btrfs: remove obsolete part of comment in statfs
[deliverable/linux.git] / fs / btrfs / scrub.c
CommitLineData
a2de733c 1/*
b6bfebc1 2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
a2de733c
AJ
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a2de733c 19#include <linux/blkdev.h>
558540c1 20#include <linux/ratelimit.h>
a2de733c
AJ
21#include "ctree.h"
22#include "volumes.h"
23#include "disk-io.h"
24#include "ordered-data.h"
0ef8e451 25#include "transaction.h"
558540c1 26#include "backref.h"
5da6fcbc 27#include "extent_io.h"
ff023aac 28#include "dev-replace.h"
21adbd5c 29#include "check-integrity.h"
606686ee 30#include "rcu-string.h"
53b381b3 31#include "raid56.h"
a2de733c
AJ
32
33/*
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
37 * any can be found.
38 *
39 * Future enhancements:
a2de733c
AJ
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
a2de733c 42 * - track and record media errors, throw out bad devices
a2de733c 43 * - add a mode to also read unallocated space
a2de733c
AJ
44 */
45
b5d67f64 46struct scrub_block;
d9d181c1 47struct scrub_ctx;
a2de733c 48
ff023aac
SB
49/*
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
54 */
55#define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
56#define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
57#define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
7a9e9987
SB
58
59/*
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
63 */
b5d67f64 64#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
a2de733c 65
af8e2d1d
MX
66struct scrub_recover {
67 atomic_t refs;
68 struct btrfs_bio *bbio;
af8e2d1d
MX
69 u64 map_length;
70};
71
a2de733c 72struct scrub_page {
b5d67f64
SB
73 struct scrub_block *sblock;
74 struct page *page;
442a4f63 75 struct btrfs_device *dev;
5a6ac9ea 76 struct list_head list;
a2de733c
AJ
77 u64 flags; /* extent flags */
78 u64 generation;
b5d67f64
SB
79 u64 logical;
80 u64 physical;
ff023aac 81 u64 physical_for_dev_replace;
57019345 82 atomic_t refs;
b5d67f64
SB
83 struct {
84 unsigned int mirror_num:8;
85 unsigned int have_csum:1;
86 unsigned int io_error:1;
87 };
a2de733c 88 u8 csum[BTRFS_CSUM_SIZE];
af8e2d1d
MX
89
90 struct scrub_recover *recover;
a2de733c
AJ
91};
92
93struct scrub_bio {
94 int index;
d9d181c1 95 struct scrub_ctx *sctx;
a36cf8b8 96 struct btrfs_device *dev;
a2de733c
AJ
97 struct bio *bio;
98 int err;
99 u64 logical;
100 u64 physical;
ff023aac
SB
101#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
102 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
103#else
104 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
105#endif
b5d67f64 106 int page_count;
a2de733c
AJ
107 int next_free;
108 struct btrfs_work work;
109};
110
b5d67f64 111struct scrub_block {
7a9e9987 112 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
b5d67f64
SB
113 int page_count;
114 atomic_t outstanding_pages;
57019345 115 atomic_t refs; /* free mem on transition to zero */
d9d181c1 116 struct scrub_ctx *sctx;
5a6ac9ea 117 struct scrub_parity *sparity;
b5d67f64
SB
118 struct {
119 unsigned int header_error:1;
120 unsigned int checksum_error:1;
121 unsigned int no_io_error_seen:1;
442a4f63 122 unsigned int generation_error:1; /* also sets header_error */
5a6ac9ea
MX
123
124 /* The following is for the data used to check parity */
125 /* It is for the data with checksum */
126 unsigned int data_corrected:1;
b5d67f64 127 };
73ff61db 128 struct btrfs_work work;
b5d67f64
SB
129};
130
5a6ac9ea
MX
131/* Used for the chunks with parity stripe such RAID5/6 */
132struct scrub_parity {
133 struct scrub_ctx *sctx;
134
135 struct btrfs_device *scrub_dev;
136
137 u64 logic_start;
138
139 u64 logic_end;
140
141 int nsectors;
142
143 int stripe_len;
144
57019345 145 atomic_t refs;
5a6ac9ea
MX
146
147 struct list_head spages;
148
149 /* Work of parity check and repair */
150 struct btrfs_work work;
151
152 /* Mark the parity blocks which have data */
153 unsigned long *dbitmap;
154
155 /*
156 * Mark the parity blocks which have data, but errors happen when
157 * read data or check data
158 */
159 unsigned long *ebitmap;
160
161 unsigned long bitmap[0];
162};
163
ff023aac
SB
164struct scrub_wr_ctx {
165 struct scrub_bio *wr_curr_bio;
166 struct btrfs_device *tgtdev;
167 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
168 atomic_t flush_all_writes;
169 struct mutex wr_lock;
170};
171
d9d181c1 172struct scrub_ctx {
ff023aac 173 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
a36cf8b8 174 struct btrfs_root *dev_root;
a2de733c
AJ
175 int first_free;
176 int curr;
b6bfebc1
SB
177 atomic_t bios_in_flight;
178 atomic_t workers_pending;
a2de733c
AJ
179 spinlock_t list_lock;
180 wait_queue_head_t list_wait;
181 u16 csum_size;
182 struct list_head csum_list;
183 atomic_t cancel_req;
8628764e 184 int readonly;
ff023aac 185 int pages_per_rd_bio;
b5d67f64
SB
186 u32 sectorsize;
187 u32 nodesize;
63a212ab
SB
188
189 int is_dev_replace;
ff023aac 190 struct scrub_wr_ctx wr_ctx;
63a212ab 191
a2de733c
AJ
192 /*
193 * statistics
194 */
195 struct btrfs_scrub_progress stat;
196 spinlock_t stat_lock;
f55985f4
FM
197
198 /*
199 * Use a ref counter to avoid use-after-free issues. Scrub workers
200 * decrement bios_in_flight and workers_pending and then do a wakeup
201 * on the list_wait wait queue. We must ensure the main scrub task
202 * doesn't free the scrub context before or while the workers are
203 * doing the wakeup() call.
204 */
205 atomic_t refs;
a2de733c
AJ
206};
207
0ef8e451 208struct scrub_fixup_nodatasum {
d9d181c1 209 struct scrub_ctx *sctx;
a36cf8b8 210 struct btrfs_device *dev;
0ef8e451
JS
211 u64 logical;
212 struct btrfs_root *root;
213 struct btrfs_work work;
214 int mirror_num;
215};
216
652f25a2
JB
217struct scrub_nocow_inode {
218 u64 inum;
219 u64 offset;
220 u64 root;
221 struct list_head list;
222};
223
ff023aac
SB
224struct scrub_copy_nocow_ctx {
225 struct scrub_ctx *sctx;
226 u64 logical;
227 u64 len;
228 int mirror_num;
229 u64 physical_for_dev_replace;
652f25a2 230 struct list_head inodes;
ff023aac
SB
231 struct btrfs_work work;
232};
233
558540c1
JS
234struct scrub_warning {
235 struct btrfs_path *path;
236 u64 extent_item_size;
558540c1
JS
237 const char *errstr;
238 sector_t sector;
239 u64 logical;
240 struct btrfs_device *dev;
558540c1
JS
241};
242
b6bfebc1
SB
243static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
244static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
245static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
246static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
b5d67f64 247static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
be50a8dd 248static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
ff023aac 249 struct scrub_block *sblocks_for_recheck);
34f5c8e9 250static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
affe4a5a
ZL
251 struct scrub_block *sblock,
252 int retry_failed_mirror);
ba7cf988 253static void scrub_recheck_block_checksum(struct scrub_block *sblock);
b5d67f64 254static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
114ab50d 255 struct scrub_block *sblock_good);
b5d67f64
SB
256static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
257 struct scrub_block *sblock_good,
258 int page_num, int force_write);
ff023aac
SB
259static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
260static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
261 int page_num);
b5d67f64
SB
262static int scrub_checksum_data(struct scrub_block *sblock);
263static int scrub_checksum_tree_block(struct scrub_block *sblock);
264static int scrub_checksum_super(struct scrub_block *sblock);
265static void scrub_block_get(struct scrub_block *sblock);
266static void scrub_block_put(struct scrub_block *sblock);
7a9e9987
SB
267static void scrub_page_get(struct scrub_page *spage);
268static void scrub_page_put(struct scrub_page *spage);
5a6ac9ea
MX
269static void scrub_parity_get(struct scrub_parity *sparity);
270static void scrub_parity_put(struct scrub_parity *sparity);
ff023aac
SB
271static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
272 struct scrub_page *spage);
d9d181c1 273static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 274 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac
SB
275 u64 gen, int mirror_num, u8 *csum, int force,
276 u64 physical_for_dev_replace);
4246a0b6 277static void scrub_bio_end_io(struct bio *bio);
b5d67f64
SB
278static void scrub_bio_end_io_worker(struct btrfs_work *work);
279static void scrub_block_complete(struct scrub_block *sblock);
ff023aac
SB
280static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
281 u64 extent_logical, u64 extent_len,
282 u64 *extent_physical,
283 struct btrfs_device **extent_dev,
284 int *extent_mirror_num);
285static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
286 struct scrub_wr_ctx *wr_ctx,
287 struct btrfs_fs_info *fs_info,
288 struct btrfs_device *dev,
289 int is_dev_replace);
290static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
291static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
292 struct scrub_page *spage);
293static void scrub_wr_submit(struct scrub_ctx *sctx);
4246a0b6 294static void scrub_wr_bio_end_io(struct bio *bio);
ff023aac
SB
295static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
296static int write_page_nocow(struct scrub_ctx *sctx,
297 u64 physical_for_dev_replace, struct page *page);
298static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
652f25a2 299 struct scrub_copy_nocow_ctx *ctx);
ff023aac
SB
300static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
301 int mirror_num, u64 physical_for_dev_replace);
302static void copy_nocow_pages_worker(struct btrfs_work *work);
cb7ab021 303static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
3cb0929a 304static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
f55985f4 305static void scrub_put_ctx(struct scrub_ctx *sctx);
1623edeb
SB
306
307
b6bfebc1
SB
308static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
309{
f55985f4 310 atomic_inc(&sctx->refs);
b6bfebc1
SB
311 atomic_inc(&sctx->bios_in_flight);
312}
313
314static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
315{
316 atomic_dec(&sctx->bios_in_flight);
317 wake_up(&sctx->list_wait);
f55985f4 318 scrub_put_ctx(sctx);
b6bfebc1
SB
319}
320
cb7ab021 321static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
3cb0929a
WS
322{
323 while (atomic_read(&fs_info->scrub_pause_req)) {
324 mutex_unlock(&fs_info->scrub_lock);
325 wait_event(fs_info->scrub_pause_wait,
326 atomic_read(&fs_info->scrub_pause_req) == 0);
327 mutex_lock(&fs_info->scrub_lock);
328 }
329}
330
0e22be89 331static void scrub_pause_on(struct btrfs_fs_info *fs_info)
cb7ab021
WS
332{
333 atomic_inc(&fs_info->scrubs_paused);
334 wake_up(&fs_info->scrub_pause_wait);
0e22be89 335}
cb7ab021 336
0e22be89
Z
337static void scrub_pause_off(struct btrfs_fs_info *fs_info)
338{
cb7ab021
WS
339 mutex_lock(&fs_info->scrub_lock);
340 __scrub_blocked_if_needed(fs_info);
341 atomic_dec(&fs_info->scrubs_paused);
342 mutex_unlock(&fs_info->scrub_lock);
343
344 wake_up(&fs_info->scrub_pause_wait);
345}
346
0e22be89
Z
347static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
348{
349 scrub_pause_on(fs_info);
350 scrub_pause_off(fs_info);
351}
352
b6bfebc1
SB
353/*
354 * used for workers that require transaction commits (i.e., for the
355 * NOCOW case)
356 */
357static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
358{
359 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
360
f55985f4 361 atomic_inc(&sctx->refs);
b6bfebc1
SB
362 /*
363 * increment scrubs_running to prevent cancel requests from
364 * completing as long as a worker is running. we must also
365 * increment scrubs_paused to prevent deadlocking on pause
366 * requests used for transactions commits (as the worker uses a
367 * transaction context). it is safe to regard the worker
368 * as paused for all matters practical. effectively, we only
369 * avoid cancellation requests from completing.
370 */
371 mutex_lock(&fs_info->scrub_lock);
372 atomic_inc(&fs_info->scrubs_running);
373 atomic_inc(&fs_info->scrubs_paused);
374 mutex_unlock(&fs_info->scrub_lock);
32a44789
WS
375
376 /*
377 * check if @scrubs_running=@scrubs_paused condition
378 * inside wait_event() is not an atomic operation.
379 * which means we may inc/dec @scrub_running/paused
380 * at any time. Let's wake up @scrub_pause_wait as
381 * much as we can to let commit transaction blocked less.
382 */
383 wake_up(&fs_info->scrub_pause_wait);
384
b6bfebc1
SB
385 atomic_inc(&sctx->workers_pending);
386}
387
388/* used for workers that require transaction commits */
389static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
390{
391 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
392
393 /*
394 * see scrub_pending_trans_workers_inc() why we're pretending
395 * to be paused in the scrub counters
396 */
397 mutex_lock(&fs_info->scrub_lock);
398 atomic_dec(&fs_info->scrubs_running);
399 atomic_dec(&fs_info->scrubs_paused);
400 mutex_unlock(&fs_info->scrub_lock);
401 atomic_dec(&sctx->workers_pending);
402 wake_up(&fs_info->scrub_pause_wait);
403 wake_up(&sctx->list_wait);
f55985f4 404 scrub_put_ctx(sctx);
b6bfebc1
SB
405}
406
d9d181c1 407static void scrub_free_csums(struct scrub_ctx *sctx)
a2de733c 408{
d9d181c1 409 while (!list_empty(&sctx->csum_list)) {
a2de733c 410 struct btrfs_ordered_sum *sum;
d9d181c1 411 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
412 struct btrfs_ordered_sum, list);
413 list_del(&sum->list);
414 kfree(sum);
415 }
416}
417
d9d181c1 418static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
a2de733c
AJ
419{
420 int i;
a2de733c 421
d9d181c1 422 if (!sctx)
a2de733c
AJ
423 return;
424
ff023aac
SB
425 scrub_free_wr_ctx(&sctx->wr_ctx);
426
b5d67f64 427 /* this can happen when scrub is cancelled */
d9d181c1
SB
428 if (sctx->curr != -1) {
429 struct scrub_bio *sbio = sctx->bios[sctx->curr];
b5d67f64
SB
430
431 for (i = 0; i < sbio->page_count; i++) {
ff023aac 432 WARN_ON(!sbio->pagev[i]->page);
b5d67f64
SB
433 scrub_block_put(sbio->pagev[i]->sblock);
434 }
435 bio_put(sbio->bio);
436 }
437
ff023aac 438 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
d9d181c1 439 struct scrub_bio *sbio = sctx->bios[i];
a2de733c
AJ
440
441 if (!sbio)
442 break;
a2de733c
AJ
443 kfree(sbio);
444 }
445
d9d181c1
SB
446 scrub_free_csums(sctx);
447 kfree(sctx);
a2de733c
AJ
448}
449
f55985f4
FM
450static void scrub_put_ctx(struct scrub_ctx *sctx)
451{
452 if (atomic_dec_and_test(&sctx->refs))
453 scrub_free_ctx(sctx);
454}
455
a2de733c 456static noinline_for_stack
63a212ab 457struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
a2de733c 458{
d9d181c1 459 struct scrub_ctx *sctx;
a2de733c 460 int i;
a2de733c 461 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
ff023aac 462 int ret;
a2de733c 463
58c4e173 464 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
d9d181c1 465 if (!sctx)
a2de733c 466 goto nomem;
f55985f4 467 atomic_set(&sctx->refs, 1);
63a212ab 468 sctx->is_dev_replace = is_dev_replace;
b54ffb73 469 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
d9d181c1 470 sctx->curr = -1;
a36cf8b8 471 sctx->dev_root = dev->dev_root;
ff023aac 472 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
a2de733c
AJ
473 struct scrub_bio *sbio;
474
58c4e173 475 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
a2de733c
AJ
476 if (!sbio)
477 goto nomem;
d9d181c1 478 sctx->bios[i] = sbio;
a2de733c 479
a2de733c 480 sbio->index = i;
d9d181c1 481 sbio->sctx = sctx;
b5d67f64 482 sbio->page_count = 0;
9e0af237
LB
483 btrfs_init_work(&sbio->work, btrfs_scrub_helper,
484 scrub_bio_end_io_worker, NULL, NULL);
a2de733c 485
ff023aac 486 if (i != SCRUB_BIOS_PER_SCTX - 1)
d9d181c1 487 sctx->bios[i]->next_free = i + 1;
0ef8e451 488 else
d9d181c1
SB
489 sctx->bios[i]->next_free = -1;
490 }
491 sctx->first_free = 0;
492 sctx->nodesize = dev->dev_root->nodesize;
d9d181c1 493 sctx->sectorsize = dev->dev_root->sectorsize;
b6bfebc1
SB
494 atomic_set(&sctx->bios_in_flight, 0);
495 atomic_set(&sctx->workers_pending, 0);
d9d181c1
SB
496 atomic_set(&sctx->cancel_req, 0);
497 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
498 INIT_LIST_HEAD(&sctx->csum_list);
499
500 spin_lock_init(&sctx->list_lock);
501 spin_lock_init(&sctx->stat_lock);
502 init_waitqueue_head(&sctx->list_wait);
ff023aac
SB
503
504 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
505 fs_info->dev_replace.tgtdev, is_dev_replace);
506 if (ret) {
507 scrub_free_ctx(sctx);
508 return ERR_PTR(ret);
509 }
d9d181c1 510 return sctx;
a2de733c
AJ
511
512nomem:
d9d181c1 513 scrub_free_ctx(sctx);
a2de733c
AJ
514 return ERR_PTR(-ENOMEM);
515}
516
ff023aac
SB
517static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
518 void *warn_ctx)
558540c1
JS
519{
520 u64 isize;
521 u32 nlink;
522 int ret;
523 int i;
524 struct extent_buffer *eb;
525 struct btrfs_inode_item *inode_item;
ff023aac 526 struct scrub_warning *swarn = warn_ctx;
558540c1
JS
527 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
528 struct inode_fs_paths *ipath = NULL;
529 struct btrfs_root *local_root;
530 struct btrfs_key root_key;
1d4c08e0 531 struct btrfs_key key;
558540c1
JS
532
533 root_key.objectid = root;
534 root_key.type = BTRFS_ROOT_ITEM_KEY;
535 root_key.offset = (u64)-1;
536 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
537 if (IS_ERR(local_root)) {
538 ret = PTR_ERR(local_root);
539 goto err;
540 }
541
14692cc1
DS
542 /*
543 * this makes the path point to (inum INODE_ITEM ioff)
544 */
1d4c08e0
DS
545 key.objectid = inum;
546 key.type = BTRFS_INODE_ITEM_KEY;
547 key.offset = 0;
548
549 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
558540c1
JS
550 if (ret) {
551 btrfs_release_path(swarn->path);
552 goto err;
553 }
554
555 eb = swarn->path->nodes[0];
556 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
557 struct btrfs_inode_item);
558 isize = btrfs_inode_size(eb, inode_item);
559 nlink = btrfs_inode_nlink(eb, inode_item);
560 btrfs_release_path(swarn->path);
561
562 ipath = init_ipath(4096, local_root, swarn->path);
26bdef54
DC
563 if (IS_ERR(ipath)) {
564 ret = PTR_ERR(ipath);
565 ipath = NULL;
566 goto err;
567 }
558540c1
JS
568 ret = paths_from_inode(inum, ipath);
569
570 if (ret < 0)
571 goto err;
572
573 /*
574 * we deliberately ignore the bit ipath might have been too small to
575 * hold all of the paths here
576 */
577 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
ecaeb14b 578 btrfs_warn_in_rcu(fs_info, "%s at logical %llu on dev "
558540c1 579 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
ecaeb14b 580 "length %llu, links %u (path: %s)", swarn->errstr,
606686ee 581 swarn->logical, rcu_str_deref(swarn->dev->name),
558540c1
JS
582 (unsigned long long)swarn->sector, root, inum, offset,
583 min(isize - offset, (u64)PAGE_SIZE), nlink,
745c4d8e 584 (char *)(unsigned long)ipath->fspath->val[i]);
558540c1
JS
585
586 free_ipath(ipath);
587 return 0;
588
589err:
ecaeb14b 590 btrfs_warn_in_rcu(fs_info, "%s at logical %llu on dev "
558540c1 591 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
ecaeb14b 592 "resolving failed with ret=%d", swarn->errstr,
606686ee 593 swarn->logical, rcu_str_deref(swarn->dev->name),
558540c1
JS
594 (unsigned long long)swarn->sector, root, inum, offset, ret);
595
596 free_ipath(ipath);
597 return 0;
598}
599
b5d67f64 600static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
558540c1 601{
a36cf8b8
SB
602 struct btrfs_device *dev;
603 struct btrfs_fs_info *fs_info;
558540c1
JS
604 struct btrfs_path *path;
605 struct btrfs_key found_key;
606 struct extent_buffer *eb;
607 struct btrfs_extent_item *ei;
608 struct scrub_warning swarn;
69917e43
LB
609 unsigned long ptr = 0;
610 u64 extent_item_pos;
611 u64 flags = 0;
558540c1 612 u64 ref_root;
69917e43 613 u32 item_size;
07c9a8e0 614 u8 ref_level = 0;
69917e43 615 int ret;
558540c1 616
a36cf8b8 617 WARN_ON(sblock->page_count < 1);
7a9e9987 618 dev = sblock->pagev[0]->dev;
a36cf8b8
SB
619 fs_info = sblock->sctx->dev_root->fs_info;
620
558540c1 621 path = btrfs_alloc_path();
8b9456da
DS
622 if (!path)
623 return;
558540c1 624
7a9e9987
SB
625 swarn.sector = (sblock->pagev[0]->physical) >> 9;
626 swarn.logical = sblock->pagev[0]->logical;
558540c1 627 swarn.errstr = errstr;
a36cf8b8 628 swarn.dev = NULL;
558540c1 629
69917e43
LB
630 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
631 &flags);
558540c1
JS
632 if (ret < 0)
633 goto out;
634
4692cf58 635 extent_item_pos = swarn.logical - found_key.objectid;
558540c1
JS
636 swarn.extent_item_size = found_key.offset;
637
638 eb = path->nodes[0];
639 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
640 item_size = btrfs_item_size_nr(eb, path->slots[0]);
641
69917e43 642 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
558540c1 643 do {
6eda71d0
LB
644 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
645 item_size, &ref_root,
646 &ref_level);
ecaeb14b
DS
647 btrfs_warn_in_rcu(fs_info,
648 "%s at logical %llu on dev %s, "
558540c1 649 "sector %llu: metadata %s (level %d) in tree "
ecaeb14b 650 "%llu", errstr, swarn.logical,
606686ee 651 rcu_str_deref(dev->name),
558540c1
JS
652 (unsigned long long)swarn.sector,
653 ref_level ? "node" : "leaf",
654 ret < 0 ? -1 : ref_level,
655 ret < 0 ? -1 : ref_root);
656 } while (ret != 1);
d8fe29e9 657 btrfs_release_path(path);
558540c1 658 } else {
d8fe29e9 659 btrfs_release_path(path);
558540c1 660 swarn.path = path;
a36cf8b8 661 swarn.dev = dev;
7a3ae2f8
JS
662 iterate_extent_inodes(fs_info, found_key.objectid,
663 extent_item_pos, 1,
558540c1
JS
664 scrub_print_warning_inode, &swarn);
665 }
666
667out:
668 btrfs_free_path(path);
558540c1
JS
669}
670
ff023aac 671static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
0ef8e451 672{
5da6fcbc 673 struct page *page = NULL;
0ef8e451 674 unsigned long index;
ff023aac 675 struct scrub_fixup_nodatasum *fixup = fixup_ctx;
0ef8e451 676 int ret;
5da6fcbc 677 int corrected = 0;
0ef8e451 678 struct btrfs_key key;
5da6fcbc 679 struct inode *inode = NULL;
6f1c3605 680 struct btrfs_fs_info *fs_info;
0ef8e451
JS
681 u64 end = offset + PAGE_SIZE - 1;
682 struct btrfs_root *local_root;
6f1c3605 683 int srcu_index;
0ef8e451
JS
684
685 key.objectid = root;
686 key.type = BTRFS_ROOT_ITEM_KEY;
687 key.offset = (u64)-1;
6f1c3605
LB
688
689 fs_info = fixup->root->fs_info;
690 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
691
692 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
693 if (IS_ERR(local_root)) {
694 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
0ef8e451 695 return PTR_ERR(local_root);
6f1c3605 696 }
0ef8e451
JS
697
698 key.type = BTRFS_INODE_ITEM_KEY;
699 key.objectid = inum;
700 key.offset = 0;
6f1c3605
LB
701 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
702 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
0ef8e451
JS
703 if (IS_ERR(inode))
704 return PTR_ERR(inode);
705
09cbfeaf 706 index = offset >> PAGE_SHIFT;
0ef8e451
JS
707
708 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
5da6fcbc
JS
709 if (!page) {
710 ret = -ENOMEM;
711 goto out;
712 }
713
714 if (PageUptodate(page)) {
5da6fcbc
JS
715 if (PageDirty(page)) {
716 /*
717 * we need to write the data to the defect sector. the
718 * data that was in that sector is not in memory,
719 * because the page was modified. we must not write the
720 * modified page to that sector.
