Btrfs: do not do filemap_write_and_wait_range in fsync
[deliverable/linux.git] / fs / btrfs / ordered-data.c
CommitLineData
dc17ff8f
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
dc17ff8f 19#include <linux/slab.h>
d6bfde87 20#include <linux/blkdev.h>
f421950f
CM
21#include <linux/writeback.h>
22#include <linux/pagevec.h>
dc17ff8f
CM
23#include "ctree.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
e6dcd2dc 26#include "extent_io.h"
dc17ff8f 27
e6dcd2dc 28static u64 entry_end(struct btrfs_ordered_extent *entry)
dc17ff8f 29{
e6dcd2dc
CM
30 if (entry->file_offset + entry->len < entry->file_offset)
31 return (u64)-1;
32 return entry->file_offset + entry->len;
dc17ff8f
CM
33}
34
d352ac68
CM
35/* returns NULL if the insertion worked, or it returns the node it did find
36 * in the tree
37 */
e6dcd2dc
CM
38static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
39 struct rb_node *node)
dc17ff8f 40{
d397712b
CM
41 struct rb_node **p = &root->rb_node;
42 struct rb_node *parent = NULL;
e6dcd2dc 43 struct btrfs_ordered_extent *entry;
dc17ff8f 44
d397712b 45 while (*p) {
dc17ff8f 46 parent = *p;
e6dcd2dc 47 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
dc17ff8f 48
e6dcd2dc 49 if (file_offset < entry->file_offset)
dc17ff8f 50 p = &(*p)->rb_left;
e6dcd2dc 51 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
52 p = &(*p)->rb_right;
53 else
54 return parent;
55 }
56
57 rb_link_node(node, parent, p);
58 rb_insert_color(node, root);
59 return NULL;
60}
61
43c04fb1
JM
62static void ordered_data_tree_panic(struct inode *inode, int errno,
63 u64 offset)
64{
65 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
66 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
67 "%llu\n", (unsigned long long)offset);
68}
69
d352ac68
CM
70/*
71 * look for a given offset in the tree, and if it can't be found return the
72 * first lesser offset
73 */
e6dcd2dc
CM
74static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
75 struct rb_node **prev_ret)
dc17ff8f 76{
d397712b 77 struct rb_node *n = root->rb_node;
dc17ff8f 78 struct rb_node *prev = NULL;
e6dcd2dc
CM
79 struct rb_node *test;
80 struct btrfs_ordered_extent *entry;
81 struct btrfs_ordered_extent *prev_entry = NULL;
dc17ff8f 82
d397712b 83 while (n) {
e6dcd2dc 84 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
dc17ff8f
CM
85 prev = n;
86 prev_entry = entry;
dc17ff8f 87
e6dcd2dc 88 if (file_offset < entry->file_offset)
dc17ff8f 89 n = n->rb_left;
e6dcd2dc 90 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
91 n = n->rb_right;
92 else
93 return n;
94 }
95 if (!prev_ret)
96 return NULL;
97
d397712b 98 while (prev && file_offset >= entry_end(prev_entry)) {
e6dcd2dc
CM
99 test = rb_next(prev);
100 if (!test)
101 break;
102 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
103 rb_node);
104 if (file_offset < entry_end(prev_entry))
105 break;
106
107 prev = test;
108 }
109 if (prev)
110 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
111 rb_node);
d397712b 112 while (prev && file_offset < entry_end(prev_entry)) {
e6dcd2dc
CM
113 test = rb_prev(prev);
114 if (!test)
115 break;
116 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
117 rb_node);
118 prev = test;
dc17ff8f
CM
119 }
120 *prev_ret = prev;
121 return NULL;
122}
123
d352ac68
CM
124/*
125 * helper to check if a given offset is inside a given entry
126 */
e6dcd2dc
CM
127static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
128{
129 if (file_offset < entry->file_offset ||
130 entry->file_offset + entry->len <= file_offset)
131 return 0;
132 return 1;
133}
134
4b46fce2
JB
135static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
136 u64 len)
137{
138 if (file_offset + len <= entry->file_offset ||
139 entry->file_offset + entry->len <= file_offset)
140 return 0;
141 return 1;
142}
143
d352ac68
CM
144/*
145 * look find the first ordered struct that has this offset, otherwise
146 * the first one less than this offset
147 */
e6dcd2dc
CM
148static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
149 u64 file_offset)
dc17ff8f 150{
e6dcd2dc 151 struct rb_root *root = &tree->tree;
c87fb6fd 152 struct rb_node *prev = NULL;
dc17ff8f 153 struct rb_node *ret;
e6dcd2dc
CM
154 struct btrfs_ordered_extent *entry;
155
156 if (tree->last) {
157 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
158 rb_node);
159 if (offset_in_entry(entry, file_offset))
160 return tree->last;
161 }
162 ret = __tree_search(root, file_offset, &prev);
dc17ff8f 163 if (!ret)
e6dcd2dc
CM
164 ret = prev;
165 if (ret)
166 tree->last = ret;
dc17ff8f
CM
167 return ret;
168}
169
eb84ae03
CM
170/* allocate and add a new ordered_extent into the per-inode tree.
