Btrfs: use bitfield instead of integer data type for the some variants in btrfs_root
[deliverable/linux.git] / fs / btrfs / file.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
39279cc3
CM
19#include <linux/fs.h>
20#include <linux/pagemap.h>
21#include <linux/highmem.h>
22#include <linux/time.h>
23#include <linux/init.h>
24#include <linux/string.h>
39279cc3
CM
25#include <linux/backing-dev.h>
26#include <linux/mpage.h>
a27bb332 27#include <linux/aio.h>
2fe17c10 28#include <linux/falloc.h>
39279cc3
CM
29#include <linux/swap.h>
30#include <linux/writeback.h>
31#include <linux/statfs.h>
32#include <linux/compat.h>
5a0e3ad6 33#include <linux/slab.h>
55e301fd 34#include <linux/btrfs.h>
39279cc3
CM
35#include "ctree.h"
36#include "disk-io.h"
37#include "transaction.h"
38#include "btrfs_inode.h"
39279cc3 39#include "print-tree.h"
e02119d5
CM
40#include "tree-log.h"
41#include "locking.h"
2aaa6655 42#include "volumes.h"
39279cc3 43
9247f317 44static struct kmem_cache *btrfs_inode_defrag_cachep;
4cb5300b
CM
45/*
46 * when auto defrag is enabled we
47 * queue up these defrag structs to remember which
48 * inodes need defragging passes
49 */
50struct inode_defrag {
51 struct rb_node rb_node;
52 /* objectid */
53 u64 ino;
54 /*
55 * transid where the defrag was added, we search for
56 * extents newer than this
57 */
58 u64 transid;
59
60 /* root objectid */
61 u64 root;
62
63 /* last offset we were able to defrag */
64 u64 last_offset;
65
66 /* if we've wrapped around back to zero once already */
67 int cycled;
68};
69
762f2263
MX
70static int __compare_inode_defrag(struct inode_defrag *defrag1,
71 struct inode_defrag *defrag2)
72{
73 if (defrag1->root > defrag2->root)
74 return 1;
75 else if (defrag1->root < defrag2->root)
76 return -1;
77 else if (defrag1->ino > defrag2->ino)
78 return 1;
79 else if (defrag1->ino < defrag2->ino)
80 return -1;
81 else
82 return 0;
83}
84
4cb5300b
CM
85/* pop a record for an inode into the defrag tree. The lock
86 * must be held already
87 *
88 * If you're inserting a record for an older transid than an
89 * existing record, the transid already in the tree is lowered
90 *
91 * If an existing record is found the defrag item you
92 * pass in is freed
93 */
8ddc4734 94static int __btrfs_add_inode_defrag(struct inode *inode,
4cb5300b
CM
95 struct inode_defrag *defrag)
96{
97 struct btrfs_root *root = BTRFS_I(inode)->root;
98 struct inode_defrag *entry;
99 struct rb_node **p;
100 struct rb_node *parent = NULL;
762f2263 101 int ret;
4cb5300b
CM
102
103 p = &root->fs_info->defrag_inodes.rb_node;
104 while (*p) {
105 parent = *p;
106 entry = rb_entry(parent, struct inode_defrag, rb_node);
107
762f2263
MX
108 ret = __compare_inode_defrag(defrag, entry);
109 if (ret < 0)
4cb5300b 110 p = &parent->rb_left;
762f2263 111 else if (ret > 0)
4cb5300b
CM
112 p = &parent->rb_right;
113 else {
114 /* if we're reinserting an entry for
115 * an old defrag run, make sure to
116 * lower the transid of our existing record
117 */
118 if (defrag->transid < entry->transid)
119 entry->transid = defrag->transid;
120 if (defrag->last_offset > entry->last_offset)
121 entry->last_offset = defrag->last_offset;
8ddc4734 122 return -EEXIST;
4cb5300b
CM
123 }
124 }
72ac3c0d 125 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
4cb5300b
CM
126 rb_link_node(&defrag->rb_node, parent, p);
127 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
8ddc4734
MX
128 return 0;
129}
4cb5300b 130
8ddc4734
MX
131static inline int __need_auto_defrag(struct btrfs_root *root)
132{
133 if (!btrfs_test_opt(root, AUTO_DEFRAG))
134 return 0;
135
136 if (btrfs_fs_closing(root->fs_info))
137 return 0;
4cb5300b 138
8ddc4734 139 return 1;
4cb5300b
CM
140}
141
142/*
143 * insert a defrag record for this inode if auto defrag is
144 * enabled
145 */
146int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
147 struct inode *inode)
148{
149 struct btrfs_root *root = BTRFS_I(inode)->root;
150 struct inode_defrag *defrag;
4cb5300b 151 u64 transid;
8ddc4734 152 int ret;
4cb5300b 153
8ddc4734 154 if (!__need_auto_defrag(root))
4cb5300b
CM
155 return 0;
156
72ac3c0d 157 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
4cb5300b
CM
158 return 0;
159
160 if (trans)
161 transid = trans->transid;
162 else
163 transid = BTRFS_I(inode)->root->last_trans;
164
9247f317 165 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
4cb5300b
CM
166 if (!defrag)
167 return -ENOMEM;
168
a4689d2b 169 defrag->ino = btrfs_ino(inode);
4cb5300b
CM
170 defrag->transid = transid;
171 defrag->root = root->root_key.objectid;
172
173 spin_lock(&root->fs_info->defrag_inodes_lock);
8ddc4734
MX
174 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
175 /*
176 * If we set IN_DEFRAG flag and evict the inode from memory,
177 * and then re-read this inode, this new inode doesn't have
178 * IN_DEFRAG flag. At the case, we may find the existed defrag.
179 */
180 ret = __btrfs_add_inode_defrag(inode, defrag);
181 if (ret)
182 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
183 } else {
9247f317 184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
8ddc4734 185 }
4cb5300b 186 spin_unlock(&root->fs_info->defrag_inodes_lock);
a0f98dde 187 return 0;
4cb5300b
CM
188}
189
190/*
8ddc4734
MX
191 * Requeue the defrag object. If there is a defrag object that points to
192 * the same inode in the tree, we will merge them together (by
193 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
4cb5300b 194 */
48a3b636
ES
195static void btrfs_requeue_inode_defrag(struct inode *inode,
196 struct inode_defrag *defrag)
8ddc4734
MX
197{
198 struct btrfs_root *root = BTRFS_I(inode)->root;
199 int ret;
200
201 if (!__need_auto_defrag(root))
202 goto out;
203
204 /*
205 * Here we don't check the IN_DEFRAG flag, because we need merge
206 * them together.
207 */
208 spin_lock(&root->fs_info->defrag_inodes_lock);
209 ret = __btrfs_add_inode_defrag(inode, defrag);
210 spin_unlock(&root->fs_info->defrag_inodes_lock);
211 if (ret)
212 goto out;
213 return;
214out:
215 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
216}
217
4cb5300b 218/*
26176e7c
MX
219 * pick the defragable inode that we want, if it doesn't exist, we will get
220 * the next one.
4cb5300b 221 */
26176e7c
MX
222static struct inode_defrag *
223btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
4cb5300b
CM
224{
225 struct inode_defrag *entry = NULL;
762f2263 226 struct inode_defrag tmp;
4cb5300b
CM
227 struct rb_node *p;
228 struct rb_node *parent = NULL;
762f2263
MX
229 int ret;
230
231 tmp.ino = ino;
232 tmp.root = root;
4cb5300b 233
26176e7c
MX
234 spin_lock(&fs_info->defrag_inodes_lock);
235 p = fs_info->defrag_inodes.rb_node;
4cb5300b
CM
236 while (p) {
237 parent = p;
238 entry = rb_entry(parent, struct inode_defrag, rb_node);
239
762f2263
MX
240 ret = __compare_inode_defrag(&tmp, entry);
241 if (ret < 0)
4cb5300b 242 p = parent->rb_left;
762f2263 243 else if (ret > 0)
4cb5300b
CM
244 p = parent->rb_right;
245 else
26176e7c 246 goto out;
4cb5300b
CM
247 }
248
26176e7c
MX
249 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
250 parent = rb_next(parent);
251 if (parent)
4cb5300b 252 entry = rb_entry(parent, struct inode_defrag, rb_node);
26176e7c
MX
253 else
254 entry = NULL;
4cb5300b 255 }
26176e7c
MX
256out:
257 if (entry)
258 rb_erase(parent, &fs_info->defrag_inodes);
259 spin_unlock(&fs_info->defrag_inodes_lock);
260 return entry;
4cb5300b
CM
261}
262
26176e7c 263void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
4cb5300b
CM
264{
265 struct inode_defrag *defrag;
26176e7c
MX
266 struct rb_node *node;
267
268 spin_lock(&fs_info->defrag_inodes_lock);
269 node = rb_first(&fs_info->defrag_inodes);
270 while (node) {
271 rb_erase(node, &fs_info->defrag_inodes);
272 defrag = rb_entry(node, struct inode_defrag, rb_node);
273 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
274
275 if (need_resched()) {
276 spin_unlock(&fs_info->defrag_inodes_lock);
277 cond_resched();
278 spin_lock(&fs_info->defrag_inodes_lock);
279 }
280
281 node = rb_first(&fs_info->defrag_inodes);
282 }
283 spin_unlock(&fs_info->defrag_inodes_lock);
284}
285
286#define BTRFS_DEFRAG_BATCH 1024
287
288static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
289 struct inode_defrag *defrag)
290{
4cb5300b
CM
291 struct btrfs_root *inode_root;
292 struct inode *inode;
4cb5300b
CM
293 struct btrfs_key key;
294 struct btrfs_ioctl_defrag_range_args range;
4cb5300b 295 int num_defrag;
6f1c3605
LB
296 int index;
297 int ret;
4cb5300b 298
26176e7c
MX
299 /* get the inode */
300 key.objectid = defrag->root;
301 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
302 key.offset = (u64)-1;
6f1c3605
LB
303
304 index = srcu_read_lock(&fs_info->subvol_srcu);
305
26176e7c
MX
306 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
307 if (IS_ERR(inode_root)) {
6f1c3605
LB
308 ret = PTR_ERR(inode_root);
309 goto cleanup;
310 }
26176e7c
MX
311
312 key.objectid = defrag->ino;
313 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
314 key.offset = 0;
315 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
316 if (IS_ERR(inode)) {
6f1c3605
LB
317 ret = PTR_ERR(inode);
318 goto cleanup;
26176e7c 319 }
6f1c3605 320 srcu_read_unlock(&fs_info->subvol_srcu, index);
26176e7c
MX
321
322 /* do a chunk of defrag */
323 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
4cb5300b
CM
324 memset(&range, 0, sizeof(range));
325 range.len = (u64)-1;
26176e7c 326 range.start = defrag->last_offset;
b66f00da
MX
327
328 sb_start_write(fs_info->sb);
26176e7c
MX
329 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
330 BTRFS_DEFRAG_BATCH);
b66f00da 331 sb_end_write(fs_info->sb);
26176e7c
MX
332 /*
333 * if we filled the whole defrag batch, there
334 * must be more work to do. Queue this defrag
335 * again
336 */
337 if (num_defrag == BTRFS_DEFRAG_BATCH) {
338 defrag->last_offset = range.start;
339 btrfs_requeue_inode_defrag(inode, defrag);
340 } else if (defrag->last_offset && !defrag->cycled) {
341 /*
342 * we didn't fill our defrag batch, but
343 * we didn't start at zero. Make sure we loop
344 * around to the start of the file.
