btrfs: have submit_one_bio users use bio op accessors
[deliverable/linux.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
27a3507d
FM
28static inline bool extent_state_in_tree(const struct extent_state *state)
29{
30 return !RB_EMPTY_NODE(&state->rb_node);
31}
32
6d49ba1b 33#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
34static LIST_HEAD(buffers);
35static LIST_HEAD(states);
4bef0848 36
d397712b 37static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
38
39static inline
40void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41{
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47}
48
49static inline
50void btrfs_leak_debug_del(struct list_head *entry)
51{
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57}
58
59static inline
60void btrfs_leak_debug_check(void)
61{
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
c1c9ff7c 70 atomic_read(&state->refs));
6d49ba1b
ES
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
efe120a0 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
c1c9ff7c
GU
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
8d599ae1 84
a5dee37d
JB
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 88 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 89{
a5dee37d
JB
90 struct inode *inode;
91 u64 isize;
8d599ae1 92
a5dee37d
JB
93 if (!tree->mapping)
94 return;
8d599ae1 95
a5dee37d
JB
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
8d599ae1 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94647322
DS
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
c1c9ff7c 101 caller, btrfs_ino(inode), isize, start, end);
8d599ae1
DS
102 }
103}
6d49ba1b
ES
104#else
105#define btrfs_leak_debug_add(new, head) do {} while (0)
106#define btrfs_leak_debug_del(entry) do {} while (0)
107#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 108#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 109#endif
d1310b2e 110
d1310b2e
CM
111#define BUFFER_LRU_MAX 64
112
113struct tree_entry {
114 u64 start;
115 u64 end;
d1310b2e
CM
116 struct rb_node rb_node;
117};
118
119struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
de0022b9 123 unsigned long bio_flags;
771ed689
CM
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
ffbd517d
CM
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
d1310b2e
CM
132};
133
d38ed27f
QW
134static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137{
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
fefdc557
QW
144 if (!set && (state->state & bits) == 0)
145 return;
d38ed27f
QW
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151}
152
0b32f4bb 153static noinline void flush_write_bio(void *data);
c2d904e0
JM
154static inline struct btrfs_fs_info *
155tree_fs_info(struct extent_io_tree *tree)
156{
a5dee37d
JB
157 if (!tree->mapping)
158 return NULL;
c2d904e0
JM
159 return btrfs_sb(tree->mapping->host->i_sb);
160}
0b32f4bb 161
d1310b2e
CM
162int __init extent_io_init(void)
163{
837e1972 164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
165 sizeof(struct extent_state), 0,
166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
167 if (!extent_state_cache)
168 return -ENOMEM;
169
837e1972 170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
171 sizeof(struct extent_buffer), 0,
172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
173 if (!extent_buffer_cache)
174 goto free_state_cache;
9be3395b
CM
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
b208c2f7
DW
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
d1310b2e
CM
184 return 0;
185
b208c2f7
DW
186free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
9be3395b
CM
190free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
d1310b2e
CM
194free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
9be3395b 196 extent_state_cache = NULL;
d1310b2e
CM
197 return -ENOMEM;
198}
199
200void extent_io_exit(void)
201{
6d49ba1b 202 btrfs_leak_debug_check();
8c0a8537
KS
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
5598e900
KM
209 kmem_cache_destroy(extent_state_cache);
210 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
211 if (btrfs_bioset)
212 bioset_free(btrfs_bioset);
d1310b2e
CM
213}
214
215void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 216 struct address_space *mapping)
d1310b2e 217{
6bef4d31 218 tree->state = RB_ROOT;
d1310b2e
CM
219 tree->ops = NULL;
220 tree->dirty_bytes = 0;
70dec807 221 spin_lock_init(&tree->lock);
d1310b2e 222 tree->mapping = mapping;
d1310b2e 223}
d1310b2e 224
b2950863 225static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
226{
227 struct extent_state *state;
d1310b2e
CM
228
229 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 230 if (!state)
d1310b2e
CM
231 return state;
232 state->state = 0;
47dc196a 233 state->failrec = NULL;
27a3507d 234 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 235 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
236 atomic_set(&state->refs, 1);
237 init_waitqueue_head(&state->wq);
143bede5 238 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
239 return state;
240}
d1310b2e 241
4845e44f 242void free_extent_state(struct extent_state *state)
d1310b2e 243{
d1310b2e
CM
244 if (!state)
245 return;
246 if (atomic_dec_and_test(&state->refs)) {
27a3507d 247 WARN_ON(extent_state_in_tree(state));
6d49ba1b 248 btrfs_leak_debug_del(&state->leak_list);
143bede5 249 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
250 kmem_cache_free(extent_state_cache, state);
251 }
252}
d1310b2e 253
f2071b21
FM
254static struct rb_node *tree_insert(struct rb_root *root,
255 struct rb_node *search_start,
256 u64 offset,
12cfbad9
FDBM
257 struct rb_node *node,
258 struct rb_node ***p_in,
259 struct rb_node **parent_in)
d1310b2e 260{
f2071b21 261 struct rb_node **p;
d397712b 262 struct rb_node *parent = NULL;
d1310b2e
CM
263 struct tree_entry *entry;
264
12cfbad9
FDBM
265 if (p_in && parent_in) {
266 p = *p_in;
267 parent = *parent_in;
268 goto do_insert;
269 }
270
f2071b21 271 p = search_start ? &search_start : &root->rb_node;
d397712b 272 while (*p) {
d1310b2e
CM
273 parent = *p;
274 entry = rb_entry(parent, struct tree_entry, rb_node);
275
276 if (offset < entry->start)
277 p = &(*p)->rb_left;
278 else if (offset > entry->end)
279 p = &(*p)->rb_right;
280 else
281 return parent;
282 }
283
12cfbad9 284do_insert:
d1310b2e
CM
285 rb_link_node(node, parent, p);
286 rb_insert_color(node, root);
287 return NULL;
288}
289
80ea96b1 290static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
291 struct rb_node **prev_ret,
292 struct rb_node **next_ret,
293 struct rb_node ***p_ret,
294 struct rb_node **parent_ret)
d1310b2e 295{
80ea96b1 296 struct rb_root *root = &tree->state;
12cfbad9 297 struct rb_node **n = &root->rb_node;
d1310b2e
CM
298 struct rb_node *prev = NULL;
299 struct rb_node *orig_prev = NULL;
300 struct tree_entry *entry;
301 struct tree_entry *prev_entry = NULL;
302
12cfbad9
FDBM
303 while (*n) {
304 prev = *n;
305 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
306 prev_entry = entry;
307
308 if (offset < entry->start)
12cfbad9 309 n = &(*n)->rb_left;
d1310b2e 310 else if (offset > entry->end)
12cfbad9 311 n = &(*n)->rb_right;
d397712b 312 else
12cfbad9 313 return *n;
d1310b2e
CM
314 }
315
12cfbad9
FDBM
316 if (p_ret)
317 *p_ret = n;
318 if (parent_ret)
319 *parent_ret = prev;
320
d1310b2e
CM
321 if (prev_ret) {
322 orig_prev = prev;
d397712b 323 while (prev && offset > prev_entry->end) {
d1310b2e
CM
324 prev = rb_next(prev);
325 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326 }
327 *prev_ret = prev;
328 prev = orig_prev;
329 }
330
331 if (next_ret) {
332 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 333 while (prev && offset < prev_entry->start) {
d1310b2e
CM
334 prev = rb_prev(prev);
335 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
336 }
337 *next_ret = prev;
338 }
339 return NULL;
340}
341
12cfbad9
FDBM
342static inline struct rb_node *
343tree_search_for_insert(struct extent_io_tree *tree,
344 u64 offset,
345 struct rb_node ***p_ret,
346 struct rb_node **parent_ret)
d1310b2e 347{
70dec807 348 struct rb_node *prev = NULL;
d1310b2e 349 struct rb_node *ret;
70dec807 350
12cfbad9 351 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 352 if (!ret)
d1310b2e
CM
353 return prev;
354 return ret;
355}
356
12cfbad9
FDBM
357static inline struct rb_node *tree_search(struct extent_io_tree *tree,
358 u64 offset)
359{
360 return tree_search_for_insert(tree, offset, NULL, NULL);
361}
362
9ed74f2d
JB
363static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
364 struct extent_state *other)
365{
366 if (tree->ops && tree->ops->merge_extent_hook)
367 tree->ops->merge_extent_hook(tree->mapping->host, new,
368 other);
369}
370
d1310b2e
CM
371/*
372 * utility function to look for merge candidates inside a given range.
373 * Any extents with matching state are merged together into a single
374 * extent in the tree. Extents with EXTENT_IO in their state field
375 * are not merged because the end_io handlers need to be able to do
376 * operations on them without sleeping (or doing allocations/splits).
377 *
378 * This should be called with the tree lock held.
379 */
1bf85046
JM
380static void merge_state(struct extent_io_tree *tree,
381 struct extent_state *state)
d1310b2e
CM
382{
383 struct extent_state *other;
384 struct rb_node *other_node;
385
5b21f2ed 386 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 387 return;
d1310b2e
CM
388
389 other_node = rb_prev(&state->rb_node);
390 if (other_node) {
391 other = rb_entry(other_node, struct extent_state, rb_node);
392 if (other->end == state->start - 1 &&
393 other->state == state->state) {
9ed74f2d 394 merge_cb(tree, state, other);
d1310b2e 395 state->start = other->start;
d1310b2e 396 rb_erase(&other->rb_node, &tree->state);
27a3507d 397 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
398 free_extent_state(other);
399 }
400 }
401 other_node = rb_next(&state->rb_node);
402 if (other_node) {
403 other = rb_entry(other_node, struct extent_state, rb_node);
404 if (other->start == state->end + 1 &&
405 other->state == state->state) {
9ed74f2d 406 merge_cb(tree, state, other);
df98b6e2 407 state->end = other->end;
df98b6e2 408 rb_erase(&other->rb_node, &tree->state);
27a3507d 409 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 410 free_extent_state(other);
d1310b2e
CM
411 }
412 }
d1310b2e
CM
413}
414
1bf85046 415static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 416 struct extent_state *state, unsigned *bits)
291d673e 417{
1bf85046
JM
418 if (tree->ops && tree->ops->set_bit_hook)
419 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
420}
421
422static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 423 struct extent_state *state, unsigned *bits)
291d673e 424{
9ed74f2d
JB
425 if (tree->ops && tree->ops->clear_bit_hook)
426 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
427}
428
3150b699 429static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
430 struct extent_state *state, unsigned *bits,
431 struct extent_changeset *changeset);
3150b699 432
d1310b2e
CM
433/*
434 * insert an extent_state struct into the tree. 'bits' are set on the
435 * struct before it is inserted.
436 *
437 * This may return -EEXIST if the extent is already there, in which case the
438 * state struct is freed.
439 *
440 * The tree lock is not taken internally. This is a utility function and
441 * probably isn't what you want to call (see set/clear_extent_bit).
442 */
443static int insert_state(struct extent_io_tree *tree,
444 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
445 struct rb_node ***p,
446 struct rb_node **parent,
d38ed27f 447 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
448{
449 struct rb_node *node;
450
31b1a2bd 451 if (end < start)
efe120a0 452 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 453 end, start);
d1310b2e
CM
454 state->start = start;
455 state->end = end;
9ed74f2d 456
d38ed27f 457 set_state_bits(tree, state, bits, changeset);
3150b699 458
f2071b21 459 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
460 if (node) {
461 struct extent_state *found;
462 found = rb_entry(node, struct extent_state, rb_node);
efe120a0 463 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
c1c9ff7c
GU
464 "%llu %llu\n",
465 found->start, found->end, start, end);
d1310b2e
CM
466 return -EEXIST;
467 }
468 merge_state(tree, state);
469 return 0;
470}
471
1bf85046 472static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
473 u64 split)
474{
475 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 476 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
477}
478
d1310b2e
CM
479/*
480 * split a given extent state struct in two, inserting the preallocated
481 * struct 'prealloc' as the newly created second half. 'split' indicates an
482 * offset inside 'orig' where it should be split.
483 *
484 * Before calling,
485 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
486 * are two extent state structs in the tree:
487 * prealloc: [orig->start, split - 1]
488 * orig: [ split, orig->end ]
489 *
490 * The tree locks are not taken by this function. They need to be held
491 * by the caller.
492 */
493static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
494 struct extent_state *prealloc, u64 split)
495{
496 struct rb_node *node;
9ed74f2d
JB
497
498 split_cb(tree, orig, split);
499
d1310b2e
CM
500 prealloc->start = orig->start;
501 prealloc->end = split - 1;
502 prealloc->state = orig->state;
503 orig->start = split;
504
f2071b21
FM
505 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
506 &prealloc->rb_node, NULL, NULL);
d1310b2e 507 if (node) {
d1310b2e
CM
508 free_extent_state(prealloc);
509 return -EEXIST;
510 }
511 return 0;
512}
513
cdc6a395
LZ
514static struct extent_state *next_state(struct extent_state *state)
515{
516 struct rb_node *next = rb_next(&state->rb_node);
517 if (next)
518 return rb_entry(next, struct extent_state, rb_node);
519 else
520 return NULL;
521}
522
d1310b2e
CM
523/*
524 * utility function to clear some bits in an extent state struct.
1b303fc0 525 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
526 *
527 * If no bits are set on the state struct after clearing things, the
528 * struct is freed and removed from the tree
529 */
cdc6a395
LZ
530static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
531 struct extent_state *state,
fefdc557
QW
532 unsigned *bits, int wake,
533 struct extent_changeset *changeset)
d1310b2e 534{
cdc6a395 535 struct extent_state *next;
9ee49a04 536 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 537
0ca1f7ce 538 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
539 u64 range = state->end - state->start + 1;
540 WARN_ON(range > tree->dirty_bytes);
541 tree->dirty_bytes -= range;
542 }
291d673e 543 clear_state_cb(tree, state, bits);
fefdc557 544 add_extent_changeset(state, bits_to_clear, changeset, 0);
32c00aff 545 state->state &= ~bits_to_clear;
d1310b2e
CM
546 if (wake)
547 wake_up(&state->wq);
0ca1f7ce 548 if (state->state == 0) {
cdc6a395 549 next = next_state(state);
27a3507d 550 if (extent_state_in_tree(state)) {
d1310b2e 551 rb_erase(&state->rb_node, &tree->state);
27a3507d 552 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
553 free_extent_state(state);
554 } else {
555 WARN_ON(1);
556 }
557 } else {
558 merge_state(tree, state);
cdc6a395 559 next = next_state(state);
d1310b2e 560 }
cdc6a395 561 return next;
d1310b2e
CM
562}
563
8233767a
XG
564static struct extent_state *
565alloc_extent_state_atomic(struct extent_state *prealloc)
566{
567 if (!prealloc)
568 prealloc = alloc_extent_state(GFP_ATOMIC);
569
570 return prealloc;
571}
572
48a3b636 573static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
574{
575 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
576 "Extent tree was modified by another "
577 "thread while locked.");
578}
579
d1310b2e
CM
580/*
581 * clear some bits on a range in the tree. This may require splitting
582 * or inserting elements in the tree, so the gfp mask is used to
583 * indicate which allocations or sleeping are allowed.
584 *
585 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
586 * the given range from the tree regardless of state (ie for truncate).
587 *
588 * the range [start, end] is inclusive.
589 *
6763af84 590 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 591 */
fefdc557
QW
592static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
593 unsigned bits, int wake, int delete,
594 struct extent_state **cached_state,
595 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
596{
597 struct extent_state *state;
2c64c53d 598 struct extent_state *cached;
d1310b2e
CM
599 struct extent_state *prealloc = NULL;
600 struct rb_node *node;
5c939df5 601 u64 last_end;
d1310b2e 602 int err;
2ac55d41 603 int clear = 0;
d1310b2e 604
a5dee37d 605 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 606
7ee9e440
JB
607 if (bits & EXTENT_DELALLOC)
608 bits |= EXTENT_NORESERVE;
609
0ca1f7ce
YZ
610 if (delete)
611 bits |= ~EXTENT_CTLBITS;
612 bits |= EXTENT_FIRST_DELALLOC;
613
2ac55d41
JB
614 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
615 clear = 1;
d1310b2e 616again:
d0164adc 617 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
618 /*
619 * Don't care for allocation failure here because we might end
620 * up not needing the pre-allocated extent state at all, which
621 * is the case if we only have in the tree extent states that
622 * cover our input range and don't cover too any other range.
623 * If we end up needing a new extent state we allocate it later.
624 */
d1310b2e 625 prealloc = alloc_extent_state(mask);
d1310b2e
CM
626 }
627
cad321ad 628 spin_lock(&tree->lock);
2c64c53d
CM
629 if (cached_state) {
630 cached = *cached_state;
2ac55d41
JB
631
632 if (clear) {
633 *cached_state = NULL;
634 cached_state = NULL;
635 }
636
27a3507d
FM
637 if (cached && extent_state_in_tree(cached) &&
638 cached->start <= start && cached->end > start) {
2ac55d41
JB
639 if (clear)
640 atomic_dec(&cached->refs);
2c64c53d 641 state = cached;
42daec29 642 goto hit_next;
2c64c53d 643 }
2ac55d41
JB
644 if (clear)
645 free_extent_state(cached);
2c64c53d 646 }
d1310b2e
CM
647 /*
648 * this search will find the extents that end after
649 * our range starts
650 */
80ea96b1 651 node = tree_search(tree, start);
d1310b2e
CM
652 if (!node)
653 goto out;
654 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 655hit_next:
d1310b2e
CM
656 if (state->start > end)
657 goto out;
658 WARN_ON(state->end < start);
5c939df5 659 last_end = state->end;
d1310b2e 660
0449314a 661 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
662 if (!(state->state & bits)) {
663 state = next_state(state);
0449314a 664 goto next;
cdc6a395 665 }
0449314a 666
d1310b2e
CM
667 /*
668 * | ---- desired range ---- |
669 * | state | or
670 * | ------------- state -------------- |
671 *
672 * We need to split the extent we found, and may flip
673 * bits on second half.
674 *
675 * If the extent we found extends past our range, we
676 * just split and search again. It'll get split again
677 * the next time though.
678 *
679 * If the extent we found is inside our range, we clear
680 * the desired bit on it.
681 */
682
683 if (state->start < start) {
8233767a
XG
684 prealloc = alloc_extent_state_atomic(prealloc);
685 BUG_ON(!prealloc);
d1310b2e 686 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
687 if (err)
688 extent_io_tree_panic(tree, err);
689
d1310b2e
CM
690 prealloc = NULL;
691 if (err)
692 goto out;
693 if (state->end <= end) {
fefdc557
QW
694 state = clear_state_bit(tree, state, &bits, wake,
695 changeset);
d1ac6e41 696 goto next;
d1310b2e
CM
697 }
698 goto search_again;
699 }
700 /*
701 * | ---- desired range ---- |
702 * | state |
703 * We need to split the extent, and clear the bit
704 * on the first half
705 */
706 if (state->start <= end && state->end > end) {
8233767a
XG
707 prealloc = alloc_extent_state_atomic(prealloc);
708 BUG_ON(!prealloc);
d1310b2e 709 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
710 if (err)
711 extent_io_tree_panic(tree, err);
712
d1310b2e
CM
713 if (wake)
714 wake_up(&state->wq);
42daec29 715
fefdc557 716 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 717
d1310b2e
CM
718 prealloc = NULL;
719 goto out;
720 }
42daec29 721
fefdc557 722 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 723next:
5c939df5
YZ
724 if (last_end == (u64)-1)
725 goto out;
726 start = last_end + 1;
cdc6a395 727 if (start <= end && state && !need_resched())
692e5759 728 goto hit_next;
d1310b2e
CM
729
730search_again:
731 if (start > end)
732 goto out;
cad321ad 733 spin_unlock(&tree->lock);
d0164adc 734 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
735 cond_resched();
736 goto again;
7ab5cb2a
DS
737
738out:
739 spin_unlock(&tree->lock);
740 if (prealloc)
741 free_extent_state(prealloc);
742
743 return 0;
744
d1310b2e 745}
d1310b2e 746
143bede5
JM
747static void wait_on_state(struct extent_io_tree *tree,
748 struct extent_state *state)
641f5219
CH
749 __releases(tree->lock)
750 __acquires(tree->lock)
d1310b2e
CM
751{
752 DEFINE_WAIT(wait);
753 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 754 spin_unlock(&tree->lock);
d1310b2e 755 schedule();
cad321ad 756 spin_lock(&tree->lock);
d1310b2e 757 finish_wait(&state->wq, &wait);
d1310b2e
CM
758}
759
760/*
761 * waits for one or more bits to clear on a range in the state tree.
762 * The range [start, end] is inclusive.
763 * The tree lock is taken by this function
764 */
41074888
DS
765static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
766 unsigned long bits)
d1310b2e
CM
767{
768 struct extent_state *state;
769 struct rb_node *node;
770
a5dee37d 771 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 772
cad321ad 773 spin_lock(&tree->lock);
d1310b2e
CM
774again:
775 while (1) {
776 /*
777 * this search will find all the extents that end after
778 * our range starts
779 */
80ea96b1 780 node = tree_search(tree, start);
c50d3e71 781process_node:
d1310b2e
CM
782 if (!node)
783 break;
784
785 state = rb_entry(node, struct extent_state, rb_node);
786
787 if (state->start > end)
788 goto out;
789
790 if (state->state & bits) {
791 start = state->start;
792 atomic_inc(&state->refs);
793 wait_on_state(tree, state);
794 free_extent_state(state);
795 goto again;
796 }
797 start = state->end + 1;
798
799 if (start > end)
800 break;
801
c50d3e71
FM
802 if (!cond_resched_lock(&tree->lock)) {
803 node = rb_next(node);
804 goto process_node;
805 }
d1310b2e
CM
806 }
807out:
cad321ad 808 spin_unlock(&tree->lock);
d1310b2e 809}
d1310b2e 810
1bf85046 811static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 812 struct extent_state *state,
d38ed27f 813 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 814{
9ee49a04 815 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 816
1bf85046 817 set_state_cb(tree, state, bits);
0ca1f7ce 818 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
819 u64 range = state->end - state->start + 1;
820 tree->dirty_bytes += range;
821 }
d38ed27f 822 add_extent_changeset(state, bits_to_set, changeset, 1);
0ca1f7ce 823 state->state |= bits_to_set;
d1310b2e
CM
824}
825
e38e2ed7
FM
826static void cache_state_if_flags(struct extent_state *state,
827 struct extent_state **cached_ptr,
9ee49a04 828 unsigned flags)
2c64c53d
CM
829{
830 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 831 if (!flags || (state->state & flags)) {
2c64c53d
CM
832 *cached_ptr = state;
833 atomic_inc(&state->refs);
834 }
835 }
836}
837
e38e2ed7
FM
838static void cache_state(struct extent_state *state,
839 struct extent_state **cached_ptr)
840{
841 return cache_state_if_flags(state, cached_ptr,
842 EXTENT_IOBITS | EXTENT_BOUNDARY);
843}
844
d1310b2e 845/*
1edbb734
CM
846 * set some bits on a range in the tree. This may require allocations or
847 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 848 *
1edbb734
CM
849 * If any of the exclusive bits are set, this will fail with -EEXIST if some
850 * part of the range already has the desired bits set. The start of the
851 * existing range is returned in failed_start in this case.
d1310b2e 852 *
1edbb734 853 * [start, end] is inclusive This takes the tree lock.
d1310b2e 854 */
1edbb734 855
3fbe5c02
JM
856static int __must_check
857__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 858 unsigned bits, unsigned exclusive_bits,
41074888 859 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 860 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
861{
862 struct extent_state *state;
863 struct extent_state *prealloc = NULL;
864 struct rb_node *node;
12cfbad9
FDBM
865 struct rb_node **p;
866 struct rb_node *parent;
d1310b2e 867 int err = 0;
d1310b2e
CM
868 u64 last_start;
869 u64 last_end;
42daec29 870
a5dee37d 871 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 872
0ca1f7ce 873 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 874again:
d0164adc 875 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
876 /*
877 * Don't care for allocation failure here because we might end
878 * up not needing the pre-allocated extent state at all, which
879 * is the case if we only have in the tree extent states that
880 * cover our input range and don't cover too any other range.
