Merge remote-tracking branch 'rtc/rtc-next'
[deliverable/linux.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
55e301fd 42#include <linux/btrfs.h>
53b381b3 43#include <linux/blkdev.h>
f23b5a59 44#include <linux/posix_acl_xattr.h>
e2e40f2c 45#include <linux/uio.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
31193213 62#include "qgroup.h"
dda3245e 63#include "dedupe.h"
39279cc3
CM
64
65struct btrfs_iget_args {
90d3e592 66 struct btrfs_key *location;
39279cc3
CM
67 struct btrfs_root *root;
68};
69
f28a4928
FM
70struct btrfs_dio_data {
71 u64 outstanding_extents;
72 u64 reserve;
73 u64 unsubmitted_oe_range_start;
74 u64 unsubmitted_oe_range_end;
75};
76
6e1d5dcc
AD
77static const struct inode_operations btrfs_dir_inode_operations;
78static const struct inode_operations btrfs_symlink_inode_operations;
79static const struct inode_operations btrfs_dir_ro_inode_operations;
80static const struct inode_operations btrfs_special_inode_operations;
81static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
82static const struct address_space_operations btrfs_aops;
83static const struct address_space_operations btrfs_symlink_aops;
828c0950 84static const struct file_operations btrfs_dir_file_operations;
20e5506b 85static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
86
87static struct kmem_cache *btrfs_inode_cachep;
88struct kmem_cache *btrfs_trans_handle_cachep;
89struct kmem_cache *btrfs_transaction_cachep;
39279cc3 90struct kmem_cache *btrfs_path_cachep;
dc89e982 91struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
92
93#define S_SHIFT 12
4d4ab6d6 94static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
95 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
96 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
97 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
98 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
99 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
100 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
101 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
102};
103
3972f260 104static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 105static int btrfs_truncate(struct inode *inode);
5fd02043 106static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
107static noinline int cow_file_range(struct inode *inode,
108 struct page *locked_page,
dda3245e
WX
109 u64 start, u64 end, u64 delalloc_end,
110 int *page_started, unsigned long *nr_written,
111 int unlock, struct btrfs_dedupe_hash *hash);
70c8a91c
JB
112static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
113 u64 len, u64 orig_start,
114 u64 block_start, u64 block_len,
cc95bef6
JB
115 u64 orig_block_len, u64 ram_bytes,
116 int type);
7b128766 117
48a3b636 118static int btrfs_dirty_inode(struct inode *inode);
7b128766 119
6a3891c5
JB
120#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
121void btrfs_test_inode_set_ops(struct inode *inode)
122{
123 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
124}
125#endif
126
f34f57a3 127static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
128 struct inode *inode, struct inode *dir,
129 const struct qstr *qstr)
0279b4cd
JO
130{
131 int err;
132
f34f57a3 133 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 134 if (!err)
2a7dba39 135 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
136 return err;
137}
138
c8b97818
CM
139/*
140 * this does all the hard work for inserting an inline extent into
141 * the btree. The caller should have done a btrfs_drop_extents so that
142 * no overlapping inline items exist in the btree
143 */
40f76580 144static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 145 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
146 struct btrfs_root *root, struct inode *inode,
147 u64 start, size_t size, size_t compressed_size,
fe3f566c 148 int compress_type,
c8b97818
CM
149 struct page **compressed_pages)
150{
c8b97818
CM
151 struct extent_buffer *leaf;
152 struct page *page = NULL;
153 char *kaddr;
154 unsigned long ptr;
155 struct btrfs_file_extent_item *ei;
156 int err = 0;
157 int ret;
158 size_t cur_size = size;
c8b97818 159 unsigned long offset;
c8b97818 160
fe3f566c 161 if (compressed_size && compressed_pages)
c8b97818 162 cur_size = compressed_size;
c8b97818 163
1acae57b 164 inode_add_bytes(inode, size);
c8b97818 165
1acae57b
FDBM
166 if (!extent_inserted) {
167 struct btrfs_key key;
168 size_t datasize;
c8b97818 169
1acae57b
FDBM
170 key.objectid = btrfs_ino(inode);
171 key.offset = start;
962a298f 172 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 173
1acae57b
FDBM
174 datasize = btrfs_file_extent_calc_inline_size(cur_size);
175 path->leave_spinning = 1;
176 ret = btrfs_insert_empty_item(trans, root, path, &key,
177 datasize);
178 if (ret) {
179 err = ret;
180 goto fail;
181 }
c8b97818
CM
182 }
183 leaf = path->nodes[0];
184 ei = btrfs_item_ptr(leaf, path->slots[0],
185 struct btrfs_file_extent_item);
186 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
187 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
188 btrfs_set_file_extent_encryption(leaf, ei, 0);
189 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
190 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
191 ptr = btrfs_file_extent_inline_start(ei);
192
261507a0 193 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
194 struct page *cpage;
195 int i = 0;
d397712b 196 while (compressed_size > 0) {
c8b97818 197 cpage = compressed_pages[i];
5b050f04 198 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 199 PAGE_SIZE);
c8b97818 200
7ac687d9 201 kaddr = kmap_atomic(cpage);
c8b97818 202 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 203 kunmap_atomic(kaddr);
c8b97818
CM
204
205 i++;
206 ptr += cur_size;
207 compressed_size -= cur_size;
208 }
209 btrfs_set_file_extent_compression(leaf, ei,
261507a0 210 compress_type);
c8b97818
CM
211 } else {
212 page = find_get_page(inode->i_mapping,
09cbfeaf 213 start >> PAGE_SHIFT);
c8b97818 214 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 215 kaddr = kmap_atomic(page);
09cbfeaf 216 offset = start & (PAGE_SIZE - 1);
c8b97818 217 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 218 kunmap_atomic(kaddr);
09cbfeaf 219 put_page(page);
c8b97818
CM
220 }
221 btrfs_mark_buffer_dirty(leaf);
1acae57b 222 btrfs_release_path(path);
c8b97818 223
c2167754
YZ
224 /*
225 * we're an inline extent, so nobody can
226 * extend the file past i_size without locking
227 * a page we already have locked.
228 *
229 * We must do any isize and inode updates
230 * before we unlock the pages. Otherwise we
231 * could end up racing with unlink.
232 */
c8b97818 233 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 234 ret = btrfs_update_inode(trans, root, inode);
c2167754 235
79787eaa 236 return ret;
c8b97818 237fail:
c8b97818
CM
238 return err;
239}
240
241
242/*
243 * conditionally insert an inline extent into the file. This
244 * does the checks required to make sure the data is small enough
245 * to fit as an inline extent.
246 */
00361589
JB
247static noinline int cow_file_range_inline(struct btrfs_root *root,
248 struct inode *inode, u64 start,
249 u64 end, size_t compressed_size,
250 int compress_type,
251 struct page **compressed_pages)
c8b97818 252{
00361589 253 struct btrfs_trans_handle *trans;
c8b97818
CM
254 u64 isize = i_size_read(inode);
255 u64 actual_end = min(end + 1, isize);
256 u64 inline_len = actual_end - start;
fda2832f 257 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
258 u64 data_len = inline_len;
259 int ret;
1acae57b
FDBM
260 struct btrfs_path *path;
261 int extent_inserted = 0;
262 u32 extent_item_size;
c8b97818
CM
263
264 if (compressed_size)
265 data_len = compressed_size;
266
267 if (start > 0 ||
0c29ba99 268 actual_end > root->sectorsize ||
354877be 269 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
c8b97818
CM
270 (!compressed_size &&
271 (actual_end & (root->sectorsize - 1)) == 0) ||
272 end + 1 < isize ||
273 data_len > root->fs_info->max_inline) {
274 return 1;
275 }
276
1acae57b
FDBM
277 path = btrfs_alloc_path();
278 if (!path)
279 return -ENOMEM;
280
00361589 281 trans = btrfs_join_transaction(root);
1acae57b
FDBM
282 if (IS_ERR(trans)) {
283 btrfs_free_path(path);
00361589 284 return PTR_ERR(trans);
1acae57b 285 }
00361589
JB
286 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
287
1acae57b
FDBM
288 if (compressed_size && compressed_pages)
289 extent_item_size = btrfs_file_extent_calc_inline_size(
290 compressed_size);
291 else
292 extent_item_size = btrfs_file_extent_calc_inline_size(
293 inline_len);
294
295 ret = __btrfs_drop_extents(trans, root, inode, path,
296 start, aligned_end, NULL,
297 1, 1, extent_item_size, &extent_inserted);
00361589 298 if (ret) {
66642832 299 btrfs_abort_transaction(trans, ret);
00361589
JB
300 goto out;
301 }
c8b97818
CM
302
303 if (isize > actual_end)
304 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
305 ret = insert_inline_extent(trans, path, extent_inserted,
306 root, inode, start,
c8b97818 307 inline_len, compressed_size,
fe3f566c 308 compress_type, compressed_pages);
2adcac1a 309 if (ret && ret != -ENOSPC) {
66642832 310 btrfs_abort_transaction(trans, ret);
00361589 311 goto out;
2adcac1a 312 } else if (ret == -ENOSPC) {
00361589
JB
313 ret = 1;
314 goto out;
79787eaa 315 }
2adcac1a 316
bdc20e67 317 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 318 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 319 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 320out:
94ed938a
QW
321 /*
322 * Don't forget to free the reserved space, as for inlined extent
323 * it won't count as data extent, free them directly here.
324 * And at reserve time, it's always aligned to page size, so
325 * just free one page here.
326 */
09cbfeaf 327 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
1acae57b 328 btrfs_free_path(path);
00361589
JB
329 btrfs_end_transaction(trans, root);
330 return ret;
c8b97818
CM
331}
332
771ed689
CM
333struct async_extent {
334 u64 start;
335 u64 ram_size;
336 u64 compressed_size;
337 struct page **pages;
338 unsigned long nr_pages;
261507a0 339 int compress_type;
771ed689
CM
340 struct list_head list;
341};
342
343struct async_cow {
344 struct inode *inode;
345 struct btrfs_root *root;
346 struct page *locked_page;
347 u64 start;
348 u64 end;
349 struct list_head extents;
350 struct btrfs_work work;
351};
352
353static noinline int add_async_extent(struct async_cow *cow,
354 u64 start, u64 ram_size,
355 u64 compressed_size,
356 struct page **pages,
261507a0
LZ
357 unsigned long nr_pages,
358 int compress_type)
771ed689
CM
359{
360 struct async_extent *async_extent;
361
362 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 363 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
364 async_extent->start = start;
365 async_extent->ram_size = ram_size;
366 async_extent->compressed_size = compressed_size;
367 async_extent->pages = pages;
368 async_extent->nr_pages = nr_pages;
261507a0 369 async_extent->compress_type = compress_type;
771ed689
CM
370 list_add_tail(&async_extent->list, &cow->extents);
371 return 0;
372}
373
f79707b0
WS
374static inline int inode_need_compress(struct inode *inode)
375{
376 struct btrfs_root *root = BTRFS_I(inode)->root;
377
378 /* force compress */
3cdde224 379 if (btrfs_test_opt(root->fs_info, FORCE_COMPRESS))
f79707b0
WS
380 return 1;
381 /* bad compression ratios */
382 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
383 return 0;
3cdde224 384 if (btrfs_test_opt(root->fs_info, COMPRESS) ||
f79707b0
WS
385 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
386 BTRFS_I(inode)->force_compress)
387 return 1;
388 return 0;
389}
390
d352ac68 391/*
771ed689
CM
392 * we create compressed extents in two phases. The first
393 * phase compresses a range of pages that have already been
394 * locked (both pages and state bits are locked).
c8b97818 395 *
771ed689
CM
396 * This is done inside an ordered work queue, and the compression
397 * is spread across many cpus. The actual IO submission is step
398 * two, and the ordered work queue takes care of making sure that
399 * happens in the same order things were put onto the queue by
400 * writepages and friends.
c8b97818 401 *
771ed689
CM
402 * If this code finds it can't get good compression, it puts an
403 * entry onto the work queue to write the uncompressed bytes. This
404 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
405 * are written in the same order that the flusher thread sent them
406 * down.
d352ac68 407 */
c44f649e 408static noinline void compress_file_range(struct inode *inode,
771ed689
CM
409 struct page *locked_page,
410 u64 start, u64 end,
411 struct async_cow *async_cow,
412 int *num_added)
b888db2b
CM
413{
414 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 415 u64 num_bytes;
db94535d 416 u64 blocksize = root->sectorsize;
c8b97818 417 u64 actual_end;
42dc7bab 418 u64 isize = i_size_read(inode);
e6dcd2dc 419 int ret = 0;
c8b97818
CM
420 struct page **pages = NULL;
421 unsigned long nr_pages;
422 unsigned long nr_pages_ret = 0;
423 unsigned long total_compressed = 0;
424 unsigned long total_in = 0;
ee22184b
BL
425 unsigned long max_compressed = SZ_128K;
426 unsigned long max_uncompressed = SZ_128K;
c8b97818
CM
427 int i;
428 int will_compress;
261507a0 429 int compress_type = root->fs_info->compress_type;
4adaa611 430 int redirty = 0;
b888db2b 431
4cb13e5d 432 /* if this is a small write inside eof, kick off a defrag */
ee22184b 433 if ((end - start + 1) < SZ_16K &&
4cb13e5d 434 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
435 btrfs_add_inode_defrag(NULL, inode);
436
42dc7bab 437 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
438again:
439 will_compress = 0;
09cbfeaf
KS
440 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
441 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
be20aa9d 442
f03d9301
CM
443 /*
444 * we don't want to send crud past the end of i_size through
445 * compression, that's just a waste of CPU time. So, if the
446 * end of the file is before the start of our current
447 * requested range of bytes, we bail out to the uncompressed
448 * cleanup code that can deal with all of this.
449 *
450 * It isn't really the fastest way to fix things, but this is a
451 * very uncommon corner.
452 */
453 if (actual_end <= start)
454 goto cleanup_and_bail_uncompressed;
455
c8b97818
CM
456 total_compressed = actual_end - start;
457
4bcbb332
SW
458 /*
459 * skip compression for a small file range(<=blocksize) that
01327610 460 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
461 */
462 if (total_compressed <= blocksize &&
463 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
464 goto cleanup_and_bail_uncompressed;
465
c8b97818
CM
466 /* we want to make sure that amount of ram required to uncompress
467 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
468 * of a compressed extent to 128k. This is a crucial number
469 * because it also controls how easily we can spread reads across
470 * cpus for decompression.
471 *
472 * We also want to make sure the amount of IO required to do
473 * a random read is reasonably small, so we limit the size of
474 * a compressed extent to 128k.
c8b97818
CM
475 */
476 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 477 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 478 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
479 total_in = 0;
480 ret = 0;
db94535d 481
771ed689
CM
482 /*
483 * we do compression for mount -o compress and when the
484 * inode has not been flagged as nocompress. This flag can
485 * change at any time if we discover bad compression ratios.
c8b97818 486 */
f79707b0 487 if (inode_need_compress(inode)) {
c8b97818 488 WARN_ON(pages);
31e818fe 489 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
490 if (!pages) {
491 /* just bail out to the uncompressed code */
492 goto cont;
493 }
c8b97818 494
261507a0
LZ
495 if (BTRFS_I(inode)->force_compress)
496 compress_type = BTRFS_I(inode)->force_compress;
497
4adaa611
CM
498 /*
499 * we need to call clear_page_dirty_for_io on each
500 * page in the range. Otherwise applications with the file
501 * mmap'd can wander in and change the page contents while
502 * we are compressing them.
503 *
504 * If the compression fails for any reason, we set the pages
505 * dirty again later on.
506 */
507 extent_range_clear_dirty_for_io(inode, start, end);
508 redirty = 1;
261507a0
LZ
509 ret = btrfs_compress_pages(compress_type,
510 inode->i_mapping, start,
511 total_compressed, pages,
512 nr_pages, &nr_pages_ret,
513 &total_in,
514 &total_compressed,
515 max_compressed);
c8b97818
CM
516
517 if (!ret) {
518 unsigned long offset = total_compressed &
09cbfeaf 519 (PAGE_SIZE - 1);
c8b97818
CM
520 struct page *page = pages[nr_pages_ret - 1];
521 char *kaddr;
522
523 /* zero the tail end of the last page, we might be
524 * sending it down to disk
525 */
526 if (offset) {
7ac687d9 527 kaddr = kmap_atomic(page);
c8b97818 528 memset(kaddr + offset, 0,
09cbfeaf 529 PAGE_SIZE - offset);
7ac687d9 530 kunmap_atomic(kaddr);
c8b97818
CM
531 }
532 will_compress = 1;
533 }
534 }
560f7d75 535cont:
c8b97818
CM
536 if (start == 0) {
537 /* lets try to make an inline extent */
771ed689 538 if (ret || total_in < (actual_end - start)) {
c8b97818 539 /* we didn't compress the entire range, try
771ed689 540 * to make an uncompressed inline extent.
c8b97818 541 */
00361589
JB
542 ret = cow_file_range_inline(root, inode, start, end,
543 0, 0, NULL);
c8b97818 544 } else {
771ed689 545 /* try making a compressed inline extent */
00361589 546 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
547 total_compressed,
548 compress_type, pages);
c8b97818 549 }
79787eaa 550 if (ret <= 0) {
151a41bc
JB
551 unsigned long clear_flags = EXTENT_DELALLOC |
552 EXTENT_DEFRAG;
e6eb4314
FM
553 unsigned long page_error_op;
554
151a41bc 555 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 556 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 557
771ed689 558 /*
79787eaa
JM
559 * inline extent creation worked or returned error,
560 * we don't need to create any more async work items.
561 * Unlock and free up our temp pages.
771ed689 562 */
b0985c40
QW
563 extent_clear_unlock_delalloc(inode, start, end, end,
564 NULL, clear_flags,
565 PAGE_UNLOCK |
c2790a2e
JB
566 PAGE_CLEAR_DIRTY |
567 PAGE_SET_WRITEBACK |
e6eb4314 568 page_error_op |
c2790a2e 569 PAGE_END_WRITEBACK);
18513091
WX
570 btrfs_free_reserved_data_space_noquota(inode, start,
571 end - start + 1);
c8b97818
CM
572 goto free_pages_out;
573 }
574 }
575
576 if (will_compress) {
577 /*
578 * we aren't doing an inline extent round the compressed size
579 * up to a block size boundary so the allocator does sane
580 * things
581 */
fda2832f 582 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
583
584 /*
585 * one last check to make sure the compression is really a
586 * win, compare the page count read with the blocks on disk
587 */
09cbfeaf 588 total_in = ALIGN(total_in, PAGE_SIZE);
c8b97818
CM
589 if (total_compressed >= total_in) {
590 will_compress = 0;
591 } else {
c8b97818 592 num_bytes = total_in;
c8bb0c8b
AS
593 *num_added += 1;
594
595 /*
596 * The async work queues will take care of doing actual
597 * allocation on disk for these compressed pages, and
598 * will submit them to the elevator.
599 */
600 add_async_extent(async_cow, start, num_bytes,
601 total_compressed, pages, nr_pages_ret,
602 compress_type);
603
604 if (start + num_bytes < end) {
605 start += num_bytes;
606 pages = NULL;
607 cond_resched();
608 goto again;
609 }
610 return;
c8b97818
CM
611 }
612 }
c8bb0c8b 613 if (pages) {
c8b97818
CM
614 /*
615 * the compression code ran but failed to make things smaller,
616 * free any pages it allocated and our page pointer array
617 */
618 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 619 WARN_ON(pages[i]->mapping);
09cbfeaf 620 put_page(pages[i]);
c8b97818
CM
621 }
622 kfree(pages);
623 pages = NULL;
624 total_compressed = 0;
625 nr_pages_ret = 0;
626
627 /* flag the file so we don't compress in the future */
3cdde224 628 if (!btrfs_test_opt(root->fs_info, FORCE_COMPRESS) &&
1e701a32 629 !(BTRFS_I(inode)->force_compress)) {
a555f810 630 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 631 }
c8b97818 632 }
f03d9301 633cleanup_and_bail_uncompressed:
c8bb0c8b
AS
634 /*
635 * No compression, but we still need to write the pages in the file
636 * we've been given so far. redirty the locked page if it corresponds
637 * to our extent and set things up for the async work queue to run
638 * cow_file_range to do the normal delalloc dance.
639 */
640 if (page_offset(locked_page) >= start &&
641 page_offset(locked_page) <= end)
642 __set_page_dirty_nobuffers(locked_page);
643 /* unlocked later on in the async handlers */
644
645 if (redirty)
646 extent_range_redirty_for_io(inode, start, end);
647 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
648 BTRFS_COMPRESS_NONE);
649 *num_added += 1;
3b951516 650
c44f649e 651 return;
771ed689
CM
652
653free_pages_out:
654 for (i = 0; i < nr_pages_ret; i++) {
655 WARN_ON(pages[i]->mapping);
09cbfeaf 656 put_page(pages[i]);
771ed689 657 }
d397712b 658 kfree(pages);
771ed689 659}
771ed689 660
40ae837b
FM
661static void free_async_extent_pages(struct async_extent *async_extent)
662{
663 int i;
664
665 if (!async_extent->pages)
666 return;
667
668 for (i = 0; i < async_extent->nr_pages; i++) {
669 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 670 put_page(async_extent->pages[i]);
40ae837b
FM
671 }
672 kfree(async_extent->pages);
673 async_extent->nr_pages = 0;
674 async_extent->pages = NULL;
771ed689
CM
675}
676
677/*
678 * phase two of compressed writeback. This is the ordered portion
679 * of the code, which only gets called in the order the work was
680 * queued. We walk all the async extents created by compress_file_range
681 * and send them down to the disk.
682 */
dec8f175 683static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
684 struct async_cow *async_cow)
685{
686 struct async_extent *async_extent;
687 u64 alloc_hint = 0;
771ed689
CM
688 struct btrfs_key ins;
689 struct extent_map *em;
690 struct btrfs_root *root = BTRFS_I(inode)->root;
691 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
692 struct extent_io_tree *io_tree;
f5a84ee3 693 int ret = 0;
771ed689 694
3e04e7f1 695again:
d397712b 696 while (!list_empty(&async_cow->extents)) {
771ed689
CM
697 async_extent = list_entry(async_cow->extents.next,
698 struct async_extent, list);
699 list_del(&async_extent->list);
c8b97818 700
771ed689
CM
701 io_tree = &BTRFS_I(inode)->io_tree;
702
f5a84ee3 703retry:
771ed689
CM
704 /* did the compression code fall back to uncompressed IO? */
705 if (!async_extent->pages) {
706 int page_started = 0;
707 unsigned long nr_written = 0;
708
709 lock_extent(io_tree, async_extent->start,
2ac55d41 710 async_extent->start +
d0082371 711 async_extent->ram_size - 1);
771ed689
CM
712
713 /* allocate blocks */
f5a84ee3
JB
714 ret = cow_file_range(inode, async_cow->locked_page,
715 async_extent->start,
716 async_extent->start +
717 async_extent->ram_size - 1,
dda3245e
WX
718 async_extent->start +
719 async_extent->ram_size - 1,
720 &page_started, &nr_written, 0,
721 NULL);
771ed689 722
79787eaa
JM
723 /* JDM XXX */
724
771ed689
CM
725 /*
726 * if page_started, cow_file_range inserted an
727 * inline extent and took care of all the unlocking
728 * and IO for us. Otherwise, we need to submit
729 * all those pages down to the drive.
730 */
f5a84ee3 731 if (!page_started && !ret)
771ed689
CM
732 extent_write_locked_range(io_tree,
733 inode, async_extent->start,
d397712b 734 async_extent->start +
771ed689
CM
735 async_extent->ram_size - 1,
736 btrfs_get_extent,
737 WB_SYNC_ALL);
3e04e7f1
JB
738 else if (ret)
739 unlock_page(async_cow->locked_page);
771ed689
CM
740 kfree(async_extent);
741 cond_resched();
742 continue;
743 }
744
745 lock_extent(io_tree, async_extent->start,
d0082371 746 async_extent->start + async_extent->ram_size - 1);
771ed689 747
18513091 748 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
749 async_extent->compressed_size,
750 async_extent->compressed_size,
e570fd27 751 0, alloc_hint, &ins, 1, 1);
f5a84ee3 752 if (ret) {
40ae837b 753 free_async_extent_pages(async_extent);
3e04e7f1 754
fdf8e2ea
JB
755 if (ret == -ENOSPC) {
756 unlock_extent(io_tree, async_extent->start,
757 async_extent->start +
758 async_extent->ram_size - 1);
ce62003f
LB
759
760 /*
761 * we need to redirty the pages if we decide to
762 * fallback to uncompressed IO, otherwise we
763 * will not submit these pages down to lower
764 * layers.
765 */
766 extent_range_redirty_for_io(inode,
767 async_extent->start,
768 async_extent->start +
769 async_extent->ram_size - 1);
770
79787eaa 771 goto retry;
fdf8e2ea 772 }
3e04e7f1 773 goto out_free;
f5a84ee3 774 }
c2167754
YZ
775 /*
776 * here we're doing allocation and writeback of the
777 * compressed pages
778 */
779 btrfs_drop_extent_cache(inode, async_extent->start,
780 async_extent->start +
781 async_extent->ram_size - 1, 0);
782
172ddd60 783 em = alloc_extent_map();
b9aa55be
LB
784 if (!em) {
785 ret = -ENOMEM;
3e04e7f1 786 goto out_free_reserve;
b9aa55be 787 }
771ed689
CM
788 em->start = async_extent->start;
789 em->len = async_extent->ram_size;
445a6944 790 em->orig_start = em->start;
2ab28f32
JB
791 em->mod_start = em->start;
792 em->mod_len = em->len;
c8b97818 793
771ed689
CM
794 em->block_start = ins.objectid;
795 em->block_len = ins.offset;
b4939680 796 em->orig_block_len = ins.offset;
cc95bef6 797 em->ram_bytes = async_extent->ram_size;
771ed689 798 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 799 em->compress_type = async_extent->compress_type;
771ed689
CM
800 set_bit(EXTENT_FLAG_PINNED, &em->flags);
801 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 802 em->generation = -1;
771ed689 803
d397712b 804 while (1) {
890871be 805 write_lock(&em_tree->lock);
09a2a8f9 806 ret = add_extent_mapping(em_tree, em, 1);
890871be 807 write_unlock(&em_tree->lock);
771ed689
CM
808 if (ret != -EEXIST) {
809 free_extent_map(em);
810 break;
811 }
812 btrfs_drop_extent_cache(inode, async_extent->start,
813 async_extent->start +
814 async_extent->ram_size - 1, 0);
815 }
816
3e04e7f1
JB
817 if (ret)
818 goto out_free_reserve;
819
261507a0
LZ
820 ret = btrfs_add_ordered_extent_compress(inode,
821 async_extent->start,
822 ins.objectid,
823 async_extent->ram_size,
824 ins.offset,
825 BTRFS_ORDERED_COMPRESSED,
826 async_extent->compress_type);
d9f85963
FM
827 if (ret) {
828 btrfs_drop_extent_cache(inode, async_extent->start,
829 async_extent->start +
830 async_extent->ram_size - 1, 0);
3e04e7f1 831 goto out_free_reserve;
d9f85963 832 }
9cfa3e34 833 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
771ed689 834
771ed689
CM
835 /*
836 * clear dirty, set writeback and unlock the pages.
837 */
c2790a2e 838 extent_clear_unlock_delalloc(inode, async_extent->start,
b0985c40
QW
839 async_extent->start +
840 async_extent->ram_size - 1,
a791e35e
CM
841 async_extent->start +
842 async_extent->ram_size - 1,
151a41bc
JB
843 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
844 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 845 PAGE_SET_WRITEBACK);
771ed689 846 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
847 async_extent->start,
848 async_extent->ram_size,
849 ins.objectid,
850 ins.offset, async_extent->pages,
851 async_extent->nr_pages);
fce2a4e6
FM
852 if (ret) {
853 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
854 struct page *p = async_extent->pages[0];
855 const u64 start = async_extent->start;
856 const u64 end = start + async_extent->ram_size - 1;
857
858 p->mapping = inode->i_mapping;
859 tree->ops->writepage_end_io_hook(p, start, end,
860 NULL, 0);
861 p->mapping = NULL;
b0985c40
QW
862 extent_clear_unlock_delalloc(inode, start, end, end,
863 NULL, 0,
fce2a4e6
FM
864 PAGE_END_WRITEBACK |
865 PAGE_SET_ERROR);
40ae837b 866 free_async_extent_pages(async_extent);
fce2a4e6 867 }
771ed689
CM
868 alloc_hint = ins.objectid + ins.offset;
869 kfree(async_extent);
870 cond_resched();
871 }
dec8f175 872 return;
3e04e7f1 873out_free_reserve:
9cfa3e34 874 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
e570fd27 875 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 876out_free:
c2790a2e 877 extent_clear_unlock_delalloc(inode, async_extent->start,
b0985c40
QW
878 async_extent->start +
879 async_extent->ram_size - 1,
3e04e7f1
JB
880 async_extent->start +
881 async_extent->ram_size - 1,
c2790a2e 882 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
883 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
884 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
885 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
886 PAGE_SET_ERROR);
40ae837b 887 free_async_extent_pages(async_extent);
79787eaa 888 kfree(async_extent);
3e04e7f1 889 goto again;
771ed689
CM
890}
891
4b46fce2
JB
892static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
893 u64 num_bytes)
894{
895 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
896 struct extent_map *em;
897 u64 alloc_hint = 0;
898
899 read_lock(&em_tree->lock);
900 em = search_extent_mapping(em_tree, start, num_bytes);
901 if (em) {
902 /*
903 * if block start isn't an actual block number then find the
904 * first block in this inode and use that as a hint. If that
905 * block is also bogus then just don't worry about it.
906 */
907 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
908 free_extent_map(em);
909 em = search_extent_mapping(em_tree, 0, 0);
910 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
911 alloc_hint = em->block_start;
912 if (em)
913 free_extent_map(em);
914 } else {
915 alloc_hint = em->block_start;
916 free_extent_map(em);
917 }
918 }
919 read_unlock(&em_tree->lock);
920
921 return alloc_hint;
922}
923
771ed689
CM
924/*
925 * when extent_io.c finds a delayed allocation range in the file,
926 * the call backs end up in this code. The basic idea is to
927 * allocate extents on disk for the range, and create ordered data structs
928 * in ram to track those extents.
929 *
930 * locked_page is the page that writepage had locked already. We use
931 * it to make sure we don't do extra locks or unlocks.
932 *
933 * *page_started is set to one if we unlock locked_page and do everything
934 * required to start IO on it. It may be clean and already done with
935 * IO when we return.
936 */
00361589
JB
937static noinline int cow_file_range(struct inode *inode,
938 struct page *locked_page,
dda3245e
WX
939 u64 start, u64 end, u64 delalloc_end,
940 int *page_started, unsigned long *nr_written,
941 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 942{
00361589 943 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
944 u64 alloc_hint = 0;
945 u64 num_bytes;
946 unsigned long ram_size;
947 u64 disk_num_bytes;
948 u64 cur_alloc_size;
949 u64 blocksize = root->sectorsize;
771ed689
CM
950 struct btrfs_key ins;
951 struct extent_map *em;
952 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
953 int ret = 0;
954
02ecd2c2
JB
955 if (btrfs_is_free_space_inode(inode)) {
956 WARN_ON_ONCE(1);
29bce2f3
JB
957 ret = -EINVAL;
958 goto out_unlock;
02ecd2c2 959 }
771ed689 960
fda2832f 961 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
962 num_bytes = max(blocksize, num_bytes);
963 disk_num_bytes = num_bytes;
771ed689 964
4cb5300b 965 /* if this is a small write inside eof, kick off defrag */
ee22184b 966 if (num_bytes < SZ_64K &&
4cb13e5d 967 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 968 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 969
771ed689
CM
970 if (start == 0) {
971 /* lets try to make an inline extent */
00361589
JB
972 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
973 NULL);
771ed689 974 if (ret == 0) {
b0985c40
QW
975 extent_clear_unlock_delalloc(inode, start, end,
976 delalloc_end, NULL,
c2790a2e 977 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 978 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
979 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
980 PAGE_END_WRITEBACK);
18513091
WX
981 btrfs_free_reserved_data_space_noquota(inode, start,
982 end - start + 1);
771ed689 983 *nr_written = *nr_written +
09cbfeaf 984 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 985 *page_started = 1;
771ed689 986 goto out;
79787eaa 987 } else if (ret < 0) {
79787eaa 988 goto out_unlock;
771ed689
CM
989 }
990 }
991
992 BUG_ON(disk_num_bytes >
6c41761f 993 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 994
4b46fce2 995 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
996 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
997
d397712b 998 while (disk_num_bytes > 0) {
a791e35e
CM
999 unsigned long op;
1000
287a0ab9 1001 cur_alloc_size = disk_num_bytes;
18513091 1002 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
771ed689 1003 root->sectorsize, 0, alloc_hint,
e570fd27 1004 &ins, 1, 1);
00361589 1005 if (ret < 0)
79787eaa 1006 goto out_unlock;
d397712b 1007
172ddd60 1008 em = alloc_extent_map();
b9aa55be
LB
1009 if (!em) {
1010 ret = -ENOMEM;
ace68bac 1011 goto out_reserve;
b9aa55be 1012 }
e6dcd2dc 1013 em->start = start;
445a6944 1014 em->orig_start = em->start;
771ed689
CM
1015 ram_size = ins.offset;
1016 em->len = ins.offset;
2ab28f32
JB
1017 em->mod_start = em->start;
1018 em->mod_len = em->len;
c8b97818 1019
e6dcd2dc 1020 em->block_start = ins.objectid;
c8b97818 1021 em->block_len = ins.offset;
b4939680 1022 em->orig_block_len = ins.offset;
cc95bef6 1023 em->ram_bytes = ram_size;
e6dcd2dc 1024 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 1025 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 1026 em->generation = -1;
c8b97818 1027
d397712b 1028 while (1) {
890871be 1029 write_lock(&em_tree->lock);
09a2a8f9 1030 ret = add_extent_mapping(em_tree, em, 1);
890871be 1031 write_unlock(&em_tree->lock);
e6dcd2dc
CM
1032 if (ret != -EEXIST) {
1033 free_extent_map(em);
1034 break;
1035 }
1036 btrfs_drop_extent_cache(inode, start,
c8b97818 1037 start + ram_size - 1, 0);
e6dcd2dc 1038 }
ace68bac
LB
1039 if (ret)
1040 goto out_reserve;
e6dcd2dc 1041
98d20f67 1042 cur_alloc_size = ins.offset;
e6dcd2dc 1043 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1044 ram_size, cur_alloc_size, 0);
ace68bac 1045 if (ret)
d9f85963 1046 goto out_drop_extent_cache;
c8b97818 1047
17d217fe
YZ
1048 if (root->root_key.objectid ==
1049 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1050 ret = btrfs_reloc_clone_csums(inode, start,
1051 cur_alloc_size);
00361589 1052 if (ret)
d9f85963 1053 goto out_drop_extent_cache;
17d217fe
YZ
1054 }
1055
9cfa3e34
FM
1056 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1057
d397712b 1058 if (disk_num_bytes < cur_alloc_size)
3b951516 1059 break;
d397712b 1060
c8b97818
CM
1061 /* we're not doing compressed IO, don't unlock the first
1062 * page (which the caller expects to stay locked), don't
1063 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1064 *
1065 * Do set the Private2 bit so we know this page was properly
1066 * setup for writepage
c8b97818 1067 */
c2790a2e
JB
1068 op = unlock ? PAGE_UNLOCK : 0;
1069 op |= PAGE_SET_PRIVATE2;
a791e35e 1070
c2790a2e 1071 extent_clear_unlock_delalloc(inode, start,
b0985c40
QW
1072 start + ram_size - 1,
1073 delalloc_end, locked_page,
c2790a2e
JB
1074 EXTENT_LOCKED | EXTENT_DELALLOC,
1075 op);
c8b97818 1076 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1077 num_bytes -= cur_alloc_size;
1078 alloc_hint = ins.objectid + ins.offset;
1079 start += cur_alloc_size;
b888db2b 1080 }
79787eaa 1081out:
be20aa9d 1082 return ret;
b7d5b0a8 1083
d9f85963
FM
1084out_drop_extent_cache:
1085 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1086out_reserve:
9cfa3e34 1087 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
e570fd27 1088 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 1089out_unlock:
b0985c40
QW
1090 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1091 locked_page,
151a41bc
JB
1092 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1093 EXTENT_DELALLOC | EXTENT_DEFRAG,
1094 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1095 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1096 goto out;
771ed689 1097}
c8b97818 1098
771ed689
CM
1099/*
1100 * work queue call back to started compression on a file and pages
1101 */
1102static noinline void async_cow_start(struct btrfs_work *work)
1103{
1104 struct async_cow *async_cow;
1105 int num_added = 0;
1106 async_cow = container_of(work, struct async_cow, work);
1107
1108 compress_file_range(async_cow->inode, async_cow->locked_page,
1109 async_cow->start, async_cow->end, async_cow,
1110 &num_added);
8180ef88 1111 if (num_added == 0) {
cb77fcd8 1112 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1113 async_cow->inode = NULL;
8180ef88 1114 }
771ed689
CM
1115}
1116
1117/*
1118 * work queue call back to submit previously compressed pages
1119 */
1120static noinline void async_cow_submit(struct btrfs_work *work)
1121{
1122 struct async_cow *async_cow;
1123 struct btrfs_root *root;
1124 unsigned long nr_pages;
1125
1126 async_cow = container_of(work, struct async_cow, work);
1127
1128 root = async_cow->root;
09cbfeaf
KS
1129 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1130 PAGE_SHIFT;
771ed689 1131
ee863954
DS
1132 /*
1133 * atomic_sub_return implies a barrier for waitqueue_active
1134 */
66657b31 1135 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
ee22184b 1136 5 * SZ_1M &&
771ed689
CM
1137 waitqueue_active(&root->fs_info->async_submit_wait))
1138 wake_up(&root->fs_info->async_submit_wait);
1139
d397712b 1140 if (async_cow->inode)
771ed689 1141 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1142}
c8b97818 1143
771ed689
CM
1144static noinline void async_cow_free(struct btrfs_work *work)
1145{
1146 struct async_cow *async_cow;
1147 async_cow = container_of(work, struct async_cow, work);
8180ef88 1148 if (async_cow->inode)
cb77fcd8 1149 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1150 kfree(async_cow);
1151}
1152
1153static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1154 u64 start, u64 end, int *page_started,
1155 unsigned long *nr_written)
1156{
1157 struct async_cow *async_cow;
1158 struct btrfs_root *root = BTRFS_I(inode)->root;
1159 unsigned long nr_pages;
1160 u64 cur_end;
ee22184b 1161 int limit = 10 * SZ_1M;
771ed689 1162
a3429ab7
CM
1163 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1164 1, 0, NULL, GFP_NOFS);
d397712b 1165 while (start < end) {
771ed689 1166 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1167 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1168 async_cow->inode = igrab(inode);
771ed689
CM
1169 async_cow->root = root;
1170 async_cow->locked_page = locked_page;
1171 async_cow->start = start;
1172
f79707b0 1173 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
3cdde224 1174 !btrfs_test_opt(root->fs_info, FORCE_COMPRESS))
771ed689
CM
1175 cur_end = end;
1176 else
ee22184b 1177 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1178
1179 async_cow->end = cur_end;
1180 INIT_LIST_HEAD(&async_cow->extents);
1181
9e0af237
LB
1182 btrfs_init_work(&async_cow->work,
1183 btrfs_delalloc_helper,
1184 async_cow_start, async_cow_submit,
1185 async_cow_free);
771ed689 1186
09cbfeaf
KS
1187 nr_pages = (cur_end - start + PAGE_SIZE) >>
1188 PAGE_SHIFT;
771ed689
CM
1189 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1190
afe3d242
QW
1191 btrfs_queue_work(root->fs_info->delalloc_workers,
1192 &async_cow->work);
771ed689
CM
1193
1194 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1195 wait_event(root->fs_info->async_submit_wait,
1196 (atomic_read(&root->fs_info->async_delalloc_pages) <
1197 limit));
1198 }
1199
d397712b 1200 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1201 atomic_read(&root->fs_info->async_delalloc_pages)) {
1202 wait_event(root->fs_info->async_submit_wait,
1203 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1204 0));
1205 }
1206
1207 *nr_written += nr_pages;
1208 start = cur_end + 1;
1209 }
1210 *page_started = 1;
1211 return 0;
be20aa9d
CM
1212}
1213
d397712b 1214static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1215 u64 bytenr, u64 num_bytes)
1216{
1217 int ret;
1218 struct btrfs_ordered_sum *sums;
1219 LIST_HEAD(list);
1220
07d400a6 1221 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1222 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1223 if (ret == 0 && list_empty(&list))
1224 return 0;
1225
1226 while (!list_empty(&list)) {
1227 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1228 list_del(&sums->list);
1229 kfree(sums);
1230 }
1231 return 1;
1232}
1233
d352ac68
CM
1234/*
1235 * when nowcow writeback call back. This checks for snapshots or COW copies
1236 * of the extents that exist in the file, and COWs the file as required.
1237 *
1238 * If no cow copies or snapshots exist, we write directly to the existing
1239 * blocks on disk
1240 */
7f366cfe
CM
1241static noinline int run_delalloc_nocow(struct inode *inode,
1242 struct page *locked_page,
771ed689
CM
1243 u64 start, u64 end, int *page_started, int force,
1244 unsigned long *nr_written)
be20aa9d 1245{
be20aa9d 1246 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1247 struct btrfs_trans_handle *trans;
be20aa9d 1248 struct extent_buffer *leaf;
be20aa9d 1249 struct btrfs_path *path;
80ff3856 1250 struct btrfs_file_extent_item *fi;
be20aa9d 1251 struct btrfs_key found_key;
80ff3856
YZ
1252 u64 cow_start;
1253 u64 cur_offset;
1254 u64 extent_end;
5d4f98a2 1255 u64 extent_offset;
80ff3856
YZ
1256 u64 disk_bytenr;
1257 u64 num_bytes;
b4939680 1258 u64 disk_num_bytes;
cc95bef6 1259 u64 ram_bytes;
80ff3856 1260 int extent_type;
79787eaa 1261 int ret, err;
d899e052 1262 int type;
80ff3856
YZ
1263 int nocow;
1264 int check_prev = 1;
82d5902d 1265 bool nolock;
33345d01 1266 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1267
1268 path = btrfs_alloc_path();
17ca04af 1269 if (!path) {
b0985c40
QW
1270 extent_clear_unlock_delalloc(inode, start, end, end,
1271 locked_page,
c2790a2e 1272 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1273 EXTENT_DO_ACCOUNTING |
1274 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1275 PAGE_CLEAR_DIRTY |
1276 PAGE_SET_WRITEBACK |
1277 PAGE_END_WRITEBACK);
d8926bb3 1278 return -ENOMEM;
17ca04af 1279 }
82d5902d 1280
83eea1f1 1281 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1282
1283 if (nolock)
7a7eaa40 1284 trans = btrfs_join_transaction_nolock(root);
82d5902d 1285 else
7a7eaa40 1286 trans = btrfs_join_transaction(root);
ff5714cc 1287
79787eaa 1288 if (IS_ERR(trans)) {
b0985c40
QW
1289 extent_clear_unlock_delalloc(inode, start, end, end,
1290 locked_page,
c2790a2e 1291 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1292 EXTENT_DO_ACCOUNTING |
1293 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1294 PAGE_CLEAR_DIRTY |
1295 PAGE_SET_WRITEBACK |
1296 PAGE_END_WRITEBACK);
79787eaa
JM
1297 btrfs_free_path(path);
1298 return PTR_ERR(trans);
1299 }
1300
74b21075 1301 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1302
80ff3856
YZ
1303 cow_start = (u64)-1;
1304 cur_offset = start;
1305 while (1) {
33345d01 1306 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1307 cur_offset, 0);
d788a349 1308 if (ret < 0)
79787eaa 1309 goto error;
80ff3856
YZ
1310 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1311 leaf = path->nodes[0];
1312 btrfs_item_key_to_cpu(leaf, &found_key,
1313 path->slots[0] - 1);
33345d01 1314 if (found_key.objectid == ino &&
80ff3856
YZ
1315 found_key.type == BTRFS_EXTENT_DATA_KEY)
1316 path->slots[0]--;
1317 }
1318 check_prev = 0;
1319next_slot:
1320 leaf = path->nodes[0];
1321 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1322 ret = btrfs_next_leaf(root, path);
d788a349 1323 if (ret < 0)
79787eaa 1324 goto error;
80ff3856
YZ
1325 if (ret > 0)
1326 break;
1327 leaf = path->nodes[0];
1328 }
be20aa9d 1329
80ff3856
YZ
1330 nocow = 0;
1331 disk_bytenr = 0;
17d217fe 1332 num_bytes = 0;
80ff3856
YZ
1333 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1334
1d512cb7
FM
1335 if (found_key.objectid > ino)
1336 break;
1337 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1338 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1339 path->slots[0]++;
1340 goto next_slot;
1341 }
1342 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1343 found_key.offset > end)
1344 break;
1345
1346 if (found_key.offset > cur_offset) {
1347 extent_end = found_key.offset;
e9061e21 1348 extent_type = 0;
80ff3856
YZ
1349 goto out_check;
1350 }
1351
1352 fi = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_file_extent_item);
1354 extent_type = btrfs_file_extent_type(leaf, fi);
1355
cc95bef6 1356 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1357 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1358 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1359 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1360 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1361 extent_end = found_key.offset +
1362 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1363 disk_num_bytes =
1364 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1365 if (extent_end <= start) {
1366 path->slots[0]++;
1367 goto next_slot;
1368 }
17d217fe
YZ
1369 if (disk_bytenr == 0)
1370 goto out_check;
80ff3856
YZ
1371 if (btrfs_file_extent_compression(leaf, fi) ||
1372 btrfs_file_extent_encryption(leaf, fi) ||
1373 btrfs_file_extent_other_encoding(leaf, fi))
1374 goto out_check;
d899e052
YZ
1375 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1376 goto out_check;
d2fb3437 1377 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1378 goto out_check;
33345d01 1379 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1380 found_key.offset -
1381 extent_offset, disk_bytenr))
17d217fe 1382 goto out_check;
5d4f98a2 1383 disk_bytenr += extent_offset;
17d217fe
YZ
1384 disk_bytenr += cur_offset - found_key.offset;
1385 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1386 /*
1387 * if there are pending snapshots for this root,
1388 * we fall into common COW way.