345 */
346 defrag->last_offset = 0;
347 defrag->cycled = 1;
348 btrfs_requeue_inode_defrag(inode, defrag);
349 } else {
350 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
351 }
352
353 iput(inode);
354 return 0;
6f1c3605
LB
355cleanup:
356 srcu_read_unlock(&fs_info->subvol_srcu, index);
357 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
358 return ret;
26176e7c
MX
359}
360
361/*
362 * run through the list of inodes in the FS that need
363 * defragging
364 */
365int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
366{
367 struct inode_defrag *defrag;
368 u64 first_ino = 0;
369 u64 root_objectid = 0;
4cb5300b
CM
370
371 atomic_inc(&fs_info->defrag_running);
67871254 372 while (1) {
dc81cdc5
MX
373 /* Pause the auto defragger. */
374 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
375 &fs_info->fs_state))
376 break;
377
26176e7c
MX
378 if (!__need_auto_defrag(fs_info->tree_root))
379 break;
4cb5300b
CM
380
381 /* find an inode to defrag */
26176e7c
MX
382 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
383 first_ino);
4cb5300b 384 if (!defrag) {
26176e7c 385 if (root_objectid || first_ino) {
762f2263 386 root_objectid = 0;
4cb5300b
CM
387 first_ino = 0;
388 continue;
389 } else {
390 break;
391 }
392 }
393
4cb5300b 394 first_ino = defrag->ino + 1;
762f2263 395 root_objectid = defrag->root;
4cb5300b 396
26176e7c 397 __btrfs_run_defrag_inode(fs_info, defrag);
4cb5300b 398 }
4cb5300b
CM
399 atomic_dec(&fs_info->defrag_running);
400
401 /*
402 * during unmount, we use the transaction_wait queue to
403 * wait for the defragger to stop
404 */
405 wake_up(&fs_info->transaction_wait);
406 return 0;
407}
39279cc3 408
d352ac68
CM
409/* simple helper to fault in pages and copy. This should go away
410 * and be replaced with calls into generic code.
411 */
d397712b 412static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
d0215f3e 413 size_t write_bytes,
a1b32a59 414 struct page **prepared_pages,
11c65dcc 415 struct iov_iter *i)
39279cc3 416{
914ee295 417 size_t copied = 0;
d0215f3e 418 size_t total_copied = 0;
11c65dcc 419 int pg = 0;
39279cc3
CM
420 int offset = pos & (PAGE_CACHE_SIZE - 1);
421
11c65dcc 422 while (write_bytes > 0) {
39279cc3
CM
423 size_t count = min_t(size_t,
424 PAGE_CACHE_SIZE - offset, write_bytes);
11c65dcc 425 struct page *page = prepared_pages[pg];
914ee295
XZ
426 /*
427 * Copy data from userspace to the current page
914ee295 428 */
914ee295 429 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
11c65dcc 430
39279cc3
CM
431 /* Flush processor's dcache for this page */
432 flush_dcache_page(page);
31339acd
CM
433
434 /*
435 * if we get a partial write, we can end up with
436 * partially up to date pages. These add
437 * a lot of complexity, so make sure they don't
438 * happen by forcing this copy to be retried.
439 *
440 * The rest of the btrfs_file_write code will fall
441 * back to page at a time copies after we return 0.
442 */
443 if (!PageUptodate(page) && copied < count)
444 copied = 0;
445
11c65dcc
JB
446 iov_iter_advance(i, copied);
447 write_bytes -= copied;
914ee295 448 total_copied += copied;
39279cc3 449
914ee295 450 /* Return to btrfs_file_aio_write to fault page */
9f570b8d 451 if (unlikely(copied == 0))
914ee295 452 break;
11c65dcc
JB
453
454 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
455 offset += copied;
456 } else {
457 pg++;
458 offset = 0;
459 }
39279cc3 460 }
914ee295 461 return total_copied;
39279cc3
CM
462}
463
d352ac68
CM
464/*
465 * unlocks pages after btrfs_file_write is done with them
466 */
48a3b636 467static void btrfs_drop_pages(struct page **pages, size_t num_pages)
39279cc3
CM
468{
469 size_t i;
470 for (i = 0; i < num_pages; i++) {
d352ac68
CM
471 /* page checked is some magic around finding pages that
472 * have been modified without going through btrfs_set_page_dirty
473 * clear it here
474 */
4a096752 475 ClearPageChecked(pages[i]);
39279cc3
CM
476 unlock_page(pages[i]);
477 mark_page_accessed(pages[i]);
478 page_cache_release(pages[i]);
479 }
480}
481
d352ac68
CM
482/*
483 * after copy_from_user, pages need to be dirtied and we need to make
484 * sure holes are created between the current EOF and the start of
485 * any next extents (if required).
486 *
487 * this also makes the decision about creating an inline extent vs
488 * doing real data extents, marking pages dirty and delalloc as required.
489 */
be1a12a0 490int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
48a3b636
ES
491 struct page **pages, size_t num_pages,
492 loff_t pos, size_t write_bytes,
493 struct extent_state **cached)
39279cc3 494{
39279cc3 495 int err = 0;
a52d9a80 496 int i;
db94535d 497 u64 num_bytes;
a52d9a80
CM
498 u64 start_pos;
499 u64 end_of_last_block;
500 u64 end_pos = pos + write_bytes;
501 loff_t isize = i_size_read(inode);
39279cc3 502
5f39d397 503 start_pos = pos & ~((u64)root->sectorsize - 1);
fda2832f 504 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
39279cc3 505
db94535d 506 end_of_last_block = start_pos + num_bytes - 1;
2ac55d41 507 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
be1a12a0 508 cached);
d0215f3e
JB
509 if (err)
510 return err;
9ed74f2d 511
c8b97818
CM
512 for (i = 0; i < num_pages; i++) {
513 struct page *p = pages[i];
514 SetPageUptodate(p);
515 ClearPageChecked(p);
516 set_page_dirty(p);
a52d9a80 517 }
9f570b8d
JB
518
519 /*
520 * we've only changed i_size in ram, and we haven't updated
521 * the disk i_size. There is no need to log the inode
522 * at this time.
523 */
524 if (end_pos > isize)
a52d9a80 525 i_size_write(inode, end_pos);
a22285a6 526 return 0;
39279cc3
CM
527}
528
d352ac68
CM
529/*
530 * this drops all the extents in the cache that intersect the range
531 * [start, end]. Existing extents are split as required.
532 */
7014cdb4
JB
533void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
534 int skip_pinned)
a52d9a80
CM
535{
536 struct extent_map *em;
3b951516
CM
537 struct extent_map *split = NULL;
538 struct extent_map *split2 = NULL;
a52d9a80 539 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
39b5637f 540 u64 len = end - start + 1;
5dc562c5 541 u64 gen;
3b951516
CM
542 int ret;
543 int testend = 1;
5b21f2ed 544 unsigned long flags;
c8b97818 545 int compressed = 0;
09a2a8f9 546 bool modified;
a52d9a80 547
e6dcd2dc 548 WARN_ON(end < start);
3b951516 549 if (end == (u64)-1) {
39b5637f 550 len = (u64)-1;
3b951516
CM
551 testend = 0;
552 }
d397712b 553 while (1) {
7014cdb4
JB
554 int no_splits = 0;
555
09a2a8f9 556 modified = false;
3b951516 557 if (!split)
172ddd60 558 split = alloc_extent_map();
3b951516 559 if (!split2)
172ddd60 560 split2 = alloc_extent_map();
7014cdb4
JB
561 if (!split || !split2)
562 no_splits = 1;
3b951516 563
890871be 564 write_lock(&em_tree->lock);
39b5637f 565 em = lookup_extent_mapping(em_tree, start, len);
d1310b2e 566 if (!em) {
890871be 567 write_unlock(&em_tree->lock);
a52d9a80 568 break;
d1310b2e 569 }
5b21f2ed 570 flags = em->flags;
5dc562c5 571 gen = em->generation;
5b21f2ed 572 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
55ef6899 573 if (testend && em->start + em->len >= start + len) {
5b21f2ed 574 free_extent_map(em);
a1ed835e 575 write_unlock(&em_tree->lock);
5b21f2ed
ZY
576 break;
577 }
55ef6899
YZ
578 start = em->start + em->len;
579 if (testend)
5b21f2ed 580 len = start + len - (em->start + em->len);
5b21f2ed 581 free_extent_map(em);
a1ed835e 582 write_unlock(&em_tree->lock);
5b21f2ed
ZY
583 continue;
584 }
c8b97818 585 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3ce7e67a 586 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
3b277594 587 clear_bit(EXTENT_FLAG_LOGGING, &flags);
09a2a8f9 588 modified = !list_empty(&em->list);
7014cdb4
JB
589 if (no_splits)
590 goto next;
3b951516 591
ee20a983 592 if (em->start < start) {
3b951516
CM
593 split->start = em->start;
594 split->len = start - em->start;
ee20a983
JB
595
596 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
597 split->orig_start = em->orig_start;
598 split->block_start = em->block_start;
599
600 if (compressed)
601 split->block_len = em->block_len;
602 else
603 split->block_len = split->len;
604 split->orig_block_len = max(split->block_len,
605 em->orig_block_len);
606 split->ram_bytes = em->ram_bytes;
607 } else {
608 split->orig_start = split->start;
609 split->block_len = 0;
610 split->block_start = em->block_start;
611 split->orig_block_len = 0;
612 split->ram_bytes = split->len;
613 }
614
5dc562c5 615 split->generation = gen;
3b951516 616 split->bdev = em->bdev;
5b21f2ed 617 split->flags = flags;
261507a0 618 split->compress_type = em->compress_type;
176840b3 619 replace_extent_mapping(em_tree, em, split, modified);
3b951516
CM
620 free_extent_map(split);
621 split = split2;
622 split2 = NULL;
623 }
ee20a983 624 if (testend && em->start + em->len > start + len) {
3b951516
CM
625 u64 diff = start + len - em->start;
626
627 split->start = start + len;
628 split->len = em->start + em->len - (start + len);
629 split->bdev = em->bdev;
5b21f2ed 630 split->flags = flags;
261507a0 631 split->compress_type = em->compress_type;
5dc562c5 632 split->generation = gen;
ee20a983
JB
633
634 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
635 split->orig_block_len = max(em->block_len,
b4939680 636 em->orig_block_len);
3b951516 637
ee20a983
JB
638 split->ram_bytes = em->ram_bytes;
639 if (compressed) {
640 split->block_len = em->block_len;
641 split->block_start = em->block_start;
642 split->orig_start = em->orig_start;
643 } else {
644 split->block_len = split->len;
645 split->block_start = em->block_start
646 + diff;
647 split->orig_start = em->orig_start;
648 }
c8b97818 649 } else {
ee20a983
JB
650 split->ram_bytes = split->len;
651 split->orig_start = split->start;
652 split->block_len = 0;
653 split->block_start = em->block_start;
654 split->orig_block_len = 0;
c8b97818 655 }
3b951516 656
176840b3
FM
657 if (extent_map_in_tree(em)) {
658 replace_extent_mapping(em_tree, em, split,
659 modified);
660 } else {
661 ret = add_extent_mapping(em_tree, split,
662 modified);
663 ASSERT(ret == 0); /* Logic error */
664 }
3b951516
CM
665 free_extent_map(split);
666 split = NULL;
667 }
7014cdb4 668next:
176840b3
FM
669 if (extent_map_in_tree(em))
670 remove_extent_mapping(em_tree, em);
890871be 671 write_unlock(&em_tree->lock);
d1310b2e 672
a52d9a80
CM
673 /* once for us */
674 free_extent_map(em);
675 /* once for the tree*/
676 free_extent_map(em);
677 }
3b951516
CM
678 if (split)
679 free_extent_map(split);
680 if (split2)
681 free_extent_map(split2);
a52d9a80
CM
682}
683
39279cc3
CM
684/*
685 * this is very complex, but the basic idea is to drop all extents
686 * in the range start - end. hint_block is filled in with a block number
687 * that would be a good hint to the block allocator for this file.
688 *
689 * If an extent intersects the range but is not entirely inside the range
690 * it is either truncated or split. Anything entirely inside the range
691 * is deleted from the tree.