721 *
722 * TODO: what could be done here: wait for the delalloc
723 * runner to write out that page (might involve
724 * COW) and see whether the sector is still
725 * referenced afterwards.
726 *
727 * For the meantime, we'll treat this error
728 * incorrectable, although there is a chance that a
729 * later scrub will find the bad sector again and that
730 * there's no dirty page in memory, then.
731 */
732 ret = -EIO;
733 goto out;
734 }
1203b681 735 ret = repair_io_failure(inode, offset, PAGE_SIZE,
5da6fcbc 736 fixup->logical, page,
ffdd2018 737 offset - page_offset(page),
5da6fcbc
JS
738 fixup->mirror_num);
739 unlock_page(page);
740 corrected = !ret;
741 } else {
742 /*
743 * we need to get good data first. the general readpage path
744 * will call repair_io_failure for us, we just have to make
745 * sure we read the bad mirror.
746 */
747 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
ceeb0ae7 748 EXTENT_DAMAGED);
5da6fcbc
JS
749 if (ret) {
750 /* set_extent_bits should give proper error */
751 WARN_ON(ret > 0);
752 if (ret > 0)
753 ret = -EFAULT;
754 goto out;
755 }
756
757 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
758 btrfs_get_extent,
759 fixup->mirror_num);
760 wait_on_page_locked(page);
761
762 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
763 end, EXTENT_DAMAGED, 0, NULL);
764 if (!corrected)
765 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
91166212 766 EXTENT_DAMAGED);
5da6fcbc
JS
767 }
768
769out:
770 if (page)
771 put_page(page);
7fb18a06
TK
772
773 iput(inode);
0ef8e451
JS
774
775 if (ret < 0)
776 return ret;
777
778 if (ret == 0 && corrected) {
779 /*
780 * we only need to call readpage for one of the inodes belonging
781 * to this extent. so make iterate_extent_inodes stop
782 */
783 return 1;
784 }
785
786 return -EIO;
787}
788
789static void scrub_fixup_nodatasum(struct btrfs_work *work)
790{
791 int ret;
792 struct scrub_fixup_nodatasum *fixup;
d9d181c1 793 struct scrub_ctx *sctx;
0ef8e451 794 struct btrfs_trans_handle *trans = NULL;
0ef8e451
JS
795 struct btrfs_path *path;
796 int uncorrectable = 0;
797
798 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
d9d181c1 799 sctx = fixup->sctx;
0ef8e451
JS
800
801 path = btrfs_alloc_path();
802 if (!path) {
d9d181c1
SB
803 spin_lock(&sctx->stat_lock);
804 ++sctx->stat.malloc_errors;
805 spin_unlock(&sctx->stat_lock);
0ef8e451
JS
806 uncorrectable = 1;
807 goto out;
808 }
809
810 trans = btrfs_join_transaction(fixup->root);
811 if (IS_ERR(trans)) {
812 uncorrectable = 1;
813 goto out;
814 }
815
816 /*
817 * the idea is to trigger a regular read through the standard path. we
818 * read a page from the (failed) logical address by specifying the
819 * corresponding copynum of the failed sector. thus, that readpage is
820 * expected to fail.
821 * that is the point where on-the-fly error correction will kick in
822 * (once it's finished) and rewrite the failed sector if a good copy
823 * can be found.
824 */
825 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
826 path, scrub_fixup_readpage,
827 fixup);
828 if (ret < 0) {
829 uncorrectable = 1;
830 goto out;
831 }
832 WARN_ON(ret != 1);
833
d9d181c1
SB
834 spin_lock(&sctx->stat_lock);
835 ++sctx->stat.corrected_errors;
836 spin_unlock(&sctx->stat_lock);
0ef8e451
JS
837
838out:
839 if (trans && !IS_ERR(trans))
840 btrfs_end_transaction(trans, fixup->root);
841 if (uncorrectable) {
d9d181c1
SB
842 spin_lock(&sctx->stat_lock);
843 ++sctx->stat.uncorrectable_errors;
844 spin_unlock(&sctx->stat_lock);
ff023aac
SB
845 btrfs_dev_replace_stats_inc(
846 &sctx->dev_root->fs_info->dev_replace.
847 num_uncorrectable_read_errors);
b14af3b4
DS
848 btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
849 "unable to fixup (nodatasum) error at logical %llu on dev %s",
c1c9ff7c 850 fixup->logical, rcu_str_deref(fixup->dev->name));
0ef8e451
JS
851 }
852
853 btrfs_free_path(path);
854 kfree(fixup);
855
b6bfebc1 856 scrub_pending_trans_workers_dec(sctx);
0ef8e451
JS
857}
858
af8e2d1d
MX
859static inline void scrub_get_recover(struct scrub_recover *recover)
860{
861 atomic_inc(&recover->refs);
862}
863
864static inline void scrub_put_recover(struct scrub_recover *recover)
865{
866 if (atomic_dec_and_test(&recover->refs)) {
6e9606d2 867 btrfs_put_bbio(recover->bbio);
af8e2d1d
MX
868 kfree(recover);
869 }
870}
871
a2de733c 872/*
b5d67f64
SB
873 * scrub_handle_errored_block gets called when either verification of the
874 * pages failed or the bio failed to read, e.g. with EIO. In the latter
875 * case, this function handles all pages in the bio, even though only one
876 * may be bad.
877 * The goal of this function is to repair the errored block by using the
878 * contents of one of the mirrors.
a2de733c 879 */
b5d67f64 880static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
a2de733c 881{
d9d181c1 882 struct scrub_ctx *sctx = sblock_to_check->sctx;
a36cf8b8 883 struct btrfs_device *dev;
b5d67f64
SB
884 struct btrfs_fs_info *fs_info;
885 u64 length;
886 u64 logical;
b5d67f64
SB
887 unsigned int failed_mirror_index;
888 unsigned int is_metadata;
889 unsigned int have_csum;
b5d67f64
SB
890 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
891 struct scrub_block *sblock_bad;
892 int ret;
893 int mirror_index;
894 int page_num;
895 int success;
558540c1 896 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
b5d67f64
SB
897 DEFAULT_RATELIMIT_BURST);
898
899 BUG_ON(sblock_to_check->page_count < 1);
a36cf8b8 900 fs_info = sctx->dev_root->fs_info;
4ded4f63
SB
901 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
902 /*
903 * if we find an error in a super block, we just report it.
904 * They will get written with the next transaction commit
905 * anyway
906 */
907 spin_lock(&sctx->stat_lock);
908 ++sctx->stat.super_errors;
909 spin_unlock(&sctx->stat_lock);
910 return 0;
911 }
b5d67f64 912 length = sblock_to_check->page_count * PAGE_SIZE;
7a9e9987 913 logical = sblock_to_check->pagev[0]->logical;
7a9e9987
SB
914 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
915 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
916 is_metadata = !(sblock_to_check->pagev[0]->flags &
b5d67f64 917 BTRFS_EXTENT_FLAG_DATA);
7a9e9987 918 have_csum = sblock_to_check->pagev[0]->have_csum;
7a9e9987 919 dev = sblock_to_check->pagev[0]->dev;
13db62b7 920
ff023aac
SB
921 if (sctx->is_dev_replace && !is_metadata && !have_csum) {
922 sblocks_for_recheck = NULL;
923 goto nodatasum_case;
924 }
925
b5d67f64
SB
926 /*
927 * read all mirrors one after the other. This includes to
928 * re-read the extent or metadata block that failed (that was
929 * the cause that this fixup code is called) another time,
930 * page by page this time in order to know which pages
931 * caused I/O errors and which ones are good (for all mirrors).
932 * It is the goal to handle the situation when more than one
933 * mirror contains I/O errors, but the errors do not
934 * overlap, i.e. the data can be repaired by selecting the
935 * pages from those mirrors without I/O error on the
936 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
937 * would be that mirror #1 has an I/O error on the first page,
938 * the second page is good, and mirror #2 has an I/O error on
939 * the second page, but the first page is good.
940 * Then the first page of the first mirror can be repaired by
941 * taking the first page of the second mirror, and the
942 * second page of the second mirror can be repaired by
943 * copying the contents of the 2nd page of the 1st mirror.
944 * One more note: if the pages of one mirror contain I/O
945 * errors, the checksum cannot be verified. In order to get
946 * the best data for repairing, the first attempt is to find
947 * a mirror without I/O errors and with a validated checksum.
948 * Only if this is not possible, the pages are picked from
949 * mirrors with I/O errors without considering the checksum.
950 * If the latter is the case, at the end, the checksum of the
951 * repaired area is verified in order to correctly maintain
952 * the statistics.
953 */
954
31e818fe
DS
955 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
956 sizeof(*sblocks_for_recheck), GFP_NOFS);
b5d67f64 957 if (!sblocks_for_recheck) {
d9d181c1
SB
958 spin_lock(&sctx->stat_lock);
959 sctx->stat.malloc_errors++;
960 sctx->stat.read_errors++;
961 sctx->stat.uncorrectable_errors++;
962 spin_unlock(&sctx->stat_lock);
a36cf8b8 963 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 964 goto out;
a2de733c
AJ
965 }
966
b5d67f64 967 /* setup the context, map the logical blocks and alloc the pages */
be50a8dd 968 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
b5d67f64 969 if (ret) {
d9d181c1
SB
970 spin_lock(&sctx->stat_lock);
971 sctx->stat.read_errors++;
972 sctx->stat.uncorrectable_errors++;
973 spin_unlock(&sctx->stat_lock);
a36cf8b8 974 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64
SB
975 goto out;
976 }
977 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
978 sblock_bad = sblocks_for_recheck + failed_mirror_index;
13db62b7 979
b5d67f64 980 /* build and submit the bios for the failed mirror, check checksums */
affe4a5a 981 scrub_recheck_block(fs_info, sblock_bad, 1);
a2de733c 982
b5d67f64
SB
983 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
984 sblock_bad->no_io_error_seen) {
985 /*
986 * the error disappeared after reading page by page, or
987 * the area was part of a huge bio and other parts of the
988 * bio caused I/O errors, or the block layer merged several
989 * read requests into one and the error is caused by a
990 * different bio (usually one of the two latter cases is
991 * the cause)
992 */
d9d181c1
SB
993 spin_lock(&sctx->stat_lock);
994 sctx->stat.unverified_errors++;
5a6ac9ea 995 sblock_to_check->data_corrected = 1;
d9d181c1 996 spin_unlock(&sctx->stat_lock);
a2de733c 997
ff023aac
SB
998 if (sctx->is_dev_replace)
999 scrub_write_block_to_dev_replace(sblock_bad);
b5d67f64 1000 goto out;
a2de733c 1001 }
a2de733c 1002
b5d67f64 1003 if (!sblock_bad->no_io_error_seen) {
d9d181c1
SB
1004 spin_lock(&sctx->stat_lock);
1005 sctx->stat.read_errors++;
1006 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
1007 if (__ratelimit(&_rs))
1008 scrub_print_warning("i/o error", sblock_to_check);
a36cf8b8 1009 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 1010 } else if (sblock_bad->checksum_error) {
d9d181c1
SB
1011 spin_lock(&sctx->stat_lock);
1012 sctx->stat.csum_errors++;
1013 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
1014 if (__ratelimit(&_rs))
1015 scrub_print_warning("checksum error", sblock_to_check);
a36cf8b8 1016 btrfs_dev_stat_inc_and_print(dev,
442a4f63 1017 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 1018 } else if (sblock_bad->header_error) {
d9d181c1
SB
1019 spin_lock(&sctx->stat_lock);
1020 sctx->stat.verify_errors++;
1021 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
1022 if (__ratelimit(&_rs))
1023 scrub_print_warning("checksum/header error",
1024 sblock_to_check);
442a4f63 1025 if (sblock_bad->generation_error)
a36cf8b8 1026 btrfs_dev_stat_inc_and_print(dev,
442a4f63
SB
1027 BTRFS_DEV_STAT_GENERATION_ERRS);
1028 else
a36cf8b8 1029 btrfs_dev_stat_inc_and_print(dev,
442a4f63 1030 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 1031 }
a2de733c 1032
33ef30ad
ID
1033 if (sctx->readonly) {
1034 ASSERT(!sctx->is_dev_replace);
1035 goto out;
1036 }
a2de733c 1037
b5d67f64
SB
1038 if (!is_metadata && !have_csum) {
1039 struct scrub_fixup_nodatasum *fixup_nodatasum;
a2de733c 1040
ff023aac
SB
1041 WARN_ON(sctx->is_dev_replace);
1042
b25c94c5
ZL
1043nodatasum_case:
1044
b5d67f64
SB
1045 /*
1046 * !is_metadata and !have_csum, this means that the data
01327610 1047 * might not be COWed, that it might be modified
b5d67f64
SB
1048 * concurrently. The general strategy to work on the
1049 * commit root does not help in the case when COW is not
1050 * used.
1051 */
1052 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1053 if (!fixup_nodatasum)
1054 goto did_not_correct_error;
d9d181c1 1055 fixup_nodatasum->sctx = sctx;
a36cf8b8 1056 fixup_nodatasum->dev = dev;
b5d67f64
SB
1057 fixup_nodatasum->logical = logical;
1058 fixup_nodatasum->root = fs_info->extent_root;
1059 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
b6bfebc1 1060 scrub_pending_trans_workers_inc(sctx);
9e0af237
LB
1061 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1062 scrub_fixup_nodatasum, NULL, NULL);
0339ef2f
QW
1063 btrfs_queue_work(fs_info->scrub_workers,
1064 &fixup_nodatasum->work);
b5d67f64 1065 goto out;
a2de733c
AJ
1066 }
1067
b5d67f64
SB
1068 /*
1069 * now build and submit the bios for the other mirrors, check
cb2ced73
SB
1070 * checksums.
1071 * First try to pick the mirror which is completely without I/O
b5d67f64
SB
1072 * errors and also does not have a checksum error.
1073 * If one is found, and if a checksum is present, the full block
1074 * that is known to contain an error is rewritten. Afterwards
1075 * the block is known to be corrected.
1076 * If a mirror is found which is completely correct, and no
1077 * checksum is present, only those pages are rewritten that had
1078 * an I/O error in the block to be repaired, since it cannot be
1079 * determined, which copy of the other pages is better (and it
1080 * could happen otherwise that a correct page would be
1081 * overwritten by a bad one).
1082 */
1083 for (mirror_index = 0;
1084 mirror_index < BTRFS_MAX_MIRRORS &&
1085 sblocks_for_recheck[mirror_index].page_count > 0;
1086 mirror_index++) {
cb2ced73 1087 struct scrub_block *sblock_other;
b5d67f64 1088
cb2ced73
SB
1089 if (mirror_index == failed_mirror_index)
1090 continue;
1091 sblock_other = sblocks_for_recheck + mirror_index;
1092
1093 /* build and submit the bios, check checksums */
affe4a5a 1094 scrub_recheck_block(fs_info, sblock_other, 0);
34f5c8e9
SB
1095
1096 if (!sblock_other->header_error &&
b5d67f64
SB
1097 !sblock_other->checksum_error &&
1098 sblock_other->no_io_error_seen) {
ff023aac
SB
1099 if (sctx->is_dev_replace) {
1100 scrub_write_block_to_dev_replace(sblock_other);
114ab50d 1101 goto corrected_error;
ff023aac 1102 } else {
ff023aac 1103 ret = scrub_repair_block_from_good_copy(
114ab50d
ZL
1104 sblock_bad, sblock_other);
1105 if (!ret)
1106 goto corrected_error;
ff023aac 1107 }
b5d67f64
SB
1108 }
1109 }
a2de733c 1110
b968fed1
ZL
1111 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1112 goto did_not_correct_error;
ff023aac
SB
1113
1114 /*
ff023aac 1115 * In case of I/O errors in the area that is supposed to be
b5d67f64
SB
1116 * repaired, continue by picking good copies of those pages.
1117 * Select the good pages from mirrors to rewrite bad pages from
1118 * the area to fix. Afterwards verify the checksum of the block
1119 * that is supposed to be repaired. This verification step is
1120 * only done for the purpose of statistic counting and for the
1121 * final scrub report, whether errors remain.
