Merge tag 'iwlwifi-for-john-2014-11-10' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / fs / btrfs / scrub.c
CommitLineData
a2de733c 1/*
b6bfebc1 2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
a2de733c
AJ
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a2de733c 19#include <linux/blkdev.h>
558540c1 20#include <linux/ratelimit.h>
a2de733c
AJ
21#include "ctree.h"
22#include "volumes.h"
23#include "disk-io.h"
24#include "ordered-data.h"
0ef8e451 25#include "transaction.h"
558540c1 26#include "backref.h"
5da6fcbc 27#include "extent_io.h"
ff023aac 28#include "dev-replace.h"
21adbd5c 29#include "check-integrity.h"
606686ee 30#include "rcu-string.h"
53b381b3 31#include "raid56.h"
a2de733c
AJ
32
33/*
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
37 * any can be found.
38 *
39 * Future enhancements:
a2de733c
AJ
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
a2de733c 42 * - track and record media errors, throw out bad devices
a2de733c 43 * - add a mode to also read unallocated space
a2de733c
AJ
44 */
45
b5d67f64 46struct scrub_block;
d9d181c1 47struct scrub_ctx;
a2de733c 48
ff023aac
SB
49/*
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
54 */
55#define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
56#define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
57#define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
7a9e9987
SB
58
59/*
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
63 */
b5d67f64 64#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
a2de733c
AJ
65
66struct scrub_page {
b5d67f64
SB
67 struct scrub_block *sblock;
68 struct page *page;
442a4f63 69 struct btrfs_device *dev;
a2de733c
AJ
70 u64 flags; /* extent flags */
71 u64 generation;
b5d67f64
SB
72 u64 logical;
73 u64 physical;
ff023aac 74 u64 physical_for_dev_replace;
7a9e9987 75 atomic_t ref_count;
b5d67f64
SB
76 struct {
77 unsigned int mirror_num:8;
78 unsigned int have_csum:1;
79 unsigned int io_error:1;
80 };
a2de733c
AJ
81 u8 csum[BTRFS_CSUM_SIZE];
82};
83
84struct scrub_bio {
85 int index;
d9d181c1 86 struct scrub_ctx *sctx;
a36cf8b8 87 struct btrfs_device *dev;
a2de733c
AJ
88 struct bio *bio;
89 int err;
90 u64 logical;
91 u64 physical;
ff023aac
SB
92#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
94#else
95 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
96#endif
b5d67f64 97 int page_count;
a2de733c
AJ
98 int next_free;
99 struct btrfs_work work;
100};
101
b5d67f64 102struct scrub_block {
7a9e9987 103 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
b5d67f64
SB
104 int page_count;
105 atomic_t outstanding_pages;
106 atomic_t ref_count; /* free mem on transition to zero */
d9d181c1 107 struct scrub_ctx *sctx;
b5d67f64
SB
108 struct {
109 unsigned int header_error:1;
110 unsigned int checksum_error:1;
111 unsigned int no_io_error_seen:1;
442a4f63 112 unsigned int generation_error:1; /* also sets header_error */
b5d67f64
SB
113 };
114};
115
ff023aac
SB
116struct scrub_wr_ctx {
117 struct scrub_bio *wr_curr_bio;
118 struct btrfs_device *tgtdev;
119 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
120 atomic_t flush_all_writes;
121 struct mutex wr_lock;
122};
123
d9d181c1 124struct scrub_ctx {
ff023aac 125 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
a36cf8b8 126 struct btrfs_root *dev_root;
a2de733c
AJ
127 int first_free;
128 int curr;
b6bfebc1
SB
129 atomic_t bios_in_flight;
130 atomic_t workers_pending;
a2de733c
AJ
131 spinlock_t list_lock;
132 wait_queue_head_t list_wait;
133 u16 csum_size;
134 struct list_head csum_list;
135 atomic_t cancel_req;
8628764e 136 int readonly;
ff023aac 137 int pages_per_rd_bio;
b5d67f64
SB
138 u32 sectorsize;
139 u32 nodesize;
63a212ab
SB
140
141 int is_dev_replace;
ff023aac 142 struct scrub_wr_ctx wr_ctx;
63a212ab 143
a2de733c
AJ
144 /*
145 * statistics
146 */
147 struct btrfs_scrub_progress stat;
148 spinlock_t stat_lock;
149};
150
0ef8e451 151struct scrub_fixup_nodatasum {
d9d181c1 152 struct scrub_ctx *sctx;
a36cf8b8 153 struct btrfs_device *dev;
0ef8e451
JS
154 u64 logical;
155 struct btrfs_root *root;
156 struct btrfs_work work;
157 int mirror_num;
158};
159
652f25a2
JB
160struct scrub_nocow_inode {
161 u64 inum;
162 u64 offset;
163 u64 root;
164 struct list_head list;
165};
166
ff023aac
SB
167struct scrub_copy_nocow_ctx {
168 struct scrub_ctx *sctx;
169 u64 logical;
170 u64 len;
171 int mirror_num;
172 u64 physical_for_dev_replace;
652f25a2 173 struct list_head inodes;
ff023aac
SB
174 struct btrfs_work work;
175};
176
558540c1
JS
177struct scrub_warning {
178 struct btrfs_path *path;
179 u64 extent_item_size;
558540c1
JS
180 const char *errstr;
181 sector_t sector;
182 u64 logical;
183 struct btrfs_device *dev;
558540c1
JS
184};
185
b6bfebc1
SB
186static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
187static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
188static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
189static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
b5d67f64 190static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
d9d181c1 191static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
3ec706c8 192 struct btrfs_fs_info *fs_info,
ff023aac 193 struct scrub_block *original_sblock,
b5d67f64 194 u64 length, u64 logical,
ff023aac 195 struct scrub_block *sblocks_for_recheck);
34f5c8e9
SB
196static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
197 struct scrub_block *sblock, int is_metadata,
198 int have_csum, u8 *csum, u64 generation,
199 u16 csum_size);
b5d67f64
SB
200static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
201 struct scrub_block *sblock,
202 int is_metadata, int have_csum,
203 const u8 *csum, u64 generation,
204 u16 csum_size);
b5d67f64
SB
205static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
206 struct scrub_block *sblock_good,
207 int force_write);
208static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
209 struct scrub_block *sblock_good,
210 int page_num, int force_write);
ff023aac
SB
211static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
212static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
213 int page_num);
b5d67f64
SB
214static int scrub_checksum_data(struct scrub_block *sblock);
215static int scrub_checksum_tree_block(struct scrub_block *sblock);
216static int scrub_checksum_super(struct scrub_block *sblock);
217static void scrub_block_get(struct scrub_block *sblock);
218static void scrub_block_put(struct scrub_block *sblock);
7a9e9987
SB
219static void scrub_page_get(struct scrub_page *spage);
220static void scrub_page_put(struct scrub_page *spage);
ff023aac
SB
221static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
222 struct scrub_page *spage);
d9d181c1 223static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 224 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac
SB
225 u64 gen, int mirror_num, u8 *csum, int force,
226 u64 physical_for_dev_replace);
1623edeb 227static void scrub_bio_end_io(struct bio *bio, int err);
b5d67f64
SB
228static void scrub_bio_end_io_worker(struct btrfs_work *work);
229static void scrub_block_complete(struct scrub_block *sblock);
ff023aac
SB
230static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
231 u64 extent_logical, u64 extent_len,
232 u64 *extent_physical,
233 struct btrfs_device **extent_dev,
234 int *extent_mirror_num);
235static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
236 struct scrub_wr_ctx *wr_ctx,
237 struct btrfs_fs_info *fs_info,
238 struct btrfs_device *dev,
239 int is_dev_replace);
240static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
241static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
242 struct scrub_page *spage);
243static void scrub_wr_submit(struct scrub_ctx *sctx);
244static void scrub_wr_bio_end_io(struct bio *bio, int err);
245static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
246static int write_page_nocow(struct scrub_ctx *sctx,
247 u64 physical_for_dev_replace, struct page *page);
248static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
652f25a2 249 struct scrub_copy_nocow_ctx *ctx);
ff023aac
SB
250static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
251 int mirror_num, u64 physical_for_dev_replace);
252static void copy_nocow_pages_worker(struct btrfs_work *work);
cb7ab021 253static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
3cb0929a 254static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
1623edeb
SB
255
256
b6bfebc1
SB
257static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
258{
259 atomic_inc(&sctx->bios_in_flight);
260}
261
262static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
263{
264 atomic_dec(&sctx->bios_in_flight);
265 wake_up(&sctx->list_wait);
266}
267
cb7ab021 268static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
3cb0929a
WS
269{
270 while (atomic_read(&fs_info->scrub_pause_req)) {
271 mutex_unlock(&fs_info->scrub_lock);
272 wait_event(fs_info->scrub_pause_wait,
273 atomic_read(&fs_info->scrub_pause_req) == 0);
274 mutex_lock(&fs_info->scrub_lock);
275 }
276}
277
cb7ab021
WS
278static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
279{
280 atomic_inc(&fs_info->scrubs_paused);
281 wake_up(&fs_info->scrub_pause_wait);
282
283 mutex_lock(&fs_info->scrub_lock);
284 __scrub_blocked_if_needed(fs_info);
285 atomic_dec(&fs_info->scrubs_paused);
286 mutex_unlock(&fs_info->scrub_lock);
287
288 wake_up(&fs_info->scrub_pause_wait);
289}
290
b6bfebc1
SB
291/*
292 * used for workers that require transaction commits (i.e., for the
293 * NOCOW case)
294 */
295static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
296{
297 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
298
299 /*
300 * increment scrubs_running to prevent cancel requests from
301 * completing as long as a worker is running. we must also
302 * increment scrubs_paused to prevent deadlocking on pause
303 * requests used for transactions commits (as the worker uses a
304 * transaction context). it is safe to regard the worker
305 * as paused for all matters practical. effectively, we only
306 * avoid cancellation requests from completing.
307 */
308 mutex_lock(&fs_info->scrub_lock);
309 atomic_inc(&fs_info->scrubs_running);
310 atomic_inc(&fs_info->scrubs_paused);
311 mutex_unlock(&fs_info->scrub_lock);
32a44789
WS
312
313 /*
314 * check if @scrubs_running=@scrubs_paused condition
315 * inside wait_event() is not an atomic operation.
316 * which means we may inc/dec @scrub_running/paused
317 * at any time. Let's wake up @scrub_pause_wait as
318 * much as we can to let commit transaction blocked less.
319 */
320 wake_up(&fs_info->scrub_pause_wait);
321
b6bfebc1
SB
322 atomic_inc(&sctx->workers_pending);
323}
324
325/* used for workers that require transaction commits */
326static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
327{
328 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
329
330 /*
331 * see scrub_pending_trans_workers_inc() why we're pretending
332 * to be paused in the scrub counters
333 */
334 mutex_lock(&fs_info->scrub_lock);
335 atomic_dec(&fs_info->scrubs_running);
336 atomic_dec(&fs_info->scrubs_paused);
337 mutex_unlock(&fs_info->scrub_lock);
338 atomic_dec(&sctx->workers_pending);
339 wake_up(&fs_info->scrub_pause_wait);
340 wake_up(&sctx->list_wait);
341}
342
d9d181c1 343static void scrub_free_csums(struct scrub_ctx *sctx)
a2de733c 344{
d9d181c1 345 while (!list_empty(&sctx->csum_list)) {
a2de733c 346 struct btrfs_ordered_sum *sum;
d9d181c1 347 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
348 struct btrfs_ordered_sum, list);
349 list_del(&sum->list);
350 kfree(sum);
351 }
352}
353
d9d181c1 354static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
a2de733c
AJ
355{
356 int i;
a2de733c 357
d9d181c1 358 if (!sctx)
a2de733c
AJ
359 return;
360
ff023aac
SB
361 scrub_free_wr_ctx(&sctx->wr_ctx);
362
b5d67f64 363 /* this can happen when scrub is cancelled */
d9d181c1
SB
364 if (sctx->curr != -1) {
365 struct scrub_bio *sbio = sctx->bios[sctx->curr];
b5d67f64
SB
366
367 for (i = 0; i < sbio->page_count; i++) {
ff023aac 368 WARN_ON(!sbio->pagev[i]->page);
b5d67f64
SB
369 scrub_block_put(sbio->pagev[i]->sblock);
370 }
371 bio_put(sbio->bio);
372 }
373
ff023aac 374 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
d9d181c1 375 struct scrub_bio *sbio = sctx->bios[i];
a2de733c
AJ
376
377 if (!sbio)
378 break;
a2de733c
AJ
379 kfree(sbio);
380 }
381
d9d181c1
SB
382 scrub_free_csums(sctx);
383 kfree(sctx);
a2de733c
AJ
384}
385
386static noinline_for_stack
63a212ab 387struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
a2de733c 388{
d9d181c1 389 struct scrub_ctx *sctx;
a2de733c 390 int i;
a2de733c 391 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
ff023aac
SB
392 int pages_per_rd_bio;
393 int ret;
a2de733c 394
ff023aac
SB
395 /*
396 * the setting of pages_per_rd_bio is correct for scrub but might
397 * be wrong for the dev_replace code where we might read from
398 * different devices in the initial huge bios. However, that
399 * code is able to correctly handle the case when adding a page
400 * to a bio fails.