692 */
5dc562c5
JB
693int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
694 struct btrfs_root *root, struct inode *inode,
695 struct btrfs_path *path, u64 start, u64 end,
1acae57b
FDBM
696 u64 *drop_end, int drop_cache,
697 int replace_extent,
698 u32 extent_item_size,
699 int *key_inserted)
39279cc3 700{
5f39d397 701 struct extent_buffer *leaf;
920bbbfb 702 struct btrfs_file_extent_item *fi;
00f5c795 703 struct btrfs_key key;
920bbbfb 704 struct btrfs_key new_key;
33345d01 705 u64 ino = btrfs_ino(inode);
920bbbfb
YZ
706 u64 search_start = start;
707 u64 disk_bytenr = 0;
708 u64 num_bytes = 0;
709 u64 extent_offset = 0;
710 u64 extent_end = 0;
711 int del_nr = 0;
712 int del_slot = 0;
713 int extent_type;
ccd467d6 714 int recow;
00f5c795 715 int ret;
dc7fdde3 716 int modify_tree = -1;
27cdeb70 717 int update_refs;
c3308f84 718 int found = 0;
1acae57b 719 int leafs_visited = 0;
39279cc3 720
a1ed835e
CM
721 if (drop_cache)
722 btrfs_drop_extent_cache(inode, start, end - 1, 0);
a52d9a80 723
d5f37527 724 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
dc7fdde3
CM
725 modify_tree = 0;
726
27cdeb70
MX
727 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
728 root == root->fs_info->tree_root);
d397712b 729 while (1) {
ccd467d6 730 recow = 0;
33345d01 731 ret = btrfs_lookup_file_extent(trans, root, path, ino,
dc7fdde3 732 search_start, modify_tree);
39279cc3 733 if (ret < 0)
920bbbfb
YZ
734 break;
735 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
736 leaf = path->nodes[0];
737 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
33345d01 738 if (key.objectid == ino &&
920bbbfb
YZ
739 key.type == BTRFS_EXTENT_DATA_KEY)
740 path->slots[0]--;
39279cc3 741 }
920bbbfb 742 ret = 0;
1acae57b 743 leafs_visited++;
8c2383c3 744next_slot:
5f39d397 745 leaf = path->nodes[0];
920bbbfb
YZ
746 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
747 BUG_ON(del_nr > 0);
748 ret = btrfs_next_leaf(root, path);
749 if (ret < 0)
750 break;
751 if (ret > 0) {
752 ret = 0;
753 break;
8c2383c3 754 }
1acae57b 755 leafs_visited++;
920bbbfb
YZ
756 leaf = path->nodes[0];
757 recow = 1;
758 }
759
760 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
33345d01 761 if (key.objectid > ino ||
920bbbfb
YZ
762 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
763 break;
764
765 fi = btrfs_item_ptr(leaf, path->slots[0],
766 struct btrfs_file_extent_item);
767 extent_type = btrfs_file_extent_type(leaf, fi);
768
769 if (extent_type == BTRFS_FILE_EXTENT_REG ||
770 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
771 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
772 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
773 extent_offset = btrfs_file_extent_offset(leaf, fi);
774 extent_end = key.offset +
775 btrfs_file_extent_num_bytes(leaf, fi);
776 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
777 extent_end = key.offset +
514ac8ad
CM
778 btrfs_file_extent_inline_len(leaf,
779 path->slots[0], fi);
8c2383c3 780 } else {
920bbbfb 781 WARN_ON(1);
8c2383c3 782 extent_end = search_start;
39279cc3
CM
783 }
784
fc19c5e7
FM
785 /*
786 * Don't skip extent items representing 0 byte lengths. They
787 * used to be created (bug) if while punching holes we hit
788 * -ENOSPC condition. So if we find one here, just ensure we
789 * delete it, otherwise we would insert a new file extent item
790 * with the same key (offset) as that 0 bytes length file
791 * extent item in the call to setup_items_for_insert() later
792 * in this function.
793 */
794 if (extent_end == key.offset && extent_end >= search_start)
795 goto delete_extent_item;
796
920bbbfb
YZ
797 if (extent_end <= search_start) {
798 path->slots[0]++;
8c2383c3 799 goto next_slot;
39279cc3
CM
800 }
801
c3308f84 802 found = 1;
920bbbfb 803 search_start = max(key.offset, start);
dc7fdde3
CM
804 if (recow || !modify_tree) {
805 modify_tree = -1;
b3b4aa74 806 btrfs_release_path(path);
920bbbfb 807 continue;
39279cc3 808 }
6643558d 809
920bbbfb
YZ
810 /*
811 * | - range to drop - |
812 * | -------- extent -------- |
813 */
814 if (start > key.offset && end < extent_end) {
815 BUG_ON(del_nr > 0);
00fdf13a 816 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 817 ret = -EOPNOTSUPP;
00fdf13a
LB
818 break;
819 }
920bbbfb
YZ
820
821 memcpy(&new_key, &key, sizeof(new_key));
822 new_key.offset = start;
823 ret = btrfs_duplicate_item(trans, root, path,
824 &new_key);
825 if (ret == -EAGAIN) {
b3b4aa74 826 btrfs_release_path(path);
920bbbfb 827 continue;
6643558d 828 }
920bbbfb
YZ
829 if (ret < 0)
830 break;
831
832 leaf = path->nodes[0];
833 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
834 struct btrfs_file_extent_item);
835 btrfs_set_file_extent_num_bytes(leaf, fi,
836 start - key.offset);
837
838 fi = btrfs_item_ptr(leaf, path->slots[0],
839 struct btrfs_file_extent_item);
840
841 extent_offset += start - key.offset;
842 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
843 btrfs_set_file_extent_num_bytes(leaf, fi,
844 extent_end - start);
845 btrfs_mark_buffer_dirty(leaf);
846
5dc562c5 847 if (update_refs && disk_bytenr > 0) {
771ed689 848 ret = btrfs_inc_extent_ref(trans, root,
920bbbfb
YZ
849 disk_bytenr, num_bytes, 0,
850 root->root_key.objectid,
851 new_key.objectid,
66d7e7f0 852 start - extent_offset, 0);
79787eaa 853 BUG_ON(ret); /* -ENOMEM */
771ed689 854 }
920bbbfb 855 key.offset = start;
6643558d 856 }
920bbbfb
YZ
857 /*
858 * | ---- range to drop ----- |
859 * | -------- extent -------- |
860 */
861 if (start <= key.offset && end < extent_end) {
00fdf13a 862 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 863 ret = -EOPNOTSUPP;
00fdf13a
LB
864 break;
865 }
6643558d 866
920bbbfb
YZ
867 memcpy(&new_key, &key, sizeof(new_key));
868 new_key.offset = end;
afe5fea7 869 btrfs_set_item_key_safe(root, path, &new_key);
6643558d 870
920bbbfb
YZ
871 extent_offset += end - key.offset;
872 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
873 btrfs_set_file_extent_num_bytes(leaf, fi,
874 extent_end - end);
875 btrfs_mark_buffer_dirty(leaf);
2671485d 876 if (update_refs && disk_bytenr > 0)
920bbbfb 877 inode_sub_bytes(inode, end - key.offset);
920bbbfb 878 break;
39279cc3 879 }
771ed689 880
920bbbfb
YZ
881 search_start = extent_end;
882 /*
883 * | ---- range to drop ----- |
884 * | -------- extent -------- |
885 */
886 if (start > key.offset && end >= extent_end) {
887 BUG_ON(del_nr > 0);
00fdf13a 888 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 889 ret = -EOPNOTSUPP;
00fdf13a
LB
890 break;
891 }
8c2383c3 892
920bbbfb
YZ
893 btrfs_set_file_extent_num_bytes(leaf, fi,
894 start - key.offset);
895 btrfs_mark_buffer_dirty(leaf);
2671485d 896 if (update_refs && disk_bytenr > 0)
920bbbfb 897 inode_sub_bytes(inode, extent_end - start);
920bbbfb
YZ
898 if (end == extent_end)
899 break;
c8b97818 900
920bbbfb
YZ
901 path->slots[0]++;
902 goto next_slot;
31840ae1
ZY
903 }
904
920bbbfb
YZ
905 /*
906 * | ---- range to drop ----- |
907 * | ------ extent ------ |
908 */
909 if (start <= key.offset && end >= extent_end) {
fc19c5e7 910delete_extent_item:
920bbbfb
YZ
911 if (del_nr == 0) {
912 del_slot = path->slots[0];
913 del_nr = 1;
914 } else {
915 BUG_ON(del_slot + del_nr != path->slots[0]);
916 del_nr++;
917 }
31840ae1 918
5dc562c5
JB
919 if (update_refs &&
920 extent_type == BTRFS_FILE_EXTENT_INLINE) {
a76a3cd4 921 inode_sub_bytes(inode,
920bbbfb
YZ
922 extent_end - key.offset);
923 extent_end = ALIGN(extent_end,
924 root->sectorsize);
5dc562c5 925 } else if (update_refs && disk_bytenr > 0) {
31840ae1 926 ret = btrfs_free_extent(trans, root,
920bbbfb
YZ
927 disk_bytenr, num_bytes, 0,
928 root->root_key.objectid,
5d4f98a2 929 key.objectid, key.offset -
66d7e7f0 930 extent_offset, 0);
79787eaa 931 BUG_ON(ret); /* -ENOMEM */
920bbbfb
YZ
932 inode_sub_bytes(inode,
933 extent_end - key.offset);
31840ae1 934 }
31840ae1 935
920bbbfb
YZ
936 if (end == extent_end)
937 break;
938
939 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
940 path->slots[0]++;
941 goto next_slot;
942 }
943
944 ret = btrfs_del_items(trans, root, path, del_slot,
945 del_nr);
79787eaa
JM
946 if (ret) {
947 btrfs_abort_transaction(trans, root, ret);
5dc562c5 948 break;
79787eaa 949 }
920bbbfb
YZ
950
951 del_nr = 0;
952 del_slot = 0;
953
b3b4aa74 954 btrfs_release_path(path);
920bbbfb 955 continue;
39279cc3 956 }
920bbbfb
YZ
957
958 BUG_ON(1);
39279cc3 959 }
920bbbfb 960
79787eaa 961 if (!ret && del_nr > 0) {
1acae57b
FDBM
962 /*
963 * Set path->slots[0] to first slot, so that after the delete
964 * if items are move off from our leaf to its immediate left or
965 * right neighbor leafs, we end up with a correct and adjusted
d5f37527 966 * path->slots[0] for our insertion (if replace_extent != 0).
1acae57b
FDBM
967 */
968 path->slots[0] = del_slot;
920bbbfb 969 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa
JM
970 if (ret)
971 btrfs_abort_transaction(trans, root, ret);
d5f37527 972 }
1acae57b 973
d5f37527
FDBM
974 leaf = path->nodes[0];
975 /*
976 * If btrfs_del_items() was called, it might have deleted a leaf, in
977 * which case it unlocked our path, so check path->locks[0] matches a
978 * write lock.
979 */
980 if (!ret && replace_extent && leafs_visited == 1 &&
981 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
982 path->locks[0] == BTRFS_WRITE_LOCK) &&
983 btrfs_leaf_free_space(root, leaf) >=
984 sizeof(struct btrfs_item) + extent_item_size) {
985
986 key.objectid = ino;
987 key.type = BTRFS_EXTENT_DATA_KEY;
988 key.offset = start;
989 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
990 struct btrfs_key slot_key;
991
992 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
993 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
994 path->slots[0]++;
1acae57b 995 }
d5f37527
FDBM
996 setup_items_for_insert(root, path, &key,
997 &extent_item_size,
998 extent_item_size,
999 sizeof(struct btrfs_item) +
1000 extent_item_size, 1);
1001 *key_inserted = 1;
6643558d 1002 }
920bbbfb 1003
1acae57b
FDBM
1004 if (!replace_extent || !(*key_inserted))
1005 btrfs_release_path(path);
2aaa6655 1006 if (drop_end)
c3308f84 1007 *drop_end = found ? min(end, extent_end) : end;
5dc562c5
JB
1008 return ret;
1009}
1010
1011int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1012 struct btrfs_root *root, struct inode *inode, u64 start,
2671485d 1013 u64 end, int drop_cache)
5dc562c5
JB
1014{
1015 struct btrfs_path *path;
1016 int ret;
1017
1018 path = btrfs_alloc_path();
1019 if (!path)
1020 return -ENOMEM;
2aaa6655 1021 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1acae57b 1022 drop_cache, 0, 0, NULL);
920bbbfb 1023 btrfs_free_path(path);
39279cc3
CM
1024 return ret;
1025}
1026
d899e052 1027static int extent_mergeable(struct extent_buffer *leaf, int slot,
6c7d54ac
YZ
1028 u64 objectid, u64 bytenr, u64 orig_offset,
1029 u64 *start, u64 *end)
d899e052
YZ
1030{
1031 struct btrfs_file_extent_item *fi;
1032 struct btrfs_key key;
1033 u64 extent_end;
1034
1035 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1036 return 0;
1037
1038 btrfs_item_key_to_cpu(leaf, &key, slot);
1039 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1040 return 0;
1041
1042 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1043 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1044 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
6c7d54ac 1045 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
d899e052
YZ
1046 btrfs_file_extent_compression(leaf, fi) ||
1047 btrfs_file_extent_encryption(leaf, fi) ||
1048 btrfs_file_extent_other_encoding(leaf, fi))
1049 return 0;
1050
1051 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1052 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1053 return 0;
1054
1055 *start = key.offset;
1056 *end = extent_end;
1057 return 1;
1058}
1059
1060/*
1061 * Mark extent in the range start - end as written.