881 * If we end up needing a new extent state we allocate it later.
882 */
d1310b2e 883 prealloc = alloc_extent_state(mask);
d1310b2e
CM
884 }
885
cad321ad 886 spin_lock(&tree->lock);
9655d298
CM
887 if (cached_state && *cached_state) {
888 state = *cached_state;
df98b6e2 889 if (state->start <= start && state->end > start &&
27a3507d 890 extent_state_in_tree(state)) {
9655d298
CM
891 node = &state->rb_node;
892 goto hit_next;
893 }
894 }
d1310b2e
CM
895 /*
896 * this search will find all the extents that end after
897 * our range starts.
898 */
12cfbad9 899 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 900 if (!node) {
8233767a
XG
901 prealloc = alloc_extent_state_atomic(prealloc);
902 BUG_ON(!prealloc);
12cfbad9 903 err = insert_state(tree, prealloc, start, end,
d38ed27f 904 &p, &parent, &bits, changeset);
c2d904e0
JM
905 if (err)
906 extent_io_tree_panic(tree, err);
907
c42ac0bc 908 cache_state(prealloc, cached_state);
d1310b2e 909 prealloc = NULL;
d1310b2e
CM
910 goto out;
911 }
d1310b2e 912 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 913hit_next:
d1310b2e
CM
914 last_start = state->start;
915 last_end = state->end;
916
917 /*
918 * | ---- desired range ---- |
919 * | state |
920 *
921 * Just lock what we found and keep going
922 */
923 if (state->start == start && state->end <= end) {
1edbb734 924 if (state->state & exclusive_bits) {
d1310b2e
CM
925 *failed_start = state->start;
926 err = -EEXIST;
927 goto out;
928 }
42daec29 929
d38ed27f 930 set_state_bits(tree, state, &bits, changeset);
2c64c53d 931 cache_state(state, cached_state);
d1310b2e 932 merge_state(tree, state);
5c939df5
YZ
933 if (last_end == (u64)-1)
934 goto out;
935 start = last_end + 1;
d1ac6e41
LB
936 state = next_state(state);
937 if (start < end && state && state->start == start &&
938 !need_resched())
939 goto hit_next;
d1310b2e
CM
940 goto search_again;
941 }
942
943 /*
944 * | ---- desired range ---- |
945 * | state |
946 * or
947 * | ------------- state -------------- |
948 *
949 * We need to split the extent we found, and may flip bits on
950 * second half.
951 *
952 * If the extent we found extends past our
953 * range, we just split and search again. It'll get split
954 * again the next time though.
955 *
956 * If the extent we found is inside our range, we set the
957 * desired bit on it.
958 */
959 if (state->start < start) {
1edbb734 960 if (state->state & exclusive_bits) {
d1310b2e
CM
961 *failed_start = start;
962 err = -EEXIST;
963 goto out;
964 }
8233767a
XG
965
966 prealloc = alloc_extent_state_atomic(prealloc);
967 BUG_ON(!prealloc);
d1310b2e 968 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
969 if (err)
970 extent_io_tree_panic(tree, err);
971
d1310b2e
CM
972 prealloc = NULL;
973 if (err)
974 goto out;
975 if (state->end <= end) {
d38ed27f 976 set_state_bits(tree, state, &bits, changeset);
2c64c53d 977 cache_state(state, cached_state);
d1310b2e 978 merge_state(tree, state);
5c939df5
YZ
979 if (last_end == (u64)-1)
980 goto out;
981 start = last_end + 1;
d1ac6e41
LB
982 state = next_state(state);
983 if (start < end && state && state->start == start &&
984 !need_resched())
985 goto hit_next;
d1310b2e
CM
986 }
987 goto search_again;
988 }
989 /*
990 * | ---- desired range ---- |
991 * | state | or | state |
992 *
993 * There's a hole, we need to insert something in it and
994 * ignore the extent we found.
995 */
996 if (state->start > start) {
997 u64 this_end;
998 if (end < last_start)
999 this_end = end;
1000 else
d397712b 1001 this_end = last_start - 1;
8233767a
XG
1002
1003 prealloc = alloc_extent_state_atomic(prealloc);
1004 BUG_ON(!prealloc);
c7f895a2
XG
1005
1006 /*
1007 * Avoid to free 'prealloc' if it can be merged with
1008 * the later extent.
1009 */
d1310b2e 1010 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1011 NULL, NULL, &bits, changeset);
c2d904e0
JM
1012 if (err)
1013 extent_io_tree_panic(tree, err);
1014
9ed74f2d
JB
1015 cache_state(prealloc, cached_state);
1016 prealloc = NULL;
d1310b2e
CM
1017 start = this_end + 1;
1018 goto search_again;
1019 }
1020 /*
1021 * | ---- desired range ---- |
1022 * | state |
1023 * We need to split the extent, and set the bit
1024 * on the first half
1025 */
1026 if (state->start <= end && state->end > end) {
1edbb734 1027 if (state->state & exclusive_bits) {
d1310b2e
CM
1028 *failed_start = start;
1029 err = -EEXIST;
1030 goto out;
1031 }
8233767a
XG
1032
1033 prealloc = alloc_extent_state_atomic(prealloc);
1034 BUG_ON(!prealloc);
d1310b2e 1035 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1036 if (err)
1037 extent_io_tree_panic(tree, err);
d1310b2e 1038
d38ed27f 1039 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1040 cache_state(prealloc, cached_state);
d1310b2e
CM
1041 merge_state(tree, prealloc);
1042 prealloc = NULL;
1043 goto out;
1044 }
1045
b5a4ba14
DS
1046search_again:
1047 if (start > end)
1048 goto out;
1049 spin_unlock(&tree->lock);
1050 if (gfpflags_allow_blocking(mask))
1051 cond_resched();
1052 goto again;
d1310b2e
CM
1053
1054out:
cad321ad 1055 spin_unlock(&tree->lock);
d1310b2e
CM
1056 if (prealloc)
1057 free_extent_state(prealloc);
1058
1059 return err;
1060
d1310b2e 1061}
d1310b2e 1062
41074888 1063int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1064 unsigned bits, u64 * failed_start,
41074888 1065 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1066{
1067 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1068 cached_state, mask, NULL);
3fbe5c02
JM
1069}
1070
1071
462d6fac 1072/**
10983f2e
LB
1073 * convert_extent_bit - convert all bits in a given range from one bit to
1074 * another
462d6fac
JB
1075 * @tree: the io tree to search
1076 * @start: the start offset in bytes
1077 * @end: the end offset in bytes (inclusive)
1078 * @bits: the bits to set in this range
1079 * @clear_bits: the bits to clear in this range
e6138876 1080 * @cached_state: state that we're going to cache
462d6fac
JB
1081 *
1082 * This will go through and set bits for the given range. If any states exist
1083 * already in this range they are set with the given bit and cleared of the
1084 * clear_bits. This is only meant to be used by things that are mergeable, ie
1085 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1086 * boundary bits like LOCK.
210aa277
DS
1087 *
1088 * All allocations are done with GFP_NOFS.
462d6fac
JB
1089 */
1090int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1091 unsigned bits, unsigned clear_bits,
210aa277 1092 struct extent_state **cached_state)
462d6fac
JB
1093{
1094 struct extent_state *state;
1095 struct extent_state *prealloc = NULL;
1096 struct rb_node *node;
12cfbad9
FDBM
1097 struct rb_node **p;
1098 struct rb_node *parent;
462d6fac
JB
1099 int err = 0;
1100 u64 last_start;
1101 u64 last_end;
c8fd3de7 1102 bool first_iteration = true;
462d6fac 1103
a5dee37d 1104 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1105
462d6fac 1106again:
210aa277 1107 if (!prealloc) {
c8fd3de7
FM
1108 /*
1109 * Best effort, don't worry if extent state allocation fails
1110 * here for the first iteration. We might have a cached state
1111 * that matches exactly the target range, in which case no
1112 * extent state allocations are needed. We'll only know this
1113 * after locking the tree.
1114 */
210aa277 1115 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1116 if (!prealloc && !first_iteration)
462d6fac
JB
1117 return -ENOMEM;
1118 }
1119
1120 spin_lock(&tree->lock);
e6138876
JB
1121 if (cached_state && *cached_state) {
1122 state = *cached_state;
1123 if (state->start <= start && state->end > start &&
27a3507d 1124 extent_state_in_tree(state)) {
e6138876
JB
1125 node = &state->rb_node;
1126 goto hit_next;
1127 }
1128 }
1129
462d6fac
JB
1130 /*
1131 * this search will find all the extents that end after
1132 * our range starts.
1133 */
12cfbad9 1134 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1135 if (!node) {
1136 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1137 if (!prealloc) {
1138 err = -ENOMEM;
1139 goto out;
1140 }
12cfbad9 1141 err = insert_state(tree, prealloc, start, end,
d38ed27f 1142 &p, &parent, &bits, NULL);
c2d904e0
JM
1143 if (err)
1144 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1145 cache_state(prealloc, cached_state);
1146 prealloc = NULL;
462d6fac
JB
1147 goto out;
1148 }
1149 state = rb_entry(node, struct extent_state, rb_node);
1150hit_next:
1151 last_start = state->start;
1152 last_end = state->end;
1153
1154 /*
1155 * | ---- desired range ---- |
1156 * | state |
1157 *
1158 * Just lock what we found and keep going
1159 */
1160 if (state->start == start && state->end <= end) {
d38ed27f 1161 set_state_bits(tree, state, &bits, NULL);
e6138876 1162 cache_state(state, cached_state);
fefdc557 1163 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1164 if (last_end == (u64)-1)
1165 goto out;
462d6fac 1166 start = last_end + 1;
d1ac6e41
LB
1167 if (start < end && state && state->start == start &&
1168 !need_resched())
1169 goto hit_next;
462d6fac
JB
1170 goto search_again;
1171 }
1172
1173 /*
1174 * | ---- desired range ---- |
1175 * | state |
1176 * or
1177 * | ------------- state -------------- |
1178 *
1179 * We need to split the extent we found, and may flip bits on
1180 * second half.
1181 *
1182 * If the extent we found extends past our
1183 * range, we just split and search again. It'll get split
1184 * again the next time though.
1185 *
1186 * If the extent we found is inside our range, we set the
1187 * desired bit on it.
1188 */
1189 if (state->start < start) {
1190 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1191 if (!prealloc) {
1192 err = -ENOMEM;
1193 goto out;
1194 }
462d6fac 1195 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1196 if (err)
1197 extent_io_tree_panic(tree, err);
462d6fac
JB
1198 prealloc = NULL;
1199 if (err)
1200 goto out;
1201 if (state->end <= end) {
d38ed27f 1202 set_state_bits(tree, state, &bits, NULL);
e6138876 1203 cache_state(state, cached_state);
fefdc557
QW
1204 state = clear_state_bit(tree, state, &clear_bits, 0,
1205 NULL);
462d6fac
JB
1206 if (last_end == (u64)-1)
1207 goto out;
1208 start = last_end + 1;
d1ac6e41
LB
1209 if (start < end && state && state->start == start &&
1210 !need_resched())
1211 goto hit_next;
462d6fac
JB
1212 }
1213 goto search_again;
1214 }
1215 /*
1216 * | ---- desired range ---- |
1217 * | state | or | state |
1218 *
1219 * There's a hole, we need to insert something in it and
1220 * ignore the extent we found.
1221 */
1222 if (state->start > start) {
1223 u64 this_end;
1224 if (end < last_start)
1225 this_end = end;
1226 else
1227 this_end = last_start - 1;
1228
1229 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1230 if (!prealloc) {
1231 err = -ENOMEM;
1232 goto out;
1233 }
462d6fac
JB
1234
1235 /*
1236 * Avoid to free 'prealloc' if it can be merged with
1237 * the later extent.
1238 */
1239 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1240 NULL, NULL, &bits, NULL);
c2d904e0
JM
1241 if (err)
1242 extent_io_tree_panic(tree, err);
e6138876 1243 cache_state(prealloc, cached_state);
462d6fac
JB
1244 prealloc = NULL;
1245 start = this_end + 1;
1246 goto search_again;
1247 }
1248 /*
1249 * | ---- desired range ---- |
1250 * | state |
1251 * We need to split the extent, and set the bit
1252 * on the first half
1253 */
1254 if (state->start <= end && state->end > end) {
1255 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1256 if (!prealloc) {
1257 err = -ENOMEM;
1258 goto out;
1259 }
462d6fac
JB
1260
1261 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1262 if (err)
1263 extent_io_tree_panic(tree, err);
462d6fac 1264
d38ed27f 1265 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1266 cache_state(prealloc, cached_state);
fefdc557 1267 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1268 prealloc = NULL;
1269 goto out;
1270 }
1271
462d6fac
JB
1272search_again:
1273 if (start > end)
1274 goto out;
1275 spin_unlock(&tree->lock);
210aa277 1276 cond_resched();
c8fd3de7 1277 first_iteration = false;
462d6fac 1278 goto again;
462d6fac
JB
1279
1280out:
1281 spin_unlock(&tree->lock);
1282 if (prealloc)
1283 free_extent_state(prealloc);
1284
1285 return err;
462d6fac
JB
1286}
1287
d1310b2e 1288/* wrappers around set/clear extent bit */
d38ed27f 1289int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1290 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1291{
1292 /*
1293 * We don't support EXTENT_LOCKED yet, as current changeset will
1294 * record any bits changed, so for EXTENT_LOCKED case, it will
1295 * either fail with -EEXIST or changeset will record the whole
1296 * range.
1297 */
1298 BUG_ON(bits & EXTENT_LOCKED);
1299
2c53b912 1300 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1301 changeset);
1302}
1303
fefdc557
QW
1304int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1305 unsigned bits, int wake, int delete,
1306 struct extent_state **cached, gfp_t mask)
1307{
1308 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1309 cached, mask, NULL);
1310}
1311
fefdc557 1312int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1313 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1314{
1315 /*
1316 * Don't support EXTENT_LOCKED case, same reason as
1317 * set_record_extent_bits().
1318 */
1319 BUG_ON(bits & EXTENT_LOCKED);
1320
f734c44a 1321 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1322 changeset);
1323}
1324
d352ac68
CM
1325/*
1326 * either insert or lock state struct between start and end use mask to tell
1327 * us if waiting is desired.
1328 */
1edbb734 1329int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1330 struct extent_state **cached_state)
d1310b2e
CM
1331{
1332 int err;
1333 u64 failed_start;
9ee49a04 1334
d1310b2e 1335 while (1) {
ff13db41 1336 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1337 EXTENT_LOCKED, &failed_start,
d38ed27f 1338 cached_state, GFP_NOFS, NULL);
d0082371 1339 if (err == -EEXIST) {
d1310b2e
CM
1340 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1341 start = failed_start;
d0082371 1342 } else
d1310b2e 1343 break;
d1310b2e
CM
1344 WARN_ON(start > end);
1345 }
1346 return err;
1347}
d1310b2e 1348
d0082371 1349int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1350{
1351 int err;
1352 u64 failed_start;
1353
3fbe5c02 1354 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1355 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1356 if (err == -EEXIST) {
1357 if (failed_start > start)
1358 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1359 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1360 return 0;
6643558d 1361 }
25179201
JB
1362 return 1;
1363}
25179201 1364
bd1fa4f0 1365void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1366{
09cbfeaf
KS
1367 unsigned long index = start >> PAGE_SHIFT;
1368 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1369 struct page *page;
1370
1371 while (index <= end_index) {
1372 page = find_get_page(inode->i_mapping, index);
1373 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1374 clear_page_dirty_for_io(page);
09cbfeaf 1375 put_page(page);
4adaa611
CM
1376 index++;
1377 }
4adaa611
CM
1378}
1379
f6311572 1380void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1381{
09cbfeaf
KS
1382 unsigned long index = start >> PAGE_SHIFT;
1383 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1384 struct page *page;
1385
1386 while (index <= end_index) {
1387 page = find_get_page(inode->i_mapping, index);
1388 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1389 __set_page_dirty_nobuffers(page);
8d38633c 1390 account_page_redirty(page);
09cbfeaf 1391 put_page(page);
4adaa611
CM
1392 index++;
1393 }
4adaa611
CM
1394}
1395
d1310b2e
CM
1396/*
1397 * helper function to set both pages and extents in the tree writeback
1398 */
35de6db2 1399static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1400{
09cbfeaf
KS
1401 unsigned long index = start >> PAGE_SHIFT;
1402 unsigned long end_index = end >> PAGE_SHIFT;
d1310b2e
CM
1403 struct page *page;
1404
1405 while (index <= end_index) {
1406 page = find_get_page(tree->mapping, index);
79787eaa 1407 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e 1408 set_page_writeback(page);
09cbfeaf 1409 put_page(page);
d1310b2e
CM
1410 index++;
1411 }
d1310b2e 1412}
d1310b2e 1413
d352ac68
CM
1414/* find the first state struct with 'bits' set after 'start', and
1415 * return it. tree->lock must be held. NULL will returned if
1416 * nothing was found after 'start'
1417 */
48a3b636
ES
1418static struct extent_state *
1419find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1420 u64 start, unsigned bits)
d7fc640e
CM
1421{
1422 struct rb_node *node;
1423 struct extent_state *state;
1424
1425 /*
1426 * this search will find all the extents that end after
1427 * our range starts.
1428 */
1429 node = tree_search(tree, start);
d397712b 1430 if (!node)
d7fc640e 1431 goto out;
d7fc640e 1432
d397712b 1433 while (1) {
d7fc640e 1434 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1435 if (state->end >= start && (state->state & bits))
d7fc640e 1436 return state;
d397712b 1437
d7fc640e
CM
1438 node = rb_next(node);
1439 if (!node)
1440 break;
1441 }
1442out:
1443 return NULL;
1444}
d7fc640e 1445
69261c4b
XG
1446/*
1447 * find the first offset in the io tree with 'bits' set. zero is
1448 * returned if we find something, and *start_ret and *end_ret are
1449 * set to reflect the state struct that was found.
1450 *
477d7eaf 1451 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1452 */
1453int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1454 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1455 struct extent_state **cached_state)
69261c4b
XG
1456{
1457 struct extent_state *state;
e6138876 1458 struct rb_node *n;
69261c4b
XG
1459 int ret = 1;
1460
1461 spin_lock(&tree->lock);
e6138876
JB
1462 if (cached_state && *cached_state) {
1463 state = *cached_state;
27a3507d 1464 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1465 n = rb_next(&state->rb_node);
1466 while (n) {
1467 state = rb_entry(n, struct extent_state,
1468 rb_node);
1469 if (state->state & bits)
1470 goto got_it;
1471 n = rb_next(n);
1472 }
1473 free_extent_state(*cached_state);
1474 *cached_state = NULL;
1475 goto out;
1476 }
1477 free_extent_state(*cached_state);
1478 *cached_state = NULL;
1479 }
1480
69261c4b 1481 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1482got_it:
69261c4b 1483 if (state) {
e38e2ed7 1484 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1485 *start_ret = state->start;
1486 *end_ret = state->end;
1487 ret = 0;
1488 }
e6138876 1489out:
69261c4b
XG
1490 spin_unlock(&tree->lock);
1491 return ret;
1492}
1493
d352ac68
CM
1494/*
1495 * find a contiguous range of bytes in the file marked as delalloc, not
1496 * more than 'max_bytes'. start and end are used to return the range,
1497 *
1498 * 1 is returned if we find something, 0 if nothing was in the tree
1499 */
c8b97818 1500static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1501 u64 *start, u64 *end, u64 max_bytes,
1502 struct extent_state **cached_state)
d1310b2e
CM
1503{
1504 struct rb_node *node;
1505 struct extent_state *state;
1506 u64 cur_start = *start;
1507 u64 found = 0;
1508 u64 total_bytes = 0;
1509
cad321ad 1510 spin_lock(&tree->lock);
c8b97818 1511
d1310b2e
CM
1512 /*
1513 * this search will find all the extents that end after
1514 * our range starts.