401 */
402 if (dev->bdev)
403 pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
404 bio_get_nr_vecs(dev->bdev));
405 else
406 pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
d9d181c1
SB
407 sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
408 if (!sctx)
a2de733c 409 goto nomem;
63a212ab 410 sctx->is_dev_replace = is_dev_replace;
ff023aac 411 sctx->pages_per_rd_bio = pages_per_rd_bio;
d9d181c1 412 sctx->curr = -1;
a36cf8b8 413 sctx->dev_root = dev->dev_root;
ff023aac 414 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
a2de733c
AJ
415 struct scrub_bio *sbio;
416
417 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
418 if (!sbio)
419 goto nomem;
d9d181c1 420 sctx->bios[i] = sbio;
a2de733c 421
a2de733c 422 sbio->index = i;
d9d181c1 423 sbio->sctx = sctx;
b5d67f64 424 sbio->page_count = 0;
9e0af237
LB
425 btrfs_init_work(&sbio->work, btrfs_scrub_helper,
426 scrub_bio_end_io_worker, NULL, NULL);
a2de733c 427
ff023aac 428 if (i != SCRUB_BIOS_PER_SCTX - 1)
d9d181c1 429 sctx->bios[i]->next_free = i + 1;
0ef8e451 430 else
d9d181c1
SB
431 sctx->bios[i]->next_free = -1;
432 }
433 sctx->first_free = 0;
434 sctx->nodesize = dev->dev_root->nodesize;
d9d181c1 435 sctx->sectorsize = dev->dev_root->sectorsize;
b6bfebc1
SB
436 atomic_set(&sctx->bios_in_flight, 0);
437 atomic_set(&sctx->workers_pending, 0);
d9d181c1
SB
438 atomic_set(&sctx->cancel_req, 0);
439 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
440 INIT_LIST_HEAD(&sctx->csum_list);
441
442 spin_lock_init(&sctx->list_lock);
443 spin_lock_init(&sctx->stat_lock);
444 init_waitqueue_head(&sctx->list_wait);
ff023aac
SB
445
446 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
447 fs_info->dev_replace.tgtdev, is_dev_replace);
448 if (ret) {
449 scrub_free_ctx(sctx);
450 return ERR_PTR(ret);
451 }
d9d181c1 452 return sctx;
a2de733c
AJ
453
454nomem:
d9d181c1 455 scrub_free_ctx(sctx);
a2de733c
AJ
456 return ERR_PTR(-ENOMEM);
457}
458
ff023aac
SB
459static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
460 void *warn_ctx)
558540c1
JS
461{
462 u64 isize;
463 u32 nlink;
464 int ret;
465 int i;
466 struct extent_buffer *eb;
467 struct btrfs_inode_item *inode_item;
ff023aac 468 struct scrub_warning *swarn = warn_ctx;
558540c1
JS
469 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
470 struct inode_fs_paths *ipath = NULL;
471 struct btrfs_root *local_root;
472 struct btrfs_key root_key;
473
474 root_key.objectid = root;
475 root_key.type = BTRFS_ROOT_ITEM_KEY;
476 root_key.offset = (u64)-1;
477 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
478 if (IS_ERR(local_root)) {
479 ret = PTR_ERR(local_root);
480 goto err;
481 }
482
483 ret = inode_item_info(inum, 0, local_root, swarn->path);
484 if (ret) {
485 btrfs_release_path(swarn->path);
486 goto err;
487 }
488
489 eb = swarn->path->nodes[0];
490 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
491 struct btrfs_inode_item);
492 isize = btrfs_inode_size(eb, inode_item);
493 nlink = btrfs_inode_nlink(eb, inode_item);
494 btrfs_release_path(swarn->path);
495
496 ipath = init_ipath(4096, local_root, swarn->path);
26bdef54
DC
497 if (IS_ERR(ipath)) {
498 ret = PTR_ERR(ipath);
499 ipath = NULL;
500 goto err;
501 }
558540c1
JS
502 ret = paths_from_inode(inum, ipath);
503
504 if (ret < 0)
505 goto err;
506
507 /*
508 * we deliberately ignore the bit ipath might have been too small to
509 * hold all of the paths here
510 */
511 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
efe120a0 512 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
558540c1
JS
513 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
514 "length %llu, links %u (path: %s)\n", swarn->errstr,
606686ee 515 swarn->logical, rcu_str_deref(swarn->dev->name),
558540c1
JS
516 (unsigned long long)swarn->sector, root, inum, offset,
517 min(isize - offset, (u64)PAGE_SIZE), nlink,
745c4d8e 518 (char *)(unsigned long)ipath->fspath->val[i]);
558540c1
JS
519
520 free_ipath(ipath);
521 return 0;
522
523err:
efe120a0 524 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
558540c1
JS
525 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
526 "resolving failed with ret=%d\n", swarn->errstr,
606686ee 527 swarn->logical, rcu_str_deref(swarn->dev->name),
558540c1
JS
528 (unsigned long long)swarn->sector, root, inum, offset, ret);
529
530 free_ipath(ipath);
531 return 0;
532}
533
b5d67f64 534static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
558540c1 535{
a36cf8b8
SB
536 struct btrfs_device *dev;
537 struct btrfs_fs_info *fs_info;
558540c1
JS
538 struct btrfs_path *path;
539 struct btrfs_key found_key;
540 struct extent_buffer *eb;
541 struct btrfs_extent_item *ei;
542 struct scrub_warning swarn;
69917e43
LB
543 unsigned long ptr = 0;
544 u64 extent_item_pos;
545 u64 flags = 0;
558540c1 546 u64 ref_root;
69917e43 547 u32 item_size;
558540c1 548 u8 ref_level;
69917e43 549 int ret;
558540c1 550
a36cf8b8 551 WARN_ON(sblock->page_count < 1);
7a9e9987 552 dev = sblock->pagev[0]->dev;
a36cf8b8
SB
553 fs_info = sblock->sctx->dev_root->fs_info;
554
558540c1 555 path = btrfs_alloc_path();
8b9456da
DS
556 if (!path)
557 return;
558540c1 558
7a9e9987
SB
559 swarn.sector = (sblock->pagev[0]->physical) >> 9;
560 swarn.logical = sblock->pagev[0]->logical;
558540c1 561 swarn.errstr = errstr;
a36cf8b8 562 swarn.dev = NULL;
558540c1 563
69917e43
LB
564 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
565 &flags);
558540c1
JS
566 if (ret < 0)
567 goto out;
568
4692cf58 569 extent_item_pos = swarn.logical - found_key.objectid;
558540c1
JS
570 swarn.extent_item_size = found_key.offset;
571
572 eb = path->nodes[0];
573 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
574 item_size = btrfs_item_size_nr(eb, path->slots[0]);
575
69917e43 576 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
558540c1 577 do {
6eda71d0
LB
578 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
579 item_size, &ref_root,
580 &ref_level);
606686ee 581 printk_in_rcu(KERN_WARNING
efe120a0 582 "BTRFS: %s at logical %llu on dev %s, "
558540c1 583 "sector %llu: metadata %s (level %d) in tree "
606686ee
JB
584 "%llu\n", errstr, swarn.logical,
585 rcu_str_deref(dev->name),
558540c1
JS
586 (unsigned long long)swarn.sector,
587 ref_level ? "node" : "leaf",
588 ret < 0 ? -1 : ref_level,
589 ret < 0 ? -1 : ref_root);
590 } while (ret != 1);
d8fe29e9 591 btrfs_release_path(path);
558540c1 592 } else {
d8fe29e9 593 btrfs_release_path(path);
558540c1 594 swarn.path = path;
a36cf8b8 595 swarn.dev = dev;
7a3ae2f8
JS
596 iterate_extent_inodes(fs_info, found_key.objectid,
597 extent_item_pos, 1,
558540c1
JS
598 scrub_print_warning_inode, &swarn);
599 }
600
601out:
602 btrfs_free_path(path);
558540c1
JS
603}
604
ff023aac 605static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
0ef8e451 606{
5da6fcbc 607 struct page *page = NULL;
0ef8e451 608 unsigned long index;
ff023aac 609 struct scrub_fixup_nodatasum *fixup = fixup_ctx;
0ef8e451 610 int ret;
5da6fcbc 611 int corrected = 0;
0ef8e451 612 struct btrfs_key key;
5da6fcbc 613 struct inode *inode = NULL;
6f1c3605 614 struct btrfs_fs_info *fs_info;
0ef8e451
JS
615 u64 end = offset + PAGE_SIZE - 1;
616 struct btrfs_root *local_root;
6f1c3605 617 int srcu_index;
0ef8e451
JS
618
619 key.objectid = root;
620 key.type = BTRFS_ROOT_ITEM_KEY;
621 key.offset = (u64)-1;
6f1c3605
LB
622
623 fs_info = fixup->root->fs_info;
624 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
625
626 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
627 if (IS_ERR(local_root)) {
628 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
0ef8e451 629 return PTR_ERR(local_root);
6f1c3605 630 }
0ef8e451
JS
631
632 key.type = BTRFS_INODE_ITEM_KEY;
633 key.objectid = inum;
634 key.offset = 0;
6f1c3605
LB
635 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
636 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
0ef8e451
JS
637 if (IS_ERR(inode))
638 return PTR_ERR(inode);
639
0ef8e451
JS
640 index = offset >> PAGE_CACHE_SHIFT;
641
642 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
5da6fcbc
JS
643 if (!page) {
644 ret = -ENOMEM;
645 goto out;
646 }
647
648 if (PageUptodate(page)) {
5da6fcbc
JS
649 if (PageDirty(page)) {
650 /*
651 * we need to write the data to the defect sector. the
652 * data that was in that sector is not in memory,
653 * because the page was modified. we must not write the
654 * modified page to that sector.
655 *
656 * TODO: what could be done here: wait for the delalloc
657 * runner to write out that page (might involve
658 * COW) and see whether the sector is still
659 * referenced afterwards.
660 *
661 * For the meantime, we'll treat this error
662 * incorrectable, although there is a chance that a
663 * later scrub will find the bad sector again and that
664 * there's no dirty page in memory, then.
665 */
666 ret = -EIO;
667 goto out;
668 }
1203b681 669 ret = repair_io_failure(inode, offset, PAGE_SIZE,
5da6fcbc 670 fixup->logical, page,
ffdd2018 671 offset - page_offset(page),
5da6fcbc
JS
672 fixup->mirror_num);
673 unlock_page(page);
674 corrected = !ret;
675 } else {
676 /*
677 * we need to get good data first. the general readpage path
678 * will call repair_io_failure for us, we just have to make
679 * sure we read the bad mirror.
680 */
681 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
682 EXTENT_DAMAGED, GFP_NOFS);
683 if (ret) {
684 /* set_extent_bits should give proper error */
685 WARN_ON(ret > 0);
686 if (ret > 0)
687 ret = -EFAULT;
688 goto out;
689 }
690
691 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
692 btrfs_get_extent,
693 fixup->mirror_num);
694 wait_on_page_locked(page);
695
696 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
697 end, EXTENT_DAMAGED, 0, NULL);
698 if (!corrected)
699 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
700 EXTENT_DAMAGED, GFP_NOFS);
701 }
702
703out:
704 if (page)
705 put_page(page);
7fb18a06
TK
706
707 iput(inode);
0ef8e451
JS
708
709 if (ret < 0)
710 return ret;
711
712 if (ret == 0 && corrected) {
713 /*
714 * we only need to call readpage for one of the inodes belonging
715 * to this extent. so make iterate_extent_inodes stop
716 */
717 return 1;
718 }
719
720 return -EIO;
721}
722
723static void scrub_fixup_nodatasum(struct btrfs_work *work)
724{
725 int ret;
726 struct scrub_fixup_nodatasum *fixup;
d9d181c1 727 struct scrub_ctx *sctx;
0ef8e451 728 struct btrfs_trans_handle *trans = NULL;
0ef8e451
JS
729 struct btrfs_path *path;
730 int uncorrectable = 0;
731
732 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
d9d181c1 733 sctx = fixup->sctx;
0ef8e451
JS
734
735 path = btrfs_alloc_path();
736 if (!path) {
d9d181c1
SB
737 spin_lock(&sctx->stat_lock);
738 ++sctx->stat.malloc_errors;
739 spin_unlock(&sctx->stat_lock);
0ef8e451
JS
740 uncorrectable = 1;
741 goto out;
742 }
743
744 trans = btrfs_join_transaction(fixup->root);
745 if (IS_ERR(trans)) {
746 uncorrectable = 1;
747 goto out;
748 }
749
750 /*
751 * the idea is to trigger a regular read through the standard path. we
752 * read a page from the (failed) logical address by specifying the
753 * corresponding copynum of the failed sector. thus, that readpage is
754 * expected to fail.
755 * that is the point where on-the-fly error correction will kick in
756 * (once it's finished) and rewrite the failed sector if a good copy
757 * can be found.
758 */
759 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
760 path, scrub_fixup_readpage,
761 fixup);
762 if (ret < 0) {
763 uncorrectable = 1;
764 goto out;
765 }
766 WARN_ON(ret != 1);
767
d9d181c1
SB
768 spin_lock(&sctx->stat_lock);
769 ++sctx->stat.corrected_errors;
770 spin_unlock(&sctx->stat_lock);
0ef8e451
JS
771
772out:
773 if (trans && !IS_ERR(trans))
774 btrfs_end_transaction(trans, fixup->root);
775 if (uncorrectable) {
d9d181c1
SB
776 spin_lock(&sctx->stat_lock);
777 ++sctx->stat.uncorrectable_errors;
778 spin_unlock(&sctx->stat_lock);
ff023aac
SB
779 btrfs_dev_replace_stats_inc(
780 &sctx->dev_root->fs_info->dev_replace.
781 num_uncorrectable_read_errors);
efe120a0
FH
782 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
783 "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
c1c9ff7c 784 fixup->logical, rcu_str_deref(fixup->dev->name));
0ef8e451
JS
785 }
786
787 btrfs_free_path(path);
788 kfree(fixup);
789
b6bfebc1 790 scrub_pending_trans_workers_dec(sctx);
0ef8e451
JS
791}
792
a2de733c 793/*
b5d67f64
SB
794 * scrub_handle_errored_block gets called when either verification of the
795 * pages failed or the bio failed to read, e.g. with EIO. In the latter
796 * case, this function handles all pages in the bio, even though only one
797 * may be bad.
798 * The goal of this function is to repair the errored block by using the
799 * contents of one of the mirrors.
a2de733c 800 */
b5d67f64 801static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
a2de733c 802{
d9d181c1 803 struct scrub_ctx *sctx = sblock_to_check->sctx;
a36cf8b8 804 struct btrfs_device *dev;
b5d67f64
SB
805 struct btrfs_fs_info *fs_info;
806 u64 length;
807 u64 logical;
808 u64 generation;
809 unsigned int failed_mirror_index;
810 unsigned int is_metadata;
811 unsigned int have_csum;
812 u8 *csum;
813 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
814 struct scrub_block *sblock_bad;
815 int ret;
816 int mirror_index;
817 int page_num;
818 int success;
558540c1 819 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
b5d67f64
SB
820 DEFAULT_RATELIMIT_BURST);
821
822 BUG_ON(sblock_to_check->page_count < 1);
a36cf8b8 823 fs_info = sctx->dev_root->fs_info;
4ded4f63
SB
824 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
825 /*
826 * if we find an error in a super block, we just report it.
827 * They will get written with the next transaction commit
828 * anyway
829 */
830 spin_lock(&sctx->stat_lock);
831 ++sctx->stat.super_errors;
832 spin_unlock(&sctx->stat_lock);
833 return 0;
834 }
b5d67f64 835 length = sblock_to_check->page_count * PAGE_SIZE;
7a9e9987
SB
836 logical = sblock_to_check->pagev[0]->logical;
837 generation = sblock_to_check->pagev[0]->generation;
838 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
839 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
840 is_metadata = !(sblock_to_check->pagev[0]->flags &
b5d67f64 841 BTRFS_EXTENT_FLAG_DATA);
7a9e9987
SB
842 have_csum = sblock_to_check->pagev[0]->have_csum;
843 csum = sblock_to_check->pagev[0]->csum;
844 dev = sblock_to_check->pagev[0]->dev;
13db62b7 845
ff023aac
SB
846 if (sctx->is_dev_replace && !is_metadata && !have_csum) {
847 sblocks_for_recheck = NULL;
848 goto nodatasum_case;
849 }
850
b5d67f64
SB
851 /*
852 * read all mirrors one after the other. This includes to
853 * re-read the extent or metadata block that failed (that was
854 * the cause that this fixup code is called) another time,
855 * page by page this time in order to know which pages
856 * caused I/O errors and which ones are good (for all mirrors).
857 * It is the goal to handle the situation when more than one
858 * mirror contains I/O errors, but the errors do not
859 * overlap, i.e. the data can be repaired by selecting the
860 * pages from those mirrors without I/O error on the
861 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
862 * would be that mirror #1 has an I/O error on the first page,
863 * the second page is good, and mirror #2 has an I/O error on
864 * the second page, but the first page is good.
865 * Then the first page of the first mirror can be repaired by
866 * taking the first page of the second mirror, and the
867 * second page of the second mirror can be repaired by
868 * copying the contents of the 2nd page of the 1st mirror.
869 * One more note: if the pages of one mirror contain I/O
870 * errors, the checksum cannot be verified. In order to get
871 * the best data for repairing, the first attempt is to find
872 * a mirror without I/O errors and with a validated checksum.
873 * Only if this is not possible, the pages are picked from
874 * mirrors with I/O errors without considering the checksum.
875 * If the latter is the case, at the end, the checksum of the
876 * repaired area is verified in order to correctly maintain
877 * the statistics.