1062 *
1063 * This changes extent type from 'pre-allocated' to 'regular'. If only
1064 * part of extent is marked as written, the extent will be split into
1065 * two or three.
1066 */
1067int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
d899e052
YZ
1068 struct inode *inode, u64 start, u64 end)
1069{
920bbbfb 1070 struct btrfs_root *root = BTRFS_I(inode)->root;
d899e052
YZ
1071 struct extent_buffer *leaf;
1072 struct btrfs_path *path;
1073 struct btrfs_file_extent_item *fi;
1074 struct btrfs_key key;
920bbbfb 1075 struct btrfs_key new_key;
d899e052
YZ
1076 u64 bytenr;
1077 u64 num_bytes;
1078 u64 extent_end;
5d4f98a2 1079 u64 orig_offset;
d899e052
YZ
1080 u64 other_start;
1081 u64 other_end;
920bbbfb
YZ
1082 u64 split;
1083 int del_nr = 0;
1084 int del_slot = 0;
6c7d54ac 1085 int recow;
d899e052 1086 int ret;
33345d01 1087 u64 ino = btrfs_ino(inode);
d899e052 1088
d899e052 1089 path = btrfs_alloc_path();
d8926bb3
MF
1090 if (!path)
1091 return -ENOMEM;
d899e052 1092again:
6c7d54ac 1093 recow = 0;
920bbbfb 1094 split = start;
33345d01 1095 key.objectid = ino;
d899e052 1096 key.type = BTRFS_EXTENT_DATA_KEY;
920bbbfb 1097 key.offset = split;
d899e052
YZ
1098
1099 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
41415730
JB
1100 if (ret < 0)
1101 goto out;
d899e052
YZ
1102 if (ret > 0 && path->slots[0] > 0)
1103 path->slots[0]--;
1104
1105 leaf = path->nodes[0];
1106 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
33345d01 1107 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
d899e052
YZ
1108 fi = btrfs_item_ptr(leaf, path->slots[0],
1109 struct btrfs_file_extent_item);
920bbbfb
YZ
1110 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1111 BTRFS_FILE_EXTENT_PREALLOC);
d899e052
YZ
1112 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1113 BUG_ON(key.offset > start || extent_end < end);
1114
1115 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1116 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
5d4f98a2 1117 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
6c7d54ac
YZ
1118 memcpy(&new_key, &key, sizeof(new_key));
1119
1120 if (start == key.offset && end < extent_end) {
1121 other_start = 0;
1122 other_end = start;
1123 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1124 ino, bytenr, orig_offset,
6c7d54ac
YZ
1125 &other_start, &other_end)) {
1126 new_key.offset = end;
afe5fea7 1127 btrfs_set_item_key_safe(root, path, &new_key);
6c7d54ac
YZ
1128 fi = btrfs_item_ptr(leaf, path->slots[0],
1129 struct btrfs_file_extent_item);
224ecce5
JB
1130 btrfs_set_file_extent_generation(leaf, fi,
1131 trans->transid);
6c7d54ac
YZ
1132 btrfs_set_file_extent_num_bytes(leaf, fi,
1133 extent_end - end);
1134 btrfs_set_file_extent_offset(leaf, fi,
1135 end - orig_offset);
1136 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1137 struct btrfs_file_extent_item);
224ecce5
JB
1138 btrfs_set_file_extent_generation(leaf, fi,
1139 trans->transid);
6c7d54ac
YZ
1140 btrfs_set_file_extent_num_bytes(leaf, fi,
1141 end - other_start);
1142 btrfs_mark_buffer_dirty(leaf);
1143 goto out;
1144 }
1145 }
1146
1147 if (start > key.offset && end == extent_end) {
1148 other_start = end;
1149 other_end = 0;
1150 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1151 ino, bytenr, orig_offset,
6c7d54ac
YZ
1152 &other_start, &other_end)) {
1153 fi = btrfs_item_ptr(leaf, path->slots[0],
1154 struct btrfs_file_extent_item);
1155 btrfs_set_file_extent_num_bytes(leaf, fi,
1156 start - key.offset);
224ecce5
JB
1157 btrfs_set_file_extent_generation(leaf, fi,
1158 trans->transid);
6c7d54ac
YZ
1159 path->slots[0]++;
1160 new_key.offset = start;
afe5fea7 1161 btrfs_set_item_key_safe(root, path, &new_key);
6c7d54ac
YZ
1162
1163 fi = btrfs_item_ptr(leaf, path->slots[0],
1164 struct btrfs_file_extent_item);
224ecce5
JB
1165 btrfs_set_file_extent_generation(leaf, fi,
1166 trans->transid);
6c7d54ac
YZ
1167 btrfs_set_file_extent_num_bytes(leaf, fi,
1168 other_end - start);
1169 btrfs_set_file_extent_offset(leaf, fi,
1170 start - orig_offset);
1171 btrfs_mark_buffer_dirty(leaf);
1172 goto out;
1173 }
1174 }
d899e052 1175
920bbbfb
YZ
1176 while (start > key.offset || end < extent_end) {
1177 if (key.offset == start)
1178 split = end;
1179
920bbbfb
YZ
1180 new_key.offset = split;
1181 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1182 if (ret == -EAGAIN) {
b3b4aa74 1183 btrfs_release_path(path);
920bbbfb 1184 goto again;
d899e052 1185 }
79787eaa
JM
1186 if (ret < 0) {
1187 btrfs_abort_transaction(trans, root, ret);
1188 goto out;
1189 }
d899e052 1190
920bbbfb
YZ
1191 leaf = path->nodes[0];
1192 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
d899e052 1193 struct btrfs_file_extent_item);
224ecce5 1194 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
d899e052 1195 btrfs_set_file_extent_num_bytes(leaf, fi,
920bbbfb
YZ
1196 split - key.offset);
1197
1198 fi = btrfs_item_ptr(leaf, path->slots[0],
1199 struct btrfs_file_extent_item);
1200
224ecce5 1201 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb
YZ
1202 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1203 btrfs_set_file_extent_num_bytes(leaf, fi,
1204 extent_end - split);
d899e052
YZ
1205 btrfs_mark_buffer_dirty(leaf);
1206
920bbbfb
YZ
1207 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1208 root->root_key.objectid,
66d7e7f0 1209 ino, orig_offset, 0);
79787eaa 1210 BUG_ON(ret); /* -ENOMEM */
d899e052 1211
920bbbfb
YZ
1212 if (split == start) {
1213 key.offset = start;
1214 } else {
1215 BUG_ON(start != key.offset);
d899e052 1216 path->slots[0]--;
920bbbfb 1217 extent_end = end;
d899e052 1218 }
6c7d54ac 1219 recow = 1;
d899e052
YZ
1220 }
1221
920bbbfb
YZ
1222 other_start = end;
1223 other_end = 0;
6c7d54ac 1224 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1225 ino, bytenr, orig_offset,
6c7d54ac
YZ
1226 &other_start, &other_end)) {
1227 if (recow) {
b3b4aa74 1228 btrfs_release_path(path);
6c7d54ac
YZ
1229 goto again;
1230 }
920bbbfb
YZ
1231 extent_end = other_end;
1232 del_slot = path->slots[0] + 1;
1233 del_nr++;
1234 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1235 0, root->root_key.objectid,
66d7e7f0 1236 ino, orig_offset, 0);
79787eaa 1237 BUG_ON(ret); /* -ENOMEM */
d899e052 1238 }
920bbbfb
YZ
1239 other_start = 0;
1240 other_end = start;
6c7d54ac 1241 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1242 ino, bytenr, orig_offset,
6c7d54ac
YZ
1243 &other_start, &other_end)) {
1244 if (recow) {
b3b4aa74 1245 btrfs_release_path(path);
6c7d54ac
YZ
1246 goto again;
1247 }
920bbbfb
YZ
1248 key.offset = other_start;
1249 del_slot = path->slots[0];
1250 del_nr++;
1251 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1252 0, root->root_key.objectid,
66d7e7f0 1253 ino, orig_offset, 0);
79787eaa 1254 BUG_ON(ret); /* -ENOMEM */
920bbbfb
YZ
1255 }
1256 if (del_nr == 0) {
3f6fae95
SL
1257 fi = btrfs_item_ptr(leaf, path->slots[0],
1258 struct btrfs_file_extent_item);
920bbbfb
YZ
1259 btrfs_set_file_extent_type(leaf, fi,
1260 BTRFS_FILE_EXTENT_REG);
224ecce5 1261 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb 1262 btrfs_mark_buffer_dirty(leaf);
6c7d54ac 1263 } else {
3f6fae95
SL
1264 fi = btrfs_item_ptr(leaf, del_slot - 1,
1265 struct btrfs_file_extent_item);
6c7d54ac
YZ
1266 btrfs_set_file_extent_type(leaf, fi,
1267 BTRFS_FILE_EXTENT_REG);
224ecce5 1268 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
6c7d54ac
YZ
1269 btrfs_set_file_extent_num_bytes(leaf, fi,
1270 extent_end - key.offset);
1271 btrfs_mark_buffer_dirty(leaf);
920bbbfb 1272
6c7d54ac 1273 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa
JM
1274 if (ret < 0) {
1275 btrfs_abort_transaction(trans, root, ret);
1276 goto out;
1277 }
6c7d54ac 1278 }
920bbbfb 1279out:
d899e052
YZ
1280 btrfs_free_path(path);
1281 return 0;
1282}
1283
b1bf862e
CM
1284/*
1285 * on error we return an unlocked page and the error value
1286 * on success we return a locked page and 0
1287 */
b6316429
JB
1288static int prepare_uptodate_page(struct page *page, u64 pos,
1289 bool force_uptodate)
b1bf862e
CM
1290{
1291 int ret = 0;
1292
b6316429
JB
1293 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1294 !PageUptodate(page)) {
b1bf862e
CM
1295 ret = btrfs_readpage(NULL, page);
1296 if (ret)
1297 return ret;
1298 lock_page(page);
1299 if (!PageUptodate(page)) {
1300 unlock_page(page);
1301 return -EIO;
1302 }
1303 }
1304 return 0;
1305}
1306
39279cc3 1307/*
376cc685 1308 * this just gets pages into the page cache and locks them down.
39279cc3 1309 */
b37392ea
MX
1310static noinline int prepare_pages(struct inode *inode, struct page **pages,
1311 size_t num_pages, loff_t pos,
1312 size_t write_bytes, bool force_uptodate)
39279cc3
CM
1313{
1314 int i;
1315 unsigned long index = pos >> PAGE_CACHE_SHIFT;
3b16a4e3 1316 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
fc28b62d 1317 int err = 0;
376cc685 1318 int faili;
8c2383c3 1319
39279cc3 1320 for (i = 0; i < num_pages; i++) {
a94733d0 1321 pages[i] = find_or_create_page(inode->i_mapping, index + i,
e3a41a5b 1322 mask | __GFP_WRITE);
39279cc3 1323 if (!pages[i]) {
b1bf862e
CM
1324 faili = i - 1;
1325 err = -ENOMEM;
1326 goto fail;
1327 }
1328
1329 if (i == 0)
b6316429
JB
1330 err = prepare_uptodate_page(pages[i], pos,
1331 force_uptodate);
b1bf862e
CM
1332 if (i == num_pages - 1)
1333 err = prepare_uptodate_page(pages[i],
b6316429 1334 pos + write_bytes, false);
b1bf862e
CM
1335 if (err) {
1336 page_cache_release(pages[i]);
1337 faili = i - 1;
1338 goto fail;
39279cc3 1339 }
ccd467d6 1340 wait_on_page_writeback(pages[i]);
39279cc3 1341 }
376cc685
MX
1342
1343 return 0;
1344fail:
1345 while (faili >= 0) {
1346 unlock_page(pages[faili]);
1347 page_cache_release(pages[faili]);
1348 faili--;
1349 }
1350 return err;
1351
1352}
1353
1354/*
1355 * This function locks the extent and properly waits for data=ordered extents
1356 * to finish before allowing the pages to be modified if need.