171 * file_offset is the logical offset in the file
172 *
173 * start is the disk block number of an extent already reserved in the
174 * extent allocation tree
175 *
176 * len is the length of the extent
177 *
eb84ae03
CM
178 * The tree is given a single reference on the ordered extent that was
179 * inserted.
180 */
4b46fce2
JB
181static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
182 u64 start, u64 len, u64 disk_len,
261507a0 183 int type, int dio, int compress_type)
dc17ff8f 184{
dc17ff8f 185 struct btrfs_ordered_inode_tree *tree;
e6dcd2dc
CM
186 struct rb_node *node;
187 struct btrfs_ordered_extent *entry;
dc17ff8f 188
e6dcd2dc
CM
189 tree = &BTRFS_I(inode)->ordered_tree;
190 entry = kzalloc(sizeof(*entry), GFP_NOFS);
dc17ff8f
CM
191 if (!entry)
192 return -ENOMEM;
193
e6dcd2dc
CM
194 entry->file_offset = file_offset;
195 entry->start = start;
196 entry->len = len;
c8b97818 197 entry->disk_len = disk_len;
8b62b72b 198 entry->bytes_left = len;
3eaa2885 199 entry->inode = inode;
261507a0 200 entry->compress_type = compress_type;
d899e052 201 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
80ff3856 202 set_bit(type, &entry->flags);
3eaa2885 203
4b46fce2
JB
204 if (dio)
205 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
206
e6dcd2dc
CM
207 /* one ref for the tree */
208 atomic_set(&entry->refs, 1);
209 init_waitqueue_head(&entry->wait);
210 INIT_LIST_HEAD(&entry->list);
3eaa2885 211 INIT_LIST_HEAD(&entry->root_extent_list);
dc17ff8f 212
1abe9b8a 213 trace_btrfs_ordered_extent_add(inode, entry);
214
49958fd7 215 spin_lock(&tree->lock);
e6dcd2dc
CM
216 node = tree_insert(&tree->tree, file_offset,
217 &entry->rb_node);
43c04fb1
JM
218 if (node)
219 ordered_data_tree_panic(inode, -EEXIST, file_offset);
49958fd7 220 spin_unlock(&tree->lock);
d397712b 221
3eaa2885
CM
222 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
223 list_add_tail(&entry->root_extent_list,
224 &BTRFS_I(inode)->root->fs_info->ordered_extents);
225 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
226
dc17ff8f
CM
227 return 0;
228}
229
4b46fce2
JB
230int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
231 u64 start, u64 len, u64 disk_len, int type)
232{
233 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261507a0
LZ
234 disk_len, type, 0,
235 BTRFS_COMPRESS_NONE);
4b46fce2
JB
236}
237
238int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
239 u64 start, u64 len, u64 disk_len, int type)
240{
241 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261507a0
LZ
242 disk_len, type, 1,
243 BTRFS_COMPRESS_NONE);
244}
245
246int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
247 u64 start, u64 len, u64 disk_len,
248 int type, int compress_type)
249{
250 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
251 disk_len, type, 0,
252 compress_type);
4b46fce2
JB
253}
254
eb84ae03
CM
255/*
256 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
3edf7d33
CM
257 * when an ordered extent is finished. If the list covers more than one
258 * ordered extent, it is split across multiples.
eb84ae03 259 */
143bede5
JM
260void btrfs_add_ordered_sum(struct inode *inode,
261 struct btrfs_ordered_extent *entry,
262 struct btrfs_ordered_sum *sum)
dc17ff8f 263{
e6dcd2dc 264 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 265
e6dcd2dc 266 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 267 spin_lock(&tree->lock);
e6dcd2dc 268 list_add_tail(&sum->list, &entry->list);
49958fd7 269 spin_unlock(&tree->lock);
dc17ff8f
CM
270}
271
163cf09c
CM
272/*
273 * this is used to account for finished IO across a given range
274 * of the file. The IO may span ordered extents. If
275 * a given ordered_extent is completely done, 1 is returned, otherwise
276 * 0.