1515 */
80ea96b1 1516 node = tree_search(tree, cur_start);
2b114d1d 1517 if (!node) {
3b951516
CM
1518 if (!found)
1519 *end = (u64)-1;
d1310b2e
CM
1520 goto out;
1521 }
1522
d397712b 1523 while (1) {
d1310b2e 1524 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1525 if (found && (state->start != cur_start ||
1526 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1527 goto out;
1528 }
1529 if (!(state->state & EXTENT_DELALLOC)) {
1530 if (!found)
1531 *end = state->end;
1532 goto out;
1533 }
c2a128d2 1534 if (!found) {
d1310b2e 1535 *start = state->start;
c2a128d2
JB
1536 *cached_state = state;
1537 atomic_inc(&state->refs);
1538 }
d1310b2e
CM
1539 found++;
1540 *end = state->end;
1541 cur_start = state->end + 1;
1542 node = rb_next(node);
d1310b2e 1543 total_bytes += state->end - state->start + 1;
7bf811a5 1544 if (total_bytes >= max_bytes)
573aecaf 1545 break;
573aecaf 1546 if (!node)
d1310b2e
CM
1547 break;
1548 }
1549out:
cad321ad 1550 spin_unlock(&tree->lock);
d1310b2e
CM
1551 return found;
1552}
1553
143bede5
JM
1554static noinline void __unlock_for_delalloc(struct inode *inode,
1555 struct page *locked_page,
1556 u64 start, u64 end)
c8b97818
CM
1557{
1558 int ret;
1559 struct page *pages[16];
09cbfeaf
KS
1560 unsigned long index = start >> PAGE_SHIFT;
1561 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818
CM
1562 unsigned long nr_pages = end_index - index + 1;
1563 int i;
1564
1565 if (index == locked_page->index && end_index == index)
143bede5 1566 return;
c8b97818 1567
d397712b 1568 while (nr_pages > 0) {
c8b97818 1569 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1570 min_t(unsigned long, nr_pages,
1571 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1572 for (i = 0; i < ret; i++) {
1573 if (pages[i] != locked_page)
1574 unlock_page(pages[i]);
09cbfeaf 1575 put_page(pages[i]);
c8b97818
CM
1576 }
1577 nr_pages -= ret;
1578 index += ret;
1579 cond_resched();
1580 }
c8b97818
CM
1581}
1582
1583static noinline int lock_delalloc_pages(struct inode *inode,
1584 struct page *locked_page,
1585 u64 delalloc_start,
1586 u64 delalloc_end)
1587{
09cbfeaf 1588 unsigned long index = delalloc_start >> PAGE_SHIFT;
c8b97818 1589 unsigned long start_index = index;
09cbfeaf 1590 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818
CM
1591 unsigned long pages_locked = 0;
1592 struct page *pages[16];
1593 unsigned long nrpages;
1594 int ret;
1595 int i;
1596
1597 /* the caller is responsible for locking the start index */
1598 if (index == locked_page->index && index == end_index)
1599 return 0;
1600
1601 /* skip the page at the start index */
1602 nrpages = end_index - index + 1;
d397712b 1603 while (nrpages > 0) {
c8b97818 1604 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1605 min_t(unsigned long,
1606 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1607 if (ret == 0) {
1608 ret = -EAGAIN;
1609 goto done;
1610 }
1611 /* now we have an array of pages, lock them all */
1612 for (i = 0; i < ret; i++) {
1613 /*
1614 * the caller is taking responsibility for
1615 * locked_page
1616 */
771ed689 1617 if (pages[i] != locked_page) {
c8b97818 1618 lock_page(pages[i]);
f2b1c41c
CM
1619 if (!PageDirty(pages[i]) ||
1620 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1621 ret = -EAGAIN;
1622 unlock_page(pages[i]);
09cbfeaf 1623 put_page(pages[i]);
771ed689
CM
1624 goto done;
1625 }
1626 }
09cbfeaf 1627 put_page(pages[i]);
771ed689 1628 pages_locked++;
c8b97818 1629 }
c8b97818
CM
1630 nrpages -= ret;
1631 index += ret;
1632 cond_resched();
1633 }
1634 ret = 0;
1635done:
1636 if (ret && pages_locked) {
1637 __unlock_for_delalloc(inode, locked_page,
1638 delalloc_start,
1639 ((u64)(start_index + pages_locked - 1)) <<
09cbfeaf 1640 PAGE_SHIFT);
c8b97818
CM
1641 }
1642 return ret;
1643}
1644
1645/*
1646 * find a contiguous range of bytes in the file marked as delalloc, not
1647 * more than 'max_bytes'. start and end are used to return the range,
1648 *
1649 * 1 is returned if we find something, 0 if nothing was in the tree
1650 */
294e30fe
JB
1651STATIC u64 find_lock_delalloc_range(struct inode *inode,
1652 struct extent_io_tree *tree,
1653 struct page *locked_page, u64 *start,
1654 u64 *end, u64 max_bytes)
c8b97818
CM
1655{
1656 u64 delalloc_start;
1657 u64 delalloc_end;
1658 u64 found;
9655d298 1659 struct extent_state *cached_state = NULL;
c8b97818
CM
1660 int ret;
1661 int loops = 0;
1662
1663again:
1664 /* step one, find a bunch of delalloc bytes starting at start */
1665 delalloc_start = *start;
1666 delalloc_end = 0;
1667 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1668 max_bytes, &cached_state);
70b99e69 1669 if (!found || delalloc_end <= *start) {
c8b97818
CM
1670 *start = delalloc_start;
1671 *end = delalloc_end;
c2a128d2 1672 free_extent_state(cached_state);
385fe0be 1673 return 0;
c8b97818
CM
1674 }
1675
70b99e69
CM
1676 /*
1677 * start comes from the offset of locked_page. We have to lock
1678 * pages in order, so we can't process delalloc bytes before
1679 * locked_page
1680 */
d397712b 1681 if (delalloc_start < *start)
70b99e69 1682 delalloc_start = *start;
70b99e69 1683
c8b97818
CM
1684 /*
1685 * make sure to limit the number of pages we try to lock down
c8b97818 1686 */
7bf811a5
JB
1687 if (delalloc_end + 1 - delalloc_start > max_bytes)
1688 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1689
c8b97818
CM
1690 /* step two, lock all the pages after the page that has start */
1691 ret = lock_delalloc_pages(inode, locked_page,
1692 delalloc_start, delalloc_end);
1693 if (ret == -EAGAIN) {
1694 /* some of the pages are gone, lets avoid looping by
1695 * shortening the size of the delalloc range we're searching
1696 */
9655d298 1697 free_extent_state(cached_state);
7d788742 1698 cached_state = NULL;
c8b97818 1699 if (!loops) {
09cbfeaf 1700 max_bytes = PAGE_SIZE;
c8b97818
CM
1701 loops = 1;
1702 goto again;
1703 } else {
1704 found = 0;
1705 goto out_failed;
1706 }
1707 }
79787eaa 1708 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1709
1710 /* step three, lock the state bits for the whole range */
ff13db41 1711 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1712
1713 /* then test to make sure it is all still delalloc */
1714 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1715 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1716 if (!ret) {
9655d298
CM
1717 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1718 &cached_state, GFP_NOFS);
c8b97818
CM
1719 __unlock_for_delalloc(inode, locked_page,
1720 delalloc_start, delalloc_end);
1721 cond_resched();
1722 goto again;
1723 }
9655d298 1724 free_extent_state(cached_state);
c8b97818
CM
1725 *start = delalloc_start;
1726 *end = delalloc_end;
1727out_failed:
1728 return found;
1729}
1730
a9d93e17 1731void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
c2790a2e 1732 struct page *locked_page,
9ee49a04 1733 unsigned clear_bits,
c2790a2e 1734 unsigned long page_ops)
c8b97818 1735{
c2790a2e 1736 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
c8b97818
CM
1737 int ret;
1738 struct page *pages[16];
09cbfeaf
KS
1739 unsigned long index = start >> PAGE_SHIFT;
1740 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818
CM
1741 unsigned long nr_pages = end_index - index + 1;
1742 int i;
771ed689 1743
2c64c53d 1744 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
c2790a2e 1745 if (page_ops == 0)
a9d93e17 1746 return;
c8b97818 1747
704de49d
FM
1748 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1749 mapping_set_error(inode->i_mapping, -EIO);
1750
d397712b 1751 while (nr_pages > 0) {
c8b97818 1752 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1753 min_t(unsigned long,
1754 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1755 for (i = 0; i < ret; i++) {
8b62b72b 1756
c2790a2e 1757 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1758 SetPagePrivate2(pages[i]);
1759
c8b97818 1760 if (pages[i] == locked_page) {
09cbfeaf 1761 put_page(pages[i]);
c8b97818
CM
1762 continue;
1763 }
c2790a2e 1764 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1765 clear_page_dirty_for_io(pages[i]);
c2790a2e 1766 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1767 set_page_writeback(pages[i]);
704de49d
FM
1768 if (page_ops & PAGE_SET_ERROR)
1769 SetPageError(pages[i]);
c2790a2e 1770 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1771 end_page_writeback(pages[i]);
c2790a2e 1772 if (page_ops & PAGE_UNLOCK)
771ed689 1773 unlock_page(pages[i]);
09cbfeaf 1774 put_page(pages[i]);
c8b97818
CM
1775 }
1776 nr_pages -= ret;
1777 index += ret;
1778 cond_resched();
1779 }
c8b97818 1780}
c8b97818 1781
d352ac68
CM
1782/*
1783 * count the number of bytes in the tree that have a given bit(s)
1784 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1785 * cached. The total number found is returned.
1786 */
d1310b2e
CM
1787u64 count_range_bits(struct extent_io_tree *tree,
1788 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1789 unsigned bits, int contig)
d1310b2e
CM
1790{
1791 struct rb_node *node;
1792 struct extent_state *state;
1793 u64 cur_start = *start;
1794 u64 total_bytes = 0;
ec29ed5b 1795 u64 last = 0;
d1310b2e
CM
1796 int found = 0;
1797
fae7f21c 1798 if (WARN_ON(search_end <= cur_start))
d1310b2e 1799 return 0;
d1310b2e 1800
cad321ad 1801 spin_lock(&tree->lock);
d1310b2e
CM
1802 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1803 total_bytes = tree->dirty_bytes;
1804 goto out;
1805 }
1806 /*
1807 * this search will find all the extents that end after
1808 * our range starts.
1809 */
80ea96b1 1810 node = tree_search(tree, cur_start);
d397712b 1811 if (!node)
d1310b2e 1812 goto out;
d1310b2e 1813
d397712b 1814 while (1) {
d1310b2e
CM
1815 state = rb_entry(node, struct extent_state, rb_node);
1816 if (state->start > search_end)
1817 break;
ec29ed5b
CM
1818 if (contig && found && state->start > last + 1)
1819 break;
1820 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1821 total_bytes += min(search_end, state->end) + 1 -
1822 max(cur_start, state->start);
1823 if (total_bytes >= max_bytes)
1824 break;
1825 if (!found) {
af60bed2 1826 *start = max(cur_start, state->start);
d1310b2e
CM
1827 found = 1;
1828 }
ec29ed5b
CM
1829 last = state->end;
1830 } else if (contig && found) {
1831 break;
d1310b2e
CM
1832 }
1833 node = rb_next(node);
1834 if (!node)
1835 break;
1836 }
1837out:
cad321ad 1838 spin_unlock(&tree->lock);
d1310b2e
CM
1839 return total_bytes;
1840}
b2950863 1841
d352ac68
CM
1842/*
1843 * set the private field for a given byte offset in the tree. If there isn't
1844 * an extent_state there already, this does nothing.
1845 */
f827ba9a 1846static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1847 struct io_failure_record *failrec)
d1310b2e
CM
1848{
1849 struct rb_node *node;
1850 struct extent_state *state;
1851 int ret = 0;
1852
cad321ad 1853 spin_lock(&tree->lock);
d1310b2e
CM
1854 /*
1855 * this search will find all the extents that end after
1856 * our range starts.
1857 */
80ea96b1 1858 node = tree_search(tree, start);
2b114d1d 1859 if (!node) {
d1310b2e
CM
1860 ret = -ENOENT;
1861 goto out;
1862 }
1863 state = rb_entry(node, struct extent_state, rb_node);
1864 if (state->start != start) {
1865 ret = -ENOENT;
1866 goto out;
1867 }
47dc196a 1868 state->failrec = failrec;
d1310b2e 1869out:
cad321ad 1870 spin_unlock(&tree->lock);
d1310b2e
CM
1871 return ret;
1872}
1873
f827ba9a 1874static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1875 struct io_failure_record **failrec)
d1310b2e
CM
1876{
1877 struct rb_node *node;
1878 struct extent_state *state;
1879 int ret = 0;
1880
cad321ad 1881 spin_lock(&tree->lock);
d1310b2e
CM
1882 /*
1883 * this search will find all the extents that end after
1884 * our range starts.
1885 */
80ea96b1 1886 node = tree_search(tree, start);
2b114d1d 1887 if (!node) {
d1310b2e
CM
1888 ret = -ENOENT;
1889 goto out;
1890 }
1891 state = rb_entry(node, struct extent_state, rb_node);
1892 if (state->start != start) {
1893 ret = -ENOENT;
1894 goto out;
1895 }
47dc196a 1896 *failrec = state->failrec;
d1310b2e 1897out:
cad321ad 1898 spin_unlock(&tree->lock);
d1310b2e
CM
1899 return ret;
1900}
1901
1902/*
1903 * searches a range in the state tree for a given mask.
70dec807 1904 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1905 * has the bits set. Otherwise, 1 is returned if any bit in the
1906 * range is found set.
1907 */
1908int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1909 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1910{
1911 struct extent_state *state = NULL;
1912 struct rb_node *node;
1913 int bitset = 0;
d1310b2e 1914
cad321ad 1915 spin_lock(&tree->lock);
27a3507d 1916 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1917 cached->end > start)
9655d298
CM
1918 node = &cached->rb_node;
1919 else
1920 node = tree_search(tree, start);
d1310b2e
CM
1921 while (node && start <= end) {
1922 state = rb_entry(node, struct extent_state, rb_node);
1923
1924 if (filled && state->start > start) {
1925 bitset = 0;
1926 break;
1927 }
1928
1929 if (state->start > end)
1930 break;
1931
1932 if (state->state & bits) {
1933 bitset = 1;
1934 if (!filled)
1935 break;
1936 } else if (filled) {
1937 bitset = 0;
1938 break;
1939 }
46562cec
CM
1940
1941 if (state->end == (u64)-1)
1942 break;
1943
d1310b2e
CM
1944 start = state->end + 1;
1945 if (start > end)
1946 break;
1947 node = rb_next(node);
1948 if (!node) {
1949 if (filled)
1950 bitset = 0;
1951 break;
1952 }
1953 }
cad321ad 1954 spin_unlock(&tree->lock);
d1310b2e
CM
1955 return bitset;
1956}
d1310b2e
CM
1957
1958/*
1959 * helper function to set a given page up to date if all the
1960 * extents in the tree for that page are up to date
1961 */
143bede5 1962static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1963{
4eee4fa4 1964 u64 start = page_offset(page);
09cbfeaf 1965 u64 end = start + PAGE_SIZE - 1;
9655d298 1966 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1967 SetPageUptodate(page);
d1310b2e
CM
1968}
1969
8b110e39 1970int free_io_failure(struct inode *inode, struct io_failure_record *rec)
4a54c8c1
JS
1971{
1972 int ret;
1973 int err = 0;
1974 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1975
47dc196a 1976 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
1977 ret = clear_extent_bits(failure_tree, rec->start,
1978 rec->start + rec->len - 1,
91166212 1979 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
1980 if (ret)
1981 err = ret;
1982
53b381b3
DW
1983 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1984 rec->start + rec->len - 1,
91166212 1985 EXTENT_DAMAGED);
53b381b3
DW
1986 if (ret && !err)
1987 err = ret;
4a54c8c1
JS
1988
1989 kfree(rec);
1990 return err;
1991}
1992
4a54c8c1
JS
1993/*
1994 * this bypasses the standard btrfs submit functions deliberately, as
1995 * the standard behavior is to write all copies in a raid setup. here we only
1996 * want to write the one bad copy. so we do the mapping for ourselves and issue
1997 * submit_bio directly.
3ec706c8 1998 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1999 * actually prevents the read that triggered the error from finishing.
2000 * currently, there can be no more than two copies of every data bit. thus,
2001 * exactly one rewrite is required.
2002 */
1203b681
MX
2003int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2004 struct page *page, unsigned int pg_offset, int mirror_num)
4a54c8c1 2005{
1203b681 2006 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2007 struct bio *bio;
2008 struct btrfs_device *dev;
4a54c8c1
JS
2009 u64 map_length = 0;
2010 u64 sector;
2011 struct btrfs_bio *bbio = NULL;
53b381b3 2012 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2013 int ret;
2014
908960c6 2015 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
2016 BUG_ON(!mirror_num);
2017
53b381b3
DW
2018 /* we can't repair anything in raid56 yet */
2019 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2020 return 0;
2021
9be3395b 2022 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2023 if (!bio)
2024 return -EIO;
4f024f37 2025 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2026 map_length = length;
2027
b5de8d0d
FM
2028 /*
2029 * Avoid races with device replace and make sure our bbio has devices
2030 * associated to its stripes that don't go away while we are doing the
2031 * read repair operation.
2032 */
2033 btrfs_bio_counter_inc_blocked(fs_info);
3ec706c8 2034 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2035 &map_length, &bbio, mirror_num);
2036 if (ret) {
b5de8d0d 2037 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2038 bio_put(bio);
2039 return -EIO;
2040 }
2041 BUG_ON(mirror_num != bbio->mirror_num);
2042 sector = bbio->stripes[mirror_num-1].physical >> 9;
4f024f37 2043 bio->bi_iter.bi_sector = sector;
4a54c8c1 2044 dev = bbio->stripes[mirror_num-1].dev;
6e9606d2 2045 btrfs_put_bbio(bbio);
4a54c8c1 2046 if (!dev || !dev->bdev || !dev->writeable) {
b5de8d0d 2047 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2048 bio_put(bio);
2049 return -EIO;
2050 }
2051 bio->bi_bdev = dev->bdev;
4e49ea4a 2052 bio->bi_rw = WRITE_SYNC;
ffdd2018 2053 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2054
4e49ea4a 2055 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2056 /* try to remap that extent elsewhere? */
b5de8d0d 2057 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2058 bio_put(bio);
442a4f63 2059 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2060 return -EIO;
2061 }
2062
b14af3b4
DS
2063 btrfs_info_rl_in_rcu(fs_info,
2064 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
1203b681
MX
2065 btrfs_ino(inode), start,
2066 rcu_str_deref(dev->name), sector);
b5de8d0d 2067 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2068 bio_put(bio);
2069 return 0;
2070}
2071
ea466794
JB
2072int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2073 int mirror_num)
2074{
ea466794
JB
2075 u64 start = eb->start;
2076 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2077 int ret = 0;
ea466794 2078
908960c6
ID
2079 if (root->fs_info->sb->s_flags & MS_RDONLY)
2080 return -EROFS;
2081
ea466794 2082 for (i = 0; i < num_pages; i++) {
fb85fc9a 2083 struct page *p = eb->pages[i];
1203b681
MX
2084
2085 ret = repair_io_failure(root->fs_info->btree_inode, start,
09cbfeaf 2086 PAGE_SIZE, start, p,
1203b681 2087 start - page_offset(p), mirror_num);
ea466794
JB
2088 if (ret)
2089 break;
09cbfeaf 2090 start += PAGE_SIZE;
ea466794
JB
2091 }
2092
2093 return ret;
2094}
2095
4a54c8c1
JS
2096/*
2097 * each time an IO finishes, we do a fast check in the IO failure tree
2098 * to see if we need to process or clean up an io_failure_record
2099 */
8b110e39
MX
2100int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2101 unsigned int pg_offset)
4a54c8c1
JS
2102{
2103 u64 private;
4a54c8c1 2104 struct io_failure_record *failrec;
908960c6 2105 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2106 struct extent_state *state;
2107 int num_copies;
4a54c8c1 2108 int ret;
4a54c8c1
JS
2109
2110 private = 0;
2111 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2112 (u64)-1, 1, EXTENT_DIRTY, 0);
2113 if (!ret)
2114 return 0;
2115
47dc196a
DS
2116 ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2117 &failrec);
4a54c8c1
JS
2118 if (ret)
2119 return 0;
2120
4a54c8c1
JS
2121 BUG_ON(!failrec->this_mirror);
2122
2123 if (failrec->in_validation) {
2124 /* there was no real error, just free the record */
2125 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2126 failrec->start);
4a54c8c1
JS
2127 goto out;
2128 }
908960c6
ID
2129 if (fs_info->sb->s_flags & MS_RDONLY)
2130 goto out;
4a54c8c1
JS
2131
2132 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2133 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2134 failrec->start,
2135 EXTENT_LOCKED);
2136 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2137
883d0de4
MX
2138 if (state && state->start <= failrec->start &&
2139 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2140 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2141 failrec->len);
4a54c8c1 2142 if (num_copies > 1) {
1203b681 2143 repair_io_failure(inode, start, failrec->len,
454ff3de 2144 failrec->logical, page,
1203b681 2145 pg_offset, failrec->failed_mirror);
4a54c8c1
JS
2146 }
2147 }
2148
2149out:
454ff3de 2150 free_io_failure(inode, failrec);
4a54c8c1 2151
454ff3de 2152 return 0;
4a54c8c1
JS
2153}
2154
f612496b
MX
2155/*
2156 * Can be called when
2157 * - hold extent lock
2158 * - under ordered extent
2159 * - the inode is freeing
2160 */
2161void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2162{
2163 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2164 struct io_failure_record *failrec;
2165 struct extent_state *state, *next;
2166
2167 if (RB_EMPTY_ROOT(&failure_tree->state))
2168 return;
2169
2170 spin_lock(&failure_tree->lock);
2171 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2172 while (state) {
2173 if (state->start > end)
2174 break;
2175
2176 ASSERT(state->end <= end);
2177
2178 next = next_state(state);
2179
47dc196a 2180 failrec = state->failrec;
f612496b
MX
2181 free_extent_state(state);
2182 kfree(failrec);
2183
2184 state = next;
2185 }
2186 spin_unlock(&failure_tree->lock);
2187}
2188
2fe6303e 2189int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2190 struct io_failure_record **failrec_ret)
4a54c8c1 2191{
2fe6303e 2192 struct io_failure_record *failrec;
4a54c8c1 2193 struct extent_map *em;
4a54c8c1
JS
2194 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2195 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2196 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2197 int ret;
4a54c8c1
JS
2198 u64 logical;
2199
47dc196a 2200 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2201 if (ret) {
2202 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2203 if (!failrec)
2204 return -ENOMEM;
2fe6303e 2205
4a54c8c1
JS
2206 failrec->start = start;
2207 failrec->len = end - start + 1;
2208 failrec->this_mirror = 0;
2209 failrec->bio_flags = 0;
2210 failrec->in_validation = 0;
2211
2212 read_lock(&em_tree->lock);
2213 em = lookup_extent_mapping(em_tree, start, failrec->len);
2214 if (!em) {
2215 read_unlock(&em_tree->lock);
2216 kfree(failrec);
2217 return -EIO;
2218 }
2219
68ba990f 2220 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2221 free_extent_map(em);
2222 em = NULL;
2223 }
2224 read_unlock(&em_tree->lock);
7a2d6a64 2225 if (!em) {
4a54c8c1
JS
2226 kfree(failrec);
2227 return -EIO;
2228 }
2fe6303e 2229
4a54c8c1
JS
2230 logical = start - em->start;
2231 logical = em->block_start + logical;
2232 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2233 logical = em->block_start;
2234 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2235 extent_set_compress_type(&failrec->bio_flags,
2236 em->compress_type);
2237 }
2fe6303e
MX
2238
2239 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2240 logical, start, failrec->len);
2241
4a54c8c1
JS
2242 failrec->logical = logical;
2243 free_extent_map(em);
2244
2245 /* set the bits in the private failure tree */
2246 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2247 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2248 if (ret >= 0)
47dc196a 2249 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2250 /* set the bits in the inode's tree */
2251 if (ret >= 0)
ceeb0ae7 2252 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2253 if (ret < 0) {
2254 kfree(failrec);
2255 return ret;
2256 }
2257 } else {
2fe6303e 2258 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
4a54c8c1
JS
2259 failrec->logical, failrec->start, failrec->len,
2260 failrec->in_validation);
2261 /*
2262 * when data can be on disk more than twice, add to failrec here
2263 * (e.g. with a list for failed_mirror) to make
2264 * clean_io_failure() clean all those errors at once.
2265 */
2266 }
2fe6303e
MX
2267
2268 *failrec_ret = failrec;
2269
2270 return 0;
2271}
2272
2273int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2274 struct io_failure_record *failrec, int failed_mirror)
2275{
2276 int num_copies;
2277
5d964051
SB
2278 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2279 failrec->logical, failrec->len);
4a54c8c1
JS
2280 if (num_copies == 1) {
2281 /*
2282 * we only have a single copy of the data, so don't bother with
2283 * all the retry and error correction code that follows. no
2284 * matter what the error is, it is very likely to persist.
2285 */
2fe6303e 2286 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
09a7f7a2 2287 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2288 return 0;
4a54c8c1
JS
2289 }
2290
4a54c8c1
JS
2291 /*
2292 * there are two premises:
2293 * a) deliver good data to the caller
2294 * b) correct the bad sectors on disk
2295 */
2296 if (failed_bio->bi_vcnt > 1) {
2297 /*
2298 * to fulfill b), we need to know the exact failing sectors, as
2299 * we don't want to rewrite any more than the failed ones. thus,
2300 * we need separate read requests for the failed bio
2301 *
2302 * if the following BUG_ON triggers, our validation request got
2303 * merged. we need separate requests for our algorithm to work.
2304 */
2305 BUG_ON(failrec->in_validation);
2306 failrec->in_validation = 1;
2307 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2308 } else {
2309 /*
2310 * we're ready to fulfill a) and b) alongside. get a good copy
2311 * of the failed sector and if we succeed, we have setup
2312 * everything for repair_io_failure to do the rest for us.