1122 * A perfect algorithm could make use of the checksum and try
1123 * all possible combinations of pages from the different mirrors
1124 * until the checksum verification succeeds. For example, when
1125 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1126 * of mirror #2 is readable but the final checksum test fails,
1127 * then the 2nd page of mirror #3 could be tried, whether now
01327610 1128 * the final checksum succeeds. But this would be a rare
b5d67f64
SB
1129 * exception and is therefore not implemented. At least it is
1130 * avoided that the good copy is overwritten.
1131 * A more useful improvement would be to pick the sectors
1132 * without I/O error based on sector sizes (512 bytes on legacy
1133 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1134 * mirror could be repaired by taking 512 byte of a different
1135 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1136 * area are unreadable.
a2de733c 1137 */
b5d67f64 1138 success = 1;
b968fed1
ZL
1139 for (page_num = 0; page_num < sblock_bad->page_count;
1140 page_num++) {
7a9e9987 1141 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
b968fed1 1142 struct scrub_block *sblock_other = NULL;
b5d67f64 1143
b968fed1
ZL
1144 /* skip no-io-error page in scrub */
1145 if (!page_bad->io_error && !sctx->is_dev_replace)
a2de733c 1146 continue;
b5d67f64 1147
b968fed1
ZL
1148 /* try to find no-io-error page in mirrors */
1149 if (page_bad->io_error) {
1150 for (mirror_index = 0;
1151 mirror_index < BTRFS_MAX_MIRRORS &&
1152 sblocks_for_recheck[mirror_index].page_count > 0;
1153 mirror_index++) {
1154 if (!sblocks_for_recheck[mirror_index].
1155 pagev[page_num]->io_error) {
1156 sblock_other = sblocks_for_recheck +
1157 mirror_index;
1158 break;
b5d67f64
SB
1159 }
1160 }
b968fed1
ZL
1161 if (!sblock_other)
1162 success = 0;
96e36920 1163 }
a2de733c 1164
b968fed1
ZL
1165 if (sctx->is_dev_replace) {
1166 /*
1167 * did not find a mirror to fetch the page
1168 * from. scrub_write_page_to_dev_replace()
1169 * handles this case (page->io_error), by
1170 * filling the block with zeros before
1171 * submitting the write request
1172 */
1173 if (!sblock_other)
1174 sblock_other = sblock_bad;
1175
1176 if (scrub_write_page_to_dev_replace(sblock_other,
1177 page_num) != 0) {
1178 btrfs_dev_replace_stats_inc(
1179 &sctx->dev_root->
1180 fs_info->dev_replace.
1181 num_write_errors);
1182 success = 0;
1183 }
1184 } else if (sblock_other) {
1185 ret = scrub_repair_page_from_good_copy(sblock_bad,
1186 sblock_other,
1187 page_num, 0);
1188 if (0 == ret)
1189 page_bad->io_error = 0;
1190 else
1191 success = 0;
b5d67f64 1192 }
a2de733c 1193 }
a2de733c 1194
b968fed1 1195 if (success && !sctx->is_dev_replace) {
b5d67f64
SB
1196 if (is_metadata || have_csum) {
1197 /*
1198 * need to verify the checksum now that all
1199 * sectors on disk are repaired (the write
1200 * request for data to be repaired is on its way).
1201 * Just be lazy and use scrub_recheck_block()
1202 * which re-reads the data before the checksum
1203 * is verified, but most likely the data comes out
1204 * of the page cache.
1205 */
affe4a5a 1206 scrub_recheck_block(fs_info, sblock_bad, 1);
34f5c8e9 1207 if (!sblock_bad->header_error &&
b5d67f64
SB
1208 !sblock_bad->checksum_error &&
1209 sblock_bad->no_io_error_seen)
1210 goto corrected_error;
1211 else
1212 goto did_not_correct_error;
1213 } else {
1214corrected_error:
d9d181c1
SB
1215 spin_lock(&sctx->stat_lock);
1216 sctx->stat.corrected_errors++;
5a6ac9ea 1217 sblock_to_check->data_corrected = 1;
d9d181c1 1218 spin_unlock(&sctx->stat_lock);
b14af3b4
DS
1219 btrfs_err_rl_in_rcu(fs_info,
1220 "fixed up error at logical %llu on dev %s",
c1c9ff7c 1221 logical, rcu_str_deref(dev->name));
8628764e 1222 }
b5d67f64
SB
1223 } else {
1224did_not_correct_error:
d9d181c1
SB
1225 spin_lock(&sctx->stat_lock);
1226 sctx->stat.uncorrectable_errors++;
1227 spin_unlock(&sctx->stat_lock);
b14af3b4
DS
1228 btrfs_err_rl_in_rcu(fs_info,
1229 "unable to fixup (regular) error at logical %llu on dev %s",
c1c9ff7c 1230 logical, rcu_str_deref(dev->name));
96e36920 1231 }
a2de733c 1232
b5d67f64
SB
1233out:
1234 if (sblocks_for_recheck) {
1235 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1236 mirror_index++) {
1237 struct scrub_block *sblock = sblocks_for_recheck +
1238 mirror_index;
af8e2d1d 1239 struct scrub_recover *recover;
b5d67f64
SB
1240 int page_index;
1241
7a9e9987
SB
1242 for (page_index = 0; page_index < sblock->page_count;
1243 page_index++) {
1244 sblock->pagev[page_index]->sblock = NULL;
af8e2d1d
MX
1245 recover = sblock->pagev[page_index]->recover;
1246 if (recover) {
1247 scrub_put_recover(recover);
1248 sblock->pagev[page_index]->recover =
1249 NULL;
1250 }
7a9e9987
SB
1251 scrub_page_put(sblock->pagev[page_index]);
1252 }
b5d67f64
SB
1253 }
1254 kfree(sblocks_for_recheck);
1255 }
a2de733c 1256
b5d67f64
SB
1257 return 0;
1258}
a2de733c 1259
8e5cfb55 1260static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
af8e2d1d 1261{
10f11900
ZL
1262 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1263 return 2;
1264 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1265 return 3;
1266 else
af8e2d1d 1267 return (int)bbio->num_stripes;
af8e2d1d
MX
1268}
1269
10f11900
ZL
1270static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1271 u64 *raid_map,
af8e2d1d
MX
1272 u64 mapped_length,
1273 int nstripes, int mirror,
1274 int *stripe_index,
1275 u64 *stripe_offset)
1276{
1277 int i;
1278
ffe2d203 1279 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
af8e2d1d
MX
1280 /* RAID5/6 */
1281 for (i = 0; i < nstripes; i++) {
1282 if (raid_map[i] == RAID6_Q_STRIPE ||
1283 raid_map[i] == RAID5_P_STRIPE)
1284 continue;
1285
1286 if (logical >= raid_map[i] &&
1287 logical < raid_map[i] + mapped_length)
1288 break;
1289 }
1290
1291 *stripe_index = i;
1292 *stripe_offset = logical - raid_map[i];
1293 } else {
1294 /* The other RAID type */
1295 *stripe_index = mirror;
1296 *stripe_offset = 0;
1297 }
1298}
1299
be50a8dd 1300static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
b5d67f64
SB
1301 struct scrub_block *sblocks_for_recheck)
1302{
be50a8dd
ZL
1303 struct scrub_ctx *sctx = original_sblock->sctx;
1304 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
1305 u64 length = original_sblock->page_count * PAGE_SIZE;
1306 u64 logical = original_sblock->pagev[0]->logical;
4734b7ed
ZL
1307 u64 generation = original_sblock->pagev[0]->generation;
1308 u64 flags = original_sblock->pagev[0]->flags;
1309 u64 have_csum = original_sblock->pagev[0]->have_csum;
af8e2d1d
MX
1310 struct scrub_recover *recover;
1311 struct btrfs_bio *bbio;
af8e2d1d
MX
1312 u64 sublen;
1313 u64 mapped_length;
1314 u64 stripe_offset;
1315 int stripe_index;
be50a8dd 1316 int page_index = 0;
b5d67f64 1317 int mirror_index;
af8e2d1d 1318 int nmirrors;
b5d67f64
SB
1319 int ret;
1320
1321 /*
57019345 1322 * note: the two members refs and outstanding_pages
b5d67f64
SB
1323 * are not used (and not set) in the blocks that are used for
1324 * the recheck procedure
1325 */
1326
b5d67f64 1327 while (length > 0) {
af8e2d1d
MX
1328 sublen = min_t(u64, length, PAGE_SIZE);
1329 mapped_length = sublen;
1330 bbio = NULL;
a2de733c 1331
b5d67f64
SB
1332 /*
1333 * with a length of PAGE_SIZE, each returned stripe
1334 * represents one mirror
1335 */
af8e2d1d 1336 ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical,
8e5cfb55 1337 &mapped_length, &bbio, 0, 1);
b5d67f64 1338 if (ret || !bbio || mapped_length < sublen) {
6e9606d2 1339 btrfs_put_bbio(bbio);
b5d67f64
SB
1340 return -EIO;
1341 }
a2de733c 1342
af8e2d1d
MX
1343 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1344 if (!recover) {
6e9606d2 1345 btrfs_put_bbio(bbio);
af8e2d1d
MX
1346 return -ENOMEM;
1347 }
1348
1349 atomic_set(&recover->refs, 1);
1350 recover->bbio = bbio;
af8e2d1d
MX
1351 recover->map_length = mapped_length;
1352
24731149 1353 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
af8e2d1d 1354
be50a8dd 1355 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
10f11900 1356
af8e2d1d 1357 for (mirror_index = 0; mirror_index < nmirrors;
b5d67f64
SB
1358 mirror_index++) {
1359 struct scrub_block *sblock;
1360 struct scrub_page *page;
1361
b5d67f64 1362 sblock = sblocks_for_recheck + mirror_index;
7a9e9987 1363 sblock->sctx = sctx;
4734b7ed 1364
7a9e9987
SB
1365 page = kzalloc(sizeof(*page), GFP_NOFS);
1366 if (!page) {
1367leave_nomem:
d9d181c1
SB
1368 spin_lock(&sctx->stat_lock);
1369 sctx->stat.malloc_errors++;
1370 spin_unlock(&sctx->stat_lock);
af8e2d1d 1371 scrub_put_recover(recover);
b5d67f64
SB
1372 return -ENOMEM;
1373 }
7a9e9987
SB
1374 scrub_page_get(page);
1375 sblock->pagev[page_index] = page;
4734b7ed
ZL
1376 page->sblock = sblock;
1377 page->flags = flags;
1378 page->generation = generation;
7a9e9987 1379 page->logical = logical;
4734b7ed
ZL
1380 page->have_csum = have_csum;
1381 if (have_csum)
1382 memcpy(page->csum,
1383 original_sblock->pagev[0]->csum,
1384 sctx->csum_size);
af8e2d1d 1385
10f11900
ZL
1386 scrub_stripe_index_and_offset(logical,
1387 bbio->map_type,
1388 bbio->raid_map,
af8e2d1d 1389 mapped_length,
e34c330d
ZL
1390 bbio->num_stripes -
1391 bbio->num_tgtdevs,
af8e2d1d
MX
1392 mirror_index,
1393 &stripe_index,
1394 &stripe_offset);
1395 page->physical = bbio->stripes[stripe_index].physical +
1396 stripe_offset;
1397 page->dev = bbio->stripes[stripe_index].dev;
1398
ff023aac
SB
1399 BUG_ON(page_index >= original_sblock->page_count);
1400 page->physical_for_dev_replace =
1401 original_sblock->pagev[page_index]->
1402 physical_for_dev_replace;
7a9e9987 1403 /* for missing devices, dev->bdev is NULL */
7a9e9987 1404 page->mirror_num = mirror_index + 1;
b5d67f64 1405 sblock->page_count++;
7a9e9987
SB
1406 page->page = alloc_page(GFP_NOFS);
1407 if (!page->page)
1408 goto leave_nomem;
af8e2d1d
MX
1409
1410 scrub_get_recover(recover);
1411 page->recover = recover;
b5d67f64 1412 }
af8e2d1d 1413 scrub_put_recover(recover);
b5d67f64
SB
1414 length -= sublen;
1415 logical += sublen;
1416 page_index++;
1417 }
1418
1419 return 0;
96e36920
ID
1420}
1421
af8e2d1d
MX
1422struct scrub_bio_ret {
1423 struct completion event;
1424 int error;
1425};
1426
4246a0b6 1427static void scrub_bio_wait_endio(struct bio *bio)
af8e2d1d
MX
1428{
1429 struct scrub_bio_ret *ret = bio->bi_private;
1430
4246a0b6 1431 ret->error = bio->bi_error;
af8e2d1d
MX
1432 complete(&ret->event);
1433}
1434
1435static inline int scrub_is_page_on_raid56(struct scrub_page *page)
1436{
10f11900 1437 return page->recover &&
ffe2d203 1438 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
af8e2d1d
MX
1439}
1440
1441static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1442 struct bio *bio,
1443 struct scrub_page *page)
1444{
1445 struct scrub_bio_ret done;
1446 int ret;
1447
1448 init_completion(&done.event);
1449 done.error = 0;
1450 bio->bi_iter.bi_sector = page->logical >> 9;
1451 bio->bi_private = &done;
1452 bio->bi_end_io = scrub_bio_wait_endio;
1453
1454 ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio,
af8e2d1d 1455 page->recover->map_length,
4245215d 1456 page->mirror_num, 0);
af8e2d1d
MX
1457 if (ret)
1458 return ret;
1459
1460 wait_for_completion(&done.event);
1461 if (done.error)
1462 return -EIO;
1463
1464 return 0;
1465}
1466
b5d67f64
SB
1467/*
1468 * this function will check the on disk data for checksum errors, header
1469 * errors and read I/O errors. If any I/O errors happen, the exact pages
1470 * which are errored are marked as being bad. The goal is to enable scrub
1471 * to take those pages that are not errored from all the mirrors so that
1472 * the pages that are errored in the just handled mirror can be repaired.
1473 */
34f5c8e9 1474static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
affe4a5a
ZL
1475 struct scrub_block *sblock,
1476 int retry_failed_mirror)
96e36920 1477{
b5d67f64 1478 int page_num;
96e36920 1479
b5d67f64 1480 sblock->no_io_error_seen = 1;
96e36920 1481
b5d67f64
SB
1482 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1483 struct bio *bio;
7a9e9987 1484 struct scrub_page *page = sblock->pagev[page_num];
b5d67f64 1485
442a4f63 1486 if (page->dev->bdev == NULL) {
ea9947b4
SB
1487 page->io_error = 1;
1488 sblock->no_io_error_seen = 0;
1489 continue;
1490 }
1491
7a9e9987 1492 WARN_ON(!page->page);
9be3395b 1493 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
34f5c8e9
SB
1494 if (!bio) {
1495 page->io_error = 1;
1496 sblock->no_io_error_seen = 0;
1497 continue;
1498 }
442a4f63 1499 bio->bi_bdev = page->dev->bdev;
b5d67f64 1500
34f5c8e9 1501 bio_add_page(bio, page->page, PAGE_SIZE, 0);
af8e2d1d
MX
1502 if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1503 if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
1504 sblock->no_io_error_seen = 0;
1505 } else {
1506 bio->bi_iter.bi_sector = page->physical >> 9;
1507
1508 if (btrfsic_submit_bio_wait(READ, bio))
1509 sblock->no_io_error_seen = 0;
1510 }
33879d45 1511
b5d67f64
SB
1512 bio_put(bio);
1513 }
96e36920 1514
b5d67f64 1515 if (sblock->no_io_error_seen)
ba7cf988 1516 scrub_recheck_block_checksum(sblock);
a2de733c
AJ
1517}
1518
17a9be2f
MX
1519static inline int scrub_check_fsid(u8 fsid[],
1520 struct scrub_page *spage)
1521{
1522 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1523 int ret;
1524
1525 ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
1526 return !ret;
1527}
1528
ba7cf988 1529static void scrub_recheck_block_checksum(struct scrub_block *sblock)
a2de733c 1530{
ba7cf988
ZL
1531 sblock->header_error = 0;
1532 sblock->checksum_error = 0;
1533 sblock->generation_error = 0;
b5d67f64 1534
ba7cf988
ZL
1535 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1536 scrub_checksum_data(sblock);
1537 else
1538 scrub_checksum_tree_block(sblock);
a2de733c
AJ
1539}
1540
b5d67f64 1541static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
114ab50d 1542 struct scrub_block *sblock_good)
b5d67f64
SB
1543{
1544 int page_num;
1545 int ret = 0;
96e36920 1546
b5d67f64
SB
1547 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1548 int ret_sub;
96e36920 1549
b5d67f64
SB
1550 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1551 sblock_good,
114ab50d 1552 page_num, 1);
b5d67f64
SB
1553 if (ret_sub)
1554 ret = ret_sub;
a2de733c 1555 }
b5d67f64
SB
1556
1557 return ret;
1558}
1559
1560static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1561 struct scrub_block *sblock_good,
1562 int page_num, int force_write)
1563{
7a9e9987
SB
1564 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1565 struct scrub_page *page_good = sblock_good->pagev[page_num];
b5d67f64 1566
7a9e9987
SB
1567 BUG_ON(page_bad->page == NULL);
1568 BUG_ON(page_good->page == NULL);
b5d67f64
SB
1569 if (force_write || sblock_bad->header_error ||
1570 sblock_bad->checksum_error || page_bad->io_error) {
1571 struct bio *bio;
1572 int ret;
b5d67f64 1573
ff023aac 1574 if (!page_bad->dev->bdev) {
94647322 1575 btrfs_warn_rl(sblock_bad->sctx->dev_root->fs_info,
efe120a0 1576 "scrub_repair_page_from_good_copy(bdev == NULL) "
94647322 1577 "is unexpected");
ff023aac
SB
1578 return -EIO;
1579 }
1580
9be3395b 1581 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
1582 if (!bio)
1583 return -EIO;
442a4f63 1584 bio->bi_bdev = page_bad->dev->bdev;
4f024f37 1585 bio->bi_iter.bi_sector = page_bad->physical >> 9;
b5d67f64
SB
1586
1587 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1588 if (PAGE_SIZE != ret) {
1589 bio_put(bio);
1590 return -EIO;
13db62b7 1591 }
b5d67f64 1592
33879d45 1593 if (btrfsic_submit_bio_wait(WRITE, bio)) {
442a4f63
SB
1594 btrfs_dev_stat_inc_and_print(page_bad->dev,
1595 BTRFS_DEV_STAT_WRITE_ERRS);
ff023aac
SB
1596 btrfs_dev_replace_stats_inc(
1597 &sblock_bad->sctx->dev_root->fs_info->
1598 dev_replace.num_write_errors);
442a4f63
SB
1599 bio_put(bio);
1600 return -EIO;
1601 }
b5d67f64 1602 bio_put(bio);
a2de733c
AJ
1603 }
1604
b5d67f64
SB
1605 return 0;
1606}
1607
ff023aac
SB
1608static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1609{
1610 int page_num;
1611
5a6ac9ea
MX
1612 /*
1613 * This block is used for the check of the parity on the source device,
1614 * so the data needn't be written into the destination device.
1615 */
1616 if (sblock->sparity)
1617 return;
1618
ff023aac
SB
1619 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1620 int ret;
1621
1622 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1623 if (ret)
1624 btrfs_dev_replace_stats_inc(
1625 &sblock->sctx->dev_root->fs_info->dev_replace.