277 *
278 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
279 * to make sure this function only returns 1 once for a given ordered extent.
280 *
281 * file_offset is updated to one byte past the range that is recorded as
282 * complete. This allows you to walk forward in the file.
283 */
284int btrfs_dec_test_first_ordered_pending(struct inode *inode,
285 struct btrfs_ordered_extent **cached,
286 u64 *file_offset, u64 io_size)
287{
288 struct btrfs_ordered_inode_tree *tree;
289 struct rb_node *node;
290 struct btrfs_ordered_extent *entry = NULL;
291 int ret;
292 u64 dec_end;
293 u64 dec_start;
294 u64 to_dec;
295
296 tree = &BTRFS_I(inode)->ordered_tree;
297 spin_lock(&tree->lock);
298 node = tree_search(tree, *file_offset);
299 if (!node) {
300 ret = 1;
301 goto out;
302 }
303
304 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
305 if (!offset_in_entry(entry, *file_offset)) {
306 ret = 1;
307 goto out;
308 }
309
310 dec_start = max(*file_offset, entry->file_offset);
311 dec_end = min(*file_offset + io_size, entry->file_offset +
312 entry->len);
313 *file_offset = dec_end;
314 if (dec_start > dec_end) {
315 printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
316 (unsigned long long)dec_start,
317 (unsigned long long)dec_end);
318 }
319 to_dec = dec_end - dec_start;
320 if (to_dec > entry->bytes_left) {
321 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
322 (unsigned long long)entry->bytes_left,
323 (unsigned long long)to_dec);
324 }
325 entry->bytes_left -= to_dec;
326 if (entry->bytes_left == 0)
327 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
328 else
329 ret = 1;
330out:
331 if (!ret && cached && entry) {
332 *cached = entry;
333 atomic_inc(&entry->refs);
334 }
335 spin_unlock(&tree->lock);
336 return ret == 0;
337}
338
eb84ae03
CM
339/*
340 * this is used to account for finished IO across a given range
341 * of the file. The IO should not span ordered extents. If
342 * a given ordered_extent is completely done, 1 is returned, otherwise
343 * 0.
344 *
345 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
346 * to make sure this function only returns 1 once for a given ordered extent.
347 */
e6dcd2dc 348int btrfs_dec_test_ordered_pending(struct inode *inode,
5a1a3df1 349 struct btrfs_ordered_extent **cached,
e6dcd2dc 350 u64 file_offset, u64 io_size)
dc17ff8f 351{
e6dcd2dc 352 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 353 struct rb_node *node;
5a1a3df1 354 struct btrfs_ordered_extent *entry = NULL;
e6dcd2dc
CM
355 int ret;
356
357 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 358 spin_lock(&tree->lock);
e6dcd2dc 359 node = tree_search(tree, file_offset);
dc17ff8f 360 if (!node) {
e6dcd2dc
CM
361 ret = 1;
362 goto out;
dc17ff8f
CM
363 }
364
e6dcd2dc
CM
365 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
366 if (!offset_in_entry(entry, file_offset)) {
367 ret = 1;
368 goto out;
dc17ff8f 369 }
e6dcd2dc 370
8b62b72b
CM
371 if (io_size > entry->bytes_left) {
372 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
373 (unsigned long long)entry->bytes_left,
374 (unsigned long long)io_size);
375 }
376 entry->bytes_left -= io_size;
377 if (entry->bytes_left == 0)
e6dcd2dc 378 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
8b62b72b
CM
379 else
380 ret = 1;
e6dcd2dc 381out:
5a1a3df1
JB
382 if (!ret && cached && entry) {
383 *cached = entry;
384 atomic_inc(&entry->refs);
385 }
49958fd7 386 spin_unlock(&tree->lock);
e6dcd2dc
CM
387 return ret == 0;
388}
dc17ff8f 389
eb84ae03
CM
390/*
391 * used to drop a reference on an ordered extent. This will free
392 * the extent if the last reference is dropped
393 */
143bede5 394void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
e6dcd2dc 395{
ba1da2f4
CM
396 struct list_head *cur;
397 struct btrfs_ordered_sum *sum;
398
1abe9b8a 399 trace_btrfs_ordered_extent_put(entry->inode, entry);
400
ba1da2f4 401 if (atomic_dec_and_test(&entry->refs)) {
d397712b 402 while (!list_empty(&entry->list)) {
ba1da2f4
CM
403 cur = entry->list.next;
404 sum = list_entry(cur, struct btrfs_ordered_sum, list);
405 list_del(&sum->list);
406 kfree(sum);
407 }
e6dcd2dc 408 kfree(entry);
ba1da2f4 409 }
dc17ff8f 410}
cee36a03 411
eb84ae03
CM
412/*
413 * remove an ordered extent from the tree. No references are dropped
49958fd7 414 * and you must wake_up entry->wait. You must hold the tree lock
c2167754 415 * while you call this function.