2313 */
2314 if (failrec->in_validation) {
2315 BUG_ON(failrec->this_mirror != failed_mirror);
2316 failrec->in_validation = 0;
2317 failrec->this_mirror = 0;
2318 }
2319 failrec->failed_mirror = failed_mirror;
2320 failrec->this_mirror++;
2321 if (failrec->this_mirror == failed_mirror)
2322 failrec->this_mirror++;
4a54c8c1
JS
2323 }
2324
facc8a22 2325 if (failrec->this_mirror > num_copies) {
2fe6303e 2326 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
4a54c8c1 2327 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2328 return 0;
4a54c8c1
JS
2329 }
2330
2fe6303e
MX
2331 return 1;
2332}
2333
2334
2335struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2336 struct io_failure_record *failrec,
2337 struct page *page, int pg_offset, int icsum,
8b110e39 2338 bio_end_io_t *endio_func, void *data)
2fe6303e
MX
2339{
2340 struct bio *bio;
2341 struct btrfs_io_bio *btrfs_failed_bio;
2342 struct btrfs_io_bio *btrfs_bio;
2343
9be3395b 2344 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2fe6303e
MX
2345 if (!bio)
2346 return NULL;
2347
2348 bio->bi_end_io = endio_func;
4f024f37 2349 bio->bi_iter.bi_sector = failrec->logical >> 9;
4a54c8c1 2350 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
4f024f37 2351 bio->bi_iter.bi_size = 0;
8b110e39 2352 bio->bi_private = data;
4a54c8c1 2353
facc8a22
MX
2354 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2355 if (btrfs_failed_bio->csum) {
2356 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2357 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2358
2359 btrfs_bio = btrfs_io_bio(bio);
2360 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2361 icsum *= csum_size;
2362 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2363 csum_size);
2364 }
2365
2fe6303e
MX
2366 bio_add_page(bio, page, failrec->len, pg_offset);
2367
2368 return bio;
2369}
2370
2371/*
2372 * this is a generic handler for readpage errors (default
2373 * readpage_io_failed_hook). if other copies exist, read those and write back
2374 * good data to the failed position. does not investigate in remapping the
2375 * failed extent elsewhere, hoping the device will be smart enough to do this as
2376 * needed
2377 */
2378
2379static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2380 struct page *page, u64 start, u64 end,
2381 int failed_mirror)
2382{
2383 struct io_failure_record *failrec;
2384 struct inode *inode = page->mapping->host;
2385 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2386 struct bio *bio;
2387 int read_mode;
2388 int ret;
2389
1f7ad75b 2390 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e
MX
2391
2392 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2393 if (ret)
2394 return ret;
2395
2396 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2397 if (!ret) {
2398 free_io_failure(inode, failrec);
2399 return -EIO;
2400 }
2401
2402 if (failed_bio->bi_vcnt > 1)
2403 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2404 else
2405 read_mode = READ_SYNC;
2406
2407 phy_offset >>= inode->i_sb->s_blocksize_bits;
2408 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2409 start - page_offset(page),
8b110e39
MX
2410 (int)phy_offset, failed_bio->bi_end_io,
2411 NULL);
2fe6303e
MX
2412 if (!bio) {
2413 free_io_failure(inode, failrec);
2414 return -EIO;
2415 }
1f7ad75b 2416 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
4a54c8c1 2417
2fe6303e
MX
2418 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2419 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2420
013bd4c3
TI
2421 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2422 failrec->this_mirror,
2423 failrec->bio_flags, 0);
6c387ab2 2424 if (ret) {
454ff3de 2425 free_io_failure(inode, failrec);
6c387ab2
MX
2426 bio_put(bio);
2427 }
2428
013bd4c3 2429 return ret;
4a54c8c1
JS
2430}
2431
d1310b2e
CM
2432/* lots and lots of room for performance fixes in the end_bio funcs */
2433
b5227c07 2434void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2435{
2436 int uptodate = (err == 0);
2437 struct extent_io_tree *tree;
3e2426bd 2438 int ret = 0;
87826df0
JM
2439
2440 tree = &BTRFS_I(page->mapping->host)->io_tree;
2441
2442 if (tree->ops && tree->ops->writepage_end_io_hook) {
2443 ret = tree->ops->writepage_end_io_hook(page, start,
2444 end, NULL, uptodate);
2445 if (ret)
2446 uptodate = 0;
2447 }
2448
87826df0 2449 if (!uptodate) {
87826df0
JM
2450 ClearPageUptodate(page);
2451 SetPageError(page);
5dca6eea
LB
2452 ret = ret < 0 ? ret : -EIO;
2453 mapping_set_error(page->mapping, ret);
87826df0 2454 }
87826df0
JM
2455}
2456
d1310b2e
CM
2457/*
2458 * after a writepage IO is done, we need to:
2459 * clear the uptodate bits on error
2460 * clear the writeback bits in the extent tree for this IO
2461 * end_page_writeback if the page has no more pending IO
2462 *
2463 * Scheduling is not allowed, so the extent state tree is expected
2464 * to have one and only one object corresponding to this IO.
2465 */
4246a0b6 2466static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2467{
2c30c71b 2468 struct bio_vec *bvec;
d1310b2e
CM
2469 u64 start;
2470 u64 end;
2c30c71b 2471 int i;
d1310b2e 2472
2c30c71b 2473 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2474 struct page *page = bvec->bv_page;
902b22f3 2475
17a5adcc
AO
2476 /* We always issue full-page reads, but if some block
2477 * in a page fails to read, blk_update_request() will
2478 * advance bv_offset and adjust bv_len to compensate.
2479 * Print a warning for nonzero offsets, and an error
2480 * if they don't add up to a full page. */
09cbfeaf
KS
2481 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2482 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
efe120a0
FH
2483 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2484 "partial page write in btrfs with offset %u and length %u",
2485 bvec->bv_offset, bvec->bv_len);
2486 else
2487 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2488 "incomplete page write in btrfs with offset %u and "
2489 "length %u",
2490 bvec->bv_offset, bvec->bv_len);
2491 }
d1310b2e 2492
17a5adcc
AO
2493 start = page_offset(page);
2494 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2495
b5227c07 2496 end_extent_writepage(page, bio->bi_error, start, end);
17a5adcc 2497 end_page_writeback(page);
2c30c71b 2498 }
2b1f55b0 2499
d1310b2e 2500 bio_put(bio);
d1310b2e
CM
2501}
2502
883d0de4
MX
2503static void
2504endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2505 int uptodate)
2506{
2507 struct extent_state *cached = NULL;
2508 u64 end = start + len - 1;
2509
2510 if (uptodate && tree->track_uptodate)
2511 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2512 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2513}
2514
d1310b2e
CM
2515/*
2516 * after a readpage IO is done, we need to:
2517 * clear the uptodate bits on error
2518 * set the uptodate bits if things worked
2519 * set the page up to date if all extents in the tree are uptodate
2520 * clear the lock bit in the extent tree
2521 * unlock the page if there are no other extents locked for it
2522 *
2523 * Scheduling is not allowed, so the extent state tree is expected
2524 * to have one and only one object corresponding to this IO.
2525 */
4246a0b6 2526static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2527{
2c30c71b 2528 struct bio_vec *bvec;
4246a0b6 2529 int uptodate = !bio->bi_error;
facc8a22 2530 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2531 struct extent_io_tree *tree;
facc8a22 2532 u64 offset = 0;
d1310b2e
CM
2533 u64 start;
2534 u64 end;
facc8a22 2535 u64 len;
883d0de4
MX
2536 u64 extent_start = 0;
2537 u64 extent_len = 0;
5cf1ab56 2538 int mirror;
d1310b2e 2539 int ret;
2c30c71b 2540 int i;
d1310b2e 2541
2c30c71b 2542 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2543 struct page *page = bvec->bv_page;
a71754fc 2544 struct inode *inode = page->mapping->host;
507903b8 2545
be3940c0 2546 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
4246a0b6
CH
2547 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2548 bio->bi_error, io_bio->mirror_num);
a71754fc 2549 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2550
17a5adcc
AO
2551 /* We always issue full-page reads, but if some block
2552 * in a page fails to read, blk_update_request() will
2553 * advance bv_offset and adjust bv_len to compensate.
2554 * Print a warning for nonzero offsets, and an error
2555 * if they don't add up to a full page. */
09cbfeaf
KS
2556 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2557 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
efe120a0
FH
2558 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2559 "partial page read in btrfs with offset %u and length %u",
2560 bvec->bv_offset, bvec->bv_len);
2561 else
2562 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2563 "incomplete page read in btrfs with offset %u and "
2564 "length %u",
2565 bvec->bv_offset, bvec->bv_len);
2566 }
d1310b2e 2567
17a5adcc
AO
2568 start = page_offset(page);
2569 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2570 len = bvec->bv_len;
d1310b2e 2571
9be3395b 2572 mirror = io_bio->mirror_num;
f2a09da9
MX
2573 if (likely(uptodate && tree->ops &&
2574 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2575 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2576 page, start, end,
2577 mirror);
5ee0844d 2578 if (ret)
d1310b2e 2579 uptodate = 0;
5ee0844d 2580 else
1203b681 2581 clean_io_failure(inode, start, page, 0);
d1310b2e 2582 }
ea466794 2583
f2a09da9
MX
2584 if (likely(uptodate))
2585 goto readpage_ok;
2586
2587 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2588 ret = tree->ops->readpage_io_failed_hook(page, mirror);
4246a0b6 2589 if (!ret && !bio->bi_error)
ea466794 2590 uptodate = 1;
f2a09da9 2591 } else {
f4a8e656
JS
2592 /*
2593 * The generic bio_readpage_error handles errors the
2594 * following way: If possible, new read requests are
2595 * created and submitted and will end up in
2596 * end_bio_extent_readpage as well (if we're lucky, not
2597 * in the !uptodate case). In that case it returns 0 and
2598 * we just go on with the next page in our bio. If it
2599 * can't handle the error it will return -EIO and we
2600 * remain responsible for that page.
2601 */
facc8a22
MX
2602 ret = bio_readpage_error(bio, offset, page, start, end,
2603 mirror);
7e38326f 2604 if (ret == 0) {
4246a0b6 2605 uptodate = !bio->bi_error;
38c1c2e4 2606 offset += len;
7e38326f
CM
2607 continue;
2608 }
2609 }
f2a09da9 2610readpage_ok:
883d0de4 2611 if (likely(uptodate)) {
a71754fc 2612 loff_t i_size = i_size_read(inode);
09cbfeaf 2613 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2614 unsigned off;
a71754fc
JB
2615
2616 /* Zero out the end if this page straddles i_size */
09cbfeaf 2617 off = i_size & (PAGE_SIZE-1);
a583c026 2618 if (page->index == end_index && off)
09cbfeaf 2619 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2620 SetPageUptodate(page);
70dec807 2621 } else {
17a5adcc
AO
2622 ClearPageUptodate(page);
2623 SetPageError(page);
70dec807 2624 }
17a5adcc 2625 unlock_page(page);
facc8a22 2626 offset += len;
883d0de4
MX
2627
2628 if (unlikely(!uptodate)) {
2629 if (extent_len) {
2630 endio_readpage_release_extent(tree,
2631 extent_start,
2632 extent_len, 1);
2633 extent_start = 0;
2634 extent_len = 0;
2635 }
2636 endio_readpage_release_extent(tree, start,
2637 end - start + 1, 0);
2638 } else if (!extent_len) {
2639 extent_start = start;
2640 extent_len = end + 1 - start;
2641 } else if (extent_start + extent_len == start) {
2642 extent_len += end + 1 - start;
2643 } else {
2644 endio_readpage_release_extent(tree, extent_start,
2645 extent_len, uptodate);
2646 extent_start = start;
2647 extent_len = end + 1 - start;
2648 }
2c30c71b 2649 }
d1310b2e 2650
883d0de4
MX
2651 if (extent_len)
2652 endio_readpage_release_extent(tree, extent_start, extent_len,
2653 uptodate);
facc8a22 2654 if (io_bio->end_io)
4246a0b6 2655 io_bio->end_io(io_bio, bio->bi_error);
d1310b2e 2656 bio_put(bio);
d1310b2e
CM
2657}
2658
9be3395b
CM
2659/*
2660 * this allocates from the btrfs_bioset. We're returning a bio right now
2661 * but you can call btrfs_io_bio for the appropriate container_of magic
2662 */
88f794ed
MX
2663struct bio *
2664btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2665 gfp_t gfp_flags)
d1310b2e 2666{
facc8a22 2667 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2668 struct bio *bio;
2669
9be3395b 2670 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2671
2672 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2673 while (!bio && (nr_vecs /= 2)) {
2674 bio = bio_alloc_bioset(gfp_flags,
2675 nr_vecs, btrfs_bioset);
2676 }
d1310b2e
CM
2677 }
2678
2679 if (bio) {
2680 bio->bi_bdev = bdev;
4f024f37 2681 bio->bi_iter.bi_sector = first_sector;
facc8a22
MX
2682 btrfs_bio = btrfs_io_bio(bio);
2683 btrfs_bio->csum = NULL;
2684 btrfs_bio->csum_allocated = NULL;
2685 btrfs_bio->end_io = NULL;
d1310b2e
CM
2686 }
2687 return bio;
2688}
2689
9be3395b
CM
2690struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2691{
23ea8e5a
MX
2692 struct btrfs_io_bio *btrfs_bio;
2693 struct bio *new;
9be3395b 2694
23ea8e5a
MX
2695 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2696 if (new) {
2697 btrfs_bio = btrfs_io_bio(new);
2698 btrfs_bio->csum = NULL;
2699 btrfs_bio->csum_allocated = NULL;
2700 btrfs_bio->end_io = NULL;
3a9508b0
CM
2701
2702#ifdef CONFIG_BLK_CGROUP
da2f0f74
CM
2703 /* FIXME, put this into bio_clone_bioset */
2704 if (bio->bi_css)
2705 bio_associate_blkcg(new, bio->bi_css);
3a9508b0 2706#endif
23ea8e5a
MX
2707 }
2708 return new;
2709}
9be3395b
CM
2710
2711/* this also allocates from the btrfs_bioset */
2712struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2713{
facc8a22
MX
2714 struct btrfs_io_bio *btrfs_bio;
2715 struct bio *bio;
2716
2717 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2718 if (bio) {
2719 btrfs_bio = btrfs_io_bio(bio);
2720 btrfs_bio->csum = NULL;
2721 btrfs_bio->csum_allocated = NULL;
2722 btrfs_bio->end_io = NULL;
2723 }
2724 return bio;
9be3395b
CM
2725}
2726
2727
1f7ad75b
MC
2728static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2729 unsigned long bio_flags)
d1310b2e 2730{
d1310b2e 2731 int ret = 0;
70dec807
CM
2732 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2733 struct page *page = bvec->bv_page;
2734 struct extent_io_tree *tree = bio->bi_private;
70dec807 2735 u64 start;
70dec807 2736
4eee4fa4 2737 start = page_offset(page) + bvec->bv_offset;
70dec807 2738
902b22f3 2739 bio->bi_private = NULL;
d1310b2e
CM
2740 bio_get(bio);
2741
065631f6 2742 if (tree->ops && tree->ops->submit_bio_hook)
1f7ad75b
MC
2743 ret = tree->ops->submit_bio_hook(page->mapping->host,
2744 bio->bi_rw, bio, mirror_num,
2745 bio_flags, start);
0b86a832 2746 else
4e49ea4a 2747 btrfsic_submit_bio(bio);
4a54c8c1 2748
d1310b2e
CM
2749 bio_put(bio);
2750 return ret;
2751}
2752
1f7ad75b 2753static int merge_bio(struct extent_io_tree *tree, struct page *page,
3444a972
JM
2754 unsigned long offset, size_t size, struct bio *bio,
2755 unsigned long bio_flags)
2756{
2757 int ret = 0;
2758 if (tree->ops && tree->ops->merge_bio_hook)
1f7ad75b
MC
2759 ret = tree->ops->merge_bio_hook(bio_op(bio), page, offset, size,
2760 bio, bio_flags);
3444a972
JM
2761 BUG_ON(ret < 0);
2762 return ret;
2763
2764}
2765
1f7ad75b 2766static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
da2f0f74 2767 struct writeback_control *wbc,
d1310b2e
CM
2768 struct page *page, sector_t sector,
2769 size_t size, unsigned long offset,
2770 struct block_device *bdev,
2771 struct bio **bio_ret,
2772 unsigned long max_pages,
f188591e 2773 bio_end_io_t end_io_func,
c8b97818
CM
2774 int mirror_num,
2775 unsigned long prev_bio_flags,
005efedf
FM
2776 unsigned long bio_flags,
2777 bool force_bio_submit)
d1310b2e
CM
2778{
2779 int ret = 0;
2780 struct bio *bio;
c8b97818 2781 int contig = 0;
c8b97818 2782 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
09cbfeaf 2783 size_t page_size = min_t(size_t, size, PAGE_SIZE);
d1310b2e
CM
2784
2785 if (bio_ret && *bio_ret) {
2786 bio = *bio_ret;
c8b97818 2787 if (old_compressed)
4f024f37 2788 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2789 else
f73a1c7d 2790 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2791
2792 if (prev_bio_flags != bio_flags || !contig ||
005efedf 2793 force_bio_submit ||
1f7ad75b 2794 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
c8b97818 2795 bio_add_page(bio, page, page_size, offset) < page_size) {
1f7ad75b 2796 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
2797 if (ret < 0) {
2798 *bio_ret = NULL;
79787eaa 2799 return ret;
289454ad 2800 }
d1310b2e
CM
2801 bio = NULL;
2802 } else {
da2f0f74
CM
2803 if (wbc)
2804 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2805 return 0;
2806 }
2807 }
c8b97818 2808
b54ffb73
KO
2809 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2810 GFP_NOFS | __GFP_HIGH);
5df67083
TI
2811 if (!bio)
2812 return -ENOMEM;
70dec807 2813
c8b97818 2814 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2815 bio->bi_end_io = end_io_func;
2816 bio->bi_private = tree;
1f7ad75b 2817 bio_set_op_attrs(bio, op, op_flags);
da2f0f74
CM
2818 if (wbc) {
2819 wbc_init_bio(wbc, bio);
2820 wbc_account_io(wbc, page, page_size);
2821 }
70dec807 2822
d397712b 2823 if (bio_ret)
d1310b2e 2824 *bio_ret = bio;
d397712b 2825 else
1f7ad75b 2826 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
2827
2828 return ret;
2829}
2830
48a3b636
ES
2831static void attach_extent_buffer_page(struct extent_buffer *eb,
2832 struct page *page)
d1310b2e
CM
2833{
2834 if (!PagePrivate(page)) {
2835 SetPagePrivate(page);
09cbfeaf 2836 get_page(page);
4f2de97a
JB
2837 set_page_private(page, (unsigned long)eb);
2838 } else {
2839 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2840 }
2841}
2842
4f2de97a 2843void set_page_extent_mapped(struct page *page)
d1310b2e 2844{
4f2de97a
JB
2845 if (!PagePrivate(page)) {
2846 SetPagePrivate(page);
09cbfeaf 2847 get_page(page);
4f2de97a
JB
2848 set_page_private(page, EXTENT_PAGE_PRIVATE);
2849 }
d1310b2e
CM
2850}
2851
125bac01
MX
2852static struct extent_map *
2853__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2854 u64 start, u64 len, get_extent_t *get_extent,
2855 struct extent_map **em_cached)
2856{
2857 struct extent_map *em;
2858
2859 if (em_cached && *em_cached) {
2860 em = *em_cached;
cbc0e928 2861 if (extent_map_in_tree(em) && start >= em->start &&
125bac01
MX
2862 start < extent_map_end(em)) {
2863 atomic_inc(&em->refs);
2864 return em;
2865 }
2866
2867 free_extent_map(em);
2868 *em_cached = NULL;
2869 }
2870
2871 em = get_extent(inode, page, pg_offset, start, len, 0);
2872 if (em_cached && !IS_ERR_OR_NULL(em)) {
2873 BUG_ON(*em_cached);
2874 atomic_inc(&em->refs);
2875 *em_cached = em;
2876 }
2877 return em;
2878}
d1310b2e
CM
2879/*
2880 * basic readpage implementation. Locked extent state structs are inserted
2881 * into the tree that are removed when the IO is done (by the end_io
2882 * handlers)
79787eaa 2883 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e 2884 */
9974090b
MX
2885static int __do_readpage(struct extent_io_tree *tree,
2886 struct page *page,
2887 get_extent_t *get_extent,
125bac01 2888 struct extent_map **em_cached,
9974090b 2889 struct bio **bio, int mirror_num,
1f7ad75b 2890 unsigned long *bio_flags, int read_flags,
005efedf 2891 u64 *prev_em_start)
d1310b2e
CM
2892{
2893 struct inode *inode = page->mapping->host;
4eee4fa4 2894 u64 start = page_offset(page);
09cbfeaf 2895 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
2896 u64 end;
2897 u64 cur = start;
2898 u64 extent_offset;
2899 u64 last_byte = i_size_read(inode);
2900 u64 block_start;
2901 u64 cur_end;
2902 sector_t sector;
2903 struct extent_map *em;
2904 struct block_device *bdev;
2905 int ret;
2906 int nr = 0;
306e16ce 2907 size_t pg_offset = 0;
d1310b2e 2908 size_t iosize;
c8b97818 2909 size_t disk_io_size;
d1310b2e 2910 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 2911 unsigned long this_bio_flag = 0;
d1310b2e
CM
2912
2913 set_page_extent_mapped(page);
2914
9974090b 2915 end = page_end;
90a887c9
DM
2916 if (!PageUptodate(page)) {
2917 if (cleancache_get_page(page) == 0) {
2918 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2919 unlock_extent(tree, start, end);
90a887c9
DM
2920 goto out;
2921 }
2922 }
2923
09cbfeaf 2924 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 2925 char *userpage;
09cbfeaf 2926 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
c8b97818
CM
2927
2928 if (zero_offset) {
09cbfeaf 2929 iosize = PAGE_SIZE - zero_offset;
7ac687d9 2930 userpage = kmap_atomic(page);
c8b97818
CM
2931 memset(userpage + zero_offset, 0, iosize);
2932 flush_dcache_page(page);
7ac687d9 2933 kunmap_atomic(userpage);
c8b97818
CM
2934 }
2935 }
d1310b2e 2936 while (cur <= end) {
09cbfeaf 2937 unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
005efedf 2938 bool force_bio_submit = false;
c8f2f24b 2939
d1310b2e
CM
2940 if (cur >= last_byte) {
2941 char *userpage;
507903b8
AJ
2942 struct extent_state *cached = NULL;
2943
09cbfeaf 2944 iosize = PAGE_SIZE - pg_offset;
7ac687d9 2945 userpage = kmap_atomic(page);
306e16ce 2946 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2947 flush_dcache_page(page);
7ac687d9 2948 kunmap_atomic(userpage);
d1310b2e 2949 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2950 &cached, GFP_NOFS);
7f042a83
FM
2951 unlock_extent_cached(tree, cur,
2952 cur + iosize - 1,
2953 &cached, GFP_NOFS);
d1310b2e
CM
2954 break;
2955 }
125bac01
MX
2956 em = __get_extent_map(inode, page, pg_offset, cur,
2957 end - cur + 1, get_extent, em_cached);
c704005d 2958 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2959 SetPageError(page);
7f042a83 2960 unlock_extent(tree, cur, end);
d1310b2e
CM
2961 break;
2962 }
d1310b2e
CM
2963 extent_offset = cur - em->start;
2964 BUG_ON(extent_map_end(em) <= cur);
2965 BUG_ON(end < cur);
2966
261507a0 2967 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2968 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2969 extent_set_compress_type(&this_bio_flag,
2970 em->compress_type);
2971 }
c8b97818 2972
d1310b2e
CM
2973 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2974 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2975 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2976 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2977 disk_io_size = em->block_len;
2978 sector = em->block_start >> 9;
2979 } else {
2980 sector = (em->block_start + extent_offset) >> 9;
2981 disk_io_size = iosize;
2982 }
d1310b2e
CM
2983 bdev = em->bdev;
2984 block_start = em->block_start;
d899e052
YZ
2985 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2986 block_start = EXTENT_MAP_HOLE;
005efedf
FM
2987
2988 /*
2989 * If we have a file range that points to a compressed extent
2990 * and it's followed by a consecutive file range that points to
2991 * to the same compressed extent (possibly with a different
2992 * offset and/or length, so it either points to the whole extent
2993 * or only part of it), we must make sure we do not submit a
2994 * single bio to populate the pages for the 2 ranges because
2995 * this makes the compressed extent read zero out the pages
2996 * belonging to the 2nd range. Imagine the following scenario:
2997 *
2998 * File layout
2999 * [0 - 8K] [8K - 24K]
3000 * | |
3001 * | |
3002 * points to extent X, points to extent X,
3003 * offset 4K, length of 8K offset 0, length 16K
3004 *
3005 * [extent X, compressed length = 4K uncompressed length = 16K]
3006 *
3007 * If the bio to read the compressed extent covers both ranges,
3008 * it will decompress extent X into the pages belonging to the
3009 * first range and then it will stop, zeroing out the remaining
3010 * pages that belong to the other range that points to extent X.
