_off_in_page;
4806 unsigned long dst_end = dst_offset + len - 1;
4807 unsigned long src_end = src_offset + len - 1;
4808 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4809 unsigned long dst_i;
4810 unsigned long src_i;
4811
4812 if (src_offset + len > dst->len) {
d397712b
CM
4813 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4814 "len %lu len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
4815 BUG_ON(1);
4816 }
4817 if (dst_offset + len > dst->len) {
d397712b
CM
4818 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4819 "len %lu len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
4820 BUG_ON(1);
4821 }
727011e0 4822 if (dst_offset < src_offset) {
d1310b2e
CM
4823 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4824 return;
4825 }
d397712b 4826 while (len > 0) {
d1310b2e
CM
4827 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4828 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4829
4830 dst_off_in_page = (start_offset + dst_end) &
4831 ((unsigned long)PAGE_CACHE_SIZE - 1);
4832 src_off_in_page = (start_offset + src_end) &
4833 ((unsigned long)PAGE_CACHE_SIZE - 1);
4834
4835 cur = min_t(unsigned long, len, src_off_in_page + 1);
4836 cur = min(cur, dst_off_in_page + 1);
4837 move_pages(extent_buffer_page(dst, dst_i),
4838 extent_buffer_page(dst, src_i),
4839 dst_off_in_page - cur + 1,
4840 src_off_in_page - cur + 1, cur);
4841
4842 dst_end -= cur;
4843 src_end -= cur;
4844 len -= cur;
4845 }
4846}
6af118ce 4847
3083ee2e 4848int try_release_extent_buffer(struct page *page, gfp_t mask)
19fe0a8b 4849{
6af118ce 4850 struct extent_buffer *eb;
6af118ce 4851
3083ee2e
JB
4852 /*
4853 * We need to make sure noboody is attaching this page to an eb right
4854 * now.
4855 */
4856 spin_lock(&page->mapping->private_lock);
4857 if (!PagePrivate(page)) {
4858 spin_unlock(&page->mapping->private_lock);
4f2de97a 4859 return 1;
45f49bce 4860 }
6af118ce 4861
3083ee2e
JB
4862 eb = (struct extent_buffer *)page->private;
4863 BUG_ON(!eb);
19fe0a8b
MX
4864
4865 /*
3083ee2e
JB
4866 * This is a little awful but should be ok, we need to make sure that
4867 * the eb doesn't disappear out from under us while we're looking at
4868 * this page.
19fe0a8b 4869 */
3083ee2e 4870 spin_lock(&eb->refs_lock);
0b32f4bb 4871 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
4872 spin_unlock(&eb->refs_lock);
4873 spin_unlock(&page->mapping->private_lock);
4874 return 0;
b9473439 4875 }
3083ee2e 4876 spin_unlock(&page->mapping->private_lock);
897ca6e9 4877
3083ee2e
JB
4878 if ((mask & GFP_NOFS) == GFP_NOFS)
4879 mask = GFP_NOFS;
19fe0a8b 4880
19fe0a8b 4881 /*
3083ee2e
JB
4882 * If tree ref isn't set then we know the ref on this eb is a real ref,
4883 * so just return, this page will likely be freed soon anyway.
19fe0a8b 4884 */
3083ee2e
JB
4885 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4886 spin_unlock(&eb->refs_lock);
4887 return 0;
b9473439 4888 }
3083ee2e 4889 release_extent_buffer(eb, mask);
19fe0a8b 4890
3083ee2e 4891 return 1;
6af118ce 4892}
This page took 0.579178 seconds and 5 git commands to generate.