eb84ae03 416 */
143bede5
JM
417static void __btrfs_remove_ordered_extent(struct inode *inode,
418 struct btrfs_ordered_extent *entry)
cee36a03 419{
e6dcd2dc 420 struct btrfs_ordered_inode_tree *tree;
287a0ab9 421 struct btrfs_root *root = BTRFS_I(inode)->root;
cee36a03 422 struct rb_node *node;
cee36a03 423
e6dcd2dc 424 tree = &BTRFS_I(inode)->ordered_tree;
e6dcd2dc 425 node = &entry->rb_node;
cee36a03 426 rb_erase(node, &tree->tree);
e6dcd2dc
CM
427 tree->last = NULL;
428 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
3eaa2885 429
287a0ab9 430 spin_lock(&root->fs_info->ordered_extent_lock);
3eaa2885 431 list_del_init(&entry->root_extent_list);
5a3f23d5 432
1abe9b8a 433 trace_btrfs_ordered_extent_remove(inode, entry);
434
5a3f23d5
CM
435 /*
436 * we have no more ordered extents for this inode and
437 * no dirty pages. We can safely remove it from the
438 * list of ordered extents
439 */
440 if (RB_EMPTY_ROOT(&tree->tree) &&
441 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
442 list_del_init(&BTRFS_I(inode)->ordered_operations);
443 }
287a0ab9 444 spin_unlock(&root->fs_info->ordered_extent_lock);
c2167754
YZ
445}
446
447/*
448 * remove an ordered extent from the tree. No references are dropped
449 * but any waiters are woken.
450 */
143bede5
JM
451void btrfs_remove_ordered_extent(struct inode *inode,
452 struct btrfs_ordered_extent *entry)
c2167754
YZ
453{
454 struct btrfs_ordered_inode_tree *tree;
c2167754
YZ
455
456 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 457 spin_lock(&tree->lock);
143bede5 458 __btrfs_remove_ordered_extent(inode, entry);
49958fd7 459 spin_unlock(&tree->lock);
e6dcd2dc 460 wake_up(&entry->wait);
cee36a03
CM
461}
462
d352ac68
CM
463/*
464 * wait for all the ordered extents in a root. This is done when balancing
465 * space between drives.
466 */
143bede5
JM
467void btrfs_wait_ordered_extents(struct btrfs_root *root,
468 int nocow_only, int delay_iput)
3eaa2885
CM
469{
470 struct list_head splice;
471 struct list_head *cur;
472 struct btrfs_ordered_extent *ordered;
473 struct inode *inode;
474
475 INIT_LIST_HEAD(&splice);
476
477 spin_lock(&root->fs_info->ordered_extent_lock);
478 list_splice_init(&root->fs_info->ordered_extents, &splice);
5b21f2ed 479 while (!list_empty(&splice)) {
3eaa2885
CM
480 cur = splice.next;
481 ordered = list_entry(cur, struct btrfs_ordered_extent,
482 root_extent_list);
7ea394f1 483 if (nocow_only &&
d899e052
YZ
484 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
485 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5b21f2ed
ZY
486 list_move(&ordered->root_extent_list,
487 &root->fs_info->ordered_extents);
7ea394f1
YZ
488 cond_resched_lock(&root->fs_info->ordered_extent_lock);
489 continue;
490 }
491
3eaa2885
CM
492 list_del_init(&ordered->root_extent_list);
493 atomic_inc(&ordered->refs);
3eaa2885
CM
494
495 /*
5b21f2ed 496 * the inode may be getting freed (in sys_unlink path).