3011 * So here we make sure we submit 2 bios, one for the first
3012 * range and another one for the third range. Both will target
3013 * the same physical extent from disk, but we can't currently
3014 * make the compressed bio endio callback populate the pages
3015 * for both ranges because each compressed bio is tightly
3016 * coupled with a single extent map, and each range can have
3017 * an extent map with a different offset value relative to the
3018 * uncompressed data of our extent and different lengths. This
3019 * is a corner case so we prioritize correctness over
3020 * non-optimal behavior (submitting 2 bios for the same extent).
3021 */
3022 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3023 prev_em_start && *prev_em_start != (u64)-1 &&
3024 *prev_em_start != em->orig_start)
3025 force_bio_submit = true;
3026
3027 if (prev_em_start)
3028 *prev_em_start = em->orig_start;
3029
d1310b2e
CM
3030 free_extent_map(em);
3031 em = NULL;
3032
3033 /* we've found a hole, just zero and go on */
3034 if (block_start == EXTENT_MAP_HOLE) {
3035 char *userpage;
507903b8
AJ
3036 struct extent_state *cached = NULL;
3037
7ac687d9 3038 userpage = kmap_atomic(page);
306e16ce 3039 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3040 flush_dcache_page(page);
7ac687d9 3041 kunmap_atomic(userpage);
d1310b2e
CM
3042
3043 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3044 &cached, GFP_NOFS);
7f042a83
FM
3045 unlock_extent_cached(tree, cur,
3046 cur + iosize - 1,
3047 &cached, GFP_NOFS);
d1310b2e 3048 cur = cur + iosize;
306e16ce 3049 pg_offset += iosize;
d1310b2e
CM
3050 continue;
3051 }
3052 /* the get_extent function already copied into the page */
9655d298
CM
3053 if (test_range_bit(tree, cur, cur_end,
3054 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3055 check_page_uptodate(tree, page);
7f042a83 3056 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3057 cur = cur + iosize;
306e16ce 3058 pg_offset += iosize;
d1310b2e
CM
3059 continue;
3060 }
70dec807
CM
3061 /* we have an inline extent but it didn't get marked up
3062 * to date. Error out
3063 */
3064 if (block_start == EXTENT_MAP_INLINE) {
3065 SetPageError(page);
7f042a83 3066 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3067 cur = cur + iosize;
306e16ce 3068 pg_offset += iosize;
70dec807
CM
3069 continue;
3070 }
d1310b2e 3071
c8f2f24b 3072 pnr -= page->index;
1f7ad75b
MC
3073 ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3074 page, sector, disk_io_size, pg_offset,
89642229 3075 bdev, bio, pnr,
c8b97818
CM
3076 end_bio_extent_readpage, mirror_num,
3077 *bio_flags,
005efedf
FM
3078 this_bio_flag,
3079 force_bio_submit);
c8f2f24b
JB
3080 if (!ret) {
3081 nr++;
3082 *bio_flags = this_bio_flag;
3083 } else {
d1310b2e 3084 SetPageError(page);
7f042a83 3085 unlock_extent(tree, cur, cur + iosize - 1);
edd33c99 3086 }
d1310b2e 3087 cur = cur + iosize;
306e16ce 3088 pg_offset += iosize;
d1310b2e 3089 }
90a887c9 3090out:
d1310b2e
CM
3091 if (!nr) {
3092 if (!PageError(page))
3093 SetPageUptodate(page);
3094 unlock_page(page);
3095 }
3096 return 0;
3097}
3098
9974090b
MX
3099static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3100 struct page *pages[], int nr_pages,
3101 u64 start, u64 end,
3102 get_extent_t *get_extent,
125bac01 3103 struct extent_map **em_cached,
9974090b 3104 struct bio **bio, int mirror_num,
1f7ad75b 3105 unsigned long *bio_flags,
808f80b4 3106 u64 *prev_em_start)
9974090b
MX
3107{
3108 struct inode *inode;
3109 struct btrfs_ordered_extent *ordered;
3110 int index;
3111
3112 inode = pages[0]->mapping->host;
3113 while (1) {
3114 lock_extent(tree, start, end);
3115 ordered = btrfs_lookup_ordered_range(inode, start,
3116 end - start + 1);
3117 if (!ordered)
3118 break;
3119 unlock_extent(tree, start, end);
3120 btrfs_start_ordered_extent(inode, ordered, 1);
3121 btrfs_put_ordered_extent(ordered);
3122 }
3123
3124 for (index = 0; index < nr_pages; index++) {
125bac01 3125 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
1f7ad75b 3126 mirror_num, bio_flags, 0, prev_em_start);
09cbfeaf 3127 put_page(pages[index]);
9974090b
MX
3128 }
3129}
3130
3131static void __extent_readpages(struct extent_io_tree *tree,
3132 struct page *pages[],
3133 int nr_pages, get_extent_t *get_extent,
125bac01 3134 struct extent_map **em_cached,
9974090b 3135 struct bio **bio, int mirror_num,
1f7ad75b 3136 unsigned long *bio_flags,
808f80b4 3137 u64 *prev_em_start)
9974090b 3138{
35a3621b 3139 u64 start = 0;
9974090b
MX
3140 u64 end = 0;
3141 u64 page_start;
3142 int index;
35a3621b 3143 int first_index = 0;
9974090b
MX
3144
3145 for (index = 0; index < nr_pages; index++) {
3146 page_start = page_offset(pages[index]);
3147 if (!end) {
3148 start = page_start;
09cbfeaf 3149 end = start + PAGE_SIZE - 1;
9974090b
MX
3150 first_index = index;
3151 } else if (end + 1 == page_start) {
09cbfeaf 3152 end += PAGE_SIZE;
9974090b
MX
3153 } else {
3154 __do_contiguous_readpages(tree, &pages[first_index],
3155 index - first_index, start,
125bac01
MX
3156 end, get_extent, em_cached,
3157 bio, mirror_num, bio_flags,
1f7ad75b 3158 prev_em_start);
9974090b 3159 start = page_start;
09cbfeaf 3160 end = start + PAGE_SIZE - 1;
9974090b
MX
3161 first_index = index;
3162 }
3163 }
3164
3165 if (end)
3166 __do_contiguous_readpages(tree, &pages[first_index],
3167 index - first_index, start,
125bac01 3168 end, get_extent, em_cached, bio,
1f7ad75b 3169 mirror_num, bio_flags,
808f80b4 3170 prev_em_start);
9974090b
MX
3171}
3172
3173static int __extent_read_full_page(struct extent_io_tree *tree,
3174 struct page *page,
3175 get_extent_t *get_extent,
3176 struct bio **bio, int mirror_num,
1f7ad75b 3177 unsigned long *bio_flags, int read_flags)
9974090b
MX
3178{
3179 struct inode *inode = page->mapping->host;
3180 struct btrfs_ordered_extent *ordered;
3181 u64 start = page_offset(page);
09cbfeaf 3182 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3183 int ret;
3184
3185 while (1) {
3186 lock_extent(tree, start, end);
dbfdb6d1 3187 ordered = btrfs_lookup_ordered_range(inode, start,
09cbfeaf 3188 PAGE_SIZE);
9974090b
MX
3189 if (!ordered)
3190 break;
3191 unlock_extent(tree, start, end);
3192 btrfs_start_ordered_extent(inode, ordered, 1);
3193 btrfs_put_ordered_extent(ordered);
3194 }
3195
125bac01 3196 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3197 bio_flags, read_flags, NULL);
9974090b
MX
3198 return ret;
3199}
3200
d1310b2e 3201int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3202 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3203{
3204 struct bio *bio = NULL;
c8b97818 3205 unsigned long bio_flags = 0;
d1310b2e
CM
3206 int ret;
3207
8ddc7d9c 3208 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
1f7ad75b 3209 &bio_flags, 0);
d1310b2e 3210 if (bio)
1f7ad75b 3211 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3212 return ret;
3213}
d1310b2e 3214
a9132667
LB
3215static void update_nr_written(struct page *page, struct writeback_control *wbc,
3216 unsigned long nr_written)
11c8349b
CM
3217{
3218 wbc->nr_to_write -= nr_written;
11c8349b
CM
3219}
3220
d1310b2e 3221/*
40f76580
CM
3222 * helper for __extent_writepage, doing all of the delayed allocation setup.
3223 *
3224 * This returns 1 if our fill_delalloc function did all the work required
3225 * to write the page (copy into inline extent). In this case the IO has
3226 * been started and the page is already unlocked.
3227 *
3228 * This returns 0 if all went well (page still locked)
3229 * This returns < 0 if there were errors (page still locked)
d1310b2e 3230 */
40f76580
CM
3231static noinline_for_stack int writepage_delalloc(struct inode *inode,
3232 struct page *page, struct writeback_control *wbc,
3233 struct extent_page_data *epd,
3234 u64 delalloc_start,
3235 unsigned long *nr_written)
3236{
3237 struct extent_io_tree *tree = epd->tree;
09cbfeaf 3238 u64 page_end = delalloc_start + PAGE_SIZE - 1;
40f76580
CM
3239 u64 nr_delalloc;
3240 u64 delalloc_to_write = 0;
3241 u64 delalloc_end = 0;
3242 int ret;
3243 int page_started = 0;
3244
3245 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3246 return 0;
3247
3248 while (delalloc_end < page_end) {
3249 nr_delalloc = find_lock_delalloc_range(inode, tree,
3250 page,
3251 &delalloc_start,
3252 &delalloc_end,
dcab6a3b 3253 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3254 if (nr_delalloc == 0) {
3255 delalloc_start = delalloc_end + 1;
3256 continue;
3257 }
3258 ret = tree->ops->fill_delalloc(inode, page,
3259 delalloc_start,
3260 delalloc_end,
3261 &page_started,
3262 nr_written);
3263 /* File system has been set read-only */
3264 if (ret) {
3265 SetPageError(page);
3266 /* fill_delalloc should be return < 0 for error
3267 * but just in case, we use > 0 here meaning the
3268 * IO is started, so we don't want to return > 0
3269 * unless things are going well.
3270 */
3271 ret = ret < 0 ? ret : -EIO;
3272 goto done;
3273 }
3274 /*
ea1754a0
KS
3275 * delalloc_end is already one less than the total length, so
3276 * we don't subtract one from PAGE_SIZE
40f76580
CM
3277 */
3278 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3279 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3280 delalloc_start = delalloc_end + 1;
3281 }
3282 if (wbc->nr_to_write < delalloc_to_write) {
3283 int thresh = 8192;
3284
3285 if (delalloc_to_write < thresh * 2)
3286 thresh = delalloc_to_write;
3287 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3288 thresh);
3289 }
3290
3291 /* did the fill delalloc function already unlock and start
3292 * the IO?
3293 */
3294 if (page_started) {
3295 /*
3296 * we've unlocked the page, so we can't update
3297 * the mapping's writeback index, just update
3298 * nr_to_write.
3299 */
3300 wbc->nr_to_write -= *nr_written;
3301 return 1;
3302 }
3303
3304 ret = 0;
3305
3306done:
3307 return ret;
3308}
3309
3310/*
3311 * helper for __extent_writepage. This calls the writepage start hooks,
3312 * and does the loop to map the page into extents and bios.
3313 *
3314 * We return 1 if the IO is started and the page is unlocked,
3315 * 0 if all went well (page still locked)
3316 * < 0 if there were errors (page still locked)
3317 */
3318static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3319 struct page *page,
3320 struct writeback_control *wbc,
3321 struct extent_page_data *epd,
3322 loff_t i_size,
3323 unsigned long nr_written,
3324 int write_flags, int *nr_ret)
d1310b2e 3325{
d1310b2e 3326 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3327 u64 start = page_offset(page);
09cbfeaf 3328 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3329 u64 end;
3330 u64 cur = start;
3331 u64 extent_offset;
d1310b2e
CM
3332 u64 block_start;
3333 u64 iosize;
3334 sector_t sector;
2c64c53d 3335 struct extent_state *cached_state = NULL;
d1310b2e
CM
3336 struct extent_map *em;
3337 struct block_device *bdev;
7f3c74fb 3338 size_t pg_offset = 0;
d1310b2e 3339 size_t blocksize;
40f76580
CM
3340 int ret = 0;
3341 int nr = 0;
3342 bool compressed;
c8b97818 3343
247e743c 3344 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3345 ret = tree->ops->writepage_start_hook(page, start,
3346 page_end);
87826df0
JM
3347 if (ret) {
3348 /* Fixup worker will requeue */
3349 if (ret == -EBUSY)
3350 wbc->pages_skipped++;
3351 else
3352 redirty_page_for_writepage(wbc, page);
40f76580 3353
11c8349b 3354 update_nr_written(page, wbc, nr_written);
247e743c 3355 unlock_page(page);
40f76580 3356 ret = 1;
11c8349b 3357 goto done_unlocked;
247e743c
CM
3358 }
3359 }
3360
11c8349b
CM
3361 /*
3362 * we don't want to touch the inode after unlocking the page,
3363 * so we update the mapping writeback index now
3364 */
3365 update_nr_written(page, wbc, nr_written + 1);
771ed689 3366
d1310b2e 3367 end = page_end;
40f76580 3368 if (i_size <= start) {
e6dcd2dc
CM
3369 if (tree->ops && tree->ops->writepage_end_io_hook)
3370 tree->ops->writepage_end_io_hook(page, start,
3371 page_end, NULL, 1);
d1310b2e
CM
3372 goto done;
3373 }
3374
d1310b2e
CM
3375 blocksize = inode->i_sb->s_blocksize;
3376
3377 while (cur <= end) {
40f76580 3378 u64 em_end;
58409edd
DS
3379 unsigned long max_nr;
3380
40f76580 3381 if (cur >= i_size) {
e6dcd2dc
CM
3382 if (tree->ops && tree->ops->writepage_end_io_hook)
3383 tree->ops->writepage_end_io_hook(page, cur,
3384 page_end, NULL, 1);
d1310b2e
CM
3385 break;
3386 }
7f3c74fb 3387 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3388 end - cur + 1, 1);
c704005d 3389 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3390 SetPageError(page);
61391d56 3391 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3392 break;
3393 }
3394
3395 extent_offset = cur - em->start;
40f76580
CM
3396 em_end = extent_map_end(em);
3397 BUG_ON(em_end <= cur);
d1310b2e 3398 BUG_ON(end < cur);
40f76580 3399 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3400 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3401 sector = (em->block_start + extent_offset) >> 9;
3402 bdev = em->bdev;
3403 block_start = em->block_start;
c8b97818 3404 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3405 free_extent_map(em);
3406 em = NULL;
3407
c8b97818
CM
3408 /*
3409 * compressed and inline extents are written through other
3410 * paths in the FS
3411 */
3412 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3413 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3414 /*
3415 * end_io notification does not happen here for
3416 * compressed extents
3417 */
3418 if (!compressed && tree->ops &&
3419 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3420 tree->ops->writepage_end_io_hook(page, cur,
3421 cur + iosize - 1,
3422 NULL, 1);
c8b97818
CM
3423 else if (compressed) {
3424 /* we don't want to end_page_writeback on
3425 * a compressed extent. this happens
3426 * elsewhere
3427 */
3428 nr++;
3429 }
3430
3431 cur += iosize;
7f3c74fb 3432 pg_offset += iosize;
d1310b2e
CM
3433 continue;
3434 }
c8b97818 3435
58409edd
DS
3436 max_nr = (i_size >> PAGE_SHIFT) + 1;
3437
3438 set_range_writeback(tree, cur, cur + iosize - 1);
3439 if (!PageWriteback(page)) {
3440 btrfs_err(BTRFS_I(inode)->root->fs_info,
3441 "page %lu not writeback, cur %llu end %llu",
3442 page->index, cur, end);
d1310b2e 3443 }
7f3c74fb 3444
1f7ad75b
MC
3445 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3446 page, sector, iosize, pg_offset,
58409edd
DS
3447 bdev, &epd->bio, max_nr,
3448 end_bio_extent_writepage,
3449 0, 0, 0, false);
3450 if (ret)
3451 SetPageError(page);
d1310b2e 3452
d1310b2e 3453 cur = cur + iosize;
7f3c74fb 3454 pg_offset += iosize;
d1310b2e
CM
3455 nr++;
3456 }
40f76580
CM
3457done:
3458 *nr_ret = nr;
3459
3460done_unlocked:
3461
3462 /* drop our reference on any cached states */
3463 free_extent_state(cached_state);
3464 return ret;
3465}
3466
3467/*
3468 * the writepage semantics are similar to regular writepage. extent
3469 * records are inserted to lock ranges in the tree, and as dirty areas
3470 * are found, they are marked writeback. Then the lock bits are removed
3471 * and the end_io handler clears the writeback ranges
3472 */
3473static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3474 void *data)
3475{
3476 struct inode *inode = page->mapping->host;
3477 struct extent_page_data *epd = data;
3478 u64 start = page_offset(page);
09cbfeaf 3479 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3480 int ret;
3481 int nr = 0;
3482 size_t pg_offset = 0;
3483 loff_t i_size = i_size_read(inode);
09cbfeaf 3484 unsigned long end_index = i_size >> PAGE_SHIFT;
1f7ad75b 3485 int write_flags = 0;
40f76580
CM
3486 unsigned long nr_written = 0;
3487
3488 if (wbc->sync_mode == WB_SYNC_ALL)
3489 write_flags = WRITE_SYNC;
40f76580
CM
3490
3491 trace___extent_writepage(page, inode, wbc);
3492
3493 WARN_ON(!PageLocked(page));
3494
3495 ClearPageError(page);
3496
09cbfeaf 3497 pg_offset = i_size & (PAGE_SIZE - 1);
40f76580
CM
3498 if (page->index > end_index ||
3499 (page->index == end_index && !pg_offset)) {
09cbfeaf 3500 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3501 unlock_page(page);
3502 return 0;
3503 }
3504
3505 if (page->index == end_index) {
3506 char *userpage;
3507
3508 userpage = kmap_atomic(page);
3509 memset(userpage + pg_offset, 0,
09cbfeaf 3510 PAGE_SIZE - pg_offset);
40f76580
CM
3511 kunmap_atomic(userpage);
3512 flush_dcache_page(page);
3513 }
3514
3515 pg_offset = 0;
3516
3517 set_page_extent_mapped(page);
3518
3519 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3520 if (ret == 1)
3521 goto done_unlocked;
3522 if (ret)
3523 goto done;
3524
3525 ret = __extent_writepage_io(inode, page, wbc, epd,
3526 i_size, nr_written, write_flags, &nr);
3527 if (ret == 1)
3528 goto done_unlocked;
3529
d1310b2e
CM
3530done:
3531 if (nr == 0) {
3532 /* make sure the mapping tag for page dirty gets cleared */
3533 set_page_writeback(page);
3534 end_page_writeback(page);
3535 }
61391d56
FM
3536 if (PageError(page)) {
3537 ret = ret < 0 ? ret : -EIO;
3538 end_extent_writepage(page, ret, start, page_end);
3539 }
d1310b2e 3540 unlock_page(page);
40f76580 3541 return ret;
771ed689 3542
11c8349b 3543done_unlocked:
d1310b2e
CM
3544 return 0;
3545}
3546
fd8b2b61 3547void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3548{
74316201
N
3549 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3550 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3551}
3552
0e378df1
CM
3553static noinline_for_stack int
3554lock_extent_buffer_for_io(struct extent_buffer *eb,
3555 struct btrfs_fs_info *fs_info,
3556 struct extent_page_data *epd)
0b32f4bb
JB
3557{
3558 unsigned long i, num_pages;
3559 int flush = 0;
3560 int ret = 0;
3561
3562 if (!btrfs_try_tree_write_lock(eb)) {
3563 flush = 1;
3564 flush_write_bio(epd);
3565 btrfs_tree_lock(eb);
3566 }
3567
3568 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3569 btrfs_tree_unlock(eb);
3570 if (!epd->sync_io)
3571 return 0;
3572 if (!flush) {
3573 flush_write_bio(epd);
3574 flush = 1;
3575 }
a098d8e8
CM
3576 while (1) {
3577 wait_on_extent_buffer_writeback(eb);
3578 btrfs_tree_lock(eb);
3579 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3580 break;
0b32f4bb 3581 btrfs_tree_unlock(eb);
0b32f4bb
JB
3582 }
3583 }
3584
51561ffe
JB
3585 /*
3586 * We need to do this to prevent races in people who check if the eb is
3587 * under IO since we can end up having no IO bits set for a short period
3588 * of time.
3589 */
3590 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3591 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3592 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3593 spin_unlock(&eb->refs_lock);
0b32f4bb 3594 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3595 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3596 -eb->len,
3597 fs_info->dirty_metadata_batch);
0b32f4bb 3598 ret = 1;
51561ffe
JB
3599 } else {
3600 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3601 }
3602
3603 btrfs_tree_unlock(eb);
3604
3605 if (!ret)
3606 return ret;
3607
3608 num_pages = num_extent_pages(eb->start, eb->len);
3609 for (i = 0; i < num_pages; i++) {
fb85fc9a 3610 struct page *p = eb->pages[i];
0b32f4bb
JB
3611
3612 if (!trylock_page(p)) {
3613 if (!flush) {
3614 flush_write_bio(epd);
3615 flush = 1;
3616 }
3617 lock_page(p);
3618 }
3619 }
3620
3621 return ret;
3622}
3623
3624static void end_extent_buffer_writeback(struct extent_buffer *eb)
3625{
3626 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3627 smp_mb__after_atomic();
0b32f4bb
JB
3628 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3629}
3630
656f30db
FM
3631static void set_btree_ioerr(struct page *page)
3632{
3633 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3634 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3635
3636 SetPageError(page);
3637 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3638 return;
3639
3640 /*
3641 * If writeback for a btree extent that doesn't belong to a log tree
3642 * failed, increment the counter transaction->eb_write_errors.
3643 * We do this because while the transaction is running and before it's
3644 * committing (when we call filemap_fdata[write|wait]_range against
3645 * the btree inode), we might have
3646 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3647 * returns an error or an error happens during writeback, when we're
3648 * committing the transaction we wouldn't know about it, since the pages
3649 * can be no longer dirty nor marked anymore for writeback (if a
3650 * subsequent modification to the extent buffer didn't happen before the
3651 * transaction commit), which makes filemap_fdata[write|wait]_range not
3652 * able to find the pages tagged with SetPageError at transaction
3653 * commit time. So if this happens we must abort the transaction,
3654 * otherwise we commit a super block with btree roots that point to
3655 * btree nodes/leafs whose content on disk is invalid - either garbage
3656 * or the content of some node/leaf from a past generation that got
3657 * cowed or deleted and is no longer valid.