878 */
879
880 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
881 sizeof(*sblocks_for_recheck),
882 GFP_NOFS);
883 if (!sblocks_for_recheck) {
d9d181c1
SB
884 spin_lock(&sctx->stat_lock);
885 sctx->stat.malloc_errors++;
886 sctx->stat.read_errors++;
887 sctx->stat.uncorrectable_errors++;
888 spin_unlock(&sctx->stat_lock);
a36cf8b8 889 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 890 goto out;
a2de733c
AJ
891 }
892
b5d67f64 893 /* setup the context, map the logical blocks and alloc the pages */
ff023aac 894 ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
b5d67f64
SB
895 logical, sblocks_for_recheck);
896 if (ret) {
d9d181c1
SB
897 spin_lock(&sctx->stat_lock);
898 sctx->stat.read_errors++;
899 sctx->stat.uncorrectable_errors++;
900 spin_unlock(&sctx->stat_lock);
a36cf8b8 901 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64
SB
902 goto out;
903 }
904 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
905 sblock_bad = sblocks_for_recheck + failed_mirror_index;
13db62b7 906
b5d67f64 907 /* build and submit the bios for the failed mirror, check checksums */
34f5c8e9
SB
908 scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
909 csum, generation, sctx->csum_size);
a2de733c 910
b5d67f64
SB
911 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
912 sblock_bad->no_io_error_seen) {
913 /*
914 * the error disappeared after reading page by page, or
915 * the area was part of a huge bio and other parts of the
916 * bio caused I/O errors, or the block layer merged several
917 * read requests into one and the error is caused by a
918 * different bio (usually one of the two latter cases is
919 * the cause)
920 */
d9d181c1
SB
921 spin_lock(&sctx->stat_lock);
922 sctx->stat.unverified_errors++;
923 spin_unlock(&sctx->stat_lock);
a2de733c 924
ff023aac
SB
925 if (sctx->is_dev_replace)
926 scrub_write_block_to_dev_replace(sblock_bad);
b5d67f64 927 goto out;
a2de733c 928 }
a2de733c 929
b5d67f64 930 if (!sblock_bad->no_io_error_seen) {
d9d181c1
SB
931 spin_lock(&sctx->stat_lock);
932 sctx->stat.read_errors++;
933 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
934 if (__ratelimit(&_rs))
935 scrub_print_warning("i/o error", sblock_to_check);
a36cf8b8 936 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 937 } else if (sblock_bad->checksum_error) {
d9d181c1
SB
938 spin_lock(&sctx->stat_lock);
939 sctx->stat.csum_errors++;
940 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
941 if (__ratelimit(&_rs))
942 scrub_print_warning("checksum error", sblock_to_check);
a36cf8b8 943 btrfs_dev_stat_inc_and_print(dev,
442a4f63 944 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 945 } else if (sblock_bad->header_error) {
d9d181c1
SB
946 spin_lock(&sctx->stat_lock);
947 sctx->stat.verify_errors++;
948 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
949 if (__ratelimit(&_rs))
950 scrub_print_warning("checksum/header error",
951 sblock_to_check);
442a4f63 952 if (sblock_bad->generation_error)
a36cf8b8 953 btrfs_dev_stat_inc_and_print(dev,
442a4f63
SB
954 BTRFS_DEV_STAT_GENERATION_ERRS);
955 else
a36cf8b8 956 btrfs_dev_stat_inc_and_print(dev,
442a4f63 957 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 958 }
a2de733c 959
33ef30ad
ID
960 if (sctx->readonly) {
961 ASSERT(!sctx->is_dev_replace);
962 goto out;
963 }
a2de733c 964
b5d67f64
SB
965 if (!is_metadata && !have_csum) {
966 struct scrub_fixup_nodatasum *fixup_nodatasum;
a2de733c 967
ff023aac
SB
968nodatasum_case:
969 WARN_ON(sctx->is_dev_replace);
970
b5d67f64
SB
971 /*
972 * !is_metadata and !have_csum, this means that the data
973 * might not be COW'ed, that it might be modified
974 * concurrently. The general strategy to work on the
975 * commit root does not help in the case when COW is not
976 * used.
977 */
978 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
979 if (!fixup_nodatasum)
980 goto did_not_correct_error;
d9d181c1 981 fixup_nodatasum->sctx = sctx;
a36cf8b8 982 fixup_nodatasum->dev = dev;
b5d67f64
SB
983 fixup_nodatasum->logical = logical;
984 fixup_nodatasum->root = fs_info->extent_root;
985 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
b6bfebc1 986 scrub_pending_trans_workers_inc(sctx);
9e0af237
LB
987 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
988 scrub_fixup_nodatasum, NULL, NULL);
0339ef2f
QW
989 btrfs_queue_work(fs_info->scrub_workers,
990 &fixup_nodatasum->work);
b5d67f64 991 goto out;
a2de733c
AJ
992 }
993
b5d67f64
SB
994 /*
995 * now build and submit the bios for the other mirrors, check
cb2ced73
SB
996 * checksums.
997 * First try to pick the mirror which is completely without I/O
b5d67f64
SB
998 * errors and also does not have a checksum error.
999 * If one is found, and if a checksum is present, the full block
1000 * that is known to contain an error is rewritten. Afterwards
1001 * the block is known to be corrected.
1002 * If a mirror is found which is completely correct, and no
1003 * checksum is present, only those pages are rewritten that had
1004 * an I/O error in the block to be repaired, since it cannot be
1005 * determined, which copy of the other pages is better (and it
1006 * could happen otherwise that a correct page would be
1007 * overwritten by a bad one).
1008 */
1009 for (mirror_index = 0;
1010 mirror_index < BTRFS_MAX_MIRRORS &&
1011 sblocks_for_recheck[mirror_index].page_count > 0;
1012 mirror_index++) {
cb2ced73 1013 struct scrub_block *sblock_other;
b5d67f64 1014
cb2ced73
SB
1015 if (mirror_index == failed_mirror_index)
1016 continue;
1017 sblock_other = sblocks_for_recheck + mirror_index;
1018
1019 /* build and submit the bios, check checksums */
34f5c8e9
SB
1020 scrub_recheck_block(fs_info, sblock_other, is_metadata,
1021 have_csum, csum, generation,
1022 sctx->csum_size);
1023
1024 if (!sblock_other->header_error &&
b5d67f64
SB
1025 !sblock_other->checksum_error &&
1026 sblock_other->no_io_error_seen) {
ff023aac
SB
1027 if (sctx->is_dev_replace) {
1028 scrub_write_block_to_dev_replace(sblock_other);
1029 } else {
1030 int force_write = is_metadata || have_csum;
1031
1032 ret = scrub_repair_block_from_good_copy(
1033 sblock_bad, sblock_other,
1034 force_write);
1035 }
b5d67f64
SB
1036 if (0 == ret)
1037 goto corrected_error;
1038 }
1039 }
a2de733c
AJ
1040
1041 /*
ff023aac
SB
1042 * for dev_replace, pick good pages and write to the target device.
1043 */
1044 if (sctx->is_dev_replace) {
1045 success = 1;
1046 for (page_num = 0; page_num < sblock_bad->page_count;
1047 page_num++) {
1048 int sub_success;
1049
1050 sub_success = 0;
1051 for (mirror_index = 0;
1052 mirror_index < BTRFS_MAX_MIRRORS &&
1053 sblocks_for_recheck[mirror_index].page_count > 0;
1054 mirror_index++) {
1055 struct scrub_block *sblock_other =
1056 sblocks_for_recheck + mirror_index;
1057 struct scrub_page *page_other =
1058 sblock_other->pagev[page_num];
1059
1060 if (!page_other->io_error) {
1061 ret = scrub_write_page_to_dev_replace(
1062 sblock_other, page_num);
1063 if (ret == 0) {
1064 /* succeeded for this page */
1065 sub_success = 1;
1066 break;
1067 } else {
1068 btrfs_dev_replace_stats_inc(
1069 &sctx->dev_root->
1070 fs_info->dev_replace.
1071 num_write_errors);
1072 }
1073 }
1074 }
1075
1076 if (!sub_success) {
1077 /*
1078 * did not find a mirror to fetch the page
1079 * from. scrub_write_page_to_dev_replace()
1080 * handles this case (page->io_error), by
1081 * filling the block with zeros before
1082 * submitting the write request
1083 */
1084 success = 0;
1085 ret = scrub_write_page_to_dev_replace(
1086 sblock_bad, page_num);
1087 if (ret)
1088 btrfs_dev_replace_stats_inc(
1089 &sctx->dev_root->fs_info->
1090 dev_replace.num_write_errors);
1091 }
1092 }
1093
1094 goto out;
1095 }
1096
1097 /*
1098 * for regular scrub, repair those pages that are errored.
1099 * In case of I/O errors in the area that is supposed to be
b5d67f64
SB
1100 * repaired, continue by picking good copies of those pages.
1101 * Select the good pages from mirrors to rewrite bad pages from
1102 * the area to fix. Afterwards verify the checksum of the block
1103 * that is supposed to be repaired. This verification step is
1104 * only done for the purpose of statistic counting and for the
1105 * final scrub report, whether errors remain.
1106 * A perfect algorithm could make use of the checksum and try
1107 * all possible combinations of pages from the different mirrors
1108 * until the checksum verification succeeds. For example, when
1109 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1110 * of mirror #2 is readable but the final checksum test fails,
1111 * then the 2nd page of mirror #3 could be tried, whether now
1112 * the final checksum succeedes. But this would be a rare
1113 * exception and is therefore not implemented. At least it is
1114 * avoided that the good copy is overwritten.
1115 * A more useful improvement would be to pick the sectors
1116 * without I/O error based on sector sizes (512 bytes on legacy
1117 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1118 * mirror could be repaired by taking 512 byte of a different
1119 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1120 * area are unreadable.
a2de733c 1121 */
a2de733c 1122
b5d67f64
SB
1123 /* can only fix I/O errors from here on */
1124 if (sblock_bad->no_io_error_seen)
1125 goto did_not_correct_error;
1126
1127 success = 1;
1128 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
7a9e9987 1129 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
b5d67f64
SB
1130
1131 if (!page_bad->io_error)
a2de733c 1132 continue;
b5d67f64
SB
1133
1134 for (mirror_index = 0;
1135 mirror_index < BTRFS_MAX_MIRRORS &&
1136 sblocks_for_recheck[mirror_index].page_count > 0;
1137 mirror_index++) {
1138 struct scrub_block *sblock_other = sblocks_for_recheck +
1139 mirror_index;
7a9e9987
SB
1140 struct scrub_page *page_other = sblock_other->pagev[
1141 page_num];
b5d67f64
SB
1142
1143 if (!page_other->io_error) {
1144 ret = scrub_repair_page_from_good_copy(
1145 sblock_bad, sblock_other, page_num, 0);
1146 if (0 == ret) {
1147 page_bad->io_error = 0;
1148 break; /* succeeded for this page */
1149 }
1150 }
96e36920 1151 }
a2de733c 1152
b5d67f64
SB
1153 if (page_bad->io_error) {
1154 /* did not find a mirror to copy the page from */
1155 success = 0;
1156 }
a2de733c 1157 }
a2de733c 1158
b5d67f64
SB
1159 if (success) {
1160 if (is_metadata || have_csum) {
1161 /*
1162 * need to verify the checksum now that all
1163 * sectors on disk are repaired (the write
1164 * request for data to be repaired is on its way).
1165 * Just be lazy and use scrub_recheck_block()
1166 * which re-reads the data before the checksum
1167 * is verified, but most likely the data comes out
1168 * of the page cache.
1169 */
34f5c8e9
SB
1170 scrub_recheck_block(fs_info, sblock_bad,
1171 is_metadata, have_csum, csum,
1172 generation, sctx->csum_size);
1173 if (!sblock_bad->header_error &&
b5d67f64
SB
1174 !sblock_bad->checksum_error &&
1175 sblock_bad->no_io_error_seen)
1176 goto corrected_error;
1177 else
1178 goto did_not_correct_error;
1179 } else {
1180corrected_error:
d9d181c1
SB
1181 spin_lock(&sctx->stat_lock);
1182 sctx->stat.corrected_errors++;
1183 spin_unlock(&sctx->stat_lock);
606686ee 1184 printk_ratelimited_in_rcu(KERN_ERR
efe120a0 1185 "BTRFS: fixed up error at logical %llu on dev %s\n",
c1c9ff7c 1186 logical, rcu_str_deref(dev->name));
8628764e 1187 }
b5d67f64
SB
1188 } else {
1189did_not_correct_error:
d9d181c1
SB
1190 spin_lock(&sctx->stat_lock);
1191 sctx->stat.uncorrectable_errors++;
1192 spin_unlock(&sctx->stat_lock);
606686ee 1193 printk_ratelimited_in_rcu(KERN_ERR
efe120a0 1194 "BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
c1c9ff7c 1195 logical, rcu_str_deref(dev->name));
96e36920 1196 }
a2de733c 1197
b5d67f64
SB
1198out:
1199 if (sblocks_for_recheck) {
1200 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1201 mirror_index++) {
1202 struct scrub_block *sblock = sblocks_for_recheck +
1203 mirror_index;
1204 int page_index;
1205
7a9e9987
SB
1206 for (page_index = 0; page_index < sblock->page_count;
1207 page_index++) {
1208 sblock->pagev[page_index]->sblock = NULL;
1209 scrub_page_put(sblock->pagev[page_index]);
1210 }
b5d67f64
SB
1211 }
1212 kfree(sblocks_for_recheck);
1213 }
a2de733c 1214
b5d67f64
SB
1215 return 0;
1216}
a2de733c 1217
d9d181c1 1218static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
3ec706c8 1219 struct btrfs_fs_info *fs_info,
ff023aac 1220 struct scrub_block *original_sblock,
b5d67f64
SB
1221 u64 length, u64 logical,
1222 struct scrub_block *sblocks_for_recheck)
1223{
1224 int page_index;
1225 int mirror_index;
1226 int ret;
1227
1228 /*
7a9e9987 1229 * note: the two members ref_count and outstanding_pages
b5d67f64
SB
1230 * are not used (and not set) in the blocks that are used for
1231 * the recheck procedure
1232 */
1233
1234 page_index = 0;
1235 while (length > 0) {
1236 u64 sublen = min_t(u64, length, PAGE_SIZE);
1237 u64 mapped_length = sublen;
1238 struct btrfs_bio *bbio = NULL;
a2de733c 1239
b5d67f64
SB
1240 /*
1241 * with a length of PAGE_SIZE, each returned stripe
1242 * represents one mirror
1243 */
29a8d9a0
SB
1244 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1245 &mapped_length, &bbio, 0);
b5d67f64
SB
1246 if (ret || !bbio || mapped_length < sublen) {
1247 kfree(bbio);
1248 return -EIO;
1249 }
a2de733c 1250
ff023aac 1251 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
b5d67f64
SB
1252 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1253 mirror_index++) {
1254 struct scrub_block *sblock;
1255 struct scrub_page *page;
1256
1257 if (mirror_index >= BTRFS_MAX_MIRRORS)
1258 continue;
1259
1260 sblock = sblocks_for_recheck + mirror_index;
7a9e9987
SB
1261 sblock->sctx = sctx;
1262 page = kzalloc(sizeof(*page), GFP_NOFS);
1263 if (!page) {
1264leave_nomem:
d9d181c1
SB
1265 spin_lock(&sctx->stat_lock);
1266 sctx->stat.malloc_errors++;
1267 spin_unlock(&sctx->stat_lock);
cf93dcce 1268 kfree(bbio);
b5d67f64
SB
1269 return -ENOMEM;
1270 }
7a9e9987
SB
1271 scrub_page_get(page);
1272 sblock->pagev[page_index] = page;
1273 page->logical = logical;
1274 page->physical = bbio->stripes[mirror_index].physical;
ff023aac
SB
1275 BUG_ON(page_index >= original_sblock->page_count);
1276 page->physical_for_dev_replace =
1277 original_sblock->pagev[page_index]->
1278 physical_for_dev_replace;
7a9e9987
SB
1279 /* for missing devices, dev->bdev is NULL */
1280 page->dev = bbio->stripes[mirror_index].dev;
1281 page->mirror_num = mirror_index + 1;
b5d67f64 1282 sblock->page_count++;
7a9e9987
SB
1283 page->page = alloc_page(GFP_NOFS);
1284 if (!page->page)
1285 goto leave_nomem;
b5d67f64
SB
1286 }
1287 kfree(bbio);
1288 length -= sublen;
1289 logical += sublen;
1290 page_index++;
1291 }
1292
1293 return 0;
96e36920
ID
1294}
1295
b5d67f64
SB
1296/*
1297 * this function will check the on disk data for checksum errors, header
1298 * errors and read I/O errors. If any I/O errors happen, the exact pages
1299 * which are errored are marked as being bad. The goal is to enable scrub
1300 * to take those pages that are not errored from all the mirrors so that
1301 * the pages that are errored in the just handled mirror can be repaired.