1357 *
1358 * The return value:
1359 * 1 - the extent is locked
1360 * 0 - the extent is not locked, and everything is OK
1361 * -EAGAIN - need re-prepare the pages
1362 * the other < 0 number - Something wrong happens
1363 */
1364static noinline int
1365lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1366 size_t num_pages, loff_t pos,
1367 u64 *lockstart, u64 *lockend,
1368 struct extent_state **cached_state)
1369{
1370 u64 start_pos;
1371 u64 last_pos;
1372 int i;
1373 int ret = 0;
1374
1375 start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1376 last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1377
0762704b 1378 if (start_pos < inode->i_size) {
e6dcd2dc 1379 struct btrfs_ordered_extent *ordered;
2ac55d41 1380 lock_extent_bits(&BTRFS_I(inode)->io_tree,
376cc685 1381 start_pos, last_pos, 0, cached_state);
b88935bf
MX
1382 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1383 last_pos - start_pos + 1);
e6dcd2dc
CM
1384 if (ordered &&
1385 ordered->file_offset + ordered->len > start_pos &&
376cc685 1386 ordered->file_offset <= last_pos) {
2ac55d41 1387 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
376cc685
MX
1388 start_pos, last_pos,
1389 cached_state, GFP_NOFS);
e6dcd2dc
CM
1390 for (i = 0; i < num_pages; i++) {
1391 unlock_page(pages[i]);
1392 page_cache_release(pages[i]);
1393 }
b88935bf
MX
1394 btrfs_start_ordered_extent(inode, ordered, 1);
1395 btrfs_put_ordered_extent(ordered);
1396 return -EAGAIN;
e6dcd2dc
CM
1397 }
1398 if (ordered)
1399 btrfs_put_ordered_extent(ordered);
1400
2ac55d41 1401 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
376cc685 1402 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b 1403 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
376cc685
MX
1404 0, 0, cached_state, GFP_NOFS);
1405 *lockstart = start_pos;
1406 *lockend = last_pos;
1407 ret = 1;
0762704b 1408 }
376cc685 1409
e6dcd2dc 1410 for (i = 0; i < num_pages; i++) {
32c7f202
WF
1411 if (clear_page_dirty_for_io(pages[i]))
1412 account_page_redirty(pages[i]);
e6dcd2dc
CM
1413 set_page_extent_mapped(pages[i]);
1414 WARN_ON(!PageLocked(pages[i]));
1415 }
b1bf862e 1416
376cc685 1417 return ret;
39279cc3
CM
1418}
1419
7ee9e440
JB
1420static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1421 size_t *write_bytes)
1422{
7ee9e440
JB
1423 struct btrfs_root *root = BTRFS_I(inode)->root;
1424 struct btrfs_ordered_extent *ordered;
1425 u64 lockstart, lockend;
1426 u64 num_bytes;
1427 int ret;
1428
8257b2dc
MX
1429 ret = btrfs_start_nocow_write(root);
1430 if (!ret)
1431 return -ENOSPC;
1432
7ee9e440 1433 lockstart = round_down(pos, root->sectorsize);
c933956d 1434 lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
7ee9e440
JB
1435
1436 while (1) {
1437 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1438 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1439 lockend - lockstart + 1);
1440 if (!ordered) {
1441 break;
1442 }
1443 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1444 btrfs_start_ordered_extent(inode, ordered, 1);
1445 btrfs_put_ordered_extent(ordered);
1446 }
1447
7ee9e440 1448 num_bytes = lockend - lockstart + 1;
00361589 1449 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
7ee9e440
JB
1450 if (ret <= 0) {
1451 ret = 0;
8257b2dc 1452 btrfs_end_nocow_write(root);
7ee9e440 1453 } else {
c933956d
MX
1454 *write_bytes = min_t(size_t, *write_bytes ,
1455 num_bytes - pos + lockstart);
7ee9e440
JB
1456 }
1457
1458 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1459
1460 return ret;
1461}
1462
d0215f3e
JB
1463static noinline ssize_t __btrfs_buffered_write(struct file *file,
1464 struct iov_iter *i,
1465 loff_t pos)
4b46fce2 1466{
496ad9aa 1467 struct inode *inode = file_inode(file);
11c65dcc 1468 struct btrfs_root *root = BTRFS_I(inode)->root;
11c65dcc 1469 struct page **pages = NULL;
376cc685 1470 struct extent_state *cached_state = NULL;
7ee9e440 1471 u64 release_bytes = 0;
376cc685
MX
1472 u64 lockstart;
1473 u64 lockend;
39279cc3 1474 unsigned long first_index;
d0215f3e
JB
1475 size_t num_written = 0;
1476 int nrptrs;
c9149235 1477 int ret = 0;
7ee9e440 1478 bool only_release_metadata = false;
b6316429 1479 bool force_page_uptodate = false;
376cc685 1480 bool need_unlock;
4b46fce2 1481
d0215f3e 1482 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
11c65dcc
JB
1483 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1484 (sizeof(struct page *)));
142349f5
WF
1485 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1486 nrptrs = max(nrptrs, 8);
8c2383c3 1487 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
d0215f3e
JB
1488 if (!pages)
1489 return -ENOMEM;
ab93dbec 1490
39279cc3 1491 first_index = pos >> PAGE_CACHE_SHIFT;
39279cc3 1492
d0215f3e 1493 while (iov_iter_count(i) > 0) {
39279cc3 1494 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
d0215f3e 1495 size_t write_bytes = min(iov_iter_count(i),
11c65dcc 1496 nrptrs * (size_t)PAGE_CACHE_SIZE -
8c2383c3 1497 offset);
3a90983d
YZ
1498 size_t num_pages = (write_bytes + offset +
1499 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
7ee9e440 1500 size_t reserve_bytes;
d0215f3e
JB
1501 size_t dirty_pages;
1502 size_t copied;
39279cc3 1503
8c2383c3 1504 WARN_ON(num_pages > nrptrs);
1832a6d5 1505
914ee295
XZ
1506 /*
1507 * Fault pages before locking them in prepare_pages
1508 * to avoid recursive lock
1509 */
d0215f3e 1510 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
914ee295 1511 ret = -EFAULT;
d0215f3e 1512 break;
914ee295
XZ
1513 }
1514
7ee9e440
JB
1515 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1516 ret = btrfs_check_data_free_space(inode, reserve_bytes);
1517 if (ret == -ENOSPC &&
1518 (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1519 BTRFS_INODE_PREALLOC))) {
1520 ret = check_can_nocow(inode, pos, &write_bytes);
1521 if (ret > 0) {
1522 only_release_metadata = true;
1523 /*
1524 * our prealloc extent may be smaller than
1525 * write_bytes, so scale down.
1526 */
1527 num_pages = (write_bytes + offset +
1528 PAGE_CACHE_SIZE - 1) >>
1529 PAGE_CACHE_SHIFT;
1530 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1531 ret = 0;
1532 } else {
1533 ret = -ENOSPC;
1534 }
1535 }
1536
1832a6d5 1537 if (ret)
d0215f3e 1538 break;
1832a6d5 1539
7ee9e440
JB
1540 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1541 if (ret) {
1542 if (!only_release_metadata)
1543 btrfs_free_reserved_data_space(inode,
1544 reserve_bytes);
8257b2dc
MX
1545 else
1546 btrfs_end_nocow_write(root);
7ee9e440
JB
1547 break;
1548 }
1549
1550 release_bytes = reserve_bytes;
376cc685
MX
1551 need_unlock = false;
1552again:
4a64001f
JB
1553 /*
1554 * This is going to setup the pages array with the number of
1555 * pages we want, so we don't really need to worry about the
1556 * contents of pages from loop to loop
1557 */
b37392ea
MX
1558 ret = prepare_pages(inode, pages, num_pages,
1559 pos, write_bytes,
b6316429 1560 force_page_uptodate);
7ee9e440 1561 if (ret)
d0215f3e 1562 break;
39279cc3 1563
376cc685
MX
1564 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1565 pos, &lockstart, &lockend,
1566 &cached_state);
1567 if (ret < 0) {
1568 if (ret == -EAGAIN)
1569 goto again;
1570 break;
1571 } else if (ret > 0) {
1572 need_unlock = true;
1573 ret = 0;
1574 }
1575
914ee295 1576 copied = btrfs_copy_from_user(pos, num_pages,
d0215f3e 1577 write_bytes, pages, i);
b1bf862e
CM
1578
1579 /*
1580 * if we have trouble faulting in the pages, fall
1581 * back to one page at a time
1582 */
1583 if (copied < write_bytes)
1584 nrptrs = 1;
1585
b6316429
JB
1586 if (copied == 0) {
1587 force_page_uptodate = true;
b1bf862e 1588 dirty_pages = 0;
b6316429
JB
1589 } else {
1590 force_page_uptodate = false;
b1bf862e
CM
1591 dirty_pages = (copied + offset +
1592 PAGE_CACHE_SIZE - 1) >>
1593 PAGE_CACHE_SHIFT;
b6316429 1594 }
914ee295 1595
d0215f3e
JB
1596 /*
1597 * If we had a short copy we need to release the excess delaloc
1598 * bytes we reserved. We need to increment outstanding_extents
1599 * because btrfs_delalloc_release_space will decrement it, but
1600 * we still have an outstanding extent for the chunk we actually
1601 * managed to copy.
1602 */
914ee295 1603 if (num_pages > dirty_pages) {
7ee9e440
JB
1604 release_bytes = (num_pages - dirty_pages) <<
1605 PAGE_CACHE_SHIFT;
9e0baf60
JB
1606 if (copied > 0) {
1607 spin_lock(&BTRFS_I(inode)->lock);
1608 BTRFS_I(inode)->outstanding_extents++;
1609 spin_unlock(&BTRFS_I(inode)->lock);
1610 }
7ee9e440
JB
1611 if (only_release_metadata)
1612 btrfs_delalloc_release_metadata(inode,
1613 release_bytes);
1614 else
1615 btrfs_delalloc_release_space(inode,
1616 release_bytes);
914ee295
XZ
1617 }
1618
7ee9e440 1619 release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
376cc685
MX
1620
1621 if (copied > 0)
be1a12a0
JB
1622 ret = btrfs_dirty_pages(root, inode, pages,
1623 dirty_pages, pos, copied,
1624 NULL);
376cc685
MX
1625 if (need_unlock)
1626 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1627 lockstart, lockend, &cached_state,
1628 GFP_NOFS);
f1de9683
MX
1629 if (ret) {
1630 btrfs_drop_pages(pages, num_pages);
376cc685 1631 break;
f1de9683 1632 }
39279cc3 1633
376cc685 1634 release_bytes = 0;
8257b2dc
MX
1635 if (only_release_metadata)
1636 btrfs_end_nocow_write(root);
1637
7ee9e440
JB
1638 if (only_release_metadata && copied > 0) {
1639 u64 lockstart = round_down(pos, root->sectorsize);
1640 u64 lockend = lockstart +
1641 (dirty_pages << PAGE_CACHE_SHIFT) - 1;
1642
1643 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1644 lockend, EXTENT_NORESERVE, NULL,
1645 NULL, GFP_NOFS);
1646 only_release_metadata = false;
1647 }
1648
f1de9683
MX
1649 btrfs_drop_pages(pages, num_pages);
1650
d0215f3e
JB
1651 cond_resched();
1652
d0e1d66b 1653 balance_dirty_pages_ratelimited(inode->i_mapping);
d0215f3e 1654 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
b53d3f5d 1655 btrfs_btree_balance_dirty(root);
cb843a6f 1656
914ee295
XZ
1657 pos += copied;
1658 num_written += copied;
d0215f3e 1659 }
39279cc3 1660
d0215f3e
JB
1661 kfree(pages);
1662
7ee9e440 1663 if (release_bytes) {
8257b2dc
MX
1664 if (only_release_metadata) {
1665 btrfs_end_nocow_write(root);
7ee9e440 1666 btrfs_delalloc_release_metadata(inode, release_bytes);
8257b2dc 1667 } else {
7ee9e440 1668 btrfs_delalloc_release_space(inode, release_bytes);
8257b2dc 1669 }
7ee9e440
JB
1670 }
1671
d0215f3e
JB
1672 return num_written ? num_written : ret;
1673}
1674
1675static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1676 const struct iovec *iov,
1677 unsigned long nr_segs, loff_t pos,
867c4f93 1678 size_t count, size_t ocount)
d0215f3e
JB
1679{
1680 struct file *file = iocb->ki_filp;
d0215f3e
JB
1681 struct iov_iter i;
1682 ssize_t written;
1683 ssize_t written_buffered;
1684 loff_t endbyte;
1685 int err;
1686
5cb6c6c7 1687 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
d0215f3e
JB
1688 count, ocount);
1689
d0215f3e
JB
1690 if (written < 0 || written == count)
1691 return written;
1692
1693 pos += written;
1694 count -= written;
1695 iov_iter_init(&i, iov, nr_segs, count, written);
1696 written_buffered = __btrfs_buffered_write(file, &i, pos);
1697 if (written_buffered < 0) {
1698 err = written_buffered;
1699 goto out;
39279cc3 1700 }
d0215f3e
JB
1701 endbyte = pos + written_buffered - 1;
1702 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1703 if (err)
1704 goto out;
1705 written += written_buffered;
867c4f93 1706 iocb->ki_pos = pos + written_buffered;
d0215f3e
JB
1707 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1708 endbyte >> PAGE_CACHE_SHIFT);
39279cc3 1709out:
d0215f3e
JB
1710 return written ? written : err;
1711}
5b92ee72 1712
6c760c07
JB
1713static void update_time_for_write(struct inode *inode)
1714{
1715 struct timespec now;
1716
1717 if (IS_NOCMTIME(inode))
1718 return;
1719
1720 now = current_fs_time(inode->i_sb);
1721 if (!timespec_equal(&inode->i_mtime, &now))
1722 inode->i_mtime = now;
1723
1724 if (!timespec_equal(&inode->i_ctime, &now))
1725 inode->i_ctime = now;
1726
1727 if (IS_I_VERSION(inode))
1728 inode_inc_iversion(inode);
1729}
1730
d0215f3e
JB
1731static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1732 const struct iovec *iov,
1733 unsigned long nr_segs, loff_t pos)
1734{
1735 struct file *file = iocb->ki_filp;
496ad9aa 1736 struct inode *inode = file_inode(file);
d0215f3e 1737 struct btrfs_root *root = BTRFS_I(inode)->root;
0c1a98c8 1738 u64 start_pos;
3ac0d7b9 1739 u64 end_pos;
d0215f3e
JB
1740 ssize_t num_written = 0;
1741 ssize_t err = 0;
1742 size_t count, ocount;
b812ce28 1743 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
d0215f3e 1744
d0215f3e
JB
1745 mutex_lock(&inode->i_mutex);
1746
1747 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1748 if (err) {
1749 mutex_unlock(&inode->i_mutex);
1750 goto out;
1751 }
1752 count = ocount;
1753
1754 current->backing_dev_info = inode->i_mapping->backing_dev_info;
1755 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1756 if (err) {
1757 mutex_unlock(&inode->i_mutex);
1758 goto out;
1759 }
1760
1761 if (count == 0) {
1762 mutex_unlock(&inode->i_mutex);
1763 goto out;
1764 }
1765
1766 err = file_remove_suid(file);
1767 if (err) {
1768 mutex_unlock(&inode->i_mutex);
1769 goto out;
1770 }
1771
1772 /*
1773 * If BTRFS flips readonly due to some impossible error
1774 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1775 * although we have opened a file as writable, we have
1776 * to stop this write operation to ensure FS consistency.