1389 */
1390 if (!nolock) {
9ea24bbe 1391 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1392 if (!err)
1393 goto out_check;
1394 }
17d217fe
YZ
1395 /*
1396 * force cow if csum exists in the range.
1397 * this ensure that csum for a given extent are
1398 * either valid or do not exist.
1399 */
1400 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1401 goto out_check;
f78c436c
FM
1402 if (!btrfs_inc_nocow_writers(root->fs_info,
1403 disk_bytenr))
1404 goto out_check;
80ff3856
YZ
1405 nocow = 1;
1406 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1407 extent_end = found_key.offset +
514ac8ad
CM
1408 btrfs_file_extent_inline_len(leaf,
1409 path->slots[0], fi);
80ff3856
YZ
1410 extent_end = ALIGN(extent_end, root->sectorsize);
1411 } else {
1412 BUG_ON(1);
1413 }
1414out_check:
1415 if (extent_end <= start) {
1416 path->slots[0]++;
e9894fd3 1417 if (!nolock && nocow)
9ea24bbe 1418 btrfs_end_write_no_snapshoting(root);
f78c436c
FM
1419 if (nocow)
1420 btrfs_dec_nocow_writers(root->fs_info,
1421 disk_bytenr);
80ff3856
YZ
1422 goto next_slot;
1423 }
1424 if (!nocow) {
1425 if (cow_start == (u64)-1)
1426 cow_start = cur_offset;
1427 cur_offset = extent_end;
1428 if (cur_offset > end)
1429 break;
1430 path->slots[0]++;
1431 goto next_slot;
7ea394f1
YZ
1432 }
1433
b3b4aa74 1434 btrfs_release_path(path);
80ff3856 1435 if (cow_start != (u64)-1) {
00361589
JB
1436 ret = cow_file_range(inode, locked_page,
1437 cow_start, found_key.offset - 1,
dda3245e
WX
1438 end, page_started, nr_written, 1,
1439 NULL);
e9894fd3
WS
1440 if (ret) {
1441 if (!nolock && nocow)
9ea24bbe 1442 btrfs_end_write_no_snapshoting(root);
f78c436c
FM
1443 if (nocow)
1444 btrfs_dec_nocow_writers(root->fs_info,
1445 disk_bytenr);
79787eaa 1446 goto error;
e9894fd3 1447 }
80ff3856 1448 cow_start = (u64)-1;
7ea394f1 1449 }
80ff3856 1450
d899e052
YZ
1451 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1452 struct extent_map *em;
1453 struct extent_map_tree *em_tree;
1454 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1455 em = alloc_extent_map();
79787eaa 1456 BUG_ON(!em); /* -ENOMEM */
d899e052 1457 em->start = cur_offset;
70c8a91c 1458 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1459 em->len = num_bytes;
1460 em->block_len = num_bytes;
1461 em->block_start = disk_bytenr;
b4939680 1462 em->orig_block_len = disk_num_bytes;
cc95bef6 1463 em->ram_bytes = ram_bytes;
d899e052 1464 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1465 em->mod_start = em->start;
1466 em->mod_len = em->len;
d899e052 1467 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1468 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1469 em->generation = -1;
d899e052 1470 while (1) {
890871be 1471 write_lock(&em_tree->lock);
09a2a8f9 1472 ret = add_extent_mapping(em_tree, em, 1);
890871be 1473 write_unlock(&em_tree->lock);
d899e052
YZ
1474 if (ret != -EEXIST) {
1475 free_extent_map(em);
1476 break;
1477 }
1478 btrfs_drop_extent_cache(inode, em->start,
1479 em->start + em->len - 1, 0);
1480 }
1481 type = BTRFS_ORDERED_PREALLOC;
1482 } else {
1483 type = BTRFS_ORDERED_NOCOW;
1484 }
80ff3856
YZ
1485
1486 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1487 num_bytes, num_bytes, type);
f78c436c
FM
1488 if (nocow)
1489 btrfs_dec_nocow_writers(root->fs_info, disk_bytenr);
79787eaa 1490 BUG_ON(ret); /* -ENOMEM */
771ed689 1491
efa56464
YZ
1492 if (root->root_key.objectid ==
1493 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1494 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1495 num_bytes);
e9894fd3
WS
1496 if (ret) {
1497 if (!nolock && nocow)
9ea24bbe 1498 btrfs_end_write_no_snapshoting(root);
79787eaa 1499 goto error;
e9894fd3 1500 }
efa56464
YZ
1501 }
1502
c2790a2e 1503 extent_clear_unlock_delalloc(inode, cur_offset,
b0985c40 1504 cur_offset + num_bytes - 1, end,
c2790a2e 1505 locked_page, EXTENT_LOCKED |
18513091
WX
1506 EXTENT_DELALLOC |
1507 EXTENT_CLEAR_DATA_RESV,
1508 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1509
e9894fd3 1510 if (!nolock && nocow)
9ea24bbe 1511 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1512 cur_offset = extent_end;
1513 if (cur_offset > end)
1514 break;
be20aa9d 1515 }
b3b4aa74 1516 btrfs_release_path(path);
80ff3856 1517
17ca04af 1518 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1519 cow_start = cur_offset;
17ca04af
JB
1520 cur_offset = end;
1521 }
1522
80ff3856 1523 if (cow_start != (u64)-1) {
dda3245e
WX
1524 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1525 page_started, nr_written, 1, NULL);
d788a349 1526 if (ret)
79787eaa 1527 goto error;
80ff3856
YZ
1528 }
1529
79787eaa 1530error:
a698d075 1531 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1532 if (!ret)
1533 ret = err;
1534
17ca04af 1535 if (ret && cur_offset < end)
b0985c40 1536 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
c2790a2e 1537 locked_page, EXTENT_LOCKED |
151a41bc
JB
1538 EXTENT_DELALLOC | EXTENT_DEFRAG |
1539 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1540 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1541 PAGE_SET_WRITEBACK |
1542 PAGE_END_WRITEBACK);
7ea394f1 1543 btrfs_free_path(path);
79787eaa 1544 return ret;
be20aa9d
CM
1545}
1546
47059d93
WS
1547static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1548{
1549
1550 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1551 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1552 return 0;
1553
1554 /*
1555 * @defrag_bytes is a hint value, no spinlock held here,
1556 * if is not zero, it means the file is defragging.
1557 * Force cow if given extent needs to be defragged.
1558 */
1559 if (BTRFS_I(inode)->defrag_bytes &&
1560 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1561 EXTENT_DEFRAG, 0, NULL))
1562 return 1;
1563
1564 return 0;
1565}
1566
d352ac68
CM
1567/*
1568 * extent_io.c call back to do delayed allocation processing
1569 */
c8b97818 1570static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1571 u64 start, u64 end, int *page_started,
1572 unsigned long *nr_written)
be20aa9d 1573{
be20aa9d 1574 int ret;
47059d93 1575 int force_cow = need_force_cow(inode, start, end);
a2135011 1576
47059d93 1577 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1578 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1579 page_started, 1, nr_written);
47059d93 1580 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1581 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1582 page_started, 0, nr_written);
7816030e 1583 } else if (!inode_need_compress(inode)) {
dda3245e
WX
1584 ret = cow_file_range(inode, locked_page, start, end, end,
1585 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1586 } else {
1587 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1588 &BTRFS_I(inode)->runtime_flags);
771ed689 1589 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1590 page_started, nr_written);
7ddf5a42 1591 }
b888db2b
CM
1592 return ret;
1593}
1594
1bf85046
JM
1595static void btrfs_split_extent_hook(struct inode *inode,
1596 struct extent_state *orig, u64 split)
9ed74f2d 1597{
dcab6a3b
JB
1598 u64 size;
1599
0ca1f7ce 1600 /* not delalloc, ignore it */
9ed74f2d 1601 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1602 return;
9ed74f2d 1603
dcab6a3b
JB
1604 size = orig->end - orig->start + 1;
1605 if (size > BTRFS_MAX_EXTENT_SIZE) {
1606 u64 num_extents;
1607 u64 new_size;
1608
1609 /*
ba117213
JB
1610 * See the explanation in btrfs_merge_extent_hook, the same
1611 * applies here, just in reverse.
dcab6a3b
JB
1612 */
1613 new_size = orig->end - split + 1;
ba117213 1614 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
dcab6a3b 1615 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1616 new_size = split - orig->start;
1617 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1618 BTRFS_MAX_EXTENT_SIZE);
1619 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1620 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1621 return;
1622 }
1623
9e0baf60
JB
1624 spin_lock(&BTRFS_I(inode)->lock);
1625 BTRFS_I(inode)->outstanding_extents++;
1626 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1627}
1628
1629/*
1630 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1631 * extents so we can keep track of new extents that are just merged onto old
1632 * extents, such as when we are doing sequential writes, so we can properly
1633 * account for the metadata space we'll need.
1634 */
1bf85046
JM
1635static void btrfs_merge_extent_hook(struct inode *inode,
1636 struct extent_state *new,
1637 struct extent_state *other)
9ed74f2d 1638{
dcab6a3b
JB
1639 u64 new_size, old_size;
1640 u64 num_extents;
1641
9ed74f2d
JB
1642 /* not delalloc, ignore it */
1643 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1644 return;
9ed74f2d 1645
8461a3de
JB
1646 if (new->start > other->start)
1647 new_size = new->end - other->start + 1;
1648 else
1649 new_size = other->end - new->start + 1;
dcab6a3b
JB
1650
1651 /* we're not bigger than the max, unreserve the space and go */
1652 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1653 spin_lock(&BTRFS_I(inode)->lock);
1654 BTRFS_I(inode)->outstanding_extents--;
1655 spin_unlock(&BTRFS_I(inode)->lock);
1656 return;
1657 }
1658
1659 /*
ba117213
JB
1660 * We have to add up either side to figure out how many extents were
1661 * accounted for before we merged into one big extent. If the number of
1662 * extents we accounted for is <= the amount we need for the new range
1663 * then we can return, otherwise drop. Think of it like this
1664 *
1665 * [ 4k][MAX_SIZE]
1666 *
1667 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1668 * need 2 outstanding extents, on one side we have 1 and the other side
1669 * we have 1 so they are == and we can return. But in this case
1670 *
1671 * [MAX_SIZE+4k][MAX_SIZE+4k]
1672 *
1673 * Each range on their own accounts for 2 extents, but merged together
1674 * they are only 3 extents worth of accounting, so we need to drop in
1675 * this case.
dcab6a3b 1676 */
ba117213 1677 old_size = other->end - other->start + 1;
dcab6a3b
JB
1678 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1679 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1680 old_size = new->end - new->start + 1;
1681 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1682 BTRFS_MAX_EXTENT_SIZE);
1683
dcab6a3b 1684 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
ba117213 1685 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1686 return;
1687
9e0baf60
JB
1688 spin_lock(&BTRFS_I(inode)->lock);
1689 BTRFS_I(inode)->outstanding_extents--;
1690 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1691}
1692
eb73c1b7
MX
1693static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1694 struct inode *inode)
1695{
1696 spin_lock(&root->delalloc_lock);
1697 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1698 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1699 &root->delalloc_inodes);
1700 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1701 &BTRFS_I(inode)->runtime_flags);
1702 root->nr_delalloc_inodes++;
1703 if (root->nr_delalloc_inodes == 1) {
1704 spin_lock(&root->fs_info->delalloc_root_lock);
1705 BUG_ON(!list_empty(&root->delalloc_root));
1706 list_add_tail(&root->delalloc_root,
1707 &root->fs_info->delalloc_roots);
1708 spin_unlock(&root->fs_info->delalloc_root_lock);
1709 }
1710 }
1711 spin_unlock(&root->delalloc_lock);
1712}
1713
1714static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1715 struct inode *inode)
1716{
1717 spin_lock(&root->delalloc_lock);
1718 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1719 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1720 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1721 &BTRFS_I(inode)->runtime_flags);
1722 root->nr_delalloc_inodes--;
1723 if (!root->nr_delalloc_inodes) {
1724 spin_lock(&root->fs_info->delalloc_root_lock);
1725 BUG_ON(list_empty(&root->delalloc_root));
1726 list_del_init(&root->delalloc_root);
1727 spin_unlock(&root->fs_info->delalloc_root_lock);
1728 }
1729 }
1730 spin_unlock(&root->delalloc_lock);
1731}
1732
d352ac68
CM
1733/*
1734 * extent_io.c set_bit_hook, used to track delayed allocation
1735 * bytes in this file, and to maintain the list of inodes that
1736 * have pending delalloc work to be done.
1737 */
1bf85046 1738static void btrfs_set_bit_hook(struct inode *inode,
9ee49a04 1739 struct extent_state *state, unsigned *bits)
291d673e 1740{
9ed74f2d 1741
47059d93
WS
1742 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1743 WARN_ON(1);
75eff68e
CM
1744 /*
1745 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1746 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1747 * bit, which is only set or cleared with irqs on
1748 */
0ca1f7ce 1749 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1750 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1751 u64 len = state->end + 1 - state->start;
83eea1f1 1752 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1753
9e0baf60 1754 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1755 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1756 } else {
1757 spin_lock(&BTRFS_I(inode)->lock);
1758 BTRFS_I(inode)->outstanding_extents++;
1759 spin_unlock(&BTRFS_I(inode)->lock);
1760 }
287a0ab9 1761
6a3891c5 1762 /* For sanity tests */
f5ee5c9a 1763 if (btrfs_is_testing(root->fs_info))
6a3891c5
JB
1764 return;
1765
963d678b
MX
1766 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1767 root->fs_info->delalloc_batch);
df0af1a5 1768 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1769 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1770 if (*bits & EXTENT_DEFRAG)
1771 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1772 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1773 &BTRFS_I(inode)->runtime_flags))
1774 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1775 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1776 }
291d673e
CM
1777}
1778
d352ac68
CM
1779/*
1780 * extent_io.c clear_bit_hook, see set_bit_hook for why
1781 */
1bf85046 1782static void btrfs_clear_bit_hook(struct inode *inode,
41074888 1783 struct extent_state *state,
9ee49a04 1784 unsigned *bits)
291d673e 1785{
47059d93 1786 u64 len = state->end + 1 - state->start;
dcab6a3b
JB
1787 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1788 BTRFS_MAX_EXTENT_SIZE);
47059d93
WS
1789
1790 spin_lock(&BTRFS_I(inode)->lock);
1791 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1792 BTRFS_I(inode)->defrag_bytes -= len;
1793 spin_unlock(&BTRFS_I(inode)->lock);
1794
75eff68e
CM
1795 /*
1796 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1797 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1798 * bit, which is only set or cleared with irqs on
1799 */
0ca1f7ce 1800 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1801 struct btrfs_root *root = BTRFS_I(inode)->root;
83eea1f1 1802 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1803
9e0baf60 1804 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1805 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1806 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1807 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 1808 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60
JB
1809 spin_unlock(&BTRFS_I(inode)->lock);
1810 }
0ca1f7ce 1811
b6d08f06
JB
1812 /*
1813 * We don't reserve metadata space for space cache inodes so we
1814 * don't need to call dellalloc_release_metadata if there is an
1815 * error.
1816 */
1817 if (*bits & EXTENT_DO_ACCOUNTING &&
1818 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1819 btrfs_delalloc_release_metadata(inode, len);
1820
6a3891c5 1821 /* For sanity tests. */
f5ee5c9a 1822 if (btrfs_is_testing(root->fs_info))
6a3891c5
JB
1823 return;
1824
0cb59c99 1825 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
18513091
WX
1826 && do_list && !(state->state & EXTENT_NORESERVE)
1827 && (*bits & (EXTENT_DO_ACCOUNTING |
1828 EXTENT_CLEAR_DATA_RESV)))
51773bec
QW
1829 btrfs_free_reserved_data_space_noquota(inode,
1830 state->start, len);
9ed74f2d 1831
963d678b
MX
1832 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1833 root->fs_info->delalloc_batch);
df0af1a5 1834 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1835 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1836 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1837 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1838 &BTRFS_I(inode)->runtime_flags))
1839 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1840 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1841 }
291d673e
CM
1842}
1843
d352ac68
CM
1844/*
1845 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1846 * we don't create bios that span stripes or chunks
6f034ece
LB
1847 *
1848 * return 1 if page cannot be merged to bio
1849 * return 0 if page can be merged to bio
1850 * return error otherwise
d352ac68 1851 */
81a75f67 1852int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1853 size_t size, struct bio *bio,
1854 unsigned long bio_flags)
239b14b3
CM
1855{
1856 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
4f024f37 1857 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1858 u64 length = 0;
1859 u64 map_length;
239b14b3
CM
1860 int ret;
1861
771ed689
CM
1862 if (bio_flags & EXTENT_BIO_COMPRESSED)
1863 return 0;
1864
4f024f37 1865 length = bio->bi_iter.bi_size;
239b14b3 1866 map_length = length;
b3d3fa51 1867 ret = btrfs_map_block(root->fs_info, bio_op(bio), logical,
f188591e 1868 &map_length, NULL, 0);
6f034ece
LB
1869 if (ret < 0)
1870 return ret;
d397712b 1871 if (map_length < length + size)
239b14b3 1872 return 1;
3444a972 1873 return 0;
239b14b3
CM
1874}
1875
d352ac68
CM
1876/*
1877 * in order to insert checksums into the metadata in large chunks,
1878 * we wait until bio submission time. All the pages in the bio are
1879 * checksummed and sums are attached onto the ordered extent record.
1880 *
1881 * At IO completion time the cums attached on the ordered extent record
1882 * are inserted into the btree
1883 */
81a75f67
MC
1884static int __btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
1885 int mirror_num, unsigned long bio_flags,
eaf25d93 1886 u64 bio_offset)
065631f6 1887{
065631f6 1888 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1889 int ret = 0;
e015640f 1890
d20f7043 1891 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1892 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1893 return 0;
1894}
e015640f 1895
4a69a410
CM
1896/*
1897 * in order to insert checksums into the metadata in large chunks,
1898 * we wait until bio submission time. All the pages in the bio are
1899 * checksummed and sums are attached onto the ordered extent record.
1900 *
1901 * At IO completion time the cums attached on the ordered extent record
1902 * are inserted into the btree
1903 */
81a75f67 1904static int __btrfs_submit_bio_done(struct inode *inode, struct bio *bio,
eaf25d93
CM
1905 int mirror_num, unsigned long bio_flags,
1906 u64 bio_offset)
4a69a410
CM
1907{
1908 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1909 int ret;
1910
81a75f67 1911 ret = btrfs_map_bio(root, bio, mirror_num, 1);
4246a0b6
CH
1912 if (ret) {
1913 bio->bi_error = ret;
1914 bio_endio(bio);
1915 }
61891923 1916 return ret;
44b8bd7e
CM
1917}
1918
d352ac68 1919/*
cad321ad
CM
1920 * extent_io.c submission hook. This does the right thing for csum calculation
1921 * on write, or reading the csums from the tree before a read
d352ac68 1922 */
81a75f67 1923static int btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
eaf25d93
CM
1924 int mirror_num, unsigned long bio_flags,
1925 u64 bio_offset)
44b8bd7e
CM
1926{
1927 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1928 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
44b8bd7e 1929 int ret = 0;
19b9bdb0 1930 int skip_sum;
b812ce28 1931 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1932
6cbff00f 1933 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1934
83eea1f1 1935 if (btrfs_is_free_space_inode(inode))
0d51e28a 1936 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1937
37226b21 1938 if (bio_op(bio) != REQ_OP_WRITE) {
5fd02043
JB
1939 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1940 if (ret)
61891923 1941 goto out;
5fd02043 1942
d20f7043 1943 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1944 ret = btrfs_submit_compressed_read(inode, bio,
1945 mirror_num,
1946 bio_flags);
1947 goto out;
c2db1073
TI
1948 } else if (!skip_sum) {
1949 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1950 if (ret)
61891923 1951 goto out;
c2db1073 1952 }
4d1b5fb4 1953 goto mapit;
b812ce28 1954 } else if (async && !skip_sum) {
17d217fe
YZ
1955 /* csum items have already been cloned */
1956 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1957 goto mapit;
19b9bdb0 1958 /* we're doing a write, do the async checksumming */
61891923 1959 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
81a75f67 1960 inode, bio, mirror_num,
eaf25d93
CM
1961 bio_flags, bio_offset,
1962 __btrfs_submit_bio_start,
4a69a410 1963 __btrfs_submit_bio_done);
61891923 1964 goto out;
b812ce28
JB
1965 } else if (!skip_sum) {
1966 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1967 if (ret)
1968 goto out;
19b9bdb0
CM
1969 }
1970
0b86a832 1971mapit:
81a75f67 1972 ret = btrfs_map_bio(root, bio, mirror_num, 0);
61891923
SB
1973
1974out:
4246a0b6
CH
1975 if (ret < 0) {
1976 bio->bi_error = ret;
1977 bio_endio(bio);
1978 }
61891923 1979 return ret;
065631f6 1980}
6885f308 1981
d352ac68
CM
1982/*
1983 * given a list of ordered sums record them in the inode. This happens
1984 * at IO completion time based on sums calculated at bio submission time.
1985 */
ba1da2f4 1986static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1987 struct inode *inode, u64 file_offset,
1988 struct list_head *list)
1989{
e6dcd2dc
CM
1990 struct btrfs_ordered_sum *sum;
1991
c6e30871 1992 list_for_each_entry(sum, list, list) {
39847c4d 1993 trans->adding_csums = 1;
d20f7043
CM
1994 btrfs_csum_file_blocks(trans,
1995 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1996 trans->adding_csums = 0;
e6dcd2dc
CM
1997 }
1998 return 0;
1999}
2000
2ac55d41 2001int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
b0985c40 2002 struct extent_state **cached_state, int dedupe)
ea8c2819 2003{
09cbfeaf 2004 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 2005 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
7cd8c752 2006 cached_state);
ea8c2819
CM
2007}
2008
d352ac68 2009/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2010struct btrfs_writepage_fixup {
2011 struct page *page;
2012 struct btrfs_work work;
2013};
2014
b2950863 2015static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2016{
2017 struct btrfs_writepage_fixup *fixup;
2018 struct btrfs_ordered_extent *ordered;
2ac55d41 2019 struct extent_state *cached_state = NULL;
247e743c
CM
2020 struct page *page;
2021 struct inode *inode;
2022 u64 page_start;
2023 u64 page_end;
87826df0 2024 int ret;
247e743c
CM
2025
2026 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2027 page = fixup->page;
4a096752 2028again:
247e743c
CM
2029 lock_page(page);
2030 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2031 ClearPageChecked(page);
2032 goto out_page;
2033 }
2034
2035 inode = page->mapping->host;
2036 page_start = page_offset(page);
09cbfeaf 2037 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2038
ff13db41 2039 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2040 &cached_state);
4a096752
CM
2041
2042 /* already ordered? We're done */
8b62b72b 2043 if (PagePrivate2(page))
247e743c 2044 goto out;
4a096752 2045
dbfdb6d1 2046 ordered = btrfs_lookup_ordered_range(inode, page_start,
09cbfeaf 2047 PAGE_SIZE);
4a096752 2048 if (ordered) {
2ac55d41
JB
2049 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2050 page_end, &cached_state, GFP_NOFS);
4a096752
CM
2051 unlock_page(page);
2052 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2053 btrfs_put_ordered_extent(ordered);
4a096752
CM
2054 goto again;
2055 }
247e743c 2056
7cf5b976 2057 ret = btrfs_delalloc_reserve_space(inode, page_start,
09cbfeaf 2058 PAGE_SIZE);
87826df0
JM
2059 if (ret) {
2060 mapping_set_error(page->mapping, ret);
2061 end_extent_writepage(page, ret, page_start, page_end);
2062 ClearPageChecked(page);
2063 goto out;
2064 }
2065
b0985c40
QW
2066 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state,
2067 0);
247e743c 2068 ClearPageChecked(page);
87826df0 2069 set_page_dirty(page);
247e743c 2070out:
2ac55d41
JB
2071 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2072 &cached_state, GFP_NOFS);
247e743c
CM
2073out_page:
2074 unlock_page(page);
09cbfeaf 2075 put_page(page);
b897abec 2076 kfree(fixup);
247e743c
CM
2077}
2078
2079/*
2080 * There are a few paths in the higher layers of the kernel that directly
2081 * set the page dirty bit without asking the filesystem if it is a
2082 * good idea. This causes problems because we want to make sure COW
2083 * properly happens and the data=ordered rules are followed.
2084 *
c8b97818 2085 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2086 * hasn't been properly setup for IO. We kick off an async process
2087 * to fix it up. The async helper will wait for ordered extents, set
2088 * the delalloc bit and make it safe to write the page.
2089 */
b2950863 2090static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2091{
2092 struct inode *inode = page->mapping->host;
2093 struct btrfs_writepage_fixup *fixup;
2094 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 2095
8b62b72b
CM
2096 /* this page is properly in the ordered list */
2097 if (TestClearPagePrivate2(page))
247e743c
CM
2098 return 0;
2099
2100 if (PageChecked(page))
2101 return -EAGAIN;
2102
2103 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2104 if (!fixup)
2105 return -EAGAIN;
f421950f 2106
247e743c 2107 SetPageChecked(page);
09cbfeaf 2108 get_page(page);
9e0af237
LB
2109 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2110 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2111 fixup->page = page;
dc6e3209 2112 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
87826df0 2113 return -EBUSY;
247e743c
CM
2114}
2115
d899e052
YZ
2116static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2117 struct inode *inode, u64 file_pos,
2118 u64 disk_bytenr, u64 disk_num_bytes,
2119 u64 num_bytes, u64 ram_bytes,
2120 u8 compression, u8 encryption,
2121 u16 other_encoding, int extent_type)
2122{
2123 struct btrfs_root *root = BTRFS_I(inode)->root;
2124 struct btrfs_file_extent_item *fi;
2125 struct btrfs_path *path;
2126 struct extent_buffer *leaf;
2127 struct btrfs_key ins;
1acae57b 2128 int extent_inserted = 0;
d899e052
YZ
2129 int ret;
2130
2131 path = btrfs_alloc_path();
d8926bb3
MF
2132 if (!path)
2133 return -ENOMEM;
d899e052 2134
a1ed835e
CM
2135 /*
2136 * we may be replacing one extent in the tree with another.
2137 * The new extent is pinned in the extent map, and we don't want
2138 * to drop it from the cache until it is completely in the btree.
2139 *
2140 * So, tell btrfs_drop_extents to leave this extent in the cache.
2141 * the caller is expected to unpin it and allow it to be merged
2142 * with the others.
2143 */
1acae57b
FDBM
2144 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2145 file_pos + num_bytes, NULL, 0,
2146 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2147 if (ret)
2148 goto out;
d899e052 2149
1acae57b
FDBM
2150 if (!extent_inserted) {
2151 ins.objectid = btrfs_ino(inode);
2152 ins.offset = file_pos;
2153 ins.type = BTRFS_EXTENT_DATA_KEY;
2154
2155 path->leave_spinning = 1;
2156 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2157 sizeof(*fi));
2158 if (ret)
2159 goto out;
2160 }
d899e052
YZ
2161 leaf = path->nodes[0];
2162 fi = btrfs_item_ptr(leaf, path->slots[0],
2163 struct btrfs_file_extent_item);
2164 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2165 btrfs_set_file_extent_type(leaf, fi, extent_type);
2166 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2167 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2168 btrfs_set_file_extent_offset(leaf, fi, 0);
2169 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2170 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2171 btrfs_set_file_extent_compression(leaf, fi, compression);
2172 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2173 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2174
d899e052 2175 btrfs_mark_buffer_dirty(leaf);
ce195332 2176 btrfs_release_path(path);
d899e052
YZ
2177
2178 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2179
2180 ins.objectid = disk_bytenr;
2181 ins.offset = disk_num_bytes;
2182 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
2183 ret = btrfs_alloc_reserved_file_extent(trans, root,
2184 root->root_key.objectid,
5846a3c2
QW
2185 btrfs_ino(inode), file_pos,
2186 ram_bytes, &ins);
297d750b 2187 /*
5846a3c2
QW
2188 * Release the reserved range from inode dirty range map, as it is
2189 * already moved into delayed_ref_head
297d750b
QW
2190 */
2191 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
79787eaa 2192out:
d899e052 2193 btrfs_free_path(path);
b9473439 2194
79787eaa 2195 return ret;
d899e052
YZ
2196}
2197
38c227d8
LB
2198/* snapshot-aware defrag */
2199struct sa_defrag_extent_backref {
2200 struct rb_node node;
2201 struct old_sa_defrag_extent *old;
2202 u64 root_id;
2203 u64 inum;
2204 u64 file_pos;
2205 u64 extent_offset;
2206 u64 num_bytes;
2207 u64 generation;
2208};
2209
2210struct old_sa_defrag_extent {
2211 struct list_head list;
2212 struct new_sa_defrag_extent *new;
2213
2214 u64 extent_offset;
2215 u64 bytenr;
2216 u64 offset;
2217 u64 len;
2218 int count;
2219};
2220
2221struct new_sa_defrag_extent {
2222 struct rb_root root;
2223 struct list_head head;
2224 struct btrfs_path *path;
2225 struct inode *inode;
2226 u64 file_pos;
2227 u64 len;
2228 u64 bytenr;
2229 u64 disk_len;
2230 u8 compress_type;
2231};
2232
2233static int backref_comp(struct sa_defrag_extent_backref *b1,
2234 struct sa_defrag_extent_backref *b2)
2235{
2236 if (b1->root_id < b2->root_id)
2237 return -1;
2238 else if (b1->root_id > b2->root_id)
2239 return 1;
2240
2241 if (b1->inum < b2->inum)
2242 return -1;
2243 else if (b1->inum > b2->inum)
2244 return 1;
2245
2246 if (b1->file_pos < b2->file_pos)
2247 return -1;
2248 else if (b1->file_pos > b2->file_pos)
2249 return 1;
2250
2251 /*
2252 * [------------------------------] ===> (a range of space)
2253 * |<--->| |<---->| =============> (fs/file tree A)
2254 * |<---------------------------->| ===> (fs/file tree B)
2255 *
2256 * A range of space can refer to two file extents in one tree while
2257 * refer to only one file extent in another tree.
2258 *
2259 * So we may process a disk offset more than one time(two extents in A)
2260 * and locate at the same extent(one extent in B), then insert two same
2261 * backrefs(both refer to the extent in B).
2262 */
2263 return 0;
2264}
2265
2266static void backref_insert(struct rb_root *root,
2267 struct sa_defrag_extent_backref *backref)
2268{
2269 struct rb_node **p = &root->rb_node;
2270 struct rb_node *parent = NULL;
2271 struct sa_defrag_extent_backref *entry;
2272 int ret;
2273
2274 while (*p) {
2275 parent = *p;
2276 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2277
2278 ret = backref_comp(backref, entry);
2279 if (ret < 0)
2280 p = &(*p)->rb_left;
2281 else
2282 p = &(*p)->rb_right;
2283 }
2284
2285 rb_link_node(&backref->node, parent, p);
2286 rb_insert_color(&backref->node, root);
2287}
2288
2289/*
2290 * Note the backref might has changed, and in this case we just return 0.
2291 */
2292static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2293 void *ctx)
2294{
2295 struct btrfs_file_extent_item *extent;
2296 struct btrfs_fs_info *fs_info;
2297 struct old_sa_defrag_extent *old = ctx;
2298 struct new_sa_defrag_extent *new = old->new;
2299 struct btrfs_path *path = new->path;
2300 struct btrfs_key key;
2301 struct btrfs_root *root;
2302 struct sa_defrag_extent_backref *backref;
2303 struct extent_buffer *leaf;
2304 struct inode *inode = new->inode;
2305 int slot;
2306 int ret;
2307 u64 extent_offset;
2308 u64 num_bytes;
2309
2310 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2311 inum == btrfs_ino(inode))
2312 return 0;
2313
2314 key.objectid = root_id;
2315 key.type = BTRFS_ROOT_ITEM_KEY;
2316 key.offset = (u64)-1;
2317
2318 fs_info = BTRFS_I(inode)->root->fs_info;
2319 root = btrfs_read_fs_root_no_name(fs_info, &key);
2320 if (IS_ERR(root)) {
2321 if (PTR_ERR(root) == -ENOENT)
2322 return 0;
2323 WARN_ON(1);
2324 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2325 inum, offset, root_id);
2326 return PTR_ERR(root);
2327 }
2328
2329 key.objectid = inum;
2330 key.type = BTRFS_EXTENT_DATA_KEY;
2331 if (offset > (u64)-1 << 32)
2332 key.offset = 0;
2333 else
2334 key.offset = offset;
2335
2336 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2337 if (WARN_ON(ret < 0))
38c227d8 2338 return ret;
50f1319c 2339 ret = 0;
38c227d8
LB
2340
2341 while (1) {
2342 cond_resched();
2343
2344 leaf = path->nodes[0];
2345 slot = path->slots[0];
2346
2347 if (slot >= btrfs_header_nritems(leaf)) {
2348 ret = btrfs_next_leaf(root, path);
2349 if (ret < 0) {
2350 goto out;
2351 } else if (ret > 0) {
2352 ret = 0;
2353 goto out;
2354 }
2355 continue;
2356 }
2357
2358 path->slots[0]++;
2359
2360 btrfs_item_key_to_cpu(leaf, &key, slot);
2361
2362 if (key.objectid > inum)
2363 goto out;
2364
2365 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2366 continue;
2367
2368 extent = btrfs_item_ptr(leaf, slot,
2369 struct btrfs_file_extent_item);
2370
2371 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2372 continue;
2373
e68afa49
LB
2374 /*
2375 * 'offset' refers to the exact key.offset,
2376 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2377 * (key.offset - extent_offset).
2378 */
2379 if (key.offset != offset)
38c227d8
LB
2380 continue;
2381
e68afa49 2382 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2383 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2384
38c227d8
LB
2385 if (extent_offset >= old->extent_offset + old->offset +
2386 old->len || extent_offset + num_bytes <=
2387 old->extent_offset + old->offset)
2388 continue;
38c227d8
LB
2389 break;
2390 }
2391
2392 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2393 if (!backref) {
2394 ret = -ENOENT;
2395 goto out;
2396 }
2397
2398 backref->root_id = root_id;
2399 backref->inum = inum;
e68afa49 2400 backref->file_pos = offset;
38c227d8
LB
2401 backref->num_bytes = num_bytes;
2402 backref->extent_offset = extent_offset;
2403 backref->generation = btrfs_file_extent_generation(leaf, extent);
2404 backref->old = old;
2405 backref_insert(&new->root, backref);
2406 old->count++;
2407out:
2408 btrfs_release_path(path);
2409 WARN_ON(ret);
2410 return ret;
2411}
2412
2413static noinline bool record_extent_backrefs(struct btrfs_path *path,
2414 struct new_sa_defrag_extent *new)
2415{
2416 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2417 struct old_sa_defrag_extent *old, *tmp;
2418 int ret;
2419
2420 new->path = path;
2421
2422 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2423 ret = iterate_inodes_from_logical(old->bytenr +
2424 old->extent_offset, fs_info,
38c227d8
LB
2425 path, record_one_backref,
2426 old);
4724b106
JB
2427 if (ret < 0 && ret != -ENOENT)
2428 return false;
38c227d8
LB
2429
2430 /* no backref to be processed for this extent */
2431 if (!old->count) {
2432 list_del(&old->list);
2433 kfree(old);
2434 }
2435 }
2436
2437 if (list_empty(&new->head))
2438 return false;
2439
2440 return true;
2441}
2442
2443static int relink_is_mergable(struct extent_buffer *leaf,
2444 struct btrfs_file_extent_item *fi,
116e0024 2445 struct new_sa_defrag_extent *new)
38c227d8 2446{
116e0024 2447 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2448 return 0;
2449
2450 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2451 return 0;
2452
116e0024
LB
2453 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2454 return 0;
2455
2456 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2457 btrfs_file_extent_other_encoding(leaf, fi))
2458 return 0;
2459
2460 return 1;
2461}
2462
2463/*
2464 * Note the backref might has changed, and in this case we just return 0.
2465 */
2466static noinline int relink_extent_backref(struct btrfs_path *path,
2467 struct sa_defrag_extent_backref *prev,
2468 struct sa_defrag_extent_backref *backref)
2469{
2470 struct btrfs_file_extent_item *extent;
2471 struct btrfs_file_extent_item *item;
2472 struct btrfs_ordered_extent *ordered;
2473 struct btrfs_trans_handle *trans;
2474 struct btrfs_fs_info *fs_info;
2475 struct btrfs_root *root;
2476 struct btrfs_key key;
2477 struct extent_buffer *leaf;
2478 struct old_sa_defrag_extent *old = backref->old;
2479 struct new_sa_defrag_extent *new = old->new;
2480 struct inode *src_inode = new->inode;
2481 struct inode *inode;
2482 struct extent_state *cached = NULL;
2483 int ret = 0;
2484 u64 start;
2485 u64 len;
2486 u64 lock_start;
2487 u64 lock_end;
2488 bool merge = false;
2489 int index;
2490
2491 if (prev && prev->root_id == backref->root_id &&
2492 prev->inum == backref->inum &&
2493 prev->file_pos + prev->num_bytes == backref->file_pos)
2494 merge = true;
2495
2496 /* step 1: get root */
2497 key.objectid = backref->root_id;
2498 key.type = BTRFS_ROOT_ITEM_KEY;
2499 key.offset = (u64)-1;
2500
2501 fs_info = BTRFS_I(src_inode)->root->fs_info;
2502 index = srcu_read_lock(&fs_info->subvol_srcu);
2503
2504 root = btrfs_read_fs_root_no_name(fs_info, &key);
2505 if (IS_ERR(root)) {
2506 srcu_read_unlock(&fs_info->subvol_srcu, index);
2507 if (PTR_ERR(root) == -ENOENT)
2508 return 0;
2509 return PTR_ERR(root);
2510 }
38c227d8 2511
bcbba5e6
WS
2512 if (btrfs_root_readonly(root)) {
2513 srcu_read_unlock(&fs_info->subvol_srcu, index);
2514 return 0;
2515 }
2516
38c227d8
LB
2517 /* step 2: get inode */
2518 key.objectid = backref->inum;
2519 key.type = BTRFS_INODE_ITEM_KEY;
2520 key.offset = 0;
2521
2522 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2523 if (IS_ERR(inode)) {
2524 srcu_read_unlock(&fs_info->subvol_srcu, index);
2525 return 0;
2526 }
2527
2528 srcu_read_unlock(&fs_info->subvol_srcu, index);
2529
2530 /* step 3: relink backref */
2531 lock_start = backref->file_pos;
2532 lock_end = backref->file_pos + backref->num_bytes - 1;
2533 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2534 &cached);
38c227d8
LB
2535
2536 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2537 if (ordered) {
2538 btrfs_put_ordered_extent(ordered);
2539 goto out_unlock;
2540 }
2541
2542 trans = btrfs_join_transaction(root);
2543 if (IS_ERR(trans)) {
2544 ret = PTR_ERR(trans);
2545 goto out_unlock;
2546 }
2547
2548 key.objectid = backref->inum;
2549 key.type = BTRFS_EXTENT_DATA_KEY;
2550 key.offset = backref->file_pos;
2551
2552 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2553 if (ret < 0) {
2554 goto out_free_path;
2555 } else if (ret > 0) {
2556 ret = 0;
2557 goto out_free_path;
2558 }
2559
2560 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2561 struct btrfs_file_extent_item);
2562
2563 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2564 backref->generation)
2565 goto out_free_path;
2566
2567 btrfs_release_path(path);
2568
2569 start = backref->file_pos;
2570 if (backref->extent_offset < old->extent_offset + old->offset)
2571 start += old->extent_offset + old->offset -
2572 backref->extent_offset;
2573
2574 len = min(backref->extent_offset + backref->num_bytes,
2575 old->extent_offset + old->offset + old->len);
2576 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2577
2578 ret = btrfs_drop_extents(trans, root, inode, start,
2579 start + len, 1);
2580 if (ret)
2581 goto out_free_path;
2582again:
2583 key.objectid = btrfs_ino(inode);
2584 key.type = BTRFS_EXTENT_DATA_KEY;
2585 key.offset = start;
2586
a09a0a70 2587 path->leave_spinning = 1;
38c227d8
LB
2588 if (merge) {
2589 struct btrfs_file_extent_item *fi;
2590 u64 extent_len;
2591 struct btrfs_key found_key;
2592
3c9665df 2593 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2594 if (ret < 0)
2595 goto out_free_path;
2596
2597 path->slots[0]--;
2598 leaf = path->nodes[0];
2599 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2600
2601 fi = btrfs_item_ptr(leaf, path->slots[0],
2602 struct btrfs_file_extent_item);
2603 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2604
116e0024
LB
2605 if (extent_len + found_key.offset == start &&
2606 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2607 btrfs_set_file_extent_num_bytes(leaf, fi,
2608 extent_len + len);
2609 btrfs_mark_buffer_dirty(leaf);
2610 inode_add_bytes(inode, len);
2611
2612 ret = 1;
2613 goto out_free_path;
2614 } else {
2615 merge = false;
2616 btrfs_release_path(path);
2617 goto again;
2618 }
2619 }
2620
2621 ret = btrfs_insert_empty_item(trans, root, path, &key,
2622 sizeof(*extent));
2623 if (ret) {
66642832 2624 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2625 goto out_free_path;
2626 }
2627
2628 leaf = path->nodes[0];
2629 item = btrfs_item_ptr(leaf, path->slots[0],
2630 struct btrfs_file_extent_item);
2631 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2632 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2633 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2634 btrfs_set_file_extent_num_bytes(leaf, item, len);
2635 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2636 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2637 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2638 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2639 btrfs_set_file_extent_encryption(leaf, item, 0);
2640 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2641
2642 btrfs_mark_buffer_dirty(leaf);
2643 inode_add_bytes(inode, len);
a09a0a70 2644 btrfs_release_path(path);
38c227d8
LB
2645
2646 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2647 new->disk_len, 0,
2648 backref->root_id, backref->inum,
b06c4bf5 2649 new->file_pos); /* start - extent_offset */
38c227d8 2650 if (ret) {
66642832 2651 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2652 goto out_free_path;
2653 }
2654
2655 ret = 1;
2656out_free_path:
2657 btrfs_release_path(path);
a09a0a70 2658 path->leave_spinning = 0;
38c227d8
LB
2659 btrfs_end_transaction(trans, root);
2660out_unlock:
2661 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2662 &cached, GFP_NOFS);
2663 iput(inode);
2664 return ret;
2665}
2666
6f519564
LB
2667static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2668{
2669 struct old_sa_defrag_extent *old, *tmp;
2670
2671 if (!new)
2672 return;
2673
2674 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2675 kfree(old);
2676 }
2677 kfree(new);
2678}
2679
38c227d8
LB
2680static void relink_file_extents(struct new_sa_defrag_extent *new)
2681{
2682 struct btrfs_path *path;
38c227d8
LB
2683 struct sa_defrag_extent_backref *backref;
2684 struct sa_defrag_extent_backref *prev = NULL;
2685 struct inode *inode;
2686 struct btrfs_root *root;
2687 struct rb_node *node;
2688 int ret;
2689
2690 inode = new->inode;
2691 root = BTRFS_I(inode)->root;
2692
2693 path = btrfs_alloc_path();
2694 if (!path)
2695 return;
2696
2697 if (!record_extent_backrefs(path, new)) {
2698 btrfs_free_path(path);
2699 goto out;
2700 }
2701 btrfs_release_path(path);
2702
2703 while (1) {
2704 node = rb_first(&new->root);
2705 if (!node)
2706 break;
2707 rb_erase(node, &new->root);
2708
2709 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2710
2711 ret = relink_extent_backref(path, prev, backref);
2712 WARN_ON(ret < 0);
2713
2714 kfree(prev);
2715
2716 if (ret == 1)
2717 prev = backref;
2718 else
2719 prev = NULL;
2720 cond_resched();
2721 }
2722 kfree(prev);
2723
2724 btrfs_free_path(path);
38c227d8 2725out:
6f519564
LB
2726 free_sa_defrag_extent(new);
2727
38c227d8
LB
2728 atomic_dec(&root->fs_info->defrag_running);
2729 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2730}
2731
2732static struct new_sa_defrag_extent *
2733record_old_file_extents(struct inode *inode,
2734 struct btrfs_ordered_extent *ordered)
2735{
2736 struct btrfs_root *root = BTRFS_I(inode)->root;
2737 struct btrfs_path *path;
2738 struct btrfs_key key;
6f519564 2739 struct old_sa_defrag_extent *old;
38c227d8
LB
2740 struct new_sa_defrag_extent *new;
2741 int ret;
2742
2743 new = kmalloc(sizeof(*new), GFP_NOFS);
2744 if (!new)
2745 return NULL;
2746
2747 new->inode = inode;
2748 new->file_pos = ordered->file_offset;
2749 new->len = ordered->len;
2750 new->bytenr = ordered->start;
2751 new->disk_len = ordered->disk_len;
2752 new->compress_type = ordered->compress_type;
2753 new->root = RB_ROOT;
2754 INIT_LIST_HEAD(&new->head);
2755
2756 path = btrfs_alloc_path();
2757 if (!path)
2758 goto out_kfree;
2759
2760 key.objectid = btrfs_ino(inode);
2761 key.type = BTRFS_EXTENT_DATA_KEY;
2762 key.offset = new->file_pos;
2763
2764 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2765 if (ret < 0)
2766 goto out_free_path;
2767 if (ret > 0 && path->slots[0] > 0)
2768 path->slots[0]--;
2769
2770 /* find out all the old extents for the file range */
2771 while (1) {
2772 struct btrfs_file_extent_item *extent;
2773 struct extent_buffer *l;
2774 int slot;
2775 u64 num_bytes;
2776 u64 offset;
2777 u64 end;
2778 u64 disk_bytenr;
2779 u64 extent_offset;
2780
2781 l = path->nodes[0];
2782 slot = path->slots[0];
2783
2784 if (slot >= btrfs_header_nritems(l)) {
2785 ret = btrfs_next_leaf(root, path);
2786 if (ret < 0)
6f519564 2787 goto out_free_path;
38c227d8
LB
2788 else if (ret > 0)
2789 break;
2790 continue;
2791 }
2792
2793 btrfs_item_key_to_cpu(l, &key, slot);
2794
2795 if (key.objectid != btrfs_ino(inode))
2796 break;
2797 if (key.type != BTRFS_EXTENT_DATA_KEY)
2798 break;
2799 if (key.offset >= new->file_pos + new->len)
2800 break;
2801
2802 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2803
2804 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2805 if (key.offset + num_bytes < new->file_pos)
2806 goto next;
2807
2808 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2809 if (!disk_bytenr)
2810 goto next;
2811
2812 extent_offset = btrfs_file_extent_offset(l, extent);
2813
2814 old = kmalloc(sizeof(*old), GFP_NOFS);
2815 if (!old)
6f519564 2816 goto out_free_path;
38c227d8
LB
2817
2818 offset = max(new->file_pos, key.offset);
2819 end = min(new->file_pos + new->len, key.offset + num_bytes);
2820
2821 old->bytenr = disk_bytenr;
2822 old->extent_offset = extent_offset;
2823 old->offset = offset - key.offset;
2824 old->len = end - offset;
2825 old->new = new;
2826 old->count = 0;
2827 list_add_tail(&old->list, &new->head);
2828next:
2829 path->slots[0]++;
2830 cond_resched();
2831 }
2832
2833 btrfs_free_path(path);
2834 atomic_inc(&root->fs_info->defrag_running);
2835
2836 return new;
2837
38c227d8
LB
2838out_free_path:
2839 btrfs_free_path(path);
2840out_kfree:
6f519564 2841 free_sa_defrag_extent(new);
38c227d8
LB
2842 return NULL;
2843}
2844
e570fd27
MX
2845static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2846 u64 start, u64 len)
2847{
2848 struct btrfs_block_group_cache *cache;
2849
2850 cache = btrfs_lookup_block_group(root->fs_info, start);
2851 ASSERT(cache);
2852
2853 spin_lock(&cache->lock);
2854 cache->delalloc_bytes -= len;
2855 spin_unlock(&cache->lock);
2856
2857 btrfs_put_block_group(cache);
2858}
2859
d352ac68
CM
2860/* as ordered data IO finishes, this gets called so we can finish
2861 * an ordered extent if the range of bytes in the file it covers are
2862 * fully written.