3658 *
3659 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3660 * not be enough - we need to distinguish between log tree extents vs
3661 * non-log tree extents, and the next filemap_fdatawait_range() call
3662 * will catch and clear such errors in the mapping - and that call might
3663 * be from a log sync and not from a transaction commit. Also, checking
3664 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3665 * not done and would not be reliable - the eb might have been released
3666 * from memory and reading it back again means that flag would not be
3667 * set (since it's a runtime flag, not persisted on disk).
3668 *
3669 * Using the flags below in the btree inode also makes us achieve the
3670 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3671 * writeback for all dirty pages and before filemap_fdatawait_range()
3672 * is called, the writeback for all dirty pages had already finished
3673 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3674 * filemap_fdatawait_range() would return success, as it could not know
3675 * that writeback errors happened (the pages were no longer tagged for
3676 * writeback).
3677 */
3678 switch (eb->log_index) {
3679 case -1:
3680 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3681 break;
3682 case 0:
3683 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3684 break;
3685 case 1:
3686 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3687 break;
3688 default:
3689 BUG(); /* unexpected, logic error */
3690 }
3691}
3692
4246a0b6 3693static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3694{
2c30c71b 3695 struct bio_vec *bvec;
0b32f4bb 3696 struct extent_buffer *eb;
2c30c71b 3697 int i, done;
0b32f4bb 3698
2c30c71b 3699 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3700 struct page *page = bvec->bv_page;
3701
0b32f4bb
JB
3702 eb = (struct extent_buffer *)page->private;
3703 BUG_ON(!eb);
3704 done = atomic_dec_and_test(&eb->io_pages);
3705
4246a0b6
CH
3706 if (bio->bi_error ||
3707 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3708 ClearPageUptodate(page);
656f30db 3709 set_btree_ioerr(page);
0b32f4bb
JB
3710 }
3711
3712 end_page_writeback(page);
3713
3714 if (!done)
3715 continue;
3716
3717 end_extent_buffer_writeback(eb);
2c30c71b 3718 }
0b32f4bb
JB
3719
3720 bio_put(bio);
0b32f4bb
JB
3721}
3722
0e378df1 3723static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3724 struct btrfs_fs_info *fs_info,
3725 struct writeback_control *wbc,
3726 struct extent_page_data *epd)
3727{
3728 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3729 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb
JB
3730 u64 offset = eb->start;
3731 unsigned long i, num_pages;
de0022b9 3732 unsigned long bio_flags = 0;
1f7ad75b 3733 int write_flags = (epd->sync_io ? WRITE_SYNC : 0) | REQ_META;
d7dbe9e7 3734 int ret = 0;
0b32f4bb 3735
656f30db 3736 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3737 num_pages = num_extent_pages(eb->start, eb->len);
3738 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3739 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3740 bio_flags = EXTENT_BIO_TREE_LOG;
3741
0b32f4bb 3742 for (i = 0; i < num_pages; i++) {
fb85fc9a 3743 struct page *p = eb->pages[i];
0b32f4bb
JB
3744
3745 clear_page_dirty_for_io(p);
3746 set_page_writeback(p);
1f7ad75b
MC
3747 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3748 p, offset >> 9, PAGE_SIZE, 0, bdev,
3749 &epd->bio, -1,
3750 end_bio_extent_buffer_writepage,
005efedf 3751 0, epd->bio_flags, bio_flags, false);
de0022b9 3752 epd->bio_flags = bio_flags;
0b32f4bb 3753 if (ret) {
656f30db 3754 set_btree_ioerr(p);
55e3bd2e 3755 end_page_writeback(p);
0b32f4bb
JB
3756 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3757 end_extent_buffer_writeback(eb);
3758 ret = -EIO;
3759 break;
3760 }
09cbfeaf 3761 offset += PAGE_SIZE;
0b32f4bb
JB
3762 update_nr_written(p, wbc, 1);
3763 unlock_page(p);
3764 }
3765
3766 if (unlikely(ret)) {
3767 for (; i < num_pages; i++) {
bbf65cf0 3768 struct page *p = eb->pages[i];
81465028 3769 clear_page_dirty_for_io(p);
0b32f4bb
JB
3770 unlock_page(p);
3771 }
3772 }
3773
3774 return ret;
3775}
3776
3777int btree_write_cache_pages(struct address_space *mapping,
3778 struct writeback_control *wbc)
3779{
3780 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3781 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3782 struct extent_buffer *eb, *prev_eb = NULL;
3783 struct extent_page_data epd = {
3784 .bio = NULL,
3785 .tree = tree,
3786 .extent_locked = 0,
3787 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3788 .bio_flags = 0,
0b32f4bb
JB
3789 };
3790 int ret = 0;
3791 int done = 0;
3792 int nr_to_write_done = 0;
3793 struct pagevec pvec;
3794 int nr_pages;
3795 pgoff_t index;
3796 pgoff_t end; /* Inclusive */
3797 int scanned = 0;
3798 int tag;
3799
3800 pagevec_init(&pvec, 0);
3801 if (wbc->range_cyclic) {
3802 index = mapping->writeback_index; /* Start from prev offset */
3803 end = -1;
3804 } else {
09cbfeaf
KS
3805 index = wbc->range_start >> PAGE_SHIFT;
3806 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3807 scanned = 1;
3808 }
3809 if (wbc->sync_mode == WB_SYNC_ALL)
3810 tag = PAGECACHE_TAG_TOWRITE;
3811 else
3812 tag = PAGECACHE_TAG_DIRTY;
3813retry:
3814 if (wbc->sync_mode == WB_SYNC_ALL)
3815 tag_pages_for_writeback(mapping, index, end);
3816 while (!done && !nr_to_write_done && (index <= end) &&
3817 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3818 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3819 unsigned i;
3820
3821 scanned = 1;
3822 for (i = 0; i < nr_pages; i++) {
3823 struct page *page = pvec.pages[i];
3824
3825 if (!PagePrivate(page))
3826 continue;
3827
3828 if (!wbc->range_cyclic && page->index > end) {
3829 done = 1;
3830 break;
3831 }
3832
b5bae261
JB
3833 spin_lock(&mapping->private_lock);
3834 if (!PagePrivate(page)) {
3835 spin_unlock(&mapping->private_lock);
3836 continue;
3837 }
3838
0b32f4bb 3839 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3840
3841 /*
3842 * Shouldn't happen and normally this would be a BUG_ON
3843 * but no sense in crashing the users box for something
3844 * we can survive anyway.
3845 */
fae7f21c 3846 if (WARN_ON(!eb)) {
b5bae261 3847 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3848 continue;
3849 }
3850
b5bae261
JB
3851 if (eb == prev_eb) {
3852 spin_unlock(&mapping->private_lock);
0b32f4bb 3853 continue;
b5bae261 3854 }
0b32f4bb 3855
b5bae261
JB
3856 ret = atomic_inc_not_zero(&eb->refs);
3857 spin_unlock(&mapping->private_lock);
3858 if (!ret)
0b32f4bb 3859 continue;
0b32f4bb
JB
3860
3861 prev_eb = eb;
3862 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3863 if (!ret) {
3864 free_extent_buffer(eb);
3865 continue;
3866 }
3867
3868 ret = write_one_eb(eb, fs_info, wbc, &epd);
3869 if (ret) {
3870 done = 1;
3871 free_extent_buffer(eb);
3872 break;
3873 }
3874 free_extent_buffer(eb);
3875
3876 /*
3877 * the filesystem may choose to bump up nr_to_write.
3878 * We have to make sure to honor the new nr_to_write
3879 * at any time
3880 */
3881 nr_to_write_done = wbc->nr_to_write <= 0;
3882 }
3883 pagevec_release(&pvec);
3884 cond_resched();
3885 }
3886 if (!scanned && !done) {
3887 /*
3888 * We hit the last page and there is more work to be done: wrap
3889 * back to the start of the file
3890 */
3891 scanned = 1;
3892 index = 0;
3893 goto retry;
3894 }
3895 flush_write_bio(&epd);
3896 return ret;
3897}
3898
d1310b2e 3899/**
4bef0848 3900 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3901 * @mapping: address space structure to write
3902 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3903 * @writepage: function called for each page
3904 * @data: data passed to writepage function
3905 *
3906 * If a page is already under I/O, write_cache_pages() skips it, even
3907 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3908 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3909 * and msync() need to guarantee that all the data which was dirty at the time
3910 * the call was made get new I/O started against them. If wbc->sync_mode is
3911 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3912 * existing IO to complete.
3913 */
b2950863 3914static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3915 struct address_space *mapping,
3916 struct writeback_control *wbc,
d2c3f4f6
CM
3917 writepage_t writepage, void *data,
3918 void (*flush_fn)(void *))
d1310b2e 3919{
7fd1a3f7 3920 struct inode *inode = mapping->host;
d1310b2e
CM
3921 int ret = 0;
3922 int done = 0;
f85d7d6c 3923 int nr_to_write_done = 0;
d1310b2e
CM
3924 struct pagevec pvec;
3925 int nr_pages;
3926 pgoff_t index;
3927 pgoff_t end; /* Inclusive */
a9132667
LB
3928 pgoff_t done_index;
3929 int range_whole = 0;
d1310b2e 3930 int scanned = 0;
f7aaa06b 3931 int tag;
d1310b2e 3932
7fd1a3f7
JB
3933 /*
3934 * We have to hold onto the inode so that ordered extents can do their
3935 * work when the IO finishes. The alternative to this is failing to add
3936 * an ordered extent if the igrab() fails there and that is a huge pain
3937 * to deal with, so instead just hold onto the inode throughout the
3938 * writepages operation. If it fails here we are freeing up the inode
3939 * anyway and we'd rather not waste our time writing out stuff that is
3940 * going to be truncated anyway.
3941 */
3942 if (!igrab(inode))
3943 return 0;
3944
d1310b2e
CM
3945 pagevec_init(&pvec, 0);
3946 if (wbc->range_cyclic) {
3947 index = mapping->writeback_index; /* Start from prev offset */
3948 end = -1;
3949 } else {
09cbfeaf
KS
3950 index = wbc->range_start >> PAGE_SHIFT;
3951 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
3952 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3953 range_whole = 1;
d1310b2e
CM
3954 scanned = 1;
3955 }
f7aaa06b
JB
3956 if (wbc->sync_mode == WB_SYNC_ALL)
3957 tag = PAGECACHE_TAG_TOWRITE;
3958 else
3959 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3960retry:
f7aaa06b
JB
3961 if (wbc->sync_mode == WB_SYNC_ALL)
3962 tag_pages_for_writeback(mapping, index, end);
a9132667 3963 done_index = index;
f85d7d6c 3964 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3965 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3966 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3967 unsigned i;
3968
3969 scanned = 1;
3970 for (i = 0; i < nr_pages; i++) {
3971 struct page *page = pvec.pages[i];
3972
a9132667 3973 done_index = page->index;
d1310b2e
CM
3974 /*
3975 * At this point we hold neither mapping->tree_lock nor
3976 * lock on the page itself: the page may be truncated or
3977 * invalidated (changing page->mapping to NULL), or even
3978 * swizzled back from swapper_space to tmpfs file
3979 * mapping
3980 */
c8f2f24b
JB
3981 if (!trylock_page(page)) {
3982 flush_fn(data);
3983 lock_page(page);
01d658f2 3984 }
d1310b2e
CM
3985
3986 if (unlikely(page->mapping != mapping)) {
3987 unlock_page(page);
3988 continue;
3989 }
3990
3991 if (!wbc->range_cyclic && page->index > end) {
3992 done = 1;
3993 unlock_page(page);
3994 continue;
3995 }
3996
d2c3f4f6 3997 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3998 if (PageWriteback(page))
3999 flush_fn(data);
d1310b2e 4000 wait_on_page_writeback(page);
d2c3f4f6 4001 }
d1310b2e
CM
4002
4003 if (PageWriteback(page) ||
4004 !clear_page_dirty_for_io(page)) {
4005 unlock_page(page);
4006 continue;
4007 }
4008
4009 ret = (*writepage)(page, wbc, data);
4010
4011 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4012 unlock_page(page);
4013 ret = 0;
4014 }
a9132667
LB
4015 if (ret < 0) {
4016 /*
4017 * done_index is set past this page,
4018 * so media errors will not choke
4019 * background writeout for the entire
4020 * file. This has consequences for
4021 * range_cyclic semantics (ie. it may
4022 * not be suitable for data integrity
4023 * writeout).
4024 */
4025 done_index = page->index + 1;
4026 done = 1;
4027 break;
4028 }
f85d7d6c
CM
4029
4030 /*
4031 * the filesystem may choose to bump up nr_to_write.
4032 * We have to make sure to honor the new nr_to_write
4033 * at any time
4034 */
4035 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4036 }
4037 pagevec_release(&pvec);
4038 cond_resched();
4039 }
894b36e3 4040 if (!scanned && !done) {
d1310b2e
CM
4041 /*
4042 * We hit the last page and there is more work to be done: wrap
4043 * back to the start of the file
4044 */
4045 scanned = 1;
4046 index = 0;
4047 goto retry;
4048 }
a9132667
LB
4049
4050 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4051 mapping->writeback_index = done_index;
4052
7fd1a3f7 4053 btrfs_add_delayed_iput(inode);
894b36e3 4054 return ret;
d1310b2e 4055}
d1310b2e 4056
ffbd517d 4057static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 4058{
d2c3f4f6 4059 if (epd->bio) {
355808c2
JM
4060 int ret;
4061
1f7ad75b
MC
4062 bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
4063 epd->sync_io ? WRITE_SYNC : 0);
355808c2 4064
1f7ad75b 4065 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
79787eaa 4066 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4067 epd->bio = NULL;
4068 }
4069}
4070
ffbd517d
CM
4071static noinline void flush_write_bio(void *data)
4072{
4073 struct extent_page_data *epd = data;
4074 flush_epd_write_bio(epd);
4075}
4076
d1310b2e
CM
4077int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4078 get_extent_t *get_extent,
4079 struct writeback_control *wbc)
4080{
4081 int ret;
d1310b2e
CM
4082 struct extent_page_data epd = {
4083 .bio = NULL,
4084 .tree = tree,
4085 .get_extent = get_extent,
771ed689 4086 .extent_locked = 0,
ffbd517d 4087 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4088 .bio_flags = 0,
d1310b2e 4089 };
d1310b2e 4090
d1310b2e
CM
4091 ret = __extent_writepage(page, wbc, &epd);
4092
ffbd517d 4093 flush_epd_write_bio(&epd);
d1310b2e
CM
4094 return ret;
4095}
d1310b2e 4096
771ed689
CM
4097int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4098 u64 start, u64 end, get_extent_t *get_extent,
4099 int mode)
4100{
4101 int ret = 0;
4102 struct address_space *mapping = inode->i_mapping;
4103 struct page *page;
09cbfeaf
KS
4104 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4105 PAGE_SHIFT;
771ed689
CM
4106
4107 struct extent_page_data epd = {
4108 .bio = NULL,
4109 .tree = tree,
4110 .get_extent = get_extent,
4111 .extent_locked = 1,
ffbd517d 4112 .sync_io = mode == WB_SYNC_ALL,
de0022b9 4113 .bio_flags = 0,
771ed689
CM
4114 };
4115 struct writeback_control wbc_writepages = {
771ed689 4116 .sync_mode = mode,
771ed689
CM
4117 .nr_to_write = nr_pages * 2,
4118 .range_start = start,
4119 .range_end = end + 1,
4120 };
4121
d397712b 4122 while (start <= end) {
09cbfeaf 4123 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4124 if (clear_page_dirty_for_io(page))
4125 ret = __extent_writepage(page, &wbc_writepages, &epd);
4126 else {
4127 if (tree->ops && tree->ops->writepage_end_io_hook)
4128 tree->ops->writepage_end_io_hook(page, start,
09cbfeaf 4129 start + PAGE_SIZE - 1,
771ed689
CM
4130 NULL, 1);
4131 unlock_page(page);
4132 }
09cbfeaf
KS
4133 put_page(page);
4134 start += PAGE_SIZE;
771ed689
CM
4135 }
4136
ffbd517d 4137 flush_epd_write_bio(&epd);
771ed689
CM
4138 return ret;
4139}
d1310b2e
CM
4140
4141int extent_writepages(struct extent_io_tree *tree,
4142 struct address_space *mapping,
4143 get_extent_t *get_extent,
4144 struct writeback_control *wbc)
4145{
4146 int ret = 0;
4147 struct extent_page_data epd = {
4148 .bio = NULL,
4149 .tree = tree,
4150 .get_extent = get_extent,
771ed689 4151 .extent_locked = 0,
ffbd517d 4152 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4153 .bio_flags = 0,
d1310b2e
CM
4154 };
4155
4bef0848 4156 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
4157 __extent_writepage, &epd,
4158 flush_write_bio);
ffbd517d 4159 flush_epd_write_bio(&epd);
d1310b2e
CM
4160 return ret;
4161}
d1310b2e
CM
4162
4163int extent_readpages(struct extent_io_tree *tree,
4164 struct address_space *mapping,
4165 struct list_head *pages, unsigned nr_pages,
4166 get_extent_t get_extent)
4167{
4168 struct bio *bio = NULL;
4169 unsigned page_idx;
c8b97818 4170 unsigned long bio_flags = 0;
67c9684f
LB
4171 struct page *pagepool[16];
4172 struct page *page;
125bac01 4173 struct extent_map *em_cached = NULL;
67c9684f 4174 int nr = 0;
808f80b4 4175 u64 prev_em_start = (u64)-1;
d1310b2e 4176
d1310b2e 4177 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4178 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4179
4180 prefetchw(&page->flags);
4181 list_del(&page->lru);
67c9684f 4182 if (add_to_page_cache_lru(page, mapping,
43e817a1 4183 page->index, GFP_NOFS)) {
09cbfeaf 4184 put_page(page);
67c9684f 4185 continue;
d1310b2e 4186 }
67c9684f
LB
4187
4188 pagepool[nr++] = page;
4189 if (nr < ARRAY_SIZE(pagepool))
4190 continue;
125bac01 4191 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
1f7ad75b 4192 &bio, 0, &bio_flags, &prev_em_start);
67c9684f 4193 nr = 0;
d1310b2e 4194 }
9974090b 4195 if (nr)
125bac01 4196 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
1f7ad75b 4197 &bio, 0, &bio_flags, &prev_em_start);
67c9684f 4198
125bac01
MX
4199 if (em_cached)
4200 free_extent_map(em_cached);
4201
d1310b2e
CM
4202 BUG_ON(!list_empty(pages));
4203 if (bio)
1f7ad75b 4204 return submit_one_bio(bio, 0, bio_flags);
d1310b2e
CM
4205 return 0;
4206}
d1310b2e
CM
4207
4208/*
4209 * basic invalidatepage code, this waits on any locked or writeback
4210 * ranges corresponding to the page, and then deletes any extent state
4211 * records from the tree
4212 */
4213int extent_invalidatepage(struct extent_io_tree *tree,
4214 struct page *page, unsigned long offset)
4215{
2ac55d41 4216 struct extent_state *cached_state = NULL;
4eee4fa4 4217 u64 start = page_offset(page);
09cbfeaf 4218 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4219 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4220
fda2832f 4221 start += ALIGN(offset, blocksize);
d1310b2e
CM
4222 if (start > end)
4223 return 0;
4224
ff13db41 4225 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4226 wait_on_page_writeback(page);
d1310b2e 4227 clear_extent_bit(tree, start, end,
32c00aff
JB
4228 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4229 EXTENT_DO_ACCOUNTING,
2ac55d41 4230 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4231 return 0;
4232}
d1310b2e 4233
7b13b7b1
CM
4234/*
4235 * a helper for releasepage, this tests for areas of the page that
4236 * are locked or under IO and drops the related state bits if it is safe
4237 * to drop the page.
4238 */
48a3b636
ES
4239static int try_release_extent_state(struct extent_map_tree *map,
4240 struct extent_io_tree *tree,
4241 struct page *page, gfp_t mask)
7b13b7b1 4242{
4eee4fa4 4243 u64 start = page_offset(page);
09cbfeaf 4244 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4245 int ret = 1;
4246
211f90e6 4247 if (test_range_bit(tree, start, end,
8b62b72b 4248 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4249 ret = 0;
4250 else {
4251 if ((mask & GFP_NOFS) == GFP_NOFS)
4252 mask = GFP_NOFS;
11ef160f
CM
4253 /*
4254 * at this point we can safely clear everything except the
4255 * locked bit and the nodatasum bit
4256 */
e3f24cc5 4257 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4258 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4259 0, 0, NULL, mask);
e3f24cc5
CM
4260
4261 /* if clear_extent_bit failed for enomem reasons,
4262 * we can't allow the release to continue.
4263 */
4264 if (ret < 0)
4265 ret = 0;
4266 else
4267 ret = 1;
7b13b7b1
CM
4268 }
4269 return ret;
4270}
7b13b7b1 4271
d1310b2e
CM
4272/*
4273 * a helper for releasepage. As long as there are no locked extents
4274 * in the range corresponding to the page, both state records and extent
4275 * map records are removed
4276 */
4277int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4278 struct extent_io_tree *tree, struct page *page,
4279 gfp_t mask)
d1310b2e
CM
4280{
4281 struct extent_map *em;
4eee4fa4 4282 u64 start = page_offset(page);
09cbfeaf 4283 u64 end = start + PAGE_SIZE - 1;
7b13b7b1 4284
d0164adc 4285 if (gfpflags_allow_blocking(mask) &&
ee22184b 4286 page->mapping->host->i_size > SZ_16M) {
39b5637f 4287 u64 len;
70dec807 4288 while (start <= end) {
39b5637f 4289 len = end - start + 1;
890871be 4290 write_lock(&map->lock);
39b5637f 4291 em = lookup_extent_mapping(map, start, len);
285190d9 4292 if (!em) {
890871be 4293 write_unlock(&map->lock);
70dec807
CM
4294 break;
4295 }
7f3c74fb
CM
4296 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4297 em->start != start) {
890871be 4298 write_unlock(&map->lock);
70dec807
CM
4299 free_extent_map(em);
4300 break;
4301 }
4302 if (!test_range_bit(tree, em->start,
4303 extent_map_end(em) - 1,
8b62b72b 4304 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4305 0, NULL)) {
70dec807
CM
4306 remove_extent_mapping(map, em);
4307 /* once for the rb tree */
4308 free_extent_map(em);
4309 }
4310 start = extent_map_end(em);
890871be 4311 write_unlock(&map->lock);
70dec807
CM
4312
4313 /* once for us */
d1310b2e
CM
4314 free_extent_map(em);
4315 }
d1310b2e 4316 }
7b13b7b1 4317 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4318}
d1310b2e 4319
ec29ed5b
CM
4320/*
4321 * helper function for fiemap, which doesn't want to see any holes.