1626 num_write_errors);
1627 }
1628}
1629
1630static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1631 int page_num)
1632{
1633 struct scrub_page *spage = sblock->pagev[page_num];
1634
1635 BUG_ON(spage->page == NULL);
1636 if (spage->io_error) {
1637 void *mapped_buffer = kmap_atomic(spage->page);
1638
09cbfeaf 1639 memset(mapped_buffer, 0, PAGE_SIZE);
ff023aac
SB
1640 flush_dcache_page(spage->page);
1641 kunmap_atomic(mapped_buffer);
1642 }
1643 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1644}
1645
1646static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1647 struct scrub_page *spage)
1648{
1649 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1650 struct scrub_bio *sbio;
1651 int ret;
1652
1653 mutex_lock(&wr_ctx->wr_lock);
1654again:
1655 if (!wr_ctx->wr_curr_bio) {
1656 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
58c4e173 1657 GFP_KERNEL);
ff023aac
SB
1658 if (!wr_ctx->wr_curr_bio) {
1659 mutex_unlock(&wr_ctx->wr_lock);
1660 return -ENOMEM;
1661 }
1662 wr_ctx->wr_curr_bio->sctx = sctx;
1663 wr_ctx->wr_curr_bio->page_count = 0;
1664 }
1665 sbio = wr_ctx->wr_curr_bio;
1666 if (sbio->page_count == 0) {
1667 struct bio *bio;
1668
1669 sbio->physical = spage->physical_for_dev_replace;
1670 sbio->logical = spage->logical;
1671 sbio->dev = wr_ctx->tgtdev;
1672 bio = sbio->bio;
1673 if (!bio) {
58c4e173
DS
1674 bio = btrfs_io_bio_alloc(GFP_KERNEL,
1675 wr_ctx->pages_per_wr_bio);
ff023aac
SB
1676 if (!bio) {
1677 mutex_unlock(&wr_ctx->wr_lock);
1678 return -ENOMEM;
1679 }
1680 sbio->bio = bio;
1681 }
1682
1683 bio->bi_private = sbio;
1684 bio->bi_end_io = scrub_wr_bio_end_io;
1685 bio->bi_bdev = sbio->dev->bdev;
4f024f37 1686 bio->bi_iter.bi_sector = sbio->physical >> 9;
ff023aac
SB
1687 sbio->err = 0;
1688 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1689 spage->physical_for_dev_replace ||
1690 sbio->logical + sbio->page_count * PAGE_SIZE !=
1691 spage->logical) {
1692 scrub_wr_submit(sctx);
1693 goto again;
1694 }
1695
1696 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1697 if (ret != PAGE_SIZE) {
1698 if (sbio->page_count < 1) {
1699 bio_put(sbio->bio);
1700 sbio->bio = NULL;
1701 mutex_unlock(&wr_ctx->wr_lock);
1702 return -EIO;
1703 }
1704 scrub_wr_submit(sctx);
1705 goto again;
1706 }
1707
1708 sbio->pagev[sbio->page_count] = spage;
1709 scrub_page_get(spage);
1710 sbio->page_count++;
1711 if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1712 scrub_wr_submit(sctx);
1713 mutex_unlock(&wr_ctx->wr_lock);
1714
1715 return 0;
1716}
1717
1718static void scrub_wr_submit(struct scrub_ctx *sctx)
1719{
1720 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1721 struct scrub_bio *sbio;
1722
1723 if (!wr_ctx->wr_curr_bio)
1724 return;
1725
1726 sbio = wr_ctx->wr_curr_bio;
1727 wr_ctx->wr_curr_bio = NULL;
1728 WARN_ON(!sbio->bio->bi_bdev);
1729 scrub_pending_bio_inc(sctx);
1730 /* process all writes in a single worker thread. Then the block layer
1731 * orders the requests before sending them to the driver which
1732 * doubled the write performance on spinning disks when measured
1733 * with Linux 3.5 */
1734 btrfsic_submit_bio(WRITE, sbio->bio);
1735}
1736
4246a0b6 1737static void scrub_wr_bio_end_io(struct bio *bio)
ff023aac
SB
1738{
1739 struct scrub_bio *sbio = bio->bi_private;
1740 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1741
4246a0b6 1742 sbio->err = bio->bi_error;
ff023aac
SB
1743 sbio->bio = bio;
1744
9e0af237
LB
1745 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1746 scrub_wr_bio_end_io_worker, NULL, NULL);
0339ef2f 1747 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
ff023aac
SB
1748}
1749
1750static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1751{
1752 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1753 struct scrub_ctx *sctx = sbio->sctx;
1754 int i;
1755
1756 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1757 if (sbio->err) {
1758 struct btrfs_dev_replace *dev_replace =
1759 &sbio->sctx->dev_root->fs_info->dev_replace;
1760
1761 for (i = 0; i < sbio->page_count; i++) {
1762 struct scrub_page *spage = sbio->pagev[i];
1763
1764 spage->io_error = 1;
1765 btrfs_dev_replace_stats_inc(&dev_replace->
1766 num_write_errors);
1767 }
1768 }
1769
1770 for (i = 0; i < sbio->page_count; i++)
1771 scrub_page_put(sbio->pagev[i]);
1772
1773 bio_put(sbio->bio);
1774 kfree(sbio);
1775 scrub_pending_bio_dec(sctx);
1776}
1777
1778static int scrub_checksum(struct scrub_block *sblock)
b5d67f64
SB
1779{
1780 u64 flags;
1781 int ret;
1782
ba7cf988
ZL
1783 /*
1784 * No need to initialize these stats currently,
1785 * because this function only use return value
1786 * instead of these stats value.
1787 *
1788 * Todo:
1789 * always use stats
1790 */
1791 sblock->header_error = 0;
1792 sblock->generation_error = 0;
1793 sblock->checksum_error = 0;
1794
7a9e9987
SB
1795 WARN_ON(sblock->page_count < 1);
1796 flags = sblock->pagev[0]->flags;
b5d67f64
SB
1797 ret = 0;
1798 if (flags & BTRFS_EXTENT_FLAG_DATA)
1799 ret = scrub_checksum_data(sblock);
1800 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1801 ret = scrub_checksum_tree_block(sblock);
1802 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1803 (void)scrub_checksum_super(sblock);
1804 else
1805 WARN_ON(1);
1806 if (ret)
1807 scrub_handle_errored_block(sblock);
ff023aac
SB
1808
1809 return ret;
a2de733c
AJ
1810}
1811
b5d67f64 1812static int scrub_checksum_data(struct scrub_block *sblock)
a2de733c 1813{
d9d181c1 1814 struct scrub_ctx *sctx = sblock->sctx;
a2de733c 1815 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
1816 u8 *on_disk_csum;
1817 struct page *page;
1818 void *buffer;
a2de733c 1819 u32 crc = ~(u32)0;
b5d67f64
SB
1820 u64 len;
1821 int index;
a2de733c 1822
b5d67f64 1823 BUG_ON(sblock->page_count < 1);
7a9e9987 1824 if (!sblock->pagev[0]->have_csum)
a2de733c
AJ
1825 return 0;
1826
7a9e9987
SB
1827 on_disk_csum = sblock->pagev[0]->csum;
1828 page = sblock->pagev[0]->page;
9613bebb 1829 buffer = kmap_atomic(page);
b5d67f64 1830
d9d181c1 1831 len = sctx->sectorsize;
b5d67f64
SB
1832 index = 0;
1833 for (;;) {
1834 u64 l = min_t(u64, len, PAGE_SIZE);
1835
b0496686 1836 crc = btrfs_csum_data(buffer, crc, l);
9613bebb 1837 kunmap_atomic(buffer);
b5d67f64
SB
1838 len -= l;
1839 if (len == 0)
1840 break;
1841 index++;
1842 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1843 BUG_ON(!sblock->pagev[index]->page);
1844 page = sblock->pagev[index]->page;
9613bebb 1845 buffer = kmap_atomic(page);
b5d67f64
SB
1846 }
1847
a2de733c 1848 btrfs_csum_final(crc, csum);
d9d181c1 1849 if (memcmp(csum, on_disk_csum, sctx->csum_size))
ba7cf988 1850 sblock->checksum_error = 1;
a2de733c 1851
ba7cf988 1852 return sblock->checksum_error;
a2de733c
AJ
1853}
1854
b5d67f64 1855static int scrub_checksum_tree_block(struct scrub_block *sblock)
a2de733c 1856{
d9d181c1 1857 struct scrub_ctx *sctx = sblock->sctx;
a2de733c 1858 struct btrfs_header *h;
a36cf8b8 1859 struct btrfs_root *root = sctx->dev_root;
a2de733c 1860 struct btrfs_fs_info *fs_info = root->fs_info;
b5d67f64
SB
1861 u8 calculated_csum[BTRFS_CSUM_SIZE];
1862 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1863 struct page *page;
1864 void *mapped_buffer;
1865 u64 mapped_size;
1866 void *p;
a2de733c 1867 u32 crc = ~(u32)0;
b5d67f64
SB
1868 u64 len;
1869 int index;
1870
1871 BUG_ON(sblock->page_count < 1);
7a9e9987 1872 page = sblock->pagev[0]->page;
9613bebb 1873 mapped_buffer = kmap_atomic(page);
b5d67f64 1874 h = (struct btrfs_header *)mapped_buffer;
d9d181c1 1875 memcpy(on_disk_csum, h->csum, sctx->csum_size);
a2de733c
AJ
1876
1877 /*
1878 * we don't use the getter functions here, as we
1879 * a) don't have an extent buffer and
1880 * b) the page is already kmapped
1881 */
3cae210f 1882 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
ba7cf988 1883 sblock->header_error = 1;
a2de733c 1884
ba7cf988
ZL
1885 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1886 sblock->header_error = 1;
1887 sblock->generation_error = 1;
1888 }
a2de733c 1889
17a9be2f 1890 if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
ba7cf988 1891 sblock->header_error = 1;
a2de733c
AJ
1892
1893 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1894 BTRFS_UUID_SIZE))
ba7cf988 1895 sblock->header_error = 1;
a2de733c 1896
d9d181c1 1897 len = sctx->nodesize - BTRFS_CSUM_SIZE;
b5d67f64
SB
1898 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1899 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1900 index = 0;
1901 for (;;) {
1902 u64 l = min_t(u64, len, mapped_size);
1903
b0496686 1904 crc = btrfs_csum_data(p, crc, l);
9613bebb 1905 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1906 len -= l;
1907 if (len == 0)
1908 break;
1909 index++;
1910 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1911 BUG_ON(!sblock->pagev[index]->page);
1912 page = sblock->pagev[index]->page;
9613bebb 1913 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
1914 mapped_size = PAGE_SIZE;
1915 p = mapped_buffer;
1916 }
1917
1918 btrfs_csum_final(crc, calculated_csum);
d9d181c1 1919 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
ba7cf988 1920 sblock->checksum_error = 1;
a2de733c 1921
ba7cf988 1922 return sblock->header_error || sblock->checksum_error;
a2de733c
AJ
1923}
1924
b5d67f64 1925static int scrub_checksum_super(struct scrub_block *sblock)
a2de733c
AJ
1926{
1927 struct btrfs_super_block *s;
d9d181c1 1928 struct scrub_ctx *sctx = sblock->sctx;
b5d67f64
SB
1929 u8 calculated_csum[BTRFS_CSUM_SIZE];
1930 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1931 struct page *page;
1932 void *mapped_buffer;
1933 u64 mapped_size;
1934 void *p;
a2de733c 1935 u32 crc = ~(u32)0;
442a4f63
SB
1936 int fail_gen = 0;
1937 int fail_cor = 0;
b5d67f64
SB
1938 u64 len;
1939 int index;
a2de733c 1940
b5d67f64 1941 BUG_ON(sblock->page_count < 1);
7a9e9987 1942 page = sblock->pagev[0]->page;
9613bebb 1943 mapped_buffer = kmap_atomic(page);
b5d67f64 1944 s = (struct btrfs_super_block *)mapped_buffer;
d9d181c1 1945 memcpy(on_disk_csum, s->csum, sctx->csum_size);
a2de733c 1946
3cae210f 1947 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
442a4f63 1948 ++fail_cor;
a2de733c 1949
3cae210f 1950 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
442a4f63 1951 ++fail_gen;
a2de733c 1952
17a9be2f 1953 if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
442a4f63 1954 ++fail_cor;
a2de733c 1955
b5d67f64
SB
1956 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1957 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1958 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1959 index = 0;
1960 for (;;) {
1961 u64 l = min_t(u64, len, mapped_size);
1962
b0496686 1963 crc = btrfs_csum_data(p, crc, l);
9613bebb 1964 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1965 len -= l;
1966 if (len == 0)
1967 break;
1968 index++;
1969 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1970 BUG_ON(!sblock->pagev[index]->page);
1971 page = sblock->pagev[index]->page;
9613bebb 1972 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
1973 mapped_size = PAGE_SIZE;
1974 p = mapped_buffer;
1975 }
1976
1977 btrfs_csum_final(crc, calculated_csum);
d9d181c1 1978 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
442a4f63 1979 ++fail_cor;
a2de733c 1980
442a4f63 1981 if (fail_cor + fail_gen) {
a2de733c
AJ
1982 /*
1983 * if we find an error in a super block, we just report it.
1984 * They will get written with the next transaction commit
1985 * anyway
1986 */
d9d181c1
SB
1987 spin_lock(&sctx->stat_lock);
1988 ++sctx->stat.super_errors;
1989 spin_unlock(&sctx->stat_lock);
442a4f63 1990 if (fail_cor)
7a9e9987 1991 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
442a4f63
SB
1992 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1993 else
7a9e9987 1994 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
442a4f63 1995 BTRFS_DEV_STAT_GENERATION_ERRS);
a2de733c
AJ
1996 }
1997
442a4f63 1998 return fail_cor + fail_gen;
a2de733c
AJ
1999}
2000
b5d67f64
SB
2001static void scrub_block_get(struct scrub_block *sblock)
2002{
57019345 2003 atomic_inc(&sblock->refs);
b5d67f64
SB
2004}
2005
2006static void scrub_block_put(struct scrub_block *sblock)
2007{
57019345 2008 if (atomic_dec_and_test(&sblock->refs)) {
b5d67f64
SB
2009 int i;
2010
5a6ac9ea
MX
2011 if (sblock->sparity)
2012 scrub_parity_put(sblock->sparity);
2013
b5d67f64 2014 for (i = 0; i < sblock->page_count; i++)
7a9e9987 2015 scrub_page_put(sblock->pagev[i]);
b5d67f64
SB
2016 kfree(sblock);
2017 }
2018}
2019
7a9e9987
SB
2020static void scrub_page_get(struct scrub_page *spage)
2021{
57019345 2022 atomic_inc(&spage->refs);
7a9e9987
SB
2023}
2024
2025static void scrub_page_put(struct scrub_page *spage)
2026{
57019345 2027 if (atomic_dec_and_test(&spage->refs)) {
7a9e9987
SB
2028 if (spage->page)
2029 __free_page(spage->page);
2030 kfree(spage);
2031 }
2032}
2033
d9d181c1 2034static void scrub_submit(struct scrub_ctx *sctx)
a2de733c
AJ
2035{
2036 struct scrub_bio *sbio;
2037
d9d181c1 2038 if (sctx->curr == -1)
1623edeb 2039 return;
a2de733c 2040
d9d181c1
SB
2041 sbio = sctx->bios[sctx->curr];
2042 sctx->curr = -1;
b6bfebc1 2043 scrub_pending_bio_inc(sctx);
03679ade 2044 btrfsic_submit_bio(READ, sbio->bio);
a2de733c
AJ
2045}
2046
ff023aac
SB
2047static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2048 struct scrub_page *spage)
a2de733c 2049{
b5d67f64 2050 struct scrub_block *sblock = spage->sblock;
a2de733c 2051 struct scrub_bio *sbio;
69f4cb52 2052 int ret;
a2de733c
AJ
2053
2054again:
2055 /*
2056 * grab a fresh bio or wait for one to become available
2057 */
d9d181c1
SB
2058 while (sctx->curr == -1) {
2059 spin_lock(&sctx->list_lock);
2060 sctx->curr = sctx->first_free;
2061 if (sctx->curr != -1) {
2062 sctx->first_free = sctx->bios[sctx->curr]->next_free;
2063 sctx->bios[sctx->curr]->next_free = -1;
2064 sctx->bios[sctx->curr]->page_count = 0;
2065 spin_unlock(&sctx->list_lock);
a2de733c 2066 } else {
d9d181c1
SB
2067 spin_unlock(&sctx->list_lock);
2068 wait_event(sctx->list_wait, sctx->first_free != -1);
a2de733c
AJ
2069 }
2070 }
d9d181c1 2071 sbio = sctx->bios[sctx->curr];
b5d67f64 2072 if (sbio->page_count == 0) {
69f4cb52
AJ
2073 struct bio *bio;
2074
b5d67f64
SB
2075 sbio->physical = spage->physical;
2076 sbio->logical = spage->logical;
a36cf8b8 2077 sbio->dev = spage->dev;
b5d67f64
SB
2078 bio = sbio->bio;
2079 if (!bio) {
58c4e173
DS
2080 bio = btrfs_io_bio_alloc(GFP_KERNEL,
2081 sctx->pages_per_rd_bio);
b5d67f64
SB
2082 if (!bio)
2083 return -ENOMEM;
2084 sbio->bio = bio;
2085 }
69f4cb52
AJ
2086
2087 bio->bi_private = sbio;
2088 bio->bi_end_io = scrub_bio_end_io;
a36cf8b8 2089 bio->bi_bdev = sbio->dev->bdev;
4f024f37 2090 bio->bi_iter.bi_sector = sbio->physical >> 9;
69f4cb52 2091 sbio->err = 0;
b5d67f64
SB
2092 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2093 spage->physical ||
2094 sbio->logical + sbio->page_count * PAGE_SIZE !=
a36cf8b8
SB
2095 spage->logical ||
2096 sbio->dev != spage->dev) {
d9d181c1 2097 scrub_submit(sctx);
a2de733c
AJ
2098 goto again;
2099 }
69f4cb52 2100
b5d67f64
SB
2101 sbio->pagev[sbio->page_count] = spage;
2102 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2103 if (ret != PAGE_SIZE) {
2104 if (sbio->page_count < 1) {
2105 bio_put(sbio->bio);
2106 sbio->bio = NULL;
2107 return -EIO;
2108 }
d9d181c1 2109 scrub_submit(sctx);
69f4cb52
AJ
2110 goto again;
2111 }
2112
ff023aac 2113 scrub_block_get(sblock); /* one for the page added to the bio */
b5d67f64
SB
2114 atomic_inc(&sblock->outstanding_pages);
2115 sbio->page_count++;
ff023aac 2116 if (sbio->page_count == sctx->pages_per_rd_bio)
d9d181c1 2117 scrub_submit(sctx);
b5d67f64
SB
2118
2119 return 0;
2120}
2121
22365979 2122static void scrub_missing_raid56_end_io(struct bio *bio)
73ff61db
OS
2123{
2124 struct scrub_block *sblock = bio->bi_private;
2125 struct btrfs_fs_info *fs_info = sblock->sctx->dev_root->fs_info;
2126
22365979 2127 if (bio->bi_error)
73ff61db
OS
2128 sblock->no_io_error_seen = 0;
2129
4673272f
ST
2130 bio_put(bio);
2131
73ff61db
OS
2132 btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2133}
2134
2135static void scrub_missing_raid56_worker(struct btrfs_work *work)
2136{
2137 struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2138 struct scrub_ctx *sctx = sblock->sctx;
73ff61db
OS
2139 u64 logical;
2140 struct btrfs_device *dev;
2141
73ff61db
OS
2142 logical = sblock->pagev[0]->logical;
2143 dev = sblock->pagev[0]->dev;
2144
affe4a5a 2145 if (sblock->no_io_error_seen)
ba7cf988 2146 scrub_recheck_block_checksum(sblock);
73ff61db
OS
2147
2148 if (!sblock->no_io_error_seen) {
2149 spin_lock(&sctx->stat_lock);
2150 sctx->stat.read_errors++;
2151 spin_unlock(&sctx->stat_lock);
ba7cf988 2152 btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
b14af3b4 2153 "IO error rebuilding logical %llu for dev %s",
73ff61db
OS
2154 logical, rcu_str_deref(dev->name));
2155 } else if (sblock->header_error || sblock->checksum_error) {
2156 spin_lock(&sctx->stat_lock);
2157 sctx->stat.uncorrectable_errors++;
2158 spin_unlock(&sctx->stat_lock);
ba7cf988 2159 btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
b14af3b4 2160 "failed to rebuild valid logical %llu for dev %s",
73ff61db
OS
2161 logical, rcu_str_deref(dev->name));
2162 } else {
2163 scrub_write_block_to_dev_replace(sblock);
2164 }
2165
2166 scrub_block_put(sblock);
2167
2168 if (sctx->is_dev_replace &&
2169 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2170 mutex_lock(&sctx->wr_ctx.wr_lock);
2171 scrub_wr_submit(sctx);
2172 mutex_unlock(&sctx->wr_ctx.wr_lock);
2173 }
2174
2175 scrub_pending_bio_dec(sctx);
2176}
2177
2178static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2179{
2180 struct scrub_ctx *sctx = sblock->sctx;
2181 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2182 u64 length = sblock->page_count * PAGE_SIZE;
2183 u64 logical = sblock->pagev[0]->logical;
f1fee653 2184 struct btrfs_bio *bbio = NULL;
73ff61db
OS
2185 struct bio *bio;
2186 struct btrfs_raid_bio *rbio;
2187 int ret;
2188 int i;
2189
2190 ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
2191 &bbio, 0, 1);
2192 if (ret || !bbio || !bbio->raid_map)
2193 goto bbio_out;
2194
2195 if (WARN_ON(!sctx->is_dev_replace ||
2196 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2197 /*
2198 * We shouldn't be scrubbing a missing device. Even for dev
2199 * replace, we should only get here for RAID 5/6. We either
2200 * managed to mount something with no mirrors remaining or
2201 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2202 */
2203 goto bbio_out;
2204 }
2205
2206 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2207 if (!bio)
2208 goto bbio_out;
2209
2210 bio->bi_iter.bi_sector = logical >> 9;
2211 bio->bi_private = sblock;
2212 bio->bi_end_io = scrub_missing_raid56_end_io;
2213
2214 rbio = raid56_alloc_missing_rbio(sctx->dev_root, bio, bbio, length);
2215 if (!rbio)
2216 goto rbio_out;
2217
2218 for (i = 0; i < sblock->page_count; i++) {
2219 struct scrub_page *spage = sblock->pagev[i];
2220
2221 raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2222 }
2223
2224 btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2225 scrub_missing_raid56_worker, NULL, NULL);
2226 scrub_block_get(sblock);
2227 scrub_pending_bio_inc(sctx);
2228 raid56_submit_missing_rbio(rbio);
2229 return;
2230
2231rbio_out:
2232 bio_put(bio);
2233bbio_out:
2234 btrfs_put_bbio(bbio);
2235 spin_lock(&sctx->stat_lock);
2236 sctx->stat.malloc_errors++;
2237 spin_unlock(&sctx->stat_lock);
2238}
2239
d9d181c1 2240static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 2241 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac
SB
2242 u64 gen, int mirror_num, u8 *csum, int force,
2243 u64 physical_for_dev_replace)
b5d67f64
SB
2244{
2245 struct scrub_block *sblock;
2246 int index;
2247
58c4e173 2248 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
b5d67f64 2249 if (!sblock) {
d9d181c1
SB
2250 spin_lock(&sctx->stat_lock);
2251 sctx->stat.malloc_errors++;
2252 spin_unlock(&sctx->stat_lock);
b5d67f64 2253 return -ENOMEM;
a2de733c 2254 }
b5d67f64 2255
7a9e9987
SB
2256 /* one ref inside this function, plus one for each page added to
2257 * a bio later on */
57019345 2258 atomic_set(&sblock->refs, 1);
d9d181c1 2259 sblock->sctx = sctx;
b5d67f64
SB
2260 sblock->no_io_error_seen = 1;
2261
2262 for (index = 0; len > 0; index++) {
7a9e9987 2263 struct scrub_page *spage;
b5d67f64
SB
2264 u64 l = min_t(u64, len, PAGE_SIZE);
2265
58c4e173 2266 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
7a9e9987
SB
2267 if (!spage) {
2268leave_nomem:
d9d181c1
SB
2269 spin_lock(&sctx->stat_lock);
2270 sctx->stat.malloc_errors++;
2271 spin_unlock(&sctx->stat_lock);
7a9e9987 2272 scrub_block_put(sblock);
b5d67f64
SB
2273 return -ENOMEM;
2274 }
7a9e9987
SB
2275 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2276 scrub_page_get(spage);
2277 sblock->pagev[index] = spage;
b5d67f64 2278 spage->sblock = sblock;
a36cf8b8 2279 spage->dev = dev;
b5d67f64
SB
2280 spage->flags = flags;
2281 spage->generation = gen;
2282 spage->logical = logical;
2283 spage->physical = physical;
ff023aac 2284 spage->physical_for_dev_replace = physical_for_dev_replace;
b5d67f64
SB
2285 spage->mirror_num = mirror_num;
2286 if (csum) {
2287 spage->have_csum = 1;
d9d181c1 2288 memcpy(spage->csum, csum, sctx->csum_size);
b5d67f64
SB
2289 } else {
2290 spage->have_csum = 0;
2291 }
2292 sblock->page_count++;
58c4e173 2293 spage->page = alloc_page(GFP_KERNEL);
7a9e9987
SB
2294 if (!spage->page)
2295 goto leave_nomem;
b5d67f64
SB
2296 len -= l;
2297 logical += l;
2298 physical += l;
ff023aac 2299 physical_for_dev_replace += l;
b5d67f64
SB
2300 }
2301
7a9e9987 2302 WARN_ON(sblock->page_count == 0);
73ff61db
OS
2303 if (dev->missing) {
2304 /*
2305 * This case should only be hit for RAID 5/6 device replace. See
2306 * the comment in scrub_missing_raid56_pages() for details.