3eaa2885 497 */
5b21f2ed
ZY
498 inode = igrab(ordered->inode);
499
3eaa2885
CM
500 spin_unlock(&root->fs_info->ordered_extent_lock);
501
5b21f2ed
ZY
502 if (inode) {
503 btrfs_start_ordered_extent(inode, ordered, 1);
504 btrfs_put_ordered_extent(ordered);
24bbcf04
YZ
505 if (delay_iput)
506 btrfs_add_delayed_iput(inode);
507 else
508 iput(inode);
5b21f2ed
ZY
509 } else {
510 btrfs_put_ordered_extent(ordered);
511 }
3eaa2885
CM
512
513 spin_lock(&root->fs_info->ordered_extent_lock);
514 }
515 spin_unlock(&root->fs_info->ordered_extent_lock);
3eaa2885
CM
516}
517
5a3f23d5
CM
518/*
519 * this is used during transaction commit to write all the inodes
520 * added to the ordered operation list. These files must be fully on
521 * disk before the transaction commits.
522 *
523 * we have two modes here, one is to just start the IO via filemap_flush
524 * and the other is to wait for all the io. When we wait, we have an
525 * extra check to make sure the ordered operation list really is empty
526 * before we return
527 */
143bede5 528void btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
5a3f23d5
CM
529{
530 struct btrfs_inode *btrfs_inode;
531 struct inode *inode;
532 struct list_head splice;
533
534 INIT_LIST_HEAD(&splice);
535
536 mutex_lock(&root->fs_info->ordered_operations_mutex);
537 spin_lock(&root->fs_info->ordered_extent_lock);
538again:
539 list_splice_init(&root->fs_info->ordered_operations, &splice);
540
541 while (!list_empty(&splice)) {
542 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
543 ordered_operations);
544
545 inode = &btrfs_inode->vfs_inode;
546
547 list_del_init(&btrfs_inode->ordered_operations);
548
549 /*
550 * the inode may be getting freed (in sys_unlink path).
551 */
552 inode = igrab(inode);
553
554 if (!wait && inode) {
555 list_add_tail(&BTRFS_I(inode)->ordered_operations,
556 &root->fs_info->ordered_operations);
557 }
558 spin_unlock(&root->fs_info->ordered_extent_lock);
559
560 if (inode) {
561 if (wait)
562 btrfs_wait_ordered_range(inode, 0, (u64)-1);
563 else
564 filemap_flush(inode->i_mapping);
24bbcf04 565 btrfs_add_delayed_iput(inode);
5a3f23d5
CM
566 }
567
568 cond_resched();
569 spin_lock(&root->fs_info->ordered_extent_lock);
570 }
571 if (wait && !list_empty(&root->fs_info->ordered_operations))
572 goto again;
573
574 spin_unlock(&root->fs_info->ordered_extent_lock);
575 mutex_unlock(&root->fs_info->ordered_operations_mutex);
5a3f23d5
CM
576}
577
eb84ae03
CM
578/*
579 * Used to start IO or wait for a given ordered extent to finish.
580 *
581 * If wait is one, this effectively waits on page writeback for all the pages
582 * in the extent, and it waits on the io completion code to insert
583 * metadata into the btree corresponding to the extent
584 */
585void btrfs_start_ordered_extent(struct inode *inode,
586 struct btrfs_ordered_extent *entry,
587 int wait)
e6dcd2dc
CM
588{
589 u64 start = entry->file_offset;
590 u64 end = start + entry->len - 1;
e1b81e67 591
1abe9b8a 592 trace_btrfs_ordered_extent_start(inode, entry);
593
eb84ae03
CM
594 /*
595 * pages in the range can be dirty, clean or writeback. We
596 * start IO on any dirty ones so the wait doesn't stall waiting
597 * for pdflush to find them
598 */
4b46fce2
JB
599 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
600 filemap_fdatawrite_range(inode->i_mapping, start, end);
c8b97818 601 if (wait) {
e6dcd2dc
CM
602 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
603 &entry->flags));
c8b97818 604 }
e6dcd2dc 605}
cee36a03 606
eb84ae03
CM
607/*
608 * Used to wait on ordered extents across a large range of bytes.