2863 */
5fd02043 2864static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2865{
5fd02043 2866 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2867 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2868 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2869 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2870 struct extent_state *cached_state = NULL;
38c227d8 2871 struct new_sa_defrag_extent *new = NULL;
261507a0 2872 int compress_type = 0;
77cef2ec
JB
2873 int ret = 0;
2874 u64 logical_len = ordered_extent->len;
82d5902d 2875 bool nolock;
77cef2ec 2876 bool truncated = false;
e6dcd2dc 2877
83eea1f1 2878 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2879
5fd02043
JB
2880 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2881 ret = -EIO;
2882 goto out;
2883 }
2884
f612496b
MX
2885 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2886 ordered_extent->file_offset +
2887 ordered_extent->len - 1);
2888
77cef2ec
JB
2889 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2890 truncated = true;
2891 logical_len = ordered_extent->truncated_len;
2892 /* Truncated the entire extent, don't bother adding */
2893 if (!logical_len)
2894 goto out;
2895 }
2896
c2167754 2897 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2898 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2899
2900 /*
2901 * For mwrite(mmap + memset to write) case, we still reserve
2902 * space for NOCOW range.
2903 * As NOCOW won't cause a new delayed ref, just free the space
2904 */
2905 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2906 ordered_extent->len);
6c760c07
JB
2907 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2908 if (nolock)
2909 trans = btrfs_join_transaction_nolock(root);
2910 else
2911 trans = btrfs_join_transaction(root);
2912 if (IS_ERR(trans)) {
2913 ret = PTR_ERR(trans);
2914 trans = NULL;
2915 goto out;
c2167754 2916 }
6c760c07
JB
2917 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2918 ret = btrfs_update_inode_fallback(trans, root, inode);
2919 if (ret) /* -ENOMEM or corruption */
66642832 2920 btrfs_abort_transaction(trans, ret);
c2167754
YZ
2921 goto out;
2922 }
e6dcd2dc 2923
2ac55d41
JB
2924 lock_extent_bits(io_tree, ordered_extent->file_offset,
2925 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 2926 &cached_state);
e6dcd2dc 2927
38c227d8
LB
2928 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2929 ordered_extent->file_offset + ordered_extent->len - 1,
2930 EXTENT_DEFRAG, 1, cached_state);
2931 if (ret) {
2932 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2933 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2934 /* the inode is shared */
2935 new = record_old_file_extents(inode, ordered_extent);
2936
2937 clear_extent_bit(io_tree, ordered_extent->file_offset,
2938 ordered_extent->file_offset + ordered_extent->len - 1,
2939 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2940 }
2941
0cb59c99 2942 if (nolock)
7a7eaa40 2943 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2944 else
7a7eaa40 2945 trans = btrfs_join_transaction(root);
79787eaa
JM
2946 if (IS_ERR(trans)) {
2947 ret = PTR_ERR(trans);
2948 trans = NULL;
2949 goto out_unlock;
2950 }
a79b7d4b 2951
0ca1f7ce 2952 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2953
c8b97818 2954 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2955 compress_type = ordered_extent->compress_type;
d899e052 2956 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2957 BUG_ON(compress_type);
920bbbfb 2958 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2959 ordered_extent->file_offset,
2960 ordered_extent->file_offset +
77cef2ec 2961 logical_len);
d899e052 2962 } else {
0af3d00b 2963 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2964 ret = insert_reserved_file_extent(trans, inode,
2965 ordered_extent->file_offset,
2966 ordered_extent->start,
2967 ordered_extent->disk_len,
77cef2ec 2968 logical_len, logical_len,
261507a0 2969 compress_type, 0, 0,
d899e052 2970 BTRFS_FILE_EXTENT_REG);
e570fd27
MX
2971 if (!ret)
2972 btrfs_release_delalloc_bytes(root,
2973 ordered_extent->start,
2974 ordered_extent->disk_len);
d899e052 2975 }
5dc562c5
JB
2976 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2977 ordered_extent->file_offset, ordered_extent->len,
2978 trans->transid);
79787eaa 2979 if (ret < 0) {
66642832 2980 btrfs_abort_transaction(trans, ret);
5fd02043 2981 goto out_unlock;
79787eaa 2982 }
2ac55d41 2983
e6dcd2dc
CM
2984 add_pending_csums(trans, inode, ordered_extent->file_offset,
2985 &ordered_extent->list);
2986
6c760c07
JB
2987 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2988 ret = btrfs_update_inode_fallback(trans, root, inode);
2989 if (ret) { /* -ENOMEM or corruption */
66642832 2990 btrfs_abort_transaction(trans, ret);
6c760c07 2991 goto out_unlock;
1ef30be1
JB
2992 }
2993 ret = 0;
5fd02043
JB
2994out_unlock:
2995 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2996 ordered_extent->file_offset +
2997 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2998out:
5b0e95bf 2999 if (root != root->fs_info->tree_root)
0cb59c99 3000 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
3001 if (trans)
3002 btrfs_end_transaction(trans, root);
0cb59c99 3003
77cef2ec
JB
3004 if (ret || truncated) {
3005 u64 start, end;
3006
3007 if (truncated)
3008 start = ordered_extent->file_offset + logical_len;
3009 else
3010 start = ordered_extent->file_offset;
3011 end = ordered_extent->file_offset + ordered_extent->len - 1;
3012 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3013
3014 /* Drop the cache for the part of the extent we didn't write. */
3015 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 3016
0bec9ef5
JB
3017 /*
3018 * If the ordered extent had an IOERR or something else went
3019 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3020 * back to the allocator. We only free the extent in the
3021 * truncated case if we didn't write out the extent at all.
0bec9ef5 3022 */
77cef2ec
JB
3023 if ((ret || !logical_len) &&
3024 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
3025 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3026 btrfs_free_reserved_extent(root, ordered_extent->start,
e570fd27 3027 ordered_extent->disk_len, 1);
0bec9ef5
JB
3028 }
3029
3030
5fd02043 3031 /*
8bad3c02
LB
3032 * This needs to be done to make sure anybody waiting knows we are done
3033 * updating everything for this ordered extent.
5fd02043
JB
3034 */
3035 btrfs_remove_ordered_extent(inode, ordered_extent);
3036
38c227d8 3037 /* for snapshot-aware defrag */
6f519564
LB
3038 if (new) {
3039 if (ret) {
3040 free_sa_defrag_extent(new);
3041 atomic_dec(&root->fs_info->defrag_running);
3042 } else {
3043 relink_file_extents(new);
3044 }
3045 }
38c227d8 3046
e6dcd2dc
CM
3047 /* once for us */
3048 btrfs_put_ordered_extent(ordered_extent);
3049 /* once for the tree */
3050 btrfs_put_ordered_extent(ordered_extent);
3051
5fd02043
JB
3052 return ret;
3053}
3054
3055static void finish_ordered_fn(struct btrfs_work *work)
3056{
3057 struct btrfs_ordered_extent *ordered_extent;
3058 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3059 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3060}
3061
b2950863 3062static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3063 struct extent_state *state, int uptodate)
3064{
5fd02043
JB
3065 struct inode *inode = page->mapping->host;
3066 struct btrfs_root *root = BTRFS_I(inode)->root;
3067 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3068 struct btrfs_workqueue *wq;
3069 btrfs_work_func_t func;
5fd02043 3070
1abe9b8a 3071 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3072
8b62b72b 3073 ClearPagePrivate2(page);
5fd02043
JB
3074 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3075 end - start + 1, uptodate))
3076 return 0;
3077
9e0af237
LB
3078 if (btrfs_is_free_space_inode(inode)) {
3079 wq = root->fs_info->endio_freespace_worker;
3080 func = btrfs_freespace_write_helper;
3081 } else {
3082 wq = root->fs_info->endio_write_workers;
3083 func = btrfs_endio_write_helper;
3084 }
5fd02043 3085
9e0af237
LB
3086 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3087 NULL);
3088 btrfs_queue_work(wq, &ordered_extent->work);
5fd02043
JB
3089
3090 return 0;
211f90e6
CM
3091}
3092
dc380aea
MX
3093static int __readpage_endio_check(struct inode *inode,
3094 struct btrfs_io_bio *io_bio,
3095 int icsum, struct page *page,
3096 int pgoff, u64 start, size_t len)
3097{
3098 char *kaddr;
3099 u32 csum_expected;
3100 u32 csum = ~(u32)0;
dc380aea
MX
3101
3102 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3103
3104 kaddr = kmap_atomic(page);
3105 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3106 btrfs_csum_final(csum, (char *)&csum);
3107 if (csum != csum_expected)
3108 goto zeroit;
3109
3110 kunmap_atomic(kaddr);
3111 return 0;
3112zeroit:
94647322
DS
3113 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3114 "csum failed ino %llu off %llu csum %u expected csum %u",
dc380aea
MX
3115 btrfs_ino(inode), start, csum, csum_expected);
3116 memset(kaddr + pgoff, 1, len);
3117 flush_dcache_page(page);
3118 kunmap_atomic(kaddr);
3119 if (csum_expected == 0)
3120 return 0;
3121 return -EIO;
3122}
3123
d352ac68
CM
3124/*
3125 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3126 * if there's a match, we allow the bio to finish. If not, the code in
3127 * extent_io.c will try to find good copies for us.
d352ac68 3128 */
facc8a22
MX
3129static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3130 u64 phy_offset, struct page *page,
3131 u64 start, u64 end, int mirror)
07157aac 3132{
4eee4fa4 3133 size_t offset = start - page_offset(page);
07157aac 3134 struct inode *inode = page->mapping->host;
d1310b2e 3135 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3136 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3137
d20f7043
CM
3138 if (PageChecked(page)) {
3139 ClearPageChecked(page);
dc380aea 3140 return 0;
d20f7043 3141 }
6cbff00f
CH
3142
3143 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3144 return 0;
17d217fe
YZ
3145
3146 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3147 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3148 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3149 return 0;
17d217fe 3150 }
d20f7043 3151
facc8a22 3152 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3153 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3154 start, (size_t)(end - start + 1));
07157aac 3155}
b888db2b 3156
24bbcf04
YZ
3157void btrfs_add_delayed_iput(struct inode *inode)
3158{
3159 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
8089fe62 3160 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3161
3162 if (atomic_add_unless(&inode->i_count, -1, 1))
3163 return;
3164
24bbcf04 3165 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3166 if (binode->delayed_iput_count == 0) {
3167 ASSERT(list_empty(&binode->delayed_iput));
3168 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3169 } else {
3170 binode->delayed_iput_count++;
3171 }
24bbcf04
YZ
3172 spin_unlock(&fs_info->delayed_iput_lock);
3173}
3174
3175void btrfs_run_delayed_iputs(struct btrfs_root *root)
3176{
24bbcf04 3177 struct btrfs_fs_info *fs_info = root->fs_info;
24bbcf04 3178
24bbcf04 3179 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3180 while (!list_empty(&fs_info->delayed_iputs)) {
3181 struct btrfs_inode *inode;
3182
3183 inode = list_first_entry(&fs_info->delayed_iputs,
3184 struct btrfs_inode, delayed_iput);
3185 if (inode->delayed_iput_count) {
3186 inode->delayed_iput_count--;
3187 list_move_tail(&inode->delayed_iput,
3188 &fs_info->delayed_iputs);
3189 } else {
3190 list_del_init(&inode->delayed_iput);
3191 }
3192 spin_unlock(&fs_info->delayed_iput_lock);
3193 iput(&inode->vfs_inode);
3194 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3195 }
8089fe62 3196 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3197}
3198
d68fc57b 3199/*
42b2aa86 3200 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3201 * files in the subvolume, it removes orphan item and frees block_rsv
3202 * structure.
3203 */
3204void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3205 struct btrfs_root *root)
3206{
90290e19 3207 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3208 int ret;
3209
8a35d95f 3210 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3211 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3212 return;
3213
90290e19 3214 spin_lock(&root->orphan_lock);
8a35d95f 3215 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3216 spin_unlock(&root->orphan_lock);
3217 return;
3218 }
3219
3220 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3221 spin_unlock(&root->orphan_lock);
3222 return;
3223 }
3224
3225 block_rsv = root->orphan_block_rsv;
3226 root->orphan_block_rsv = NULL;
3227 spin_unlock(&root->orphan_lock);
3228
27cdeb70 3229 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b
YZ
3230 btrfs_root_refs(&root->root_item) > 0) {
3231 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3232 root->root_key.objectid);
4ef31a45 3233 if (ret)
66642832 3234 btrfs_abort_transaction(trans, ret);
4ef31a45 3235 else
27cdeb70
MX
3236 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3237 &root->state);
d68fc57b
YZ
3238 }
3239
90290e19
JB
3240 if (block_rsv) {
3241 WARN_ON(block_rsv->size > 0);
3242 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
3243 }
3244}
3245
7b128766
JB
3246/*
3247 * This creates an orphan entry for the given inode in case something goes
3248 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3249 *
3250 * NOTE: caller of this function should reserve 5 units of metadata for
3251 * this function.
7b128766
JB
3252 */
3253int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3254{
3255 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3256 struct btrfs_block_rsv *block_rsv = NULL;
3257 int reserve = 0;
3258 int insert = 0;
3259 int ret;
7b128766 3260
d68fc57b 3261 if (!root->orphan_block_rsv) {
66d8f3dd 3262 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3263 if (!block_rsv)
3264 return -ENOMEM;
d68fc57b 3265 }
7b128766 3266
d68fc57b
YZ
3267 spin_lock(&root->orphan_lock);
3268 if (!root->orphan_block_rsv) {
3269 root->orphan_block_rsv = block_rsv;
3270 } else if (block_rsv) {
3271 btrfs_free_block_rsv(root, block_rsv);
3272 block_rsv = NULL;
7b128766 3273 }
7b128766 3274
8a35d95f
JB
3275 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3276 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3277#if 0
3278 /*
3279 * For proper ENOSPC handling, we should do orphan
3280 * cleanup when mounting. But this introduces backward
3281 * compatibility issue.
3282 */
3283 if (!xchg(&root->orphan_item_inserted, 1))
3284 insert = 2;
3285 else
3286 insert = 1;
3287#endif
3288 insert = 1;
321f0e70 3289 atomic_inc(&root->orphan_inodes);
7b128766
JB
3290 }
3291
72ac3c0d
JB
3292 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3293 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3294 reserve = 1;
d68fc57b 3295 spin_unlock(&root->orphan_lock);
7b128766 3296
d68fc57b
YZ
3297 /* grab metadata reservation from transaction handle */
3298 if (reserve) {
3299 ret = btrfs_orphan_reserve_metadata(trans, inode);
3b6571c1
JB
3300 ASSERT(!ret);
3301 if (ret) {
3302 atomic_dec(&root->orphan_inodes);
3303 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3304 &BTRFS_I(inode)->runtime_flags);
3305 if (insert)
3306 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3307 &BTRFS_I(inode)->runtime_flags);
3308 return ret;
3309 }
d68fc57b 3310 }
7b128766 3311
d68fc57b
YZ
3312 /* insert an orphan item to track this unlinked/truncated file */
3313 if (insert >= 1) {
33345d01 3314 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3315 if (ret) {
703c88e0 3316 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3317 if (reserve) {
3318 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3319 &BTRFS_I(inode)->runtime_flags);
3320 btrfs_orphan_release_metadata(inode);
3321 }
3322 if (ret != -EEXIST) {
e8e7cff6
JB
3323 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3324 &BTRFS_I(inode)->runtime_flags);
66642832 3325 btrfs_abort_transaction(trans, ret);
4ef31a45
JB
3326 return ret;
3327 }
79787eaa
JM
3328 }
3329 ret = 0;
d68fc57b
YZ
3330 }
3331
3332 /* insert an orphan item to track subvolume contains orphan files */
3333 if (insert >= 2) {
3334 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3335 root->root_key.objectid);
79787eaa 3336 if (ret && ret != -EEXIST) {
66642832 3337 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3338 return ret;
3339 }
d68fc57b
YZ
3340 }
3341 return 0;
7b128766
JB
3342}
3343
3344/*
3345 * We have done the truncate/delete so we can go ahead and remove the orphan
3346 * item for this particular inode.
3347 */
48a3b636
ES
3348static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3349 struct inode *inode)
7b128766
JB
3350{
3351 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3352 int delete_item = 0;
3353 int release_rsv = 0;
7b128766
JB
3354 int ret = 0;
3355
d68fc57b 3356 spin_lock(&root->orphan_lock);
8a35d95f
JB
3357 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3358 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3359 delete_item = 1;
7b128766 3360
72ac3c0d
JB
3361 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3362 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3363 release_rsv = 1;
d68fc57b 3364 spin_unlock(&root->orphan_lock);
7b128766 3365
703c88e0 3366 if (delete_item) {
8a35d95f 3367 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3368 if (trans)
3369 ret = btrfs_del_orphan_item(trans, root,
3370 btrfs_ino(inode));
8a35d95f 3371 }
7b128766 3372
703c88e0
FDBM
3373 if (release_rsv)
3374 btrfs_orphan_release_metadata(inode);
3375
4ef31a45 3376 return ret;
7b128766
JB
3377}
3378
3379/*
3380 * this cleans up any orphans that may be left on the list from the last use
3381 * of this root.
3382 */
66b4ffd1 3383int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3384{
3385 struct btrfs_path *path;
3386 struct extent_buffer *leaf;
7b128766
JB
3387 struct btrfs_key key, found_key;
3388 struct btrfs_trans_handle *trans;
3389 struct inode *inode;
8f6d7f4f 3390 u64 last_objectid = 0;
7b128766
JB
3391 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3392
d68fc57b 3393 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3394 return 0;
c71bf099
YZ
3395
3396 path = btrfs_alloc_path();
66b4ffd1
JB
3397 if (!path) {
3398 ret = -ENOMEM;
3399 goto out;
3400 }
e4058b54 3401 path->reada = READA_BACK;
7b128766
JB
3402
3403 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3404 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3405 key.offset = (u64)-1;
3406
7b128766
JB
3407 while (1) {
3408 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3409 if (ret < 0)
3410 goto out;
7b128766
JB
3411
3412 /*
3413 * if ret == 0 means we found what we were searching for, which
25985edc 3414 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3415 * find the key and see if we have stuff that matches
3416 */
3417 if (ret > 0) {
66b4ffd1 3418 ret = 0;
7b128766
JB
3419 if (path->slots[0] == 0)
3420 break;
3421 path->slots[0]--;
3422 }
3423
3424 /* pull out the item */
3425 leaf = path->nodes[0];
7b128766
JB
3426 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3427
3428 /* make sure the item matches what we want */
3429 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3430 break;
962a298f 3431 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3432 break;
3433
3434 /* release the path since we're done with it */
b3b4aa74 3435 btrfs_release_path(path);
7b128766
JB
3436
3437 /*
3438 * this is where we are basically btrfs_lookup, without the
3439 * crossing root thing. we store the inode number in the
3440 * offset of the orphan item.
3441 */
8f6d7f4f
JB
3442
3443 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3444 btrfs_err(root->fs_info,
3445 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3446 ret = -EINVAL;
3447 goto out;
3448 }
3449
3450 last_objectid = found_key.offset;
3451
5d4f98a2
YZ
3452 found_key.objectid = found_key.offset;
3453 found_key.type = BTRFS_INODE_ITEM_KEY;
3454 found_key.offset = 0;
73f73415 3455 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3456 ret = PTR_ERR_OR_ZERO(inode);
67710892 3457 if (ret && ret != -ENOENT)
66b4ffd1 3458 goto out;
7b128766 3459
67710892 3460 if (ret == -ENOENT && root == root->fs_info->tree_root) {
f8e9e0b0
AJ
3461 struct btrfs_root *dead_root;
3462 struct btrfs_fs_info *fs_info = root->fs_info;
3463 int is_dead_root = 0;
3464
3465 /*
3466 * this is an orphan in the tree root. Currently these
3467 * could come from 2 sources:
3468 * a) a snapshot deletion in progress
3469 * b) a free space cache inode
3470 * We need to distinguish those two, as the snapshot
3471 * orphan must not get deleted.
3472 * find_dead_roots already ran before us, so if this
3473 * is a snapshot deletion, we should find the root
3474 * in the dead_roots list
3475 */
3476 spin_lock(&fs_info->trans_lock);
3477 list_for_each_entry(dead_root, &fs_info->dead_roots,
3478 root_list) {
3479 if (dead_root->root_key.objectid ==
3480 found_key.objectid) {
3481 is_dead_root = 1;
3482 break;
3483 }
3484 }
3485 spin_unlock(&fs_info->trans_lock);
3486 if (is_dead_root) {
3487 /* prevent this orphan from being found again */
3488 key.offset = found_key.objectid - 1;
3489 continue;
3490 }
3491 }
7b128766 3492 /*
a8c9e576
JB
3493 * Inode is already gone but the orphan item is still there,
3494 * kill the orphan item.
7b128766 3495 */
67710892 3496 if (ret == -ENOENT) {
a8c9e576 3497 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3498 if (IS_ERR(trans)) {
3499 ret = PTR_ERR(trans);
3500 goto out;
3501 }
c2cf52eb
SK
3502 btrfs_debug(root->fs_info, "auto deleting %Lu",
3503 found_key.objectid);
a8c9e576
JB
3504 ret = btrfs_del_orphan_item(trans, root,
3505 found_key.objectid);
5b21f2ed 3506 btrfs_end_transaction(trans, root);
4ef31a45
JB
3507 if (ret)
3508 goto out;
7b128766
JB
3509 continue;
3510 }
3511
a8c9e576
JB
3512 /*
3513 * add this inode to the orphan list so btrfs_orphan_del does
3514 * the proper thing when we hit it
3515 */
8a35d95f
JB
3516 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3517 &BTRFS_I(inode)->runtime_flags);
925396ec 3518 atomic_inc(&root->orphan_inodes);
a8c9e576 3519
7b128766
JB
3520 /* if we have links, this was a truncate, lets do that */
3521 if (inode->i_nlink) {
fae7f21c 3522 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3523 iput(inode);
3524 continue;
3525 }
7b128766 3526 nr_truncate++;
f3fe820c
JB
3527
3528 /* 1 for the orphan item deletion. */
3529 trans = btrfs_start_transaction(root, 1);
3530 if (IS_ERR(trans)) {
c69b26b0 3531 iput(inode);
f3fe820c
JB
3532 ret = PTR_ERR(trans);
3533 goto out;
3534 }
3535 ret = btrfs_orphan_add(trans, inode);
3536 btrfs_end_transaction(trans, root);
c69b26b0
JB
3537 if (ret) {
3538 iput(inode);
f3fe820c 3539 goto out;
c69b26b0 3540 }
f3fe820c 3541
66b4ffd1 3542 ret = btrfs_truncate(inode);
4a7d0f68
JB
3543 if (ret)
3544 btrfs_orphan_del(NULL, inode);
7b128766
JB
3545 } else {
3546 nr_unlink++;
3547 }
3548
3549 /* this will do delete_inode and everything for us */
3550 iput(inode);
66b4ffd1
JB
3551 if (ret)
3552 goto out;
7b128766 3553 }
3254c876
MX
3554 /* release the path since we're done with it */
3555 btrfs_release_path(path);
3556
d68fc57b
YZ
3557 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3558
3559 if (root->orphan_block_rsv)
3560 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3561 (u64)-1);
3562
27cdeb70
MX
3563 if (root->orphan_block_rsv ||
3564 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3565 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3566 if (!IS_ERR(trans))
3567 btrfs_end_transaction(trans, root);
d68fc57b 3568 }
7b128766
JB
3569
3570 if (nr_unlink)
4884b476 3571 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3572 if (nr_truncate)
4884b476 3573 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3574
3575out:
3576 if (ret)
68b663d1 3577 btrfs_err(root->fs_info,
c2cf52eb 3578 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3579 btrfs_free_path(path);
3580 return ret;
7b128766
JB
3581}
3582
46a53cca
CM
3583/*
3584 * very simple check to peek ahead in the leaf looking for xattrs. If we
3585 * don't find any xattrs, we know there can't be any acls.
3586 *
3587 * slot is the slot the inode is in, objectid is the objectid of the inode
3588 */
3589static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3590 int slot, u64 objectid,
3591 int *first_xattr_slot)
46a53cca
CM
3592{
3593 u32 nritems = btrfs_header_nritems(leaf);
3594 struct btrfs_key found_key;
f23b5a59
JB
3595 static u64 xattr_access = 0;
3596 static u64 xattr_default = 0;
46a53cca
CM
3597 int scanned = 0;
3598
f23b5a59 3599 if (!xattr_access) {
97d79299
AG
3600 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3601 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3602 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3603 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3604 }
3605
46a53cca 3606 slot++;
63541927 3607 *first_xattr_slot = -1;
46a53cca
CM
3608 while (slot < nritems) {
3609 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3610
3611 /* we found a different objectid, there must not be acls */
3612 if (found_key.objectid != objectid)
3613 return 0;
3614
3615 /* we found an xattr, assume we've got an acl */
f23b5a59 3616 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3617 if (*first_xattr_slot == -1)
3618 *first_xattr_slot = slot;
f23b5a59
JB
3619 if (found_key.offset == xattr_access ||
3620 found_key.offset == xattr_default)
3621 return 1;
3622 }
46a53cca
CM
3623
3624 /*
3625 * we found a key greater than an xattr key, there can't
3626 * be any acls later on
3627 */
3628 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3629 return 0;
3630
3631 slot++;
3632 scanned++;
3633
3634 /*
3635 * it goes inode, inode backrefs, xattrs, extents,
3636 * so if there are a ton of hard links to an inode there can
3637 * be a lot of backrefs. Don't waste time searching too hard,
3638 * this is just an optimization
3639 */
3640 if (scanned >= 8)
3641 break;
3642 }
3643 /* we hit the end of the leaf before we found an xattr or
3644 * something larger than an xattr. We have to assume the inode
3645 * has acls
3646 */
63541927
FDBM
3647 if (*first_xattr_slot == -1)
3648 *first_xattr_slot = slot;
46a53cca
CM
3649 return 1;
3650}
3651
d352ac68
CM
3652/*
3653 * read an inode from the btree into the in-memory inode
3654 */
67710892 3655static int btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3656{
3657 struct btrfs_path *path;
5f39d397 3658 struct extent_buffer *leaf;
39279cc3
CM
3659 struct btrfs_inode_item *inode_item;
3660 struct btrfs_root *root = BTRFS_I(inode)->root;
3661 struct btrfs_key location;
67de1176 3662 unsigned long ptr;
46a53cca 3663 int maybe_acls;
618e21d5 3664 u32 rdev;
39279cc3 3665 int ret;
2f7e33d4 3666 bool filled = false;
63541927 3667 int first_xattr_slot;
2f7e33d4
MX
3668
3669 ret = btrfs_fill_inode(inode, &rdev);
3670 if (!ret)
3671 filled = true;
39279cc3
CM
3672
3673 path = btrfs_alloc_path();
67710892
FM
3674 if (!path) {
3675 ret = -ENOMEM;
1748f843 3676 goto make_bad;
67710892 3677 }
1748f843 3678
39279cc3 3679 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3680
39279cc3 3681 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892
FM
3682 if (ret) {
3683 if (ret > 0)
3684 ret = -ENOENT;
39279cc3 3685 goto make_bad;
67710892 3686 }
39279cc3 3687
5f39d397 3688 leaf = path->nodes[0];
2f7e33d4
MX
3689
3690 if (filled)
67de1176 3691 goto cache_index;
2f7e33d4 3692
5f39d397
CM
3693 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3694 struct btrfs_inode_item);
5f39d397 3695 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3696 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3697 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3698 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3699 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397 3700
a937b979
DS
3701 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3702 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3703
a937b979
DS
3704 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3705 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3706
a937b979
DS
3707 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3708 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3709
9cc97d64 3710 BTRFS_I(inode)->i_otime.tv_sec =
3711 btrfs_timespec_sec(leaf, &inode_item->otime);
3712 BTRFS_I(inode)->i_otime.tv_nsec =
3713 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3714
a76a3cd4 3715 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3716 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3717 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3718
6e17d30b
YD
3719 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3720 inode->i_generation = BTRFS_I(inode)->generation;
3721 inode->i_rdev = 0;
3722 rdev = btrfs_inode_rdev(leaf, inode_item);
3723
3724 BTRFS_I(inode)->index_cnt = (u64)-1;
3725 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3726
3727cache_index:
5dc562c5
JB
3728 /*
3729 * If we were modified in the current generation and evicted from memory
3730 * and then re-read we need to do a full sync since we don't have any
3731 * idea about which extents were modified before we were evicted from
3732 * cache.
6e17d30b
YD
3733 *
3734 * This is required for both inode re-read from disk and delayed inode
3735 * in delayed_nodes_tree.
5dc562c5
JB
3736 */
3737 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3738 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3739 &BTRFS_I(inode)->runtime_flags);
3740
bde6c242
FM
3741 /*
3742 * We don't persist the id of the transaction where an unlink operation
3743 * against the inode was last made. So here we assume the inode might
3744 * have been evicted, and therefore the exact value of last_unlink_trans
3745 * lost, and set it to last_trans to avoid metadata inconsistencies
3746 * between the inode and its parent if the inode is fsync'ed and the log
3747 * replayed. For example, in the scenario:
3748 *
3749 * touch mydir/foo
3750 * ln mydir/foo mydir/bar
3751 * sync
3752 * unlink mydir/bar
3753 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3754 * xfs_io -c fsync mydir/foo
3755 * <power failure>
3756 * mount fs, triggers fsync log replay
3757 *
3758 * We must make sure that when we fsync our inode foo we also log its
3759 * parent inode, otherwise after log replay the parent still has the
3760 * dentry with the "bar" name but our inode foo has a link count of 1
3761 * and doesn't have an inode ref with the name "bar" anymore.
3762 *
3763 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3764 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3765 * transaction commits on fsync if our inode is a directory, or if our
3766 * inode is not a directory, logging its parent unnecessarily.
3767 */
3768 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3769
67de1176
MX
3770 path->slots[0]++;
3771 if (inode->i_nlink != 1 ||
3772 path->slots[0] >= btrfs_header_nritems(leaf))
3773 goto cache_acl;
3774
3775 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3776 if (location.objectid != btrfs_ino(inode))
3777 goto cache_acl;
3778
3779 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3780 if (location.type == BTRFS_INODE_REF_KEY) {
3781 struct btrfs_inode_ref *ref;
3782
3783 ref = (struct btrfs_inode_ref *)ptr;
3784 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3785 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3786 struct btrfs_inode_extref *extref;
3787
3788 extref = (struct btrfs_inode_extref *)ptr;
3789 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3790 extref);
3791 }
2f7e33d4 3792cache_acl:
46a53cca
CM
3793 /*
3794 * try to precache a NULL acl entry for files that don't have
3795 * any xattrs or acls
3796 */
33345d01 3797 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3798 btrfs_ino(inode), &first_xattr_slot);
3799 if (first_xattr_slot != -1) {
3800 path->slots[0] = first_xattr_slot;
3801 ret = btrfs_load_inode_props(inode, path);
3802 if (ret)
3803 btrfs_err(root->fs_info,
351fd353 3804 "error loading props for ino %llu (root %llu): %d",
63541927
FDBM
3805 btrfs_ino(inode),
3806 root->root_key.objectid, ret);
3807 }
3808 btrfs_free_path(path);
3809
72c04902
AV
3810 if (!maybe_acls)
3811 cache_no_acl(inode);
46a53cca 3812
39279cc3 3813 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3814 case S_IFREG:
3815 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3816 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3817 inode->i_fop = &btrfs_file_operations;
3818 inode->i_op = &btrfs_file_inode_operations;
3819 break;
3820 case S_IFDIR:
3821 inode->i_fop = &btrfs_dir_file_operations;
3822 if (root == root->fs_info->tree_root)
3823 inode->i_op = &btrfs_dir_ro_inode_operations;
3824 else
3825 inode->i_op = &btrfs_dir_inode_operations;
3826 break;
3827 case S_IFLNK:
3828 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3829 inode_nohighmem(inode);
39279cc3
CM
3830 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3831 break;
618e21d5 3832 default:
0279b4cd 3833 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3834 init_special_inode(inode, inode->i_mode, rdev);
3835 break;
39279cc3 3836 }
6cbff00f
CH
3837
3838 btrfs_update_iflags(inode);
67710892 3839 return 0;
39279cc3
CM
3840
3841make_bad:
39279cc3 3842 btrfs_free_path(path);
39279cc3 3843 make_bad_inode(inode);
67710892 3844 return ret;
39279cc3
CM
3845}
3846
d352ac68
CM
3847/*
3848 * given a leaf and an inode, copy the inode fields into the leaf
3849 */
e02119d5
CM
3850static void fill_inode_item(struct btrfs_trans_handle *trans,
3851 struct extent_buffer *leaf,
5f39d397 3852 struct btrfs_inode_item *item,
39279cc3
CM
3853 struct inode *inode)
3854{
51fab693
LB
3855 struct btrfs_map_token token;
3856
3857 btrfs_init_map_token(&token);
5f39d397 3858
51fab693
LB
3859 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3860 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3861 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3862 &token);
3863 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3864 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3865
a937b979 3866 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3867 inode->i_atime.tv_sec, &token);
a937b979 3868 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3869 inode->i_atime.tv_nsec, &token);
5f39d397 3870
a937b979 3871 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3872 inode->i_mtime.tv_sec, &token);
a937b979 3873 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3874 inode->i_mtime.tv_nsec, &token);
5f39d397 3875
a937b979 3876 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3877 inode->i_ctime.tv_sec, &token);
a937b979 3878 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3879 inode->i_ctime.tv_nsec, &token);
5f39d397 3880
9cc97d64 3881 btrfs_set_token_timespec_sec(leaf, &item->otime,
3882 BTRFS_I(inode)->i_otime.tv_sec, &token);
3883 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3884 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3885
51fab693
LB
3886 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3887 &token);
3888 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3889 &token);
3890 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3891 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3892 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3893 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3894 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3895}
3896
d352ac68
CM
3897/*
3898 * copy everything in the in-memory inode into the btree.
3899 */
2115133f 3900static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3901 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3902{
3903 struct btrfs_inode_item *inode_item;
3904 struct btrfs_path *path;
5f39d397 3905 struct extent_buffer *leaf;
39279cc3
CM
3906 int ret;
3907
3908 path = btrfs_alloc_path();
16cdcec7
MX
3909 if (!path)
3910 return -ENOMEM;
3911
b9473439 3912 path->leave_spinning = 1;
16cdcec7
MX
3913 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3914 1);
39279cc3
CM
3915 if (ret) {
3916 if (ret > 0)
3917 ret = -ENOENT;
3918 goto failed;
3919 }
3920
5f39d397
CM
3921 leaf = path->nodes[0];
3922 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3923 struct btrfs_inode_item);
39279cc3 3924
e02119d5 3925 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3926 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3927 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3928 ret = 0;
3929failed:
39279cc3
CM
3930 btrfs_free_path(path);
3931 return ret;
3932}
3933
2115133f
CM
3934/*
3935 * copy everything in the in-memory inode into the btree.
3936 */
3937noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3938 struct btrfs_root *root, struct inode *inode)
3939{
3940 int ret;
3941
3942 /*
3943 * If the inode is a free space inode, we can deadlock during commit
3944 * if we put it into the delayed code.
3945 *
3946 * The data relocation inode should also be directly updated
3947 * without delay
3948 */
83eea1f1 3949 if (!btrfs_is_free_space_inode(inode)
1d52c78a 3950 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
43cad371 3951 && !test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
8ea05e3a
AB
3952 btrfs_update_root_times(trans, root);
3953
2115133f
CM
3954 ret = btrfs_delayed_update_inode(trans, root, inode);
3955 if (!ret)
3956 btrfs_set_inode_last_trans(trans, inode);
3957 return ret;
3958 }
3959
3960 return btrfs_update_inode_item(trans, root, inode);
3961}
3962
be6aef60
JB
3963noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3964 struct btrfs_root *root,
3965 struct inode *inode)
2115133f
CM
3966{
3967 int ret;
3968
3969 ret = btrfs_update_inode(trans, root, inode);
3970 if (ret == -ENOSPC)
3971 return btrfs_update_inode_item(trans, root, inode);
3972 return ret;
3973}
3974
d352ac68
CM
3975/*
3976 * unlink helper that gets used here in inode.c and in the tree logging
3977 * recovery code. It remove a link in a directory with a given name, and
3978 * also drops the back refs in the inode to the directory
3979 */
92986796
AV
3980static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3981 struct btrfs_root *root,
3982 struct inode *dir, struct inode *inode,
3983 const char *name, int name_len)
39279cc3
CM
3984{
3985 struct btrfs_path *path;
39279cc3 3986 int ret = 0;
5f39d397 3987 struct extent_buffer *leaf;
39279cc3 3988 struct btrfs_dir_item *di;
5f39d397 3989 struct btrfs_key key;
aec7477b 3990 u64 index;
33345d01
LZ
3991 u64 ino = btrfs_ino(inode);
3992 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3993
3994 path = btrfs_alloc_path();
54aa1f4d
CM
3995 if (!path) {
3996 ret = -ENOMEM;
554233a6 3997 goto out;
54aa1f4d
CM
3998 }
3999
b9473439 4000 path->leave_spinning = 1;
33345d01 4001 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
4002 name, name_len, -1);
4003 if (IS_ERR(di)) {
4004 ret = PTR_ERR(di);
4005 goto err;
4006 }
4007 if (!di) {
4008 ret = -ENOENT;
4009 goto err;
4010 }
5f39d397
CM
4011 leaf = path->nodes[0];
4012 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 4013 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
4014 if (ret)
4015 goto err;
b3b4aa74 4016 btrfs_release_path(path);
39279cc3 4017
67de1176
MX
4018 /*
4019 * If we don't have dir index, we have to get it by looking up
4020 * the inode ref, since we get the inode ref, remove it directly,
4021 * it is unnecessary to do delayed deletion.
4022 *
4023 * But if we have dir index, needn't search inode ref to get it.
4024 * Since the inode ref is close to the inode item, it is better
4025 * that we delay to delete it, and just do this deletion when
4026 * we update the inode item.
4027 */
4028 if (BTRFS_I(inode)->dir_index) {
4029 ret = btrfs_delayed_delete_inode_ref(inode);
4030 if (!ret) {
4031 index = BTRFS_I(inode)->dir_index;
4032 goto skip_backref;
4033 }
4034 }
4035
33345d01
LZ
4036 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4037 dir_ino, &index);
aec7477b 4038 if (ret) {
c2cf52eb
SK
4039 btrfs_info(root->fs_info,
4040 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 4041 name_len, name, ino, dir_ino);
66642832 4042 btrfs_abort_transaction(trans, ret);
aec7477b
JB
4043 goto err;
4044 }
67de1176 4045skip_backref:
16cdcec7 4046 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa 4047 if (ret) {
66642832 4048 btrfs_abort_transaction(trans, ret);
39279cc3 4049 goto err;
79787eaa 4050 }
39279cc3 4051
e02119d5 4052 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 4053 inode, dir_ino);
79787eaa 4054 if (ret != 0 && ret != -ENOENT) {
66642832 4055 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4056 goto err;
4057 }
e02119d5
CM
4058
4059 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4060 dir, index);
6418c961
CM
4061 if (ret == -ENOENT)
4062 ret = 0;
d4e3991b 4063 else if (ret)
66642832 4064 btrfs_abort_transaction(trans, ret);
39279cc3
CM
4065err:
4066 btrfs_free_path(path);
e02119d5
CM
4067 if (ret)
4068 goto out;
4069
4070 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
4071 inode_inc_iversion(inode);
4072 inode_inc_iversion(dir);
04b285f3
DD
4073 inode->i_ctime = dir->i_mtime =
4074 dir->i_ctime = current_fs_time(inode->i_sb);
b9959295 4075 ret = btrfs_update_inode(trans, root, dir);
e02119d5 4076out:
39279cc3
CM
4077 return ret;
4078}
4079
92986796
AV
4080int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4081 struct btrfs_root *root,
4082 struct inode *dir, struct inode *inode,
4083 const char *name, int name_len)
4084{
4085 int ret;
4086 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4087 if (!ret) {
8b558c5f 4088 drop_nlink(inode);
92986796
AV
4089 ret = btrfs_update_inode(trans, root, inode);
4090 }
4091 return ret;
4092}
39279cc3 4093
a22285a6
YZ
4094/*
4095 * helper to start transaction for unlink and rmdir.