4322 * This maps until we find something past 'last'
4323 */
4324static struct extent_map *get_extent_skip_holes(struct inode *inode,
4325 u64 offset,
4326 u64 last,
4327 get_extent_t *get_extent)
4328{
4329 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4330 struct extent_map *em;
4331 u64 len;
4332
4333 if (offset >= last)
4334 return NULL;
4335
67871254 4336 while (1) {
ec29ed5b
CM
4337 len = last - offset;
4338 if (len == 0)
4339 break;
fda2832f 4340 len = ALIGN(len, sectorsize);
ec29ed5b 4341 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 4342 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4343 return em;
4344
4345 /* if this isn't a hole return it */
4346 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4347 em->block_start != EXTENT_MAP_HOLE) {
4348 return em;
4349 }
4350
4351 /* this is a hole, advance to the next extent */
4352 offset = extent_map_end(em);
4353 free_extent_map(em);
4354 if (offset >= last)
4355 break;
4356 }
4357 return NULL;
4358}
4359
1506fcc8
YS
4360int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4361 __u64 start, __u64 len, get_extent_t *get_extent)
4362{
975f84fe 4363 int ret = 0;
1506fcc8
YS
4364 u64 off = start;
4365 u64 max = start + len;
4366 u32 flags = 0;
975f84fe
JB
4367 u32 found_type;
4368 u64 last;
ec29ed5b 4369 u64 last_for_get_extent = 0;
1506fcc8 4370 u64 disko = 0;
ec29ed5b 4371 u64 isize = i_size_read(inode);
975f84fe 4372 struct btrfs_key found_key;
1506fcc8 4373 struct extent_map *em = NULL;
2ac55d41 4374 struct extent_state *cached_state = NULL;
975f84fe 4375 struct btrfs_path *path;
dc046b10 4376 struct btrfs_root *root = BTRFS_I(inode)->root;
1506fcc8 4377 int end = 0;
ec29ed5b
CM
4378 u64 em_start = 0;
4379 u64 em_len = 0;
4380 u64 em_end = 0;
1506fcc8
YS
4381
4382 if (len == 0)
4383 return -EINVAL;
4384
975f84fe
JB
4385 path = btrfs_alloc_path();
4386 if (!path)
4387 return -ENOMEM;
4388 path->leave_spinning = 1;
4389
2c91943b
QW
4390 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4391 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4d479cf0 4392
ec29ed5b
CM
4393 /*
4394 * lookup the last file extent. We're not using i_size here
4395 * because there might be preallocation past i_size
4396 */
dc046b10
JB
4397 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4398 0);
975f84fe
JB
4399 if (ret < 0) {
4400 btrfs_free_path(path);
4401 return ret;
2d324f59
LB
4402 } else {
4403 WARN_ON(!ret);
4404 if (ret == 1)
4405 ret = 0;
975f84fe 4406 }
2d324f59 4407
975f84fe 4408 path->slots[0]--;
975f84fe 4409 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4410 found_type = found_key.type;
975f84fe 4411
ec29ed5b 4412 /* No extents, but there might be delalloc bits */
33345d01 4413 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4414 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4415 /* have to trust i_size as the end */
4416 last = (u64)-1;
4417 last_for_get_extent = isize;
4418 } else {
4419 /*
4420 * remember the start of the last extent. There are a
4421 * bunch of different factors that go into the length of the
4422 * extent, so its much less complex to remember where it started
4423 */
4424 last = found_key.offset;
4425 last_for_get_extent = last + 1;
975f84fe 4426 }
fe09e16c 4427 btrfs_release_path(path);
975f84fe 4428
ec29ed5b
CM
4429 /*
4430 * we might have some extents allocated but more delalloc past those
4431 * extents. so, we trust isize unless the start of the last extent is
4432 * beyond isize
4433 */
4434 if (last < isize) {
4435 last = (u64)-1;
4436 last_for_get_extent = isize;
4437 }
4438
ff13db41 4439 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4440 &cached_state);
ec29ed5b 4441
4d479cf0 4442 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4443 get_extent);
1506fcc8
YS
4444 if (!em)
4445 goto out;
4446 if (IS_ERR(em)) {
4447 ret = PTR_ERR(em);
4448 goto out;
4449 }
975f84fe 4450
1506fcc8 4451 while (!end) {
b76bb701 4452 u64 offset_in_extent = 0;
ea8efc74
CM
4453
4454 /* break if the extent we found is outside the range */
4455 if (em->start >= max || extent_map_end(em) < off)
4456 break;
4457
4458 /*
4459 * get_extent may return an extent that starts before our
4460 * requested range. We have to make sure the ranges
4461 * we return to fiemap always move forward and don't
4462 * overlap, so adjust the offsets here
4463 */
4464 em_start = max(em->start, off);
1506fcc8 4465
ea8efc74
CM
4466 /*
4467 * record the offset from the start of the extent
b76bb701
JB
4468 * for adjusting the disk offset below. Only do this if the
4469 * extent isn't compressed since our in ram offset may be past
4470 * what we have actually allocated on disk.
ea8efc74 4471 */
b76bb701
JB
4472 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4473 offset_in_extent = em_start - em->start;
ec29ed5b 4474 em_end = extent_map_end(em);
ea8efc74 4475 em_len = em_end - em_start;
1506fcc8
YS
4476 disko = 0;
4477 flags = 0;
4478
ea8efc74
CM
4479 /*
4480 * bump off for our next call to get_extent
4481 */
4482 off = extent_map_end(em);
4483 if (off >= max)
4484 end = 1;
4485
93dbfad7 4486 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4487 end = 1;
4488 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4489 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4490 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4491 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4492 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4493 flags |= (FIEMAP_EXTENT_DELALLOC |
4494 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4495 } else if (fieinfo->fi_extents_max) {
4496 u64 bytenr = em->block_start -
4497 (em->start - em->orig_start);
fe09e16c 4498
ea8efc74 4499 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4500
4501 /*
4502 * As btrfs supports shared space, this information
4503 * can be exported to userspace tools via
dc046b10
JB
4504 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4505 * then we're just getting a count and we can skip the
4506 * lookup stuff.
fe09e16c 4507 */
dc046b10
JB
4508 ret = btrfs_check_shared(NULL, root->fs_info,
4509 root->objectid,
4510 btrfs_ino(inode), bytenr);
4511 if (ret < 0)
fe09e16c 4512 goto out_free;
dc046b10 4513 if (ret)
fe09e16c 4514 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4515 ret = 0;
1506fcc8
YS
4516 }
4517 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4518 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4519 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4520 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4521
1506fcc8
YS
4522 free_extent_map(em);
4523 em = NULL;
ec29ed5b
CM
4524 if ((em_start >= last) || em_len == (u64)-1 ||
4525 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4526 flags |= FIEMAP_EXTENT_LAST;
4527 end = 1;
4528 }
4529
ec29ed5b
CM
4530 /* now scan forward to see if this is really the last extent. */
4531 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4532 get_extent);
4533 if (IS_ERR(em)) {
4534 ret = PTR_ERR(em);
4535 goto out;
4536 }
4537 if (!em) {
975f84fe
JB
4538 flags |= FIEMAP_EXTENT_LAST;
4539 end = 1;
4540 }
ec29ed5b
CM
4541 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4542 em_len, flags);
26e726af
CS
4543 if (ret) {
4544 if (ret == 1)
4545 ret = 0;
ec29ed5b 4546 goto out_free;
26e726af 4547 }
1506fcc8
YS
4548 }
4549out_free:
4550 free_extent_map(em);
4551out:
fe09e16c 4552 btrfs_free_path(path);
a52f4cd2 4553 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4554 &cached_state, GFP_NOFS);
1506fcc8
YS
4555 return ret;
4556}
4557
727011e0
CM
4558static void __free_extent_buffer(struct extent_buffer *eb)
4559{
6d49ba1b 4560 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4561 kmem_cache_free(extent_buffer_cache, eb);
4562}
4563
a26e8c9f 4564int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4565{
4566 return (atomic_read(&eb->io_pages) ||
4567 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4568 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4569}
4570
4571/*
4572 * Helper for releasing extent buffer page.
4573 */
a50924e3 4574static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4575{
4576 unsigned long index;
db7f3436
JB
4577 struct page *page;
4578 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4579
4580 BUG_ON(extent_buffer_under_io(eb));
4581
a50924e3
DS
4582 index = num_extent_pages(eb->start, eb->len);
4583 if (index == 0)
db7f3436
JB
4584 return;
4585
4586 do {
4587 index--;
fb85fc9a 4588 page = eb->pages[index];
5d2361db
FL
4589 if (!page)
4590 continue;
4591 if (mapped)
db7f3436 4592 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4593 /*
4594 * We do this since we'll remove the pages after we've
4595 * removed the eb from the radix tree, so we could race
4596 * and have this page now attached to the new eb. So
4597 * only clear page_private if it's still connected to
4598 * this eb.
4599 */
4600 if (PagePrivate(page) &&
4601 page->private == (unsigned long)eb) {
4602 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4603 BUG_ON(PageDirty(page));
4604 BUG_ON(PageWriteback(page));
db7f3436 4605 /*
5d2361db
FL
4606 * We need to make sure we haven't be attached
4607 * to a new eb.
db7f3436 4608 */
5d2361db
FL
4609 ClearPagePrivate(page);
4610 set_page_private(page, 0);
4611 /* One for the page private */
09cbfeaf 4612 put_page(page);
db7f3436 4613 }
5d2361db
FL
4614
4615 if (mapped)
4616 spin_unlock(&page->mapping->private_lock);
4617
01327610 4618 /* One for when we allocated the page */
09cbfeaf 4619 put_page(page);
a50924e3 4620 } while (index != 0);
db7f3436
JB
4621}
4622
4623/*
4624 * Helper for releasing the extent buffer.
4625 */
4626static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4627{
a50924e3 4628 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4629 __free_extent_buffer(eb);
4630}
4631
f28491e0
JB
4632static struct extent_buffer *
4633__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4634 unsigned long len)
d1310b2e
CM
4635{
4636 struct extent_buffer *eb = NULL;
4637
d1b5c567 4638 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4639 eb->start = start;
4640 eb->len = len;
f28491e0 4641 eb->fs_info = fs_info;
815a51c7 4642 eb->bflags = 0;
bd681513
CM
4643 rwlock_init(&eb->lock);
4644 atomic_set(&eb->write_locks, 0);
4645 atomic_set(&eb->read_locks, 0);
4646 atomic_set(&eb->blocking_readers, 0);
4647 atomic_set(&eb->blocking_writers, 0);
4648 atomic_set(&eb->spinning_readers, 0);
4649 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4650 eb->lock_nested = 0;
bd681513
CM
4651 init_waitqueue_head(&eb->write_lock_wq);
4652 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4653
6d49ba1b
ES
4654 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4655
3083ee2e 4656 spin_lock_init(&eb->refs_lock);
d1310b2e 4657 atomic_set(&eb->refs, 1);
0b32f4bb 4658 atomic_set(&eb->io_pages, 0);
727011e0 4659
b8dae313
DS
4660 /*
4661 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4662 */
4663 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4664 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4665 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4666
4667 return eb;
4668}
4669
815a51c7
JS
4670struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4671{
4672 unsigned long i;
4673 struct page *p;
4674 struct extent_buffer *new;
4675 unsigned long num_pages = num_extent_pages(src->start, src->len);
4676
3f556f78 4677 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4678 if (new == NULL)
4679 return NULL;
4680
4681 for (i = 0; i < num_pages; i++) {
9ec72677 4682 p = alloc_page(GFP_NOFS);
db7f3436
JB
4683 if (!p) {
4684 btrfs_release_extent_buffer(new);
4685 return NULL;
4686 }
815a51c7
JS
4687 attach_extent_buffer_page(new, p);
4688 WARN_ON(PageDirty(p));
4689 SetPageUptodate(p);
4690 new->pages[i] = p;
4691 }
4692
4693 copy_extent_buffer(new, src, 0, 0, src->len);
4694 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4695 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4696
4697 return new;
4698}
4699
0f331229
OS
4700struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4701 u64 start, unsigned long len)
815a51c7
JS
4702{
4703 struct extent_buffer *eb;
3f556f78 4704 unsigned long num_pages;
815a51c7
JS
4705 unsigned long i;
4706
0f331229 4707 num_pages = num_extent_pages(start, len);
3f556f78
DS
4708
4709 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4710 if (!eb)
4711 return NULL;
4712
4713 for (i = 0; i < num_pages; i++) {
9ec72677 4714 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4715 if (!eb->pages[i])
4716 goto err;
4717 }
4718 set_extent_buffer_uptodate(eb);
4719 btrfs_set_header_nritems(eb, 0);
4720 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4721
4722 return eb;
4723err:
84167d19
SB
4724 for (; i > 0; i--)
4725 __free_page(eb->pages[i - 1]);
815a51c7
JS
4726 __free_extent_buffer(eb);
4727 return NULL;
4728}
4729
0f331229
OS
4730struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4731 u64 start)
4732{
4733 unsigned long len;
4734
4735 if (!fs_info) {
4736 /*
4737 * Called only from tests that don't always have a fs_info
4738 * available, but we know that nodesize is 4096
4739 */
4740 len = 4096;
4741 } else {
4742 len = fs_info->tree_root->nodesize;
4743 }
4744
4745 return __alloc_dummy_extent_buffer(fs_info, start, len);
4746}
4747
0b32f4bb
JB
4748static void check_buffer_tree_ref(struct extent_buffer *eb)
4749{
242e18c7 4750 int refs;
0b32f4bb
JB
4751 /* the ref bit is tricky. We have to make sure it is set
4752 * if we have the buffer dirty. Otherwise the
4753 * code to free a buffer can end up dropping a dirty
4754 * page
4755 *
4756 * Once the ref bit is set, it won't go away while the
4757 * buffer is dirty or in writeback, and it also won't
4758 * go away while we have the reference count on the
4759 * eb bumped.
4760 *
4761 * We can't just set the ref bit without bumping the
4762 * ref on the eb because free_extent_buffer might
4763 * see the ref bit and try to clear it. If this happens
4764 * free_extent_buffer might end up dropping our original
4765 * ref by mistake and freeing the page before we are able
4766 * to add one more ref.
4767 *
4768 * So bump the ref count first, then set the bit. If someone
4769 * beat us to it, drop the ref we added.
4770 */
242e18c7
CM
4771 refs = atomic_read(&eb->refs);
4772 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4773 return;
4774
594831c4
JB
4775 spin_lock(&eb->refs_lock);
4776 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4777 atomic_inc(&eb->refs);
594831c4 4778 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4779}
4780
2457aec6
MG
4781static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4782 struct page *accessed)
5df4235e
JB
4783{
4784 unsigned long num_pages, i;
4785
0b32f4bb
JB
4786 check_buffer_tree_ref(eb);
4787
5df4235e
JB
4788 num_pages = num_extent_pages(eb->start, eb->len);
4789 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4790 struct page *p = eb->pages[i];
4791
2457aec6
MG
4792 if (p != accessed)
4793 mark_page_accessed(p);
5df4235e
JB
4794 }
4795}
4796
f28491e0
JB
4797struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4798 u64 start)
452c75c3
CS
4799{
4800 struct extent_buffer *eb;
4801
4802 rcu_read_lock();
f28491e0 4803 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4804 start >> PAGE_SHIFT);
452c75c3
CS
4805 if (eb && atomic_inc_not_zero(&eb->refs)) {
4806 rcu_read_unlock();
062c19e9
FM
4807 /*
4808 * Lock our eb's refs_lock to avoid races with
4809 * free_extent_buffer. When we get our eb it might be flagged
4810 * with EXTENT_BUFFER_STALE and another task running
4811 * free_extent_buffer might have seen that flag set,
4812 * eb->refs == 2, that the buffer isn't under IO (dirty and
4813 * writeback flags not set) and it's still in the tree (flag
4814 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4815 * of decrementing the extent buffer's reference count twice.
4816 * So here we could race and increment the eb's reference count,
4817 * clear its stale flag, mark it as dirty and drop our reference
4818 * before the other task finishes executing free_extent_buffer,
4819 * which would later result in an attempt to free an extent
4820 * buffer that is dirty.
4821 */
4822 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4823 spin_lock(&eb->refs_lock);
4824 spin_unlock(&eb->refs_lock);
4825 }
2457aec6 4826 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4827 return eb;
4828 }
4829 rcu_read_unlock();
4830
4831 return NULL;
4832}
4833
faa2dbf0
JB
4834#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4835struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4836 u64 start)
faa2dbf0
JB
4837{
4838 struct extent_buffer *eb, *exists = NULL;
4839 int ret;
4840
4841 eb = find_extent_buffer(fs_info, start);
4842 if (eb)
4843 return eb;
3f556f78 4844 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4845 if (!eb)
4846 return NULL;
4847 eb->fs_info = fs_info;
4848again:
e1860a77 4849 ret = radix_tree_preload(GFP_NOFS);
faa2dbf0
JB
4850 if (ret)
4851 goto free_eb;
4852 spin_lock(&fs_info->buffer_lock);
4853 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4854 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
4855 spin_unlock(&fs_info->buffer_lock);
4856 radix_tree_preload_end();
4857 if (ret == -EEXIST) {
4858 exists = find_extent_buffer(fs_info, start);
4859 if (exists)
4860 goto free_eb;
4861 else
4862 goto again;
4863 }
4864 check_buffer_tree_ref(eb);
4865 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4866
4867 /*
4868 * We will free dummy extent buffer's if they come into
4869 * free_extent_buffer with a ref count of 2, but if we are using this we
4870 * want the buffers to stay in memory until we're done with them, so
4871 * bump the ref count again.
4872 */
4873 atomic_inc(&eb->refs);
4874 return eb;
4875free_eb:
4876 btrfs_release_extent_buffer(eb);
4877 return exists;
4878}
4879#endif
4880
f28491e0 4881struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4882 u64 start)
d1310b2e 4883{
ce3e6984 4884 unsigned long len = fs_info->tree_root->nodesize;
d1310b2e
CM
4885 unsigned long num_pages = num_extent_pages(start, len);
4886 unsigned long i;
09cbfeaf 4887 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 4888 struct extent_buffer *eb;
6af118ce 4889 struct extent_buffer *exists = NULL;
d1310b2e 4890 struct page *p;
f28491e0 4891 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4892 int uptodate = 1;
19fe0a8b 4893 int ret;
d1310b2e 4894
f28491e0 4895 eb = find_extent_buffer(fs_info, start);
452c75c3 4896 if (eb)
6af118ce 4897 return eb;
6af118ce 4898
23d79d81 4899 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4900 if (!eb)
d1310b2e
CM
4901 return NULL;
4902
727011e0 4903 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 4904 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4804b382 4905 if (!p)
6af118ce 4906 goto free_eb;
4f2de97a
JB
4907
4908 spin_lock(&mapping->private_lock);
4909 if (PagePrivate(p)) {
4910 /*
4911 * We could have already allocated an eb for this page
4912 * and attached one so lets see if we can get a ref on
4913 * the existing eb, and if we can we know it's good and
4914 * we can just return that one, else we know we can just
4915 * overwrite page->private.
4916 */
4917 exists = (struct extent_buffer *)p->private;
4918 if (atomic_inc_not_zero(&exists->refs)) {
4919 spin_unlock(&mapping->private_lock);
4920 unlock_page(p);
09cbfeaf 4921 put_page(p);
2457aec6 4922 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
4923 goto free_eb;
4924 }
5ca64f45 4925 exists = NULL;
4f2de97a 4926
0b32f4bb 4927 /*
4f2de97a
JB
4928 * Do this so attach doesn't complain and we need to
4929 * drop the ref the old guy had.
4930 */
4931 ClearPagePrivate(p);
0b32f4bb 4932 WARN_ON(PageDirty(p));
09cbfeaf 4933 put_page(p);
d1310b2e 4934 }
4f2de97a
JB
4935 attach_extent_buffer_page(eb, p);
4936 spin_unlock(&mapping->private_lock);
0b32f4bb 4937 WARN_ON(PageDirty(p));
727011e0 4938 eb->pages[i] = p;
d1310b2e
CM
4939 if (!PageUptodate(p))
4940 uptodate = 0;
eb14ab8e
CM
4941
4942 /*
4943 * see below about how we avoid a nasty race with release page
4944 * and why we unlock later
4945 */
d1310b2e
CM
4946 }
4947 if (uptodate)
b4ce94de 4948 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4949again:
e1860a77 4950 ret = radix_tree_preload(GFP_NOFS);
19fe0a8b
MX
4951 if (ret)
4952 goto free_eb;
4953
f28491e0
JB
4954 spin_lock(&fs_info->buffer_lock);
4955 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4956 start >> PAGE_SHIFT, eb);
f28491e0 4957 spin_unlock(&fs_info->buffer_lock);
452c75c3 4958 radix_tree_preload_end();
19fe0a8b 4959 if (ret == -EEXIST) {
f28491e0 4960 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
4961 if (exists)
4962 goto free_eb;
4963 else
115391d2 4964 goto again;
6af118ce 4965 }
6af118ce 4966 /* add one reference for the tree */
0b32f4bb 4967 check_buffer_tree_ref(eb);
34b41ace 4968 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
4969
4970 /*
4971 * there is a race where release page may have
4972 * tried to find this extent buffer in the radix
4973 * but failed. It will tell the VM it is safe to
4974 * reclaim the, and it will clear the page private bit.
4975 * We must make sure to set the page private bit properly
4976 * after the extent buffer is in the radix tree so
4977 * it doesn't get lost
4978 */
727011e0
CM
4979 SetPageChecked(eb->pages[0]);
4980 for (i = 1; i < num_pages; i++) {
fb85fc9a 4981 p = eb->pages[i];
727011e0
CM
4982 ClearPageChecked(p);
4983 unlock_page(p);
4984 }
4985 unlock_page(eb->pages[0]);
d1310b2e
CM
4986 return eb;
4987
6af118ce 4988free_eb:
5ca64f45 4989 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
4990 for (i = 0; i < num_pages; i++) {
4991 if (eb->pages[i])
4992 unlock_page(eb->pages[i]);
4993 }
eb14ab8e 4994
897ca6e9 4995 btrfs_release_extent_buffer(eb);
6af118ce 4996 return exists;
d1310b2e 4997}
d1310b2e 4998
3083ee2e
JB
4999static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5000{
5001 struct extent_buffer *eb =
5002 container_of(head, struct extent_buffer, rcu_head);
5003
5004 __free_extent_buffer(eb);
5005}
5006
3083ee2e 5007/* Expects to have eb->eb_lock already held */
f7a52a40 5008static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
5009{
5010 WARN_ON(atomic_read(&eb->refs) == 0);
5011 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5012 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5013 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5014
815a51c7 5015 spin_unlock(&eb->refs_lock);
3083ee2e 5016
f28491e0
JB
5017 spin_lock(&fs_info->buffer_lock);
5018 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5019 eb->start >> PAGE_SHIFT);
f28491e0 5020 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5021 } else {
5022 spin_unlock(&eb->refs_lock);
815a51c7 5023 }
3083ee2e
JB
5024
5025 /* Should be safe to release our pages at this point */
a50924e3 5026 btrfs_release_extent_buffer_page(eb);
bcb7e449
JB
5027#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5028 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5029 __free_extent_buffer(eb);
5030 return 1;
5031 }
5032#endif
3083ee2e 5033 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5034 return 1;
3083ee2e
JB
5035 }
5036 spin_unlock(&eb->refs_lock);
e64860aa
JB
5037
5038 return 0;
3083ee2e
JB
5039}
5040
d1310b2e
CM
5041void free_extent_buffer(struct extent_buffer *eb)
5042{
242e18c7
CM
5043 int refs;
5044 int old;
d1310b2e
CM
5045 if (!eb)
5046 return;
5047
242e18c7
CM
5048 while (1) {
5049 refs = atomic_read(&eb->refs);
5050 if (refs <= 3)
5051 break;
5052 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5053 if (old == refs)
5054 return;
5055 }
5056
3083ee2e 5057 spin_lock(&eb->refs_lock);
815a51c7
JS
5058 if (atomic_read(&eb->refs) == 2 &&
5059 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5060 atomic_dec(&eb->refs);
5061
3083ee2e
JB
5062 if (atomic_read(&eb->refs) == 2 &&
5063 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5064 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5065 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5066 atomic_dec(&eb->refs);
5067
5068 /*
5069 * I know this is terrible, but it's temporary until we stop tracking
5070 * the uptodate bits and such for the extent buffers.