1777 */
87533c47 1778 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
d0215f3e
JB
1779 mutex_unlock(&inode->i_mutex);
1780 err = -EROFS;
1781 goto out;
1782 }
1783
6c760c07
JB
1784 /*
1785 * We reserve space for updating the inode when we reserve space for the
1786 * extent we are going to write, so we will enospc out there. We don't
1787 * need to start yet another transaction to update the inode as we will
1788 * update the inode when we finish writing whatever data we write.
1789 */
1790 update_time_for_write(inode);
d0215f3e 1791
0c1a98c8
MX
1792 start_pos = round_down(pos, root->sectorsize);
1793 if (start_pos > i_size_read(inode)) {
3ac0d7b9 1794 /* Expand hole size to cover write data, preventing empty gap */
c5f7d0bb 1795 end_pos = round_up(pos + count, root->sectorsize);
3ac0d7b9 1796 err = btrfs_cont_expand(inode, i_size_read(inode), end_pos);
0c1a98c8
MX
1797 if (err) {
1798 mutex_unlock(&inode->i_mutex);
1799 goto out;
1800 }
1801 }
1802
b812ce28
JB
1803 if (sync)
1804 atomic_inc(&BTRFS_I(inode)->sync_writers);
1805
d0215f3e
JB
1806 if (unlikely(file->f_flags & O_DIRECT)) {
1807 num_written = __btrfs_direct_write(iocb, iov, nr_segs,
867c4f93 1808 pos, count, ocount);
d0215f3e
JB
1809 } else {
1810 struct iov_iter i;
1811
1812 iov_iter_init(&i, iov, nr_segs, count, num_written);
1813
1814 num_written = __btrfs_buffered_write(file, &i, pos);
1815 if (num_written > 0)
867c4f93 1816 iocb->ki_pos = pos + num_written;
d0215f3e
JB
1817 }
1818
1819 mutex_unlock(&inode->i_mutex);
2ff3e9b6 1820
5a3f23d5
CM
1821 /*
1822 * we want to make sure fsync finds this change
1823 * but we haven't joined a transaction running right now.
1824 *
1825 * Later on, someone is sure to update the inode and get the
1826 * real transid recorded.
1827 *
1828 * We set last_trans now to the fs_info generation + 1,
1829 * this will either be one more than the running transaction
1830 * or the generation used for the next transaction if there isn't
1831 * one running right now.
6c760c07
JB
1832 *
1833 * We also have to set last_sub_trans to the current log transid,
1834 * otherwise subsequent syncs to a file that's been synced in this
1835 * transaction will appear to have already occured.
5a3f23d5
CM
1836 */
1837 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
6c760c07 1838 BTRFS_I(inode)->last_sub_trans = root->log_transid;
02afc27f 1839 if (num_written > 0) {
d0215f3e 1840 err = generic_write_sync(file, pos, num_written);
45d4f855 1841 if (err < 0)
2ff3e9b6
CM
1842 num_written = err;
1843 }
0a3404dc 1844
b812ce28
JB
1845 if (sync)
1846 atomic_dec(&BTRFS_I(inode)->sync_writers);
0a3404dc 1847out:
39279cc3 1848 current->backing_dev_info = NULL;
39279cc3
CM
1849 return num_written ? num_written : err;
1850}
1851
d397712b 1852int btrfs_release_file(struct inode *inode, struct file *filp)
e1b81e67 1853{
5a3f23d5
CM
1854 /*
1855 * ordered_data_close is set by settattr when we are about to truncate
1856 * a file from a non-zero size to a zero size. This tries to
1857 * flush down new bytes that may have been written if the
1858 * application were using truncate to replace a file in place.
1859 */
72ac3c0d
JB
1860 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1861 &BTRFS_I(inode)->runtime_flags)) {
569e0f35
JB
1862 struct btrfs_trans_handle *trans;
1863 struct btrfs_root *root = BTRFS_I(inode)->root;
1864
1865 /*
1866 * We need to block on a committing transaction to keep us from
1867 * throwing a ordered operation on to the list and causing
1868 * something like sync to deadlock trying to flush out this
1869 * inode.
1870 */
1871 trans = btrfs_start_transaction(root, 0);
1872 if (IS_ERR(trans))
1873 return PTR_ERR(trans);
1874 btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1875 btrfs_end_transaction(trans, root);
5a3f23d5
CM
1876 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1877 filemap_flush(inode->i_mapping);
1878 }
6bf13c0c
SW
1879 if (filp->private_data)
1880 btrfs_ioctl_trans_end(filp);
e1b81e67
M
1881 return 0;
1882}
1883
d352ac68
CM
1884/*
1885 * fsync call for both files and directories. This logs the inode into
1886 * the tree log instead of forcing full commits whenever possible.
1887 *
1888 * It needs to call filemap_fdatawait so that all ordered extent updates are
1889 * in the metadata btree are up to date for copying to the log.
1890 *
1891 * It drops the inode mutex before doing the tree log commit. This is an
1892 * important optimization for directories because holding the mutex prevents
1893 * new operations on the dir while we write to disk.
1894 */
02c24a82 1895int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
39279cc3 1896{
7ea80859 1897 struct dentry *dentry = file->f_path.dentry;
39279cc3
CM
1898 struct inode *inode = dentry->d_inode;
1899 struct btrfs_root *root = BTRFS_I(inode)->root;
39279cc3 1900 struct btrfs_trans_handle *trans;
8b050d35
MX
1901 struct btrfs_log_ctx ctx;
1902 int ret = 0;
2ab28f32 1903 bool full_sync = 0;
39279cc3 1904
1abe9b8a 1905 trace_btrfs_sync_file(file, datasync);
257c62e1 1906
90abccf2
MX
1907 /*
1908 * We write the dirty pages in the range and wait until they complete
1909 * out of the ->i_mutex. If so, we can flush the dirty pages by
2ab28f32
JB
1910 * multi-task, and make the performance up. See
1911 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
90abccf2 1912 */
b812ce28 1913 atomic_inc(&BTRFS_I(inode)->sync_writers);
2ab28f32
JB
1914 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1915 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1916 &BTRFS_I(inode)->runtime_flags))
1917 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
b812ce28 1918 atomic_dec(&BTRFS_I(inode)->sync_writers);
90abccf2
MX
1919 if (ret)
1920 return ret;
1921
02c24a82
JB
1922 mutex_lock(&inode->i_mutex);
1923
0885ef5b 1924 /*
90abccf2
MX
1925 * We flush the dirty pages again to avoid some dirty pages in the
1926 * range being left.
0885ef5b 1927 */
2ecb7923 1928 atomic_inc(&root->log_batch);
2ab28f32
JB
1929 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1930 &BTRFS_I(inode)->runtime_flags);
0ef8b726
JB
1931 if (full_sync) {
1932 ret = btrfs_wait_ordered_range(inode, start, end - start + 1);
1933 if (ret) {
1934 mutex_unlock(&inode->i_mutex);
1935 goto out;
1936 }
1937 }
2ecb7923 1938 atomic_inc(&root->log_batch);
257c62e1 1939
39279cc3 1940 /*
15ee9bc7
JB
1941 * check the transaction that last modified this inode
1942 * and see if its already been committed
39279cc3 1943 */
02c24a82
JB
1944 if (!BTRFS_I(inode)->last_trans) {
1945 mutex_unlock(&inode->i_mutex);
15ee9bc7 1946 goto out;
02c24a82 1947 }
a2135011 1948
257c62e1
CM
1949 /*
1950 * if the last transaction that changed this file was before
1951 * the current transaction, we can bail out now without any
1952 * syncing
1953 */
a4abeea4 1954 smp_mb();
22ee6985
JB
1955 if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1956 BTRFS_I(inode)->last_trans <=
15ee9bc7
JB
1957 root->fs_info->last_trans_committed) {
1958 BTRFS_I(inode)->last_trans = 0;
5dc562c5
JB
1959
1960 /*
1961 * We'v had everything committed since the last time we were
1962 * modified so clear this flag in case it was set for whatever
1963 * reason, it's no longer relevant.
1964 */
1965 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1966 &BTRFS_I(inode)->runtime_flags);
02c24a82 1967 mutex_unlock(&inode->i_mutex);
15ee9bc7
JB
1968 goto out;
1969 }
15ee9bc7
JB
1970
1971 /*
a52d9a80
CM
1972 * ok we haven't committed the transaction yet, lets do a commit
1973 */
6f902af4 1974 if (file->private_data)
6bf13c0c
SW
1975 btrfs_ioctl_trans_end(file);
1976
5039eddc
JB
1977 /*
1978 * We use start here because we will need to wait on the IO to complete
1979 * in btrfs_sync_log, which could require joining a transaction (for
1980 * example checking cross references in the nocow path). If we use join
1981 * here we could get into a situation where we're waiting on IO to
1982 * happen that is blocked on a transaction trying to commit. With start
1983 * we inc the extwriter counter, so we wait for all extwriters to exit
1984 * before we start blocking join'ers. This comment is to keep somebody
1985 * from thinking they are super smart and changing this to
1986 * btrfs_join_transaction *cough*Josef*cough*.