4096 *
d52be818
JB
4097 * unlink and rmdir are special in btrfs, they do not always free space, so
4098 * if we cannot make our reservations the normal way try and see if there is
4099 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4100 * allow the unlink to occur.
a22285a6 4101 */
d52be818 4102static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4103{
a22285a6 4104 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4105
e70bea5f
JB
4106 /*
4107 * 1 for the possible orphan item
4108 * 1 for the dir item
4109 * 1 for the dir index
4110 * 1 for the inode ref
e70bea5f
JB
4111 * 1 for the inode
4112 */
8eab77ff 4113 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4114}
4115
4116static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4117{
4118 struct btrfs_root *root = BTRFS_I(dir)->root;
4119 struct btrfs_trans_handle *trans;
2b0143b5 4120 struct inode *inode = d_inode(dentry);
a22285a6 4121 int ret;
a22285a6 4122
d52be818 4123 trans = __unlink_start_trans(dir);
a22285a6
YZ
4124 if (IS_ERR(trans))
4125 return PTR_ERR(trans);
5f39d397 4126
2b0143b5 4127 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
12fcfd22 4128
2b0143b5 4129 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4130 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
4131 if (ret)
4132 goto out;
7b128766 4133
a22285a6 4134 if (inode->i_nlink == 0) {
7b128766 4135 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
4136 if (ret)
4137 goto out;
a22285a6 4138 }
7b128766 4139
b532402e 4140out:
d52be818 4141 btrfs_end_transaction(trans, root);
b53d3f5d 4142 btrfs_btree_balance_dirty(root);
39279cc3
CM
4143 return ret;
4144}
4145
4df27c4d
YZ
4146int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4147 struct btrfs_root *root,
4148 struct inode *dir, u64 objectid,
4149 const char *name, int name_len)
4150{
4151 struct btrfs_path *path;
4152 struct extent_buffer *leaf;
4153 struct btrfs_dir_item *di;
4154 struct btrfs_key key;
4155 u64 index;
4156 int ret;
33345d01 4157 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
4158
4159 path = btrfs_alloc_path();
4160 if (!path)
4161 return -ENOMEM;
4162
33345d01 4163 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4164 name, name_len, -1);
79787eaa
JM
4165 if (IS_ERR_OR_NULL(di)) {
4166 if (!di)
4167 ret = -ENOENT;
4168 else
4169 ret = PTR_ERR(di);
4170 goto out;
4171 }
4df27c4d
YZ
4172
4173 leaf = path->nodes[0];
4174 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4175 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4176 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4177 if (ret) {
66642832 4178 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4179 goto out;
4180 }
b3b4aa74 4181 btrfs_release_path(path);
4df27c4d
YZ
4182
4183 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4184 objectid, root->root_key.objectid,
33345d01 4185 dir_ino, &index, name, name_len);
4df27c4d 4186 if (ret < 0) {
79787eaa 4187 if (ret != -ENOENT) {
66642832 4188 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4189 goto out;
4190 }
33345d01 4191 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4192 name, name_len);
79787eaa
JM
4193 if (IS_ERR_OR_NULL(di)) {
4194 if (!di)
4195 ret = -ENOENT;
4196 else
4197 ret = PTR_ERR(di);
66642832 4198 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4199 goto out;
4200 }
4df27c4d
YZ
4201
4202 leaf = path->nodes[0];
4203 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4204 btrfs_release_path(path);
4df27c4d
YZ
4205 index = key.offset;
4206 }
945d8962 4207 btrfs_release_path(path);
4df27c4d 4208
16cdcec7 4209 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa 4210 if (ret) {
66642832 4211 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4212 goto out;
4213 }
4df27c4d
YZ
4214
4215 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 4216 inode_inc_iversion(dir);
04b285f3 4217 dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb);
5a24e84c 4218 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4219 if (ret)
66642832 4220 btrfs_abort_transaction(trans, ret);
79787eaa 4221out:
71d7aed0 4222 btrfs_free_path(path);
79787eaa 4223 return ret;
4df27c4d
YZ
4224}
4225
39279cc3
CM
4226static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4227{
2b0143b5 4228 struct inode *inode = d_inode(dentry);
1832a6d5 4229 int err = 0;
39279cc3 4230 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4231 struct btrfs_trans_handle *trans;
44f714da 4232 u64 last_unlink_trans;
39279cc3 4233
b3ae244e 4234 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4235 return -ENOTEMPTY;
b3ae244e
DS
4236 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4237 return -EPERM;
134d4512 4238
d52be818 4239 trans = __unlink_start_trans(dir);
a22285a6 4240 if (IS_ERR(trans))
5df6a9f6 4241 return PTR_ERR(trans);
5df6a9f6 4242
33345d01 4243 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4244 err = btrfs_unlink_subvol(trans, root, dir,
4245 BTRFS_I(inode)->location.objectid,
4246 dentry->d_name.name,
4247 dentry->d_name.len);
4248 goto out;
4249 }
4250
7b128766
JB
4251 err = btrfs_orphan_add(trans, inode);
4252 if (err)
4df27c4d 4253 goto out;
7b128766 4254
44f714da
FM
4255 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4256
39279cc3 4257 /* now the directory is empty */
2b0143b5 4258 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4259 dentry->d_name.name, dentry->d_name.len);
44f714da 4260 if (!err) {
dbe674a9 4261 btrfs_i_size_write(inode, 0);
44f714da
FM
4262 /*
4263 * Propagate the last_unlink_trans value of the deleted dir to
4264 * its parent directory. This is to prevent an unrecoverable
4265 * log tree in the case we do something like this:
4266 * 1) create dir foo
4267 * 2) create snapshot under dir foo
4268 * 3) delete the snapshot
4269 * 4) rmdir foo
4270 * 5) mkdir foo
4271 * 6) fsync foo or some file inside foo
4272 */
4273 if (last_unlink_trans >= trans->transid)
4274 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4275 }
4df27c4d 4276out:
d52be818 4277 btrfs_end_transaction(trans, root);
b53d3f5d 4278 btrfs_btree_balance_dirty(root);
3954401f 4279
39279cc3
CM
4280 return err;
4281}
4282
28f75a0e
CM
4283static int truncate_space_check(struct btrfs_trans_handle *trans,
4284 struct btrfs_root *root,
4285 u64 bytes_deleted)
4286{
4287 int ret;
4288
dc95f7bf
JB
4289 /*
4290 * This is only used to apply pressure to the enospc system, we don't
4291 * intend to use this reservation at all.
4292 */
28f75a0e 4293 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
dc95f7bf 4294 bytes_deleted *= root->nodesize;
28f75a0e
CM
4295 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4296 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf
JB
4297 if (!ret) {
4298 trace_btrfs_space_reservation(root->fs_info, "transaction",
4299 trans->transid,
4300 bytes_deleted, 1);
28f75a0e 4301 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4302 }
28f75a0e
CM
4303 return ret;
4304
4305}
4306
0305cd5f
FM
4307static int truncate_inline_extent(struct inode *inode,
4308 struct btrfs_path *path,
4309 struct btrfs_key *found_key,
4310 const u64 item_end,
4311 const u64 new_size)
4312{
4313 struct extent_buffer *leaf = path->nodes[0];
4314 int slot = path->slots[0];
4315 struct btrfs_file_extent_item *fi;
4316 u32 size = (u32)(new_size - found_key->offset);
4317 struct btrfs_root *root = BTRFS_I(inode)->root;
4318
4319 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4320
4321 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4322 loff_t offset = new_size;
09cbfeaf 4323 loff_t page_end = ALIGN(offset, PAGE_SIZE);
0305cd5f
FM
4324
4325 /*
4326 * Zero out the remaining of the last page of our inline extent,
4327 * instead of directly truncating our inline extent here - that
4328 * would be much more complex (decompressing all the data, then
4329 * compressing the truncated data, which might be bigger than
4330 * the size of the inline extent, resize the extent, etc).
4331 * We release the path because to get the page we might need to
4332 * read the extent item from disk (data not in the page cache).
4333 */
4334 btrfs_release_path(path);
9703fefe
CR
4335 return btrfs_truncate_block(inode, offset, page_end - offset,
4336 0);
0305cd5f
FM
4337 }
4338
4339 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4340 size = btrfs_file_extent_calc_inline_size(size);
4341 btrfs_truncate_item(root, path, size, 1);
4342
4343 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4344 inode_sub_bytes(inode, item_end + 1 - new_size);
4345
4346 return 0;
4347}
4348
39279cc3
CM
4349/*
4350 * this can truncate away extent items, csum items and directory items.
4351 * It starts at a high offset and removes keys until it can't find
d352ac68 4352 * any higher than new_size
39279cc3
CM
4353 *
4354 * csum items that cross the new i_size are truncated to the new size
4355 * as well.
7b128766
JB
4356 *
4357 * min_type is the minimum key type to truncate down to. If set to 0, this
4358 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4359 */
8082510e
YZ
4360int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4361 struct btrfs_root *root,
4362 struct inode *inode,
4363 u64 new_size, u32 min_type)
39279cc3 4364{
39279cc3 4365 struct btrfs_path *path;
5f39d397 4366 struct extent_buffer *leaf;
39279cc3 4367 struct btrfs_file_extent_item *fi;
8082510e
YZ
4368 struct btrfs_key key;
4369 struct btrfs_key found_key;
39279cc3 4370 u64 extent_start = 0;
db94535d 4371 u64 extent_num_bytes = 0;
5d4f98a2 4372 u64 extent_offset = 0;
39279cc3 4373 u64 item_end = 0;
c1aa4575 4374 u64 last_size = new_size;
8082510e 4375 u32 found_type = (u8)-1;
39279cc3
CM
4376 int found_extent;
4377 int del_item;
85e21bac
CM
4378 int pending_del_nr = 0;
4379 int pending_del_slot = 0;
179e29e4 4380 int extent_type = -1;
8082510e
YZ
4381 int ret;
4382 int err = 0;
33345d01 4383 u64 ino = btrfs_ino(inode);
28ed1345 4384 u64 bytes_deleted = 0;
1262133b
JB
4385 bool be_nice = 0;
4386 bool should_throttle = 0;
28f75a0e 4387 bool should_end = 0;
8082510e
YZ
4388
4389 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4390
28ed1345
CM
4391 /*
4392 * for non-free space inodes and ref cows, we want to back off from
4393 * time to time
4394 */
4395 if (!btrfs_is_free_space_inode(inode) &&
4396 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4397 be_nice = 1;
4398
0eb0e19c
MF
4399 path = btrfs_alloc_path();
4400 if (!path)
4401 return -ENOMEM;
e4058b54 4402 path->reada = READA_BACK;
0eb0e19c 4403
5dc562c5
JB
4404 /*
4405 * We want to drop from the next block forward in case this new size is
4406 * not block aligned since we will be keeping the last block of the
4407 * extent just the way it is.
4408 */
27cdeb70
MX
4409 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4410 root == root->fs_info->tree_root)
fda2832f
QW
4411 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4412 root->sectorsize), (u64)-1, 0);
8082510e 4413
16cdcec7
MX
4414 /*
4415 * This function is also used to drop the items in the log tree before
4416 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4417 * it is used to drop the loged items. So we shouldn't kill the delayed
4418 * items.
4419 */
4420 if (min_type == 0 && root == BTRFS_I(inode)->root)
4421 btrfs_kill_delayed_inode_items(inode);
4422
33345d01 4423 key.objectid = ino;
39279cc3 4424 key.offset = (u64)-1;
5f39d397
CM
4425 key.type = (u8)-1;
4426
85e21bac 4427search_again:
28ed1345
CM
4428 /*
4429 * with a 16K leaf size and 128MB extents, you can actually queue
4430 * up a huge file in a single leaf. Most of the time that
4431 * bytes_deleted is > 0, it will be huge by the time we get here
4432 */
ee22184b 4433 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4434 if (btrfs_should_end_transaction(trans, root)) {
4435 err = -EAGAIN;
4436 goto error;
4437 }
4438 }
4439
4440
b9473439 4441 path->leave_spinning = 1;
85e21bac 4442 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4443 if (ret < 0) {
4444 err = ret;
4445 goto out;
4446 }
d397712b 4447
85e21bac 4448 if (ret > 0) {
e02119d5
CM
4449 /* there are no items in the tree for us to truncate, we're
4450 * done
4451 */
8082510e
YZ
4452 if (path->slots[0] == 0)
4453 goto out;
85e21bac
CM
4454 path->slots[0]--;
4455 }
4456
d397712b 4457 while (1) {
39279cc3 4458 fi = NULL;
5f39d397
CM
4459 leaf = path->nodes[0];
4460 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4461 found_type = found_key.type;
39279cc3 4462
33345d01 4463 if (found_key.objectid != ino)
39279cc3 4464 break;
5f39d397 4465
85e21bac 4466 if (found_type < min_type)
39279cc3
CM
4467 break;
4468
5f39d397 4469 item_end = found_key.offset;
39279cc3 4470 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4471 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4472 struct btrfs_file_extent_item);
179e29e4
CM
4473 extent_type = btrfs_file_extent_type(leaf, fi);
4474 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4475 item_end +=
db94535d 4476 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4477 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4478 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4479 path->slots[0], fi);
39279cc3 4480 }
008630c1 4481 item_end--;
39279cc3 4482 }
8082510e
YZ
4483 if (found_type > min_type) {
4484 del_item = 1;
4485 } else {
4486 if (item_end < new_size)
b888db2b 4487 break;
8082510e
YZ
4488 if (found_key.offset >= new_size)
4489 del_item = 1;
4490 else
4491 del_item = 0;
39279cc3 4492 }
39279cc3 4493 found_extent = 0;
39279cc3 4494 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4495 if (found_type != BTRFS_EXTENT_DATA_KEY)
4496 goto delete;
4497
7f4f6e0a
JB
4498 if (del_item)
4499 last_size = found_key.offset;
4500 else
4501 last_size = new_size;
4502
179e29e4 4503 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4504 u64 num_dec;
db94535d 4505 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4506 if (!del_item) {
db94535d
CM
4507 u64 orig_num_bytes =
4508 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4509 extent_num_bytes = ALIGN(new_size -
4510 found_key.offset,
4511 root->sectorsize);
db94535d
CM
4512 btrfs_set_file_extent_num_bytes(leaf, fi,
4513 extent_num_bytes);
4514 num_dec = (orig_num_bytes -
9069218d 4515 extent_num_bytes);
27cdeb70
MX
4516 if (test_bit(BTRFS_ROOT_REF_COWS,
4517 &root->state) &&
4518 extent_start != 0)
a76a3cd4 4519 inode_sub_bytes(inode, num_dec);
5f39d397 4520 btrfs_mark_buffer_dirty(leaf);
39279cc3 4521 } else {
db94535d
CM
4522 extent_num_bytes =
4523 btrfs_file_extent_disk_num_bytes(leaf,
4524 fi);
5d4f98a2
YZ
4525 extent_offset = found_key.offset -
4526 btrfs_file_extent_offset(leaf, fi);
4527
39279cc3 4528 /* FIXME blocksize != 4096 */
9069218d 4529 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4530 if (extent_start != 0) {
4531 found_extent = 1;
27cdeb70
MX
4532 if (test_bit(BTRFS_ROOT_REF_COWS,
4533 &root->state))
a76a3cd4 4534 inode_sub_bytes(inode, num_dec);
e02119d5 4535 }
39279cc3 4536 }
9069218d 4537 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4538 /*
4539 * we can't truncate inline items that have had
4540 * special encodings
4541 */
4542 if (!del_item &&
c8b97818
CM
4543 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4544 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
514ac8ad
CM
4545
4546 /*
0305cd5f
FM
4547 * Need to release path in order to truncate a
4548 * compressed extent. So delete any accumulated
4549 * extent items so far.
514ac8ad 4550 */
0305cd5f
FM
4551 if (btrfs_file_extent_compression(leaf, fi) !=
4552 BTRFS_COMPRESS_NONE && pending_del_nr) {
4553 err = btrfs_del_items(trans, root, path,
4554 pending_del_slot,
4555 pending_del_nr);
4556 if (err) {
4557 btrfs_abort_transaction(trans,
0305cd5f
FM
4558 err);
4559 goto error;
4560 }
4561 pending_del_nr = 0;
4562 }
4563
4564 err = truncate_inline_extent(inode, path,
4565 &found_key,
4566 item_end,
4567 new_size);
4568 if (err) {
66642832 4569 btrfs_abort_transaction(trans, err);
0305cd5f
FM
4570 goto error;
4571 }
27cdeb70
MX
4572 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4573 &root->state)) {
0305cd5f 4574 inode_sub_bytes(inode, item_end + 1 - new_size);
9069218d 4575 }
39279cc3 4576 }
179e29e4 4577delete:
39279cc3 4578 if (del_item) {
85e21bac
CM
4579 if (!pending_del_nr) {
4580 /* no pending yet, add ourselves */
4581 pending_del_slot = path->slots[0];
4582 pending_del_nr = 1;
4583 } else if (pending_del_nr &&
4584 path->slots[0] + 1 == pending_del_slot) {
4585 /* hop on the pending chunk */
4586 pending_del_nr++;
4587 pending_del_slot = path->slots[0];
4588 } else {
d397712b 4589 BUG();
85e21bac 4590 }
39279cc3
CM
4591 } else {
4592 break;
4593 }
28f75a0e
CM
4594 should_throttle = 0;
4595
27cdeb70
MX
4596 if (found_extent &&
4597 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4598 root == root->fs_info->tree_root)) {
b9473439 4599 btrfs_set_path_blocking(path);
28ed1345 4600 bytes_deleted += extent_num_bytes;
39279cc3 4601 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4602 extent_num_bytes, 0,
4603 btrfs_header_owner(leaf),
b06c4bf5 4604 ino, extent_offset);
39279cc3 4605 BUG_ON(ret);
1262133b 4606 if (btrfs_should_throttle_delayed_refs(trans, root))
28ed1345 4607 btrfs_async_run_delayed_refs(root,
31b9655f 4608 trans->transid,
28ed1345 4609 trans->delayed_ref_updates * 2, 0);
28f75a0e
CM
4610 if (be_nice) {
4611 if (truncate_space_check(trans, root,
4612 extent_num_bytes)) {
4613 should_end = 1;
4614 }
4615 if (btrfs_should_throttle_delayed_refs(trans,
4616 root)) {
4617 should_throttle = 1;
4618 }
4619 }
39279cc3 4620 }
85e21bac 4621
8082510e
YZ
4622 if (found_type == BTRFS_INODE_ITEM_KEY)
4623 break;
4624
4625 if (path->slots[0] == 0 ||
1262133b 4626 path->slots[0] != pending_del_slot ||
28f75a0e 4627 should_throttle || should_end) {
8082510e
YZ
4628 if (pending_del_nr) {
4629 ret = btrfs_del_items(trans, root, path,
4630 pending_del_slot,
4631 pending_del_nr);
79787eaa 4632 if (ret) {
66642832 4633 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4634 goto error;
4635 }
8082510e
YZ
4636 pending_del_nr = 0;
4637 }
b3b4aa74 4638 btrfs_release_path(path);
28f75a0e 4639 if (should_throttle) {
1262133b
JB
4640 unsigned long updates = trans->delayed_ref_updates;
4641 if (updates) {
4642 trans->delayed_ref_updates = 0;
4643 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4644 if (ret && !err)
4645 err = ret;
4646 }
4647 }
28f75a0e
CM
4648 /*
4649 * if we failed to refill our space rsv, bail out
4650 * and let the transaction restart
4651 */
4652 if (should_end) {
4653 err = -EAGAIN;
4654 goto error;
4655 }
85e21bac 4656 goto search_again;
8082510e
YZ
4657 } else {
4658 path->slots[0]--;
85e21bac 4659 }
39279cc3 4660 }
8082510e 4661out:
85e21bac
CM
4662 if (pending_del_nr) {
4663 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4664 pending_del_nr);
79787eaa 4665 if (ret)
66642832 4666 btrfs_abort_transaction(trans, ret);
85e21bac 4667 }
79787eaa 4668error:
c1aa4575 4669 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7f4f6e0a 4670 btrfs_ordered_update_i_size(inode, last_size, NULL);
28ed1345 4671
39279cc3 4672 btrfs_free_path(path);
28ed1345 4673
ee22184b 4674 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4675 unsigned long updates = trans->delayed_ref_updates;
4676 if (updates) {
4677 trans->delayed_ref_updates = 0;
4678 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4679 if (ret && !err)
4680 err = ret;
4681 }
4682 }
8082510e 4683 return err;
39279cc3
CM
4684}
4685
4686/*
9703fefe 4687 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4688 * @inode - inode that we're zeroing
4689 * @from - the offset to start zeroing
4690 * @len - the length to zero, 0 to zero the entire range respective to the
4691 * offset
4692 * @front - zero up to the offset instead of from the offset on
4693 *
9703fefe 4694 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4695 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4696 */
9703fefe 4697int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4698 int front)
39279cc3 4699{
2aaa6655 4700 struct address_space *mapping = inode->i_mapping;
db94535d 4701 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4702 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4703 struct btrfs_ordered_extent *ordered;
2ac55d41 4704 struct extent_state *cached_state = NULL;
e6dcd2dc 4705 char *kaddr;
db94535d 4706 u32 blocksize = root->sectorsize;
09cbfeaf 4707 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4708 unsigned offset = from & (blocksize - 1);
39279cc3 4709 struct page *page;
3b16a4e3 4710 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4711 int ret = 0;
9703fefe
CR
4712 u64 block_start;
4713 u64 block_end;
39279cc3 4714
2aaa6655
JB
4715 if ((offset & (blocksize - 1)) == 0 &&
4716 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4717 goto out;
9703fefe 4718
7cf5b976 4719 ret = btrfs_delalloc_reserve_space(inode,
9703fefe 4720 round_down(from, blocksize), blocksize);
5d5e103a
JB
4721 if (ret)
4722 goto out;
39279cc3 4723
211c17f5 4724again:
3b16a4e3 4725 page = find_or_create_page(mapping, index, mask);
5d5e103a 4726 if (!page) {
7cf5b976 4727 btrfs_delalloc_release_space(inode,
9703fefe
CR
4728 round_down(from, blocksize),
4729 blocksize);
ac6a2b36 4730 ret = -ENOMEM;
39279cc3 4731 goto out;
5d5e103a 4732 }
e6dcd2dc 4733
9703fefe
CR
4734 block_start = round_down(from, blocksize);
4735 block_end = block_start + blocksize - 1;
e6dcd2dc 4736
39279cc3 4737 if (!PageUptodate(page)) {
9ebefb18 4738 ret = btrfs_readpage(NULL, page);
39279cc3 4739 lock_page(page);
211c17f5
CM
4740 if (page->mapping != mapping) {
4741 unlock_page(page);
09cbfeaf 4742 put_page(page);
211c17f5
CM
4743 goto again;
4744 }
39279cc3
CM
4745 if (!PageUptodate(page)) {
4746 ret = -EIO;
89642229 4747 goto out_unlock;
39279cc3
CM
4748 }
4749 }
211c17f5 4750 wait_on_page_writeback(page);
e6dcd2dc 4751
9703fefe 4752 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4753 set_page_extent_mapped(page);
4754
9703fefe 4755 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4756 if (ordered) {
9703fefe 4757 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4758 &cached_state, GFP_NOFS);
e6dcd2dc 4759 unlock_page(page);
09cbfeaf 4760 put_page(page);
eb84ae03 4761 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4762 btrfs_put_ordered_extent(ordered);
4763 goto again;
4764 }
4765
9703fefe 4766 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4767 EXTENT_DIRTY | EXTENT_DELALLOC |
4768 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4769 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4770
9703fefe 4771 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
b0985c40 4772 &cached_state, 0);
9ed74f2d 4773 if (ret) {
9703fefe 4774 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4775 &cached_state, GFP_NOFS);
9ed74f2d
JB
4776 goto out_unlock;
4777 }
4778
9703fefe 4779 if (offset != blocksize) {
2aaa6655 4780 if (!len)
9703fefe 4781 len = blocksize - offset;
e6dcd2dc 4782 kaddr = kmap(page);
2aaa6655 4783 if (front)
9703fefe
CR
4784 memset(kaddr + (block_start - page_offset(page)),
4785 0, offset);
2aaa6655 4786 else
9703fefe
CR
4787 memset(kaddr + (block_start - page_offset(page)) + offset,
4788 0, len);
e6dcd2dc
CM
4789 flush_dcache_page(page);
4790 kunmap(page);
4791 }
247e743c 4792 ClearPageChecked(page);
e6dcd2dc 4793 set_page_dirty(page);
9703fefe 4794 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
2ac55d41 4795 GFP_NOFS);
39279cc3 4796
89642229 4797out_unlock:
5d5e103a 4798 if (ret)
9703fefe
CR
4799 btrfs_delalloc_release_space(inode, block_start,
4800 blocksize);
39279cc3 4801 unlock_page(page);
09cbfeaf 4802 put_page(page);
39279cc3
CM
4803out:
4804 return ret;
4805}
4806
16e7549f
JB
4807static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4808 u64 offset, u64 len)
4809{
4810 struct btrfs_trans_handle *trans;
4811 int ret;
4812
4813 /*
4814 * Still need to make sure the inode looks like it's been updated so
4815 * that any holes get logged if we fsync.
4816 */
4817 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4818 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4819 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4820 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4821 return 0;
4822 }
4823
4824 /*
4825 * 1 - for the one we're dropping
4826 * 1 - for the one we're adding
4827 * 1 - for updating the inode.
4828 */
4829 trans = btrfs_start_transaction(root, 3);
4830 if (IS_ERR(trans))
4831 return PTR_ERR(trans);
4832
4833 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4834 if (ret) {
66642832 4835 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4836 btrfs_end_transaction(trans, root);
4837 return ret;
4838 }
4839
4840 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4841 0, 0, len, 0, len, 0, 0, 0);
4842 if (ret)
66642832 4843 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4844 else
4845 btrfs_update_inode(trans, root, inode);
4846 btrfs_end_transaction(trans, root);
4847 return ret;
4848}
4849
695a0d0d
JB
4850/*
4851 * This function puts in dummy file extents for the area we're creating a hole
4852 * for. So if we are truncating this file to a larger size we need to insert
4853 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4854 * the range between oldsize and size
4855 */
a41ad394 4856int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4857{
9036c102
YZ
4858 struct btrfs_root *root = BTRFS_I(inode)->root;
4859 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4860 struct extent_map *em = NULL;
2ac55d41 4861 struct extent_state *cached_state = NULL;
5dc562c5 4862 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4863 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4864 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4865 u64 last_byte;
4866 u64 cur_offset;
4867 u64 hole_size;
9ed74f2d 4868 int err = 0;
39279cc3 4869
a71754fc 4870 /*
9703fefe
CR
4871 * If our size started in the middle of a block we need to zero out the
4872 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4873 * expose stale data.
4874 */
9703fefe 4875 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4876 if (err)
4877 return err;
4878
9036c102
YZ
4879 if (size <= hole_start)
4880 return 0;
4881
9036c102
YZ
4882 while (1) {
4883 struct btrfs_ordered_extent *ordered;
fa7c1494 4884
ff13db41 4885 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4886 &cached_state);
fa7c1494
MX
4887 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4888 block_end - hole_start);
9036c102
YZ
4889 if (!ordered)
4890 break;
2ac55d41
JB
4891 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4892 &cached_state, GFP_NOFS);
fa7c1494 4893 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4894 btrfs_put_ordered_extent(ordered);
4895 }
39279cc3 4896
9036c102
YZ
4897 cur_offset = hole_start;
4898 while (1) {
4899 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4900 block_end - cur_offset, 0);
79787eaa
JM
4901 if (IS_ERR(em)) {
4902 err = PTR_ERR(em);
f2767956 4903 em = NULL;
79787eaa
JM
4904 break;
4905 }
9036c102 4906 last_byte = min(extent_map_end(em), block_end);
fda2832f 4907 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4908 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4909 struct extent_map *hole_em;
9036c102 4910 hole_size = last_byte - cur_offset;
9ed74f2d 4911
16e7549f
JB
4912 err = maybe_insert_hole(root, inode, cur_offset,
4913 hole_size);
4914 if (err)
3893e33b 4915 break;
5dc562c5
JB
4916 btrfs_drop_extent_cache(inode, cur_offset,
4917 cur_offset + hole_size - 1, 0);
4918 hole_em = alloc_extent_map();
4919 if (!hole_em) {
4920 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4921 &BTRFS_I(inode)->runtime_flags);
4922 goto next;
4923 }
4924 hole_em->start = cur_offset;
4925 hole_em->len = hole_size;
4926 hole_em->orig_start = cur_offset;
8082510e 4927
5dc562c5
JB
4928 hole_em->block_start = EXTENT_MAP_HOLE;
4929 hole_em->block_len = 0;
b4939680 4930 hole_em->orig_block_len = 0;
cc95bef6 4931 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4932 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4933 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4934 hole_em->generation = root->fs_info->generation;
8082510e 4935
5dc562c5
JB
4936 while (1) {
4937 write_lock(&em_tree->lock);
09a2a8f9 4938 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4939 write_unlock(&em_tree->lock);
4940 if (err != -EEXIST)
4941 break;
4942 btrfs_drop_extent_cache(inode, cur_offset,
4943 cur_offset +
4944 hole_size - 1, 0);
4945 }
4946 free_extent_map(hole_em);
9036c102 4947 }
16e7549f 4948next:
9036c102 4949 free_extent_map(em);
a22285a6 4950 em = NULL;
9036c102 4951 cur_offset = last_byte;
8082510e 4952 if (cur_offset >= block_end)
9036c102
YZ
4953 break;
4954 }
a22285a6 4955 free_extent_map(em);
2ac55d41
JB
4956 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4957 GFP_NOFS);
9036c102
YZ
4958 return err;
4959}
39279cc3 4960
3972f260 4961static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4962{
f4a2f4c5
MX
4963 struct btrfs_root *root = BTRFS_I(inode)->root;
4964 struct btrfs_trans_handle *trans;
a41ad394 4965 loff_t oldsize = i_size_read(inode);
3972f260
ES
4966 loff_t newsize = attr->ia_size;
4967 int mask = attr->ia_valid;
8082510e
YZ
4968 int ret;
4969
3972f260
ES
4970 /*
4971 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4972 * special case where we need to update the times despite not having
4973 * these flags set. For all other operations the VFS set these flags
4974 * explicitly if it wants a timestamp update.
4975 */
dff6efc3
CH
4976 if (newsize != oldsize) {
4977 inode_inc_iversion(inode);
4978 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4979 inode->i_ctime = inode->i_mtime =
4980 current_fs_time(inode->i_sb);
4981 }
3972f260 4982
a41ad394 4983 if (newsize > oldsize) {
9ea24bbe
FM
4984 /*
4985 * Don't do an expanding truncate while snapshoting is ongoing.
4986 * This is to ensure the snapshot captures a fully consistent
4987 * state of this file - if the snapshot captures this expanding
4988 * truncation, it must capture all writes that happened before
4989 * this truncation.
4990 */
0bc19f90 4991 btrfs_wait_for_snapshot_creation(root);
a41ad394 4992 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
4993 if (ret) {
4994 btrfs_end_write_no_snapshoting(root);
8082510e 4995 return ret;
9ea24bbe 4996 }
8082510e 4997
f4a2f4c5 4998 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
4999 if (IS_ERR(trans)) {
5000 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 5001 return PTR_ERR(trans);
9ea24bbe 5002 }
f4a2f4c5
MX
5003
5004 i_size_write(inode, newsize);
5005 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 5006 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 5007 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 5008 btrfs_end_write_no_snapshoting(root);
7ad85bb7 5009 btrfs_end_transaction(trans, root);
a41ad394 5010 } else {
8082510e 5011
a41ad394
JB
5012 /*
5013 * We're truncating a file that used to have good data down to
5014 * zero. Make sure it gets into the ordered flush list so that
5015 * any new writes get down to disk quickly.
5016 */
5017 if (newsize == 0)
72ac3c0d
JB
5018 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5019 &BTRFS_I(inode)->runtime_flags);
8082510e 5020
f3fe820c
JB
5021 /*
5022 * 1 for the orphan item we're going to add
5023 * 1 for the orphan item deletion.
5024 */
5025 trans = btrfs_start_transaction(root, 2);
5026 if (IS_ERR(trans))
5027 return PTR_ERR(trans);
5028
5029 /*
5030 * We need to do this in case we fail at _any_ point during the
5031 * actual truncate. Once we do the truncate_setsize we could
5032 * invalidate pages which forces any outstanding ordered io to
5033 * be instantly completed which will give us extents that need
5034 * to be truncated. If we fail to get an orphan inode down we
5035 * could have left over extents that were never meant to live,
01327610 5036 * so we need to guarantee from this point on that everything
f3fe820c
JB
5037 * will be consistent.
5038 */
5039 ret = btrfs_orphan_add(trans, inode);
5040 btrfs_end_transaction(trans, root);
5041 if (ret)
5042 return ret;
5043
a41ad394
JB
5044 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5045 truncate_setsize(inode, newsize);
2e60a51e
MX
5046
5047 /* Disable nonlocked read DIO to avoid the end less truncate */
5048 btrfs_inode_block_unlocked_dio(inode);
5049 inode_dio_wait(inode);
5050 btrfs_inode_resume_unlocked_dio(inode);
5051
a41ad394 5052 ret = btrfs_truncate(inode);
7f4f6e0a
JB
5053 if (ret && inode->i_nlink) {
5054 int err;
5055
5056 /*
5057 * failed to truncate, disk_i_size is only adjusted down
5058 * as we remove extents, so it should represent the true
5059 * size of the inode, so reset the in memory size and
5060 * delete our orphan entry.
5061 */
5062 trans = btrfs_join_transaction(root);
5063 if (IS_ERR(trans)) {
5064 btrfs_orphan_del(NULL, inode);
5065 return ret;
5066 }
5067 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5068 err = btrfs_orphan_del(trans, inode);
5069 if (err)
66642832 5070 btrfs_abort_transaction(trans, err);
7f4f6e0a
JB
5071 btrfs_end_transaction(trans, root);
5072 }
8082510e
YZ
5073 }
5074
a41ad394 5075 return ret;
8082510e
YZ
5076}
5077
9036c102
YZ
5078static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5079{
2b0143b5 5080 struct inode *inode = d_inode(dentry);
b83cc969 5081 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5082 int err;
39279cc3 5083
b83cc969
LZ
5084 if (btrfs_root_readonly(root))
5085 return -EROFS;
5086
9036c102
YZ
5087 err = inode_change_ok(inode, attr);
5088 if (err)
5089 return err;
2bf5a725 5090
5a3f23d5 5091 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5092 err = btrfs_setsize(inode, attr);
8082510e
YZ
5093 if (err)
5094 return err;
39279cc3 5095 }
9036c102 5096
1025774c
CH
5097 if (attr->ia_valid) {
5098 setattr_copy(inode, attr);
0c4d2d95 5099 inode_inc_iversion(inode);
22c44fe6 5100 err = btrfs_dirty_inode(inode);
1025774c 5101
22c44fe6 5102 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5103 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5104 }
33268eaf 5105
39279cc3
CM
5106 return err;
5107}
61295eb8 5108
131e404a
FDBM
5109/*
5110 * While truncating the inode pages during eviction, we get the VFS calling
5111 * btrfs_invalidatepage() against each page of the inode. This is slow because
5112 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5113 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5114 * extent_state structures over and over, wasting lots of time.
5115 *
5116 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5117 * those expensive operations on a per page basis and do only the ordered io
5118 * finishing, while we release here the extent_map and extent_state structures,
5119 * without the excessive merging and splitting.
5120 */
5121static void evict_inode_truncate_pages(struct inode *inode)
5122{
5123 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5124 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5125 struct rb_node *node;
5126
5127 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5128 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5129
5130 write_lock(&map_tree->lock);
5131 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5132 struct extent_map *em;
5133
5134 node = rb_first(&map_tree->map);
5135 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5136 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5137 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5138 remove_extent_mapping(map_tree, em);
5139 free_extent_map(em);
7064dd5c
FM
5140 if (need_resched()) {
5141 write_unlock(&map_tree->lock);
5142 cond_resched();
5143 write_lock(&map_tree->lock);
5144 }
131e404a
FDBM
5145 }
5146 write_unlock(&map_tree->lock);
5147
6ca07097
FM
5148 /*
5149 * Keep looping until we have no more ranges in the io tree.
5150 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5151 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5152 * still in progress (unlocked the pages in the bio but did not yet
5153 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5154 * ranges can still be locked and eviction started because before
5155 * submitting those bios, which are executed by a separate task (work
5156 * queue kthread), inode references (inode->i_count) were not taken
5157 * (which would be dropped in the end io callback of each bio).
5158 * Therefore here we effectively end up waiting for those bios and
5159 * anyone else holding locked ranges without having bumped the inode's
5160 * reference count - if we don't do it, when they access the inode's
5161 * io_tree to unlock a range it may be too late, leading to an
5162 * use-after-free issue.
5163 */
131e404a
FDBM
5164 spin_lock(&io_tree->lock);
5165 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5166 struct extent_state *state;
5167 struct extent_state *cached_state = NULL;
6ca07097
FM
5168 u64 start;
5169 u64 end;
131e404a
FDBM
5170
5171 node = rb_first(&io_tree->state);
5172 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5173 start = state->start;
5174 end = state->end;
131e404a
FDBM
5175 spin_unlock(&io_tree->lock);
5176
ff13db41 5177 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5178
5179 /*
5180 * If still has DELALLOC flag, the extent didn't reach disk,
5181 * and its reserved space won't be freed by delayed_ref.
5182 * So we need to free its reserved space here.
5183 * (Refer to comment in btrfs_invalidatepage, case 2)
5184 *
5185 * Note, end is the bytenr of last byte, so we need + 1 here.
5186 */
5187 if (state->state & EXTENT_DELALLOC)
5188 btrfs_qgroup_free_data(inode, start, end - start + 1);
5189
6ca07097 5190 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5191 EXTENT_LOCKED | EXTENT_DIRTY |
5192 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5193 EXTENT_DEFRAG, 1, 1,
5194 &cached_state, GFP_NOFS);
131e404a 5195
7064dd5c 5196 cond_resched();
131e404a
FDBM
5197 spin_lock(&io_tree->lock);
5198 }
5199 spin_unlock(&io_tree->lock);
5200}
5201
bd555975 5202void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
5203{
5204 struct btrfs_trans_handle *trans;
5205 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5206 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5207 int steal_from_global = 0;
3d48d981 5208 u64 min_size;
39279cc3
CM
5209 int ret;
5210
1abe9b8a 5211 trace_btrfs_inode_evict(inode);
5212
3d48d981
NB
5213 if (!root) {
5214 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5215 return;
5216 }
5217
5218 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5219
131e404a
FDBM
5220 evict_inode_truncate_pages(inode);
5221
69e9c6c6
SB
5222 if (inode->i_nlink &&
5223 ((btrfs_root_refs(&root->root_item) != 0 &&
5224 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5225 btrfs_is_free_space_inode(inode)))
bd555975
AV
5226 goto no_delete;
5227
39279cc3 5228 if (is_bad_inode(inode)) {
7b128766 5229 btrfs_orphan_del(NULL, inode);
39279cc3
CM
5230 goto no_delete;
5231 }
bd555975 5232 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5233 if (!special_file(inode->i_mode))
5234 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5235
f612496b
MX
5236 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5237
43cad371 5238 if (test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6bf02314 5239 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5240 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5241 goto no_delete;
5242 }
5243
76dda93c 5244 if (inode->i_nlink > 0) {
69e9c6c6
SB
5245 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5246 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5247 goto no_delete;
5248 }
5249
0e8c36a9
MX
5250 ret = btrfs_commit_inode_delayed_inode(inode);
5251 if (ret) {
5252 btrfs_orphan_del(NULL, inode);
5253 goto no_delete;
5254 }
5255
66d8f3dd 5256 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
5257 if (!rsv) {
5258 btrfs_orphan_del(NULL, inode);
5259 goto no_delete;
5260 }
4a338542 5261 rsv->size = min_size;
ca7e70f5 5262 rsv->failfast = 1;
726c35fa 5263 global_rsv = &root->fs_info->global_block_rsv;
4289a667 5264
dbe674a9 5265 btrfs_i_size_write(inode, 0);
5f39d397 5266
4289a667 5267 /*
8407aa46
MX
5268 * This is a bit simpler than btrfs_truncate since we've already
5269 * reserved our space for our orphan item in the unlink, so we just
5270 * need to reserve some slack space in case we add bytes and update
5271 * inode item when doing the truncate.
4289a667 5272 */
8082510e 5273 while (1) {
08e007d2
MX
5274 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5275 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5276
5277 /*
5278 * Try and steal from the global reserve since we will
5279 * likely not use this space anyway, we want to try as
5280 * hard as possible to get this to work.
5281 */
5282 if (ret)
3bce876f
JB
5283 steal_from_global++;
5284 else
5285 steal_from_global = 0;
5286 ret = 0;
d68fc57b 5287
3bce876f
JB
5288 /*
5289 * steal_from_global == 0: we reserved stuff, hooray!
5290 * steal_from_global == 1: we didn't reserve stuff, boo!
5291 * steal_from_global == 2: we've committed, still not a lot of
5292 * room but maybe we'll have room in the global reserve this
5293 * time.
5294 * steal_from_global == 3: abandon all hope!
5295 */
5296 if (steal_from_global > 2) {
c2cf52eb
SK
5297 btrfs_warn(root->fs_info,
5298 "Could not get space for a delete, will truncate on mount %d",
5299 ret);
4289a667
JB
5300 btrfs_orphan_del(NULL, inode);
5301 btrfs_free_block_rsv(root, rsv);
5302 goto no_delete;
d68fc57b 5303 }
7b128766 5304
0e8c36a9 5305 trans = btrfs_join_transaction(root);
4289a667
JB
5306 if (IS_ERR(trans)) {
5307 btrfs_orphan_del(NULL, inode);
5308 btrfs_free_block_rsv(root, rsv);
5309 goto no_delete;
d68fc57b 5310 }
7b128766 5311
3bce876f 5312 /*
01327610 5313 * We can't just steal from the global reserve, we need to make
3bce876f
JB
5314 * sure there is room to do it, if not we need to commit and try
5315 * again.
5316 */
5317 if (steal_from_global) {
5318 if (!btrfs_check_space_for_delayed_refs(trans, root))
5319 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
25d609f8 5320 min_size, 0);
3bce876f
JB
5321 else
5322 ret = -ENOSPC;
5323 }
5324
5325 /*
5326 * Couldn't steal from the global reserve, we have too much
5327 * pending stuff built up, commit the transaction and try it
5328 * again.
5329 */
5330 if (ret) {
5331 ret = btrfs_commit_transaction(trans, root);
5332 if (ret) {
5333 btrfs_orphan_del(NULL, inode);
5334 btrfs_free_block_rsv(root, rsv);
5335 goto no_delete;
5336 }
5337 continue;
5338 } else {
5339 steal_from_global = 0;
5340 }
5341
4289a667
JB
5342 trans->block_rsv = rsv;
5343
d68fc57b 5344 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5345 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5346 break;
85e21bac 5347
8407aa46 5348 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
5349 btrfs_end_transaction(trans, root);
5350 trans = NULL;
b53d3f5d 5351 btrfs_btree_balance_dirty(root);
8082510e 5352 }
5f39d397 5353
4289a667
JB
5354 btrfs_free_block_rsv(root, rsv);
5355
4ef31a45
JB
5356 /*
5357 * Errors here aren't a big deal, it just means we leave orphan items
5358 * in the tree. They will be cleaned up on the next mount.
5359 */
8082510e 5360 if (ret == 0) {
4289a667 5361 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
5362 btrfs_orphan_del(trans, inode);
5363 } else {
5364 btrfs_orphan_del(NULL, inode);
8082510e 5365 }
54aa1f4d 5366
4289a667 5367 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
5368 if (!(root == root->fs_info->tree_root ||
5369 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 5370 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 5371
54aa1f4d 5372 btrfs_end_transaction(trans, root);
b53d3f5d 5373 btrfs_btree_balance_dirty(root);
39279cc3 5374no_delete:
89042e5a 5375 btrfs_remove_delayed_node(inode);
dbd5768f 5376 clear_inode(inode);
39279cc3
CM
5377}
5378
5379/*
5380 * this returns the key found in the dir entry in the location pointer.
5381 * If no dir entries were found, location->objectid is 0.
5382 */
5383static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5384 struct btrfs_key *location)
5385{
5386 const char *name = dentry->d_name.name;
5387 int namelen = dentry->d_name.len;
5388 struct btrfs_dir_item *di;
5389 struct btrfs_path *path;
5390 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5391 int ret = 0;
39279cc3
CM
5392
5393 path = btrfs_alloc_path();
d8926bb3
MF
5394 if (!path)
5395 return -ENOMEM;
3954401f 5396
33345d01 5397 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 5398 namelen, 0);
0d9f7f3e
Y
5399 if (IS_ERR(di))
5400 ret = PTR_ERR(di);
d397712b 5401
c704005d 5402 if (IS_ERR_OR_NULL(di))
3954401f 5403 goto out_err;
d397712b 5404
5f39d397 5405 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5406out:
39279cc3
CM
5407 btrfs_free_path(path);
5408 return ret;
3954401f
CM
5409out_err:
5410 location->objectid = 0;
5411 goto out;
39279cc3
CM
5412}
5413
5414/*
5415 * when we hit a tree root in a directory, the btrfs part of the inode
5416 * needs to be changed to reflect the root directory of the tree root. This
5417 * is kind of like crossing a mount point.