1302 */
34f5c8e9
SB
1303static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1304 struct scrub_block *sblock, int is_metadata,
1305 int have_csum, u8 *csum, u64 generation,
1306 u16 csum_size)
96e36920 1307{
b5d67f64 1308 int page_num;
96e36920 1309
b5d67f64
SB
1310 sblock->no_io_error_seen = 1;
1311 sblock->header_error = 0;
1312 sblock->checksum_error = 0;
96e36920 1313
b5d67f64
SB
1314 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1315 struct bio *bio;
7a9e9987 1316 struct scrub_page *page = sblock->pagev[page_num];
b5d67f64 1317
442a4f63 1318 if (page->dev->bdev == NULL) {
ea9947b4
SB
1319 page->io_error = 1;
1320 sblock->no_io_error_seen = 0;
1321 continue;
1322 }
1323
7a9e9987 1324 WARN_ON(!page->page);
9be3395b 1325 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
34f5c8e9
SB
1326 if (!bio) {
1327 page->io_error = 1;
1328 sblock->no_io_error_seen = 0;
1329 continue;
1330 }
442a4f63 1331 bio->bi_bdev = page->dev->bdev;
4f024f37 1332 bio->bi_iter.bi_sector = page->physical >> 9;
b5d67f64 1333
34f5c8e9 1334 bio_add_page(bio, page->page, PAGE_SIZE, 0);
33879d45 1335 if (btrfsic_submit_bio_wait(READ, bio))
b5d67f64 1336 sblock->no_io_error_seen = 0;
33879d45 1337
b5d67f64
SB
1338 bio_put(bio);
1339 }
96e36920 1340
b5d67f64
SB
1341 if (sblock->no_io_error_seen)
1342 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1343 have_csum, csum, generation,
1344 csum_size);
1345
34f5c8e9 1346 return;
a2de733c
AJ
1347}
1348
17a9be2f
MX
1349static inline int scrub_check_fsid(u8 fsid[],
1350 struct scrub_page *spage)
1351{
1352 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1353 int ret;
1354
1355 ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
1356 return !ret;
1357}
1358
b5d67f64
SB
1359static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1360 struct scrub_block *sblock,
1361 int is_metadata, int have_csum,
1362 const u8 *csum, u64 generation,
1363 u16 csum_size)
a2de733c 1364{
b5d67f64
SB
1365 int page_num;
1366 u8 calculated_csum[BTRFS_CSUM_SIZE];
1367 u32 crc = ~(u32)0;
b5d67f64
SB
1368 void *mapped_buffer;
1369
7a9e9987 1370 WARN_ON(!sblock->pagev[0]->page);
b5d67f64
SB
1371 if (is_metadata) {
1372 struct btrfs_header *h;
1373
7a9e9987 1374 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
b5d67f64
SB
1375 h = (struct btrfs_header *)mapped_buffer;
1376
3cae210f 1377 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
17a9be2f 1378 !scrub_check_fsid(h->fsid, sblock->pagev[0]) ||
b5d67f64 1379 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
442a4f63 1380 BTRFS_UUID_SIZE)) {
b5d67f64 1381 sblock->header_error = 1;
3cae210f 1382 } else if (generation != btrfs_stack_header_generation(h)) {
442a4f63
SB
1383 sblock->header_error = 1;
1384 sblock->generation_error = 1;
1385 }
b5d67f64
SB
1386 csum = h->csum;
1387 } else {
1388 if (!have_csum)
1389 return;
a2de733c 1390
7a9e9987 1391 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
b5d67f64 1392 }
a2de733c 1393
b5d67f64
SB
1394 for (page_num = 0;;) {
1395 if (page_num == 0 && is_metadata)
b0496686 1396 crc = btrfs_csum_data(
b5d67f64
SB
1397 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1398 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1399 else
b0496686 1400 crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
b5d67f64 1401
9613bebb 1402 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1403 page_num++;
1404 if (page_num >= sblock->page_count)
1405 break;
7a9e9987 1406 WARN_ON(!sblock->pagev[page_num]->page);
b5d67f64 1407
7a9e9987 1408 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
b5d67f64
SB
1409 }
1410
1411 btrfs_csum_final(crc, calculated_csum);
1412 if (memcmp(calculated_csum, csum, csum_size))
1413 sblock->checksum_error = 1;
a2de733c
AJ
1414}
1415
b5d67f64
SB
1416static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1417 struct scrub_block *sblock_good,
1418 int force_write)
1419{
1420 int page_num;
1421 int ret = 0;
96e36920 1422
b5d67f64
SB
1423 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1424 int ret_sub;
96e36920 1425
b5d67f64
SB
1426 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1427 sblock_good,
1428 page_num,
1429 force_write);
1430 if (ret_sub)
1431 ret = ret_sub;
a2de733c 1432 }
b5d67f64
SB
1433
1434 return ret;
1435}
1436
1437static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1438 struct scrub_block *sblock_good,
1439 int page_num, int force_write)
1440{
7a9e9987
SB
1441 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1442 struct scrub_page *page_good = sblock_good->pagev[page_num];
b5d67f64 1443
7a9e9987
SB
1444 BUG_ON(page_bad->page == NULL);
1445 BUG_ON(page_good->page == NULL);
b5d67f64
SB
1446 if (force_write || sblock_bad->header_error ||
1447 sblock_bad->checksum_error || page_bad->io_error) {
1448 struct bio *bio;
1449 int ret;
b5d67f64 1450
ff023aac 1451 if (!page_bad->dev->bdev) {
efe120a0
FH
1452 printk_ratelimited(KERN_WARNING "BTRFS: "
1453 "scrub_repair_page_from_good_copy(bdev == NULL) "
1454 "is unexpected!\n");
ff023aac
SB
1455 return -EIO;
1456 }
1457
9be3395b 1458 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
1459 if (!bio)
1460 return -EIO;
442a4f63 1461 bio->bi_bdev = page_bad->dev->bdev;
4f024f37 1462 bio->bi_iter.bi_sector = page_bad->physical >> 9;
b5d67f64
SB
1463
1464 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1465 if (PAGE_SIZE != ret) {
1466 bio_put(bio);
1467 return -EIO;
13db62b7 1468 }
b5d67f64 1469
33879d45 1470 if (btrfsic_submit_bio_wait(WRITE, bio)) {
442a4f63
SB
1471 btrfs_dev_stat_inc_and_print(page_bad->dev,
1472 BTRFS_DEV_STAT_WRITE_ERRS);
ff023aac
SB
1473 btrfs_dev_replace_stats_inc(
1474 &sblock_bad->sctx->dev_root->fs_info->
1475 dev_replace.num_write_errors);
442a4f63
SB
1476 bio_put(bio);
1477 return -EIO;
1478 }
b5d67f64 1479 bio_put(bio);
a2de733c
AJ
1480 }
1481
b5d67f64
SB
1482 return 0;
1483}
1484
ff023aac
SB
1485static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1486{
1487 int page_num;
1488
1489 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1490 int ret;
1491
1492 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1493 if (ret)
1494 btrfs_dev_replace_stats_inc(
1495 &sblock->sctx->dev_root->fs_info->dev_replace.
1496 num_write_errors);
1497 }
1498}
1499
1500static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1501 int page_num)
1502{
1503 struct scrub_page *spage = sblock->pagev[page_num];
1504
1505 BUG_ON(spage->page == NULL);
1506 if (spage->io_error) {
1507 void *mapped_buffer = kmap_atomic(spage->page);
1508
1509 memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1510 flush_dcache_page(spage->page);
1511 kunmap_atomic(mapped_buffer);
1512 }
1513 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1514}
1515
1516static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1517 struct scrub_page *spage)
1518{
1519 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1520 struct scrub_bio *sbio;
1521 int ret;
1522
1523 mutex_lock(&wr_ctx->wr_lock);
1524again:
1525 if (!wr_ctx->wr_curr_bio) {
1526 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1527 GFP_NOFS);
1528 if (!wr_ctx->wr_curr_bio) {
1529 mutex_unlock(&wr_ctx->wr_lock);
1530 return -ENOMEM;
1531 }
1532 wr_ctx->wr_curr_bio->sctx = sctx;
1533 wr_ctx->wr_curr_bio->page_count = 0;
1534 }
1535 sbio = wr_ctx->wr_curr_bio;
1536 if (sbio->page_count == 0) {
1537 struct bio *bio;
1538
1539 sbio->physical = spage->physical_for_dev_replace;
1540 sbio->logical = spage->logical;
1541 sbio->dev = wr_ctx->tgtdev;
1542 bio = sbio->bio;
1543 if (!bio) {
9be3395b 1544 bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
ff023aac
SB
1545 if (!bio) {
1546 mutex_unlock(&wr_ctx->wr_lock);
1547 return -ENOMEM;
1548 }
1549 sbio->bio = bio;
1550 }
1551
1552 bio->bi_private = sbio;
1553 bio->bi_end_io = scrub_wr_bio_end_io;
1554 bio->bi_bdev = sbio->dev->bdev;
4f024f37 1555 bio->bi_iter.bi_sector = sbio->physical >> 9;
ff023aac
SB
1556 sbio->err = 0;
1557 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1558 spage->physical_for_dev_replace ||
1559 sbio->logical + sbio->page_count * PAGE_SIZE !=
1560 spage->logical) {
1561 scrub_wr_submit(sctx);
1562 goto again;
1563 }
1564
1565 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1566 if (ret != PAGE_SIZE) {
1567 if (sbio->page_count < 1) {
1568 bio_put(sbio->bio);
1569 sbio->bio = NULL;
1570 mutex_unlock(&wr_ctx->wr_lock);
1571 return -EIO;
1572 }
1573 scrub_wr_submit(sctx);
1574 goto again;
1575 }
1576
1577 sbio->pagev[sbio->page_count] = spage;
1578 scrub_page_get(spage);
1579 sbio->page_count++;
1580 if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1581 scrub_wr_submit(sctx);
1582 mutex_unlock(&wr_ctx->wr_lock);
1583
1584 return 0;
1585}
1586
1587static void scrub_wr_submit(struct scrub_ctx *sctx)
1588{
1589 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1590 struct scrub_bio *sbio;
1591
1592 if (!wr_ctx->wr_curr_bio)
1593 return;
1594
1595 sbio = wr_ctx->wr_curr_bio;
1596 wr_ctx->wr_curr_bio = NULL;
1597 WARN_ON(!sbio->bio->bi_bdev);
1598 scrub_pending_bio_inc(sctx);
1599 /* process all writes in a single worker thread. Then the block layer
1600 * orders the requests before sending them to the driver which
1601 * doubled the write performance on spinning disks when measured
1602 * with Linux 3.5 */
1603 btrfsic_submit_bio(WRITE, sbio->bio);
1604}
1605
1606static void scrub_wr_bio_end_io(struct bio *bio, int err)
1607{
1608 struct scrub_bio *sbio = bio->bi_private;
1609 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1610
1611 sbio->err = err;
1612 sbio->bio = bio;
1613
9e0af237
LB
1614 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1615 scrub_wr_bio_end_io_worker, NULL, NULL);
0339ef2f 1616 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
ff023aac
SB
1617}
1618
1619static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1620{
1621 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1622 struct scrub_ctx *sctx = sbio->sctx;
1623 int i;
1624
1625 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1626 if (sbio->err) {
1627 struct btrfs_dev_replace *dev_replace =
1628 &sbio->sctx->dev_root->fs_info->dev_replace;
1629
1630 for (i = 0; i < sbio->page_count; i++) {
1631 struct scrub_page *spage = sbio->pagev[i];
1632
1633 spage->io_error = 1;
1634 btrfs_dev_replace_stats_inc(&dev_replace->
1635 num_write_errors);
1636 }
1637 }
1638
1639 for (i = 0; i < sbio->page_count; i++)
1640 scrub_page_put(sbio->pagev[i]);
1641
1642 bio_put(sbio->bio);
1643 kfree(sbio);
1644 scrub_pending_bio_dec(sctx);
1645}
1646
1647static int scrub_checksum(struct scrub_block *sblock)
b5d67f64
SB
1648{
1649 u64 flags;
1650 int ret;
1651
7a9e9987
SB
1652 WARN_ON(sblock->page_count < 1);
1653 flags = sblock->pagev[0]->flags;
b5d67f64
SB
1654 ret = 0;
1655 if (flags & BTRFS_EXTENT_FLAG_DATA)
1656 ret = scrub_checksum_data(sblock);
1657 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1658 ret = scrub_checksum_tree_block(sblock);
1659 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1660 (void)scrub_checksum_super(sblock);
1661 else
1662 WARN_ON(1);
1663 if (ret)
1664 scrub_handle_errored_block(sblock);
ff023aac
SB
1665
1666 return ret;
a2de733c
AJ
1667}
1668
b5d67f64 1669static int scrub_checksum_data(struct scrub_block *sblock)
a2de733c 1670{
d9d181c1 1671 struct scrub_ctx *sctx = sblock->sctx;
a2de733c 1672 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
1673 u8 *on_disk_csum;
1674 struct page *page;
1675 void *buffer;
a2de733c
AJ
1676 u32 crc = ~(u32)0;
1677 int fail = 0;
b5d67f64
SB
1678 u64 len;
1679 int index;
a2de733c 1680
b5d67f64 1681 BUG_ON(sblock->page_count < 1);
7a9e9987 1682 if (!sblock->pagev[0]->have_csum)
a2de733c
AJ
1683 return 0;
1684
7a9e9987
SB
1685 on_disk_csum = sblock->pagev[0]->csum;
1686 page = sblock->pagev[0]->page;
9613bebb 1687 buffer = kmap_atomic(page);
b5d67f64 1688
d9d181c1 1689 len = sctx->sectorsize;
b5d67f64
SB
1690 index = 0;
1691 for (;;) {
1692 u64 l = min_t(u64, len, PAGE_SIZE);
1693
b0496686 1694 crc = btrfs_csum_data(buffer, crc, l);
9613bebb 1695 kunmap_atomic(buffer);
b5d67f64
SB
1696 len -= l;
1697 if (len == 0)
1698 break;
1699 index++;
1700 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1701 BUG_ON(!sblock->pagev[index]->page);
1702 page = sblock->pagev[index]->page;
9613bebb 1703 buffer = kmap_atomic(page);
b5d67f64
SB
1704 }
1705
a2de733c 1706 btrfs_csum_final(crc, csum);
d9d181c1 1707 if (memcmp(csum, on_disk_csum, sctx->csum_size))
a2de733c
AJ
1708 fail = 1;
1709
a2de733c
AJ
1710 return fail;
1711}
1712
b5d67f64 1713static int scrub_checksum_tree_block(struct scrub_block *sblock)
a2de733c 1714{
d9d181c1 1715 struct scrub_ctx *sctx = sblock->sctx;
a2de733c 1716 struct btrfs_header *h;
a36cf8b8 1717 struct btrfs_root *root = sctx->dev_root;
a2de733c 1718 struct btrfs_fs_info *fs_info = root->fs_info;
b5d67f64
SB
1719 u8 calculated_csum[BTRFS_CSUM_SIZE];
1720 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1721 struct page *page;
1722 void *mapped_buffer;
1723 u64 mapped_size;
1724 void *p;
a2de733c
AJ
1725 u32 crc = ~(u32)0;
1726 int fail = 0;
1727 int crc_fail = 0;
b5d67f64
SB
1728 u64 len;
1729 int index;
1730
1731 BUG_ON(sblock->page_count < 1);
7a9e9987 1732 page = sblock->pagev[0]->page;
9613bebb 1733 mapped_buffer = kmap_atomic(page);
b5d67f64 1734 h = (struct btrfs_header *)mapped_buffer;
d9d181c1 1735 memcpy(on_disk_csum, h->csum, sctx->csum_size);
a2de733c
AJ
1736
1737 /*
1738 * we don't use the getter functions here, as we
1739 * a) don't have an extent buffer and
1740 * b) the page is already kmapped
1741 */
a2de733c 1742
3cae210f 1743 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
a2de733c
AJ
1744 ++fail;
1745
3cae210f 1746 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
a2de733c
AJ
1747 ++fail;
1748
17a9be2f 1749 if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
a2de733c
AJ
1750 ++fail;
1751
1752 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1753 BTRFS_UUID_SIZE))
1754 ++fail;
1755
d9d181c1 1756 len = sctx->nodesize - BTRFS_CSUM_SIZE;
b5d67f64
SB
1757 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1758 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1759 index = 0;
1760 for (;;) {
1761 u64 l = min_t(u64, len, mapped_size);
1762
b0496686 1763 crc = btrfs_csum_data(p, crc, l);
9613bebb 1764 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1765 len -= l;
1766 if (len == 0)
1767 break;
1768 index++;
1769 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1770 BUG_ON(!sblock->pagev[index]->page);
1771 page = sblock->pagev[index]->page;
9613bebb 1772 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
1773 mapped_size = PAGE_SIZE;
1774 p = mapped_buffer;
1775 }
1776
1777 btrfs_csum_final(crc, calculated_csum);
d9d181c1 1778 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
a2de733c
AJ
1779 ++crc_fail;
1780
a2de733c
AJ
1781 return fail || crc_fail;
1782}
1783
b5d67f64 1784static int scrub_checksum_super(struct scrub_block *sblock)
a2de733c
AJ
1785{
1786 struct btrfs_super_block *s;
d9d181c1 1787 struct scrub_ctx *sctx = sblock->sctx;
b5d67f64
SB
1788 u8 calculated_csum[BTRFS_CSUM_SIZE];
1789 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1790 struct page *page;
1791 void *mapped_buffer;
1792 u64 mapped_size;
1793 void *p;
a2de733c 1794 u32 crc = ~(u32)0;
442a4f63
SB
1795 int fail_gen = 0;
1796 int fail_cor = 0;
b5d67f64
SB
1797 u64 len;
1798 int index;
a2de733c 1799
b5d67f64 1800 BUG_ON(sblock->page_count < 1);
7a9e9987 1801 page = sblock->pagev[0]->page;
9613bebb 1802 mapped_buffer = kmap_atomic(page);
b5d67f64 1803 s = (struct btrfs_super_block *)mapped_buffer;
d9d181c1 1804 memcpy(on_disk_csum, s->csum, sctx->csum_size);
a2de733c 1805
3cae210f 1806 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
442a4f63 1807 ++fail_cor;
a2de733c 1808
3cae210f 1809 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
442a4f63 1810 ++fail_gen;
a2de733c 1811
17a9be2f 1812 if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
442a4f63 1813 ++fail_cor;
a2de733c 1814
b5d67f64
SB
1815 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1816 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1817 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1818 index = 0;
1819 for (;;) {
1820 u64 l = min_t(u64, len, mapped_size);
1821
b0496686 1822 crc = btrfs_csum_data(p, crc, l);
9613bebb 1823 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1824 len -= l;
1825 if (len == 0)
1826 break;
1827 index++;
1828 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1829 BUG_ON(!sblock->pagev[index]->page);
1830 page = sblock->pagev[index]->page;
9613bebb 1831 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
1832 mapped_size = PAGE_SIZE;
1833 p = mapped_buffer;
1834 }
1835
1836 btrfs_csum_final(crc, calculated_csum);
d9d181c1 1837 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
442a4f63 1838 ++fail_cor;
a2de733c 1839
442a4f63 1840 if (fail_cor + fail_gen) {
a2de733c
AJ
1841 /*
1842 * if we find an error in a super block, we just report it.