1987 */
a22285a6
YZ
1988 trans = btrfs_start_transaction(root, 0);
1989 if (IS_ERR(trans)) {
1990 ret = PTR_ERR(trans);
02c24a82 1991 mutex_unlock(&inode->i_mutex);
39279cc3
CM
1992 goto out;
1993 }
5039eddc 1994 trans->sync = true;
e02119d5 1995
8b050d35
MX
1996 btrfs_init_log_ctx(&ctx);
1997
1998 ret = btrfs_log_dentry_safe(trans, root, dentry, &ctx);
02c24a82 1999 if (ret < 0) {
a0634be5
FDBM
2000 /* Fallthrough and commit/free transaction. */
2001 ret = 1;
02c24a82 2002 }
49eb7e46
CM
2003
2004 /* we've logged all the items and now have a consistent
2005 * version of the file in the log. It is possible that
2006 * someone will come in and modify the file, but that's
2007 * fine because the log is consistent on disk, and we
2008 * have references to all of the file's extents
2009 *
2010 * It is possible that someone will come in and log the
2011 * file again, but that will end up using the synchronization
2012 * inside btrfs_sync_log to keep things safe.
2013 */
02c24a82 2014 mutex_unlock(&inode->i_mutex);
49eb7e46 2015
257c62e1 2016 if (ret != BTRFS_NO_LOG_SYNC) {
0ef8b726 2017 if (!ret) {
8b050d35 2018 ret = btrfs_sync_log(trans, root, &ctx);
0ef8b726 2019 if (!ret) {
257c62e1 2020 ret = btrfs_end_transaction(trans, root);
0ef8b726 2021 goto out;
2ab28f32 2022 }
257c62e1 2023 }
0ef8b726
JB
2024 if (!full_sync) {
2025 ret = btrfs_wait_ordered_range(inode, start,
2026 end - start + 1);
2027 if (ret)
2028 goto out;
2029 }
2030 ret = btrfs_commit_transaction(trans, root);
257c62e1
CM
2031 } else {
2032 ret = btrfs_end_transaction(trans, root);
e02119d5 2033 }
39279cc3 2034out:
014e4ac4 2035 return ret > 0 ? -EIO : ret;
39279cc3
CM
2036}
2037
f0f37e2f 2038static const struct vm_operations_struct btrfs_file_vm_ops = {
92fee66d 2039 .fault = filemap_fault,
f1820361 2040 .map_pages = filemap_map_pages,
9ebefb18 2041 .page_mkwrite = btrfs_page_mkwrite,
0b173bc4 2042 .remap_pages = generic_file_remap_pages,
9ebefb18
CM
2043};
2044
2045static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2046{
058a457e
MX
2047 struct address_space *mapping = filp->f_mapping;
2048
2049 if (!mapping->a_ops->readpage)
2050 return -ENOEXEC;
2051
9ebefb18 2052 file_accessed(filp);
058a457e 2053 vma->vm_ops = &btrfs_file_vm_ops;
058a457e 2054
9ebefb18
CM
2055 return 0;
2056}
2057
2aaa6655
JB
2058static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2059 int slot, u64 start, u64 end)
2060{
2061 struct btrfs_file_extent_item *fi;
2062 struct btrfs_key key;
2063
2064 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2065 return 0;
2066
2067 btrfs_item_key_to_cpu(leaf, &key, slot);
2068 if (key.objectid != btrfs_ino(inode) ||
2069 key.type != BTRFS_EXTENT_DATA_KEY)
2070 return 0;
2071
2072 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2073
2074 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2075 return 0;
2076
2077 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2078 return 0;
2079
2080 if (key.offset == end)
2081 return 1;
2082 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2083 return 1;
2084 return 0;
2085}
2086
2087static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2088 struct btrfs_path *path, u64 offset, u64 end)
2089{
2090 struct btrfs_root *root = BTRFS_I(inode)->root;
2091 struct extent_buffer *leaf;
2092 struct btrfs_file_extent_item *fi;
2093 struct extent_map *hole_em;
2094 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2095 struct btrfs_key key;
2096 int ret;
2097
16e7549f
JB
2098 if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2099 goto out;
2100
2aaa6655
JB
2101 key.objectid = btrfs_ino(inode);
2102 key.type = BTRFS_EXTENT_DATA_KEY;
2103 key.offset = offset;
2104
2aaa6655
JB
2105 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2106 if (ret < 0)
2107 return ret;
2108 BUG_ON(!ret);
2109
2110 leaf = path->nodes[0];
2111 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2112 u64 num_bytes;
2113
2114 path->slots[0]--;
2115 fi = btrfs_item_ptr(leaf, path->slots[0],
2116 struct btrfs_file_extent_item);
2117 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2118 end - offset;
2119 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2120 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2121 btrfs_set_file_extent_offset(leaf, fi, 0);
2122 btrfs_mark_buffer_dirty(leaf);
2123 goto out;
2124 }
2125
2126 if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
2127 u64 num_bytes;
2128
2129 path->slots[0]++;
2130 key.offset = offset;
afe5fea7 2131 btrfs_set_item_key_safe(root, path, &key);
2aaa6655
JB
2132 fi = btrfs_item_ptr(leaf, path->slots[0],
2133 struct btrfs_file_extent_item);
2134 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2135 offset;
2136 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2137 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2138 btrfs_set_file_extent_offset(leaf, fi, 0);
2139 btrfs_mark_buffer_dirty(leaf);
2140 goto out;
2141 }
2142 btrfs_release_path(path);
2143
2144 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2145 0, 0, end - offset, 0, end - offset,
2146 0, 0, 0);
2147 if (ret)
2148 return ret;
2149
2150out:
2151 btrfs_release_path(path);
2152
2153 hole_em = alloc_extent_map();
2154 if (!hole_em) {
2155 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2156 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2157 &BTRFS_I(inode)->runtime_flags);
2158 } else {
2159 hole_em->start = offset;
2160 hole_em->len = end - offset;
cc95bef6 2161 hole_em->ram_bytes = hole_em->len;
2aaa6655
JB
2162 hole_em->orig_start = offset;
2163
2164 hole_em->block_start = EXTENT_MAP_HOLE;
2165 hole_em->block_len = 0;
b4939680 2166 hole_em->orig_block_len = 0;
2aaa6655
JB
2167 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2168 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2169 hole_em->generation = trans->transid;
2170
2171 do {
2172 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2173 write_lock(&em_tree->lock);
09a2a8f9 2174 ret = add_extent_mapping(em_tree, hole_em, 1);
2aaa6655
JB
2175 write_unlock(&em_tree->lock);
2176 } while (ret == -EEXIST);
2177 free_extent_map(hole_em);
2178 if (ret)
2179 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2180 &BTRFS_I(inode)->runtime_flags);
2181 }
2182
2183 return 0;
2184}
2185
2186static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2187{
2188 struct btrfs_root *root = BTRFS_I(inode)->root;
2189 struct extent_state *cached_state = NULL;
2190 struct btrfs_path *path;
2191 struct btrfs_block_rsv *rsv;
2192 struct btrfs_trans_handle *trans;
0061280d
MX
2193 u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2194 u64 lockend = round_down(offset + len,
2195 BTRFS_I(inode)->root->sectorsize) - 1;
2aaa6655
JB
2196 u64 cur_offset = lockstart;
2197 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2198 u64 drop_end;
2aaa6655
JB
2199 int ret = 0;
2200 int err = 0;
16e7549f 2201 int rsv_count;
6347b3c4
MX
2202 bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2203 ((offset + len - 1) >> PAGE_CACHE_SHIFT));
16e7549f 2204 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
a1a50f60 2205 u64 ino_size;
2aaa6655 2206
0ef8b726
JB
2207 ret = btrfs_wait_ordered_range(inode, offset, len);
2208 if (ret)
2209 return ret;
2aaa6655
JB
2210
2211 mutex_lock(&inode->i_mutex);
a1a50f60 2212 ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE);
7426cc04
MX
2213 /*
2214 * We needn't truncate any page which is beyond the end of the file
2215 * because we are sure there is no data there.
2216 */
2aaa6655
JB
2217 /*
2218 * Only do this if we are in the same page and we aren't doing the
2219 * entire page.
2220 */
2221 if (same_page && len < PAGE_CACHE_SIZE) {
12870f1c 2222 if (offset < ino_size)
7426cc04 2223 ret = btrfs_truncate_page(inode, offset, len, 0);
2aaa6655
JB
2224 mutex_unlock(&inode->i_mutex);
2225 return ret;
2226 }
2227
2228 /* zero back part of the first page */
12870f1c 2229 if (offset < ino_size) {
7426cc04
MX
2230 ret = btrfs_truncate_page(inode, offset, 0, 0);
2231 if (ret) {
2232 mutex_unlock(&inode->i_mutex);
2233 return ret;
2234 }
2aaa6655
JB
2235 }
2236
2237 /* zero the front end of the last page */
12870f1c 2238 if (offset + len < ino_size) {
0061280d
MX
2239 ret = btrfs_truncate_page(inode, offset + len, 0, 1);
2240 if (ret) {
2241 mutex_unlock(&inode->i_mutex);
2242 return ret;
2243 }
2aaa6655
JB
2244 }
2245
2246 if (lockend < lockstart) {
2247 mutex_unlock(&inode->i_mutex);
2248 return 0;
2249 }
2250
2251 while (1) {
2252 struct btrfs_ordered_extent *ordered;
2253
2254 truncate_pagecache_range(inode, lockstart, lockend);
2255
2256 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2257 0, &cached_state);
2258 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2259
2260 /*
2261 * We need to make sure we have no ordered extents in this range
2262 * and nobody raced in and read a page in this range, if we did
2263 * we need to try again.
2264 */
2265 if ((!ordered ||
6126e3ca 2266 (ordered->file_offset + ordered->len <= lockstart ||
2aaa6655
JB
2267 ordered->file_offset > lockend)) &&
2268 !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2269 lockend, EXTENT_UPTODATE, 0,
2270 cached_state)) {
2271 if (ordered)
2272 btrfs_put_ordered_extent(ordered);
2273 break;
2274 }
2275 if (ordered)
2276 btrfs_put_ordered_extent(ordered);
2277 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2278 lockend, &cached_state, GFP_NOFS);
0ef8b726
JB
2279 ret = btrfs_wait_ordered_range(inode, lockstart,
2280 lockend - lockstart + 1);
2281 if (ret) {
2282 mutex_unlock(&inode->i_mutex);
2283 return ret;
2284 }
2aaa6655
JB
2285 }
2286
2287 path = btrfs_alloc_path();
2288 if (!path) {
2289 ret = -ENOMEM;
2290 goto out;
2291 }
2292
66d8f3dd 2293 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2aaa6655
JB
2294 if (!rsv) {
2295 ret = -ENOMEM;
2296 goto out_free;
2297 }
2298 rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2299 rsv->failfast = 1;
2300
2301 /*
2302 * 1 - update the inode
2303 * 1 - removing the extents in the range
16e7549f 2304 * 1 - adding the hole extent if no_holes isn't set
2aaa6655 2305 */
16e7549f
JB
2306 rsv_count = no_holes ? 2 : 3;
2307 trans = btrfs_start_transaction(root, rsv_count);
2aaa6655
JB
2308 if (IS_ERR(trans)) {
2309 err = PTR_ERR(trans);
2310 goto out_free;
2311 }
2312
2313 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2314 min_size);
2315 BUG_ON(ret);
2316 trans->block_rsv = rsv;
2317
2318 while (cur_offset < lockend) {
2319 ret = __btrfs_drop_extents(trans, root, inode, path,
2320 cur_offset, lockend + 1,
1acae57b 2321 &drop_end, 1, 0, 0, NULL);
2aaa6655
JB
2322 if (ret != -ENOSPC)
2323 break;
2324
2325 trans->block_rsv = &root->fs_info->trans_block_rsv;
2326
12870f1c
FM
2327 if (cur_offset < ino_size) {
2328 ret = fill_holes(trans, inode, path, cur_offset,
2329 drop_end);
2330 if (ret) {
2331 err = ret;
2332 break;
2333 }
2aaa6655
JB
2334 }
2335
2336 cur_offset = drop_end;
2337
2338 ret = btrfs_update_inode(trans, root, inode);
2339 if (ret) {
2340 err = ret;
2341 break;
2342 }
2343
2aaa6655 2344 btrfs_end_transaction(trans, root);
b53d3f5d 2345 btrfs_btree_balance_dirty(root);
2aaa6655 2346
16e7549f 2347 trans = btrfs_start_transaction(root, rsv_count);
2aaa6655
JB
2348 if (IS_ERR(trans)) {
2349 ret = PTR_ERR(trans);
2350 trans = NULL;
2351 break;
2352 }
2353
2354 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2355 rsv, min_size);
2356 BUG_ON(ret); /* shouldn't happen */
2357 trans->block_rsv = rsv;
2358 }
2359
2360 if (ret) {
2361 err = ret;
2362 goto out_trans;
2363 }
2364
2365 trans->block_rsv = &root->fs_info->trans_block_rsv;
fc19c5e7
FM
2366 /*
2367 * Don't insert file hole extent item if it's for a range beyond eof
2368 * (because it's useless) or if it represents a 0 bytes range (when
2369 * cur_offset == drop_end).