5418 */
5419static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
5420 struct inode *dir,
5421 struct dentry *dentry,
5422 struct btrfs_key *location,
5423 struct btrfs_root **sub_root)
39279cc3 5424{
4df27c4d
YZ
5425 struct btrfs_path *path;
5426 struct btrfs_root *new_root;
5427 struct btrfs_root_ref *ref;
5428 struct extent_buffer *leaf;
1d4c08e0 5429 struct btrfs_key key;
4df27c4d
YZ
5430 int ret;
5431 int err = 0;
39279cc3 5432
4df27c4d
YZ
5433 path = btrfs_alloc_path();
5434 if (!path) {
5435 err = -ENOMEM;
5436 goto out;
5437 }
39279cc3 5438
4df27c4d 5439 err = -ENOENT;
1d4c08e0
DS
5440 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5441 key.type = BTRFS_ROOT_REF_KEY;
5442 key.offset = location->objectid;
5443
5444 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5445 0, 0);
4df27c4d
YZ
5446 if (ret) {
5447 if (ret < 0)
5448 err = ret;
5449 goto out;
5450 }
39279cc3 5451
4df27c4d
YZ
5452 leaf = path->nodes[0];
5453 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 5454 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
5455 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5456 goto out;
39279cc3 5457
4df27c4d
YZ
5458 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5459 (unsigned long)(ref + 1),
5460 dentry->d_name.len);
5461 if (ret)
5462 goto out;
5463
b3b4aa74 5464 btrfs_release_path(path);
4df27c4d
YZ
5465
5466 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5467 if (IS_ERR(new_root)) {
5468 err = PTR_ERR(new_root);
5469 goto out;
5470 }
5471
4df27c4d
YZ
5472 *sub_root = new_root;
5473 location->objectid = btrfs_root_dirid(&new_root->root_item);
5474 location->type = BTRFS_INODE_ITEM_KEY;
5475 location->offset = 0;
5476 err = 0;
5477out:
5478 btrfs_free_path(path);
5479 return err;
39279cc3
CM
5480}
5481
5d4f98a2
YZ
5482static void inode_tree_add(struct inode *inode)
5483{
5484 struct btrfs_root *root = BTRFS_I(inode)->root;
5485 struct btrfs_inode *entry;
03e860bd
FNP
5486 struct rb_node **p;
5487 struct rb_node *parent;
cef21937 5488 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 5489 u64 ino = btrfs_ino(inode);
5d4f98a2 5490
1d3382cb 5491 if (inode_unhashed(inode))
76dda93c 5492 return;
e1409cef 5493 parent = NULL;
5d4f98a2 5494 spin_lock(&root->inode_lock);
e1409cef 5495 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5496 while (*p) {
5497 parent = *p;
5498 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5499
33345d01 5500 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 5501 p = &parent->rb_left;
33345d01 5502 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 5503 p = &parent->rb_right;
5d4f98a2
YZ
5504 else {
5505 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5506 (I_WILL_FREE | I_FREEING)));
cef21937 5507 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5508 RB_CLEAR_NODE(parent);
5509 spin_unlock(&root->inode_lock);
cef21937 5510 return;
5d4f98a2
YZ
5511 }
5512 }
cef21937
FDBM
5513 rb_link_node(new, parent, p);
5514 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5515 spin_unlock(&root->inode_lock);
5516}
5517
5518static void inode_tree_del(struct inode *inode)
5519{
5520 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5521 int empty = 0;
5d4f98a2 5522
03e860bd 5523 spin_lock(&root->inode_lock);
5d4f98a2 5524 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5525 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5526 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5527 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5528 }
03e860bd 5529 spin_unlock(&root->inode_lock);
76dda93c 5530
69e9c6c6 5531 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5532 synchronize_srcu(&root->fs_info->subvol_srcu);
5533 spin_lock(&root->inode_lock);
5534 empty = RB_EMPTY_ROOT(&root->inode_tree);
5535 spin_unlock(&root->inode_lock);
5536 if (empty)
5537 btrfs_add_dead_root(root);
5538 }
5539}
5540
143bede5 5541void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
5542{
5543 struct rb_node *node;
5544 struct rb_node *prev;
5545 struct btrfs_inode *entry;
5546 struct inode *inode;
5547 u64 objectid = 0;
5548
7813b3db
LB
5549 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5550 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5551
5552 spin_lock(&root->inode_lock);
5553again:
5554 node = root->inode_tree.rb_node;
5555 prev = NULL;
5556 while (node) {
5557 prev = node;
5558 entry = rb_entry(node, struct btrfs_inode, rb_node);
5559
33345d01 5560 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 5561 node = node->rb_left;
33345d01 5562 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
5563 node = node->rb_right;
5564 else
5565 break;
5566 }
5567 if (!node) {
5568 while (prev) {
5569 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 5570 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
5571 node = prev;
5572 break;
5573 }
5574 prev = rb_next(prev);
5575 }
5576 }
5577 while (node) {
5578 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 5579 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
5580 inode = igrab(&entry->vfs_inode);
5581 if (inode) {
5582 spin_unlock(&root->inode_lock);
5583 if (atomic_read(&inode->i_count) > 1)
5584 d_prune_aliases(inode);
5585 /*
45321ac5 5586 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5587 * the inode cache when its usage count
5588 * hits zero.
5589 */
5590 iput(inode);
5591 cond_resched();
5592 spin_lock(&root->inode_lock);
5593 goto again;
5594 }
5595
5596 if (cond_resched_lock(&root->inode_lock))
5597 goto again;
5598
5599 node = rb_next(node);
5600 }
5601 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5602}
5603
e02119d5
CM
5604static int btrfs_init_locked_inode(struct inode *inode, void *p)
5605{
5606 struct btrfs_iget_args *args = p;
90d3e592
CM
5607 inode->i_ino = args->location->objectid;
5608 memcpy(&BTRFS_I(inode)->location, args->location,
5609 sizeof(*args->location));
e02119d5 5610 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5611 return 0;
5612}
5613
5614static int btrfs_find_actor(struct inode *inode, void *opaque)
5615{
5616 struct btrfs_iget_args *args = opaque;
90d3e592 5617 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5618 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5619}
5620
5d4f98a2 5621static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5622 struct btrfs_key *location,
5d4f98a2 5623 struct btrfs_root *root)
39279cc3
CM
5624{
5625 struct inode *inode;
5626 struct btrfs_iget_args args;
90d3e592 5627 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5628
90d3e592 5629 args.location = location;
39279cc3
CM
5630 args.root = root;
5631
778ba82b 5632 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5633 btrfs_init_locked_inode,
5634 (void *)&args);
5635 return inode;
5636}
5637
1a54ef8c
BR
5638/* Get an inode object given its location and corresponding root.
5639 * Returns in *is_new if the inode was read from disk
5640 */
5641struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5642 struct btrfs_root *root, int *new)
1a54ef8c
BR
5643{
5644 struct inode *inode;
5645
90d3e592 5646 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5647 if (!inode)
5d4f98a2 5648 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5649
5650 if (inode->i_state & I_NEW) {
67710892
FM
5651 int ret;
5652
5653 ret = btrfs_read_locked_inode(inode);
1748f843
MF
5654 if (!is_bad_inode(inode)) {
5655 inode_tree_add(inode);
5656 unlock_new_inode(inode);
5657 if (new)
5658 *new = 1;
5659 } else {
e0b6d65b
ST
5660 unlock_new_inode(inode);
5661 iput(inode);
67710892
FM
5662 ASSERT(ret < 0);
5663 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
1748f843
MF
5664 }
5665 }
5666
1a54ef8c
BR
5667 return inode;
5668}
5669
4df27c4d
YZ
5670static struct inode *new_simple_dir(struct super_block *s,
5671 struct btrfs_key *key,
5672 struct btrfs_root *root)
5673{
5674 struct inode *inode = new_inode(s);
5675
5676 if (!inode)
5677 return ERR_PTR(-ENOMEM);
5678
4df27c4d
YZ
5679 BTRFS_I(inode)->root = root;
5680 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5681 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5682
5683 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5684 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5685 inode->i_fop = &simple_dir_operations;
5686 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
04b285f3 5687 inode->i_mtime = current_fs_time(inode->i_sb);
9cc97d64 5688 inode->i_atime = inode->i_mtime;
5689 inode->i_ctime = inode->i_mtime;
5690 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5691
5692 return inode;
5693}
5694
3de4586c 5695struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5696{
d397712b 5697 struct inode *inode;
4df27c4d 5698 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5699 struct btrfs_root *sub_root = root;
5700 struct btrfs_key location;
76dda93c 5701 int index;
b4aff1f8 5702 int ret = 0;
39279cc3
CM
5703
5704 if (dentry->d_name.len > BTRFS_NAME_LEN)
5705 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5706
39e3c955 5707 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5708 if (ret < 0)
5709 return ERR_PTR(ret);
5f39d397 5710
4df27c4d 5711 if (location.objectid == 0)
5662344b 5712 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5713
5714 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5715 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5716 return inode;
5717 }
5718
5719 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5720
76dda93c 5721 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5722 ret = fixup_tree_root_location(root, dir, dentry,
5723 &location, &sub_root);
5724 if (ret < 0) {
5725 if (ret != -ENOENT)
5726 inode = ERR_PTR(ret);
5727 else
5728 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5729 } else {
73f73415 5730 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5731 }
76dda93c
YZ
5732 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5733
34d19bad 5734 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5735 down_read(&root->fs_info->cleanup_work_sem);
5736 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5737 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5738 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5739 if (ret) {
5740 iput(inode);
66b4ffd1 5741 inode = ERR_PTR(ret);
01cd3367 5742 }
c71bf099
YZ
5743 }
5744
3de4586c
CM
5745 return inode;
5746}
5747
fe15ce44 5748static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5749{
5750 struct btrfs_root *root;
2b0143b5 5751 struct inode *inode = d_inode(dentry);
76dda93c 5752
848cce0d 5753 if (!inode && !IS_ROOT(dentry))
2b0143b5 5754 inode = d_inode(dentry->d_parent);
76dda93c 5755
848cce0d
LZ
5756 if (inode) {
5757 root = BTRFS_I(inode)->root;
efefb143
YZ
5758 if (btrfs_root_refs(&root->root_item) == 0)
5759 return 1;
848cce0d
LZ
5760
5761 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5762 return 1;
efefb143 5763 }
76dda93c
YZ
5764 return 0;
5765}
5766
b4aff1f8
JB
5767static void btrfs_dentry_release(struct dentry *dentry)
5768{
944a4515 5769 kfree(dentry->d_fsdata);
b4aff1f8
JB
5770}
5771
3de4586c 5772static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5773 unsigned int flags)
3de4586c 5774{
5662344b 5775 struct inode *inode;
a66e7cc6 5776
5662344b
TI
5777 inode = btrfs_lookup_dentry(dir, dentry);
5778 if (IS_ERR(inode)) {
5779 if (PTR_ERR(inode) == -ENOENT)
5780 inode = NULL;
5781 else
5782 return ERR_CAST(inode);
5783 }
5784
41d28bca 5785 return d_splice_alias(inode, dentry);
39279cc3
CM
5786}
5787
16cdcec7 5788unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5789 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5790};
5791
9cdda8d3 5792static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5793{
9cdda8d3 5794 struct inode *inode = file_inode(file);
39279cc3
CM
5795 struct btrfs_root *root = BTRFS_I(inode)->root;
5796 struct btrfs_item *item;
5797 struct btrfs_dir_item *di;
5798 struct btrfs_key key;
5f39d397 5799 struct btrfs_key found_key;
39279cc3 5800 struct btrfs_path *path;
16cdcec7
MX
5801 struct list_head ins_list;
5802 struct list_head del_list;
39279cc3 5803 int ret;
5f39d397 5804 struct extent_buffer *leaf;
39279cc3 5805 int slot;
39279cc3
CM
5806 unsigned char d_type;
5807 int over = 0;
5808 u32 di_cur;
5809 u32 di_total;
5810 u32 di_len;
5811 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5812 char tmp_name[32];
5813 char *name_ptr;
5814 int name_len;
9cdda8d3 5815 int is_curr = 0; /* ctx->pos points to the current index? */
bc4ef759 5816 bool emitted;
02dbfc99 5817 bool put = false;
39279cc3
CM
5818
5819 /* FIXME, use a real flag for deciding about the key type */
5820 if (root->fs_info->tree_root == root)
5821 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5822
9cdda8d3
AV
5823 if (!dir_emit_dots(file, ctx))
5824 return 0;
5825
49593bfa 5826 path = btrfs_alloc_path();
16cdcec7
MX
5827 if (!path)
5828 return -ENOMEM;
ff5714cc 5829
e4058b54 5830 path->reada = READA_FORWARD;
49593bfa 5831
16cdcec7
MX
5832 if (key_type == BTRFS_DIR_INDEX_KEY) {
5833 INIT_LIST_HEAD(&ins_list);
5834 INIT_LIST_HEAD(&del_list);
02dbfc99
OS
5835 put = btrfs_readdir_get_delayed_items(inode, &ins_list,
5836 &del_list);
16cdcec7
MX
5837 }
5838
962a298f 5839 key.type = key_type;
9cdda8d3 5840 key.offset = ctx->pos;
33345d01 5841 key.objectid = btrfs_ino(inode);
5f39d397 5842
39279cc3
CM
5843 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5844 if (ret < 0)
5845 goto err;
49593bfa 5846
bc4ef759 5847 emitted = false;
49593bfa 5848 while (1) {
5f39d397 5849 leaf = path->nodes[0];
39279cc3 5850 slot = path->slots[0];
b9e03af0
LZ
5851 if (slot >= btrfs_header_nritems(leaf)) {
5852 ret = btrfs_next_leaf(root, path);
5853 if (ret < 0)
5854 goto err;
5855 else if (ret > 0)
5856 break;
5857 continue;
39279cc3 5858 }
3de4586c 5859
dd3cc16b 5860 item = btrfs_item_nr(slot);
5f39d397
CM
5861 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5862
5863 if (found_key.objectid != key.objectid)
39279cc3 5864 break;
962a298f 5865 if (found_key.type != key_type)
39279cc3 5866 break;
9cdda8d3 5867 if (found_key.offset < ctx->pos)
b9e03af0 5868 goto next;
16cdcec7
MX
5869 if (key_type == BTRFS_DIR_INDEX_KEY &&
5870 btrfs_should_delete_dir_index(&del_list,
5871 found_key.offset))
5872 goto next;
5f39d397 5873
9cdda8d3 5874 ctx->pos = found_key.offset;
16cdcec7 5875 is_curr = 1;
49593bfa 5876
39279cc3
CM
5877 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5878 di_cur = 0;
5f39d397 5879 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5880
5881 while (di_cur < di_total) {
5f39d397
CM
5882 struct btrfs_key location;
5883
22a94d44
JB
5884 if (verify_dir_item(root, leaf, di))
5885 break;
5886
5f39d397 5887 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5888 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5889 name_ptr = tmp_name;
5890 } else {
49e350a4 5891 name_ptr = kmalloc(name_len, GFP_KERNEL);
49593bfa
DW
5892 if (!name_ptr) {
5893 ret = -ENOMEM;
5894 goto err;
5895 }
5f39d397
CM
5896 }
5897 read_extent_buffer(leaf, name_ptr,
5898 (unsigned long)(di + 1), name_len);
5899
5900 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5901 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5902
fede766f 5903
3de4586c 5904 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5905 * skip it.
5906 *
5907 * In contrast to old kernels, we insert the snapshot's
5908 * dir item and dir index after it has been created, so
5909 * we won't find a reference to our own snapshot. We
5910 * still keep the following code for backward
5911 * compatibility.
3de4586c
CM
5912 */
5913 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5914 location.objectid == root->root_key.objectid) {
5915 over = 0;
5916 goto skip;
5917 }
9cdda8d3
AV
5918 over = !dir_emit(ctx, name_ptr, name_len,
5919 location.objectid, d_type);
5f39d397 5920
3de4586c 5921skip:
5f39d397
CM
5922 if (name_ptr != tmp_name)
5923 kfree(name_ptr);
5924
39279cc3
CM
5925 if (over)
5926 goto nopos;
bc4ef759 5927 emitted = true;
5103e947 5928 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5929 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5930 di_cur += di_len;
5931 di = (struct btrfs_dir_item *)((char *)di + di_len);
5932 }
b9e03af0
LZ
5933next:
5934 path->slots[0]++;
39279cc3 5935 }
49593bfa 5936
16cdcec7
MX
5937 if (key_type == BTRFS_DIR_INDEX_KEY) {
5938 if (is_curr)
9cdda8d3 5939 ctx->pos++;
bc4ef759 5940 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
16cdcec7
MX
5941 if (ret)
5942 goto nopos;
5943 }
5944
bc4ef759
DS
5945 /*
5946 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5947 * it was was set to the termination value in previous call. We assume
5948 * that "." and ".." were emitted if we reach this point and set the
5949 * termination value as well for an empty directory.
5950 */
5951 if (ctx->pos > 2 && !emitted)
5952 goto nopos;
5953
49593bfa 5954 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5955 ctx->pos++;
5956
5957 /*
5958 * Stop new entries from being returned after we return the last
5959 * entry.
5960 *
5961 * New directory entries are assigned a strictly increasing
5962 * offset. This means that new entries created during readdir
5963 * are *guaranteed* to be seen in the future by that readdir.
5964 * This has broken buggy programs which operate on names as
5965 * they're returned by readdir. Until we re-use freed offsets
5966 * we have this hack to stop new entries from being returned
5967 * under the assumption that they'll never reach this huge
5968 * offset.
5969 *
5970 * This is being careful not to overflow 32bit loff_t unless the
5971 * last entry requires it because doing so has broken 32bit apps
5972 * in the past.
5973 */
5974 if (key_type == BTRFS_DIR_INDEX_KEY) {
5975 if (ctx->pos >= INT_MAX)
5976 ctx->pos = LLONG_MAX;
5977 else
5978 ctx->pos = INT_MAX;
5979 }
39279cc3
CM
5980nopos:
5981 ret = 0;
5982err:
02dbfc99
OS
5983 if (put)
5984 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 5985 btrfs_free_path(path);
39279cc3
CM
5986 return ret;
5987}
5988
a9185b41 5989int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5990{
5991 struct btrfs_root *root = BTRFS_I(inode)->root;
5992 struct btrfs_trans_handle *trans;
5993 int ret = 0;
0af3d00b 5994 bool nolock = false;
39279cc3 5995
72ac3c0d 5996 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5997 return 0;
5998
83eea1f1 5999 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 6000 nolock = true;
0af3d00b 6001
a9185b41 6002 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 6003 if (nolock)
7a7eaa40 6004 trans = btrfs_join_transaction_nolock(root);
0af3d00b 6005 else
7a7eaa40 6006 trans = btrfs_join_transaction(root);
3612b495
TI
6007 if (IS_ERR(trans))
6008 return PTR_ERR(trans);
a698d075 6009 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
6010 }
6011 return ret;
6012}
6013
6014/*
54aa1f4d 6015 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
6016 * inode changes. But, it is most likely to find the inode in cache.
6017 * FIXME, needs more benchmarking...there are no reasons other than performance
6018 * to keep or drop this code.
6019 */
48a3b636 6020static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
6021{
6022 struct btrfs_root *root = BTRFS_I(inode)->root;
6023 struct btrfs_trans_handle *trans;
8929ecfa
YZ
6024 int ret;
6025
72ac3c0d 6026 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 6027 return 0;
39279cc3 6028
7a7eaa40 6029 trans = btrfs_join_transaction(root);
22c44fe6
JB
6030 if (IS_ERR(trans))
6031 return PTR_ERR(trans);
8929ecfa
YZ
6032
6033 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
6034 if (ret && ret == -ENOSPC) {
6035 /* whoops, lets try again with the full transaction */
6036 btrfs_end_transaction(trans, root);
6037 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6038 if (IS_ERR(trans))
6039 return PTR_ERR(trans);
8929ecfa 6040
94b60442 6041 ret = btrfs_update_inode(trans, root, inode);
94b60442 6042 }
39279cc3 6043 btrfs_end_transaction(trans, root);
16cdcec7
MX
6044 if (BTRFS_I(inode)->delayed_node)
6045 btrfs_balance_delayed_items(root);
22c44fe6
JB
6046
6047 return ret;
6048}
6049
6050/*
6051 * This is a copy of file_update_time. We need this so we can return error on
6052 * ENOSPC for updating the inode in the case of file write and mmap writes.
6053 */
e41f941a
JB
6054static int btrfs_update_time(struct inode *inode, struct timespec *now,
6055 int flags)
22c44fe6 6056{
2bc55652
AB
6057 struct btrfs_root *root = BTRFS_I(inode)->root;
6058
6059 if (btrfs_root_readonly(root))
6060 return -EROFS;
6061
e41f941a 6062 if (flags & S_VERSION)
22c44fe6 6063 inode_inc_iversion(inode);
e41f941a
JB
6064 if (flags & S_CTIME)
6065 inode->i_ctime = *now;
6066 if (flags & S_MTIME)
6067 inode->i_mtime = *now;
6068 if (flags & S_ATIME)
6069 inode->i_atime = *now;
6070 return btrfs_dirty_inode(inode);
39279cc3
CM
6071}
6072
d352ac68
CM
6073/*
6074 * find the highest existing sequence number in a directory
6075 * and then set the in-memory index_cnt variable to reflect
6076 * free sequence numbers
6077 */
aec7477b
JB
6078static int btrfs_set_inode_index_count(struct inode *inode)
6079{
6080 struct btrfs_root *root = BTRFS_I(inode)->root;
6081 struct btrfs_key key, found_key;
6082 struct btrfs_path *path;
6083 struct extent_buffer *leaf;
6084 int ret;
6085
33345d01 6086 key.objectid = btrfs_ino(inode);
962a298f 6087 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6088 key.offset = (u64)-1;
6089
6090 path = btrfs_alloc_path();
6091 if (!path)
6092 return -ENOMEM;
6093
6094 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6095 if (ret < 0)
6096 goto out;
6097 /* FIXME: we should be able to handle this */
6098 if (ret == 0)
6099 goto out;
6100 ret = 0;
6101
6102 /*
6103 * MAGIC NUMBER EXPLANATION:
6104 * since we search a directory based on f_pos we have to start at 2
6105 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6106 * else has to start at 2
6107 */
6108 if (path->slots[0] == 0) {
6109 BTRFS_I(inode)->index_cnt = 2;
6110 goto out;
6111 }
6112
6113 path->slots[0]--;
6114
6115 leaf = path->nodes[0];
6116 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6117
33345d01 6118 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6119 found_key.type != BTRFS_DIR_INDEX_KEY) {
aec7477b
JB
6120 BTRFS_I(inode)->index_cnt = 2;
6121 goto out;
6122 }
6123
6124 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6125out:
6126 btrfs_free_path(path);
6127 return ret;
6128}
6129
d352ac68
CM
6130/*
6131 * helper to find a free sequence number in a given directory. This current
6132 * code is very simple, later versions will do smarter things in the btree
6133 */
3de4586c 6134int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
6135{
6136 int ret = 0;
6137
6138 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
6139 ret = btrfs_inode_delayed_dir_index_count(dir);
6140 if (ret) {
6141 ret = btrfs_set_inode_index_count(dir);
6142 if (ret)
6143 return ret;
6144 }
aec7477b
JB
6145 }
6146
00e4e6b3 6147 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
6148 BTRFS_I(dir)->index_cnt++;
6149
6150 return ret;
6151}
6152
b0d5d10f
CM
6153static int btrfs_insert_inode_locked(struct inode *inode)
6154{
6155 struct btrfs_iget_args args;
6156 args.location = &BTRFS_I(inode)->location;
6157 args.root = BTRFS_I(inode)->root;
6158
6159 return insert_inode_locked4(inode,
6160 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6161 btrfs_find_actor, &args);
6162}
6163
39279cc3
CM
6164static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6165 struct btrfs_root *root,
aec7477b 6166 struct inode *dir,
9c58309d 6167 const char *name, int name_len,
175a4eb7
AV
6168 u64 ref_objectid, u64 objectid,
6169 umode_t mode, u64 *index)
39279cc3
CM
6170{
6171 struct inode *inode;
5f39d397 6172 struct btrfs_inode_item *inode_item;
39279cc3 6173 struct btrfs_key *location;
5f39d397 6174 struct btrfs_path *path;
9c58309d
CM
6175 struct btrfs_inode_ref *ref;
6176 struct btrfs_key key[2];
6177 u32 sizes[2];
ef3b9af5 6178 int nitems = name ? 2 : 1;
9c58309d 6179 unsigned long ptr;
39279cc3 6180 int ret;
39279cc3 6181
5f39d397 6182 path = btrfs_alloc_path();
d8926bb3
MF
6183 if (!path)
6184 return ERR_PTR(-ENOMEM);
5f39d397 6185
39279cc3 6186 inode = new_inode(root->fs_info->sb);
8fb27640
YS
6187 if (!inode) {
6188 btrfs_free_path(path);
39279cc3 6189 return ERR_PTR(-ENOMEM);
8fb27640 6190 }
39279cc3 6191
5762b5c9
FM
6192 /*
6193 * O_TMPFILE, set link count to 0, so that after this point,
6194 * we fill in an inode item with the correct link count.
6195 */
6196 if (!name)
6197 set_nlink(inode, 0);
6198
581bb050
LZ
6199 /*
6200 * we have to initialize this early, so we can reclaim the inode
6201 * number if we fail afterwards in this function.
6202 */
6203 inode->i_ino = objectid;
6204
ef3b9af5 6205 if (dir && name) {
1abe9b8a 6206 trace_btrfs_inode_request(dir);
6207
3de4586c 6208 ret = btrfs_set_inode_index(dir, index);
09771430 6209 if (ret) {
8fb27640 6210 btrfs_free_path(path);
09771430 6211 iput(inode);
aec7477b 6212 return ERR_PTR(ret);
09771430 6213 }
ef3b9af5
FM
6214 } else if (dir) {
6215 *index = 0;
aec7477b
JB
6216 }
6217 /*
6218 * index_cnt is ignored for everything but a dir,
6219 * btrfs_get_inode_index_count has an explanation for the magic
6220 * number
6221 */
6222 BTRFS_I(inode)->index_cnt = 2;
67de1176 6223 BTRFS_I(inode)->dir_index = *index;
39279cc3 6224 BTRFS_I(inode)->root = root;
e02119d5 6225 BTRFS_I(inode)->generation = trans->transid;
76195853 6226 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6227
5dc562c5
JB
6228 /*
6229 * We could have gotten an inode number from somebody who was fsynced
6230 * and then removed in this same transaction, so let's just set full
6231 * sync since it will be a full sync anyway and this will blow away the
6232 * old info in the log.
6233 */
6234 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6235
9c58309d 6236 key[0].objectid = objectid;
962a298f 6237 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6238 key[0].offset = 0;
6239
9c58309d 6240 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6241
6242 if (name) {
6243 /*
6244 * Start new inodes with an inode_ref. This is slightly more
6245 * efficient for small numbers of hard links since they will
6246 * be packed into one item. Extended refs will kick in if we
6247 * add more hard links than can fit in the ref item.
6248 */
6249 key[1].objectid = objectid;
962a298f 6250 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6251 key[1].offset = ref_objectid;
6252
6253 sizes[1] = name_len + sizeof(*ref);
6254 }
9c58309d 6255
b0d5d10f
CM
6256 location = &BTRFS_I(inode)->location;
6257 location->objectid = objectid;
6258 location->offset = 0;
962a298f 6259 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6260
6261 ret = btrfs_insert_inode_locked(inode);
6262 if (ret < 0)
6263 goto fail;
6264
b9473439 6265 path->leave_spinning = 1;
ef3b9af5 6266 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6267 if (ret != 0)
b0d5d10f 6268 goto fail_unlock;
5f39d397 6269
ecc11fab 6270 inode_init_owner(inode, dir, mode);
a76a3cd4 6271 inode_set_bytes(inode, 0);
9cc97d64 6272
04b285f3 6273 inode->i_mtime = current_fs_time(inode->i_sb);
9cc97d64 6274 inode->i_atime = inode->i_mtime;
6275 inode->i_ctime = inode->i_mtime;
6276 BTRFS_I(inode)->i_otime = inode->i_mtime;
6277
5f39d397
CM
6278 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6279 struct btrfs_inode_item);
293f7e07
LZ
6280 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6281 sizeof(*inode_item));
e02119d5 6282 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6283
ef3b9af5
FM
6284 if (name) {
6285 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6286 struct btrfs_inode_ref);
6287 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6288 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6289 ptr = (unsigned long)(ref + 1);
6290 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6291 }
9c58309d 6292
5f39d397
CM
6293 btrfs_mark_buffer_dirty(path->nodes[0]);
6294 btrfs_free_path(path);
6295
6cbff00f
CH
6296 btrfs_inherit_iflags(inode, dir);
6297
569254b0 6298 if (S_ISREG(mode)) {
3cdde224 6299 if (btrfs_test_opt(root->fs_info, NODATASUM))
94272164 6300 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
3cdde224 6301 if (btrfs_test_opt(root->fs_info, NODATACOW))
f2bdf9a8
JB
6302 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6303 BTRFS_INODE_NODATASUM;
94272164
CM
6304 }
6305
5d4f98a2 6306 inode_tree_add(inode);
1abe9b8a 6307
6308 trace_btrfs_inode_new(inode);
1973f0fa 6309 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6310
8ea05e3a
AB
6311 btrfs_update_root_times(trans, root);
6312
63541927
FDBM
6313 ret = btrfs_inode_inherit_props(trans, inode, dir);
6314 if (ret)
6315 btrfs_err(root->fs_info,
6316 "error inheriting props for ino %llu (root %llu): %d",
6317 btrfs_ino(inode), root->root_key.objectid, ret);
6318
39279cc3 6319 return inode;
b0d5d10f
CM
6320
6321fail_unlock:
6322 unlock_new_inode(inode);
5f39d397 6323fail:
ef3b9af5 6324 if (dir && name)
aec7477b 6325 BTRFS_I(dir)->index_cnt--;
5f39d397 6326 btrfs_free_path(path);
09771430 6327 iput(inode);
5f39d397 6328 return ERR_PTR(ret);
39279cc3
CM
6329}
6330
6331static inline u8 btrfs_inode_type(struct inode *inode)
6332{
6333 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6334}
6335
d352ac68
CM
6336/*
6337 * utility function to add 'inode' into 'parent_inode' with
6338 * a give name and a given sequence number.
6339 * if 'add_backref' is true, also insert a backref from the
6340 * inode to the parent directory.
6341 */
e02119d5
CM
6342int btrfs_add_link(struct btrfs_trans_handle *trans,
6343 struct inode *parent_inode, struct inode *inode,
6344 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6345{
4df27c4d 6346 int ret = 0;
39279cc3 6347 struct btrfs_key key;
e02119d5 6348 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
6349 u64 ino = btrfs_ino(inode);
6350 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6351
33345d01 6352 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6353 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6354 } else {
33345d01 6355 key.objectid = ino;
962a298f 6356 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6357 key.offset = 0;
6358 }
6359
33345d01 6360 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6361 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6362 key.objectid, root->root_key.objectid,
33345d01 6363 parent_ino, index, name, name_len);
4df27c4d 6364 } else if (add_backref) {
33345d01
LZ
6365 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6366 parent_ino, index);
4df27c4d 6367 }
39279cc3 6368
79787eaa
JM
6369 /* Nothing to clean up yet */
6370 if (ret)
6371 return ret;
4df27c4d 6372
79787eaa
JM
6373 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6374 parent_inode, &key,
6375 btrfs_inode_type(inode), index);
9c52057c 6376 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6377 goto fail_dir_item;
6378 else if (ret) {
66642832 6379 btrfs_abort_transaction(trans, ret);
79787eaa 6380 return ret;
39279cc3 6381 }
79787eaa
JM
6382
6383 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6384 name_len * 2);
0c4d2d95 6385 inode_inc_iversion(parent_inode);
04b285f3
DD
6386 parent_inode->i_mtime = parent_inode->i_ctime =
6387 current_fs_time(parent_inode->i_sb);
79787eaa
JM
6388 ret = btrfs_update_inode(trans, root, parent_inode);
6389 if (ret)
66642832 6390 btrfs_abort_transaction(trans, ret);
39279cc3 6391 return ret;
fe66a05a
CM
6392
6393fail_dir_item:
6394 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6395 u64 local_index;
6396 int err;
6397 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6398 key.objectid, root->root_key.objectid,
6399 parent_ino, &local_index, name, name_len);
6400
6401 } else if (add_backref) {
6402 u64 local_index;
6403 int err;
6404
6405 err = btrfs_del_inode_ref(trans, root, name, name_len,
6406 ino, parent_ino, &local_index);
6407 }
6408 return ret;
39279cc3
CM
6409}
6410
6411static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
6412 struct inode *dir, struct dentry *dentry,
6413 struct inode *inode, int backref, u64 index)
39279cc3 6414{
a1b075d2
JB
6415 int err = btrfs_add_link(trans, dir, inode,
6416 dentry->d_name.name, dentry->d_name.len,
6417 backref, index);
39279cc3
CM
6418 if (err > 0)
6419 err = -EEXIST;
6420 return err;
6421}
6422
618e21d5 6423static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6424 umode_t mode, dev_t rdev)
618e21d5
JB
6425{
6426 struct btrfs_trans_handle *trans;
6427 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6428 struct inode *inode = NULL;
618e21d5
JB
6429 int err;
6430 int drop_inode = 0;
6431 u64 objectid;
00e4e6b3 6432 u64 index = 0;
618e21d5 6433
9ed74f2d
JB
6434 /*
6435 * 2 for inode item and ref
6436 * 2 for dir items
6437 * 1 for xattr if selinux is on
6438 */
a22285a6
YZ
6439 trans = btrfs_start_transaction(root, 5);
6440 if (IS_ERR(trans))
6441 return PTR_ERR(trans);
1832a6d5 6442
581bb050
LZ
6443 err = btrfs_find_free_ino(root, &objectid);
6444 if (err)
6445 goto out_unlock;
6446
aec7477b 6447 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6448 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6449 mode, &index);
7cf96da3
TI
6450 if (IS_ERR(inode)) {
6451 err = PTR_ERR(inode);
618e21d5 6452 goto out_unlock;
7cf96da3 6453 }
618e21d5 6454
ad19db71
CS
6455 /*
6456 * If the active LSM wants to access the inode during
6457 * d_instantiate it needs these. Smack checks to see
6458 * if the filesystem supports xattrs by looking at the
6459 * ops vector.
6460 */
ad19db71 6461 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6462 init_special_inode(inode, inode->i_mode, rdev);
6463
6464 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6465 if (err)
b0d5d10f
CM
6466 goto out_unlock_inode;
6467
6468 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6469 if (err) {
6470 goto out_unlock_inode;
6471 } else {
1b4ab1bb 6472 btrfs_update_inode(trans, root, inode);
b0d5d10f 6473 unlock_new_inode(inode);
08c422c2 6474 d_instantiate(dentry, inode);
618e21d5 6475 }
b0d5d10f 6476
618e21d5 6477out_unlock:
7ad85bb7 6478 btrfs_end_transaction(trans, root);
c581afc8 6479 btrfs_balance_delayed_items(root);
b53d3f5d 6480 btrfs_btree_balance_dirty(root);
618e21d5
JB
6481 if (drop_inode) {
6482 inode_dec_link_count(inode);
6483 iput(inode);
6484 }
618e21d5 6485 return err;
b0d5d10f
CM
6486
6487out_unlock_inode:
6488 drop_inode = 1;
6489 unlock_new_inode(inode);
6490 goto out_unlock;
6491
618e21d5
JB
6492}
6493
39279cc3 6494static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6495 umode_t mode, bool excl)
39279cc3
CM
6496{
6497 struct btrfs_trans_handle *trans;
6498 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6499 struct inode *inode = NULL;
43baa579 6500 int drop_inode_on_err = 0;
a22285a6 6501 int err;
39279cc3 6502 u64 objectid;
00e4e6b3 6503 u64 index = 0;
39279cc3 6504
9ed74f2d
JB
6505 /*
6506 * 2 for inode item and ref
6507 * 2 for dir items
6508 * 1 for xattr if selinux is on
6509 */
a22285a6
YZ
6510 trans = btrfs_start_transaction(root, 5);
6511 if (IS_ERR(trans))
6512 return PTR_ERR(trans);
9ed74f2d 6513
581bb050
LZ
6514 err = btrfs_find_free_ino(root, &objectid);
6515 if (err)
6516 goto out_unlock;
6517
aec7477b 6518 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6519 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6520 mode, &index);
7cf96da3
TI
6521 if (IS_ERR(inode)) {
6522 err = PTR_ERR(inode);
39279cc3 6523 goto out_unlock;
7cf96da3 6524 }
43baa579 6525 drop_inode_on_err = 1;
ad19db71
CS
6526 /*
6527 * If the active LSM wants to access the inode during
6528 * d_instantiate it needs these. Smack checks to see
6529 * if the filesystem supports xattrs by looking at the
6530 * ops vector.
6531 */
6532 inode->i_fop = &btrfs_file_operations;
6533 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6534 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6535
6536 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6537 if (err)
6538 goto out_unlock_inode;
6539
6540 err = btrfs_update_inode(trans, root, inode);
6541 if (err)
6542 goto out_unlock_inode;
ad19db71 6543
a1b075d2 6544 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 6545 if (err)
b0d5d10f 6546 goto out_unlock_inode;
43baa579 6547
43baa579 6548 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6549 unlock_new_inode(inode);
43baa579
FB
6550 d_instantiate(dentry, inode);
6551
39279cc3 6552out_unlock:
7ad85bb7 6553 btrfs_end_transaction(trans, root);
43baa579 6554 if (err && drop_inode_on_err) {
39279cc3
CM
6555 inode_dec_link_count(inode);
6556 iput(inode);
6557 }
c581afc8 6558 btrfs_balance_delayed_items(root);
b53d3f5d 6559 btrfs_btree_balance_dirty(root);
39279cc3 6560 return err;
b0d5d10f
CM
6561
6562out_unlock_inode:
6563 unlock_new_inode(inode);
6564 goto out_unlock;
6565
39279cc3
CM
6566}
6567
6568static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6569 struct dentry *dentry)
6570{
271dba45 6571 struct btrfs_trans_handle *trans = NULL;
39279cc3 6572 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6573 struct inode *inode = d_inode(old_dentry);
00e4e6b3 6574 u64 index;
39279cc3
CM
6575 int err;
6576 int drop_inode = 0;
6577
4a8be425
TH
6578 /* do not allow sys_link's with other subvols of the same device */
6579 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6580 return -EXDEV;
4a8be425 6581
f186373f 6582 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6583 return -EMLINK;
4a8be425 6584
3de4586c 6585 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
6586 if (err)
6587 goto fail;
6588
a22285a6 6589 /*
7e6b6465 6590 * 2 items for inode and inode ref
a22285a6 6591 * 2 items for dir items
7e6b6465 6592 * 1 item for parent inode
a22285a6 6593 */
7e6b6465 6594 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6595 if (IS_ERR(trans)) {
6596 err = PTR_ERR(trans);
271dba45 6597 trans = NULL;
a22285a6
YZ
6598 goto fail;
6599 }
5f39d397 6600
67de1176
MX
6601 /* There are several dir indexes for this inode, clear the cache. */
6602 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6603 inc_nlink(inode);
0c4d2d95 6604 inode_inc_iversion(inode);
04b285f3 6605 inode->i_ctime = current_fs_time(inode->i_sb);
7de9c6ee 6606 ihold(inode);
e9976151 6607 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6608
a1b075d2 6609 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 6610
a5719521 6611 if (err) {
54aa1f4d 6612 drop_inode = 1;
a5719521 6613 } else {
10d9f309 6614 struct dentry *parent = dentry->d_parent;
a5719521 6615 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6616 if (err)
6617 goto fail;
ef3b9af5
FM
6618 if (inode->i_nlink == 1) {
6619 /*
6620 * If new hard link count is 1, it's a file created
6621 * with open(2) O_TMPFILE flag.
6622 */
6623 err = btrfs_orphan_del(trans, inode);
6624 if (err)
6625 goto fail;
6626 }
08c422c2 6627 d_instantiate(dentry, inode);
6a912213 6628 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 6629 }
39279cc3 6630
c581afc8 6631 btrfs_balance_delayed_items(root);
1832a6d5 6632fail:
271dba45
FM
6633 if (trans)
6634 btrfs_end_transaction(trans, root);
39279cc3
CM
6635 if (drop_inode) {
6636 inode_dec_link_count(inode);
6637 iput(inode);
6638 }
b53d3f5d 6639 btrfs_btree_balance_dirty(root);
39279cc3
CM
6640 return err;
6641}
6642
18bb1db3 6643static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6644{
b9d86667 6645 struct inode *inode = NULL;
39279cc3
CM
6646 struct btrfs_trans_handle *trans;
6647 struct btrfs_root *root = BTRFS_I(dir)->root;
6648 int err = 0;
6649 int drop_on_err = 0;
b9d86667 6650 u64 objectid = 0;
00e4e6b3 6651 u64 index = 0;
39279cc3 6652
9ed74f2d
JB
6653 /*
6654 * 2 items for inode and ref
6655 * 2 items for dir items
6656 * 1 for xattr if selinux is on
6657 */
a22285a6
YZ
6658 trans = btrfs_start_transaction(root, 5);
6659 if (IS_ERR(trans))
6660 return PTR_ERR(trans);
39279cc3 6661
581bb050
LZ
6662 err = btrfs_find_free_ino(root, &objectid);
6663 if (err)
6664 goto out_fail;
6665
aec7477b 6666 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6667 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6668 S_IFDIR | mode, &index);
39279cc3
CM
6669 if (IS_ERR(inode)) {
6670 err = PTR_ERR(inode);
6671 goto out_fail;
6672 }
5f39d397 6673
39279cc3 6674 drop_on_err = 1;
b0d5d10f
CM
6675 /* these must be set before we unlock the inode */
6676 inode->i_op = &btrfs_dir_inode_operations;
6677 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6678
2a7dba39 6679 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6680 if (err)
b0d5d10f 6681 goto out_fail_inode;
39279cc3 6682
dbe674a9 6683 btrfs_i_size_write(inode, 0);
39279cc3
CM
6684 err = btrfs_update_inode(trans, root, inode);
6685 if (err)
b0d5d10f 6686 goto out_fail_inode;
5f39d397 6687
a1b075d2
JB
6688 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6689 dentry->d_name.len, 0, index);
39279cc3 6690 if (err)
b0d5d10f 6691 goto out_fail_inode;
5f39d397 6692
39279cc3 6693 d_instantiate(dentry, inode);
b0d5d10f
CM
6694 /*
6695 * mkdir is special. We're unlocking after we call d_instantiate
6696 * to avoid a race with nfsd calling d_instantiate.
6697 */
6698 unlock_new_inode(inode);
39279cc3 6699 drop_on_err = 0;
39279cc3
CM
6700
6701out_fail:
7ad85bb7 6702 btrfs_end_transaction(trans, root);
c7cfb8a5
WS
6703 if (drop_on_err) {
6704 inode_dec_link_count(inode);
39279cc3 6705 iput(inode);
c7cfb8a5 6706 }
c581afc8 6707 btrfs_balance_delayed_items(root);
b53d3f5d 6708 btrfs_btree_balance_dirty(root);
39279cc3 6709 return err;
b0d5d10f
CM
6710
6711out_fail_inode:
6712 unlock_new_inode(inode);
6713 goto out_fail;
39279cc3
CM
6714}
6715
e6c4efd8
QW
6716/* Find next extent map of a given extent map, caller needs to ensure locks */
6717static struct extent_map *next_extent_map(struct extent_map *em)
6718{
6719 struct rb_node *next;
6720
6721 next = rb_next(&em->rb_node);
6722 if (!next)
6723 return NULL;
6724 return container_of(next, struct extent_map, rb_node);
6725}
6726
6727static struct extent_map *prev_extent_map(struct extent_map *em)
6728{
6729 struct rb_node *prev;
6730
6731 prev = rb_prev(&em->rb_node);
6732 if (!prev)
6733 return NULL;
6734 return container_of(prev, struct extent_map, rb_node);
6735}
6736
d352ac68 6737/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6738 * the existing extent is the nearest extent to map_start,
d352ac68 6739 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6740 * the best fitted new extent into the tree.
d352ac68 6741 */
3b951516
CM
6742static int merge_extent_mapping(struct extent_map_tree *em_tree,
6743 struct extent_map *existing,
e6dcd2dc 6744 struct extent_map *em,
51f395ad 6745 u64 map_start)
3b951516 6746{
e6c4efd8
QW
6747 struct extent_map *prev;
6748 struct extent_map *next;
6749 u64 start;
6750 u64 end;
3b951516 6751 u64 start_diff;
3b951516 6752
e6dcd2dc 6753 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6754
6755 if (existing->start > map_start) {
6756 next = existing;
6757 prev = prev_extent_map(next);
6758 } else {
6759 prev = existing;
6760 next = next_extent_map(prev);
6761 }
6762
6763 start = prev ? extent_map_end(prev) : em->start;
6764 start = max_t(u64, start, em->start);
6765 end = next ? next->start : extent_map_end(em);
6766 end = min_t(u64, end, extent_map_end(em));
6767 start_diff = start - em->start;
6768 em->start = start;
6769 em->len = end - start;
c8b97818
CM
6770 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6771 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6772 em->block_start += start_diff;
c8b97818
CM
6773 em->block_len -= start_diff;
6774 }
09a2a8f9 6775 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6776}
6777
c8b97818 6778static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6779 struct page *page,
c8b97818
CM
6780 size_t pg_offset, u64 extent_offset,
6781 struct btrfs_file_extent_item *item)
6782{
6783 int ret;
6784 struct extent_buffer *leaf = path->nodes[0];
6785 char *tmp;
6786 size_t max_size;
6787 unsigned long inline_size;
6788 unsigned long ptr;
261507a0 6789 int compress_type;
c8b97818
CM
6790
6791 WARN_ON(pg_offset != 0);
261507a0 6792 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6793 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6794 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6795 btrfs_item_nr(path->slots[0]));
c8b97818 6796 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6797 if (!tmp)
6798 return -ENOMEM;
c8b97818
CM
6799 ptr = btrfs_file_extent_inline_start(item);
6800
6801 read_extent_buffer(leaf, tmp, ptr, inline_size);
6802
09cbfeaf 6803 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6804 ret = btrfs_decompress(compress_type, tmp, page,
6805 extent_offset, inline_size, max_size);
c8b97818 6806 kfree(tmp);
166ae5a4 6807 return ret;
c8b97818
CM
6808}
6809
d352ac68
CM
6810/*
6811 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6812 * the ugly parts come from merging extents from the disk with the in-ram
6813 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6814 * where the in-ram extents might be locked pending data=ordered completion.