2307 */
2308 scrub_missing_raid56_pages(sblock);
2309 } else {
2310 for (index = 0; index < sblock->page_count; index++) {
2311 struct scrub_page *spage = sblock->pagev[index];
2312 int ret;
1bc87793 2313
73ff61db
OS
2314 ret = scrub_add_page_to_rd_bio(sctx, spage);
2315 if (ret) {
2316 scrub_block_put(sblock);
2317 return ret;
2318 }
b5d67f64 2319 }
a2de733c 2320
73ff61db
OS
2321 if (force)
2322 scrub_submit(sctx);
2323 }
a2de733c 2324
b5d67f64
SB
2325 /* last one frees, either here or in bio completion for last page */
2326 scrub_block_put(sblock);
a2de733c
AJ
2327 return 0;
2328}
2329
4246a0b6 2330static void scrub_bio_end_io(struct bio *bio)
b5d67f64
SB
2331{
2332 struct scrub_bio *sbio = bio->bi_private;
a36cf8b8 2333 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
b5d67f64 2334
4246a0b6 2335 sbio->err = bio->bi_error;
b5d67f64
SB
2336 sbio->bio = bio;
2337
0339ef2f 2338 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
b5d67f64
SB
2339}
2340
2341static void scrub_bio_end_io_worker(struct btrfs_work *work)
2342{
2343 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
d9d181c1 2344 struct scrub_ctx *sctx = sbio->sctx;
b5d67f64
SB
2345 int i;
2346
ff023aac 2347 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
b5d67f64
SB
2348 if (sbio->err) {
2349 for (i = 0; i < sbio->page_count; i++) {
2350 struct scrub_page *spage = sbio->pagev[i];
2351
2352 spage->io_error = 1;
2353 spage->sblock->no_io_error_seen = 0;
2354 }
2355 }
2356
2357 /* now complete the scrub_block items that have all pages completed */
2358 for (i = 0; i < sbio->page_count; i++) {
2359 struct scrub_page *spage = sbio->pagev[i];
2360 struct scrub_block *sblock = spage->sblock;
2361
2362 if (atomic_dec_and_test(&sblock->outstanding_pages))
2363 scrub_block_complete(sblock);
2364 scrub_block_put(sblock);
2365 }
2366
b5d67f64
SB
2367 bio_put(sbio->bio);
2368 sbio->bio = NULL;
d9d181c1
SB
2369 spin_lock(&sctx->list_lock);
2370 sbio->next_free = sctx->first_free;
2371 sctx->first_free = sbio->index;
2372 spin_unlock(&sctx->list_lock);
ff023aac
SB
2373
2374 if (sctx->is_dev_replace &&
2375 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2376 mutex_lock(&sctx->wr_ctx.wr_lock);
2377 scrub_wr_submit(sctx);
2378 mutex_unlock(&sctx->wr_ctx.wr_lock);
2379 }
2380
b6bfebc1 2381 scrub_pending_bio_dec(sctx);
b5d67f64
SB
2382}
2383
5a6ac9ea
MX
2384static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2385 unsigned long *bitmap,
2386 u64 start, u64 len)
2387{
9d644a62 2388 u32 offset;
5a6ac9ea
MX
2389 int nsectors;
2390 int sectorsize = sparity->sctx->dev_root->sectorsize;
2391
2392 if (len >= sparity->stripe_len) {
2393 bitmap_set(bitmap, 0, sparity->nsectors);
2394 return;
2395 }
2396
2397 start -= sparity->logic_start;
47c5713f 2398 start = div_u64_rem(start, sparity->stripe_len, &offset);
5a6ac9ea
MX
2399 offset /= sectorsize;
2400 nsectors = (int)len / sectorsize;
2401
2402 if (offset + nsectors <= sparity->nsectors) {
2403 bitmap_set(bitmap, offset, nsectors);
2404 return;
2405 }
2406
2407 bitmap_set(bitmap, offset, sparity->nsectors - offset);
2408 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2409}
2410
2411static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2412 u64 start, u64 len)
2413{
2414 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2415}
2416
2417static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2418 u64 start, u64 len)
2419{
2420 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2421}
2422
b5d67f64
SB
2423static void scrub_block_complete(struct scrub_block *sblock)
2424{
5a6ac9ea
MX
2425 int corrupted = 0;
2426
ff023aac 2427 if (!sblock->no_io_error_seen) {
5a6ac9ea 2428 corrupted = 1;
b5d67f64 2429 scrub_handle_errored_block(sblock);
ff023aac
SB
2430 } else {
2431 /*
2432 * if has checksum error, write via repair mechanism in
2433 * dev replace case, otherwise write here in dev replace
2434 * case.
2435 */
5a6ac9ea
MX
2436 corrupted = scrub_checksum(sblock);
2437 if (!corrupted && sblock->sctx->is_dev_replace)
ff023aac
SB
2438 scrub_write_block_to_dev_replace(sblock);
2439 }
5a6ac9ea
MX
2440
2441 if (sblock->sparity && corrupted && !sblock->data_corrected) {
2442 u64 start = sblock->pagev[0]->logical;
2443 u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2444 PAGE_SIZE;
2445
2446 scrub_parity_mark_sectors_error(sblock->sparity,
2447 start, end - start);
2448 }
b5d67f64
SB
2449}
2450
3b5753ec 2451static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
a2de733c
AJ
2452{
2453 struct btrfs_ordered_sum *sum = NULL;
f51a4a18 2454 unsigned long index;
a2de733c 2455 unsigned long num_sectors;
a2de733c 2456
d9d181c1
SB
2457 while (!list_empty(&sctx->csum_list)) {
2458 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
2459 struct btrfs_ordered_sum, list);
2460 if (sum->bytenr > logical)
2461 return 0;
2462 if (sum->bytenr + sum->len > logical)
2463 break;
2464
d9d181c1 2465 ++sctx->stat.csum_discards;
a2de733c
AJ
2466 list_del(&sum->list);
2467 kfree(sum);
2468 sum = NULL;
2469 }
2470 if (!sum)
2471 return 0;
2472
f51a4a18 2473 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
d9d181c1 2474 num_sectors = sum->len / sctx->sectorsize;
f51a4a18
MX
2475 memcpy(csum, sum->sums + index, sctx->csum_size);
2476 if (index == num_sectors - 1) {
a2de733c
AJ
2477 list_del(&sum->list);
2478 kfree(sum);
2479 }
f51a4a18 2480 return 1;
a2de733c
AJ
2481}
2482
2483/* scrub extent tries to collect up to 64 kB for each bio */
d9d181c1 2484static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 2485 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac 2486 u64 gen, int mirror_num, u64 physical_for_dev_replace)
a2de733c
AJ
2487{
2488 int ret;
2489 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
2490 u32 blocksize;
2491
2492 if (flags & BTRFS_EXTENT_FLAG_DATA) {
d9d181c1
SB
2493 blocksize = sctx->sectorsize;
2494 spin_lock(&sctx->stat_lock);
2495 sctx->stat.data_extents_scrubbed++;
2496 sctx->stat.data_bytes_scrubbed += len;
2497 spin_unlock(&sctx->stat_lock);
b5d67f64 2498 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
d9d181c1
SB
2499 blocksize = sctx->nodesize;
2500 spin_lock(&sctx->stat_lock);
2501 sctx->stat.tree_extents_scrubbed++;
2502 sctx->stat.tree_bytes_scrubbed += len;
2503 spin_unlock(&sctx->stat_lock);
b5d67f64 2504 } else {
d9d181c1 2505 blocksize = sctx->sectorsize;
ff023aac 2506 WARN_ON(1);
b5d67f64 2507 }
a2de733c
AJ
2508
2509 while (len) {
b5d67f64 2510 u64 l = min_t(u64, len, blocksize);
a2de733c
AJ
2511 int have_csum = 0;
2512
2513 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2514 /* push csums to sbio */
3b5753ec 2515 have_csum = scrub_find_csum(sctx, logical, csum);
a2de733c 2516 if (have_csum == 0)
d9d181c1 2517 ++sctx->stat.no_csum;
ff023aac
SB
2518 if (sctx->is_dev_replace && !have_csum) {
2519 ret = copy_nocow_pages(sctx, logical, l,
2520 mirror_num,
2521 physical_for_dev_replace);
2522 goto behind_scrub_pages;
2523 }
a2de733c 2524 }
a36cf8b8 2525 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
ff023aac
SB
2526 mirror_num, have_csum ? csum : NULL, 0,
2527 physical_for_dev_replace);
2528behind_scrub_pages:
a2de733c
AJ
2529 if (ret)
2530 return ret;
2531 len -= l;
2532 logical += l;
2533 physical += l;
ff023aac 2534 physical_for_dev_replace += l;
a2de733c
AJ
2535 }
2536 return 0;
2537}
2538
5a6ac9ea
MX
2539static int scrub_pages_for_parity(struct scrub_parity *sparity,
2540 u64 logical, u64 len,
2541 u64 physical, struct btrfs_device *dev,
2542 u64 flags, u64 gen, int mirror_num, u8 *csum)
2543{
2544 struct scrub_ctx *sctx = sparity->sctx;
2545 struct scrub_block *sblock;
2546 int index;
2547
58c4e173 2548 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
5a6ac9ea
MX
2549 if (!sblock) {
2550 spin_lock(&sctx->stat_lock);
2551 sctx->stat.malloc_errors++;
2552 spin_unlock(&sctx->stat_lock);
2553 return -ENOMEM;
2554 }
2555
2556 /* one ref inside this function, plus one for each page added to
2557 * a bio later on */
57019345 2558 atomic_set(&sblock->refs, 1);
5a6ac9ea
MX
2559 sblock->sctx = sctx;
2560 sblock->no_io_error_seen = 1;
2561 sblock->sparity = sparity;
2562 scrub_parity_get(sparity);
2563
2564 for (index = 0; len > 0; index++) {
2565 struct scrub_page *spage;
2566 u64 l = min_t(u64, len, PAGE_SIZE);
2567
58c4e173 2568 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
5a6ac9ea
MX
2569 if (!spage) {
2570leave_nomem:
2571 spin_lock(&sctx->stat_lock);
2572 sctx->stat.malloc_errors++;
2573 spin_unlock(&sctx->stat_lock);
2574 scrub_block_put(sblock);
2575 return -ENOMEM;
2576 }
2577 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2578 /* For scrub block */
2579 scrub_page_get(spage);
2580 sblock->pagev[index] = spage;
2581 /* For scrub parity */
2582 scrub_page_get(spage);
2583 list_add_tail(&spage->list, &sparity->spages);
2584 spage->sblock = sblock;
2585 spage->dev = dev;
2586 spage->flags = flags;
2587 spage->generation = gen;
2588 spage->logical = logical;
2589 spage->physical = physical;
2590 spage->mirror_num = mirror_num;
2591 if (csum) {
2592 spage->have_csum = 1;
2593 memcpy(spage->csum, csum, sctx->csum_size);
2594 } else {
2595 spage->have_csum = 0;
2596 }
2597 sblock->page_count++;
58c4e173 2598 spage->page = alloc_page(GFP_KERNEL);
5a6ac9ea
MX
2599 if (!spage->page)
2600 goto leave_nomem;
2601 len -= l;
2602 logical += l;
2603 physical += l;
2604 }
2605
2606 WARN_ON(sblock->page_count == 0);
2607 for (index = 0; index < sblock->page_count; index++) {
2608 struct scrub_page *spage = sblock->pagev[index];
2609 int ret;
2610
2611 ret = scrub_add_page_to_rd_bio(sctx, spage);
2612 if (ret) {
2613 scrub_block_put(sblock);
2614 return ret;
2615 }
2616 }
2617
2618 /* last one frees, either here or in bio completion for last page */
2619 scrub_block_put(sblock);
2620 return 0;
2621}
2622
2623static int scrub_extent_for_parity(struct scrub_parity *sparity,
2624 u64 logical, u64 len,
2625 u64 physical, struct btrfs_device *dev,
2626 u64 flags, u64 gen, int mirror_num)
2627{
2628 struct scrub_ctx *sctx = sparity->sctx;
2629 int ret;
2630 u8 csum[BTRFS_CSUM_SIZE];
2631 u32 blocksize;
2632
4a770891
OS
2633 if (dev->missing) {
2634 scrub_parity_mark_sectors_error(sparity, logical, len);
2635 return 0;
2636 }
2637
5a6ac9ea
MX
2638 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2639 blocksize = sctx->sectorsize;
2640 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2641 blocksize = sctx->nodesize;
2642 } else {
2643 blocksize = sctx->sectorsize;
2644 WARN_ON(1);
2645 }
2646
2647 while (len) {
2648 u64 l = min_t(u64, len, blocksize);
2649 int have_csum = 0;
2650
2651 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2652 /* push csums to sbio */
3b5753ec 2653 have_csum = scrub_find_csum(sctx, logical, csum);
5a6ac9ea
MX
2654 if (have_csum == 0)
2655 goto skip;
2656 }
2657 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2658 flags, gen, mirror_num,
2659 have_csum ? csum : NULL);
5a6ac9ea
MX
2660 if (ret)
2661 return ret;
6b6d24b3 2662skip:
5a6ac9ea
MX
2663 len -= l;
2664 logical += l;
2665 physical += l;
2666 }
2667 return 0;
2668}
2669
3b080b25
WS
2670/*
2671 * Given a physical address, this will calculate it's
2672 * logical offset. if this is a parity stripe, it will return
2673 * the most left data stripe's logical offset.
2674 *
2675 * return 0 if it is a data stripe, 1 means parity stripe.