1843 * They will get written with the next transaction commit
1844 * anyway
1845 */
d9d181c1
SB
1846 spin_lock(&sctx->stat_lock);
1847 ++sctx->stat.super_errors;
1848 spin_unlock(&sctx->stat_lock);
442a4f63 1849 if (fail_cor)
7a9e9987 1850 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
442a4f63
SB
1851 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1852 else
7a9e9987 1853 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
442a4f63 1854 BTRFS_DEV_STAT_GENERATION_ERRS);
a2de733c
AJ
1855 }
1856
442a4f63 1857 return fail_cor + fail_gen;
a2de733c
AJ
1858}
1859
b5d67f64
SB
1860static void scrub_block_get(struct scrub_block *sblock)
1861{
1862 atomic_inc(&sblock->ref_count);
1863}
1864
1865static void scrub_block_put(struct scrub_block *sblock)
1866{
1867 if (atomic_dec_and_test(&sblock->ref_count)) {
1868 int i;
1869
1870 for (i = 0; i < sblock->page_count; i++)
7a9e9987 1871 scrub_page_put(sblock->pagev[i]);
b5d67f64
SB
1872 kfree(sblock);
1873 }
1874}
1875
7a9e9987
SB
1876static void scrub_page_get(struct scrub_page *spage)
1877{
1878 atomic_inc(&spage->ref_count);
1879}
1880
1881static void scrub_page_put(struct scrub_page *spage)
1882{
1883 if (atomic_dec_and_test(&spage->ref_count)) {
1884 if (spage->page)
1885 __free_page(spage->page);
1886 kfree(spage);
1887 }
1888}
1889
d9d181c1 1890static void scrub_submit(struct scrub_ctx *sctx)
a2de733c
AJ
1891{
1892 struct scrub_bio *sbio;
1893
d9d181c1 1894 if (sctx->curr == -1)
1623edeb 1895 return;
a2de733c 1896
d9d181c1
SB
1897 sbio = sctx->bios[sctx->curr];
1898 sctx->curr = -1;
b6bfebc1 1899 scrub_pending_bio_inc(sctx);
a2de733c 1900
ff023aac
SB
1901 if (!sbio->bio->bi_bdev) {
1902 /*
1903 * this case should not happen. If btrfs_map_block() is
1904 * wrong, it could happen for dev-replace operations on
1905 * missing devices when no mirrors are available, but in
1906 * this case it should already fail the mount.
1907 * This case is handled correctly (but _very_ slowly).
1908 */
1909 printk_ratelimited(KERN_WARNING
efe120a0 1910 "BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
ff023aac
SB
1911 bio_endio(sbio->bio, -EIO);
1912 } else {
1913 btrfsic_submit_bio(READ, sbio->bio);
1914 }
a2de733c
AJ
1915}
1916
ff023aac
SB
1917static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1918 struct scrub_page *spage)
a2de733c 1919{
b5d67f64 1920 struct scrub_block *sblock = spage->sblock;
a2de733c 1921 struct scrub_bio *sbio;
69f4cb52 1922 int ret;
a2de733c
AJ
1923
1924again:
1925 /*
1926 * grab a fresh bio or wait for one to become available
1927 */
d9d181c1
SB
1928 while (sctx->curr == -1) {
1929 spin_lock(&sctx->list_lock);
1930 sctx->curr = sctx->first_free;
1931 if (sctx->curr != -1) {
1932 sctx->first_free = sctx->bios[sctx->curr]->next_free;
1933 sctx->bios[sctx->curr]->next_free = -1;
1934 sctx->bios[sctx->curr]->page_count = 0;
1935 spin_unlock(&sctx->list_lock);
a2de733c 1936 } else {
d9d181c1
SB
1937 spin_unlock(&sctx->list_lock);
1938 wait_event(sctx->list_wait, sctx->first_free != -1);
a2de733c
AJ
1939 }
1940 }
d9d181c1 1941 sbio = sctx->bios[sctx->curr];
b5d67f64 1942 if (sbio->page_count == 0) {
69f4cb52
AJ
1943 struct bio *bio;
1944
b5d67f64
SB
1945 sbio->physical = spage->physical;
1946 sbio->logical = spage->logical;
a36cf8b8 1947 sbio->dev = spage->dev;
b5d67f64
SB
1948 bio = sbio->bio;
1949 if (!bio) {
9be3395b 1950 bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
b5d67f64
SB
1951 if (!bio)
1952 return -ENOMEM;
1953 sbio->bio = bio;
1954 }
69f4cb52
AJ
1955
1956 bio->bi_private = sbio;
1957 bio->bi_end_io = scrub_bio_end_io;
a36cf8b8 1958 bio->bi_bdev = sbio->dev->bdev;
4f024f37 1959 bio->bi_iter.bi_sector = sbio->physical >> 9;
69f4cb52 1960 sbio->err = 0;
b5d67f64
SB
1961 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1962 spage->physical ||
1963 sbio->logical + sbio->page_count * PAGE_SIZE !=
a36cf8b8
SB
1964 spage->logical ||
1965 sbio->dev != spage->dev) {
d9d181c1 1966 scrub_submit(sctx);
a2de733c
AJ
1967 goto again;
1968 }
69f4cb52 1969
b5d67f64
SB
1970 sbio->pagev[sbio->page_count] = spage;
1971 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1972 if (ret != PAGE_SIZE) {
1973 if (sbio->page_count < 1) {
1974 bio_put(sbio->bio);
1975 sbio->bio = NULL;
1976 return -EIO;
1977 }
d9d181c1 1978 scrub_submit(sctx);
69f4cb52
AJ
1979 goto again;
1980 }
1981
ff023aac 1982 scrub_block_get(sblock); /* one for the page added to the bio */
b5d67f64
SB
1983 atomic_inc(&sblock->outstanding_pages);
1984 sbio->page_count++;
ff023aac 1985 if (sbio->page_count == sctx->pages_per_rd_bio)
d9d181c1 1986 scrub_submit(sctx);
b5d67f64
SB
1987
1988 return 0;
1989}
1990
d9d181c1 1991static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 1992 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac
SB
1993 u64 gen, int mirror_num, u8 *csum, int force,
1994 u64 physical_for_dev_replace)
b5d67f64
SB
1995{
1996 struct scrub_block *sblock;
1997 int index;
1998
1999 sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2000 if (!sblock) {
d9d181c1
SB
2001 spin_lock(&sctx->stat_lock);
2002 sctx->stat.malloc_errors++;
2003 spin_unlock(&sctx->stat_lock);
b5d67f64 2004 return -ENOMEM;
a2de733c 2005 }
b5d67f64 2006
7a9e9987
SB
2007 /* one ref inside this function, plus one for each page added to
2008 * a bio later on */
b5d67f64 2009 atomic_set(&sblock->ref_count, 1);
d9d181c1 2010 sblock->sctx = sctx;
b5d67f64
SB
2011 sblock->no_io_error_seen = 1;
2012
2013 for (index = 0; len > 0; index++) {
7a9e9987 2014 struct scrub_page *spage;
b5d67f64
SB
2015 u64 l = min_t(u64, len, PAGE_SIZE);
2016
7a9e9987
SB
2017 spage = kzalloc(sizeof(*spage), GFP_NOFS);
2018 if (!spage) {
2019leave_nomem:
d9d181c1
SB
2020 spin_lock(&sctx->stat_lock);
2021 sctx->stat.malloc_errors++;
2022 spin_unlock(&sctx->stat_lock);
7a9e9987 2023 scrub_block_put(sblock);
b5d67f64
SB
2024 return -ENOMEM;
2025 }
7a9e9987
SB
2026 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2027 scrub_page_get(spage);
2028 sblock->pagev[index] = spage;
b5d67f64 2029 spage->sblock = sblock;
a36cf8b8 2030 spage->dev = dev;
b5d67f64
SB
2031 spage->flags = flags;
2032 spage->generation = gen;
2033 spage->logical = logical;
2034 spage->physical = physical;
ff023aac 2035 spage->physical_for_dev_replace = physical_for_dev_replace;
b5d67f64
SB
2036 spage->mirror_num = mirror_num;
2037 if (csum) {
2038 spage->have_csum = 1;
d9d181c1 2039 memcpy(spage->csum, csum, sctx->csum_size);
b5d67f64
SB
2040 } else {
2041 spage->have_csum = 0;
2042 }
2043 sblock->page_count++;
7a9e9987
SB
2044 spage->page = alloc_page(GFP_NOFS);
2045 if (!spage->page)
2046 goto leave_nomem;
b5d67f64
SB
2047 len -= l;
2048 logical += l;
2049 physical += l;
ff023aac 2050 physical_for_dev_replace += l;
b5d67f64
SB
2051 }
2052
7a9e9987 2053 WARN_ON(sblock->page_count == 0);
b5d67f64 2054 for (index = 0; index < sblock->page_count; index++) {
7a9e9987 2055 struct scrub_page *spage = sblock->pagev[index];
1bc87793
AJ
2056 int ret;
2057
ff023aac 2058 ret = scrub_add_page_to_rd_bio(sctx, spage);
b5d67f64
SB
2059 if (ret) {
2060 scrub_block_put(sblock);
1bc87793 2061 return ret;
b5d67f64 2062 }
1bc87793 2063 }
a2de733c 2064
b5d67f64 2065 if (force)
d9d181c1 2066 scrub_submit(sctx);
a2de733c 2067
b5d67f64
SB
2068 /* last one frees, either here or in bio completion for last page */
2069 scrub_block_put(sblock);
a2de733c
AJ
2070 return 0;
2071}
2072
b5d67f64
SB
2073static void scrub_bio_end_io(struct bio *bio, int err)
2074{
2075 struct scrub_bio *sbio = bio->bi_private;
a36cf8b8 2076 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
b5d67f64
SB
2077
2078 sbio->err = err;
2079 sbio->bio = bio;
2080
0339ef2f 2081 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
b5d67f64
SB
2082}
2083
2084static void scrub_bio_end_io_worker(struct btrfs_work *work)
2085{
2086 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
d9d181c1 2087 struct scrub_ctx *sctx = sbio->sctx;
b5d67f64
SB
2088 int i;
2089
ff023aac 2090 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
b5d67f64
SB
2091 if (sbio->err) {
2092 for (i = 0; i < sbio->page_count; i++) {
2093 struct scrub_page *spage = sbio->pagev[i];
2094
2095 spage->io_error = 1;
2096 spage->sblock->no_io_error_seen = 0;
2097 }
2098 }
2099
2100 /* now complete the scrub_block items that have all pages completed */
2101 for (i = 0; i < sbio->page_count; i++) {
2102 struct scrub_page *spage = sbio->pagev[i];
2103 struct scrub_block *sblock = spage->sblock;
2104
2105 if (atomic_dec_and_test(&sblock->outstanding_pages))
2106 scrub_block_complete(sblock);
2107 scrub_block_put(sblock);
2108 }
2109
b5d67f64
SB
2110 bio_put(sbio->bio);
2111 sbio->bio = NULL;
d9d181c1
SB
2112 spin_lock(&sctx->list_lock);
2113 sbio->next_free = sctx->first_free;
2114 sctx->first_free = sbio->index;
2115 spin_unlock(&sctx->list_lock);
ff023aac
SB
2116
2117 if (sctx->is_dev_replace &&
2118 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2119 mutex_lock(&sctx->wr_ctx.wr_lock);
2120 scrub_wr_submit(sctx);
2121 mutex_unlock(&sctx->wr_ctx.wr_lock);
2122 }
2123
b6bfebc1 2124 scrub_pending_bio_dec(sctx);
b5d67f64
SB
2125}
2126
2127static void scrub_block_complete(struct scrub_block *sblock)
2128{
ff023aac 2129 if (!sblock->no_io_error_seen) {
b5d67f64 2130 scrub_handle_errored_block(sblock);
ff023aac
SB
2131 } else {
2132 /*
2133 * if has checksum error, write via repair mechanism in
2134 * dev replace case, otherwise write here in dev replace
2135 * case.
2136 */
2137 if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2138 scrub_write_block_to_dev_replace(sblock);
2139 }
b5d67f64
SB
2140}
2141
d9d181c1 2142static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
a2de733c
AJ
2143 u8 *csum)
2144{
2145 struct btrfs_ordered_sum *sum = NULL;
f51a4a18 2146 unsigned long index;
a2de733c 2147 unsigned long num_sectors;
a2de733c 2148
d9d181c1
SB
2149 while (!list_empty(&sctx->csum_list)) {
2150 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
2151 struct btrfs_ordered_sum, list);
2152 if (sum->bytenr > logical)
2153 return 0;
2154 if (sum->bytenr + sum->len > logical)
2155 break;
2156
d9d181c1 2157 ++sctx->stat.csum_discards;
a2de733c
AJ
2158 list_del(&sum->list);
2159 kfree(sum);
2160 sum = NULL;
2161 }
2162 if (!sum)
2163 return 0;
2164
f51a4a18 2165 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
d9d181c1 2166 num_sectors = sum->len / sctx->sectorsize;
f51a4a18
MX
2167 memcpy(csum, sum->sums + index, sctx->csum_size);
2168 if (index == num_sectors - 1) {
a2de733c
AJ
2169 list_del(&sum->list);
2170 kfree(sum);
2171 }
f51a4a18 2172 return 1;
a2de733c
AJ
2173}
2174
2175/* scrub extent tries to collect up to 64 kB for each bio */
d9d181c1 2176static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 2177 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac 2178 u64 gen, int mirror_num, u64 physical_for_dev_replace)
a2de733c
AJ
2179{
2180 int ret;
2181 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
2182 u32 blocksize;
2183
2184 if (flags & BTRFS_EXTENT_FLAG_DATA) {
d9d181c1
SB
2185 blocksize = sctx->sectorsize;
2186 spin_lock(&sctx->stat_lock);
2187 sctx->stat.data_extents_scrubbed++;
2188 sctx->stat.data_bytes_scrubbed += len;
2189 spin_unlock(&sctx->stat_lock);
b5d67f64 2190 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
d9d181c1
SB
2191 blocksize = sctx->nodesize;
2192 spin_lock(&sctx->stat_lock);
2193 sctx->stat.tree_extents_scrubbed++;
2194 sctx->stat.tree_bytes_scrubbed += len;
2195 spin_unlock(&sctx->stat_lock);
b5d67f64 2196 } else {
d9d181c1 2197 blocksize = sctx->sectorsize;
ff023aac 2198 WARN_ON(1);
b5d67f64 2199 }
a2de733c
AJ
2200
2201 while (len) {
b5d67f64 2202 u64 l = min_t(u64, len, blocksize);
a2de733c
AJ
2203 int have_csum = 0;
2204
2205 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2206 /* push csums to sbio */
d9d181c1 2207 have_csum = scrub_find_csum(sctx, logical, l, csum);
a2de733c 2208 if (have_csum == 0)
d9d181c1 2209 ++sctx->stat.no_csum;
ff023aac
SB
2210 if (sctx->is_dev_replace && !have_csum) {
2211 ret = copy_nocow_pages(sctx, logical, l,
2212 mirror_num,
2213 physical_for_dev_replace);
2214 goto behind_scrub_pages;
2215 }
a2de733c 2216 }
a36cf8b8 2217 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
ff023aac
SB
2218 mirror_num, have_csum ? csum : NULL, 0,
2219 physical_for_dev_replace);
2220behind_scrub_pages:
a2de733c
AJ
2221 if (ret)
2222 return ret;
2223 len -= l;
2224 logical += l;
2225 physical += l;
ff023aac 2226 physical_for_dev_replace += l;
a2de733c
AJ
2227 }
2228 return 0;
2229}
2230
3b080b25
WS
2231/*
2232 * Given a physical address, this will calculate it's
2233 * logical offset. if this is a parity stripe, it will return
2234 * the most left data stripe's logical offset.