2370 */
2371 if (cur_offset < ino_size && cur_offset < drop_end) {
12870f1c
FM
2372 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2373 if (ret) {
2374 err = ret;
2375 goto out_trans;
2376 }
2aaa6655
JB
2377 }
2378
2379out_trans:
2380 if (!trans)
2381 goto out_free;
2382
e1f5790e
TI
2383 inode_inc_iversion(inode);
2384 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2385
2aaa6655
JB
2386 trans->block_rsv = &root->fs_info->trans_block_rsv;
2387 ret = btrfs_update_inode(trans, root, inode);
2aaa6655 2388 btrfs_end_transaction(trans, root);
b53d3f5d 2389 btrfs_btree_balance_dirty(root);
2aaa6655
JB
2390out_free:
2391 btrfs_free_path(path);
2392 btrfs_free_block_rsv(root, rsv);
2393out:
2394 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2395 &cached_state, GFP_NOFS);
2396 mutex_unlock(&inode->i_mutex);
2397 if (ret && !err)
2398 err = ret;
2399 return err;
2400}
2401
2fe17c10
CH
2402static long btrfs_fallocate(struct file *file, int mode,
2403 loff_t offset, loff_t len)
2404{
496ad9aa 2405 struct inode *inode = file_inode(file);
2fe17c10 2406 struct extent_state *cached_state = NULL;
6113077c 2407 struct btrfs_root *root = BTRFS_I(inode)->root;
2fe17c10
CH
2408 u64 cur_offset;
2409 u64 last_byte;
2410 u64 alloc_start;
2411 u64 alloc_end;
2412 u64 alloc_hint = 0;
2413 u64 locked_end;
2fe17c10 2414 struct extent_map *em;
797f4277 2415 int blocksize = BTRFS_I(inode)->root->sectorsize;
2fe17c10
CH
2416 int ret;
2417
797f4277
MX
2418 alloc_start = round_down(offset, blocksize);
2419 alloc_end = round_up(offset + len, blocksize);
2fe17c10 2420
2aaa6655
JB
2421 /* Make sure we aren't being give some crap mode */
2422 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2fe17c10
CH
2423 return -EOPNOTSUPP;
2424
2aaa6655
JB
2425 if (mode & FALLOC_FL_PUNCH_HOLE)
2426 return btrfs_punch_hole(inode, offset, len);
2427
d98456fc
CM
2428 /*
2429 * Make sure we have enough space before we do the
2430 * allocation.
2431 */
0ff6fabd 2432 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
d98456fc
CM
2433 if (ret)
2434 return ret;
6113077c
WS
2435 if (root->fs_info->quota_enabled) {
2436 ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2437 if (ret)
2438 goto out_reserve_fail;
2439 }
d98456fc 2440
2fe17c10
CH
2441 mutex_lock(&inode->i_mutex);
2442 ret = inode_newsize_ok(inode, alloc_end);
2443 if (ret)
2444 goto out;
2445
2446 if (alloc_start > inode->i_size) {
a41ad394
JB
2447 ret = btrfs_cont_expand(inode, i_size_read(inode),
2448 alloc_start);
2fe17c10
CH
2449 if (ret)
2450 goto out;
a71754fc
JB
2451 } else {
2452 /*
2453 * If we are fallocating from the end of the file onward we
2454 * need to zero out the end of the page if i_size lands in the
2455 * middle of a page.
2456 */
2457 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2458 if (ret)
2459 goto out;
2fe17c10
CH
2460 }
2461
a71754fc
JB
2462 /*
2463 * wait for ordered IO before we have any locks. We'll loop again
2464 * below with the locks held.
2465 */
0ef8b726
JB
2466 ret = btrfs_wait_ordered_range(inode, alloc_start,
2467 alloc_end - alloc_start);
2468 if (ret)
2469 goto out;
a71754fc 2470
2fe17c10
CH
2471 locked_end = alloc_end - 1;
2472 while (1) {
2473 struct btrfs_ordered_extent *ordered;
2474
2475 /* the extent lock is ordered inside the running
2476 * transaction
2477 */
2478 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
d0082371 2479 locked_end, 0, &cached_state);
2fe17c10
CH
2480 ordered = btrfs_lookup_first_ordered_extent(inode,
2481 alloc_end - 1);
2482 if (ordered &&
2483 ordered->file_offset + ordered->len > alloc_start &&
2484 ordered->file_offset < alloc_end) {
2485 btrfs_put_ordered_extent(ordered);
2486 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2487 alloc_start, locked_end,
2488 &cached_state, GFP_NOFS);
2489 /*
2490 * we can't wait on the range with the transaction
2491 * running or with the extent lock held
2492 */
0ef8b726
JB
2493 ret = btrfs_wait_ordered_range(inode, alloc_start,
2494 alloc_end - alloc_start);
2495 if (ret)
2496 goto out;
2fe17c10
CH
2497 } else {
2498 if (ordered)
2499 btrfs_put_ordered_extent(ordered);
2500 break;
2501 }
2502 }
2503
2504 cur_offset = alloc_start;
2505 while (1) {
f1e490a7
JB
2506 u64 actual_end;
2507
2fe17c10
CH
2508 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2509 alloc_end - cur_offset, 0);
79787eaa
JM
2510 if (IS_ERR_OR_NULL(em)) {
2511 if (!em)
2512 ret = -ENOMEM;
2513 else
2514 ret = PTR_ERR(em);
2515 break;
2516 }
2fe17c10 2517 last_byte = min(extent_map_end(em), alloc_end);
f1e490a7 2518 actual_end = min_t(u64, extent_map_end(em), offset + len);
797f4277 2519 last_byte = ALIGN(last_byte, blocksize);
f1e490a7 2520
2fe17c10
CH
2521 if (em->block_start == EXTENT_MAP_HOLE ||
2522 (cur_offset >= inode->i_size &&
2523 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2524 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2525 last_byte - cur_offset,
2526 1 << inode->i_blkbits,
2527 offset + len,
2528 &alloc_hint);
1b9c332b 2529
2fe17c10
CH
2530 if (ret < 0) {
2531 free_extent_map(em);
2532 break;
2533 }
f1e490a7
JB
2534 } else if (actual_end > inode->i_size &&
2535 !(mode & FALLOC_FL_KEEP_SIZE)) {
2536 /*
2537 * We didn't need to allocate any more space, but we
2538 * still extended the size of the file so we need to
2539 * update i_size.
2540 */
2541 inode->i_ctime = CURRENT_TIME;
2542 i_size_write(inode, actual_end);
2543 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2fe17c10
CH
2544 }
2545 free_extent_map(em);
2546
2547 cur_offset = last_byte;
2548 if (cur_offset >= alloc_end) {
2549 ret = 0;
2550 break;
2551 }
2552 }
2553 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2554 &cached_state, GFP_NOFS);
2fe17c10
CH
2555out:
2556 mutex_unlock(&inode->i_mutex);
6113077c
WS
2557 if (root->fs_info->quota_enabled)
2558 btrfs_qgroup_free(root, alloc_end - alloc_start);
2559out_reserve_fail:
d98456fc 2560 /* Let go of our reservation. */
0ff6fabd 2561 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2fe17c10
CH
2562 return ret;
2563}
2564
965c8e59 2565static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
b2675157
JB
2566{
2567 struct btrfs_root *root = BTRFS_I(inode)->root;
7f4ca37c 2568 struct extent_map *em = NULL;
b2675157
JB
2569 struct extent_state *cached_state = NULL;
2570 u64 lockstart = *offset;
2571 u64 lockend = i_size_read(inode);
2572 u64 start = *offset;
b2675157 2573 u64 len = i_size_read(inode);
b2675157
JB
2574 int ret = 0;
2575
2576 lockend = max_t(u64, root->sectorsize, lockend);
2577 if (lockend <= lockstart)
2578 lockend = lockstart + root->sectorsize;
2579
1214b53f 2580 lockend--;
b2675157
JB
2581 len = lockend - lockstart + 1;
2582
2583 len = max_t(u64, len, root->sectorsize);
2584 if (inode->i_size == 0)
2585 return -ENXIO;
2586
2587 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
d0082371 2588 &cached_state);
b2675157 2589
7f4ca37c 2590 while (start < inode->i_size) {
b2675157
JB
2591 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2592 if (IS_ERR(em)) {
6af021d8 2593 ret = PTR_ERR(em);
7f4ca37c 2594 em = NULL;
b2675157
JB
2595 break;
2596 }
2597
7f4ca37c
JB
2598 if (whence == SEEK_HOLE &&
2599 (em->block_start == EXTENT_MAP_HOLE ||
2600 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2601 break;
2602 else if (whence == SEEK_DATA &&
2603 (em->block_start != EXTENT_MAP_HOLE &&
2604 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2605 break;
b2675157
JB
2606
2607 start = em->start + em->len;
b2675157 2608 free_extent_map(em);
7f4ca37c 2609 em = NULL;
b2675157
JB
2610 cond_resched();
2611 }
7f4ca37c
JB
2612 free_extent_map(em);
2613 if (!ret) {
2614 if (whence == SEEK_DATA && start >= inode->i_size)
2615 ret = -ENXIO;
2616 else
2617 *offset = min_t(loff_t, start, inode->i_size);
2618 }
b2675157
JB
2619 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2620 &cached_state, GFP_NOFS);
2621 return ret;
2622}
2623
965c8e59 2624static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
b2675157
JB
2625{
2626 struct inode *inode = file->f_mapping->host;
2627 int ret;
2628
2629 mutex_lock(&inode->i_mutex);
965c8e59 2630 switch (whence) {
b2675157
JB
2631 case SEEK_END:
2632 case SEEK_CUR:
965c8e59 2633 offset = generic_file_llseek(file, offset, whence);
b2675157
JB
2634 goto out;
2635 case SEEK_DATA:
2636 case SEEK_HOLE:
48802c8a
JL
2637 if (offset >= i_size_read(inode)) {
2638 mutex_unlock(&inode->i_mutex);
2639 return -ENXIO;
2640 }
2641
965c8e59 2642 ret = find_desired_extent(inode, &offset, whence);
b2675157
JB
2643 if (ret) {
2644 mutex_unlock(&inode->i_mutex);
2645 return ret;
2646 }
2647 }
2648
46a1c2c7 2649 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
b2675157
JB
2650out:
2651 mutex_unlock(&inode->i_mutex);
2652 return offset;
2653}
2654
828c0950 2655const struct file_operations btrfs_file_operations = {
b2675157 2656 .llseek = btrfs_file_llseek,
39279cc3 2657 .read = do_sync_read,
4a001071 2658 .write = do_sync_write,
9ebefb18 2659 .aio_read = generic_file_aio_read,
e9906a98 2660 .splice_read = generic_file_splice_read,
11c65dcc 2661 .aio_write = btrfs_file_aio_write,
9ebefb18 2662 .mmap = btrfs_file_mmap,
39279cc3 2663 .open = generic_file_open,
e1b81e67 2664 .release = btrfs_release_file,
39279cc3 2665 .fsync = btrfs_sync_file,
2fe17c10 2666 .fallocate = btrfs_fallocate,
34287aa3 2667 .unlocked_ioctl = btrfs_ioctl,
39279cc3 2668#ifdef CONFIG_COMPAT
34287aa3 2669 .compat_ioctl = btrfs_ioctl,
39279cc3
CM
2670#endif
2671};
9247f317
MX
2672
2673void btrfs_auto_defrag_exit(void)
2674{
2675 if (btrfs_inode_defrag_cachep)
2676 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2677}
2678
2679int btrfs_auto_defrag_init(void)
2680{
2681 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2682 sizeof(struct inode_defrag), 0,
2683 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2684 NULL);
2685 if (!btrfs_inode_defrag_cachep)
2686 return -ENOMEM;
2687
2688 return 0;
2689}
This page took 0.577594 seconds and 5 git commands to generate.