2676 */
2677static int get_raid56_logic_offset(u64 physical, int num,
5a6ac9ea
MX
2678 struct map_lookup *map, u64 *offset,
2679 u64 *stripe_start)
3b080b25
WS
2680{
2681 int i;
2682 int j = 0;
2683 u64 stripe_nr;
2684 u64 last_offset;
9d644a62
DS
2685 u32 stripe_index;
2686 u32 rot;
3b080b25
WS
2687
2688 last_offset = (physical - map->stripes[num].physical) *
2689 nr_data_stripes(map);
5a6ac9ea
MX
2690 if (stripe_start)
2691 *stripe_start = last_offset;
2692
3b080b25
WS
2693 *offset = last_offset;
2694 for (i = 0; i < nr_data_stripes(map); i++) {
2695 *offset = last_offset + i * map->stripe_len;
2696
b8b93add
DS
2697 stripe_nr = div_u64(*offset, map->stripe_len);
2698 stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
3b080b25
WS
2699
2700 /* Work out the disk rotation on this stripe-set */
47c5713f 2701 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
3b080b25
WS
2702 /* calculate which stripe this data locates */
2703 rot += i;
e4fbaee2 2704 stripe_index = rot % map->num_stripes;
3b080b25
WS
2705 if (stripe_index == num)
2706 return 0;
2707 if (stripe_index < num)
2708 j++;
2709 }
2710 *offset = last_offset + j * map->stripe_len;
2711 return 1;
2712}
2713
5a6ac9ea
MX
2714static void scrub_free_parity(struct scrub_parity *sparity)
2715{
2716 struct scrub_ctx *sctx = sparity->sctx;
2717 struct scrub_page *curr, *next;
2718 int nbits;
2719
2720 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2721 if (nbits) {
2722 spin_lock(&sctx->stat_lock);
2723 sctx->stat.read_errors += nbits;
2724 sctx->stat.uncorrectable_errors += nbits;
2725 spin_unlock(&sctx->stat_lock);
2726 }
2727
2728 list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2729 list_del_init(&curr->list);
2730 scrub_page_put(curr);
2731 }
2732
2733 kfree(sparity);
2734}
2735
20b2e302
ZL
2736static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2737{
2738 struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2739 work);
2740 struct scrub_ctx *sctx = sparity->sctx;
2741
2742 scrub_free_parity(sparity);
2743 scrub_pending_bio_dec(sctx);
2744}
2745
4246a0b6 2746static void scrub_parity_bio_endio(struct bio *bio)
5a6ac9ea
MX
2747{
2748 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
5a6ac9ea 2749
4246a0b6 2750 if (bio->bi_error)
5a6ac9ea
MX
2751 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2752 sparity->nsectors);
2753
5a6ac9ea 2754 bio_put(bio);
20b2e302
ZL
2755
2756 btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2757 scrub_parity_bio_endio_worker, NULL, NULL);
2758 btrfs_queue_work(sparity->sctx->dev_root->fs_info->scrub_parity_workers,
2759 &sparity->work);
5a6ac9ea
MX
2760}
2761
2762static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2763{
2764 struct scrub_ctx *sctx = sparity->sctx;
2765 struct bio *bio;
2766 struct btrfs_raid_bio *rbio;
2767 struct scrub_page *spage;
2768 struct btrfs_bio *bbio = NULL;
5a6ac9ea
MX
2769 u64 length;
2770 int ret;
2771
2772 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2773 sparity->nsectors))
2774 goto out;
2775
a0dd59de 2776 length = sparity->logic_end - sparity->logic_start;
76035976 2777 ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE,
5a6ac9ea 2778 sparity->logic_start,
8e5cfb55
ZL
2779 &length, &bbio, 0, 1);
2780 if (ret || !bbio || !bbio->raid_map)
5a6ac9ea
MX
2781 goto bbio_out;
2782
2783 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2784 if (!bio)
2785 goto bbio_out;
2786
2787 bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2788 bio->bi_private = sparity;
2789 bio->bi_end_io = scrub_parity_bio_endio;
2790
2791 rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio,
8e5cfb55 2792 length, sparity->scrub_dev,
5a6ac9ea
MX
2793 sparity->dbitmap,
2794 sparity->nsectors);
2795 if (!rbio)
2796 goto rbio_out;
2797
2798 list_for_each_entry(spage, &sparity->spages, list)
b4ee1782 2799 raid56_add_scrub_pages(rbio, spage->page, spage->logical);
5a6ac9ea
MX
2800
2801 scrub_pending_bio_inc(sctx);
2802 raid56_parity_submit_scrub_rbio(rbio);
2803 return;
2804
2805rbio_out:
2806 bio_put(bio);
2807bbio_out:
6e9606d2 2808 btrfs_put_bbio(bbio);
5a6ac9ea
MX
2809 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2810 sparity->nsectors);
2811 spin_lock(&sctx->stat_lock);
2812 sctx->stat.malloc_errors++;
2813 spin_unlock(&sctx->stat_lock);
2814out:
2815 scrub_free_parity(sparity);
2816}
2817
2818static inline int scrub_calc_parity_bitmap_len(int nsectors)
2819{
bfca9a6d 2820 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
5a6ac9ea
MX
2821}
2822
2823static void scrub_parity_get(struct scrub_parity *sparity)
2824{
57019345 2825 atomic_inc(&sparity->refs);
5a6ac9ea
MX
2826}
2827
2828static void scrub_parity_put(struct scrub_parity *sparity)
2829{
57019345 2830 if (!atomic_dec_and_test(&sparity->refs))
5a6ac9ea
MX
2831 return;
2832
2833 scrub_parity_check_and_repair(sparity);
2834}
2835
2836static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2837 struct map_lookup *map,
2838 struct btrfs_device *sdev,
2839 struct btrfs_path *path,
2840 u64 logic_start,
2841 u64 logic_end)
2842{
2843 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2844 struct btrfs_root *root = fs_info->extent_root;
2845 struct btrfs_root *csum_root = fs_info->csum_root;
2846 struct btrfs_extent_item *extent;
4a770891 2847 struct btrfs_bio *bbio = NULL;
5a6ac9ea
MX
2848 u64 flags;
2849 int ret;
2850 int slot;
2851 struct extent_buffer *l;
2852 struct btrfs_key key;
2853 u64 generation;
2854 u64 extent_logical;
2855 u64 extent_physical;
2856 u64 extent_len;
4a770891 2857 u64 mapped_length;
5a6ac9ea
MX
2858 struct btrfs_device *extent_dev;
2859 struct scrub_parity *sparity;
2860 int nsectors;
2861 int bitmap_len;
2862 int extent_mirror_num;
2863 int stop_loop = 0;
2864
3d8da678 2865 nsectors = div_u64(map->stripe_len, root->sectorsize);
5a6ac9ea
MX
2866 bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2867 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2868 GFP_NOFS);
2869 if (!sparity) {
2870 spin_lock(&sctx->stat_lock);
2871 sctx->stat.malloc_errors++;
2872 spin_unlock(&sctx->stat_lock);
2873 return -ENOMEM;
2874 }
2875
2876 sparity->stripe_len = map->stripe_len;
2877 sparity->nsectors = nsectors;
2878 sparity->sctx = sctx;
2879 sparity->scrub_dev = sdev;
2880 sparity->logic_start = logic_start;
2881 sparity->logic_end = logic_end;
57019345 2882 atomic_set(&sparity->refs, 1);
5a6ac9ea
MX
2883 INIT_LIST_HEAD(&sparity->spages);
2884 sparity->dbitmap = sparity->bitmap;
2885 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2886
2887 ret = 0;
2888 while (logic_start < logic_end) {
2889 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2890 key.type = BTRFS_METADATA_ITEM_KEY;
2891 else
2892 key.type = BTRFS_EXTENT_ITEM_KEY;
2893 key.objectid = logic_start;
2894 key.offset = (u64)-1;
2895
2896 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2897 if (ret < 0)
2898 goto out;
2899
2900 if (ret > 0) {
2901 ret = btrfs_previous_extent_item(root, path, 0);
2902 if (ret < 0)
2903 goto out;
2904 if (ret > 0) {
2905 btrfs_release_path(path);
2906 ret = btrfs_search_slot(NULL, root, &key,
2907 path, 0, 0);
2908 if (ret < 0)
2909 goto out;
2910 }
2911 }
2912
2913 stop_loop = 0;
2914 while (1) {
2915 u64 bytes;
2916
2917 l = path->nodes[0];
2918 slot = path->slots[0];
2919 if (slot >= btrfs_header_nritems(l)) {
2920 ret = btrfs_next_leaf(root, path);
2921 if (ret == 0)
2922 continue;
2923 if (ret < 0)
2924 goto out;
2925
2926 stop_loop = 1;
2927 break;
2928 }
2929 btrfs_item_key_to_cpu(l, &key, slot);
2930
d7cad238
ZL
2931 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2932 key.type != BTRFS_METADATA_ITEM_KEY)
2933 goto next;
2934
5a6ac9ea
MX
2935 if (key.type == BTRFS_METADATA_ITEM_KEY)
2936 bytes = root->nodesize;
2937 else
2938 bytes = key.offset;
2939
2940 if (key.objectid + bytes <= logic_start)
2941 goto next;
2942
a0dd59de 2943 if (key.objectid >= logic_end) {
5a6ac9ea
MX
2944 stop_loop = 1;
2945 break;
2946 }
2947
2948 while (key.objectid >= logic_start + map->stripe_len)
2949 logic_start += map->stripe_len;
2950
2951 extent = btrfs_item_ptr(l, slot,
2952 struct btrfs_extent_item);
2953 flags = btrfs_extent_flags(l, extent);
2954 generation = btrfs_extent_generation(l, extent);
2955
a323e813
ZL
2956 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2957 (key.objectid < logic_start ||
2958 key.objectid + bytes >
2959 logic_start + map->stripe_len)) {
2960 btrfs_err(fs_info, "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2961 key.objectid, logic_start);
9799d2c3
ZL
2962 spin_lock(&sctx->stat_lock);
2963 sctx->stat.uncorrectable_errors++;
2964 spin_unlock(&sctx->stat_lock);
5a6ac9ea
MX
2965 goto next;
2966 }
2967again:
2968 extent_logical = key.objectid;
2969 extent_len = bytes;
2970
2971 if (extent_logical < logic_start) {
2972 extent_len -= logic_start - extent_logical;
2973 extent_logical = logic_start;
2974 }
2975
2976 if (extent_logical + extent_len >
2977 logic_start + map->stripe_len)
2978 extent_len = logic_start + map->stripe_len -
2979 extent_logical;
2980
2981 scrub_parity_mark_sectors_data(sparity, extent_logical,
2982 extent_len);
2983
4a770891 2984 mapped_length = extent_len;
f1fee653 2985 bbio = NULL;
4a770891
OS
2986 ret = btrfs_map_block(fs_info, READ, extent_logical,
2987 &mapped_length, &bbio, 0);
2988 if (!ret) {
2989 if (!bbio || mapped_length < extent_len)
2990 ret = -EIO;
2991 }
2992 if (ret) {
2993 btrfs_put_bbio(bbio);
2994 goto out;
2995 }
2996 extent_physical = bbio->stripes[0].physical;
2997 extent_mirror_num = bbio->mirror_num;
2998 extent_dev = bbio->stripes[0].dev;
2999 btrfs_put_bbio(bbio);
5a6ac9ea
MX
3000
3001 ret = btrfs_lookup_csums_range(csum_root,
3002 extent_logical,
3003 extent_logical + extent_len - 1,
3004 &sctx->csum_list, 1);
3005 if (ret)
3006 goto out;
3007
3008 ret = scrub_extent_for_parity(sparity, extent_logical,
3009 extent_len,
3010 extent_physical,
3011 extent_dev, flags,
3012 generation,
3013 extent_mirror_num);
6fa96d72
ZL
3014
3015 scrub_free_csums(sctx);
3016
5a6ac9ea
MX
3017 if (ret)
3018 goto out;
3019
5a6ac9ea
MX
3020 if (extent_logical + extent_len <
3021 key.objectid + bytes) {
3022 logic_start += map->stripe_len;
3023
3024 if (logic_start >= logic_end) {
3025 stop_loop = 1;
3026 break;
3027 }
3028
3029 if (logic_start < key.objectid + bytes) {
3030 cond_resched();
3031 goto again;
3032 }
3033 }
3034next:
3035 path->slots[0]++;
3036 }
3037
3038 btrfs_release_path(path);
3039
3040 if (stop_loop)
3041 break;
3042
3043 logic_start += map->stripe_len;
3044 }
3045out:
3046 if (ret < 0)
3047 scrub_parity_mark_sectors_error(sparity, logic_start,
a0dd59de 3048 logic_end - logic_start);
5a6ac9ea
MX
3049 scrub_parity_put(sparity);
3050 scrub_submit(sctx);
3051 mutex_lock(&sctx->wr_ctx.wr_lock);
3052 scrub_wr_submit(sctx);
3053 mutex_unlock(&sctx->wr_ctx.wr_lock);
3054
3055 btrfs_release_path(path);
3056 return ret < 0 ? ret : 0;
3057}
3058
d9d181c1 3059static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
a36cf8b8
SB
3060 struct map_lookup *map,
3061 struct btrfs_device *scrub_dev,
ff023aac
SB
3062 int num, u64 base, u64 length,
3063 int is_dev_replace)
a2de733c 3064{
5a6ac9ea 3065 struct btrfs_path *path, *ppath;
a36cf8b8 3066 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
a2de733c
AJ
3067 struct btrfs_root *root = fs_info->extent_root;
3068 struct btrfs_root *csum_root = fs_info->csum_root;
3069 struct btrfs_extent_item *extent;
e7786c3a 3070 struct blk_plug plug;
a2de733c
AJ
3071 u64 flags;
3072 int ret;
3073 int slot;
a2de733c 3074 u64 nstripes;
a2de733c 3075 struct extent_buffer *l;
a2de733c
AJ
3076 u64 physical;
3077 u64 logical;
625f1c8d 3078 u64 logic_end;
3b080b25 3079 u64 physical_end;
a2de733c 3080 u64 generation;
e12fa9cd 3081 int mirror_num;
7a26285e
AJ
3082 struct reada_control *reada1;
3083 struct reada_control *reada2;
e6c11f9a 3084 struct btrfs_key key;
7a26285e 3085 struct btrfs_key key_end;
a2de733c
AJ
3086 u64 increment = map->stripe_len;
3087 u64 offset;
ff023aac
SB
3088 u64 extent_logical;
3089 u64 extent_physical;
3090 u64 extent_len;
5a6ac9ea
MX
3091 u64 stripe_logical;
3092 u64 stripe_end;
ff023aac
SB
3093 struct btrfs_device *extent_dev;
3094 int extent_mirror_num;
3b080b25 3095 int stop_loop = 0;
53b381b3 3096
3b080b25 3097 physical = map->stripes[num].physical;
a2de733c 3098 offset = 0;
b8b93add 3099 nstripes = div_u64(length, map->stripe_len);
a2de733c
AJ
3100 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3101 offset = map->stripe_len * num;
3102 increment = map->stripe_len * map->num_stripes;
193ea74b 3103 mirror_num = 1;
a2de733c
AJ
3104 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3105 int factor = map->num_stripes / map->sub_stripes;
3106 offset = map->stripe_len * (num / map->sub_stripes);
3107 increment = map->stripe_len * factor;
193ea74b 3108 mirror_num = num % map->sub_stripes + 1;
a2de733c
AJ
3109 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3110 increment = map->stripe_len;
193ea74b 3111 mirror_num = num % map->num_stripes + 1;
a2de733c
AJ
3112 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3113 increment = map->stripe_len;
193ea74b 3114 mirror_num = num % map->num_stripes + 1;
ffe2d203 3115 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5a6ac9ea 3116 get_raid56_logic_offset(physical, num, map, &offset, NULL);
3b080b25
WS
3117 increment = map->stripe_len * nr_data_stripes(map);
3118 mirror_num = 1;
a2de733c
AJ
3119 } else {
3120 increment = map->stripe_len;
193ea74b 3121 mirror_num = 1;
a2de733c
AJ
3122 }
3123
3124 path = btrfs_alloc_path();
3125 if (!path)
3126 return -ENOMEM;
3127
5a6ac9ea
MX
3128 ppath = btrfs_alloc_path();
3129 if (!ppath) {
379d6854 3130 btrfs_free_path(path);
5a6ac9ea
MX
3131 return -ENOMEM;
3132 }
3133
b5d67f64
SB
3134 /*
3135 * work on commit root. The related disk blocks are static as
3136 * long as COW is applied. This means, it is save to rewrite
3137 * them to repair disk errors without any race conditions
3138 */
a2de733c
AJ
3139 path->search_commit_root = 1;
3140 path->skip_locking = 1;
3141
063c54dc
GH
3142 ppath->search_commit_root = 1;
3143 ppath->skip_locking = 1;
a2de733c 3144 /*
7a26285e
AJ
3145 * trigger the readahead for extent tree csum tree and wait for
3146 * completion. During readahead, the scrub is officially paused
3147 * to not hold off transaction commits
a2de733c
AJ
3148 */
3149 logical = base + offset;
3b080b25 3150 physical_end = physical + nstripes * map->stripe_len;
ffe2d203 3151 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3b080b25 3152 get_raid56_logic_offset(physical_end, num,
5a6ac9ea 3153 map, &logic_end, NULL);
3b080b25
WS
3154 logic_end += base;
3155 } else {
3156 logic_end = logical + increment * nstripes;
3157 }
d9d181c1 3158 wait_event(sctx->list_wait,
b6bfebc1 3159 atomic_read(&sctx->bios_in_flight) == 0);
cb7ab021 3160 scrub_blocked_if_needed(fs_info);
7a26285e
AJ
3161
3162 /* FIXME it might be better to start readahead at commit root */
e6c11f9a
DS
3163 key.objectid = logical;
3164 key.type = BTRFS_EXTENT_ITEM_KEY;
3165 key.offset = (u64)0;
3b080b25 3166 key_end.objectid = logic_end;
3173a18f
JB
3167 key_end.type = BTRFS_METADATA_ITEM_KEY;
3168 key_end.offset = (u64)-1;
e6c11f9a 3169 reada1 = btrfs_reada_add(root, &key, &key_end);
7a26285e 3170
e6c11f9a
DS
3171 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3172 key.type = BTRFS_EXTENT_CSUM_KEY;
3173 key.offset = logical;
7a26285e
AJ
3174 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3175 key_end.type = BTRFS_EXTENT_CSUM_KEY;
3b080b25 3176 key_end.offset = logic_end;
e6c11f9a 3177 reada2 = btrfs_reada_add(csum_root, &key, &key_end);
7a26285e
AJ
3178
3179 if (!IS_ERR(reada1))
3180 btrfs_reada_wait(reada1);
3181 if (!IS_ERR(reada2))
3182 btrfs_reada_wait(reada2);
3183
a2de733c
AJ
3184
3185 /*
3186 * collect all data csums for the stripe to avoid seeking during
3187 * the scrub. This might currently (crc32) end up to be about 1MB
3188 */
e7786c3a 3189 blk_start_plug(&plug);
a2de733c 3190
a2de733c
AJ
3191 /*
3192 * now find all extents for each stripe and scrub them
3193 */
a2de733c 3194 ret = 0;
3b080b25 3195 while (physical < physical_end) {
a2de733c
AJ
3196 /*
3197 * canceled?
3198 */
3199 if (atomic_read(&fs_info->scrub_cancel_req) ||
d9d181c1 3200 atomic_read(&sctx->cancel_req)) {
a2de733c
AJ
3201 ret = -ECANCELED;
3202 goto out;
3203 }
3204 /*
3205 * check to see if we have to pause
3206 */
3207 if (atomic_read(&fs_info->scrub_pause_req)) {
3208 /* push queued extents */
ff023aac 3209 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
d9d181c1 3210 scrub_submit(sctx);
ff023aac
SB
3211 mutex_lock(&sctx->wr_ctx.wr_lock);
3212 scrub_wr_submit(sctx);
3213 mutex_unlock(&sctx->wr_ctx.wr_lock);
d9d181c1 3214 wait_event(sctx->list_wait,
b6bfebc1 3215 atomic_read(&sctx->bios_in_flight) == 0);
ff023aac 3216 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3cb0929a 3217 scrub_blocked_if_needed(fs_info);
a2de733c
AJ
3218 }
3219
f2f66a2f
ZL
3220 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3221 ret = get_raid56_logic_offset(physical, num, map,
3222 &logical,
3223 &stripe_logical);
3224 logical += base;
3225 if (ret) {
7955323b 3226 /* it is parity strip */
f2f66a2f 3227 stripe_logical += base;
a0dd59de 3228 stripe_end = stripe_logical + increment;
f2f66a2f
ZL
3229 ret = scrub_raid56_parity(sctx, map, scrub_dev,
3230 ppath, stripe_logical,
3231 stripe_end);
3232 if (ret)
3233 goto out;
3234 goto skip;
3235 }
3236 }
3237
7c76edb7
WS
3238 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3239 key.type = BTRFS_METADATA_ITEM_KEY;
3240 else
3241 key.type = BTRFS_EXTENT_ITEM_KEY;
a2de733c 3242 key.objectid = logical;
625f1c8d 3243 key.offset = (u64)-1;
a2de733c
AJ
3244
3245 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3246 if (ret < 0)
3247 goto out;
3173a18f 3248
8c51032f 3249 if (ret > 0) {
ade2e0b3 3250 ret = btrfs_previous_extent_item(root, path, 0);
a2de733c
AJ
3251 if (ret < 0)
3252 goto out;
8c51032f
AJ
3253 if (ret > 0) {
3254 /* there's no smaller item, so stick with the
3255 * larger one */
3256 btrfs_release_path(path);
3257 ret = btrfs_search_slot(NULL, root, &key,
3258 path, 0, 0);
3259 if (ret < 0)
3260 goto out;
3261 }
a2de733c
AJ
3262 }
3263
625f1c8d 3264 stop_loop = 0;
a2de733c 3265 while (1) {
3173a18f
JB
3266 u64 bytes;
3267
a2de733c
AJ
3268 l = path->nodes[0];
3269 slot = path->slots[0];
3270 if (slot >= btrfs_header_nritems(l)) {
3271 ret = btrfs_next_leaf(root, path);
3272 if (ret == 0)
3273 continue;
3274 if (ret < 0)
3275 goto out;
3276
625f1c8d 3277 stop_loop = 1;
a2de733c
AJ
3278 break;
3279 }
3280 btrfs_item_key_to_cpu(l, &key, slot);
3281
d7cad238
ZL
3282 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3283 key.type != BTRFS_METADATA_ITEM_KEY)
3284 goto next;
3285
3173a18f 3286 if (key.type == BTRFS_METADATA_ITEM_KEY)
707e8a07 3287 bytes = root->nodesize;
3173a18f
JB
3288 else
3289 bytes = key.offset;
3290
3291 if (key.objectid + bytes <= logical)
a2de733c
AJ
3292 goto next;
3293
625f1c8d
LB
3294 if (key.objectid >= logical + map->stripe_len) {
3295 /* out of this device extent */
3296 if (key.objectid >= logic_end)
3297 stop_loop = 1;
3298 break;
3299 }
a2de733c
AJ
3300
3301 extent = btrfs_item_ptr(l, slot,
3302 struct btrfs_extent_item);
3303 flags = btrfs_extent_flags(l, extent);
3304 generation = btrfs_extent_generation(l, extent);
3305
a323e813
ZL
3306 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3307 (key.objectid < logical ||
3308 key.objectid + bytes >
3309 logical + map->stripe_len)) {
efe120a0
FH
3310 btrfs_err(fs_info,
3311 "scrub: tree block %llu spanning "
3312 "stripes, ignored. logical=%llu",
c1c9ff7c 3313 key.objectid, logical);
9799d2c3
ZL
3314 spin_lock(&sctx->stat_lock);
3315 sctx->stat.uncorrectable_errors++;
3316 spin_unlock(&sctx->stat_lock);
a2de733c
AJ
3317 goto next;
3318 }
3319
625f1c8d
LB
3320again:
3321 extent_logical = key.objectid;
3322 extent_len = bytes;
3323
a2de733c
AJ
3324 /*
3325 * trim extent to this stripe
3326 */
625f1c8d
LB
3327 if (extent_logical < logical) {
3328 extent_len -= logical - extent_logical;
3329 extent_logical = logical;
a2de733c 3330 }
625f1c8d 3331 if (extent_logical + extent_len >
a2de733c 3332 logical + map->stripe_len) {
625f1c8d
LB
3333 extent_len = logical + map->stripe_len -
3334 extent_logical;
a2de733c
AJ
3335 }
3336
625f1c8d 3337 extent_physical = extent_logical - logical + physical;
ff023aac
SB
3338 extent_dev = scrub_dev;
3339 extent_mirror_num = mirror_num;
3340 if (is_dev_replace)
3341 scrub_remap_extent(fs_info, extent_logical,
3342 extent_len, &extent_physical,
3343 &extent_dev,
3344 &extent_mirror_num);
625f1c8d 3345
fe8cf654
ZL
3346 ret = btrfs_lookup_csums_range(csum_root,
3347 extent_logical,
3348 extent_logical +
3349 extent_len - 1,
3350 &sctx->csum_list, 1);
625f1c8d
LB
3351 if (ret)
3352 goto out;
3353
ff023aac
SB
3354 ret = scrub_extent(sctx, extent_logical, extent_len,
3355 extent_physical, extent_dev, flags,
3356 generation, extent_mirror_num,
115930cb 3357 extent_logical - logical + physical);
6fa96d72
ZL
3358
3359 scrub_free_csums(sctx);
3360
a2de733c
AJ
3361 if (ret)
3362 goto out;
3363
625f1c8d
LB
3364 if (extent_logical + extent_len <
3365 key.objectid + bytes) {
ffe2d203 3366 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3b080b25
WS
3367 /*
3368 * loop until we find next data stripe
3369 * or we have finished all stripes.