5071 */
f7a52a40 5072 release_extent_buffer(eb);
3083ee2e
JB
5073}
5074
5075void free_extent_buffer_stale(struct extent_buffer *eb)
5076{
5077 if (!eb)
d1310b2e
CM
5078 return;
5079
3083ee2e
JB
5080 spin_lock(&eb->refs_lock);
5081 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5082
0b32f4bb 5083 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5084 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5085 atomic_dec(&eb->refs);
f7a52a40 5086 release_extent_buffer(eb);
d1310b2e 5087}
d1310b2e 5088
1d4284bd 5089void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5090{
d1310b2e
CM
5091 unsigned long i;
5092 unsigned long num_pages;
5093 struct page *page;
5094
d1310b2e
CM
5095 num_pages = num_extent_pages(eb->start, eb->len);
5096
5097 for (i = 0; i < num_pages; i++) {
fb85fc9a 5098 page = eb->pages[i];
b9473439 5099 if (!PageDirty(page))
d2c3f4f6
CM
5100 continue;
5101
a61e6f29 5102 lock_page(page);
eb14ab8e
CM
5103 WARN_ON(!PagePrivate(page));
5104
d1310b2e 5105 clear_page_dirty_for_io(page);
0ee0fda0 5106 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5107 if (!PageDirty(page)) {
5108 radix_tree_tag_clear(&page->mapping->page_tree,
5109 page_index(page),
5110 PAGECACHE_TAG_DIRTY);
5111 }
0ee0fda0 5112 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5113 ClearPageError(page);
a61e6f29 5114 unlock_page(page);
d1310b2e 5115 }
0b32f4bb 5116 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5117}
d1310b2e 5118
0b32f4bb 5119int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5120{
5121 unsigned long i;
5122 unsigned long num_pages;
b9473439 5123 int was_dirty = 0;
d1310b2e 5124
0b32f4bb
JB
5125 check_buffer_tree_ref(eb);
5126
b9473439 5127 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5128
d1310b2e 5129 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5130 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5131 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5132
b9473439 5133 for (i = 0; i < num_pages; i++)
fb85fc9a 5134 set_page_dirty(eb->pages[i]);
b9473439 5135 return was_dirty;
d1310b2e 5136}
d1310b2e 5137
69ba3927 5138void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5139{
5140 unsigned long i;
5141 struct page *page;
5142 unsigned long num_pages;
5143
b4ce94de 5144 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5145 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5146 for (i = 0; i < num_pages; i++) {
fb85fc9a 5147 page = eb->pages[i];
33958dc6
CM
5148 if (page)
5149 ClearPageUptodate(page);
1259ab75 5150 }
1259ab75
CM
5151}
5152
09c25a8c 5153void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5154{
5155 unsigned long i;
5156 struct page *page;
5157 unsigned long num_pages;
5158
0b32f4bb 5159 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5160 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5161 for (i = 0; i < num_pages; i++) {
fb85fc9a 5162 page = eb->pages[i];
d1310b2e
CM
5163 SetPageUptodate(page);
5164 }
d1310b2e 5165}
d1310b2e 5166
0b32f4bb 5167int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5168{
0b32f4bb 5169 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5170}
d1310b2e
CM
5171
5172int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 5173 struct extent_buffer *eb, u64 start, int wait,
f188591e 5174 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
5175{
5176 unsigned long i;
5177 unsigned long start_i;
5178 struct page *page;
5179 int err;
5180 int ret = 0;
ce9adaa5
CM
5181 int locked_pages = 0;
5182 int all_uptodate = 1;
d1310b2e 5183 unsigned long num_pages;
727011e0 5184 unsigned long num_reads = 0;
a86c12c7 5185 struct bio *bio = NULL;
c8b97818 5186 unsigned long bio_flags = 0;
a86c12c7 5187
b4ce94de 5188 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5189 return 0;
5190
d1310b2e
CM
5191 if (start) {
5192 WARN_ON(start < eb->start);
09cbfeaf
KS
5193 start_i = (start >> PAGE_SHIFT) -
5194 (eb->start >> PAGE_SHIFT);
d1310b2e
CM
5195 } else {
5196 start_i = 0;
5197 }
5198
5199 num_pages = num_extent_pages(eb->start, eb->len);
5200 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5201 page = eb->pages[i];
bb82ab88 5202 if (wait == WAIT_NONE) {
2db04966 5203 if (!trylock_page(page))
ce9adaa5 5204 goto unlock_exit;
d1310b2e
CM
5205 } else {
5206 lock_page(page);
5207 }
ce9adaa5 5208 locked_pages++;
727011e0
CM
5209 if (!PageUptodate(page)) {
5210 num_reads++;
ce9adaa5 5211 all_uptodate = 0;
727011e0 5212 }
ce9adaa5
CM
5213 }
5214 if (all_uptodate) {
5215 if (start_i == 0)
b4ce94de 5216 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5217 goto unlock_exit;
5218 }
5219
656f30db 5220 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5221 eb->read_mirror = 0;
0b32f4bb 5222 atomic_set(&eb->io_pages, num_reads);
ce9adaa5 5223 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5224 page = eb->pages[i];
ce9adaa5 5225 if (!PageUptodate(page)) {
f188591e 5226 ClearPageError(page);
a86c12c7 5227 err = __extent_read_full_page(tree, page,
f188591e 5228 get_extent, &bio,
d4c7ca86 5229 mirror_num, &bio_flags,
1f7ad75b 5230 REQ_META);
d397712b 5231 if (err)
d1310b2e 5232 ret = err;
d1310b2e
CM
5233 } else {
5234 unlock_page(page);
5235 }
5236 }
5237
355808c2 5238 if (bio) {
1f7ad75b 5239 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5240 if (err)
5241 return err;
355808c2 5242 }
a86c12c7 5243
bb82ab88 5244 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5245 return ret;
d397712b 5246
d1310b2e 5247 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5248 page = eb->pages[i];
d1310b2e 5249 wait_on_page_locked(page);
d397712b 5250 if (!PageUptodate(page))
d1310b2e 5251 ret = -EIO;
d1310b2e 5252 }
d397712b 5253
d1310b2e 5254 return ret;
ce9adaa5
CM
5255
5256unlock_exit:
5257 i = start_i;
d397712b 5258 while (locked_pages > 0) {
fb85fc9a 5259 page = eb->pages[i];
ce9adaa5
CM
5260 i++;
5261 unlock_page(page);
5262 locked_pages--;
5263 }
5264 return ret;
d1310b2e 5265}
d1310b2e
CM
5266
5267void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5268 unsigned long start,
5269 unsigned long len)
5270{
5271 size_t cur;
5272 size_t offset;
5273 struct page *page;
5274 char *kaddr;
5275 char *dst = (char *)dstv;
09cbfeaf
KS
5276 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5277 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5278
5279 WARN_ON(start > eb->len);
5280 WARN_ON(start + len > eb->start + eb->len);
5281
09cbfeaf 5282 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5283
d397712b 5284 while (len > 0) {
fb85fc9a 5285 page = eb->pages[i];
d1310b2e 5286
09cbfeaf 5287 cur = min(len, (PAGE_SIZE - offset));
a6591715 5288 kaddr = page_address(page);
d1310b2e 5289 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5290
5291 dst += cur;
5292 len -= cur;
5293 offset = 0;
5294 i++;
5295 }
5296}
d1310b2e 5297
550ac1d8
GH
5298int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5299 unsigned long start,
5300 unsigned long len)
5301{
5302 size_t cur;
5303 size_t offset;
5304 struct page *page;
5305 char *kaddr;
5306 char __user *dst = (char __user *)dstv;
09cbfeaf
KS
5307 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5308 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5309 int ret = 0;
5310
5311 WARN_ON(start > eb->len);
5312 WARN_ON(start + len > eb->start + eb->len);
5313
09cbfeaf 5314 offset = (start_offset + start) & (PAGE_SIZE - 1);
550ac1d8
GH
5315
5316 while (len > 0) {
fb85fc9a 5317 page = eb->pages[i];
550ac1d8 5318
09cbfeaf 5319 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5320 kaddr = page_address(page);
5321 if (copy_to_user(dst, kaddr + offset, cur)) {
5322 ret = -EFAULT;
5323 break;
5324 }
5325
5326 dst += cur;
5327 len -= cur;
5328 offset = 0;
5329 i++;
5330 }
5331
5332 return ret;
5333}
5334
d1310b2e 5335int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 5336 unsigned long min_len, char **map,
d1310b2e 5337 unsigned long *map_start,
a6591715 5338 unsigned long *map_len)
d1310b2e 5339{
09cbfeaf 5340 size_t offset = start & (PAGE_SIZE - 1);
d1310b2e
CM
5341 char *kaddr;
5342 struct page *p;
09cbfeaf
KS
5343 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5344 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5345 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5346 PAGE_SHIFT;
d1310b2e
CM
5347
5348 if (i != end_i)
5349 return -EINVAL;
5350
5351 if (i == 0) {
5352 offset = start_offset;
5353 *map_start = 0;
5354 } else {
5355 offset = 0;
09cbfeaf 5356 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5357 }
d397712b 5358
d1310b2e 5359 if (start + min_len > eb->len) {
31b1a2bd 5360 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
c1c9ff7c
GU
5361 "wanted %lu %lu\n",
5362 eb->start, eb->len, start, min_len);
85026533 5363 return -EINVAL;
d1310b2e
CM
5364 }
5365
fb85fc9a 5366 p = eb->pages[i];
a6591715 5367 kaddr = page_address(p);
d1310b2e 5368 *map = kaddr + offset;
09cbfeaf 5369 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5370 return 0;
5371}
d1310b2e 5372
d1310b2e
CM
5373int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5374 unsigned long start,
5375 unsigned long len)
5376{
5377 size_t cur;
5378 size_t offset;
5379 struct page *page;
5380 char *kaddr;
5381 char *ptr = (char *)ptrv;
09cbfeaf
KS
5382 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5383 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5384 int ret = 0;
5385
5386 WARN_ON(start > eb->len);
5387 WARN_ON(start + len > eb->start + eb->len);
5388
09cbfeaf 5389 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5390
d397712b 5391 while (len > 0) {
fb85fc9a 5392 page = eb->pages[i];
d1310b2e 5393
09cbfeaf 5394 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5395
a6591715 5396 kaddr = page_address(page);
d1310b2e 5397 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5398 if (ret)
5399 break;
5400
5401 ptr += cur;
5402 len -= cur;
5403 offset = 0;
5404 i++;
5405 }
5406 return ret;
5407}
d1310b2e
CM
5408
5409void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5410 unsigned long start, unsigned long len)
5411{
5412 size_t cur;
5413 size_t offset;
5414 struct page *page;
5415 char *kaddr;
5416 char *src = (char *)srcv;
09cbfeaf
KS
5417 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5418 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5419
5420 WARN_ON(start > eb->len);
5421 WARN_ON(start + len > eb->start + eb->len);
5422
09cbfeaf 5423 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5424
d397712b 5425 while (len > 0) {
fb85fc9a 5426 page = eb->pages[i];
d1310b2e
CM
5427 WARN_ON(!PageUptodate(page));
5428
09cbfeaf 5429 cur = min(len, PAGE_SIZE - offset);
a6591715 5430 kaddr = page_address(page);
d1310b2e 5431 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5432
5433 src += cur;
5434 len -= cur;
5435 offset = 0;
5436 i++;
5437 }
5438}
d1310b2e
CM
5439
5440void memset_extent_buffer(struct extent_buffer *eb, char c,
5441 unsigned long start, unsigned long len)
5442{
5443 size_t cur;
5444 size_t offset;
5445 struct page *page;
5446 char *kaddr;
09cbfeaf
KS
5447 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5448 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5449
5450 WARN_ON(start > eb->len);
5451 WARN_ON(start + len > eb->start + eb->len);
5452
09cbfeaf 5453 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5454
d397712b 5455 while (len > 0) {
fb85fc9a 5456 page = eb->pages[i];
d1310b2e
CM
5457 WARN_ON(!PageUptodate(page));
5458
09cbfeaf 5459 cur = min(len, PAGE_SIZE - offset);
a6591715 5460 kaddr = page_address(page);
d1310b2e 5461 memset(kaddr + offset, c, cur);
d1310b2e
CM
5462
5463 len -= cur;
5464 offset = 0;
5465 i++;
5466 }
5467}
d1310b2e
CM
5468
5469void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5470 unsigned long dst_offset, unsigned long src_offset,
5471 unsigned long len)
5472{
5473 u64 dst_len = dst->len;
5474 size_t cur;
5475 size_t offset;
5476 struct page *page;
5477 char *kaddr;
09cbfeaf
KS
5478 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5479 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5480
5481 WARN_ON(src->len != dst_len);
5482
5483 offset = (start_offset + dst_offset) &
09cbfeaf 5484 (PAGE_SIZE - 1);
d1310b2e 5485
d397712b 5486 while (len > 0) {
fb85fc9a 5487 page = dst->pages[i];
d1310b2e
CM
5488 WARN_ON(!PageUptodate(page));
5489
09cbfeaf 5490 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5491
a6591715 5492 kaddr = page_address(page);
d1310b2e 5493 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5494
5495 src_offset += cur;
5496 len -= cur;
5497 offset = 0;
5498 i++;
5499 }
5500}
d1310b2e 5501
3e1e8bb7
OS
5502/*
5503 * The extent buffer bitmap operations are done with byte granularity because
5504 * bitmap items are not guaranteed to be aligned to a word and therefore a
5505 * single word in a bitmap may straddle two pages in the extent buffer.
5506 */
5507#define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE)
5508#define BYTE_MASK ((1 << BITS_PER_BYTE) - 1)
5509#define BITMAP_FIRST_BYTE_MASK(start) \
5510 ((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK)
5511#define BITMAP_LAST_BYTE_MASK(nbits) \
5512 (BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1)))
5513
5514/*
5515 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5516 * given bit number
5517 * @eb: the extent buffer
5518 * @start: offset of the bitmap item in the extent buffer
5519 * @nr: bit number
5520 * @page_index: return index of the page in the extent buffer that contains the
5521 * given bit number
5522 * @page_offset: return offset into the page given by page_index
5523 *
5524 * This helper hides the ugliness of finding the byte in an extent buffer which
5525 * contains a given bit.
5526 */
5527static inline void eb_bitmap_offset(struct extent_buffer *eb,
5528 unsigned long start, unsigned long nr,
5529 unsigned long *page_index,
5530 size_t *page_offset)
5531{
09cbfeaf 5532 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
3e1e8bb7
OS
5533 size_t byte_offset = BIT_BYTE(nr);
5534 size_t offset;
5535
5536 /*
5537 * The byte we want is the offset of the extent buffer + the offset of
5538 * the bitmap item in the extent buffer + the offset of the byte in the
5539 * bitmap item.
5540 */
5541 offset = start_offset + start + byte_offset;
5542
09cbfeaf
KS
5543 *page_index = offset >> PAGE_SHIFT;
5544 *page_offset = offset & (PAGE_SIZE - 1);
3e1e8bb7
OS
5545}
5546
5547/**
5548 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5549 * @eb: the extent buffer
5550 * @start: offset of the bitmap item in the extent buffer
5551 * @nr: bit number to test
5552 */
5553int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5554 unsigned long nr)
5555{
5556 char *kaddr;
5557 struct page *page;
5558 unsigned long i;
5559 size_t offset;
5560
5561 eb_bitmap_offset(eb, start, nr, &i, &offset);
5562 page = eb->pages[i];
5563 WARN_ON(!PageUptodate(page));
5564 kaddr = page_address(page);
5565 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5566}
5567
5568/**
5569 * extent_buffer_bitmap_set - set an area of a bitmap
5570 * @eb: the extent buffer
5571 * @start: offset of the bitmap item in the extent buffer
5572 * @pos: bit number of the first bit
5573 * @len: number of bits to set
5574 */
5575void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5576 unsigned long pos, unsigned long len)
5577{
5578 char *kaddr;
5579 struct page *page;
5580 unsigned long i;
5581 size_t offset;
5582 const unsigned int size = pos + len;
5583 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5584 unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5585
5586 eb_bitmap_offset(eb, start, pos, &i, &offset);
5587 page = eb->pages[i];
5588 WARN_ON(!PageUptodate(page));
5589 kaddr = page_address(page);
5590
5591 while (len >= bits_to_set) {
5592 kaddr[offset] |= mask_to_set;
5593 len -= bits_to_set;
5594 bits_to_set = BITS_PER_BYTE;
5595 mask_to_set = ~0U;
09cbfeaf 5596 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5597 offset = 0;
5598 page = eb->pages[++i];
5599 WARN_ON(!PageUptodate(page));
5600 kaddr = page_address(page);
5601 }
5602 }
5603 if (len) {
5604 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5605 kaddr[offset] |= mask_to_set;
5606 }
5607}
5608
5609
5610/**
5611 * extent_buffer_bitmap_clear - clear an area of a bitmap
5612 * @eb: the extent buffer
5613 * @start: offset of the bitmap item in the extent buffer
5614 * @pos: bit number of the first bit
5615 * @len: number of bits to clear
5616 */
5617void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5618 unsigned long pos, unsigned long len)
5619{
5620 char *kaddr;
5621 struct page *page;
5622 unsigned long i;
5623 size_t offset;
5624 const unsigned int size = pos + len;
5625 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5626 unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5627
5628 eb_bitmap_offset(eb, start, pos, &i, &offset);
5629 page = eb->pages[i];
5630 WARN_ON(!PageUptodate(page));
5631 kaddr = page_address(page);
5632
5633 while (len >= bits_to_clear) {
5634 kaddr[offset] &= ~mask_to_clear;
5635 len -= bits_to_clear;
5636 bits_to_clear = BITS_PER_BYTE;
5637 mask_to_clear = ~0U;
09cbfeaf 5638 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5639 offset = 0;
5640 page = eb->pages[++i];
5641 WARN_ON(!PageUptodate(page));
5642 kaddr = page_address(page);
5643 }
5644 }
5645 if (len) {
5646 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5647 kaddr[offset] &= ~mask_to_clear;
5648 }
5649}
5650
3387206f
ST
5651static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5652{
5653 unsigned long distance = (src > dst) ? src - dst : dst - src;
5654 return distance < len;
5655}
5656
d1310b2e
CM
5657static void copy_pages(struct page *dst_page, struct page *src_page,
5658 unsigned long dst_off, unsigned long src_off,
5659 unsigned long len)
5660{
a6591715 5661 char *dst_kaddr = page_address(dst_page);
d1310b2e 5662 char *src_kaddr;
727011e0 5663 int must_memmove = 0;
d1310b2e 5664
3387206f 5665 if (dst_page != src_page) {
a6591715 5666 src_kaddr = page_address(src_page);
3387206f 5667 } else {
d1310b2e 5668 src_kaddr = dst_kaddr;
727011e0
CM
5669 if (areas_overlap(src_off, dst_off, len))
5670 must_memmove = 1;
3387206f 5671 }
d1310b2e 5672
727011e0
CM
5673 if (must_memmove)
5674 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5675 else
5676 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5677}
5678
5679void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5680 unsigned long src_offset, unsigned long len)
5681{
5682 size_t cur;
5683 size_t dst_off_in_page;
5684 size_t src_off_in_page;
09cbfeaf 5685 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5686 unsigned long dst_i;
5687 unsigned long src_i;
5688
5689 if (src_offset + len > dst->len) {
f14d104d
DS
5690 btrfs_err(dst->fs_info,
5691 "memmove bogus src_offset %lu move "
5692 "len %lu dst len %lu", src_offset, len, dst->len);
d1310b2e
CM
5693 BUG_ON(1);
5694 }
5695 if (dst_offset + len > dst->len) {
f14d104d
DS
5696 btrfs_err(dst->fs_info,
5697 "memmove bogus dst_offset %lu move "
5698 "len %lu dst len %lu", dst_offset, len, dst->len);
d1310b2e
CM
5699 BUG_ON(1);
5700 }
5701
d397712b 5702 while (len > 0) {
d1310b2e 5703 dst_off_in_page = (start_offset + dst_offset) &
09cbfeaf 5704 (PAGE_SIZE - 1);
d1310b2e 5705 src_off_in_page = (start_offset + src_offset) &
09cbfeaf 5706 (PAGE_SIZE - 1);
d1310b2e 5707
09cbfeaf
KS
5708 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5709 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5710
09cbfeaf 5711 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5712 src_off_in_page));
5713 cur = min_t(unsigned long, cur,
09cbfeaf 5714 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5715
fb85fc9a 5716 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5717 dst_off_in_page, src_off_in_page, cur);
5718
5719 src_offset += cur;
5720 dst_offset += cur;
5721 len -= cur;
5722 }
5723}
d1310b2e
CM
5724
5725void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5726 unsigned long src_offset, unsigned long len)
5727{
5728 size_t cur;
5729 size_t dst_off_in_page;
5730 size_t src_off_in_page;
5731 unsigned long dst_end = dst_offset + len - 1;
5732 unsigned long src_end = src_offset + len - 1;
09cbfeaf 5733 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5734 unsigned long dst_i;
5735 unsigned long src_i;
5736
5737 if (src_offset + len > dst->len) {
f14d104d
DS
5738 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5739 "len %lu len %lu", src_offset, len, dst->len);
d1310b2e
CM
5740 BUG_ON(1);
5741 }
5742 if (dst_offset + len > dst->len) {
f14d104d
DS
5743 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5744 "len %lu len %lu", dst_offset, len, dst->len);
d1310b2e
CM
5745 BUG_ON(1);
5746 }
727011e0 5747 if (dst_offset < src_offset) {
d1310b2e
CM
5748 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5749 return;
5750 }
d397712b 5751 while (len > 0) {
09cbfeaf
KS
5752 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5753 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e
CM
5754
5755 dst_off_in_page = (start_offset + dst_end) &
09cbfeaf 5756 (PAGE_SIZE - 1);
d1310b2e 5757 src_off_in_page = (start_offset + src_end) &
09cbfeaf 5758 (PAGE_SIZE - 1);
d1310b2e
CM
5759
5760 cur = min_t(unsigned long, len, src_off_in_page + 1);
5761 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5762 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5763 dst_off_in_page - cur + 1,
5764 src_off_in_page - cur + 1, cur);
5765
5766 dst_end -= cur;
5767 src_end -= cur;
5768 len -= cur;
5769 }
5770}
6af118ce 5771
f7a52a40 5772int try_release_extent_buffer(struct page *page)
19fe0a8b 5773{
6af118ce 5774 struct extent_buffer *eb;
6af118ce 5775
3083ee2e 5776 /*
01327610 5777 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
5778 * now.
5779 */
5780 spin_lock(&page->mapping->private_lock);
5781 if (!PagePrivate(page)) {
5782 spin_unlock(&page->mapping->private_lock);
4f2de97a 5783 return 1;
45f49bce 5784 }
6af118ce 5785
3083ee2e
JB
5786 eb = (struct extent_buffer *)page->private;
5787 BUG_ON(!eb);
19fe0a8b
MX
5788
5789 /*
3083ee2e
JB
5790 * This is a little awful but should be ok, we need to make sure that
5791 * the eb doesn't disappear out from under us while we're looking at
5792 * this page.
19fe0a8b 5793 */
3083ee2e 5794 spin_lock(&eb->refs_lock);
0b32f4bb 5795 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5796 spin_unlock(&eb->refs_lock);
5797 spin_unlock(&page->mapping->private_lock);
5798 return 0;
b9473439 5799 }
3083ee2e 5800 spin_unlock(&page->mapping->private_lock);
897ca6e9 5801
19fe0a8b 5802 /*
3083ee2e
JB
5803 * If tree ref isn't set then we know the ref on this eb is a real ref,
5804 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5805 */
3083ee2e
JB
5806 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5807 spin_unlock(&eb->refs_lock);
5808 return 0;
b9473439 5809 }
19fe0a8b 5810
f7a52a40 5811 return release_extent_buffer(eb);
6af118ce 5812}
This page took 0.821536 seconds and 5 git commands to generate.