609 */
143bede5 610void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
e6dcd2dc
CM
611{
612 u64 end;
e5a2217e 613 u64 orig_end;
e6dcd2dc 614 struct btrfs_ordered_extent *ordered;
8b62b72b 615 int found;
e5a2217e
CM
616
617 if (start + len < start) {
f421950f 618 orig_end = INT_LIMIT(loff_t);
e5a2217e
CM
619 } else {
620 orig_end = start + len - 1;
f421950f
CM
621 if (orig_end > INT_LIMIT(loff_t))
622 orig_end = INT_LIMIT(loff_t);
e5a2217e 623 }
551ebb2d 624
e5a2217e
CM
625 /* start IO across the range first to instantiate any delalloc
626 * extents
627 */
551ebb2d 628 filemap_write_and_wait_range(inode->i_mapping, start, orig_end);
e5a2217e 629
f421950f 630 end = orig_end;
8b62b72b 631 found = 0;
d397712b 632 while (1) {
e6dcd2dc 633 ordered = btrfs_lookup_first_ordered_extent(inode, end);
d397712b 634 if (!ordered)
e6dcd2dc 635 break;
e5a2217e 636 if (ordered->file_offset > orig_end) {
e6dcd2dc
CM
637 btrfs_put_ordered_extent(ordered);
638 break;
639 }
640 if (ordered->file_offset + ordered->len < start) {
641 btrfs_put_ordered_extent(ordered);
642 break;
643 }
8b62b72b 644 found++;
e5a2217e 645 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
646 end = ordered->file_offset;
647 btrfs_put_ordered_extent(ordered);
e5a2217e 648 if (end == 0 || end == start)
e6dcd2dc
CM
649 break;
650 end--;
651 }
cee36a03
CM
652}
653
eb84ae03
CM
654/*
655 * find an ordered extent corresponding to file_offset. return NULL if
656 * nothing is found, otherwise take a reference on the extent and return it
657 */
e6dcd2dc
CM
658struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
659 u64 file_offset)
660{
661 struct btrfs_ordered_inode_tree *tree;
662 struct rb_node *node;
663 struct btrfs_ordered_extent *entry = NULL;
664
665 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 666 spin_lock(&tree->lock);
e6dcd2dc
CM
667 node = tree_search(tree, file_offset);
668 if (!node)
669 goto out;
670
671 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
672 if (!offset_in_entry(entry, file_offset))
673 entry = NULL;
674 if (entry)
675 atomic_inc(&entry->refs);
676out:
49958fd7 677 spin_unlock(&tree->lock);
e6dcd2dc
CM
678 return entry;
679}
680
4b46fce2
JB
681/* Since the DIO code tries to lock a wide area we need to look for any ordered
682 * extents that exist in the range, rather than just the start of the range.
683 */
684struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
685 u64 file_offset,
686 u64 len)
687{
688 struct btrfs_ordered_inode_tree *tree;
689 struct rb_node *node;
690 struct btrfs_ordered_extent *entry = NULL;
691
692 tree = &BTRFS_I(inode)->ordered_tree;
693 spin_lock(&tree->lock);
694 node = tree_search(tree, file_offset);
695 if (!node) {
696 node = tree_search(tree, file_offset + len);
697 if (!node)
698 goto out;
699 }
700
701 while (1) {
702 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
703 if (range_overlaps(entry, file_offset, len))
704 break;
705
706 if (entry->file_offset >= file_offset + len) {
707 entry = NULL;
708 break;
709 }
710 entry = NULL;
711 node = rb_next(node);
712 if (!node)
713 break;
714 }
715out:
716 if (entry)
717 atomic_inc(&entry->refs);
718 spin_unlock(&tree->lock);
719 return entry;
720}
721
eb84ae03
CM
722/*
723 * lookup and return any extent before 'file_offset'. NULL is returned
724 * if none is found
725 */
e6dcd2dc 726struct btrfs_ordered_extent *
d397712b 727btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
e6dcd2dc
CM
728{
729 struct btrfs_ordered_inode_tree *tree;
730 struct rb_node *node;
731 struct btrfs_ordered_extent *entry = NULL;
732
733 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 734 spin_lock(&tree->lock);
e6dcd2dc
CM
735 node = tree_search(tree, file_offset);
736 if (!node)
737 goto out;
738
739 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
740 atomic_inc(&entry->refs);
741out:
49958fd7 742 spin_unlock(&tree->lock);
e6dcd2dc 743 return entry;
81d7ed29 744}
dbe674a9 745
eb84ae03
CM
746/*
747 * After an extent is done, call this to conditionally update the on disk
748 * i_size. i_size is updated to cover any fully written part of the file.