3370 */
5a6ac9ea
MX
3371loop:
3372 physical += map->stripe_len;
3373 ret = get_raid56_logic_offset(physical,
3374 num, map, &logical,
3375 &stripe_logical);
3376 logical += base;
3377
3378 if (ret && physical < physical_end) {
3379 stripe_logical += base;
3380 stripe_end = stripe_logical +
a0dd59de 3381 increment;
5a6ac9ea
MX
3382 ret = scrub_raid56_parity(sctx,
3383 map, scrub_dev, ppath,
3384 stripe_logical,
3385 stripe_end);
3386 if (ret)
3387 goto out;
3388 goto loop;
3389 }
3b080b25
WS
3390 } else {
3391 physical += map->stripe_len;
3392 logical += increment;
3393 }
625f1c8d
LB
3394 if (logical < key.objectid + bytes) {
3395 cond_resched();
3396 goto again;
3397 }
3398
3b080b25 3399 if (physical >= physical_end) {
625f1c8d
LB
3400 stop_loop = 1;
3401 break;
3402 }
3403 }
a2de733c
AJ
3404next:
3405 path->slots[0]++;
3406 }
71267333 3407 btrfs_release_path(path);
3b080b25 3408skip:
a2de733c
AJ
3409 logical += increment;
3410 physical += map->stripe_len;
d9d181c1 3411 spin_lock(&sctx->stat_lock);
625f1c8d
LB
3412 if (stop_loop)
3413 sctx->stat.last_physical = map->stripes[num].physical +
3414 length;
3415 else
3416 sctx->stat.last_physical = physical;
d9d181c1 3417 spin_unlock(&sctx->stat_lock);
625f1c8d
LB
3418 if (stop_loop)
3419 break;
a2de733c 3420 }
ff023aac 3421out:
a2de733c 3422 /* push queued extents */
d9d181c1 3423 scrub_submit(sctx);
ff023aac
SB
3424 mutex_lock(&sctx->wr_ctx.wr_lock);
3425 scrub_wr_submit(sctx);
3426 mutex_unlock(&sctx->wr_ctx.wr_lock);
a2de733c 3427
e7786c3a 3428 blk_finish_plug(&plug);
a2de733c 3429 btrfs_free_path(path);
5a6ac9ea 3430 btrfs_free_path(ppath);
a2de733c
AJ
3431 return ret < 0 ? ret : 0;
3432}
3433
d9d181c1 3434static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
a36cf8b8 3435 struct btrfs_device *scrub_dev,
a36cf8b8 3436 u64 chunk_offset, u64 length,
020d5b73
FM
3437 u64 dev_offset,
3438 struct btrfs_block_group_cache *cache,
3439 int is_dev_replace)
a2de733c
AJ
3440{
3441 struct btrfs_mapping_tree *map_tree =
a36cf8b8 3442 &sctx->dev_root->fs_info->mapping_tree;
a2de733c
AJ
3443 struct map_lookup *map;
3444 struct extent_map *em;
3445 int i;
ff023aac 3446 int ret = 0;
a2de733c
AJ
3447
3448 read_lock(&map_tree->map_tree.lock);
3449 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3450 read_unlock(&map_tree->map_tree.lock);
3451
020d5b73
FM
3452 if (!em) {
3453 /*
3454 * Might have been an unused block group deleted by the cleaner
3455 * kthread or relocation.
3456 */
3457 spin_lock(&cache->lock);
3458 if (!cache->removed)
3459 ret = -EINVAL;
3460 spin_unlock(&cache->lock);
3461
3462 return ret;
3463 }
a2de733c 3464
95617d69 3465 map = em->map_lookup;
a2de733c
AJ
3466 if (em->start != chunk_offset)
3467 goto out;
3468
3469 if (em->len < length)
3470 goto out;
3471
3472 for (i = 0; i < map->num_stripes; ++i) {
a36cf8b8 3473 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
859acaf1 3474 map->stripes[i].physical == dev_offset) {
a36cf8b8 3475 ret = scrub_stripe(sctx, map, scrub_dev, i,
ff023aac
SB
3476 chunk_offset, length,
3477 is_dev_replace);
a2de733c
AJ
3478 if (ret)
3479 goto out;
3480 }
3481 }
3482out:
3483 free_extent_map(em);
3484
3485 return ret;
3486}
3487
3488static noinline_for_stack
a36cf8b8 3489int scrub_enumerate_chunks(struct scrub_ctx *sctx,
ff023aac
SB
3490 struct btrfs_device *scrub_dev, u64 start, u64 end,
3491 int is_dev_replace)
a2de733c
AJ
3492{
3493 struct btrfs_dev_extent *dev_extent = NULL;
3494 struct btrfs_path *path;
a36cf8b8 3495 struct btrfs_root *root = sctx->dev_root;
a2de733c
AJ
3496 struct btrfs_fs_info *fs_info = root->fs_info;
3497 u64 length;
a2de733c 3498 u64 chunk_offset;
55e3a601 3499 int ret = 0;
76a8efa1 3500 int ro_set;
a2de733c
AJ
3501 int slot;
3502 struct extent_buffer *l;
3503 struct btrfs_key key;
3504 struct btrfs_key found_key;
3505 struct btrfs_block_group_cache *cache;
ff023aac 3506 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
a2de733c
AJ
3507
3508 path = btrfs_alloc_path();
3509 if (!path)
3510 return -ENOMEM;
3511
e4058b54 3512 path->reada = READA_FORWARD;
a2de733c
AJ
3513 path->search_commit_root = 1;
3514 path->skip_locking = 1;
3515
a36cf8b8 3516 key.objectid = scrub_dev->devid;
a2de733c
AJ
3517 key.offset = 0ull;
3518 key.type = BTRFS_DEV_EXTENT_KEY;
3519
a2de733c
AJ
3520 while (1) {
3521 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3522 if (ret < 0)
8c51032f
AJ
3523 break;
3524 if (ret > 0) {
3525 if (path->slots[0] >=
3526 btrfs_header_nritems(path->nodes[0])) {
3527 ret = btrfs_next_leaf(root, path);
55e3a601
Z
3528 if (ret < 0)
3529 break;
3530 if (ret > 0) {
3531 ret = 0;
8c51032f 3532 break;
55e3a601
Z
3533 }
3534 } else {
3535 ret = 0;
8c51032f
AJ
3536 }
3537 }
a2de733c
AJ
3538
3539 l = path->nodes[0];
3540 slot = path->slots[0];
3541
3542 btrfs_item_key_to_cpu(l, &found_key, slot);
3543
a36cf8b8 3544 if (found_key.objectid != scrub_dev->devid)
a2de733c
AJ
3545 break;
3546
962a298f 3547 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
a2de733c
AJ
3548 break;
3549
3550 if (found_key.offset >= end)
3551 break;
3552
3553 if (found_key.offset < key.offset)
3554 break;
3555
3556 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3557 length = btrfs_dev_extent_length(l, dev_extent);
3558
ced96edc
QW
3559 if (found_key.offset + length <= start)
3560 goto skip;
a2de733c 3561
a2de733c
AJ
3562 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3563
3564 /*
3565 * get a reference on the corresponding block group to prevent
3566 * the chunk from going away while we scrub it
3567 */
3568 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
ced96edc
QW
3569
3570 /* some chunks are removed but not committed to disk yet,
3571 * continue scrubbing */
3572 if (!cache)
3573 goto skip;
3574
55e3a601
Z
3575 /*
3576 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3577 * to avoid deadlock caused by:
3578 * btrfs_inc_block_group_ro()
3579 * -> btrfs_wait_for_commit()
3580 * -> btrfs_commit_transaction()
3581 * -> btrfs_scrub_pause()
3582 */
3583 scrub_pause_on(fs_info);
3584 ret = btrfs_inc_block_group_ro(root, cache);
f0e9b7d6
FM
3585 if (!ret && is_dev_replace) {
3586 /*
3587 * If we are doing a device replace wait for any tasks
3588 * that started dellaloc right before we set the block
3589 * group to RO mode, as they might have just allocated
3590 * an extent from it or decided they could do a nocow
3591 * write. And if any such tasks did that, wait for their
3592 * ordered extents to complete and then commit the
3593 * current transaction, so that we can later see the new
3594 * extent items in the extent tree - the ordered extents
3595 * create delayed data references (for cow writes) when
3596 * they complete, which will be run and insert the
3597 * corresponding extent items into the extent tree when
3598 * we commit the transaction they used when running
3599 * inode.c:btrfs_finish_ordered_io(). We later use
3600 * the commit root of the extent tree to find extents
3601 * to copy from the srcdev into the tgtdev, and we don't
3602 * want to miss any new extents.
3603 */
3604 btrfs_wait_block_group_reservations(cache);
3605 btrfs_wait_nocow_writers(cache);
3606 ret = btrfs_wait_ordered_roots(fs_info, -1,
3607 cache->key.objectid,
3608 cache->key.offset);
3609 if (ret > 0) {
3610 struct btrfs_trans_handle *trans;
3611
3612 trans = btrfs_join_transaction(root);
3613 if (IS_ERR(trans))
3614 ret = PTR_ERR(trans);
3615 else
3616 ret = btrfs_commit_transaction(trans,
3617 root);
3618 if (ret) {
3619 scrub_pause_off(fs_info);
3620 btrfs_put_block_group(cache);
3621 break;
3622 }
3623 }
3624 }
55e3a601 3625 scrub_pause_off(fs_info);
76a8efa1
Z
3626
3627 if (ret == 0) {
3628 ro_set = 1;
3629 } else if (ret == -ENOSPC) {
3630 /*
3631 * btrfs_inc_block_group_ro return -ENOSPC when it
3632 * failed in creating new chunk for metadata.
3633 * It is not a problem for scrub/replace, because
3634 * metadata are always cowed, and our scrub paused
3635 * commit_transactions.
3636 */
3637 ro_set = 0;
3638 } else {
3639 btrfs_warn(fs_info, "failed setting block group ro, ret=%d\n",
3640 ret);
55e3a601
Z
3641 btrfs_put_block_group(cache);
3642 break;
3643 }
3644
81e87a73 3645 btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
ff023aac
SB
3646 dev_replace->cursor_right = found_key.offset + length;
3647 dev_replace->cursor_left = found_key.offset;
3648 dev_replace->item_needs_writeback = 1;
81e87a73 3649 btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
8c204c96 3650 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
020d5b73 3651 found_key.offset, cache, is_dev_replace);
ff023aac
SB
3652
3653 /*
3654 * flush, submit all pending read and write bios, afterwards
3655 * wait for them.
3656 * Note that in the dev replace case, a read request causes
3657 * write requests that are submitted in the read completion
3658 * worker. Therefore in the current situation, it is required
3659 * that all write requests are flushed, so that all read and
3660 * write requests are really completed when bios_in_flight
3661 * changes to 0.
3662 */
3663 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3664 scrub_submit(sctx);
3665 mutex_lock(&sctx->wr_ctx.wr_lock);
3666 scrub_wr_submit(sctx);
3667 mutex_unlock(&sctx->wr_ctx.wr_lock);
3668
3669 wait_event(sctx->list_wait,
3670 atomic_read(&sctx->bios_in_flight) == 0);
b708ce96
Z
3671
3672 scrub_pause_on(fs_info);
12cf9372
WS
3673
3674 /*
3675 * must be called before we decrease @scrub_paused.
3676 * make sure we don't block transaction commit while
3677 * we are waiting pending workers finished.
3678 */
ff023aac
SB
3679 wait_event(sctx->list_wait,
3680 atomic_read(&sctx->workers_pending) == 0);
12cf9372
WS
3681 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3682
b708ce96 3683 scrub_pause_off(fs_info);
ff023aac 3684
1a1a8b73
FM
3685 btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3686 dev_replace->cursor_left = dev_replace->cursor_right;
3687 dev_replace->item_needs_writeback = 1;
3688 btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3689
76a8efa1
Z
3690 if (ro_set)
3691 btrfs_dec_block_group_ro(root, cache);
ff023aac 3692
758f2dfc
FM
3693 /*
3694 * We might have prevented the cleaner kthread from deleting
3695 * this block group if it was already unused because we raced
3696 * and set it to RO mode first. So add it back to the unused
3697 * list, otherwise it might not ever be deleted unless a manual
3698 * balance is triggered or it becomes used and unused again.
3699 */
3700 spin_lock(&cache->lock);
3701 if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3702 btrfs_block_group_used(&cache->item) == 0) {
3703 spin_unlock(&cache->lock);
3704 spin_lock(&fs_info->unused_bgs_lock);
3705 if (list_empty(&cache->bg_list)) {
3706 btrfs_get_block_group(cache);
3707 list_add_tail(&cache->bg_list,
3708 &fs_info->unused_bgs);
3709 }
3710 spin_unlock(&fs_info->unused_bgs_lock);
3711 } else {
3712 spin_unlock(&cache->lock);
3713 }
3714
a2de733c
AJ
3715 btrfs_put_block_group(cache);
3716 if (ret)
3717 break;
af1be4f8
SB
3718 if (is_dev_replace &&
3719 atomic64_read(&dev_replace->num_write_errors) > 0) {
ff023aac
SB
3720 ret = -EIO;
3721 break;
3722 }
3723 if (sctx->stat.malloc_errors > 0) {
3724 ret = -ENOMEM;
3725 break;
3726 }
ced96edc 3727skip:
a2de733c 3728 key.offset = found_key.offset + length;
71267333 3729 btrfs_release_path(path);
a2de733c
AJ
3730 }
3731
a2de733c 3732 btrfs_free_path(path);
8c51032f 3733
55e3a601 3734 return ret;
a2de733c
AJ
3735}
3736
a36cf8b8
SB
3737static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3738 struct btrfs_device *scrub_dev)
a2de733c
AJ
3739{
3740 int i;
3741 u64 bytenr;
3742 u64 gen;
3743 int ret;
a36cf8b8 3744 struct btrfs_root *root = sctx->dev_root;
a2de733c 3745
87533c47 3746 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
79787eaa
JM
3747 return -EIO;
3748
5f546063
MX
3749 /* Seed devices of a new filesystem has their own generation. */
3750 if (scrub_dev->fs_devices != root->fs_info->fs_devices)
3751 gen = scrub_dev->generation;
3752 else
3753 gen = root->fs_info->last_trans_committed;
a2de733c
AJ
3754
3755 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3756 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3757 if (bytenr + BTRFS_SUPER_INFO_SIZE >
3758 scrub_dev->commit_total_bytes)
a2de733c
AJ
3759 break;
3760
d9d181c1 3761 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
a36cf8b8 3762 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
ff023aac 3763 NULL, 1, bytenr);
a2de733c
AJ
3764 if (ret)
3765 return ret;
3766 }
b6bfebc1 3767 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
3768
3769 return 0;
3770}
3771
3772/*
3773 * get a reference count on fs_info->scrub_workers. start worker if necessary
3774 */
ff023aac
SB
3775static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3776 int is_dev_replace)
a2de733c 3777{
6f011058 3778 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
0339ef2f 3779 int max_active = fs_info->thread_pool_size;
a2de733c 3780
632dd772 3781 if (fs_info->scrub_workers_refcnt == 0) {
ff023aac 3782 if (is_dev_replace)
0339ef2f 3783 fs_info->scrub_workers =
0de270fa 3784 btrfs_alloc_workqueue("scrub", flags,
0339ef2f 3785 1, 4);
ff023aac 3786 else
0339ef2f 3787 fs_info->scrub_workers =
0de270fa 3788 btrfs_alloc_workqueue("scrub", flags,
0339ef2f 3789 max_active, 4);
e82afc52
ZL
3790 if (!fs_info->scrub_workers)
3791 goto fail_scrub_workers;
3792
0339ef2f 3793 fs_info->scrub_wr_completion_workers =
0de270fa 3794 btrfs_alloc_workqueue("scrubwrc", flags,
0339ef2f 3795 max_active, 2);
e82afc52
ZL
3796 if (!fs_info->scrub_wr_completion_workers)
3797 goto fail_scrub_wr_completion_workers;
3798
0339ef2f 3799 fs_info->scrub_nocow_workers =
0de270fa 3800 btrfs_alloc_workqueue("scrubnc", flags, 1, 0);
e82afc52
ZL
3801 if (!fs_info->scrub_nocow_workers)
3802 goto fail_scrub_nocow_workers;
20b2e302 3803 fs_info->scrub_parity_workers =
0de270fa 3804 btrfs_alloc_workqueue("scrubparity", flags,
20b2e302 3805 max_active, 2);
e82afc52
ZL
3806 if (!fs_info->scrub_parity_workers)
3807 goto fail_scrub_parity_workers;
632dd772 3808 }
a2de733c 3809 ++fs_info->scrub_workers_refcnt;
e82afc52
ZL
3810 return 0;
3811
3812fail_scrub_parity_workers:
3813 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3814fail_scrub_nocow_workers:
3815 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3816fail_scrub_wr_completion_workers:
3817 btrfs_destroy_workqueue(fs_info->scrub_workers);
3818fail_scrub_workers:
3819 return -ENOMEM;
a2de733c
AJ
3820}
3821
aa1b8cd4 3822static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
a2de733c 3823{
ff023aac 3824 if (--fs_info->scrub_workers_refcnt == 0) {
0339ef2f
QW
3825 btrfs_destroy_workqueue(fs_info->scrub_workers);
3826 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3827 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
20b2e302 3828 btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
ff023aac 3829 }
a2de733c 3830 WARN_ON(fs_info->scrub_workers_refcnt < 0);
a2de733c
AJ
3831}
3832
aa1b8cd4
SB
3833int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3834 u64 end, struct btrfs_scrub_progress *progress,
63a212ab 3835 int readonly, int is_dev_replace)
a2de733c 3836{
d9d181c1 3837 struct scrub_ctx *sctx;
a2de733c
AJ
3838 int ret;
3839 struct btrfs_device *dev;
5d68da3b 3840 struct rcu_string *name;
a2de733c 3841
aa1b8cd4 3842 if (btrfs_fs_closing(fs_info))
a2de733c
AJ
3843 return -EINVAL;
3844
aa1b8cd4 3845 if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
b5d67f64
SB
3846 /*
3847 * in this case scrub is unable to calculate the checksum
3848 * the way scrub is implemented. Do not handle this
3849 * situation at all because it won't ever happen.