6815 *
6816 * This also copies inline extents directly into the page.
6817 */
d397712b 6818
a52d9a80 6819struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6820 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6821 int create)
6822{
6823 int ret;
6824 int err = 0;
a52d9a80
CM
6825 u64 extent_start = 0;
6826 u64 extent_end = 0;
33345d01 6827 u64 objectid = btrfs_ino(inode);
a52d9a80 6828 u32 found_type;
f421950f 6829 struct btrfs_path *path = NULL;
a52d9a80
CM
6830 struct btrfs_root *root = BTRFS_I(inode)->root;
6831 struct btrfs_file_extent_item *item;
5f39d397
CM
6832 struct extent_buffer *leaf;
6833 struct btrfs_key found_key;
a52d9a80
CM
6834 struct extent_map *em = NULL;
6835 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6836 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6837 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6838 const bool new_inline = !page || create;
a52d9a80 6839
a52d9a80 6840again:
890871be 6841 read_lock(&em_tree->lock);
d1310b2e 6842 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6843 if (em)
6844 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6845 read_unlock(&em_tree->lock);
d1310b2e 6846
a52d9a80 6847 if (em) {
e1c4b745
CM
6848 if (em->start > start || em->start + em->len <= start)
6849 free_extent_map(em);
6850 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6851 free_extent_map(em);
6852 else
6853 goto out;
a52d9a80 6854 }
172ddd60 6855 em = alloc_extent_map();
a52d9a80 6856 if (!em) {
d1310b2e
CM
6857 err = -ENOMEM;
6858 goto out;
a52d9a80 6859 }
e6dcd2dc 6860 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6861 em->start = EXTENT_MAP_HOLE;
445a6944 6862 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6863 em->len = (u64)-1;
c8b97818 6864 em->block_len = (u64)-1;
f421950f
CM
6865
6866 if (!path) {
6867 path = btrfs_alloc_path();
026fd317
JB
6868 if (!path) {
6869 err = -ENOMEM;
6870 goto out;
6871 }
6872 /*
6873 * Chances are we'll be called again, so go ahead and do
6874 * readahead
6875 */
e4058b54 6876 path->reada = READA_FORWARD;
f421950f
CM
6877 }
6878
179e29e4
CM
6879 ret = btrfs_lookup_file_extent(trans, root, path,
6880 objectid, start, trans != NULL);
a52d9a80
CM
6881 if (ret < 0) {
6882 err = ret;
6883 goto out;
6884 }
6885
6886 if (ret != 0) {
6887 if (path->slots[0] == 0)
6888 goto not_found;
6889 path->slots[0]--;
6890 }
6891
5f39d397
CM
6892 leaf = path->nodes[0];
6893 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6894 struct btrfs_file_extent_item);
a52d9a80 6895 /* are we inside the extent that was found? */
5f39d397 6896 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6897 found_type = found_key.type;
5f39d397 6898 if (found_key.objectid != objectid ||
a52d9a80 6899 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6900 /*
6901 * If we backup past the first extent we want to move forward
6902 * and see if there is an extent in front of us, otherwise we'll
6903 * say there is a hole for our whole search range which can
6904 * cause problems.
6905 */
6906 extent_end = start;
6907 goto next;
a52d9a80
CM
6908 }
6909
5f39d397
CM
6910 found_type = btrfs_file_extent_type(leaf, item);
6911 extent_start = found_key.offset;
d899e052
YZ
6912 if (found_type == BTRFS_FILE_EXTENT_REG ||
6913 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6914 extent_end = extent_start +
db94535d 6915 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6916 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6917 size_t size;
514ac8ad 6918 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6919 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6920 }
25a50341 6921next:
9036c102
YZ
6922 if (start >= extent_end) {
6923 path->slots[0]++;
6924 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6925 ret = btrfs_next_leaf(root, path);
6926 if (ret < 0) {
6927 err = ret;
6928 goto out;
a52d9a80 6929 }
9036c102
YZ
6930 if (ret > 0)
6931 goto not_found;
6932 leaf = path->nodes[0];
a52d9a80 6933 }
9036c102
YZ
6934 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6935 if (found_key.objectid != objectid ||
6936 found_key.type != BTRFS_EXTENT_DATA_KEY)
6937 goto not_found;
6938 if (start + len <= found_key.offset)
6939 goto not_found;
e2eca69d
WS
6940 if (start > found_key.offset)
6941 goto next;
9036c102 6942 em->start = start;
70c8a91c 6943 em->orig_start = start;
9036c102
YZ
6944 em->len = found_key.offset - start;
6945 goto not_found_em;
6946 }
6947
7ffbb598
FM
6948 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6949
d899e052
YZ
6950 if (found_type == BTRFS_FILE_EXTENT_REG ||
6951 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6952 goto insert;
6953 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6954 unsigned long ptr;
a52d9a80 6955 char *map;
3326d1b0
CM
6956 size_t size;
6957 size_t extent_offset;
6958 size_t copy_size;
a52d9a80 6959
7ffbb598 6960 if (new_inline)
689f9346 6961 goto out;
5f39d397 6962
514ac8ad 6963 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6964 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6965 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6966 size - extent_offset);
3326d1b0 6967 em->start = extent_start + extent_offset;
fda2832f 6968 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6969 em->orig_block_len = em->len;
70c8a91c 6970 em->orig_start = em->start;
689f9346 6971 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6972 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6973 if (btrfs_file_extent_compression(leaf, item) !=
6974 BTRFS_COMPRESS_NONE) {
e40da0e5 6975 ret = uncompress_inline(path, page, pg_offset,
c8b97818 6976 extent_offset, item);
166ae5a4
ZB
6977 if (ret) {
6978 err = ret;
6979 goto out;
6980 }
c8b97818
CM
6981 } else {
6982 map = kmap(page);
6983 read_extent_buffer(leaf, map + pg_offset, ptr,
6984 copy_size);
09cbfeaf 6985 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 6986 memset(map + pg_offset + copy_size, 0,
09cbfeaf 6987 PAGE_SIZE - pg_offset -
93c82d57
CM
6988 copy_size);
6989 }
c8b97818
CM
6990 kunmap(page);
6991 }
179e29e4
CM
6992 flush_dcache_page(page);
6993 } else if (create && PageUptodate(page)) {
6bf7e080 6994 BUG();
179e29e4
CM
6995 if (!trans) {
6996 kunmap(page);
6997 free_extent_map(em);
6998 em = NULL;
ff5714cc 6999
b3b4aa74 7000 btrfs_release_path(path);
7a7eaa40 7001 trans = btrfs_join_transaction(root);
ff5714cc 7002
3612b495
TI
7003 if (IS_ERR(trans))
7004 return ERR_CAST(trans);
179e29e4
CM
7005 goto again;
7006 }
c8b97818 7007 map = kmap(page);
70dec807 7008 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 7009 copy_size);
c8b97818 7010 kunmap(page);
179e29e4 7011 btrfs_mark_buffer_dirty(leaf);
a52d9a80 7012 }
d1310b2e 7013 set_extent_uptodate(io_tree, em->start,
507903b8 7014 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 7015 goto insert;
a52d9a80
CM
7016 }
7017not_found:
7018 em->start = start;
70c8a91c 7019 em->orig_start = start;
d1310b2e 7020 em->len = len;
a52d9a80 7021not_found_em:
5f39d397 7022 em->block_start = EXTENT_MAP_HOLE;
9036c102 7023 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 7024insert:
b3b4aa74 7025 btrfs_release_path(path);
d1310b2e 7026 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 7027 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 7028 em->start, em->len, start, len);
a52d9a80
CM
7029 err = -EIO;
7030 goto out;
7031 }
d1310b2e
CM
7032
7033 err = 0;
890871be 7034 write_lock(&em_tree->lock);
09a2a8f9 7035 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
7036 /* it is possible that someone inserted the extent into the tree
7037 * while we had the lock dropped. It is also possible that
7038 * an overlapping map exists in the tree
7039 */
a52d9a80 7040 if (ret == -EEXIST) {
3b951516 7041 struct extent_map *existing;
e6dcd2dc
CM
7042
7043 ret = 0;
7044
e6c4efd8
QW
7045 existing = search_extent_mapping(em_tree, start, len);
7046 /*
7047 * existing will always be non-NULL, since there must be
7048 * extent causing the -EEXIST.
7049 */
8dff9c85
CM
7050 if (existing->start == em->start &&
7051 extent_map_end(existing) == extent_map_end(em) &&
7052 em->block_start == existing->block_start) {
7053 /*
7054 * these two extents are the same, it happens
7055 * with inlines especially
7056 */
7057 free_extent_map(em);
7058 em = existing;
7059 err = 0;
7060
7061 } else if (start >= extent_map_end(existing) ||
32be3a1a 7062 start <= existing->start) {
e6c4efd8
QW
7063 /*
7064 * The existing extent map is the one nearest to
7065 * the [start, start + len) range which overlaps
7066 */
7067 err = merge_extent_mapping(em_tree, existing,
7068 em, start);
e1c4b745 7069 free_extent_map(existing);
e6c4efd8 7070 if (err) {
3b951516
CM
7071 free_extent_map(em);
7072 em = NULL;
7073 }
7074 } else {
7075 free_extent_map(em);
7076 em = existing;
e6dcd2dc 7077 err = 0;
a52d9a80 7078 }
a52d9a80 7079 }
890871be 7080 write_unlock(&em_tree->lock);
a52d9a80 7081out:
1abe9b8a 7082
4cd8587c 7083 trace_btrfs_get_extent(root, em);
1abe9b8a 7084
527afb44 7085 btrfs_free_path(path);
a52d9a80
CM
7086 if (trans) {
7087 ret = btrfs_end_transaction(trans, root);
d397712b 7088 if (!err)
a52d9a80
CM
7089 err = ret;
7090 }
a52d9a80
CM
7091 if (err) {
7092 free_extent_map(em);
a52d9a80
CM
7093 return ERR_PTR(err);
7094 }
79787eaa 7095 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7096 return em;
7097}
7098
ec29ed5b
CM
7099struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7100 size_t pg_offset, u64 start, u64 len,
7101 int create)
7102{
7103 struct extent_map *em;
7104 struct extent_map *hole_em = NULL;
7105 u64 range_start = start;
7106 u64 end;
7107 u64 found;
7108 u64 found_end;
7109 int err = 0;
7110
7111 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7112 if (IS_ERR(em))
7113 return em;
7114 if (em) {
7115 /*
f9e4fb53
LB
7116 * if our em maps to
7117 * - a hole or
7118 * - a pre-alloc extent,
7119 * there might actually be delalloc bytes behind it.
ec29ed5b 7120 */
f9e4fb53
LB
7121 if (em->block_start != EXTENT_MAP_HOLE &&
7122 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
7123 return em;
7124 else
7125 hole_em = em;
7126 }
7127
7128 /* check to see if we've wrapped (len == -1 or similar) */
7129 end = start + len;
7130 if (end < start)
7131 end = (u64)-1;
7132 else
7133 end -= 1;
7134
7135 em = NULL;
7136
7137 /* ok, we didn't find anything, lets look for delalloc */
7138 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7139 end, len, EXTENT_DELALLOC, 1);
7140 found_end = range_start + found;
7141 if (found_end < range_start)
7142 found_end = (u64)-1;
7143
7144 /*
7145 * we didn't find anything useful, return
7146 * the original results from get_extent()
7147 */
7148 if (range_start > end || found_end <= start) {
7149 em = hole_em;
7150 hole_em = NULL;
7151 goto out;
7152 }
7153
7154 /* adjust the range_start to make sure it doesn't
7155 * go backwards from the start they passed in
7156 */
67871254 7157 range_start = max(start, range_start);
ec29ed5b
CM
7158 found = found_end - range_start;
7159
7160 if (found > 0) {
7161 u64 hole_start = start;
7162 u64 hole_len = len;
7163
172ddd60 7164 em = alloc_extent_map();
ec29ed5b
CM
7165 if (!em) {
7166 err = -ENOMEM;
7167 goto out;
7168 }
7169 /*
7170 * when btrfs_get_extent can't find anything it
7171 * returns one huge hole
7172 *
7173 * make sure what it found really fits our range, and
7174 * adjust to make sure it is based on the start from
7175 * the caller
7176 */
7177 if (hole_em) {
7178 u64 calc_end = extent_map_end(hole_em);
7179
7180 if (calc_end <= start || (hole_em->start > end)) {
7181 free_extent_map(hole_em);
7182 hole_em = NULL;
7183 } else {
7184 hole_start = max(hole_em->start, start);
7185 hole_len = calc_end - hole_start;
7186 }
7187 }
7188 em->bdev = NULL;
7189 if (hole_em && range_start > hole_start) {
7190 /* our hole starts before our delalloc, so we
7191 * have to return just the parts of the hole
7192 * that go until the delalloc starts
7193 */
7194 em->len = min(hole_len,
7195 range_start - hole_start);
7196 em->start = hole_start;
7197 em->orig_start = hole_start;
7198 /*
7199 * don't adjust block start at all,
7200 * it is fixed at EXTENT_MAP_HOLE
7201 */
7202 em->block_start = hole_em->block_start;
7203 em->block_len = hole_len;
f9e4fb53
LB
7204 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7205 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7206 } else {
7207 em->start = range_start;
7208 em->len = found;
7209 em->orig_start = range_start;
7210 em->block_start = EXTENT_MAP_DELALLOC;
7211 em->block_len = found;
7212 }
7213 } else if (hole_em) {
7214 return hole_em;
7215 }
7216out:
7217
7218 free_extent_map(hole_em);
7219 if (err) {
7220 free_extent_map(em);
7221 return ERR_PTR(err);
7222 }
7223 return em;
7224}
7225
5f9a8a51
FM
7226static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7227 const u64 start,
7228 const u64 len,
7229 const u64 orig_start,
7230 const u64 block_start,
7231 const u64 block_len,
7232 const u64 orig_block_len,
7233 const u64 ram_bytes,
7234 const int type)
7235{
7236 struct extent_map *em = NULL;
7237 int ret;
7238
7239 down_read(&BTRFS_I(inode)->dio_sem);
7240 if (type != BTRFS_ORDERED_NOCOW) {
7241 em = create_pinned_em(inode, start, len, orig_start,
7242 block_start, block_len, orig_block_len,
7243 ram_bytes, type);
7244 if (IS_ERR(em))
7245 goto out;
7246 }
7247 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7248 len, block_len, type);
7249 if (ret) {
7250 if (em) {
7251 free_extent_map(em);
7252 btrfs_drop_extent_cache(inode, start,
7253 start + len - 1, 0);
7254 }
7255 em = ERR_PTR(ret);
7256 }
7257 out:
7258 up_read(&BTRFS_I(inode)->dio_sem);
7259
7260 return em;
7261}
7262
4b46fce2
JB
7263static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7264 u64 start, u64 len)
7265{
7266 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7267 struct extent_map *em;
4b46fce2
JB
7268 struct btrfs_key ins;
7269 u64 alloc_hint;
7270 int ret;
4b46fce2 7271
4b46fce2 7272 alloc_hint = get_extent_allocation_hint(inode, start, len);
18513091 7273 ret = btrfs_reserve_extent(root, len, len, root->sectorsize, 0,
e570fd27 7274 alloc_hint, &ins, 1, 1);
00361589
JB
7275 if (ret)
7276 return ERR_PTR(ret);
4b46fce2 7277
5f9a8a51
FM
7278 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7279 ins.objectid, ins.offset, ins.offset,
7280 ins.offset, 0);
9cfa3e34 7281 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
5f9a8a51 7282 if (IS_ERR(em))
e570fd27 7283 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
de0ee0ed 7284
4b46fce2
JB
7285 return em;
7286}
7287
46bfbb5c
CM
7288/*
7289 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7290 * block must be cow'd
7291 */
00361589 7292noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7293 u64 *orig_start, u64 *orig_block_len,
7294 u64 *ram_bytes)
46bfbb5c 7295{
00361589 7296 struct btrfs_trans_handle *trans;
46bfbb5c
CM
7297 struct btrfs_path *path;
7298 int ret;
7299 struct extent_buffer *leaf;
7300 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7301 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7302 struct btrfs_file_extent_item *fi;
7303 struct btrfs_key key;
7304 u64 disk_bytenr;
7305 u64 backref_offset;
7306 u64 extent_end;
7307 u64 num_bytes;
7308 int slot;
7309 int found_type;
7ee9e440 7310 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7311
46bfbb5c
CM
7312 path = btrfs_alloc_path();
7313 if (!path)
7314 return -ENOMEM;
7315
00361589 7316 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
7317 offset, 0);
7318 if (ret < 0)
7319 goto out;
7320
7321 slot = path->slots[0];
7322 if (ret == 1) {
7323 if (slot == 0) {
7324 /* can't find the item, must cow */
7325 ret = 0;
7326 goto out;
7327 }
7328 slot--;
7329 }
7330 ret = 0;
7331 leaf = path->nodes[0];
7332 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 7333 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
7334 key.type != BTRFS_EXTENT_DATA_KEY) {
7335 /* not our file or wrong item type, must cow */
7336 goto out;
7337 }
7338
7339 if (key.offset > offset) {
7340 /* Wrong offset, must cow */
7341 goto out;
7342 }
7343
7344 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7345 found_type = btrfs_file_extent_type(leaf, fi);
7346 if (found_type != BTRFS_FILE_EXTENT_REG &&
7347 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7348 /* not a regular extent, must cow */
7349 goto out;
7350 }
7ee9e440
JB
7351
7352 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7353 goto out;
7354
e77751aa
MX
7355 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7356 if (extent_end <= offset)
7357 goto out;
7358
46bfbb5c 7359 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7360 if (disk_bytenr == 0)
7361 goto out;
7362
7363 if (btrfs_file_extent_compression(leaf, fi) ||
7364 btrfs_file_extent_encryption(leaf, fi) ||
7365 btrfs_file_extent_other_encoding(leaf, fi))
7366 goto out;
7367
46bfbb5c
CM
7368 backref_offset = btrfs_file_extent_offset(leaf, fi);
7369
7ee9e440
JB
7370 if (orig_start) {
7371 *orig_start = key.offset - backref_offset;
7372 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7373 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7374 }
eb384b55 7375
46bfbb5c
CM
7376 if (btrfs_extent_readonly(root, disk_bytenr))
7377 goto out;
7b2b7085
MX
7378
7379 num_bytes = min(offset + *len, extent_end) - offset;
7380 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7381 u64 range_end;
7382
7383 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7384 ret = test_range_bit(io_tree, offset, range_end,
7385 EXTENT_DELALLOC, 0, NULL);
7386 if (ret) {
7387 ret = -EAGAIN;
7388 goto out;
7389 }
7390 }
7391
1bda19eb 7392 btrfs_release_path(path);
46bfbb5c
CM
7393
7394 /*
7395 * look for other files referencing this extent, if we
7396 * find any we must cow
7397 */
00361589
JB
7398 trans = btrfs_join_transaction(root);
7399 if (IS_ERR(trans)) {
7400 ret = 0;
46bfbb5c 7401 goto out;
00361589
JB
7402 }
7403
7404 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7405 key.offset - backref_offset, disk_bytenr);
7406 btrfs_end_transaction(trans, root);
7407 if (ret) {
7408 ret = 0;
7409 goto out;
7410 }
46bfbb5c
CM
7411
7412 /*
7413 * adjust disk_bytenr and num_bytes to cover just the bytes
7414 * in this extent we are about to write. If there
7415 * are any csums in that range we have to cow in order
7416 * to keep the csums correct
7417 */
7418 disk_bytenr += backref_offset;
7419 disk_bytenr += offset - key.offset;
46bfbb5c
CM
7420 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7421 goto out;
7422 /*
7423 * all of the above have passed, it is safe to overwrite this extent
7424 * without cow
7425 */
eb384b55 7426 *len = num_bytes;
46bfbb5c
CM
7427 ret = 1;
7428out:
7429 btrfs_free_path(path);
7430 return ret;
7431}
7432
fc4adbff
AG
7433bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7434{
7435 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7436 int found = false;
7437 void **pagep = NULL;
7438 struct page *page = NULL;
7439 int start_idx;
7440 int end_idx;
7441
09cbfeaf 7442 start_idx = start >> PAGE_SHIFT;
fc4adbff
AG
7443
7444 /*
7445 * end is the last byte in the last page. end == start is legal
7446 */
09cbfeaf 7447 end_idx = end >> PAGE_SHIFT;
fc4adbff
AG
7448
7449 rcu_read_lock();
7450
7451 /* Most of the code in this while loop is lifted from
7452 * find_get_page. It's been modified to begin searching from a
7453 * page and return just the first page found in that range. If the
7454 * found idx is less than or equal to the end idx then we know that
7455 * a page exists. If no pages are found or if those pages are
7456 * outside of the range then we're fine (yay!) */
7457 while (page == NULL &&
7458 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7459 page = radix_tree_deref_slot(pagep);
7460 if (unlikely(!page))
7461 break;
7462
7463 if (radix_tree_exception(page)) {
809f9016
FM
7464 if (radix_tree_deref_retry(page)) {
7465 page = NULL;
fc4adbff 7466 continue;
809f9016 7467 }
fc4adbff
AG
7468 /*
7469 * Otherwise, shmem/tmpfs must be storing a swap entry
7470 * here as an exceptional entry: so return it without
7471 * attempting to raise page count.
7472 */
6fdef6d4 7473 page = NULL;
fc4adbff
AG
7474 break; /* TODO: Is this relevant for this use case? */
7475 }
7476
91405151
FM
7477 if (!page_cache_get_speculative(page)) {
7478 page = NULL;
fc4adbff 7479 continue;
91405151 7480 }
fc4adbff
AG
7481
7482 /*
7483 * Has the page moved?
7484 * This is part of the lockless pagecache protocol. See
7485 * include/linux/pagemap.h for details.
7486 */
7487 if (unlikely(page != *pagep)) {
09cbfeaf 7488 put_page(page);
fc4adbff
AG
7489 page = NULL;
7490 }
7491 }
7492
7493 if (page) {
7494 if (page->index <= end_idx)
7495 found = true;
09cbfeaf 7496 put_page(page);
fc4adbff
AG
7497 }
7498
7499 rcu_read_unlock();
7500 return found;
7501}
7502
eb838e73
JB
7503static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7504 struct extent_state **cached_state, int writing)
7505{
7506 struct btrfs_ordered_extent *ordered;
7507 int ret = 0;
7508
7509 while (1) {
7510 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7511 cached_state);
eb838e73
JB
7512 /*
7513 * We're concerned with the entire range that we're going to be
01327610 7514 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7515 * extents in this range.
7516 */
7517 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7518 lockend - lockstart + 1);
7519
7520 /*
7521 * We need to make sure there are no buffered pages in this
7522 * range either, we could have raced between the invalidate in
7523 * generic_file_direct_write and locking the extent. The
7524 * invalidate needs to happen so that reads after a write do not
7525 * get stale data.
7526 */
fc4adbff
AG
7527 if (!ordered &&
7528 (!writing ||
7529 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7530 break;
7531
7532 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7533 cached_state, GFP_NOFS);
7534
7535 if (ordered) {
ade77029
FM
7536 /*
7537 * If we are doing a DIO read and the ordered extent we
7538 * found is for a buffered write, we can not wait for it
7539 * to complete and retry, because if we do so we can
7540 * deadlock with concurrent buffered writes on page
7541 * locks. This happens only if our DIO read covers more
7542 * than one extent map, if at this point has already
7543 * created an ordered extent for a previous extent map
7544 * and locked its range in the inode's io tree, and a
7545 * concurrent write against that previous extent map's
7546 * range and this range started (we unlock the ranges
7547 * in the io tree only when the bios complete and
7548 * buffered writes always lock pages before attempting
7549 * to lock range in the io tree).
7550 */
7551 if (writing ||
7552 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7553 btrfs_start_ordered_extent(inode, ordered, 1);
7554 else
7555 ret = -ENOTBLK;
eb838e73
JB
7556 btrfs_put_ordered_extent(ordered);
7557 } else {
eb838e73 7558 /*
b850ae14
FM
7559 * We could trigger writeback for this range (and wait
7560 * for it to complete) and then invalidate the pages for
7561 * this range (through invalidate_inode_pages2_range()),
7562 * but that can lead us to a deadlock with a concurrent
7563 * call to readpages() (a buffered read or a defrag call
7564 * triggered a readahead) on a page lock due to an
7565 * ordered dio extent we created before but did not have
7566 * yet a corresponding bio submitted (whence it can not
7567 * complete), which makes readpages() wait for that
7568 * ordered extent to complete while holding a lock on
7569 * that page.
eb838e73 7570 */
b850ae14 7571 ret = -ENOTBLK;
eb838e73
JB
7572 }
7573
ade77029
FM
7574 if (ret)
7575 break;
7576
eb838e73
JB
7577 cond_resched();
7578 }
7579
7580 return ret;
7581}
7582
69ffb543
JB
7583static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7584 u64 len, u64 orig_start,
7585 u64 block_start, u64 block_len,
cc95bef6
JB
7586 u64 orig_block_len, u64 ram_bytes,
7587 int type)
69ffb543
JB
7588{
7589 struct extent_map_tree *em_tree;
7590 struct extent_map *em;
7591 struct btrfs_root *root = BTRFS_I(inode)->root;
7592 int ret;
7593
7594 em_tree = &BTRFS_I(inode)->extent_tree;
7595 em = alloc_extent_map();
7596 if (!em)
7597 return ERR_PTR(-ENOMEM);
7598
7599 em->start = start;
7600 em->orig_start = orig_start;
2ab28f32
JB
7601 em->mod_start = start;
7602 em->mod_len = len;
69ffb543
JB
7603 em->len = len;
7604 em->block_len = block_len;
7605 em->block_start = block_start;
7606 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7607 em->orig_block_len = orig_block_len;
cc95bef6 7608 em->ram_bytes = ram_bytes;
70c8a91c 7609 em->generation = -1;
69ffb543
JB
7610 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7611 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 7612 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
7613
7614 do {
7615 btrfs_drop_extent_cache(inode, em->start,
7616 em->start + em->len - 1, 0);
7617 write_lock(&em_tree->lock);
09a2a8f9 7618 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
7619 write_unlock(&em_tree->lock);
7620 } while (ret == -EEXIST);
7621
7622 if (ret) {
7623 free_extent_map(em);
7624 return ERR_PTR(ret);
7625 }
7626
7627 return em;
7628}
7629
9c9464cc
FM
7630static void adjust_dio_outstanding_extents(struct inode *inode,
7631 struct btrfs_dio_data *dio_data,
7632 const u64 len)
7633{
7634 unsigned num_extents;
7635
7636 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7637 BTRFS_MAX_EXTENT_SIZE);
7638 /*
7639 * If we have an outstanding_extents count still set then we're
7640 * within our reservation, otherwise we need to adjust our inode
7641 * counter appropriately.
7642 */
7643 if (dio_data->outstanding_extents) {
7644 dio_data->outstanding_extents -= num_extents;
7645 } else {
7646 spin_lock(&BTRFS_I(inode)->lock);
7647 BTRFS_I(inode)->outstanding_extents += num_extents;
7648 spin_unlock(&BTRFS_I(inode)->lock);
7649 }
7650}
7651
4b46fce2
JB
7652static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7653 struct buffer_head *bh_result, int create)
7654{
7655 struct extent_map *em;
7656 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 7657 struct extent_state *cached_state = NULL;
50745b0a 7658 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7659 u64 start = iblock << inode->i_blkbits;
eb838e73 7660 u64 lockstart, lockend;
4b46fce2 7661 u64 len = bh_result->b_size;
eb838e73 7662 int unlock_bits = EXTENT_LOCKED;
0934856d 7663 int ret = 0;
eb838e73 7664
172a5049 7665 if (create)
3266789f 7666 unlock_bits |= EXTENT_DIRTY;
172a5049 7667 else
c329861d 7668 len = min_t(u64, len, root->sectorsize);
eb838e73 7669
c329861d
JB
7670 lockstart = start;
7671 lockend = start + len - 1;
7672
e1cbbfa5
JB
7673 if (current->journal_info) {
7674 /*
7675 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7676 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7677 * confused.
7678 */
50745b0a 7679 dio_data = current->journal_info;
e1cbbfa5
JB
7680 current->journal_info = NULL;
7681 }
7682
eb838e73
JB
7683 /*
7684 * If this errors out it's because we couldn't invalidate pagecache for
7685 * this range and we need to fallback to buffered.
7686 */
9c9464cc
FM
7687 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7688 create)) {
7689 ret = -ENOTBLK;
7690 goto err;
7691 }
eb838e73 7692
4b46fce2 7693 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
7694 if (IS_ERR(em)) {
7695 ret = PTR_ERR(em);
7696 goto unlock_err;
7697 }
4b46fce2
JB
7698
7699 /*
7700 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7701 * io. INLINE is special, and we could probably kludge it in here, but
7702 * it's still buffered so for safety lets just fall back to the generic
7703 * buffered path.
7704 *
7705 * For COMPRESSED we _have_ to read the entire extent in so we can
7706 * decompress it, so there will be buffering required no matter what we
7707 * do, so go ahead and fallback to buffered.
7708 *
01327610 7709 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7710 * to buffered IO. Don't blame me, this is the price we pay for using
7711 * the generic code.
7712 */
7713 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7714 em->block_start == EXTENT_MAP_INLINE) {
7715 free_extent_map(em);
eb838e73
JB
7716 ret = -ENOTBLK;
7717 goto unlock_err;
4b46fce2
JB
7718 }
7719
7720 /* Just a good old fashioned hole, return */
7721 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7722 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7723 free_extent_map(em);
eb838e73 7724 goto unlock_err;
4b46fce2
JB
7725 }
7726
7727 /*
7728 * We don't allocate a new extent in the following cases
7729 *
7730 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7731 * existing extent.
7732 * 2) The extent is marked as PREALLOC. We're good to go here and can
7733 * just use the extent.
7734 *
7735 */
46bfbb5c 7736 if (!create) {
eb838e73
JB
7737 len = min(len, em->len - (start - em->start));
7738 lockstart = start + len;
7739 goto unlock;
46bfbb5c 7740 }
4b46fce2
JB
7741
7742 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7743 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7744 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7745 int type;
eb384b55 7746 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7747
7748 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7749 type = BTRFS_ORDERED_PREALLOC;
7750 else
7751 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7752 len = min(len, em->len - (start - em->start));
4b46fce2 7753 block_start = em->block_start + (start - em->start);
46bfbb5c 7754
00361589 7755 if (can_nocow_extent(inode, start, &len, &orig_start,
f78c436c
FM
7756 &orig_block_len, &ram_bytes) == 1 &&
7757 btrfs_inc_nocow_writers(root->fs_info, block_start)) {
5f9a8a51 7758 struct extent_map *em2;
0b901916 7759
5f9a8a51
FM
7760 em2 = btrfs_create_dio_extent(inode, start, len,
7761 orig_start, block_start,
7762 len, orig_block_len,
7763 ram_bytes, type);
f78c436c 7764 btrfs_dec_nocow_writers(root->fs_info, block_start);
69ffb543
JB
7765 if (type == BTRFS_ORDERED_PREALLOC) {
7766 free_extent_map(em);
5f9a8a51 7767 em = em2;
69ffb543 7768 }
5f9a8a51
FM
7769 if (em2 && IS_ERR(em2)) {
7770 ret = PTR_ERR(em2);
eb838e73 7771 goto unlock_err;
46bfbb5c 7772 }
18513091
WX
7773 /*
7774 * For inode marked NODATACOW or extent marked PREALLOC,
7775 * use the existing or preallocated extent, so does not
7776 * need to adjust btrfs_space_info's bytes_may_use.
7777 */
7778 btrfs_free_reserved_data_space_noquota(inode,
7779 start, len);
46bfbb5c 7780 goto unlock;
4b46fce2 7781 }
4b46fce2 7782 }
00361589 7783
46bfbb5c
CM
7784 /*
7785 * this will cow the extent, reset the len in case we changed
7786 * it above
7787 */
7788 len = bh_result->b_size;
70c8a91c
JB
7789 free_extent_map(em);
7790 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7791 if (IS_ERR(em)) {
7792 ret = PTR_ERR(em);
7793 goto unlock_err;
7794 }
46bfbb5c
CM
7795 len = min(len, em->len - (start - em->start));
7796unlock:
4b46fce2
JB
7797 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7798 inode->i_blkbits;
46bfbb5c 7799 bh_result->b_size = len;
4b46fce2
JB
7800 bh_result->b_bdev = em->bdev;
7801 set_buffer_mapped(bh_result);
c3473e83
JB
7802 if (create) {
7803 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7804 set_buffer_new(bh_result);
7805
7806 /*
7807 * Need to update the i_size under the extent lock so buffered
7808 * readers will get the updated i_size when we unlock.
7809 */
7810 if (start + len > i_size_read(inode))
7811 i_size_write(inode, start + len);
0934856d 7812
9c9464cc 7813 adjust_dio_outstanding_extents(inode, dio_data, len);
50745b0a 7814 WARN_ON(dio_data->reserve < len);
7815 dio_data->reserve -= len;
f28a4928 7816 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7817 current->journal_info = dio_data;
c3473e83 7818 }
4b46fce2 7819
eb838e73
JB
7820 /*
7821 * In the case of write we need to clear and unlock the entire range,
7822 * in the case of read we need to unlock only the end area that we
7823 * aren't using if there is any left over space.
7824 */
24c03fa5 7825 if (lockstart < lockend) {
0934856d
MX
7826 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7827 lockend, unlock_bits, 1, 0,
7828 &cached_state, GFP_NOFS);
24c03fa5 7829 } else {
eb838e73 7830 free_extent_state(cached_state);
24c03fa5 7831 }
eb838e73 7832
4b46fce2
JB
7833 free_extent_map(em);
7834
7835 return 0;
eb838e73
JB
7836
7837unlock_err:
eb838e73
JB
7838 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7839 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
9c9464cc 7840err:
50745b0a 7841 if (dio_data)
7842 current->journal_info = dio_data;
9c9464cc
FM
7843 /*
7844 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7845 * write less data then expected, so that we don't underflow our inode's
7846 * outstanding extents counter.
7847 */
7848 if (create && dio_data)
7849 adjust_dio_outstanding_extents(inode, dio_data, len);
7850
eb838e73 7851 return ret;
4b46fce2
JB
7852}
7853
8b110e39 7854static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
81a75f67 7855 int mirror_num)
8b110e39
MX
7856{
7857 struct btrfs_root *root = BTRFS_I(inode)->root;
7858 int ret;
7859
37226b21 7860 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39
MX
7861
7862 bio_get(bio);
7863
7864 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7865 BTRFS_WQ_ENDIO_DIO_REPAIR);
7866 if (ret)
7867 goto err;
7868
81a75f67 7869 ret = btrfs_map_bio(root, bio, mirror_num, 0);
8b110e39
MX
7870err:
7871 bio_put(bio);
7872 return ret;
7873}
7874
7875static int btrfs_check_dio_repairable(struct inode *inode,
7876 struct bio *failed_bio,
7877 struct io_failure_record *failrec,
7878 int failed_mirror)
7879{
7880 int num_copies;
7881
7882 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7883 failrec->logical, failrec->len);
7884 if (num_copies == 1) {
7885 /*
7886 * we only have a single copy of the data, so don't bother with
7887 * all the retry and error correction code that follows. no
7888 * matter what the error is, it is very likely to persist.
7889 */
7890 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7891 num_copies, failrec->this_mirror, failed_mirror);
7892 return 0;
7893 }
7894
7895 failrec->failed_mirror = failed_mirror;
7896 failrec->this_mirror++;
7897 if (failrec->this_mirror == failed_mirror)
7898 failrec->this_mirror++;
7899
7900 if (failrec->this_mirror > num_copies) {
7901 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7902 num_copies, failrec->this_mirror, failed_mirror);
7903 return 0;
7904 }
7905
7906 return 1;
7907}
7908
7909static int dio_read_error(struct inode *inode, struct bio *failed_bio,
2dabb324
CR
7910 struct page *page, unsigned int pgoff,
7911 u64 start, u64 end, int failed_mirror,
7912 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7913{
7914 struct io_failure_record *failrec;
7915 struct bio *bio;
7916 int isector;
7917 int read_mode;
7918 int ret;
7919
37226b21 7920 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
7921
7922 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7923 if (ret)
7924 return ret;
7925
7926 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7927 failed_mirror);
7928 if (!ret) {
7929 free_io_failure(inode, failrec);
7930 return -EIO;
7931 }
7932
2dabb324
CR
7933 if ((failed_bio->bi_vcnt > 1)
7934 || (failed_bio->bi_io_vec->bv_len
7935 > BTRFS_I(inode)->root->sectorsize))
8b110e39
MX
7936 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7937 else
7938 read_mode = READ_SYNC;
7939
7940 isector = start - btrfs_io_bio(failed_bio)->logical;
7941 isector >>= inode->i_sb->s_blocksize_bits;
7942 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7943 pgoff, isector, repair_endio, repair_arg);
8b110e39
MX
7944 if (!bio) {
7945 free_io_failure(inode, failrec);
7946 return -EIO;
7947 }
37226b21 7948 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8b110e39
MX
7949
7950 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7951 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7952 read_mode, failrec->this_mirror, failrec->in_validation);
7953
81a75f67 7954 ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
8b110e39
MX
7955 if (ret) {
7956 free_io_failure(inode, failrec);
7957 bio_put(bio);
7958 }
7959
7960 return ret;
7961}
7962
7963struct btrfs_retry_complete {
7964 struct completion done;
7965 struct inode *inode;
7966 u64 start;
7967 int uptodate;
7968};
7969
4246a0b6 7970static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7971{
7972 struct btrfs_retry_complete *done = bio->bi_private;
2dabb324 7973 struct inode *inode;
8b110e39
MX
7974 struct bio_vec *bvec;
7975 int i;
7976
4246a0b6 7977 if (bio->bi_error)
8b110e39
MX
7978 goto end;
7979
2dabb324
CR
7980 ASSERT(bio->bi_vcnt == 1);
7981 inode = bio->bi_io_vec->bv_page->mapping->host;
7982 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7983
8b110e39
MX
7984 done->uptodate = 1;
7985 bio_for_each_segment_all(bvec, bio, i)
7986 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7987end:
7988 complete(&done->done);
7989 bio_put(bio);
7990}
7991
7992static int __btrfs_correct_data_nocsum(struct inode *inode,
7993 struct btrfs_io_bio *io_bio)
4b46fce2 7994{
2dabb324 7995 struct btrfs_fs_info *fs_info;
2c30c71b 7996 struct bio_vec *bvec;
8b110e39 7997 struct btrfs_retry_complete done;
4b46fce2 7998 u64 start;
2dabb324
CR
7999 unsigned int pgoff;
8000 u32 sectorsize;
8001 int nr_sectors;
2c30c71b 8002 int i;
c1dc0896 8003 int ret;
4b46fce2 8004
2dabb324
CR
8005 fs_info = BTRFS_I(inode)->root->fs_info;
8006 sectorsize = BTRFS_I(inode)->root->sectorsize;
8007
8b110e39
MX
8008 start = io_bio->logical;
8009 done.inode = inode;
8010
8011 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
8012 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8013 pgoff = bvec->bv_offset;
8014
8015next_block_or_try_again:
8b110e39
MX
8016 done.uptodate = 0;
8017 done.start = start;
8018 init_completion(&done.done);
8019
2dabb324
CR
8020 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8021 pgoff, start, start + sectorsize - 1,
8022 io_bio->mirror_num,
8023 btrfs_retry_endio_nocsum, &done);
8b110e39
MX
8024 if (ret)
8025 return ret;
8026
8027 wait_for_completion(&done.done);
8028
8029 if (!done.uptodate) {
8030 /* We might have another mirror, so try again */
2dabb324 8031 goto next_block_or_try_again;
8b110e39
MX
8032 }
8033
2dabb324
CR
8034 start += sectorsize;
8035
8036 if (nr_sectors--) {
8037 pgoff += sectorsize;
8038 goto next_block_or_try_again;
8039 }
8b110e39
MX
8040 }
8041
8042 return 0;
8043}
8044
4246a0b6 8045static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
8046{
8047 struct btrfs_retry_complete *done = bio->bi_private;
8048 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2dabb324 8049 struct inode *inode;
8b110e39 8050 struct bio_vec *bvec;
2dabb324 8051 u64 start;
8b110e39
MX
8052 int uptodate;
8053 int ret;
8054 int i;
8055
4246a0b6 8056 if (bio->bi_error)
8b110e39
MX
8057 goto end;
8058
8059 uptodate = 1;
2dabb324
CR
8060
8061 start = done->start;
8062
8063 ASSERT(bio->bi_vcnt == 1);
8064 inode = bio->bi_io_vec->bv_page->mapping->host;
8065 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
8066
8b110e39
MX
8067 bio_for_each_segment_all(bvec, bio, i) {
8068 ret = __readpage_endio_check(done->inode, io_bio, i,
2dabb324
CR
8069 bvec->bv_page, bvec->bv_offset,
8070 done->start, bvec->bv_len);
8b110e39
MX
8071 if (!ret)
8072 clean_io_failure(done->inode, done->start,
2dabb324 8073 bvec->bv_page, bvec->bv_offset);
8b110e39
MX
8074 else
8075 uptodate = 0;
8076 }
8077
8078 done->uptodate = uptodate;
8079end:
8080 complete(&done->done);
8081 bio_put(bio);
8082}
8083
8084static int __btrfs_subio_endio_read(struct inode *inode,
8085 struct btrfs_io_bio *io_bio, int err)
8086{
2dabb324 8087 struct btrfs_fs_info *fs_info;
8b110e39
MX
8088 struct bio_vec *bvec;
8089 struct btrfs_retry_complete done;
8090 u64 start;
8091 u64 offset = 0;
2dabb324
CR
8092 u32 sectorsize;
8093 int nr_sectors;
8094 unsigned int pgoff;
8095 int csum_pos;
8b110e39
MX
8096 int i;
8097 int ret;
dc380aea 8098
2dabb324
CR
8099 fs_info = BTRFS_I(inode)->root->fs_info;
8100 sectorsize = BTRFS_I(inode)->root->sectorsize;
8101
8b110e39 8102 err = 0;
c1dc0896 8103 start = io_bio->logical;
8b110e39
MX
8104 done.inode = inode;
8105
c1dc0896 8106 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
8107 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8108
8109 pgoff = bvec->bv_offset;
8110next_block:
8111 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8112 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8113 bvec->bv_page, pgoff, start,
8114 sectorsize);
8b110e39
MX
8115 if (likely(!ret))
8116 goto next;
8117try_again:
8118 done.uptodate = 0;
8119 done.start = start;
8120 init_completion(&done.done);
8121
2dabb324
CR
8122 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8123 pgoff, start, start + sectorsize - 1,
8124 io_bio->mirror_num,
8125 btrfs_retry_endio, &done);
8b110e39
MX
8126 if (ret) {
8127 err = ret;
8128 goto next;
8129 }
8130
8131 wait_for_completion(&done.done);
8132
8133 if (!done.uptodate) {
8134 /* We might have another mirror, so try again */
8135 goto try_again;
8136 }
8137next:
2dabb324
CR
8138 offset += sectorsize;
8139 start += sectorsize;
8140
8141 ASSERT(nr_sectors);
8142
8143 if (--nr_sectors) {
8144 pgoff += sectorsize;
8145 goto next_block;
8146 }
2c30c71b 8147 }
c1dc0896
MX
8148
8149 return err;
8150}
8151
8b110e39
MX
8152static int btrfs_subio_endio_read(struct inode *inode,
8153 struct btrfs_io_bio *io_bio, int err)
8154{
8155 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8156
8157 if (skip_csum) {
8158 if (unlikely(err))
8159 return __btrfs_correct_data_nocsum(inode, io_bio);
8160 else
8161 return 0;
8162 } else {
8163 return __btrfs_subio_endio_read(inode, io_bio, err);
8164 }
8165}
8166
4246a0b6 8167static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8168{
8169 struct btrfs_dio_private *dip = bio->bi_private;
8170 struct inode *inode = dip->inode;
8171 struct bio *dio_bio;
8172 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4246a0b6 8173 int err = bio->bi_error;
c1dc0896 8174
8b110e39
MX
8175 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8176 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8177
4b46fce2 8178 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8179 dip->logical_offset + dip->bytes - 1);
9be3395b 8180 dio_bio = dip->dio_bio;
4b46fce2 8181
4b46fce2 8182 kfree(dip);
c0da7aa1 8183
1636d1d7 8184 dio_bio->bi_error = bio->bi_error;
4246a0b6 8185 dio_end_io(dio_bio, bio->bi_error);
23ea8e5a
MX
8186
8187 if (io_bio->end_io)
8188 io_bio->end_io(io_bio, err);
9be3395b 8189 bio_put(bio);
4b46fce2
JB
8190}
8191
14543774
FM
8192static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8193 const u64 offset,
8194 const u64 bytes,
8195 const int uptodate)
4b46fce2 8196{
4b46fce2 8197 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 8198 struct btrfs_ordered_extent *ordered = NULL;
14543774
FM
8199 u64 ordered_offset = offset;
8200 u64 ordered_bytes = bytes;
4b46fce2
JB
8201 int ret;
8202
163cf09c
CM
8203again:
8204 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8205 &ordered_offset,
4246a0b6 8206 ordered_bytes,
14543774 8207 uptodate);
4b46fce2 8208 if (!ret)
163cf09c 8209 goto out_test;
4b46fce2 8210
9e0af237
LB
8211 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8212 finish_ordered_fn, NULL, NULL);
fccb5d86
QW
8213 btrfs_queue_work(root->fs_info->endio_write_workers,
8214 &ordered->work);
163cf09c
CM
8215out_test:
8216 /*
8217 * our bio might span multiple ordered extents. If we haven't
8218 * completed the accounting for the whole dio, go back and try again
8219 */
14543774
FM
8220 if (ordered_offset < offset + bytes) {
8221 ordered_bytes = offset + bytes - ordered_offset;
5fd02043 8222 ordered = NULL;
163cf09c
CM
8223 goto again;
8224 }
14543774
FM
8225}
8226
8227static void btrfs_endio_direct_write(struct bio *bio)
8228{
8229 struct btrfs_dio_private *dip = bio->bi_private;
8230 struct bio *dio_bio = dip->dio_bio;
8231
8232 btrfs_endio_direct_write_update_ordered(dip->inode,
8233 dip->logical_offset,
8234 dip->bytes,
8235 !bio->bi_error);
4b46fce2 8236
4b46fce2 8237 kfree(dip);
c0da7aa1 8238
1636d1d7 8239 dio_bio->bi_error = bio->bi_error;
4246a0b6 8240 dio_end_io(dio_bio, bio->bi_error);
9be3395b 8241 bio_put(bio);
4b46fce2
JB
8242}
8243
81a75f67 8244static int __btrfs_submit_bio_start_direct_io(struct inode *inode,
eaf25d93
CM
8245 struct bio *bio, int mirror_num,
8246 unsigned long bio_flags, u64 offset)
8247{
8248 int ret;
8249 struct btrfs_root *root = BTRFS_I(inode)->root;
8250 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 8251 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8252 return 0;
8253}
8254
4246a0b6 8255static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8256{
8257 struct btrfs_dio_private *dip = bio->bi_private;
4246a0b6 8258 int err = bio->bi_error;
e65e1535 8259
8b110e39
MX
8260 if (err)
8261 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8262 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
1eff9d32 8263 btrfs_ino(dip->inode), bio_op(bio), bio->bi_opf,
8b110e39
MX
8264 (unsigned long long)bio->bi_iter.bi_sector,
8265 bio->bi_iter.bi_size, err);
8266
8267 if (dip->subio_endio)
8268 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8269
8270 if (err) {
e65e1535
MX
8271 dip->errors = 1;
8272
8273 /*
8274 * before atomic variable goto zero, we must make sure
8275 * dip->errors is perceived to be set.