2235 *
2236 * return 0 if it is a data stripe, 1 means parity stripe.
2237 */
2238static int get_raid56_logic_offset(u64 physical, int num,
2239 struct map_lookup *map, u64 *offset)
2240{
2241 int i;
2242 int j = 0;
2243 u64 stripe_nr;
2244 u64 last_offset;
2245 int stripe_index;
2246 int rot;
2247
2248 last_offset = (physical - map->stripes[num].physical) *
2249 nr_data_stripes(map);
2250 *offset = last_offset;
2251 for (i = 0; i < nr_data_stripes(map); i++) {
2252 *offset = last_offset + i * map->stripe_len;
2253
2254 stripe_nr = *offset;
2255 do_div(stripe_nr, map->stripe_len);
2256 do_div(stripe_nr, nr_data_stripes(map));
2257
2258 /* Work out the disk rotation on this stripe-set */
2259 rot = do_div(stripe_nr, map->num_stripes);
2260 /* calculate which stripe this data locates */
2261 rot += i;
e4fbaee2 2262 stripe_index = rot % map->num_stripes;
3b080b25
WS
2263 if (stripe_index == num)
2264 return 0;
2265 if (stripe_index < num)
2266 j++;
2267 }
2268 *offset = last_offset + j * map->stripe_len;
2269 return 1;
2270}
2271
d9d181c1 2272static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
a36cf8b8
SB
2273 struct map_lookup *map,
2274 struct btrfs_device *scrub_dev,
ff023aac
SB
2275 int num, u64 base, u64 length,
2276 int is_dev_replace)
a2de733c
AJ
2277{
2278 struct btrfs_path *path;
a36cf8b8 2279 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
a2de733c
AJ
2280 struct btrfs_root *root = fs_info->extent_root;
2281 struct btrfs_root *csum_root = fs_info->csum_root;
2282 struct btrfs_extent_item *extent;
e7786c3a 2283 struct blk_plug plug;
a2de733c
AJ
2284 u64 flags;
2285 int ret;
2286 int slot;
a2de733c 2287 u64 nstripes;
a2de733c
AJ
2288 struct extent_buffer *l;
2289 struct btrfs_key key;
2290 u64 physical;
2291 u64 logical;
625f1c8d 2292 u64 logic_end;
3b080b25 2293 u64 physical_end;
a2de733c 2294 u64 generation;
e12fa9cd 2295 int mirror_num;
7a26285e
AJ
2296 struct reada_control *reada1;
2297 struct reada_control *reada2;
2298 struct btrfs_key key_start;
2299 struct btrfs_key key_end;
a2de733c
AJ
2300 u64 increment = map->stripe_len;
2301 u64 offset;
ff023aac
SB
2302 u64 extent_logical;
2303 u64 extent_physical;
2304 u64 extent_len;
2305 struct btrfs_device *extent_dev;
2306 int extent_mirror_num;
3b080b25 2307 int stop_loop = 0;
53b381b3 2308
a2de733c 2309 nstripes = length;
3b080b25 2310 physical = map->stripes[num].physical;
a2de733c
AJ
2311 offset = 0;
2312 do_div(nstripes, map->stripe_len);
2313 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2314 offset = map->stripe_len * num;
2315 increment = map->stripe_len * map->num_stripes;
193ea74b 2316 mirror_num = 1;
a2de733c
AJ
2317 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2318 int factor = map->num_stripes / map->sub_stripes;
2319 offset = map->stripe_len * (num / map->sub_stripes);
2320 increment = map->stripe_len * factor;
193ea74b 2321 mirror_num = num % map->sub_stripes + 1;
a2de733c
AJ
2322 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2323 increment = map->stripe_len;
193ea74b 2324 mirror_num = num % map->num_stripes + 1;
a2de733c
AJ
2325 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2326 increment = map->stripe_len;
193ea74b 2327 mirror_num = num % map->num_stripes + 1;
3b080b25
WS
2328 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2329 BTRFS_BLOCK_GROUP_RAID6)) {
2330 get_raid56_logic_offset(physical, num, map, &offset);
2331 increment = map->stripe_len * nr_data_stripes(map);
2332 mirror_num = 1;
a2de733c
AJ
2333 } else {
2334 increment = map->stripe_len;
193ea74b 2335 mirror_num = 1;
a2de733c
AJ
2336 }
2337
2338 path = btrfs_alloc_path();
2339 if (!path)
2340 return -ENOMEM;
2341
b5d67f64
SB
2342 /*
2343 * work on commit root. The related disk blocks are static as
2344 * long as COW is applied. This means, it is save to rewrite
2345 * them to repair disk errors without any race conditions
2346 */
a2de733c
AJ
2347 path->search_commit_root = 1;
2348 path->skip_locking = 1;
2349
2350 /*
7a26285e
AJ
2351 * trigger the readahead for extent tree csum tree and wait for
2352 * completion. During readahead, the scrub is officially paused
2353 * to not hold off transaction commits
a2de733c
AJ
2354 */
2355 logical = base + offset;
3b080b25
WS
2356 physical_end = physical + nstripes * map->stripe_len;
2357 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2358 BTRFS_BLOCK_GROUP_RAID6)) {
2359 get_raid56_logic_offset(physical_end, num,
2360 map, &logic_end);
2361 logic_end += base;
2362 } else {
2363 logic_end = logical + increment * nstripes;
2364 }
d9d181c1 2365 wait_event(sctx->list_wait,
b6bfebc1 2366 atomic_read(&sctx->bios_in_flight) == 0);
cb7ab021 2367 scrub_blocked_if_needed(fs_info);
7a26285e
AJ
2368
2369 /* FIXME it might be better to start readahead at commit root */
2370 key_start.objectid = logical;
2371 key_start.type = BTRFS_EXTENT_ITEM_KEY;
2372 key_start.offset = (u64)0;
3b080b25 2373 key_end.objectid = logic_end;
3173a18f
JB
2374 key_end.type = BTRFS_METADATA_ITEM_KEY;
2375 key_end.offset = (u64)-1;
7a26285e
AJ
2376 reada1 = btrfs_reada_add(root, &key_start, &key_end);
2377
2378 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2379 key_start.type = BTRFS_EXTENT_CSUM_KEY;
2380 key_start.offset = logical;
2381 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2382 key_end.type = BTRFS_EXTENT_CSUM_KEY;
3b080b25 2383 key_end.offset = logic_end;
7a26285e
AJ
2384 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2385
2386 if (!IS_ERR(reada1))
2387 btrfs_reada_wait(reada1);
2388 if (!IS_ERR(reada2))
2389 btrfs_reada_wait(reada2);
2390
a2de733c
AJ
2391
2392 /*
2393 * collect all data csums for the stripe to avoid seeking during
2394 * the scrub. This might currently (crc32) end up to be about 1MB
2395 */
e7786c3a 2396 blk_start_plug(&plug);
a2de733c 2397
a2de733c
AJ
2398 /*
2399 * now find all extents for each stripe and scrub them
2400 */
a2de733c 2401 ret = 0;
3b080b25
WS
2402 while (physical < physical_end) {
2403 /* for raid56, we skip parity stripe */
2404 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2405 BTRFS_BLOCK_GROUP_RAID6)) {
2406 ret = get_raid56_logic_offset(physical, num,
2407 map, &logical);
2408 logical += base;
2409 if (ret)
2410 goto skip;
2411 }
a2de733c
AJ
2412 /*
2413 * canceled?
2414 */
2415 if (atomic_read(&fs_info->scrub_cancel_req) ||
d9d181c1 2416 atomic_read(&sctx->cancel_req)) {
a2de733c
AJ
2417 ret = -ECANCELED;
2418 goto out;
2419 }
2420 /*
2421 * check to see if we have to pause
2422 */
2423 if (atomic_read(&fs_info->scrub_pause_req)) {
2424 /* push queued extents */
ff023aac 2425 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
d9d181c1 2426 scrub_submit(sctx);
ff023aac
SB
2427 mutex_lock(&sctx->wr_ctx.wr_lock);
2428 scrub_wr_submit(sctx);
2429 mutex_unlock(&sctx->wr_ctx.wr_lock);
d9d181c1 2430 wait_event(sctx->list_wait,
b6bfebc1 2431 atomic_read(&sctx->bios_in_flight) == 0);
ff023aac 2432 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3cb0929a 2433 scrub_blocked_if_needed(fs_info);
a2de733c
AJ
2434 }
2435
7c76edb7
WS
2436 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2437 key.type = BTRFS_METADATA_ITEM_KEY;
2438 else
2439 key.type = BTRFS_EXTENT_ITEM_KEY;
a2de733c 2440 key.objectid = logical;
625f1c8d 2441 key.offset = (u64)-1;
a2de733c
AJ
2442
2443 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2444 if (ret < 0)
2445 goto out;
3173a18f 2446
8c51032f 2447 if (ret > 0) {
ade2e0b3 2448 ret = btrfs_previous_extent_item(root, path, 0);
a2de733c
AJ
2449 if (ret < 0)
2450 goto out;
8c51032f
AJ
2451 if (ret > 0) {
2452 /* there's no smaller item, so stick with the
2453 * larger one */
2454 btrfs_release_path(path);
2455 ret = btrfs_search_slot(NULL, root, &key,
2456 path, 0, 0);
2457 if (ret < 0)
2458 goto out;
2459 }
a2de733c
AJ
2460 }
2461
625f1c8d 2462 stop_loop = 0;
a2de733c 2463 while (1) {
3173a18f
JB
2464 u64 bytes;
2465
a2de733c
AJ
2466 l = path->nodes[0];
2467 slot = path->slots[0];
2468 if (slot >= btrfs_header_nritems(l)) {
2469 ret = btrfs_next_leaf(root, path);
2470 if (ret == 0)
2471 continue;
2472 if (ret < 0)
2473 goto out;
2474
625f1c8d 2475 stop_loop = 1;
a2de733c
AJ
2476 break;
2477 }
2478 btrfs_item_key_to_cpu(l, &key, slot);
2479
3173a18f 2480 if (key.type == BTRFS_METADATA_ITEM_KEY)
707e8a07 2481 bytes = root->nodesize;
3173a18f
JB
2482 else
2483 bytes = key.offset;
2484
2485 if (key.objectid + bytes <= logical)
a2de733c
AJ
2486 goto next;
2487
625f1c8d
LB
2488 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2489 key.type != BTRFS_METADATA_ITEM_KEY)
2490 goto next;
a2de733c 2491
625f1c8d
LB
2492 if (key.objectid >= logical + map->stripe_len) {
2493 /* out of this device extent */
2494 if (key.objectid >= logic_end)
2495 stop_loop = 1;
2496 break;
2497 }
a2de733c
AJ
2498
2499 extent = btrfs_item_ptr(l, slot,
2500 struct btrfs_extent_item);
2501 flags = btrfs_extent_flags(l, extent);
2502 generation = btrfs_extent_generation(l, extent);
2503
2504 if (key.objectid < logical &&
2505 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
efe120a0
FH
2506 btrfs_err(fs_info,
2507 "scrub: tree block %llu spanning "
2508 "stripes, ignored. logical=%llu",
c1c9ff7c 2509 key.objectid, logical);
a2de733c
AJ
2510 goto next;
2511 }
2512
625f1c8d
LB
2513again:
2514 extent_logical = key.objectid;
2515 extent_len = bytes;
2516
a2de733c
AJ
2517 /*
2518 * trim extent to this stripe
2519 */
625f1c8d
LB
2520 if (extent_logical < logical) {
2521 extent_len -= logical - extent_logical;
2522 extent_logical = logical;
a2de733c 2523 }
625f1c8d 2524 if (extent_logical + extent_len >
a2de733c 2525 logical + map->stripe_len) {
625f1c8d
LB
2526 extent_len = logical + map->stripe_len -
2527 extent_logical;
a2de733c
AJ
2528 }
2529
625f1c8d 2530 extent_physical = extent_logical - logical + physical;
ff023aac
SB
2531 extent_dev = scrub_dev;
2532 extent_mirror_num = mirror_num;
2533 if (is_dev_replace)
2534 scrub_remap_extent(fs_info, extent_logical,
2535 extent_len, &extent_physical,
2536 &extent_dev,
2537 &extent_mirror_num);
625f1c8d
LB
2538
2539 ret = btrfs_lookup_csums_range(csum_root, logical,
2540 logical + map->stripe_len - 1,
2541 &sctx->csum_list, 1);
2542 if (ret)
2543 goto out;
2544
ff023aac
SB
2545 ret = scrub_extent(sctx, extent_logical, extent_len,
2546 extent_physical, extent_dev, flags,
2547 generation, extent_mirror_num,
115930cb 2548 extent_logical - logical + physical);
a2de733c
AJ
2549 if (ret)
2550 goto out;
2551
d88d46c6 2552 scrub_free_csums(sctx);
625f1c8d
LB
2553 if (extent_logical + extent_len <
2554 key.objectid + bytes) {
3b080b25
WS
2555 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2556 BTRFS_BLOCK_GROUP_RAID6)) {
2557 /*
2558 * loop until we find next data stripe
2559 * or we have finished all stripes.