3850 */
efe120a0
FH
3851 btrfs_err(fs_info,
3852 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
aa1b8cd4 3853 fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
b5d67f64
SB
3854 return -EINVAL;
3855 }
3856
aa1b8cd4 3857 if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
b5d67f64 3858 /* not supported for data w/o checksums */
751bebbe 3859 btrfs_err_rl(fs_info,
efe120a0
FH
3860 "scrub: size assumption sectorsize != PAGE_SIZE "
3861 "(%d != %lu) fails",
27f9f023 3862 fs_info->chunk_root->sectorsize, PAGE_SIZE);
a2de733c
AJ
3863 return -EINVAL;
3864 }
3865
7a9e9987
SB
3866 if (fs_info->chunk_root->nodesize >
3867 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3868 fs_info->chunk_root->sectorsize >
3869 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3870 /*
3871 * would exhaust the array bounds of pagev member in
3872 * struct scrub_block
3873 */
efe120a0
FH
3874 btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
3875 "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
7a9e9987
SB
3876 fs_info->chunk_root->nodesize,
3877 SCRUB_MAX_PAGES_PER_BLOCK,
3878 fs_info->chunk_root->sectorsize,
3879 SCRUB_MAX_PAGES_PER_BLOCK);
3880 return -EINVAL;
3881 }
3882
a2de733c 3883
aa1b8cd4
SB
3884 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3885 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
63a212ab 3886 if (!dev || (dev->missing && !is_dev_replace)) {
aa1b8cd4 3887 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c
AJ
3888 return -ENODEV;
3889 }
a2de733c 3890
5d68da3b
MX
3891 if (!is_dev_replace && !readonly && !dev->writeable) {
3892 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3893 rcu_read_lock();
3894 name = rcu_dereference(dev->name);
3895 btrfs_err(fs_info, "scrub: device %s is not writable",
3896 name->str);
3897 rcu_read_unlock();
3898 return -EROFS;
3899 }
3900
3b7a016f 3901 mutex_lock(&fs_info->scrub_lock);
63a212ab 3902 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
a2de733c 3903 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 3904 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
aa1b8cd4 3905 return -EIO;
a2de733c
AJ
3906 }
3907
73beece9 3908 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
8dabb742
SB
3909 if (dev->scrub_device ||
3910 (!is_dev_replace &&
3911 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
73beece9 3912 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
a2de733c 3913 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 3914 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c
AJ
3915 return -EINPROGRESS;
3916 }
73beece9 3917 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3b7a016f
WS
3918
3919 ret = scrub_workers_get(fs_info, is_dev_replace);
3920 if (ret) {
3921 mutex_unlock(&fs_info->scrub_lock);
3922 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3923 return ret;
3924 }
3925
63a212ab 3926 sctx = scrub_setup_ctx(dev, is_dev_replace);
d9d181c1 3927 if (IS_ERR(sctx)) {
a2de733c 3928 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4
SB
3929 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3930 scrub_workers_put(fs_info);
d9d181c1 3931 return PTR_ERR(sctx);
a2de733c 3932 }
d9d181c1
SB
3933 sctx->readonly = readonly;
3934 dev->scrub_device = sctx;
3cb0929a 3935 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c 3936
3cb0929a
WS
3937 /*
3938 * checking @scrub_pause_req here, we can avoid
3939 * race between committing transaction and scrubbing.
3940 */
cb7ab021 3941 __scrub_blocked_if_needed(fs_info);
a2de733c
AJ
3942 atomic_inc(&fs_info->scrubs_running);
3943 mutex_unlock(&fs_info->scrub_lock);
a2de733c 3944
ff023aac 3945 if (!is_dev_replace) {
9b011adf
WS
3946 /*
3947 * by holding device list mutex, we can
3948 * kick off writing super in log tree sync.
3949 */
3cb0929a 3950 mutex_lock(&fs_info->fs_devices->device_list_mutex);
ff023aac 3951 ret = scrub_supers(sctx, dev);
3cb0929a 3952 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
ff023aac 3953 }
a2de733c
AJ
3954
3955 if (!ret)
ff023aac
SB
3956 ret = scrub_enumerate_chunks(sctx, dev, start, end,
3957 is_dev_replace);
a2de733c 3958
b6bfebc1 3959 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
3960 atomic_dec(&fs_info->scrubs_running);
3961 wake_up(&fs_info->scrub_pause_wait);
3962
b6bfebc1 3963 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
0ef8e451 3964
a2de733c 3965 if (progress)
d9d181c1 3966 memcpy(progress, &sctx->stat, sizeof(*progress));
a2de733c
AJ
3967
3968 mutex_lock(&fs_info->scrub_lock);
3969 dev->scrub_device = NULL;
3b7a016f 3970 scrub_workers_put(fs_info);
a2de733c
AJ
3971 mutex_unlock(&fs_info->scrub_lock);
3972
f55985f4 3973 scrub_put_ctx(sctx);
a2de733c
AJ
3974
3975 return ret;
3976}
3977
143bede5 3978void btrfs_scrub_pause(struct btrfs_root *root)
a2de733c
AJ
3979{
3980 struct btrfs_fs_info *fs_info = root->fs_info;
3981
3982 mutex_lock(&fs_info->scrub_lock);
3983 atomic_inc(&fs_info->scrub_pause_req);
3984 while (atomic_read(&fs_info->scrubs_paused) !=
3985 atomic_read(&fs_info->scrubs_running)) {
3986 mutex_unlock(&fs_info->scrub_lock);
3987 wait_event(fs_info->scrub_pause_wait,
3988 atomic_read(&fs_info->scrubs_paused) ==
3989 atomic_read(&fs_info->scrubs_running));
3990 mutex_lock(&fs_info->scrub_lock);
3991 }
3992 mutex_unlock(&fs_info->scrub_lock);
a2de733c
AJ
3993}
3994
143bede5 3995void btrfs_scrub_continue(struct btrfs_root *root)
a2de733c
AJ
3996{
3997 struct btrfs_fs_info *fs_info = root->fs_info;
3998
3999 atomic_dec(&fs_info->scrub_pause_req);
4000 wake_up(&fs_info->scrub_pause_wait);
a2de733c
AJ
4001}
4002
aa1b8cd4 4003int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
a2de733c 4004{
a2de733c
AJ
4005 mutex_lock(&fs_info->scrub_lock);
4006 if (!atomic_read(&fs_info->scrubs_running)) {
4007 mutex_unlock(&fs_info->scrub_lock);
4008 return -ENOTCONN;
4009 }
4010
4011 atomic_inc(&fs_info->scrub_cancel_req);
4012 while (atomic_read(&fs_info->scrubs_running)) {
4013 mutex_unlock(&fs_info->scrub_lock);
4014 wait_event(fs_info->scrub_pause_wait,
4015 atomic_read(&fs_info->scrubs_running) == 0);
4016 mutex_lock(&fs_info->scrub_lock);
4017 }
4018 atomic_dec(&fs_info->scrub_cancel_req);
4019 mutex_unlock(&fs_info->scrub_lock);
4020
4021 return 0;
4022}
4023
aa1b8cd4
SB
4024int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
4025 struct btrfs_device *dev)
49b25e05 4026{
d9d181c1 4027 struct scrub_ctx *sctx;
a2de733c
AJ
4028
4029 mutex_lock(&fs_info->scrub_lock);
d9d181c1
SB
4030 sctx = dev->scrub_device;
4031 if (!sctx) {
a2de733c
AJ
4032 mutex_unlock(&fs_info->scrub_lock);
4033 return -ENOTCONN;
4034 }
d9d181c1 4035 atomic_inc(&sctx->cancel_req);
a2de733c
AJ
4036 while (dev->scrub_device) {
4037 mutex_unlock(&fs_info->scrub_lock);
4038 wait_event(fs_info->scrub_pause_wait,
4039 dev->scrub_device == NULL);
4040 mutex_lock(&fs_info->scrub_lock);
4041 }
4042 mutex_unlock(&fs_info->scrub_lock);
4043
4044 return 0;
4045}
1623edeb 4046
a2de733c
AJ
4047int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
4048 struct btrfs_scrub_progress *progress)
4049{
4050 struct btrfs_device *dev;
d9d181c1 4051 struct scrub_ctx *sctx = NULL;
a2de733c
AJ
4052
4053 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
aa1b8cd4 4054 dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
a2de733c 4055 if (dev)
d9d181c1
SB
4056 sctx = dev->scrub_device;
4057 if (sctx)
4058 memcpy(progress, &sctx->stat, sizeof(*progress));
a2de733c
AJ
4059 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
4060
d9d181c1 4061 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
a2de733c 4062}
ff023aac
SB
4063
4064static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4065 u64 extent_logical, u64 extent_len,
4066 u64 *extent_physical,
4067 struct btrfs_device **extent_dev,
4068 int *extent_mirror_num)
4069{
4070 u64 mapped_length;
4071 struct btrfs_bio *bbio = NULL;
4072 int ret;
4073
4074 mapped_length = extent_len;
4075 ret = btrfs_map_block(fs_info, READ, extent_logical,
4076 &mapped_length, &bbio, 0);
4077 if (ret || !bbio || mapped_length < extent_len ||
4078 !bbio->stripes[0].dev->bdev) {
6e9606d2 4079 btrfs_put_bbio(bbio);
ff023aac
SB
4080 return;
4081 }
4082
4083 *extent_physical = bbio->stripes[0].physical;
4084 *extent_mirror_num = bbio->mirror_num;
4085 *extent_dev = bbio->stripes[0].dev;
6e9606d2 4086 btrfs_put_bbio(bbio);
ff023aac
SB
4087}
4088
4089static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
4090 struct scrub_wr_ctx *wr_ctx,
4091 struct btrfs_fs_info *fs_info,
4092 struct btrfs_device *dev,
4093 int is_dev_replace)
4094{
4095 WARN_ON(wr_ctx->wr_curr_bio != NULL);
4096
4097 mutex_init(&wr_ctx->wr_lock);
4098 wr_ctx->wr_curr_bio = NULL;
4099 if (!is_dev_replace)
4100 return 0;
4101
4102 WARN_ON(!dev->bdev);
b54ffb73 4103 wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
ff023aac
SB
4104 wr_ctx->tgtdev = dev;
4105 atomic_set(&wr_ctx->flush_all_writes, 0);
4106 return 0;
4107}
4108
4109static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
4110{
4111 mutex_lock(&wr_ctx->wr_lock);
4112 kfree(wr_ctx->wr_curr_bio);
4113 wr_ctx->wr_curr_bio = NULL;
4114 mutex_unlock(&wr_ctx->wr_lock);
4115}
4116
4117static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4118 int mirror_num, u64 physical_for_dev_replace)
4119{
4120 struct scrub_copy_nocow_ctx *nocow_ctx;
4121 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
4122
4123 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4124 if (!nocow_ctx) {
4125 spin_lock(&sctx->stat_lock);
4126 sctx->stat.malloc_errors++;
4127 spin_unlock(&sctx->stat_lock);
4128 return -ENOMEM;
4129 }
4130
4131 scrub_pending_trans_workers_inc(sctx);
4132
4133 nocow_ctx->sctx = sctx;
4134 nocow_ctx->logical = logical;
4135 nocow_ctx->len = len;
4136 nocow_ctx->mirror_num = mirror_num;
4137 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
9e0af237
LB
4138 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4139 copy_nocow_pages_worker, NULL, NULL);
652f25a2 4140 INIT_LIST_HEAD(&nocow_ctx->inodes);
0339ef2f
QW
4141 btrfs_queue_work(fs_info->scrub_nocow_workers,
4142 &nocow_ctx->work);
ff023aac
SB
4143
4144 return 0;
4145}
4146
652f25a2
JB
4147static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4148{
4149 struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4150 struct scrub_nocow_inode *nocow_inode;
4151
4152 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4153 if (!nocow_inode)
4154 return -ENOMEM;
4155 nocow_inode->inum = inum;
4156 nocow_inode->offset = offset;
4157 nocow_inode->root = root;
4158 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4159 return 0;
4160}
4161
4162#define COPY_COMPLETE 1
4163
ff023aac
SB
4164static void copy_nocow_pages_worker(struct btrfs_work *work)
4165{
4166 struct scrub_copy_nocow_ctx *nocow_ctx =
4167 container_of(work, struct scrub_copy_nocow_ctx, work);
4168 struct scrub_ctx *sctx = nocow_ctx->sctx;
4169 u64 logical = nocow_ctx->logical;
4170 u64 len = nocow_ctx->len;
4171 int mirror_num = nocow_ctx->mirror_num;
4172 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4173 int ret;
4174 struct btrfs_trans_handle *trans = NULL;
4175 struct btrfs_fs_info *fs_info;
4176 struct btrfs_path *path;
4177 struct btrfs_root *root;
4178 int not_written = 0;
4179
4180 fs_info = sctx->dev_root->fs_info;
4181 root = fs_info->extent_root;
4182
4183 path = btrfs_alloc_path();
4184 if (!path) {
4185 spin_lock(&sctx->stat_lock);
4186 sctx->stat.malloc_errors++;
4187 spin_unlock(&sctx->stat_lock);
4188 not_written = 1;
4189 goto out;
4190 }
4191
4192 trans = btrfs_join_transaction(root);
4193 if (IS_ERR(trans)) {
4194 not_written = 1;
4195 goto out;
4196 }
4197
4198 ret = iterate_inodes_from_logical(logical, fs_info, path,
652f25a2 4199 record_inode_for_nocow, nocow_ctx);
ff023aac 4200 if (ret != 0 && ret != -ENOENT) {
efe120a0
FH
4201 btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
4202 "phys %llu, len %llu, mir %u, ret %d",
118a0a25
GU
4203 logical, physical_for_dev_replace, len, mirror_num,
4204 ret);
ff023aac
SB
4205 not_written = 1;
4206 goto out;
4207 }
4208
652f25a2
JB
4209 btrfs_end_transaction(trans, root);
4210 trans = NULL;
4211 while (!list_empty(&nocow_ctx->inodes)) {
4212 struct scrub_nocow_inode *entry;
4213 entry = list_first_entry(&nocow_ctx->inodes,
4214 struct scrub_nocow_inode,
4215 list);
4216 list_del_init(&entry->list);
4217 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4218 entry->root, nocow_ctx);
4219 kfree(entry);
4220 if (ret == COPY_COMPLETE) {
4221 ret = 0;
4222 break;
4223 } else if (ret) {
4224 break;
4225 }
4226 }
ff023aac 4227out:
652f25a2
JB
4228 while (!list_empty(&nocow_ctx->inodes)) {
4229 struct scrub_nocow_inode *entry;
4230 entry = list_first_entry(&nocow_ctx->inodes,
4231 struct scrub_nocow_inode,
4232 list);
4233 list_del_init(&entry->list);
4234 kfree(entry);
4235 }
ff023aac
SB
4236 if (trans && !IS_ERR(trans))
4237 btrfs_end_transaction(trans, root);
4238 if (not_written)
4239 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4240 num_uncorrectable_read_errors);
4241
4242 btrfs_free_path(path);
4243 kfree(nocow_ctx);
4244
4245 scrub_pending_trans_workers_dec(sctx);
4246}
4247
32159242
GH
4248static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
4249 u64 logical)
4250{
4251 struct extent_state *cached_state = NULL;
4252 struct btrfs_ordered_extent *ordered;
4253 struct extent_io_tree *io_tree;
4254 struct extent_map *em;
4255 u64 lockstart = start, lockend = start + len - 1;
4256 int ret = 0;
4257
4258 io_tree = &BTRFS_I(inode)->io_tree;
4259
ff13db41 4260 lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
32159242
GH
4261 ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4262 if (ordered) {
4263 btrfs_put_ordered_extent(ordered);
4264 ret = 1;
4265 goto out_unlock;
4266 }
4267
4268 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4269 if (IS_ERR(em)) {
4270 ret = PTR_ERR(em);
4271 goto out_unlock;
4272 }
4273
4274 /*
4275 * This extent does not actually cover the logical extent anymore,
4276 * move on to the next inode.
4277 */
4278 if (em->block_start > logical ||
4279 em->block_start + em->block_len < logical + len) {
4280 free_extent_map(em);
4281 ret = 1;
4282 goto out_unlock;
4283 }
4284 free_extent_map(em);
4285
4286out_unlock:
4287 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
4288 GFP_NOFS);
4289 return ret;
4290}
4291
652f25a2
JB
4292static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4293 struct scrub_copy_nocow_ctx *nocow_ctx)
ff023aac 4294{
826aa0a8 4295 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
ff023aac 4296 struct btrfs_key key;
826aa0a8
MX
4297 struct inode *inode;
4298 struct page *page;
ff023aac 4299 struct btrfs_root *local_root;
652f25a2 4300 struct extent_io_tree *io_tree;
ff023aac 4301 u64 physical_for_dev_replace;
32159242 4302 u64 nocow_ctx_logical;
652f25a2 4303 u64 len = nocow_ctx->len;
826aa0a8 4304 unsigned long index;
6f1c3605 4305 int srcu_index;
652f25a2
JB
4306 int ret = 0;
4307 int err = 0;
ff023aac
SB
4308
4309 key.objectid = root;
4310 key.type = BTRFS_ROOT_ITEM_KEY;
4311 key.offset = (u64)-1;
6f1c3605
LB
4312
4313 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4314
ff023aac 4315 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
6f1c3605
LB
4316 if (IS_ERR(local_root)) {
4317 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
ff023aac 4318 return PTR_ERR(local_root);
6f1c3605 4319 }
ff023aac
SB
4320
4321 key.type = BTRFS_INODE_ITEM_KEY;
4322 key.objectid = inum;
4323 key.offset = 0;
4324 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
6f1c3605 4325 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
ff023aac
SB
4326 if (IS_ERR(inode))
4327 return PTR_ERR(inode);
4328
edd1400b 4329 /* Avoid truncate/dio/punch hole.. */
5955102c 4330 inode_lock(inode);
edd1400b
MX
4331 inode_dio_wait(inode);
4332
ff023aac 4333 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
652f25a2 4334 io_tree = &BTRFS_I(inode)->io_tree;
32159242 4335 nocow_ctx_logical = nocow_ctx->logical;
652f25a2 4336
32159242
GH
4337 ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
4338 if (ret) {
4339 ret = ret > 0 ? 0 : ret;
4340 goto out;
652f25a2 4341 }
652f25a2 4342
09cbfeaf
KS
4343 while (len >= PAGE_SIZE) {
4344 index = offset >> PAGE_SHIFT;
edd1400b 4345again:
ff023aac
SB
4346 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4347 if (!page) {
efe120a0 4348 btrfs_err(fs_info, "find_or_create_page() failed");
ff023aac 4349 ret = -ENOMEM;
826aa0a8 4350 goto out;
ff023aac
SB
4351 }
4352
4353 if (PageUptodate(page)) {
4354 if (PageDirty(page))
4355 goto next_page;
4356 } else {
4357 ClearPageError(page);
32159242 4358 err = extent_read_full_page(io_tree, page,
652f25a2
JB
4359 btrfs_get_extent,
4360 nocow_ctx->mirror_num);
826aa0a8
MX
4361 if (err) {
4362 ret = err;
ff023aac
SB
4363 goto next_page;
4364 }
edd1400b 4365
26b25891 4366 lock_page(page);
edd1400b
MX
4367 /*
4368 * If the page has been remove from the page cache,
4369 * the data on it is meaningless, because it may be
4370 * old one, the new data may be written into the new
4371 * page in the page cache.
4372 */
4373 if (page->mapping != inode->i_mapping) {
652f25a2 4374 unlock_page(page);
09cbfeaf 4375 put_page(page);
edd1400b
MX
4376 goto again;
4377 }
ff023aac
SB
4378 if (!PageUptodate(page)) {
4379 ret = -EIO;
4380 goto next_page;
4381 }
4382 }
32159242
GH
4383
4384 ret = check_extent_to_block(inode, offset, len,
4385 nocow_ctx_logical);
4386 if (ret) {
4387 ret = ret > 0 ? 0 : ret;
4388 goto next_page;
4389 }
4390
826aa0a8
MX
4391 err = write_page_nocow(nocow_ctx->sctx,
4392 physical_for_dev_replace, page);
4393 if (err)
4394 ret = err;
ff023aac 4395next_page:
826aa0a8 4396 unlock_page(page);
09cbfeaf 4397 put_page(page);
826aa0a8
MX
4398
4399 if (ret)
4400 break;
4401
09cbfeaf
KS
4402 offset += PAGE_SIZE;
4403 physical_for_dev_replace += PAGE_SIZE;
4404 nocow_ctx_logical += PAGE_SIZE;
4405 len -= PAGE_SIZE;
ff023aac 4406 }
652f25a2 4407 ret = COPY_COMPLETE;
826aa0a8 4408out:
5955102c 4409 inode_unlock(inode);
826aa0a8 4410 iput(inode);
ff023aac
SB
4411 return ret;
4412}
4413
4414static int write_page_nocow(struct scrub_ctx *sctx,
4415 u64 physical_for_dev_replace, struct page *page)
4416{
4417 struct bio *bio;
4418 struct btrfs_device *dev;
4419 int ret;
ff023aac
SB
4420
4421 dev = sctx->wr_ctx.tgtdev;
4422 if (!dev)
4423 return -EIO;
4424 if (!dev->bdev) {
94647322
DS
4425 btrfs_warn_rl(dev->dev_root->fs_info,
4426 "scrub write_page_nocow(bdev == NULL) is unexpected");
ff023aac
SB
4427 return -EIO;
4428 }
9be3395b 4429 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
ff023aac
SB
4430 if (!bio) {
4431 spin_lock(&sctx->stat_lock);
4432 sctx->stat.malloc_errors++;
4433 spin_unlock(&sctx->stat_lock);
4434 return -ENOMEM;
4435 }
4f024f37
KO
4436 bio->bi_iter.bi_size = 0;
4437 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
ff023aac 4438 bio->bi_bdev = dev->bdev;
09cbfeaf
KS
4439 ret = bio_add_page(bio, page, PAGE_SIZE, 0);
4440 if (ret != PAGE_SIZE) {
ff023aac
SB
4441leave_with_eio:
4442 bio_put(bio);
4443 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4444 return -EIO;
4445 }
ff023aac 4446
33879d45 4447 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
ff023aac
SB
4448 goto leave_with_eio;
4449
4450 bio_put(bio);
4451 return 0;
4452}
This page took 0.52374 seconds and 5 git commands to generate.