8276 */
4e857c58 8277 smp_mb__before_atomic();
e65e1535
MX
8278 }
8279
8280 /* if there are more bios still pending for this dio, just exit */
8281 if (!atomic_dec_and_test(&dip->pending_bios))
8282 goto out;
8283
9be3395b 8284 if (dip->errors) {
e65e1535 8285 bio_io_error(dip->orig_bio);
9be3395b 8286 } else {
4246a0b6
CH
8287 dip->dio_bio->bi_error = 0;
8288 bio_endio(dip->orig_bio);
e65e1535
MX
8289 }
8290out:
8291 bio_put(bio);
8292}
8293
8294static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8295 u64 first_sector, gfp_t gfp_flags)
8296{
da2f0f74 8297 struct bio *bio;
22365979 8298 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
da2f0f74
CM
8299 if (bio)
8300 bio_associate_current(bio);
8301 return bio;
e65e1535
MX
8302}
8303
c1dc0896
MX
8304static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8305 struct inode *inode,
8306 struct btrfs_dio_private *dip,
8307 struct bio *bio,
8308 u64 file_offset)
8309{
8310 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8311 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8312 int ret;
8313
8314 /*
8315 * We load all the csum data we need when we submit
8316 * the first bio to reduce the csum tree search and
8317 * contention.
8318 */
8319 if (dip->logical_offset == file_offset) {
8320 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8321 file_offset);
8322 if (ret)
8323 return ret;
8324 }
8325
8326 if (bio == dip->orig_bio)
8327 return 0;
8328
8329 file_offset -= dip->logical_offset;
8330 file_offset >>= inode->i_sb->s_blocksize_bits;
8331 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8332
8333 return 0;
8334}
8335
e65e1535 8336static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
81a75f67 8337 u64 file_offset, int skip_sum,
c329861d 8338 int async_submit)
e65e1535 8339{
facc8a22 8340 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8341 bool write = bio_op(bio) == REQ_OP_WRITE;
e65e1535
MX
8342 struct btrfs_root *root = BTRFS_I(inode)->root;
8343 int ret;
8344
b812ce28
JB
8345 if (async_submit)
8346 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8347
e65e1535 8348 bio_get(bio);
5fd02043
JB
8349
8350 if (!write) {
bfebd8b5
DS
8351 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8352 BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8353 if (ret)
8354 goto err;
8355 }
e65e1535 8356
1ae39938
JB
8357 if (skip_sum)
8358 goto map;
8359
8360 if (write && async_submit) {
e65e1535 8361 ret = btrfs_wq_submit_bio(root->fs_info,
81a75f67 8362 inode, bio, 0, 0, file_offset,
e65e1535
MX
8363 __btrfs_submit_bio_start_direct_io,
8364 __btrfs_submit_bio_done);
8365 goto err;
1ae39938
JB
8366 } else if (write) {
8367 /*
8368 * If we aren't doing async submit, calculate the csum of the
8369 * bio now.
8370 */
8371 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8372 if (ret)
8373 goto err;
23ea8e5a 8374 } else {
c1dc0896
MX
8375 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8376 file_offset);
c2db1073
TI
8377 if (ret)
8378 goto err;
8379 }
1ae39938 8380map:
81a75f67 8381 ret = btrfs_map_bio(root, bio, 0, async_submit);
e65e1535
MX
8382err:
8383 bio_put(bio);
8384 return ret;
8385}
8386
81a75f67 8387static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
e65e1535
MX
8388 int skip_sum)
8389{
8390 struct inode *inode = dip->inode;
8391 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
8392 struct bio *bio;
8393 struct bio *orig_bio = dip->orig_bio;
8394 struct bio_vec *bvec = orig_bio->bi_io_vec;
4f024f37 8395 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
8396 u64 file_offset = dip->logical_offset;
8397 u64 submit_len = 0;
8398 u64 map_length;
5f4dc8fc 8399 u32 blocksize = root->sectorsize;
1ae39938 8400 int async_submit = 0;
5f4dc8fc
CR
8401 int nr_sectors;
8402 int ret;
8403 int i;
e65e1535 8404
4f024f37 8405 map_length = orig_bio->bi_iter.bi_size;
37226b21
MC
8406 ret = btrfs_map_block(root->fs_info, bio_op(orig_bio),
8407 start_sector << 9, &map_length, NULL, 0);
7a5c3c9b 8408 if (ret)
e65e1535 8409 return -EIO;
facc8a22 8410
4f024f37 8411 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a 8412 bio = orig_bio;
c1dc0896 8413 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8414 goto submit;
8415 }
8416
53b381b3 8417 /* async crcs make it difficult to collect full stripe writes. */
ffe2d203 8418 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8419 async_submit = 0;
8420 else
8421 async_submit = 1;
8422
02f57c7a
JB
8423 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8424 if (!bio)
8425 return -ENOMEM;
7a5c3c9b 8426
1eff9d32 8427 bio_set_op_attrs(bio, bio_op(orig_bio), orig_bio->bi_opf);
02f57c7a
JB
8428 bio->bi_private = dip;
8429 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8430 btrfs_io_bio(bio)->logical = file_offset;
02f57c7a
JB
8431 atomic_inc(&dip->pending_bios);
8432
e65e1535 8433 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5f4dc8fc
CR
8434 nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len);
8435 i = 0;
8436next_block:
8437 if (unlikely(map_length < submit_len + blocksize ||
8438 bio_add_page(bio, bvec->bv_page, blocksize,
8439 bvec->bv_offset + (i * blocksize)) < blocksize)) {
e65e1535
MX
8440 /*
8441 * inc the count before we submit the bio so
8442 * we know the end IO handler won't happen before
8443 * we inc the count. Otherwise, the dip might get freed
8444 * before we're done setting it up
8445 */
8446 atomic_inc(&dip->pending_bios);
81a75f67 8447 ret = __btrfs_submit_dio_bio(bio, inode,
e65e1535 8448 file_offset, skip_sum,
c329861d 8449 async_submit);
e65e1535
MX
8450 if (ret) {
8451 bio_put(bio);
8452 atomic_dec(&dip->pending_bios);
8453 goto out_err;
8454 }
8455
e65e1535
MX
8456 start_sector += submit_len >> 9;
8457 file_offset += submit_len;
8458
8459 submit_len = 0;
e65e1535
MX
8460
8461 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8462 start_sector, GFP_NOFS);
8463 if (!bio)
8464 goto out_err;
1eff9d32 8465 bio_set_op_attrs(bio, bio_op(orig_bio), orig_bio->bi_opf);
e65e1535
MX
8466 bio->bi_private = dip;
8467 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8468 btrfs_io_bio(bio)->logical = file_offset;
e65e1535 8469
4f024f37 8470 map_length = orig_bio->bi_iter.bi_size;
37226b21 8471 ret = btrfs_map_block(root->fs_info, bio_op(orig_bio),
3ec706c8 8472 start_sector << 9,
e65e1535
MX
8473 &map_length, NULL, 0);
8474 if (ret) {
8475 bio_put(bio);
8476 goto out_err;
8477 }
5f4dc8fc
CR
8478
8479 goto next_block;
e65e1535 8480 } else {
5f4dc8fc
CR
8481 submit_len += blocksize;
8482 if (--nr_sectors) {
8483 i++;
8484 goto next_block;
8485 }
e65e1535
MX
8486 bvec++;
8487 }
8488 }
8489
02f57c7a 8490submit:
81a75f67 8491 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
c329861d 8492 async_submit);
e65e1535
MX
8493 if (!ret)
8494 return 0;
8495
8496 bio_put(bio);
8497out_err:
8498 dip->errors = 1;
8499 /*
8500 * before atomic variable goto zero, we must
8501 * make sure dip->errors is perceived to be set.
8502 */
4e857c58 8503 smp_mb__before_atomic();
e65e1535
MX
8504 if (atomic_dec_and_test(&dip->pending_bios))
8505 bio_io_error(dip->orig_bio);
8506
8507 /* bio_end_io() will handle error, so we needn't return it */
8508 return 0;
8509}
8510
8a4c1e42
MC
8511static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8512 loff_t file_offset)
4b46fce2 8513{
61de718f
FM
8514 struct btrfs_dio_private *dip = NULL;
8515 struct bio *io_bio = NULL;
23ea8e5a 8516 struct btrfs_io_bio *btrfs_bio;
4b46fce2 8517 int skip_sum;
8a4c1e42 8518 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8519 int ret = 0;
8520
8521 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8522
9be3395b 8523 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
8524 if (!io_bio) {
8525 ret = -ENOMEM;
8526 goto free_ordered;
8527 }
8528
c1dc0896 8529 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8530 if (!dip) {
8531 ret = -ENOMEM;
61de718f 8532 goto free_ordered;
4b46fce2 8533 }
4b46fce2 8534
9be3395b 8535 dip->private = dio_bio->bi_private;
4b46fce2
JB
8536 dip->inode = inode;
8537 dip->logical_offset = file_offset;
4f024f37
KO
8538 dip->bytes = dio_bio->bi_iter.bi_size;
8539 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 8540 io_bio->bi_private = dip;
9be3395b
CM
8541 dip->orig_bio = io_bio;
8542 dip->dio_bio = dio_bio;
e65e1535 8543 atomic_set(&dip->pending_bios, 0);
c1dc0896
MX
8544 btrfs_bio = btrfs_io_bio(io_bio);
8545 btrfs_bio->logical = file_offset;
4b46fce2 8546
c1dc0896 8547 if (write) {
9be3395b 8548 io_bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8549 } else {
9be3395b 8550 io_bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8551 dip->subio_endio = btrfs_subio_endio_read;
8552 }
4b46fce2 8553
f28a4928
FM
8554 /*
8555 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8556 * even if we fail to submit a bio, because in such case we do the
8557 * corresponding error handling below and it must not be done a second
8558 * time by btrfs_direct_IO().
8559 */
8560 if (write) {
8561 struct btrfs_dio_data *dio_data = current->journal_info;
8562
8563 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8564 dip->bytes;
8565 dio_data->unsubmitted_oe_range_start =
8566 dio_data->unsubmitted_oe_range_end;
8567 }
8568
81a75f67 8569 ret = btrfs_submit_direct_hook(dip, skip_sum);
e65e1535 8570 if (!ret)
eaf25d93 8571 return;
9be3395b 8572
23ea8e5a
MX
8573 if (btrfs_bio->end_io)
8574 btrfs_bio->end_io(btrfs_bio, ret);
9be3395b 8575
4b46fce2
JB
8576free_ordered:
8577 /*
61de718f
FM
8578 * If we arrived here it means either we failed to submit the dip
8579 * or we either failed to clone the dio_bio or failed to allocate the
8580 * dip. If we cloned the dio_bio and allocated the dip, we can just
8581 * call bio_endio against our io_bio so that we get proper resource
8582 * cleanup if we fail to submit the dip, otherwise, we must do the
8583 * same as btrfs_endio_direct_[write|read] because we can't call these
8584 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8585 */
61de718f 8586 if (io_bio && dip) {
4246a0b6
CH
8587 io_bio->bi_error = -EIO;
8588 bio_endio(io_bio);
61de718f
FM
8589 /*
8590 * The end io callbacks free our dip, do the final put on io_bio
8591 * and all the cleanup and final put for dio_bio (through
8592 * dio_end_io()).
8593 */
8594 dip = NULL;
8595 io_bio = NULL;
8596 } else {
14543774
FM
8597 if (write)
8598 btrfs_endio_direct_write_update_ordered(inode,
8599 file_offset,
8600 dio_bio->bi_iter.bi_size,
8601 0);
8602 else
61de718f
FM
8603 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8604 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8605
4246a0b6 8606 dio_bio->bi_error = -EIO;
61de718f
FM
8607 /*
8608 * Releases and cleans up our dio_bio, no need to bio_put()
8609 * nor bio_endio()/bio_io_error() against dio_bio.
8610 */
8611 dio_end_io(dio_bio, ret);
4b46fce2 8612 }
61de718f
FM
8613 if (io_bio)
8614 bio_put(io_bio);
8615 kfree(dip);
4b46fce2
JB
8616}
8617
6f673763 8618static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
28060d5d 8619 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8620{
8621 int seg;
a1b75f7d 8622 int i;
5a5f79b5
CM
8623 unsigned blocksize_mask = root->sectorsize - 1;
8624 ssize_t retval = -EINVAL;
5a5f79b5
CM
8625
8626 if (offset & blocksize_mask)
8627 goto out;
8628
28060d5d
AV
8629 if (iov_iter_alignment(iter) & blocksize_mask)
8630 goto out;
a1b75f7d 8631
28060d5d 8632 /* If this is a write we don't need to check anymore */
6f673763 8633 if (iov_iter_rw(iter) == WRITE)
28060d5d
AV
8634 return 0;
8635 /*
8636 * Check to make sure we don't have duplicate iov_base's in this
8637 * iovec, if so return EINVAL, otherwise we'll get csum errors
8638 * when reading back.
8639 */
8640 for (seg = 0; seg < iter->nr_segs; seg++) {
8641 for (i = seg + 1; i < iter->nr_segs; i++) {
8642 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8643 goto out;
8644 }
5a5f79b5
CM
8645 }
8646 retval = 0;
8647out:
8648 return retval;
8649}
eb838e73 8650
c8b8e32d 8651static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8652{
4b46fce2
JB
8653 struct file *file = iocb->ki_filp;
8654 struct inode *inode = file->f_mapping->host;
50745b0a 8655 struct btrfs_root *root = BTRFS_I(inode)->root;
8656 struct btrfs_dio_data dio_data = { 0 };
c8b8e32d 8657 loff_t offset = iocb->ki_pos;
0934856d 8658 size_t count = 0;
2e60a51e 8659 int flags = 0;
38851cc1
MX
8660 bool wakeup = true;
8661 bool relock = false;
0934856d 8662 ssize_t ret;
4b46fce2 8663
6f673763 8664 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
5a5f79b5 8665 return 0;
3f7c579c 8666
fe0f07d0 8667 inode_dio_begin(inode);
4e857c58 8668 smp_mb__after_atomic();
38851cc1 8669
0e267c44 8670 /*
41bd9ca4
MX
8671 * The generic stuff only does filemap_write_and_wait_range, which
8672 * isn't enough if we've written compressed pages to this area, so
8673 * we need to flush the dirty pages again to make absolutely sure
8674 * that any outstanding dirty pages are on disk.
0e267c44 8675 */
a6cbcd4a 8676 count = iov_iter_count(iter);
41bd9ca4
MX
8677 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8678 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8679 filemap_fdatawrite_range(inode->i_mapping, offset,
8680 offset + count - 1);
0e267c44 8681
6f673763 8682 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8683 /*
8684 * If the write DIO is beyond the EOF, we need update
8685 * the isize, but it is protected by i_mutex. So we can
8686 * not unlock the i_mutex at this case.
8687 */
8688 if (offset + count <= inode->i_size) {
5955102c 8689 inode_unlock(inode);
38851cc1
MX
8690 relock = true;
8691 }
7cf5b976 8692 ret = btrfs_delalloc_reserve_space(inode, offset, count);
0934856d 8693 if (ret)
38851cc1 8694 goto out;
50745b0a 8695 dio_data.outstanding_extents = div64_u64(count +
e1cbbfa5
JB
8696 BTRFS_MAX_EXTENT_SIZE - 1,
8697 BTRFS_MAX_EXTENT_SIZE);
8698
8699 /*
8700 * We need to know how many extents we reserved so that we can
8701 * do the accounting properly if we go over the number we
8702 * originally calculated. Abuse current->journal_info for this.
8703 */
50745b0a 8704 dio_data.reserve = round_up(count, root->sectorsize);
f28a4928
FM
8705 dio_data.unsubmitted_oe_range_start = (u64)offset;
8706 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8707 current->journal_info = &dio_data;
ee39b432
DS
8708 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8709 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8710 inode_dio_end(inode);
38851cc1
MX
8711 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8712 wakeup = false;
0934856d
MX
8713 }
8714
17f8c842
OS
8715 ret = __blockdev_direct_IO(iocb, inode,
8716 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
c8b8e32d 8717 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8718 btrfs_submit_direct, flags);
6f673763 8719 if (iov_iter_rw(iter) == WRITE) {
e1cbbfa5 8720 current->journal_info = NULL;
ddba1bfc 8721 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8722 if (dio_data.reserve)
7cf5b976
QW
8723 btrfs_delalloc_release_space(inode, offset,
8724 dio_data.reserve);
f28a4928
FM
8725 /*
8726 * On error we might have left some ordered extents
8727 * without submitting corresponding bios for them, so
8728 * cleanup them up to avoid other tasks getting them
8729 * and waiting for them to complete forever.
8730 */
8731 if (dio_data.unsubmitted_oe_range_start <
8732 dio_data.unsubmitted_oe_range_end)
8733 btrfs_endio_direct_write_update_ordered(inode,
8734 dio_data.unsubmitted_oe_range_start,
8735 dio_data.unsubmitted_oe_range_end -
8736 dio_data.unsubmitted_oe_range_start,
8737 0);
ddba1bfc 8738 } else if (ret >= 0 && (size_t)ret < count)
7cf5b976
QW
8739 btrfs_delalloc_release_space(inode, offset,
8740 count - (size_t)ret);
0934856d 8741 }
38851cc1 8742out:
2e60a51e 8743 if (wakeup)
fe0f07d0 8744 inode_dio_end(inode);
38851cc1 8745 if (relock)
5955102c 8746 inode_lock(inode);
0934856d
MX
8747
8748 return ret;
16432985
CM
8749}
8750
05dadc09
TI
8751#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8752
1506fcc8
YS
8753static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8754 __u64 start, __u64 len)
8755{
05dadc09
TI
8756 int ret;
8757
8758 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8759 if (ret)
8760 return ret;
8761
ec29ed5b 8762 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8763}
8764
a52d9a80 8765int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8766{
d1310b2e
CM
8767 struct extent_io_tree *tree;
8768 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8769 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8770}
1832a6d5 8771
a52d9a80 8772static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8773{
d1310b2e 8774 struct extent_io_tree *tree;
be7bd730
JB
8775 struct inode *inode = page->mapping->host;
8776 int ret;
b888db2b
CM
8777
8778 if (current->flags & PF_MEMALLOC) {
8779 redirty_page_for_writepage(wbc, page);
8780 unlock_page(page);
8781 return 0;
8782 }
be7bd730
JB
8783
8784 /*
8785 * If we are under memory pressure we will call this directly from the
8786 * VM, we need to make sure we have the inode referenced for the ordered
8787 * extent. If not just return like we didn't do anything.
8788 */
8789 if (!igrab(inode)) {
8790 redirty_page_for_writepage(wbc, page);
8791 return AOP_WRITEPAGE_ACTIVATE;
8792 }
d1310b2e 8793 tree = &BTRFS_I(page->mapping->host)->io_tree;
be7bd730
JB
8794 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8795 btrfs_add_delayed_iput(inode);
8796 return ret;
9ebefb18
CM
8797}
8798
48a3b636
ES
8799static int btrfs_writepages(struct address_space *mapping,
8800 struct writeback_control *wbc)
b293f02e 8801{
d1310b2e 8802 struct extent_io_tree *tree;
771ed689 8803
d1310b2e 8804 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8805 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8806}
8807
3ab2fb5a
CM
8808static int
8809btrfs_readpages(struct file *file, struct address_space *mapping,
8810 struct list_head *pages, unsigned nr_pages)
8811{
d1310b2e
CM
8812 struct extent_io_tree *tree;
8813 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8814 return extent_readpages(tree, mapping, pages, nr_pages,
8815 btrfs_get_extent);
8816}
e6dcd2dc 8817static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8818{
d1310b2e
CM
8819 struct extent_io_tree *tree;
8820 struct extent_map_tree *map;
a52d9a80 8821 int ret;
8c2383c3 8822
d1310b2e
CM
8823 tree = &BTRFS_I(page->mapping->host)->io_tree;
8824 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8825 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8826 if (ret == 1) {
8827 ClearPagePrivate(page);
8828 set_page_private(page, 0);
09cbfeaf 8829 put_page(page);
39279cc3 8830 }
a52d9a80 8831 return ret;
39279cc3
CM
8832}
8833
e6dcd2dc
CM
8834static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8835{
98509cfc
CM
8836 if (PageWriteback(page) || PageDirty(page))
8837 return 0;
b335b003 8838 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
8839}
8840
d47992f8
LC
8841static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8842 unsigned int length)
39279cc3 8843{
5fd02043 8844 struct inode *inode = page->mapping->host;
d1310b2e 8845 struct extent_io_tree *tree;
e6dcd2dc 8846 struct btrfs_ordered_extent *ordered;
2ac55d41 8847 struct extent_state *cached_state = NULL;
e6dcd2dc 8848 u64 page_start = page_offset(page);
09cbfeaf 8849 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8850 u64 start;
8851 u64 end;
131e404a 8852 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8853
8b62b72b
CM
8854 /*
8855 * we have the page locked, so new writeback can't start,
8856 * and the dirty bit won't be cleared while we are here.
8857 *
8858 * Wait for IO on this page so that we can safely clear
8859 * the PagePrivate2 bit and do ordered accounting
8860 */
e6dcd2dc 8861 wait_on_page_writeback(page);
8b62b72b 8862
5fd02043 8863 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8864 if (offset) {
8865 btrfs_releasepage(page, GFP_NOFS);
8866 return;
8867 }
131e404a
FDBM
8868
8869 if (!inode_evicting)
ff13db41 8870 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8871again:
8872 start = page_start;
8873 ordered = btrfs_lookup_ordered_range(inode, start,
8874 page_end - start + 1);
e6dcd2dc 8875 if (ordered) {
dbfdb6d1 8876 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8877 /*
8878 * IO on this page will never be started, so we need
8879 * to account for any ordered extents now
8880 */
131e404a 8881 if (!inode_evicting)
dbfdb6d1 8882 clear_extent_bit(tree, start, end,
131e404a
FDBM
8883 EXTENT_DIRTY | EXTENT_DELALLOC |
8884 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8885 EXTENT_DEFRAG, 1, 0, &cached_state,
8886 GFP_NOFS);
8b62b72b
CM
8887 /*
8888 * whoever cleared the private bit is responsible
8889 * for the finish_ordered_io
8890 */
77cef2ec
JB
8891 if (TestClearPagePrivate2(page)) {
8892 struct btrfs_ordered_inode_tree *tree;
8893 u64 new_len;
8894
8895 tree = &BTRFS_I(inode)->ordered_tree;
8896
8897 spin_lock_irq(&tree->lock);
8898 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8899 new_len = start - ordered->file_offset;
77cef2ec
JB
8900 if (new_len < ordered->truncated_len)
8901 ordered->truncated_len = new_len;
8902 spin_unlock_irq(&tree->lock);
8903
8904 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8905 start,
8906 end - start + 1, 1))
77cef2ec 8907 btrfs_finish_ordered_io(ordered);
8b62b72b 8908 }
e6dcd2dc 8909 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8910 if (!inode_evicting) {
8911 cached_state = NULL;
dbfdb6d1 8912 lock_extent_bits(tree, start, end,
131e404a
FDBM
8913 &cached_state);
8914 }
dbfdb6d1
CR
8915
8916 start = end + 1;
8917 if (start < page_end)
8918 goto again;
131e404a
FDBM
8919 }
8920
b9d0b389
QW
8921 /*
8922 * Qgroup reserved space handler
8923 * Page here will be either
8924 * 1) Already written to disk
8925 * In this case, its reserved space is released from data rsv map
8926 * and will be freed by delayed_ref handler finally.
8927 * So even we call qgroup_free_data(), it won't decrease reserved
8928 * space.
8929 * 2) Not written to disk
8930 * This means the reserved space should be freed here.
8931 */
09cbfeaf 8932 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
131e404a
FDBM
8933 if (!inode_evicting) {
8934 clear_extent_bit(tree, page_start, page_end,
8935 EXTENT_LOCKED | EXTENT_DIRTY |
8936 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8937 EXTENT_DEFRAG, 1, 1,
8938 &cached_state, GFP_NOFS);
8939
8940 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8941 }
e6dcd2dc 8942
4a096752 8943 ClearPageChecked(page);
9ad6b7bc 8944 if (PagePrivate(page)) {
9ad6b7bc
CM
8945 ClearPagePrivate(page);
8946 set_page_private(page, 0);
09cbfeaf 8947 put_page(page);
9ad6b7bc 8948 }
39279cc3
CM
8949}
8950
9ebefb18
CM
8951/*
8952 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8953 * called from a page fault handler when a page is first dirtied. Hence we must
8954 * be careful to check for EOF conditions here. We set the page up correctly
8955 * for a written page which means we get ENOSPC checking when writing into
8956 * holes and correct delalloc and unwritten extent mapping on filesystems that
8957 * support these features.
8958 *
8959 * We are not allowed to take the i_mutex here so we have to play games to
8960 * protect against truncate races as the page could now be beyond EOF. Because
8961 * vmtruncate() writes the inode size before removing pages, once we have the
8962 * page lock we can determine safely if the page is beyond EOF. If it is not
8963 * beyond EOF, then the page is guaranteed safe against truncation until we
8964 * unlock the page.
8965 */
c2ec175c 8966int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 8967{
c2ec175c 8968 struct page *page = vmf->page;
496ad9aa 8969 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 8970 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
8971 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8972 struct btrfs_ordered_extent *ordered;
2ac55d41 8973 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8974 char *kaddr;
8975 unsigned long zero_start;
9ebefb18 8976 loff_t size;
1832a6d5 8977 int ret;
9998eb70 8978 int reserved = 0;
d0b7da88 8979 u64 reserved_space;
a52d9a80 8980 u64 page_start;
e6dcd2dc 8981 u64 page_end;
d0b7da88
CR
8982 u64 end;
8983
09cbfeaf 8984 reserved_space = PAGE_SIZE;
9ebefb18 8985
b2b5ef5c 8986 sb_start_pagefault(inode->i_sb);
df480633 8987 page_start = page_offset(page);
09cbfeaf 8988 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8989 end = page_end;
df480633 8990
d0b7da88
CR
8991 /*
8992 * Reserving delalloc space after obtaining the page lock can lead to
8993 * deadlock. For example, if a dirty page is locked by this function
8994 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8995 * dirty page write out, then the btrfs_writepage() function could
8996 * end up waiting indefinitely to get a lock on the page currently
8997 * being processed by btrfs_page_mkwrite() function.
8998 */
7cf5b976 8999 ret = btrfs_delalloc_reserve_space(inode, page_start,
d0b7da88 9000 reserved_space);
9998eb70 9001 if (!ret) {
e41f941a 9002 ret = file_update_time(vma->vm_file);
9998eb70
CM
9003 reserved = 1;
9004 }
56a76f82
NP
9005 if (ret) {
9006 if (ret == -ENOMEM)
9007 ret = VM_FAULT_OOM;
9008 else /* -ENOSPC, -EIO, etc */
9009 ret = VM_FAULT_SIGBUS;
9998eb70
CM
9010 if (reserved)
9011 goto out;
9012 goto out_noreserve;
56a76f82 9013 }
1832a6d5 9014
56a76f82 9015 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 9016again:
9ebefb18 9017 lock_page(page);
9ebefb18 9018 size = i_size_read(inode);
a52d9a80 9019
9ebefb18 9020 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 9021 (page_start >= size)) {
9ebefb18
CM
9022 /* page got truncated out from underneath us */
9023 goto out_unlock;
9024 }
e6dcd2dc
CM
9025 wait_on_page_writeback(page);
9026
ff13db41 9027 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
9028 set_page_extent_mapped(page);
9029
eb84ae03
CM
9030 /*
9031 * we can't set the delalloc bits if there are pending ordered
9032 * extents. Drop our locks and wait for them to finish
9033 */
d0b7da88 9034 ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
e6dcd2dc 9035 if (ordered) {
2ac55d41
JB
9036 unlock_extent_cached(io_tree, page_start, page_end,
9037 &cached_state, GFP_NOFS);
e6dcd2dc 9038 unlock_page(page);
eb84ae03 9039 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
9040 btrfs_put_ordered_extent(ordered);
9041 goto again;
9042 }
9043
09cbfeaf 9044 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
d0b7da88 9045 reserved_space = round_up(size - page_start, root->sectorsize);
09cbfeaf 9046 if (reserved_space < PAGE_SIZE) {
d0b7da88
CR
9047 end = page_start + reserved_space - 1;
9048 spin_lock(&BTRFS_I(inode)->lock);
9049 BTRFS_I(inode)->outstanding_extents++;
9050 spin_unlock(&BTRFS_I(inode)->lock);
9051 btrfs_delalloc_release_space(inode, page_start,
09cbfeaf 9052 PAGE_SIZE - reserved_space);
d0b7da88
CR
9053 }
9054 }
9055
fbf19087
JB
9056 /*
9057 * XXX - page_mkwrite gets called every time the page is dirtied, even
9058 * if it was already dirty, so for space accounting reasons we need to
9059 * clear any delalloc bits for the range we are fixing to save. There
9060 * is probably a better way to do this, but for now keep consistent with
9061 * prepare_pages in the normal write path.
9062 */
d0b7da88 9063 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
9064 EXTENT_DIRTY | EXTENT_DELALLOC |
9065 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 9066 0, 0, &cached_state, GFP_NOFS);
fbf19087 9067
d0b7da88 9068 ret = btrfs_set_extent_delalloc(inode, page_start, end,
b0985c40 9069 &cached_state, 0);
9ed74f2d 9070 if (ret) {
2ac55d41
JB
9071 unlock_extent_cached(io_tree, page_start, page_end,
9072 &cached_state, GFP_NOFS);
9ed74f2d
JB
9073 ret = VM_FAULT_SIGBUS;
9074 goto out_unlock;
9075 }
e6dcd2dc 9076 ret = 0;
9ebefb18
CM
9077
9078 /* page is wholly or partially inside EOF */
09cbfeaf
KS
9079 if (page_start + PAGE_SIZE > size)
9080 zero_start = size & ~PAGE_MASK;
9ebefb18 9081 else
09cbfeaf 9082 zero_start = PAGE_SIZE;
9ebefb18 9083
09cbfeaf 9084 if (zero_start != PAGE_SIZE) {
e6dcd2dc 9085 kaddr = kmap(page);
09cbfeaf 9086 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9087 flush_dcache_page(page);
9088 kunmap(page);
9089 }
247e743c 9090 ClearPageChecked(page);
e6dcd2dc 9091 set_page_dirty(page);
50a9b214 9092 SetPageUptodate(page);
5a3f23d5 9093
257c62e1
CM
9094 BTRFS_I(inode)->last_trans = root->fs_info->generation;
9095 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9096 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9097
2ac55d41 9098 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
9099
9100out_unlock:
b2b5ef5c
JK
9101 if (!ret) {
9102 sb_end_pagefault(inode->i_sb);
50a9b214 9103 return VM_FAULT_LOCKED;
b2b5ef5c 9104 }
9ebefb18 9105 unlock_page(page);
1832a6d5 9106out:
d0b7da88 9107 btrfs_delalloc_release_space(inode, page_start, reserved_space);
9998eb70 9108out_noreserve:
b2b5ef5c 9109 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
9110 return ret;
9111}
9112
a41ad394 9113static int btrfs_truncate(struct inode *inode)
39279cc3
CM
9114{
9115 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9116 struct btrfs_block_rsv *rsv;
a71754fc 9117 int ret = 0;
3893e33b 9118 int err = 0;
39279cc3 9119 struct btrfs_trans_handle *trans;
dbe674a9 9120 u64 mask = root->sectorsize - 1;
07127184 9121 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 9122
0ef8b726
JB
9123 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9124 (u64)-1);
9125 if (ret)
9126 return ret;
39279cc3 9127
fcb80c2a 9128 /*
01327610 9129 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
fcb80c2a
JB
9130 * 3 things going on here
9131 *
9132 * 1) We need to reserve space for our orphan item and the space to
9133 * delete our orphan item. Lord knows we don't want to have a dangling
9134 * orphan item because we didn't reserve space to remove it.
9135 *
9136 * 2) We need to reserve space to update our inode.
9137 *
9138 * 3) We need to have something to cache all the space that is going to
9139 * be free'd up by the truncate operation, but also have some slack
9140 * space reserved in case it uses space during the truncate (thank you
9141 * very much snapshotting).
9142 *
01327610 9143 * And we need these to all be separate. The fact is we can use a lot of
fcb80c2a 9144 * space doing the truncate, and we have no earthly idea how much space
01327610 9145 * we will use, so we need the truncate reservation to be separate so it
fcb80c2a
JB
9146 * doesn't end up using space reserved for updating the inode or
9147 * removing the orphan item. We also need to be able to stop the
9148 * transaction and start a new one, which means we need to be able to
9149 * update the inode several times, and we have no idea of knowing how
9150 * many times that will be, so we can't just reserve 1 item for the
01327610 9151 * entirety of the operation, so that has to be done separately as well.
fcb80c2a
JB
9152 * Then there is the orphan item, which does indeed need to be held on
9153 * to for the whole operation, and we need nobody to touch this reserved
9154 * space except the orphan code.
9155 *
9156 * So that leaves us with
9157 *
9158 * 1) root->orphan_block_rsv - for the orphan deletion.
9159 * 2) rsv - for the truncate reservation, which we will steal from the
9160 * transaction reservation.
9161 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9162 * updating the inode.
9163 */
66d8f3dd 9164 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9165 if (!rsv)
9166 return -ENOMEM;
4a338542 9167 rsv->size = min_size;
ca7e70f5 9168 rsv->failfast = 1;
f0cd846e 9169
907cbceb 9170 /*
07127184 9171 * 1 for the truncate slack space
907cbceb
JB
9172 * 1 for updating the inode.
9173 */
f3fe820c 9174 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9175 if (IS_ERR(trans)) {
9176 err = PTR_ERR(trans);
9177 goto out;
9178 }
f0cd846e 9179
907cbceb
JB
9180 /* Migrate the slack space for the truncate to our reserve */
9181 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
25d609f8 9182 min_size, 0);
fcb80c2a 9183 BUG_ON(ret);
f0cd846e 9184
5dc562c5
JB
9185 /*
9186 * So if we truncate and then write and fsync we normally would just
9187 * write the extents that changed, which is a problem if we need to
9188 * first truncate that entire inode. So set this flag so we write out
9189 * all of the extents in the inode to the sync log so we're completely
9190 * safe.
9191 */
9192 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9193 trans->block_rsv = rsv;
907cbceb 9194
8082510e
YZ
9195 while (1) {
9196 ret = btrfs_truncate_inode_items(trans, root, inode,
9197 inode->i_size,
9198 BTRFS_EXTENT_DATA_KEY);
28ed1345 9199 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 9200 err = ret;
8082510e 9201 break;
3893e33b 9202 }
39279cc3 9203
fcb80c2a 9204 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 9205 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9206 if (ret) {
9207 err = ret;
9208 break;
9209 }
ca7e70f5 9210
8082510e 9211 btrfs_end_transaction(trans, root);
b53d3f5d 9212 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
9213
9214 trans = btrfs_start_transaction(root, 2);
9215 if (IS_ERR(trans)) {
9216 ret = err = PTR_ERR(trans);
9217 trans = NULL;
9218 break;
9219 }
9220
9221 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
25d609f8 9222 rsv, min_size, 0);
ca7e70f5
JB
9223 BUG_ON(ret); /* shouldn't happen */
9224 trans->block_rsv = rsv;
8082510e
YZ
9225 }
9226
9227 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 9228 trans->block_rsv = root->orphan_block_rsv;
8082510e 9229 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
9230 if (ret)
9231 err = ret;
8082510e
YZ
9232 }
9233
917c16b2
CM
9234 if (trans) {
9235 trans->block_rsv = &root->fs_info->trans_block_rsv;
9236 ret = btrfs_update_inode(trans, root, inode);
9237 if (ret && !err)
9238 err = ret;
7b128766 9239
7ad85bb7 9240 ret = btrfs_end_transaction(trans, root);
b53d3f5d 9241 btrfs_btree_balance_dirty(root);
917c16b2 9242 }
fcb80c2a
JB
9243out:
9244 btrfs_free_block_rsv(root, rsv);
9245
3893e33b
JB
9246 if (ret && !err)
9247 err = ret;
a41ad394 9248
3893e33b 9249 return err;
39279cc3
CM
9250}
9251
d352ac68
CM
9252/*
9253 * create a new subvolume directory/inode (helper for the ioctl).
9254 */
d2fb3437 9255int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9256 struct btrfs_root *new_root,
9257 struct btrfs_root *parent_root,
9258 u64 new_dirid)
39279cc3 9259{
39279cc3 9260 struct inode *inode;
76dda93c 9261 int err;
00e4e6b3 9262 u64 index = 0;
39279cc3 9263
12fc9d09
FA
9264 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9265 new_dirid, new_dirid,
9266 S_IFDIR | (~current_umask() & S_IRWXUGO),
9267 &index);
54aa1f4d 9268 if (IS_ERR(inode))
f46b5a66 9269 return PTR_ERR(inode);
39279cc3
CM
9270 inode->i_op = &btrfs_dir_inode_operations;
9271 inode->i_fop = &btrfs_dir_file_operations;
9272
bfe86848 9273 set_nlink(inode, 1);
dbe674a9 9274 btrfs_i_size_write(inode, 0);
b0d5d10f 9275 unlock_new_inode(inode);
3b96362c 9276
63541927
FDBM
9277 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9278 if (err)
9279 btrfs_err(new_root->fs_info,
351fd353 9280 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9281 new_root->root_key.objectid, err);
9282
76dda93c 9283 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9284
76dda93c 9285 iput(inode);
ce598979 9286 return err;
39279cc3
CM
9287}
9288
39279cc3
CM
9289struct inode *btrfs_alloc_inode(struct super_block *sb)
9290{
9291 struct btrfs_inode *ei;
2ead6ae7 9292 struct inode *inode;
39279cc3
CM
9293
9294 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9295 if (!ei)
9296 return NULL;
2ead6ae7
YZ
9297
9298 ei->root = NULL;
2ead6ae7 9299 ei->generation = 0;
15ee9bc7 9300 ei->last_trans = 0;
257c62e1 9301 ei->last_sub_trans = 0;
e02119d5 9302 ei->logged_trans = 0;
2ead6ae7 9303 ei->delalloc_bytes = 0;
47059d93 9304 ei->defrag_bytes = 0;
2ead6ae7
YZ
9305 ei->disk_i_size = 0;
9306 ei->flags = 0;
7709cde3 9307 ei->csum_bytes = 0;
2ead6ae7 9308 ei->index_cnt = (u64)-1;
67de1176 9309 ei->dir_index = 0;
2ead6ae7 9310 ei->last_unlink_trans = 0;
46d8bc34 9311 ei->last_log_commit = 0;
8089fe62 9312 ei->delayed_iput_count = 0;
2ead6ae7 9313
9e0baf60
JB
9314 spin_lock_init(&ei->lock);
9315 ei->outstanding_extents = 0;
9316 ei->reserved_extents = 0;
2ead6ae7 9317
72ac3c0d 9318 ei->runtime_flags = 0;
261507a0 9319 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9320
16cdcec7
MX
9321 ei->delayed_node = NULL;
9322
9cc97d64 9323 ei->i_otime.tv_sec = 0;
9324 ei->i_otime.tv_nsec = 0;
9325
2ead6ae7 9326 inode = &ei->vfs_inode;
a8067e02 9327 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
9328 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9329 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
9330 ei->io_tree.track_uptodate = 1;
9331 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9332 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9333 mutex_init(&ei->log_mutex);
f248679e 9334 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9335 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9336 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9337 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9338 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9339 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9340
9341 return inode;
39279cc3
CM
9342}
9343
aaedb55b
JB
9344#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9345void btrfs_test_destroy_inode(struct inode *inode)
9346{
9347 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9348 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9349}
9350#endif
9351
fa0d7e3d
NP
9352static void btrfs_i_callback(struct rcu_head *head)
9353{
9354 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9355 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9356}
9357
39279cc3
CM
9358void btrfs_destroy_inode(struct inode *inode)
9359{
e6dcd2dc 9360 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9361 struct btrfs_root *root = BTRFS_I(inode)->root;
9362
b3d9b7a3 9363 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9364 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
9365 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9366 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
9367 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9368 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9369 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9370
a6dbd429
JB
9371 /*
9372 * This can happen where we create an inode, but somebody else also
9373 * created the same inode and we need to destroy the one we already
9374 * created.
9375 */
9376 if (!root)
9377 goto free;
9378
8a35d95f
JB
9379 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9380 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 9381 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 9382 btrfs_ino(inode));
8a35d95f 9383 atomic_dec(&root->orphan_inodes);
7b128766 9384 }
7b128766 9385
d397712b 9386 while (1) {
e6dcd2dc
CM
9387 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9388 if (!ordered)
9389 break;
9390 else {
c2cf52eb 9391 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 9392 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9393 btrfs_remove_ordered_extent(inode, ordered);
9394 btrfs_put_ordered_extent(ordered);
9395 btrfs_put_ordered_extent(ordered);
9396 }
9397 }
56fa9d07 9398 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9399 inode_tree_del(inode);
5b21f2ed 9400 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 9401free:
fa0d7e3d 9402 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9403}
9404
45321ac5 9405int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9406{
9407 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9408
6379ef9f
NA
9409 if (root == NULL)
9410 return 1;
9411
fa6ac876 9412 /* the snap/subvol tree is on deleting */
69e9c6c6 9413 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9414 return 1;
76dda93c 9415 else
45321ac5 9416 return generic_drop_inode(inode);
76dda93c
YZ
9417}
9418
0ee0fda0 9419static void init_once(void *foo)
39279cc3
CM
9420{
9421 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9422
9423 inode_init_once(&ei->vfs_inode);
9424}
9425
9426void btrfs_destroy_cachep(void)
9427{
8c0a8537
KS
9428 /*
9429 * Make sure all delayed rcu free inodes are flushed before we
9430 * destroy cache.