2560 */
2561 do {
2562 physical += map->stripe_len;
2563 ret = get_raid56_logic_offset(
2564 physical, num,
2565 map, &logical);
2566 logical += base;
2567 } while (physical < physical_end && ret);
2568 } else {
2569 physical += map->stripe_len;
2570 logical += increment;
2571 }
625f1c8d
LB
2572 if (logical < key.objectid + bytes) {
2573 cond_resched();
2574 goto again;
2575 }
2576
3b080b25 2577 if (physical >= physical_end) {
625f1c8d
LB
2578 stop_loop = 1;
2579 break;
2580 }
2581 }
a2de733c
AJ
2582next:
2583 path->slots[0]++;
2584 }
71267333 2585 btrfs_release_path(path);
3b080b25 2586skip:
a2de733c
AJ
2587 logical += increment;
2588 physical += map->stripe_len;
d9d181c1 2589 spin_lock(&sctx->stat_lock);
625f1c8d
LB
2590 if (stop_loop)
2591 sctx->stat.last_physical = map->stripes[num].physical +
2592 length;
2593 else
2594 sctx->stat.last_physical = physical;
d9d181c1 2595 spin_unlock(&sctx->stat_lock);
625f1c8d
LB
2596 if (stop_loop)
2597 break;
a2de733c 2598 }
ff023aac 2599out:
a2de733c 2600 /* push queued extents */
d9d181c1 2601 scrub_submit(sctx);
ff023aac
SB
2602 mutex_lock(&sctx->wr_ctx.wr_lock);
2603 scrub_wr_submit(sctx);
2604 mutex_unlock(&sctx->wr_ctx.wr_lock);
a2de733c 2605
e7786c3a 2606 blk_finish_plug(&plug);
a2de733c
AJ
2607 btrfs_free_path(path);
2608 return ret < 0 ? ret : 0;
2609}
2610
d9d181c1 2611static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
a36cf8b8
SB
2612 struct btrfs_device *scrub_dev,
2613 u64 chunk_tree, u64 chunk_objectid,
2614 u64 chunk_offset, u64 length,
ff023aac 2615 u64 dev_offset, int is_dev_replace)
a2de733c
AJ
2616{
2617 struct btrfs_mapping_tree *map_tree =
a36cf8b8 2618 &sctx->dev_root->fs_info->mapping_tree;
a2de733c
AJ
2619 struct map_lookup *map;
2620 struct extent_map *em;
2621 int i;
ff023aac 2622 int ret = 0;
a2de733c
AJ
2623
2624 read_lock(&map_tree->map_tree.lock);
2625 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2626 read_unlock(&map_tree->map_tree.lock);
2627
2628 if (!em)
2629 return -EINVAL;
2630
2631 map = (struct map_lookup *)em->bdev;
2632 if (em->start != chunk_offset)
2633 goto out;
2634
2635 if (em->len < length)
2636 goto out;
2637
2638 for (i = 0; i < map->num_stripes; ++i) {
a36cf8b8 2639 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
859acaf1 2640 map->stripes[i].physical == dev_offset) {
a36cf8b8 2641 ret = scrub_stripe(sctx, map, scrub_dev, i,
ff023aac
SB
2642 chunk_offset, length,
2643 is_dev_replace);
a2de733c
AJ
2644 if (ret)
2645 goto out;
2646 }
2647 }
2648out:
2649 free_extent_map(em);
2650
2651 return ret;
2652}
2653
2654static noinline_for_stack
a36cf8b8 2655int scrub_enumerate_chunks(struct scrub_ctx *sctx,
ff023aac
SB
2656 struct btrfs_device *scrub_dev, u64 start, u64 end,
2657 int is_dev_replace)
a2de733c
AJ
2658{
2659 struct btrfs_dev_extent *dev_extent = NULL;
2660 struct btrfs_path *path;
a36cf8b8 2661 struct btrfs_root *root = sctx->dev_root;
a2de733c
AJ
2662 struct btrfs_fs_info *fs_info = root->fs_info;
2663 u64 length;
2664 u64 chunk_tree;
2665 u64 chunk_objectid;
2666 u64 chunk_offset;
2667 int ret;
2668 int slot;
2669 struct extent_buffer *l;
2670 struct btrfs_key key;
2671 struct btrfs_key found_key;
2672 struct btrfs_block_group_cache *cache;
ff023aac 2673 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
a2de733c
AJ
2674
2675 path = btrfs_alloc_path();
2676 if (!path)
2677 return -ENOMEM;
2678
2679 path->reada = 2;
2680 path->search_commit_root = 1;
2681 path->skip_locking = 1;
2682
a36cf8b8 2683 key.objectid = scrub_dev->devid;
a2de733c
AJ
2684 key.offset = 0ull;
2685 key.type = BTRFS_DEV_EXTENT_KEY;
2686
a2de733c
AJ
2687 while (1) {
2688 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2689 if (ret < 0)
8c51032f
AJ
2690 break;
2691 if (ret > 0) {
2692 if (path->slots[0] >=
2693 btrfs_header_nritems(path->nodes[0])) {
2694 ret = btrfs_next_leaf(root, path);
2695 if (ret)
2696 break;
2697 }
2698 }
a2de733c
AJ
2699
2700 l = path->nodes[0];
2701 slot = path->slots[0];
2702
2703 btrfs_item_key_to_cpu(l, &found_key, slot);
2704
a36cf8b8 2705 if (found_key.objectid != scrub_dev->devid)
a2de733c
AJ
2706 break;
2707
962a298f 2708 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
a2de733c
AJ
2709 break;
2710
2711 if (found_key.offset >= end)
2712 break;
2713
2714 if (found_key.offset < key.offset)
2715 break;
2716
2717 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2718 length = btrfs_dev_extent_length(l, dev_extent);
2719
ced96edc
QW
2720 if (found_key.offset + length <= start)
2721 goto skip;
a2de733c
AJ
2722
2723 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2724 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2725 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2726
2727 /*
2728 * get a reference on the corresponding block group to prevent
2729 * the chunk from going away while we scrub it
2730 */
2731 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
ced96edc
QW
2732
2733 /* some chunks are removed but not committed to disk yet,
2734 * continue scrubbing */
2735 if (!cache)
2736 goto skip;
2737
ff023aac
SB
2738 dev_replace->cursor_right = found_key.offset + length;
2739 dev_replace->cursor_left = found_key.offset;
2740 dev_replace->item_needs_writeback = 1;
a36cf8b8 2741 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
ff023aac
SB
2742 chunk_offset, length, found_key.offset,
2743 is_dev_replace);
2744
2745 /*
2746 * flush, submit all pending read and write bios, afterwards
2747 * wait for them.
2748 * Note that in the dev replace case, a read request causes
2749 * write requests that are submitted in the read completion
2750 * worker. Therefore in the current situation, it is required
2751 * that all write requests are flushed, so that all read and
2752 * write requests are really completed when bios_in_flight
2753 * changes to 0.
2754 */
2755 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2756 scrub_submit(sctx);
2757 mutex_lock(&sctx->wr_ctx.wr_lock);
2758 scrub_wr_submit(sctx);
2759 mutex_unlock(&sctx->wr_ctx.wr_lock);
2760
2761 wait_event(sctx->list_wait,
2762 atomic_read(&sctx->bios_in_flight) == 0);
12cf9372
WS
2763 atomic_inc(&fs_info->scrubs_paused);
2764 wake_up(&fs_info->scrub_pause_wait);
2765
2766 /*
2767 * must be called before we decrease @scrub_paused.
2768 * make sure we don't block transaction commit while
2769 * we are waiting pending workers finished.
2770 */
ff023aac
SB
2771 wait_event(sctx->list_wait,
2772 atomic_read(&sctx->workers_pending) == 0);
12cf9372
WS
2773 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2774
2775 mutex_lock(&fs_info->scrub_lock);
2776 __scrub_blocked_if_needed(fs_info);
2777 atomic_dec(&fs_info->scrubs_paused);
2778 mutex_unlock(&fs_info->scrub_lock);
2779 wake_up(&fs_info->scrub_pause_wait);
ff023aac 2780
a2de733c
AJ
2781 btrfs_put_block_group(cache);
2782 if (ret)
2783 break;
af1be4f8
SB
2784 if (is_dev_replace &&
2785 atomic64_read(&dev_replace->num_write_errors) > 0) {
ff023aac
SB
2786 ret = -EIO;
2787 break;
2788 }
2789 if (sctx->stat.malloc_errors > 0) {
2790 ret = -ENOMEM;
2791 break;
2792 }
a2de733c 2793
539f358a
ID
2794 dev_replace->cursor_left = dev_replace->cursor_right;
2795 dev_replace->item_needs_writeback = 1;
ced96edc 2796skip:
a2de733c 2797 key.offset = found_key.offset + length;
71267333 2798 btrfs_release_path(path);
a2de733c
AJ
2799 }
2800
a2de733c 2801 btrfs_free_path(path);
8c51032f
AJ
2802
2803 /*
2804 * ret can still be 1 from search_slot or next_leaf,
2805 * that's not an error
2806 */
2807 return ret < 0 ? ret : 0;
a2de733c
AJ
2808}
2809
a36cf8b8
SB
2810static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2811 struct btrfs_device *scrub_dev)
a2de733c
AJ
2812{
2813 int i;
2814 u64 bytenr;
2815 u64 gen;
2816 int ret;
a36cf8b8 2817 struct btrfs_root *root = sctx->dev_root;
a2de733c 2818
87533c47 2819 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
79787eaa
JM
2820 return -EIO;
2821
5f546063
MX
2822 /* Seed devices of a new filesystem has their own generation. */
2823 if (scrub_dev->fs_devices != root->fs_info->fs_devices)
2824 gen = scrub_dev->generation;
2825 else
2826 gen = root->fs_info->last_trans_committed;
a2de733c
AJ
2827
2828 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2829 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
2830 if (bytenr + BTRFS_SUPER_INFO_SIZE >
2831 scrub_dev->commit_total_bytes)
a2de733c
AJ
2832 break;
2833
d9d181c1 2834 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
a36cf8b8 2835 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
ff023aac 2836 NULL, 1, bytenr);
a2de733c
AJ
2837 if (ret)
2838 return ret;
2839 }
b6bfebc1 2840 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
2841
2842 return 0;
2843}
2844
2845/*
2846 * get a reference count on fs_info->scrub_workers. start worker if necessary
2847 */
ff023aac
SB
2848static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2849 int is_dev_replace)
a2de733c 2850{
0dc3b84a 2851 int ret = 0;
0339ef2f
QW
2852 int flags = WQ_FREEZABLE | WQ_UNBOUND;
2853 int max_active = fs_info->thread_pool_size;
a2de733c 2854
632dd772 2855 if (fs_info->scrub_workers_refcnt == 0) {
ff023aac 2856 if (is_dev_replace)
0339ef2f
QW
2857 fs_info->scrub_workers =
2858 btrfs_alloc_workqueue("btrfs-scrub", flags,
2859 1, 4);
ff023aac 2860 else
0339ef2f
QW
2861 fs_info->scrub_workers =
2862 btrfs_alloc_workqueue("btrfs-scrub", flags,
2863 max_active, 4);
2864 if (!fs_info->scrub_workers) {
2865 ret = -ENOMEM;
0dc3b84a 2866 goto out;
0339ef2f
QW
2867 }
2868 fs_info->scrub_wr_completion_workers =
2869 btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
2870 max_active, 2);
2871 if (!fs_info->scrub_wr_completion_workers) {
2872 ret = -ENOMEM;
ff023aac 2873 goto out;
0339ef2f
QW
2874 }
2875 fs_info->scrub_nocow_workers =
2876 btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
2877 if (!fs_info->scrub_nocow_workers) {
2878 ret = -ENOMEM;
ff023aac 2879 goto out;
0339ef2f 2880 }
632dd772 2881 }
a2de733c 2882 ++fs_info->scrub_workers_refcnt;
0dc3b84a 2883out:
0dc3b84a 2884 return ret;
a2de733c
AJ
2885}
2886
aa1b8cd4 2887static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
a2de733c 2888{
ff023aac 2889 if (--fs_info->scrub_workers_refcnt == 0) {
0339ef2f
QW
2890 btrfs_destroy_workqueue(fs_info->scrub_workers);
2891 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
2892 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
ff023aac 2893 }
a2de733c 2894 WARN_ON(fs_info->scrub_workers_refcnt < 0);
a2de733c
AJ
2895}
2896
aa1b8cd4
SB
2897int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2898 u64 end, struct btrfs_scrub_progress *progress,
63a212ab 2899 int readonly, int is_dev_replace)
a2de733c 2900{
d9d181c1 2901 struct scrub_ctx *sctx;
a2de733c
AJ
2902 int ret;
2903 struct btrfs_device *dev;
5d68da3b 2904 struct rcu_string *name;
a2de733c 2905
aa1b8cd4 2906 if (btrfs_fs_closing(fs_info))
a2de733c
AJ
2907 return -EINVAL;
2908
aa1b8cd4 2909 if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
b5d67f64
SB
2910 /*
2911 * in this case scrub is unable to calculate the checksum
2912 * the way scrub is implemented. Do not handle this
2913 * situation at all because it won't ever happen.
2914 */
efe120a0
FH
2915 btrfs_err(fs_info,
2916 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
aa1b8cd4 2917 fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
b5d67f64
SB
2918 return -EINVAL;
2919 }
2920
aa1b8cd4 2921 if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
b5d67f64 2922 /* not supported for data w/o checksums */
efe120a0
FH
2923 btrfs_err(fs_info,
2924 "scrub: size assumption sectorsize != PAGE_SIZE "
2925 "(%d != %lu) fails",
27f9f023 2926 fs_info->chunk_root->sectorsize, PAGE_SIZE);
a2de733c
AJ
2927 return -EINVAL;
2928 }
2929
7a9e9987
SB
2930 if (fs_info->chunk_root->nodesize >
2931 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2932 fs_info->chunk_root->sectorsize >
2933 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2934 /*
2935 * would exhaust the array bounds of pagev member in
2936 * struct scrub_block
2937 */
efe120a0
FH
2938 btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
2939 "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
7a9e9987
SB
2940 fs_info->chunk_root->nodesize,
2941 SCRUB_MAX_PAGES_PER_BLOCK,
2942 fs_info->chunk_root->sectorsize,
2943 SCRUB_MAX_PAGES_PER_BLOCK);
2944 return -EINVAL;
2945 }
2946
a2de733c 2947
aa1b8cd4
SB
2948 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2949 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
63a212ab 2950 if (!dev || (dev->missing && !is_dev_replace)) {
aa1b8cd4 2951 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c
AJ
2952 return -ENODEV;
2953 }
a2de733c 2954
5d68da3b
MX
2955 if (!is_dev_replace && !readonly && !dev->writeable) {
2956 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2957 rcu_read_lock();
2958 name = rcu_dereference(dev->name);
2959 btrfs_err(fs_info, "scrub: device %s is not writable",
2960 name->str);
2961 rcu_read_unlock();
2962 return -EROFS;
2963 }
2964
3b7a016f 2965 mutex_lock(&fs_info->scrub_lock);
63a212ab 2966 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
a2de733c 2967 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 2968 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
aa1b8cd4 2969 return -EIO;
a2de733c
AJ
2970 }
2971
8dabb742
SB
2972 btrfs_dev_replace_lock(&fs_info->dev_replace);
2973 if (dev->scrub_device ||
2974 (!is_dev_replace &&
2975 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2976 btrfs_dev_replace_unlock(&fs_info->dev_replace);
a2de733c 2977 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 2978 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c
AJ
2979 return -EINPROGRESS;
2980 }
8dabb742 2981 btrfs_dev_replace_unlock(&fs_info->dev_replace);
3b7a016f
WS
2982
2983 ret = scrub_workers_get(fs_info, is_dev_replace);
2984 if (ret) {
2985 mutex_unlock(&fs_info->scrub_lock);
2986 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2987 return ret;
2988 }
2989
63a212ab 2990 sctx = scrub_setup_ctx(dev, is_dev_replace);
d9d181c1 2991 if (IS_ERR(sctx)) {
a2de733c 2992 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4
SB
2993 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2994 scrub_workers_put(fs_info);
d9d181c1 2995 return PTR_ERR(sctx);
a2de733c 2996 }
d9d181c1
SB
2997 sctx->readonly = readonly;
2998 dev->scrub_device = sctx;
3cb0929a 2999 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c 3000
3cb0929a
WS
3001 /*
3002 * checking @scrub_pause_req here, we can avoid
3003 * race between committing transaction and scrubbing.
3004 */
cb7ab021 3005 __scrub_blocked_if_needed(fs_info);
a2de733c
AJ
3006 atomic_inc(&fs_info->scrubs_running);
3007 mutex_unlock(&fs_info->scrub_lock);
a2de733c 3008
ff023aac 3009 if (!is_dev_replace) {
9b011adf
WS
3010 /*
3011 * by holding device list mutex, we can
3012 * kick off writing super in log tree sync.