749 */
c2167754 750int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
dbe674a9
CM
751 struct btrfs_ordered_extent *ordered)
752{
753 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
754 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
755 u64 disk_i_size;
756 u64 new_i_size;
757 u64 i_size_test;
c2167754 758 u64 i_size = i_size_read(inode);
dbe674a9 759 struct rb_node *node;
c2167754 760 struct rb_node *prev = NULL;
dbe674a9 761 struct btrfs_ordered_extent *test;
c2167754
YZ
762 int ret = 1;
763
764 if (ordered)
765 offset = entry_end(ordered);
a038fab0
YZ
766 else
767 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
dbe674a9 768
49958fd7 769 spin_lock(&tree->lock);
dbe674a9
CM
770 disk_i_size = BTRFS_I(inode)->disk_i_size;
771
c2167754
YZ
772 /* truncate file */
773 if (disk_i_size > i_size) {
774 BTRFS_I(inode)->disk_i_size = i_size;
775 ret = 0;
776 goto out;
777 }
778
dbe674a9
CM
779 /*
780 * if the disk i_size is already at the inode->i_size, or
781 * this ordered extent is inside the disk i_size, we're done
782 */
c2167754 783 if (disk_i_size == i_size || offset <= disk_i_size) {
dbe674a9
CM
784 goto out;
785 }
786
787 /*
788 * we can't update the disk_isize if there are delalloc bytes
789 * between disk_i_size and this ordered extent
790 */
c2167754 791 if (test_range_bit(io_tree, disk_i_size, offset - 1,
9655d298 792 EXTENT_DELALLOC, 0, NULL)) {
dbe674a9
CM
793 goto out;
794 }
795 /*
796 * walk backward from this ordered extent to disk_i_size.
797 * if we find an ordered extent then we can't update disk i_size
798 * yet
799 */
c2167754
YZ
800 if (ordered) {
801 node = rb_prev(&ordered->rb_node);
802 } else {
803 prev = tree_search(tree, offset);
804 /*
805 * we insert file extents without involving ordered struct,
806 * so there should be no ordered struct cover this offset
807 */
808 if (prev) {
809 test = rb_entry(prev, struct btrfs_ordered_extent,
810 rb_node);
811 BUG_ON(offset_in_entry(test, offset));
812 }
813 node = prev;
814 }
815 while (node) {
dbe674a9
CM
816 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
817 if (test->file_offset + test->len <= disk_i_size)
818 break;
c2167754 819 if (test->file_offset >= i_size)
dbe674a9
CM
820 break;
821 if (test->file_offset >= disk_i_size)
822 goto out;
c2167754 823 node = rb_prev(node);
dbe674a9 824 }
c2167754 825 new_i_size = min_t(u64, offset, i_size);
dbe674a9
CM
826
827 /*
828 * at this point, we know we can safely update i_size to at least
829 * the offset from this ordered extent. But, we need to
830 * walk forward and see if ios from higher up in the file have
831 * finished.
832 */
c2167754
YZ
833 if (ordered) {
834 node = rb_next(&ordered->rb_node);
835 } else {
836 if (prev)
837 node = rb_next(prev);
838 else
839 node = rb_first(&tree->tree);
840 }
dbe674a9
CM
841 i_size_test = 0;
842 if (node) {
843 /*
844 * do we have an area where IO might have finished
845 * between our ordered extent and the next one.
846 */
847 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
c2167754 848 if (test->file_offset > offset)
b48652c1 849 i_size_test = test->file_offset;
dbe674a9 850 } else {
c2167754 851 i_size_test = i_size;
dbe674a9
CM
852 }
853
854 /*
855 * i_size_test is the end of a region after this ordered
856 * extent where there are no ordered extents. As long as there
857 * are no delalloc bytes in this area, it is safe to update
858 * disk_i_size to the end of the region.