9431 */
9432 rcu_barrier();
5598e900
KM
9433 kmem_cache_destroy(btrfs_inode_cachep);
9434 kmem_cache_destroy(btrfs_trans_handle_cachep);
9435 kmem_cache_destroy(btrfs_transaction_cachep);
9436 kmem_cache_destroy(btrfs_path_cachep);
9437 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9438}
9439
9440int btrfs_init_cachep(void)
9441{
837e1972 9442 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9443 sizeof(struct btrfs_inode), 0,
5d097056
VD
9444 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9445 init_once);
39279cc3
CM
9446 if (!btrfs_inode_cachep)
9447 goto fail;
9601e3f6 9448
837e1972 9449 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9450 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9451 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9452 if (!btrfs_trans_handle_cachep)
9453 goto fail;
9601e3f6 9454
837e1972 9455 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6 9456 sizeof(struct btrfs_transaction), 0,
fba4b697 9457 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9458 if (!btrfs_transaction_cachep)
9459 goto fail;
9601e3f6 9460
837e1972 9461 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9462 sizeof(struct btrfs_path), 0,
fba4b697 9463 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9464 if (!btrfs_path_cachep)
9465 goto fail;
9601e3f6 9466
837e1972 9467 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9468 sizeof(struct btrfs_free_space), 0,
fba4b697 9469 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9470 if (!btrfs_free_space_cachep)
9471 goto fail;
9472
39279cc3
CM
9473 return 0;
9474fail:
9475 btrfs_destroy_cachep();
9476 return -ENOMEM;
9477}
9478
9479static int btrfs_getattr(struct vfsmount *mnt,
9480 struct dentry *dentry, struct kstat *stat)
9481{
df0af1a5 9482 u64 delalloc_bytes;
2b0143b5 9483 struct inode *inode = d_inode(dentry);
fadc0d8b
DS
9484 u32 blocksize = inode->i_sb->s_blocksize;
9485
39279cc3 9486 generic_fillattr(inode, stat);
0ee5dc67 9487 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9488
9489 spin_lock(&BTRFS_I(inode)->lock);
9490 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9491 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9492 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9493 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9494 return 0;
9495}
9496
cdd1fedf
DF
9497static int btrfs_rename_exchange(struct inode *old_dir,
9498 struct dentry *old_dentry,
9499 struct inode *new_dir,
9500 struct dentry *new_dentry)
9501{
9502 struct btrfs_trans_handle *trans;
9503 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9504 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9505 struct inode *new_inode = new_dentry->d_inode;
9506 struct inode *old_inode = old_dentry->d_inode;
9507 struct timespec ctime = CURRENT_TIME;
9508 struct dentry *parent;
9509 u64 old_ino = btrfs_ino(old_inode);
9510 u64 new_ino = btrfs_ino(new_inode);
9511 u64 old_idx = 0;
9512 u64 new_idx = 0;
9513 u64 root_objectid;
9514 int ret;
86e8aa0e
FM
9515 bool root_log_pinned = false;
9516 bool dest_log_pinned = false;
cdd1fedf
DF
9517
9518 /* we only allow rename subvolume link between subvolumes */
9519 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9520 return -EXDEV;
9521
9522 /* close the race window with snapshot create/destroy ioctl */
9523 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9524 down_read(&root->fs_info->subvol_sem);
9525 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9526 down_read(&dest->fs_info->subvol_sem);
9527
9528 /*
9529 * We want to reserve the absolute worst case amount of items. So if
9530 * both inodes are subvols and we need to unlink them then that would
9531 * require 4 item modifications, but if they are both normal inodes it
9532 * would require 5 item modifications, so we'll assume their normal
9533 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9534 * should cover the worst case number of items we'll modify.
9535 */
9536 trans = btrfs_start_transaction(root, 12);
9537 if (IS_ERR(trans)) {
9538 ret = PTR_ERR(trans);
9539 goto out_notrans;
9540 }
9541
9542 /*
9543 * We need to find a free sequence number both in the source and
9544 * in the destination directory for the exchange.
9545 */
9546 ret = btrfs_set_inode_index(new_dir, &old_idx);
9547 if (ret)
9548 goto out_fail;
9549 ret = btrfs_set_inode_index(old_dir, &new_idx);
9550 if (ret)
9551 goto out_fail;
9552
9553 BTRFS_I(old_inode)->dir_index = 0ULL;
9554 BTRFS_I(new_inode)->dir_index = 0ULL;
9555
9556 /* Reference for the source. */
9557 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9558 /* force full log commit if subvolume involved. */
9559 btrfs_set_log_full_commit(root->fs_info, trans);
9560 } else {
376e5a57
FM
9561 btrfs_pin_log_trans(root);
9562 root_log_pinned = true;
cdd1fedf
DF
9563 ret = btrfs_insert_inode_ref(trans, dest,
9564 new_dentry->d_name.name,
9565 new_dentry->d_name.len,
9566 old_ino,
9567 btrfs_ino(new_dir), old_idx);
9568 if (ret)
9569 goto out_fail;
cdd1fedf
DF
9570 }
9571
9572 /* And now for the dest. */
9573 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9574 /* force full log commit if subvolume involved. */
9575 btrfs_set_log_full_commit(dest->fs_info, trans);
9576 } else {
376e5a57
FM
9577 btrfs_pin_log_trans(dest);
9578 dest_log_pinned = true;
cdd1fedf
DF
9579 ret = btrfs_insert_inode_ref(trans, root,
9580 old_dentry->d_name.name,
9581 old_dentry->d_name.len,
9582 new_ino,
9583 btrfs_ino(old_dir), new_idx);
9584 if (ret)
9585 goto out_fail;
cdd1fedf
DF
9586 }
9587
9588 /* Update inode version and ctime/mtime. */
9589 inode_inc_iversion(old_dir);
9590 inode_inc_iversion(new_dir);
9591 inode_inc_iversion(old_inode);
9592 inode_inc_iversion(new_inode);
9593 old_dir->i_ctime = old_dir->i_mtime = ctime;
9594 new_dir->i_ctime = new_dir->i_mtime = ctime;
9595 old_inode->i_ctime = ctime;
9596 new_inode->i_ctime = ctime;
9597
9598 if (old_dentry->d_parent != new_dentry->d_parent) {
9599 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9600 btrfs_record_unlink_dir(trans, new_dir, new_inode, 1);
9601 }
9602
9603 /* src is a subvolume */
9604 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9605 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9606 ret = btrfs_unlink_subvol(trans, root, old_dir,
9607 root_objectid,
9608 old_dentry->d_name.name,
9609 old_dentry->d_name.len);
9610 } else { /* src is an inode */
9611 ret = __btrfs_unlink_inode(trans, root, old_dir,
9612 old_dentry->d_inode,
9613 old_dentry->d_name.name,
9614 old_dentry->d_name.len);
9615 if (!ret)
9616 ret = btrfs_update_inode(trans, root, old_inode);
9617 }
9618 if (ret) {
66642832 9619 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9620 goto out_fail;
9621 }
9622
9623 /* dest is a subvolume */
9624 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9625 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9626 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9627 root_objectid,
9628 new_dentry->d_name.name,
9629 new_dentry->d_name.len);
9630 } else { /* dest is an inode */
9631 ret = __btrfs_unlink_inode(trans, dest, new_dir,
9632 new_dentry->d_inode,
9633 new_dentry->d_name.name,
9634 new_dentry->d_name.len);
9635 if (!ret)
9636 ret = btrfs_update_inode(trans, dest, new_inode);
9637 }
9638 if (ret) {
66642832 9639 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9640 goto out_fail;
9641 }
9642
9643 ret = btrfs_add_link(trans, new_dir, old_inode,
9644 new_dentry->d_name.name,
9645 new_dentry->d_name.len, 0, old_idx);
9646 if (ret) {
66642832 9647 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9648 goto out_fail;
9649 }
9650
9651 ret = btrfs_add_link(trans, old_dir, new_inode,
9652 old_dentry->d_name.name,
9653 old_dentry->d_name.len, 0, new_idx);
9654 if (ret) {
66642832 9655 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9656 goto out_fail;
9657 }
9658
9659 if (old_inode->i_nlink == 1)
9660 BTRFS_I(old_inode)->dir_index = old_idx;
9661 if (new_inode->i_nlink == 1)
9662 BTRFS_I(new_inode)->dir_index = new_idx;
9663
86e8aa0e 9664 if (root_log_pinned) {
cdd1fedf
DF
9665 parent = new_dentry->d_parent;
9666 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9667 btrfs_end_log_trans(root);
86e8aa0e 9668 root_log_pinned = false;
cdd1fedf 9669 }
86e8aa0e 9670 if (dest_log_pinned) {
cdd1fedf
DF
9671 parent = old_dentry->d_parent;
9672 btrfs_log_new_name(trans, new_inode, new_dir, parent);
9673 btrfs_end_log_trans(dest);
86e8aa0e 9674 dest_log_pinned = false;
cdd1fedf
DF
9675 }
9676out_fail:
86e8aa0e
FM
9677 /*
9678 * If we have pinned a log and an error happened, we unpin tasks
9679 * trying to sync the log and force them to fallback to a transaction
9680 * commit if the log currently contains any of the inodes involved in
9681 * this rename operation (to ensure we do not persist a log with an
9682 * inconsistent state for any of these inodes or leading to any
9683 * inconsistencies when replayed). If the transaction was aborted, the
9684 * abortion reason is propagated to userspace when attempting to commit
9685 * the transaction. If the log does not contain any of these inodes, we
9686 * allow the tasks to sync it.
9687 */
9688 if (ret && (root_log_pinned || dest_log_pinned)) {
9689 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9690 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9691 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9692 (new_inode &&
9693 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9694 btrfs_set_log_full_commit(root->fs_info, trans);
9695
9696 if (root_log_pinned) {
9697 btrfs_end_log_trans(root);
9698 root_log_pinned = false;
9699 }
9700 if (dest_log_pinned) {
9701 btrfs_end_log_trans(dest);
9702 dest_log_pinned = false;
9703 }
9704 }
cdd1fedf
DF
9705 ret = btrfs_end_transaction(trans, root);
9706out_notrans:
9707 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9708 up_read(&dest->fs_info->subvol_sem);
9709 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9710 up_read(&root->fs_info->subvol_sem);
9711
9712 return ret;
9713}
9714
9715static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9716 struct btrfs_root *root,
9717 struct inode *dir,
9718 struct dentry *dentry)
9719{
9720 int ret;
9721 struct inode *inode;
9722 u64 objectid;
9723 u64 index;
9724
9725 ret = btrfs_find_free_ino(root, &objectid);
9726 if (ret)
9727 return ret;
9728
9729 inode = btrfs_new_inode(trans, root, dir,
9730 dentry->d_name.name,
9731 dentry->d_name.len,
9732 btrfs_ino(dir),
9733 objectid,
9734 S_IFCHR | WHITEOUT_MODE,
9735 &index);
9736
9737 if (IS_ERR(inode)) {
9738 ret = PTR_ERR(inode);
9739 return ret;
9740 }
9741
9742 inode->i_op = &btrfs_special_inode_operations;
9743 init_special_inode(inode, inode->i_mode,
9744 WHITEOUT_DEV);
9745
9746 ret = btrfs_init_inode_security(trans, inode, dir,
9747 &dentry->d_name);
9748 if (ret)
c9901618 9749 goto out;
cdd1fedf
DF
9750
9751 ret = btrfs_add_nondir(trans, dir, dentry,
9752 inode, 0, index);
9753 if (ret)
c9901618 9754 goto out;
cdd1fedf
DF
9755
9756 ret = btrfs_update_inode(trans, root, inode);
c9901618 9757out:
cdd1fedf 9758 unlock_new_inode(inode);
c9901618
FM
9759 if (ret)
9760 inode_dec_link_count(inode);
cdd1fedf
DF
9761 iput(inode);
9762
c9901618 9763 return ret;
cdd1fedf
DF
9764}
9765
d397712b 9766static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9767 struct inode *new_dir, struct dentry *new_dentry,
9768 unsigned int flags)
39279cc3
CM
9769{
9770 struct btrfs_trans_handle *trans;
5062af35 9771 unsigned int trans_num_items;
39279cc3 9772 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9773 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9774 struct inode *new_inode = d_inode(new_dentry);
9775 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9776 u64 index = 0;
4df27c4d 9777 u64 root_objectid;
39279cc3 9778 int ret;
33345d01 9779 u64 old_ino = btrfs_ino(old_inode);
3dc9e8f7 9780 bool log_pinned = false;
39279cc3 9781
33345d01 9782 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9783 return -EPERM;
9784
4df27c4d 9785 /* we only allow rename subvolume link between subvolumes */
33345d01 9786 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9787 return -EXDEV;
9788
33345d01
LZ
9789 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9790 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9791 return -ENOTEMPTY;
5f39d397 9792
4df27c4d
YZ
9793 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9794 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9795 return -ENOTEMPTY;
9c52057c
CM
9796
9797
9798 /* check for collisions, even if the name isn't there */
4871c158 9799 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9800 new_dentry->d_name.name,
9801 new_dentry->d_name.len);
9802
9803 if (ret) {
9804 if (ret == -EEXIST) {
9805 /* we shouldn't get
9806 * eexist without a new_inode */
fae7f21c 9807 if (WARN_ON(!new_inode)) {
9c52057c
CM
9808 return ret;
9809 }
9810 } else {
9811 /* maybe -EOVERFLOW */
9812 return ret;
9813 }
9814 }
9815 ret = 0;
9816
5a3f23d5 9817 /*
8d875f95
CM
9818 * we're using rename to replace one file with another. Start IO on it
9819 * now so we don't add too much work to the end of the transaction
5a3f23d5 9820 */
8d875f95 9821 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9822 filemap_flush(old_inode->i_mapping);
9823
76dda93c 9824 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9825 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9826 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
9827 /*
9828 * We want to reserve the absolute worst case amount of items. So if
9829 * both inodes are subvols and we need to unlink them then that would
9830 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9831 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9832 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9833 * should cover the worst case number of items we'll modify.
5062af35
FM
9834 * If our rename has the whiteout flag, we need more 5 units for the
9835 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9836 * when selinux is enabled).
a22285a6 9837 */
5062af35
FM
9838 trans_num_items = 11;
9839 if (flags & RENAME_WHITEOUT)
9840 trans_num_items += 5;
9841 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9842 if (IS_ERR(trans)) {
cdd1fedf
DF
9843 ret = PTR_ERR(trans);
9844 goto out_notrans;
9845 }
76dda93c 9846
4df27c4d
YZ
9847 if (dest != root)
9848 btrfs_record_root_in_trans(trans, dest);
5f39d397 9849
a5719521
YZ
9850 ret = btrfs_set_inode_index(new_dir, &index);
9851 if (ret)
9852 goto out_fail;
5a3f23d5 9853
67de1176 9854 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9855 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9856 /* force full log commit if subvolume involved. */
995946dd 9857 btrfs_set_log_full_commit(root->fs_info, trans);
4df27c4d 9858 } else {
c4aba954
FM
9859 btrfs_pin_log_trans(root);
9860 log_pinned = true;
a5719521
YZ
9861 ret = btrfs_insert_inode_ref(trans, dest,
9862 new_dentry->d_name.name,
9863 new_dentry->d_name.len,
33345d01
LZ
9864 old_ino,
9865 btrfs_ino(new_dir), index);
a5719521
YZ
9866 if (ret)
9867 goto out_fail;
4df27c4d 9868 }
5a3f23d5 9869
0c4d2d95
JB
9870 inode_inc_iversion(old_dir);
9871 inode_inc_iversion(new_dir);
9872 inode_inc_iversion(old_inode);
04b285f3
DD
9873 old_dir->i_ctime = old_dir->i_mtime =
9874 new_dir->i_ctime = new_dir->i_mtime =
9875 old_inode->i_ctime = current_fs_time(old_dir->i_sb);
5f39d397 9876
12fcfd22
CM
9877 if (old_dentry->d_parent != new_dentry->d_parent)
9878 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9879
33345d01 9880 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9881 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9882 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9883 old_dentry->d_name.name,
9884 old_dentry->d_name.len);
9885 } else {
92986796 9886 ret = __btrfs_unlink_inode(trans, root, old_dir,
2b0143b5 9887 d_inode(old_dentry),
92986796
AV
9888 old_dentry->d_name.name,
9889 old_dentry->d_name.len);
9890 if (!ret)
9891 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9892 }
79787eaa 9893 if (ret) {
66642832 9894 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9895 goto out_fail;
9896 }
39279cc3
CM
9897
9898 if (new_inode) {
0c4d2d95 9899 inode_inc_iversion(new_inode);
04b285f3 9900 new_inode->i_ctime = current_fs_time(new_inode->i_sb);
33345d01 9901 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
9902 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9903 root_objectid = BTRFS_I(new_inode)->location.objectid;
9904 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9905 root_objectid,
9906 new_dentry->d_name.name,
9907 new_dentry->d_name.len);
9908 BUG_ON(new_inode->i_nlink == 0);
9909 } else {
9910 ret = btrfs_unlink_inode(trans, dest, new_dir,
2b0143b5 9911 d_inode(new_dentry),
4df27c4d
YZ
9912 new_dentry->d_name.name,
9913 new_dentry->d_name.len);
9914 }
4ef31a45 9915 if (!ret && new_inode->i_nlink == 0)
2b0143b5 9916 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
79787eaa 9917 if (ret) {
66642832 9918 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9919 goto out_fail;
9920 }
39279cc3 9921 }
aec7477b 9922
4df27c4d
YZ
9923 ret = btrfs_add_link(trans, new_dir, old_inode,
9924 new_dentry->d_name.name,
a5719521 9925 new_dentry->d_name.len, 0, index);
79787eaa 9926 if (ret) {
66642832 9927 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9928 goto out_fail;
9929 }
39279cc3 9930
67de1176
MX
9931 if (old_inode->i_nlink == 1)
9932 BTRFS_I(old_inode)->dir_index = index;
9933
3dc9e8f7 9934 if (log_pinned) {
10d9f309 9935 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9936
6a912213 9937 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d 9938 btrfs_end_log_trans(root);
3dc9e8f7 9939 log_pinned = false;
4df27c4d 9940 }
cdd1fedf
DF
9941
9942 if (flags & RENAME_WHITEOUT) {
9943 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9944 old_dentry);
9945
9946 if (ret) {
66642832 9947 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9948 goto out_fail;
9949 }
4df27c4d 9950 }
39279cc3 9951out_fail:
3dc9e8f7
FM
9952 /*
9953 * If we have pinned the log and an error happened, we unpin tasks
9954 * trying to sync the log and force them to fallback to a transaction
9955 * commit if the log currently contains any of the inodes involved in
9956 * this rename operation (to ensure we do not persist a log with an
9957 * inconsistent state for any of these inodes or leading to any
9958 * inconsistencies when replayed). If the transaction was aborted, the
9959 * abortion reason is propagated to userspace when attempting to commit
9960 * the transaction. If the log does not contain any of these inodes, we
9961 * allow the tasks to sync it.
9962 */
9963 if (ret && log_pinned) {
9964 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9965 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9966 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9967 (new_inode &&
9968 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9969 btrfs_set_log_full_commit(root->fs_info, trans);
9970
9971 btrfs_end_log_trans(root);
9972 log_pinned = false;
9973 }
7ad85bb7 9974 btrfs_end_transaction(trans, root);
b44c59a8 9975out_notrans:
33345d01 9976 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9977 up_read(&root->fs_info->subvol_sem);
9ed74f2d 9978
39279cc3
CM
9979 return ret;
9980}
9981
80ace85c
MS
9982static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9983 struct inode *new_dir, struct dentry *new_dentry,
9984 unsigned int flags)
9985{
cdd1fedf 9986 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9987 return -EINVAL;
9988
cdd1fedf
DF
9989 if (flags & RENAME_EXCHANGE)
9990 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9991 new_dentry);
9992
9993 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
9994}
9995
8ccf6f19
MX
9996static void btrfs_run_delalloc_work(struct btrfs_work *work)
9997{
9998 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9999 struct inode *inode;
8ccf6f19
MX
10000
10001 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10002 work);
9f23e289 10003 inode = delalloc_work->inode;
30424601
DS
10004 filemap_flush(inode->i_mapping);
10005 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10006 &BTRFS_I(inode)->runtime_flags))
9f23e289 10007 filemap_flush(inode->i_mapping);
8ccf6f19
MX
10008
10009 if (delalloc_work->delay_iput)
9f23e289 10010 btrfs_add_delayed_iput(inode);
8ccf6f19 10011 else
9f23e289 10012 iput(inode);
8ccf6f19
MX
10013 complete(&delalloc_work->completion);
10014}
10015
10016struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
651d494a 10017 int delay_iput)
8ccf6f19
MX
10018{
10019 struct btrfs_delalloc_work *work;
10020
100d5702 10021 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
10022 if (!work)
10023 return NULL;
10024
10025 init_completion(&work->completion);
10026 INIT_LIST_HEAD(&work->list);
10027 work->inode = inode;
8ccf6f19 10028 work->delay_iput = delay_iput;
9e0af237
LB
10029 WARN_ON_ONCE(!inode);
10030 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10031 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
10032
10033 return work;
10034}
10035
10036void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10037{
10038 wait_for_completion(&work->completion);
100d5702 10039 kfree(work);
8ccf6f19
MX
10040}
10041
d352ac68
CM
10042/*
10043 * some fairly slow code that needs optimization. This walks the list
10044 * of all the inodes with pending delalloc and forces them to disk.
10045 */
6c255e67
MX
10046static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10047 int nr)
ea8c2819 10048{
ea8c2819 10049 struct btrfs_inode *binode;
5b21f2ed 10050 struct inode *inode;
8ccf6f19
MX
10051 struct btrfs_delalloc_work *work, *next;
10052 struct list_head works;
1eafa6c7 10053 struct list_head splice;
8ccf6f19 10054 int ret = 0;
ea8c2819 10055
8ccf6f19 10056 INIT_LIST_HEAD(&works);
1eafa6c7 10057 INIT_LIST_HEAD(&splice);
63607cc8 10058
573bfb72 10059 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
10060 spin_lock(&root->delalloc_lock);
10061 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10062 while (!list_empty(&splice)) {
10063 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10064 delalloc_inodes);
1eafa6c7 10065
eb73c1b7
MX
10066 list_move_tail(&binode->delalloc_inodes,
10067 &root->delalloc_inodes);
5b21f2ed 10068 inode = igrab(&binode->vfs_inode);
df0af1a5 10069 if (!inode) {
eb73c1b7 10070 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10071 continue;
df0af1a5 10072 }
eb73c1b7 10073 spin_unlock(&root->delalloc_lock);
1eafa6c7 10074
651d494a 10075 work = btrfs_alloc_delalloc_work(inode, delay_iput);
5d99a998 10076 if (!work) {
f4ab9ea7
JB
10077 if (delay_iput)
10078 btrfs_add_delayed_iput(inode);
10079 else
10080 iput(inode);
1eafa6c7 10081 ret = -ENOMEM;
a1ecaabb 10082 goto out;
5b21f2ed 10083 }
1eafa6c7 10084 list_add_tail(&work->list, &works);
a44903ab
QW
10085 btrfs_queue_work(root->fs_info->flush_workers,
10086 &work->work);
6c255e67
MX
10087 ret++;
10088 if (nr != -1 && ret >= nr)
a1ecaabb 10089 goto out;
5b21f2ed 10090 cond_resched();
eb73c1b7 10091 spin_lock(&root->delalloc_lock);
ea8c2819 10092 }
eb73c1b7 10093 spin_unlock(&root->delalloc_lock);
8c8bee1d 10094
a1ecaabb 10095out:
eb73c1b7
MX
10096 list_for_each_entry_safe(work, next, &works, list) {
10097 list_del_init(&work->list);
10098 btrfs_wait_and_free_delalloc_work(work);
10099 }
10100
10101 if (!list_empty_careful(&splice)) {
10102 spin_lock(&root->delalloc_lock);
10103 list_splice_tail(&splice, &root->delalloc_inodes);
10104 spin_unlock(&root->delalloc_lock);
10105 }
573bfb72 10106 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10107 return ret;
10108}
1eafa6c7 10109
eb73c1b7
MX
10110int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10111{
10112 int ret;
1eafa6c7 10113
2c21b4d7 10114 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
10115 return -EROFS;
10116
6c255e67
MX
10117 ret = __start_delalloc_inodes(root, delay_iput, -1);
10118 if (ret > 0)
10119 ret = 0;
eb73c1b7
MX
10120 /*
10121 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
10122 * we have to make sure the IO is actually started and that
10123 * ordered extents get created before we return
10124 */
10125 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 10126 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 10127 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 10128 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
10129 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
10130 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
10131 }
10132 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
10133 return ret;
10134}
10135
6c255e67
MX
10136int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10137 int nr)
eb73c1b7
MX
10138{
10139 struct btrfs_root *root;
10140 struct list_head splice;
10141 int ret;
10142
2c21b4d7 10143 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10144 return -EROFS;
10145
10146 INIT_LIST_HEAD(&splice);
10147
573bfb72 10148 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10149 spin_lock(&fs_info->delalloc_root_lock);
10150 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10151 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10152 root = list_first_entry(&splice, struct btrfs_root,
10153 delalloc_root);
10154 root = btrfs_grab_fs_root(root);
10155 BUG_ON(!root);
10156 list_move_tail(&root->delalloc_root,
10157 &fs_info->delalloc_roots);
10158 spin_unlock(&fs_info->delalloc_root_lock);
10159
6c255e67 10160 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 10161 btrfs_put_fs_root(root);
6c255e67 10162 if (ret < 0)
eb73c1b7
MX
10163 goto out;
10164
6c255e67
MX
10165 if (nr != -1) {
10166 nr -= ret;
10167 WARN_ON(nr < 0);
10168 }
eb73c1b7 10169 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10170 }
eb73c1b7 10171 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10172
6c255e67 10173 ret = 0;
eb73c1b7
MX
10174 atomic_inc(&fs_info->async_submit_draining);
10175 while (atomic_read(&fs_info->nr_async_submits) ||
10176 atomic_read(&fs_info->async_delalloc_pages)) {
10177 wait_event(fs_info->async_submit_wait,
10178 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10179 atomic_read(&fs_info->async_delalloc_pages) == 0));
10180 }
10181 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 10182out:
1eafa6c7 10183 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
10184 spin_lock(&fs_info->delalloc_root_lock);
10185 list_splice_tail(&splice, &fs_info->delalloc_roots);
10186 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10187 }
573bfb72 10188 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10189 return ret;
ea8c2819
CM
10190}
10191
39279cc3
CM
10192static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10193 const char *symname)
10194{
10195 struct btrfs_trans_handle *trans;
10196 struct btrfs_root *root = BTRFS_I(dir)->root;
10197 struct btrfs_path *path;
10198 struct btrfs_key key;
1832a6d5 10199 struct inode *inode = NULL;
39279cc3
CM
10200 int err;
10201 int drop_inode = 0;
10202 u64 objectid;
67871254 10203 u64 index = 0;
39279cc3
CM
10204 int name_len;
10205 int datasize;
5f39d397 10206 unsigned long ptr;
39279cc3 10207 struct btrfs_file_extent_item *ei;
5f39d397 10208 struct extent_buffer *leaf;
39279cc3 10209
f06becc4 10210 name_len = strlen(symname);
39279cc3
CM
10211 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
10212 return -ENAMETOOLONG;
1832a6d5 10213
9ed74f2d
JB
10214 /*
10215 * 2 items for inode item and ref
10216 * 2 items for dir items
9269d12b
FM
10217 * 1 item for updating parent inode item
10218 * 1 item for the inline extent item
9ed74f2d
JB
10219 * 1 item for xattr if selinux is on
10220 */
9269d12b 10221 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10222 if (IS_ERR(trans))
10223 return PTR_ERR(trans);
1832a6d5 10224
581bb050
LZ
10225 err = btrfs_find_free_ino(root, &objectid);
10226 if (err)
10227 goto out_unlock;
10228
aec7477b 10229 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 10230 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 10231 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10232 if (IS_ERR(inode)) {
10233 err = PTR_ERR(inode);
39279cc3 10234 goto out_unlock;
7cf96da3 10235 }
39279cc3 10236
ad19db71
CS
10237 /*
10238 * If the active LSM wants to access the inode during
10239 * d_instantiate it needs these. Smack checks to see
10240 * if the filesystem supports xattrs by looking at the
10241 * ops vector.
10242 */
10243 inode->i_fop = &btrfs_file_operations;
10244 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10245 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10246 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10247
10248 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10249 if (err)
10250 goto out_unlock_inode;
ad19db71 10251
39279cc3 10252 path = btrfs_alloc_path();
d8926bb3
MF
10253 if (!path) {
10254 err = -ENOMEM;
b0d5d10f 10255 goto out_unlock_inode;
d8926bb3 10256 }
33345d01 10257 key.objectid = btrfs_ino(inode);
39279cc3 10258 key.offset = 0;
962a298f 10259 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10260 datasize = btrfs_file_extent_calc_inline_size(name_len);
10261 err = btrfs_insert_empty_item(trans, root, path, &key,
10262 datasize);
54aa1f4d 10263 if (err) {
b0839166 10264 btrfs_free_path(path);
b0d5d10f 10265 goto out_unlock_inode;
54aa1f4d 10266 }
5f39d397
CM
10267 leaf = path->nodes[0];
10268 ei = btrfs_item_ptr(leaf, path->slots[0],
10269 struct btrfs_file_extent_item);
10270 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10271 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10272 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10273 btrfs_set_file_extent_encryption(leaf, ei, 0);
10274 btrfs_set_file_extent_compression(leaf, ei, 0);
10275 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10276 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10277
39279cc3 10278 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10279 write_extent_buffer(leaf, symname, ptr, name_len);
10280 btrfs_mark_buffer_dirty(leaf);
39279cc3 10281 btrfs_free_path(path);
5f39d397 10282
39279cc3 10283 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10284 inode_nohighmem(inode);
39279cc3 10285 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10286 inode_set_bytes(inode, name_len);
f06becc4 10287 btrfs_i_size_write(inode, name_len);
54aa1f4d 10288 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10289 /*
10290 * Last step, add directory indexes for our symlink inode. This is the
10291 * last step to avoid extra cleanup of these indexes if an error happens
10292 * elsewhere above.
10293 */
10294 if (!err)
10295 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
b0d5d10f 10296 if (err) {
54aa1f4d 10297 drop_inode = 1;
b0d5d10f
CM
10298 goto out_unlock_inode;
10299 }
10300
10301 unlock_new_inode(inode);
10302 d_instantiate(dentry, inode);
39279cc3
CM
10303
10304out_unlock:
7ad85bb7 10305 btrfs_end_transaction(trans, root);
39279cc3
CM
10306 if (drop_inode) {
10307 inode_dec_link_count(inode);
10308 iput(inode);
10309 }
b53d3f5d 10310 btrfs_btree_balance_dirty(root);
39279cc3 10311 return err;
b0d5d10f
CM
10312
10313out_unlock_inode:
10314 drop_inode = 1;
10315 unlock_new_inode(inode);
10316 goto out_unlock;
39279cc3 10317}
16432985 10318
0af3d00b
JB
10319static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10320 u64 start, u64 num_bytes, u64 min_size,
10321 loff_t actual_len, u64 *alloc_hint,
10322 struct btrfs_trans_handle *trans)
d899e052 10323{
5dc562c5
JB
10324 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10325 struct extent_map *em;
d899e052
YZ
10326 struct btrfs_root *root = BTRFS_I(inode)->root;
10327 struct btrfs_key ins;
d899e052 10328 u64 cur_offset = start;
55a61d1d 10329 u64 i_size;
154ea289 10330 u64 cur_bytes;
0b670dc4 10331 u64 last_alloc = (u64)-1;
d899e052 10332 int ret = 0;
0af3d00b 10333 bool own_trans = true;
18513091 10334 u64 end = start + num_bytes - 1;
d899e052 10335
0af3d00b
JB
10336 if (trans)
10337 own_trans = false;
d899e052 10338 while (num_bytes > 0) {
0af3d00b
JB
10339 if (own_trans) {
10340 trans = btrfs_start_transaction(root, 3);
10341 if (IS_ERR(trans)) {
10342 ret = PTR_ERR(trans);
10343 break;
10344 }
5a303d5d
YZ
10345 }
10346
ee22184b 10347 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10348 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10349 /*
10350 * If we are severely fragmented we could end up with really
10351 * small allocations, so if the allocator is returning small
10352 * chunks lets make its job easier by only searching for those
10353 * sized chunks.
10354 */
10355 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10356 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10357 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10358 if (ret) {
0af3d00b
JB
10359 if (own_trans)
10360 btrfs_end_transaction(trans, root);
a22285a6 10361 break;
d899e052 10362 }
9cfa3e34 10363 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
5a303d5d 10364
0b670dc4 10365 last_alloc = ins.offset;
d899e052
YZ
10366 ret = insert_reserved_file_extent(trans, inode,
10367 cur_offset, ins.objectid,
10368 ins.offset, ins.offset,
920bbbfb 10369 ins.offset, 0, 0, 0,
d899e052 10370 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10371 if (ret) {
857cc2fc 10372 btrfs_free_reserved_extent(root, ins.objectid,
e570fd27 10373 ins.offset, 0);
66642832 10374 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10375 if (own_trans)
10376 btrfs_end_transaction(trans, root);
10377 break;
10378 }
31193213 10379
a1ed835e
CM
10380 btrfs_drop_extent_cache(inode, cur_offset,
10381 cur_offset + ins.offset -1, 0);
5a303d5d 10382
5dc562c5
JB
10383 em = alloc_extent_map();
10384 if (!em) {
10385 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10386 &BTRFS_I(inode)->runtime_flags);
10387 goto next;
10388 }
10389
10390 em->start = cur_offset;
10391 em->orig_start = cur_offset;
10392 em->len = ins.offset;
10393 em->block_start = ins.objectid;
10394 em->block_len = ins.offset;
b4939680 10395 em->orig_block_len = ins.offset;
cc95bef6 10396 em->ram_bytes = ins.offset;
5dc562c5
JB
10397 em->bdev = root->fs_info->fs_devices->latest_bdev;
10398 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10399 em->generation = trans->transid;
10400
10401 while (1) {
10402 write_lock(&em_tree->lock);
09a2a8f9 10403 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10404 write_unlock(&em_tree->lock);
10405 if (ret != -EEXIST)
10406 break;
10407 btrfs_drop_extent_cache(inode, cur_offset,
10408 cur_offset + ins.offset - 1,
10409 0);
10410 }
10411 free_extent_map(em);
10412next:
d899e052
YZ
10413 num_bytes -= ins.offset;
10414 cur_offset += ins.offset;
efa56464 10415 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10416
0c4d2d95 10417 inode_inc_iversion(inode);
04b285f3 10418 inode->i_ctime = current_fs_time(inode->i_sb);
6cbff00f 10419 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10420 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10421 (actual_len > inode->i_size) &&
10422 (cur_offset > inode->i_size)) {
d1ea6a61 10423 if (cur_offset > actual_len)
55a61d1d 10424 i_size = actual_len;
d1ea6a61 10425 else
55a61d1d
JB
10426 i_size = cur_offset;
10427 i_size_write(inode, i_size);
10428 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10429 }
10430
d899e052 10431 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10432
10433 if (ret) {
66642832 10434 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10435 if (own_trans)
10436 btrfs_end_transaction(trans, root);
10437 break;
10438 }
d899e052 10439
0af3d00b
JB
10440 if (own_trans)
10441 btrfs_end_transaction(trans, root);
5a303d5d 10442 }
18513091
WX
10443 if (cur_offset < end)
10444 btrfs_free_reserved_data_space(inode, cur_offset,
10445 end - cur_offset + 1);
d899e052
YZ
10446 return ret;
10447}
10448
0af3d00b
JB
10449int btrfs_prealloc_file_range(struct inode *inode, int mode,
10450 u64 start, u64 num_bytes, u64 min_size,
10451 loff_t actual_len, u64 *alloc_hint)
10452{
10453 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10454 min_size, actual_len, alloc_hint,
10455 NULL);
10456}
10457
10458int btrfs_prealloc_file_range_trans(struct inode *inode,
10459 struct btrfs_trans_handle *trans, int mode,
10460 u64 start, u64 num_bytes, u64 min_size,
10461 loff_t actual_len, u64 *alloc_hint)
10462{
10463 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10464 min_size, actual_len, alloc_hint, trans);
10465}
10466
e6dcd2dc
CM
10467static int btrfs_set_page_dirty(struct page *page)
10468{
e6dcd2dc
CM
10469 return __set_page_dirty_nobuffers(page);
10470}
10471
10556cb2 10472static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10473{
b83cc969 10474 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10475 umode_t mode = inode->i_mode;
b83cc969 10476
cb6db4e5
JM
10477 if (mask & MAY_WRITE &&
10478 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10479 if (btrfs_root_readonly(root))
10480 return -EROFS;
10481 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10482 return -EACCES;
10483 }
2830ba7f 10484 return generic_permission(inode, mask);
fdebe2bd 10485}
39279cc3 10486
ef3b9af5
FM
10487static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10488{
10489 struct btrfs_trans_handle *trans;
10490 struct btrfs_root *root = BTRFS_I(dir)->root;
10491 struct inode *inode = NULL;
10492 u64 objectid;
10493 u64 index;
10494 int ret = 0;
10495
10496 /*
10497 * 5 units required for adding orphan entry
10498 */
10499 trans = btrfs_start_transaction(root, 5);
10500 if (IS_ERR(trans))
10501 return PTR_ERR(trans);
10502
10503 ret = btrfs_find_free_ino(root, &objectid);
10504 if (ret)
10505 goto out;
10506
10507 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10508 btrfs_ino(dir), objectid, mode, &index);
10509 if (IS_ERR(inode)) {
10510 ret = PTR_ERR(inode);
10511 inode = NULL;
10512 goto out;
10513 }
10514
ef3b9af5
FM
10515 inode->i_fop = &btrfs_file_operations;
10516 inode->i_op = &btrfs_file_inode_operations;
10517
10518 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10519 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10520
b0d5d10f
CM
10521 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10522 if (ret)
10523 goto out_inode;
10524
10525 ret = btrfs_update_inode(trans, root, inode);
10526 if (ret)
10527 goto out_inode;
ef3b9af5
FM
10528 ret = btrfs_orphan_add(trans, inode);
10529 if (ret)
b0d5d10f 10530 goto out_inode;
ef3b9af5 10531
5762b5c9
FM
10532 /*
10533 * We set number of links to 0 in btrfs_new_inode(), and here we set
10534 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10535 * through:
10536 *
10537 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10538 */
10539 set_nlink(inode, 1);
b0d5d10f 10540 unlock_new_inode(inode);
ef3b9af5
FM
10541 d_tmpfile(dentry, inode);
10542 mark_inode_dirty(inode);
10543
10544out:
10545 btrfs_end_transaction(trans, root);
10546 if (ret)
10547 iput(inode);
10548 btrfs_balance_delayed_items(root);
10549 btrfs_btree_balance_dirty(root);
ef3b9af5 10550 return ret;
b0d5d10f
CM
10551
10552out_inode:
10553 unlock_new_inode(inode);
10554 goto out;
10555
ef3b9af5
FM
10556}
10557
b38ef71c
FM
10558/* Inspired by filemap_check_errors() */
10559int btrfs_inode_check_errors(struct inode *inode)
10560{
10561 int ret = 0;
10562
10563 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
10564 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
10565 ret = -ENOSPC;
10566 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
10567 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
10568 ret = -EIO;
10569
10570 return ret;
10571}
10572
6e1d5dcc 10573static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10574 .getattr = btrfs_getattr,
39279cc3
CM
10575 .lookup = btrfs_lookup,
10576 .create = btrfs_create,
10577 .unlink = btrfs_unlink,
10578 .link = btrfs_link,
10579 .mkdir = btrfs_mkdir,
10580 .rmdir = btrfs_rmdir,
34332745 10581 .rename = btrfs_rename2,
39279cc3
CM
10582 .symlink = btrfs_symlink,
10583 .setattr = btrfs_setattr,
618e21d5 10584 .mknod = btrfs_mknod,
e0d46f5c 10585 .setxattr = generic_setxattr,
9172abbc 10586 .getxattr = generic_getxattr,
5103e947 10587 .listxattr = btrfs_listxattr,
e0d46f5c 10588 .removexattr = generic_removexattr,
fdebe2bd 10589 .permission = btrfs_permission,
4e34e719 10590 .get_acl = btrfs_get_acl,
996a710d 10591 .set_acl = btrfs_set_acl,
93fd63c2 10592 .update_time = btrfs_update_time,
ef3b9af5 10593 .tmpfile = btrfs_tmpfile,
39279cc3 10594};
6e1d5dcc 10595static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10596 .lookup = btrfs_lookup,
fdebe2bd 10597 .permission = btrfs_permission,
4e34e719 10598 .get_acl = btrfs_get_acl,
996a710d 10599 .set_acl = btrfs_set_acl,
93fd63c2 10600 .update_time = btrfs_update_time,
39279cc3 10601};
76dda93c 10602
828c0950 10603static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10604 .llseek = generic_file_llseek,
10605 .read = generic_read_dir,
02dbfc99 10606 .iterate_shared = btrfs_real_readdir,
34287aa3 10607 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10608#ifdef CONFIG_COMPAT
4c63c245 10609 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10610#endif
6bf13c0c 10611 .release = btrfs_release_file,
e02119d5 10612 .fsync = btrfs_sync_file,
39279cc3
CM
10613};
10614
20e5506b 10615static const struct extent_io_ops btrfs_extent_io_ops = {
07157aac 10616 .fill_delalloc = run_delalloc_range,
065631f6 10617 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 10618 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 10619 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 10620 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10621 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10622 .set_bit_hook = btrfs_set_bit_hook,
10623 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10624 .merge_extent_hook = btrfs_merge_extent_hook,
10625 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
10626};
10627
35054394
CM
10628/*
10629 * btrfs doesn't support the bmap operation because swapfiles
10630 * use bmap to make a mapping of extents in the file. They assume
10631 * these extents won't change over the life of the file and they
10632 * use the bmap result to do IO directly to the drive.
10633 *
10634 * the btrfs bmap call would return logical addresses that aren't
10635 * suitable for IO and they also will change frequently as COW
10636 * operations happen. So, swapfile + btrfs == corruption.
10637 *
10638 * For now we're avoiding this by dropping bmap.
10639 */
7f09410b 10640static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10641 .readpage = btrfs_readpage,
10642 .writepage = btrfs_writepage,
b293f02e 10643 .writepages = btrfs_writepages,
3ab2fb5a 10644 .readpages = btrfs_readpages,
16432985 10645 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10646 .invalidatepage = btrfs_invalidatepage,
10647 .releasepage = btrfs_releasepage,
e6dcd2dc 10648 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10649 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10650};
10651
7f09410b 10652static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10653 .readpage = btrfs_readpage,
10654 .writepage = btrfs_writepage,
2bf5a725
CM
10655 .invalidatepage = btrfs_invalidatepage,
10656 .releasepage = btrfs_releasepage,
39279cc3
CM
10657};
10658
6e1d5dcc 10659static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10660 .getattr = btrfs_getattr,
10661 .setattr = btrfs_setattr,
e0d46f5c 10662 .setxattr = generic_setxattr,
9172abbc 10663 .getxattr = generic_getxattr,
5103e947 10664 .listxattr = btrfs_listxattr,
e0d46f5c 10665 .removexattr = generic_removexattr,
fdebe2bd 10666 .permission = btrfs_permission,
1506fcc8 10667 .fiemap = btrfs_fiemap,
4e34e719 10668 .get_acl = btrfs_get_acl,
996a710d 10669 .set_acl = btrfs_set_acl,
e41f941a 10670 .update_time = btrfs_update_time,
39279cc3 10671};
6e1d5dcc 10672static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10673 .getattr = btrfs_getattr,
10674 .setattr = btrfs_setattr,
fdebe2bd 10675 .permission = btrfs_permission,
e0d46f5c 10676 .setxattr = generic_setxattr,
9172abbc 10677 .getxattr = generic_getxattr,
33268eaf 10678 .listxattr = btrfs_listxattr,
e0d46f5c 10679 .removexattr = generic_removexattr,
4e34e719 10680 .get_acl = btrfs_get_acl,
996a710d 10681 .set_acl = btrfs_set_acl,
e41f941a 10682 .update_time = btrfs_update_time,
618e21d5 10683};
6e1d5dcc 10684static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3 10685 .readlink = generic_readlink,
6b255391 10686 .get_link = page_get_link,
f209561a 10687 .getattr = btrfs_getattr,
22c44fe6 10688 .setattr = btrfs_setattr,
fdebe2bd 10689 .permission = btrfs_permission,
e0d46f5c 10690 .setxattr = generic_setxattr,
9172abbc 10691 .getxattr = generic_getxattr,
0279b4cd 10692 .listxattr = btrfs_listxattr,
e0d46f5c 10693 .removexattr = generic_removexattr,
e41f941a 10694 .update_time = btrfs_update_time,
39279cc3 10695};
76dda93c 10696
82d339d9 10697const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10698 .d_delete = btrfs_dentry_delete,
b4aff1f8 10699 .d_release = btrfs_dentry_release,
76dda93c 10700};
This page took 2.042832 seconds and 5 git commands to generate.