3013 */
3cb0929a 3014 mutex_lock(&fs_info->fs_devices->device_list_mutex);
ff023aac 3015 ret = scrub_supers(sctx, dev);
3cb0929a 3016 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
ff023aac 3017 }
a2de733c
AJ
3018
3019 if (!ret)
ff023aac
SB
3020 ret = scrub_enumerate_chunks(sctx, dev, start, end,
3021 is_dev_replace);
a2de733c 3022
b6bfebc1 3023 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
3024 atomic_dec(&fs_info->scrubs_running);
3025 wake_up(&fs_info->scrub_pause_wait);
3026
b6bfebc1 3027 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
0ef8e451 3028
a2de733c 3029 if (progress)
d9d181c1 3030 memcpy(progress, &sctx->stat, sizeof(*progress));
a2de733c
AJ
3031
3032 mutex_lock(&fs_info->scrub_lock);
3033 dev->scrub_device = NULL;
3b7a016f 3034 scrub_workers_put(fs_info);
a2de733c
AJ
3035 mutex_unlock(&fs_info->scrub_lock);
3036
d9d181c1 3037 scrub_free_ctx(sctx);
a2de733c
AJ
3038
3039 return ret;
3040}
3041
143bede5 3042void btrfs_scrub_pause(struct btrfs_root *root)
a2de733c
AJ
3043{
3044 struct btrfs_fs_info *fs_info = root->fs_info;
3045
3046 mutex_lock(&fs_info->scrub_lock);
3047 atomic_inc(&fs_info->scrub_pause_req);
3048 while (atomic_read(&fs_info->scrubs_paused) !=
3049 atomic_read(&fs_info->scrubs_running)) {
3050 mutex_unlock(&fs_info->scrub_lock);
3051 wait_event(fs_info->scrub_pause_wait,
3052 atomic_read(&fs_info->scrubs_paused) ==
3053 atomic_read(&fs_info->scrubs_running));
3054 mutex_lock(&fs_info->scrub_lock);
3055 }
3056 mutex_unlock(&fs_info->scrub_lock);
a2de733c
AJ
3057}
3058
143bede5 3059void btrfs_scrub_continue(struct btrfs_root *root)
a2de733c
AJ
3060{
3061 struct btrfs_fs_info *fs_info = root->fs_info;
3062
3063 atomic_dec(&fs_info->scrub_pause_req);
3064 wake_up(&fs_info->scrub_pause_wait);
a2de733c
AJ
3065}
3066
aa1b8cd4 3067int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
a2de733c 3068{
a2de733c
AJ
3069 mutex_lock(&fs_info->scrub_lock);
3070 if (!atomic_read(&fs_info->scrubs_running)) {
3071 mutex_unlock(&fs_info->scrub_lock);
3072 return -ENOTCONN;
3073 }
3074
3075 atomic_inc(&fs_info->scrub_cancel_req);
3076 while (atomic_read(&fs_info->scrubs_running)) {
3077 mutex_unlock(&fs_info->scrub_lock);
3078 wait_event(fs_info->scrub_pause_wait,
3079 atomic_read(&fs_info->scrubs_running) == 0);
3080 mutex_lock(&fs_info->scrub_lock);
3081 }
3082 atomic_dec(&fs_info->scrub_cancel_req);
3083 mutex_unlock(&fs_info->scrub_lock);
3084
3085 return 0;
3086}
3087
aa1b8cd4
SB
3088int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3089 struct btrfs_device *dev)
49b25e05 3090{
d9d181c1 3091 struct scrub_ctx *sctx;
a2de733c
AJ
3092
3093 mutex_lock(&fs_info->scrub_lock);
d9d181c1
SB
3094 sctx = dev->scrub_device;
3095 if (!sctx) {
a2de733c
AJ
3096 mutex_unlock(&fs_info->scrub_lock);
3097 return -ENOTCONN;
3098 }
d9d181c1 3099 atomic_inc(&sctx->cancel_req);
a2de733c
AJ
3100 while (dev->scrub_device) {
3101 mutex_unlock(&fs_info->scrub_lock);
3102 wait_event(fs_info->scrub_pause_wait,
3103 dev->scrub_device == NULL);
3104 mutex_lock(&fs_info->scrub_lock);
3105 }
3106 mutex_unlock(&fs_info->scrub_lock);
3107
3108 return 0;
3109}
1623edeb 3110
a2de733c
AJ
3111int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3112 struct btrfs_scrub_progress *progress)
3113{
3114 struct btrfs_device *dev;
d9d181c1 3115 struct scrub_ctx *sctx = NULL;
a2de733c
AJ
3116
3117 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
aa1b8cd4 3118 dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
a2de733c 3119 if (dev)
d9d181c1
SB
3120 sctx = dev->scrub_device;
3121 if (sctx)
3122 memcpy(progress, &sctx->stat, sizeof(*progress));
a2de733c
AJ
3123 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3124
d9d181c1 3125 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
a2de733c 3126}
ff023aac
SB
3127
3128static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3129 u64 extent_logical, u64 extent_len,
3130 u64 *extent_physical,
3131 struct btrfs_device **extent_dev,
3132 int *extent_mirror_num)
3133{
3134 u64 mapped_length;
3135 struct btrfs_bio *bbio = NULL;
3136 int ret;
3137
3138 mapped_length = extent_len;
3139 ret = btrfs_map_block(fs_info, READ, extent_logical,
3140 &mapped_length, &bbio, 0);
3141 if (ret || !bbio || mapped_length < extent_len ||
3142 !bbio->stripes[0].dev->bdev) {
3143 kfree(bbio);
3144 return;
3145 }
3146
3147 *extent_physical = bbio->stripes[0].physical;
3148 *extent_mirror_num = bbio->mirror_num;
3149 *extent_dev = bbio->stripes[0].dev;
3150 kfree(bbio);
3151}
3152
3153static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3154 struct scrub_wr_ctx *wr_ctx,
3155 struct btrfs_fs_info *fs_info,
3156 struct btrfs_device *dev,
3157 int is_dev_replace)
3158{
3159 WARN_ON(wr_ctx->wr_curr_bio != NULL);
3160
3161 mutex_init(&wr_ctx->wr_lock);
3162 wr_ctx->wr_curr_bio = NULL;
3163 if (!is_dev_replace)
3164 return 0;
3165
3166 WARN_ON(!dev->bdev);
3167 wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3168 bio_get_nr_vecs(dev->bdev));
3169 wr_ctx->tgtdev = dev;
3170 atomic_set(&wr_ctx->flush_all_writes, 0);
3171 return 0;
3172}
3173
3174static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3175{
3176 mutex_lock(&wr_ctx->wr_lock);
3177 kfree(wr_ctx->wr_curr_bio);
3178 wr_ctx->wr_curr_bio = NULL;
3179 mutex_unlock(&wr_ctx->wr_lock);
3180}
3181
3182static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3183 int mirror_num, u64 physical_for_dev_replace)
3184{
3185 struct scrub_copy_nocow_ctx *nocow_ctx;
3186 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3187
3188 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3189 if (!nocow_ctx) {
3190 spin_lock(&sctx->stat_lock);
3191 sctx->stat.malloc_errors++;
3192 spin_unlock(&sctx->stat_lock);
3193 return -ENOMEM;
3194 }
3195
3196 scrub_pending_trans_workers_inc(sctx);
3197
3198 nocow_ctx->sctx = sctx;
3199 nocow_ctx->logical = logical;
3200 nocow_ctx->len = len;
3201 nocow_ctx->mirror_num = mirror_num;
3202 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
9e0af237
LB
3203 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
3204 copy_nocow_pages_worker, NULL, NULL);
652f25a2 3205 INIT_LIST_HEAD(&nocow_ctx->inodes);
0339ef2f
QW
3206 btrfs_queue_work(fs_info->scrub_nocow_workers,
3207 &nocow_ctx->work);
ff023aac
SB
3208
3209 return 0;
3210}
3211
652f25a2
JB
3212static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3213{
3214 struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3215 struct scrub_nocow_inode *nocow_inode;
3216
3217 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3218 if (!nocow_inode)
3219 return -ENOMEM;
3220 nocow_inode->inum = inum;
3221 nocow_inode->offset = offset;
3222 nocow_inode->root = root;
3223 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3224 return 0;
3225}
3226
3227#define COPY_COMPLETE 1
3228
ff023aac
SB
3229static void copy_nocow_pages_worker(struct btrfs_work *work)
3230{
3231 struct scrub_copy_nocow_ctx *nocow_ctx =
3232 container_of(work, struct scrub_copy_nocow_ctx, work);
3233 struct scrub_ctx *sctx = nocow_ctx->sctx;
3234 u64 logical = nocow_ctx->logical;
3235 u64 len = nocow_ctx->len;
3236 int mirror_num = nocow_ctx->mirror_num;
3237 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3238 int ret;
3239 struct btrfs_trans_handle *trans = NULL;
3240 struct btrfs_fs_info *fs_info;
3241 struct btrfs_path *path;
3242 struct btrfs_root *root;
3243 int not_written = 0;
3244
3245 fs_info = sctx->dev_root->fs_info;
3246 root = fs_info->extent_root;
3247
3248 path = btrfs_alloc_path();
3249 if (!path) {
3250 spin_lock(&sctx->stat_lock);
3251 sctx->stat.malloc_errors++;
3252 spin_unlock(&sctx->stat_lock);
3253 not_written = 1;
3254 goto out;
3255 }
3256
3257 trans = btrfs_join_transaction(root);
3258 if (IS_ERR(trans)) {
3259 not_written = 1;
3260 goto out;
3261 }
3262
3263 ret = iterate_inodes_from_logical(logical, fs_info, path,
652f25a2 3264 record_inode_for_nocow, nocow_ctx);
ff023aac 3265 if (ret != 0 && ret != -ENOENT) {
efe120a0
FH
3266 btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
3267 "phys %llu, len %llu, mir %u, ret %d",
118a0a25
GU
3268 logical, physical_for_dev_replace, len, mirror_num,
3269 ret);
ff023aac
SB
3270 not_written = 1;
3271 goto out;
3272 }
3273
652f25a2
JB
3274 btrfs_end_transaction(trans, root);
3275 trans = NULL;
3276 while (!list_empty(&nocow_ctx->inodes)) {
3277 struct scrub_nocow_inode *entry;
3278 entry = list_first_entry(&nocow_ctx->inodes,
3279 struct scrub_nocow_inode,
3280 list);
3281 list_del_init(&entry->list);
3282 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
3283 entry->root, nocow_ctx);
3284 kfree(entry);
3285 if (ret == COPY_COMPLETE) {
3286 ret = 0;
3287 break;
3288 } else if (ret) {
3289 break;
3290 }
3291 }
ff023aac 3292out:
652f25a2
JB
3293 while (!list_empty(&nocow_ctx->inodes)) {
3294 struct scrub_nocow_inode *entry;
3295 entry = list_first_entry(&nocow_ctx->inodes,
3296 struct scrub_nocow_inode,
3297 list);
3298 list_del_init(&entry->list);
3299 kfree(entry);
3300 }
ff023aac
SB
3301 if (trans && !IS_ERR(trans))
3302 btrfs_end_transaction(trans, root);
3303 if (not_written)
3304 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3305 num_uncorrectable_read_errors);
3306
3307 btrfs_free_path(path);
3308 kfree(nocow_ctx);
3309
3310 scrub_pending_trans_workers_dec(sctx);
3311}
3312
652f25a2
JB
3313static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
3314 struct scrub_copy_nocow_ctx *nocow_ctx)
ff023aac 3315{
826aa0a8 3316 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
ff023aac 3317 struct btrfs_key key;
826aa0a8
MX
3318 struct inode *inode;
3319 struct page *page;
ff023aac 3320 struct btrfs_root *local_root;
652f25a2
JB
3321 struct btrfs_ordered_extent *ordered;
3322 struct extent_map *em;
3323 struct extent_state *cached_state = NULL;
3324 struct extent_io_tree *io_tree;
ff023aac 3325 u64 physical_for_dev_replace;
652f25a2
JB
3326 u64 len = nocow_ctx->len;
3327 u64 lockstart = offset, lockend = offset + len - 1;
826aa0a8 3328 unsigned long index;
6f1c3605 3329 int srcu_index;
652f25a2
JB
3330 int ret = 0;
3331 int err = 0;
ff023aac
SB
3332
3333 key.objectid = root;
3334 key.type = BTRFS_ROOT_ITEM_KEY;
3335 key.offset = (u64)-1;
6f1c3605
LB
3336
3337 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3338
ff023aac 3339 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
6f1c3605
LB
3340 if (IS_ERR(local_root)) {
3341 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
ff023aac 3342 return PTR_ERR(local_root);
6f1c3605 3343 }
ff023aac
SB
3344
3345 key.type = BTRFS_INODE_ITEM_KEY;
3346 key.objectid = inum;
3347 key.offset = 0;
3348 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
6f1c3605 3349 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
ff023aac
SB
3350 if (IS_ERR(inode))
3351 return PTR_ERR(inode);
3352
edd1400b
MX
3353 /* Avoid truncate/dio/punch hole.. */
3354 mutex_lock(&inode->i_mutex);
3355 inode_dio_wait(inode);
3356
ff023aac 3357 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
652f25a2
JB
3358 io_tree = &BTRFS_I(inode)->io_tree;
3359
3360 lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
3361 ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
3362 if (ordered) {
3363 btrfs_put_ordered_extent(ordered);
3364 goto out_unlock;
3365 }
3366
3367 em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
3368 if (IS_ERR(em)) {
3369 ret = PTR_ERR(em);
3370 goto out_unlock;
3371 }
3372
3373 /*
3374 * This extent does not actually cover the logical extent anymore,
3375 * move on to the next inode.
3376 */
3377 if (em->block_start > nocow_ctx->logical ||
3378 em->block_start + em->block_len < nocow_ctx->logical + len) {
3379 free_extent_map(em);
3380 goto out_unlock;
3381 }
3382 free_extent_map(em);
3383
ff023aac 3384 while (len >= PAGE_CACHE_SIZE) {
ff023aac 3385 index = offset >> PAGE_CACHE_SHIFT;
edd1400b 3386again:
ff023aac
SB
3387 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3388 if (!page) {
efe120a0 3389 btrfs_err(fs_info, "find_or_create_page() failed");
ff023aac 3390 ret = -ENOMEM;
826aa0a8 3391 goto out;
ff023aac
SB
3392 }
3393
3394 if (PageUptodate(page)) {
3395 if (PageDirty(page))
3396 goto next_page;
3397 } else {
3398 ClearPageError(page);
652f25a2
JB
3399 err = extent_read_full_page_nolock(io_tree, page,
3400 btrfs_get_extent,
3401 nocow_ctx->mirror_num);
826aa0a8
MX
3402 if (err) {
3403 ret = err;
ff023aac
SB
3404 goto next_page;
3405 }
edd1400b 3406
26b25891 3407 lock_page(page);
edd1400b
MX
3408 /*
3409 * If the page has been remove from the page cache,
3410 * the data on it is meaningless, because it may be
3411 * old one, the new data may be written into the new
3412 * page in the page cache.
3413 */
3414 if (page->mapping != inode->i_mapping) {
652f25a2 3415 unlock_page(page);
edd1400b
MX
3416 page_cache_release(page);
3417 goto again;
3418 }
ff023aac
SB
3419 if (!PageUptodate(page)) {
3420 ret = -EIO;
3421 goto next_page;
3422 }
3423 }
826aa0a8
MX
3424 err = write_page_nocow(nocow_ctx->sctx,
3425 physical_for_dev_replace, page);
3426 if (err)
3427 ret = err;
ff023aac 3428next_page:
826aa0a8
MX
3429 unlock_page(page);
3430 page_cache_release(page);
3431
3432 if (ret)
3433 break;
3434
ff023aac
SB
3435 offset += PAGE_CACHE_SIZE;
3436 physical_for_dev_replace += PAGE_CACHE_SIZE;
3437 len -= PAGE_CACHE_SIZE;
3438 }
652f25a2
JB
3439 ret = COPY_COMPLETE;
3440out_unlock:
3441 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
3442 GFP_NOFS);
826aa0a8 3443out:
edd1400b 3444 mutex_unlock(&inode->i_mutex);
826aa0a8 3445 iput(inode);
ff023aac
SB
3446 return ret;
3447}
3448
3449static int write_page_nocow(struct scrub_ctx *sctx,
3450 u64 physical_for_dev_replace, struct page *page)
3451{
3452 struct bio *bio;
3453 struct btrfs_device *dev;
3454 int ret;
ff023aac
SB
3455
3456 dev = sctx->wr_ctx.tgtdev;
3457 if (!dev)
3458 return -EIO;
3459 if (!dev->bdev) {
3460 printk_ratelimited(KERN_WARNING
efe120a0 3461 "BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
ff023aac
SB
3462 return -EIO;
3463 }
9be3395b 3464 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
ff023aac
SB
3465 if (!bio) {
3466 spin_lock(&sctx->stat_lock);
3467 sctx->stat.malloc_errors++;
3468 spin_unlock(&sctx->stat_lock);
3469 return -ENOMEM;
3470 }
4f024f37
KO
3471 bio->bi_iter.bi_size = 0;
3472 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
ff023aac
SB
3473 bio->bi_bdev = dev->bdev;
3474 ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3475 if (ret != PAGE_CACHE_SIZE) {
3476leave_with_eio:
3477 bio_put(bio);
3478 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3479 return -EIO;
3480 }
ff023aac 3481
33879d45 3482 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
ff023aac
SB
3483 goto leave_with_eio;
3484
3485 bio_put(bio);
3486 return 0;
3487}
This page took 0.453304 seconds and 5 git commands to generate.