859 */
c2167754
YZ
860 if (i_size_test > offset &&
861 !test_range_bit(io_tree, offset, i_size_test - 1,
862 EXTENT_DELALLOC, 0, NULL)) {
863 new_i_size = min_t(u64, i_size_test, i_size);
dbe674a9
CM
864 }
865 BTRFS_I(inode)->disk_i_size = new_i_size;
c2167754 866 ret = 0;
dbe674a9 867out:
c2167754
YZ
868 /*
869 * we need to remove the ordered extent with the tree lock held
870 * so that other people calling this function don't find our fully
871 * processed ordered entry and skip updating the i_size
872 */
873 if (ordered)
874 __btrfs_remove_ordered_extent(inode, ordered);
49958fd7 875 spin_unlock(&tree->lock);
c2167754
YZ
876 if (ordered)
877 wake_up(&ordered->wait);
878 return ret;
dbe674a9 879}
ba1da2f4 880
eb84ae03
CM
881/*
882 * search the ordered extents for one corresponding to 'offset' and
883 * try to find a checksum. This is used because we allow pages to
884 * be reclaimed before their checksum is actually put into the btree
885 */
d20f7043
CM
886int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
887 u32 *sum)
ba1da2f4
CM
888{
889 struct btrfs_ordered_sum *ordered_sum;
890 struct btrfs_sector_sum *sector_sums;
891 struct btrfs_ordered_extent *ordered;
892 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
3edf7d33
CM
893 unsigned long num_sectors;
894 unsigned long i;
895 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
ba1da2f4 896 int ret = 1;
ba1da2f4
CM
897
898 ordered = btrfs_lookup_ordered_extent(inode, offset);
899 if (!ordered)
900 return 1;
901
49958fd7 902 spin_lock(&tree->lock);
c6e30871 903 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
d20f7043 904 if (disk_bytenr >= ordered_sum->bytenr) {
3edf7d33 905 num_sectors = ordered_sum->len / sectorsize;
ed98b56a 906 sector_sums = ordered_sum->sums;
3edf7d33 907 for (i = 0; i < num_sectors; i++) {
d20f7043 908 if (sector_sums[i].bytenr == disk_bytenr) {
3edf7d33
CM
909 *sum = sector_sums[i].sum;
910 ret = 0;
911 goto out;
912 }
913 }
ba1da2f4
CM
914 }
915 }
916out:
49958fd7 917 spin_unlock(&tree->lock);
89642229 918 btrfs_put_ordered_extent(ordered);
ba1da2f4
CM
919 return ret;
920}
921
f421950f 922
5a3f23d5
CM
923/*
924 * add a given inode to the list of inodes that must be fully on
925 * disk before a transaction commit finishes.
926 *
927 * This basically gives us the ext3 style data=ordered mode, and it is mostly
928 * used to make sure renamed files are fully on disk.
929 *
930 * It is a noop if the inode is already fully on disk.
931 *
932 * If trans is not null, we'll do a friendly check for a transaction that
933 * is already flushing things and force the IO down ourselves.
934 */
143bede5
JM
935void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
936 struct btrfs_root *root, struct inode *inode)
5a3f23d5
CM
937{
938 u64 last_mod;
939
940 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
941
942 /*
943 * if this file hasn't been changed since the last transaction
944 * commit, we can safely return without doing anything
945 */
946 if (last_mod < root->fs_info->last_trans_committed)
143bede5 947 return;
5a3f23d5
CM
948
949 /*
950 * the transaction is already committing. Just start the IO and
951 * don't bother with all of this list nonsense
952 */
953 if (trans && root->fs_info->running_transaction->blocked) {
954 btrfs_wait_ordered_range(inode, 0, (u64)-1);
143bede5 955 return;
5a3f23d5
CM
956 }
957
958 spin_lock(&root->fs_info->ordered_extent_lock);
959 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
960 list_add_tail(&BTRFS_I(inode)->ordered_operations,
961 &root->fs_info->ordered_operations);
962 }
963 spin_unlock(&root->fs_info->ordered_extent_lock);
5a3f23d5 964}
This page took 0.337028 seconds and 5 git commands to generate.