Btrfs: send, avoid incorrect leaf accesses when sending utimes operations
[deliverable/linux.git] / fs / btrfs / send.c
CommitLineData
31db9f7c
AB
1/*
2 * Copyright (C) 2012 Alexander Block. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/bsearch.h>
20#include <linux/fs.h>
21#include <linux/file.h>
22#include <linux/sort.h>
23#include <linux/mount.h>
24#include <linux/xattr.h>
25#include <linux/posix_acl_xattr.h>
26#include <linux/radix-tree.h>
a1857ebe 27#include <linux/vmalloc.h>
ed84885d 28#include <linux/string.h>
31db9f7c
AB
29
30#include "send.h"
31#include "backref.h"
0b947aff 32#include "hash.h"
31db9f7c
AB
33#include "locking.h"
34#include "disk-io.h"
35#include "btrfs_inode.h"
36#include "transaction.h"
ebb8765b 37#include "compression.h"
31db9f7c
AB
38
39static int g_verbose = 0;
40
41#define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
42
43/*
44 * A fs_path is a helper to dynamically build path names with unknown size.
45 * It reallocates the internal buffer on demand.
46 * It allows fast adding of path elements on the right side (normal path) and
47 * fast adding to the left side (reversed path). A reversed path can also be
48 * unreversed if needed.
49 */
50struct fs_path {
51 union {
52 struct {
53 char *start;
54 char *end;
31db9f7c
AB
55
56 char *buf;
1f5a7ff9
DS
57 unsigned short buf_len:15;
58 unsigned short reversed:1;
31db9f7c
AB
59 char inline_buf[];
60 };
ace01050
DS
61 /*
62 * Average path length does not exceed 200 bytes, we'll have
63 * better packing in the slab and higher chance to satisfy
64 * a allocation later during send.
65 */
66 char pad[256];
31db9f7c
AB
67 };
68};
69#define FS_PATH_INLINE_SIZE \
70 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
71
72
73/* reused for each extent */
74struct clone_root {
75 struct btrfs_root *root;
76 u64 ino;
77 u64 offset;
78
79 u64 found_refs;
80};
81
82#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
83#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
84
85struct send_ctx {
86 struct file *send_filp;
87 loff_t send_off;
88 char *send_buf;
89 u32 send_size;
90 u32 send_max_size;
91 u64 total_send_size;
92 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
cb95e7bf 93 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
31db9f7c 94
31db9f7c
AB
95 struct btrfs_root *send_root;
96 struct btrfs_root *parent_root;
97 struct clone_root *clone_roots;
98 int clone_roots_cnt;
99
100 /* current state of the compare_tree call */
101 struct btrfs_path *left_path;
102 struct btrfs_path *right_path;
103 struct btrfs_key *cmp_key;
104
105 /*
106 * infos of the currently processed inode. In case of deleted inodes,
107 * these are the values from the deleted inode.
108 */
109 u64 cur_ino;
110 u64 cur_inode_gen;
111 int cur_inode_new;
112 int cur_inode_new_gen;
113 int cur_inode_deleted;
31db9f7c
AB
114 u64 cur_inode_size;
115 u64 cur_inode_mode;
644d1940 116 u64 cur_inode_rdev;
16e7549f 117 u64 cur_inode_last_extent;
31db9f7c
AB
118
119 u64 send_progress;
120
121 struct list_head new_refs;
122 struct list_head deleted_refs;
123
124 struct radix_tree_root name_cache;
125 struct list_head name_cache_list;
126 int name_cache_size;
127
2131bcd3
LB
128 struct file_ra_state ra;
129
31db9f7c 130 char *read_buf;
9f03740a
FDBM
131
132 /*
133 * We process inodes by their increasing order, so if before an
134 * incremental send we reverse the parent/child relationship of
135 * directories such that a directory with a lower inode number was
136 * the parent of a directory with a higher inode number, and the one
137 * becoming the new parent got renamed too, we can't rename/move the
138 * directory with lower inode number when we finish processing it - we
139 * must process the directory with higher inode number first, then
140 * rename/move it and then rename/move the directory with lower inode
141 * number. Example follows.
142 *
143 * Tree state when the first send was performed:
144 *
145 * .
146 * |-- a (ino 257)
147 * |-- b (ino 258)
148 * |
149 * |
150 * |-- c (ino 259)
151 * | |-- d (ino 260)
152 * |
153 * |-- c2 (ino 261)
154 *
155 * Tree state when the second (incremental) send is performed:
156 *
157 * .
158 * |-- a (ino 257)
159 * |-- b (ino 258)
160 * |-- c2 (ino 261)
161 * |-- d2 (ino 260)
162 * |-- cc (ino 259)
163 *
164 * The sequence of steps that lead to the second state was:
165 *
166 * mv /a/b/c/d /a/b/c2/d2
167 * mv /a/b/c /a/b/c2/d2/cc
168 *
169 * "c" has lower inode number, but we can't move it (2nd mv operation)
170 * before we move "d", which has higher inode number.
171 *
172 * So we just memorize which move/rename operations must be performed
173 * later when their respective parent is processed and moved/renamed.
174 */
175
176 /* Indexed by parent directory inode number. */
177 struct rb_root pending_dir_moves;
178
179 /*
180 * Reverse index, indexed by the inode number of a directory that
181 * is waiting for the move/rename of its immediate parent before its
182 * own move/rename can be performed.
183 */
184 struct rb_root waiting_dir_moves;
9dc44214
FM
185
186 /*
187 * A directory that is going to be rm'ed might have a child directory
188 * which is in the pending directory moves index above. In this case,
189 * the directory can only be removed after the move/rename of its child
190 * is performed. Example:
191 *
192 * Parent snapshot:
193 *
194 * . (ino 256)
195 * |-- a/ (ino 257)
196 * |-- b/ (ino 258)
197 * |-- c/ (ino 259)
198 * | |-- x/ (ino 260)
199 * |
200 * |-- y/ (ino 261)
201 *
202 * Send snapshot:
203 *
204 * . (ino 256)
205 * |-- a/ (ino 257)
206 * |-- b/ (ino 258)
207 * |-- YY/ (ino 261)
208 * |-- x/ (ino 260)
209 *
210 * Sequence of steps that lead to the send snapshot:
211 * rm -f /a/b/c/foo.txt
212 * mv /a/b/y /a/b/YY
213 * mv /a/b/c/x /a/b/YY
214 * rmdir /a/b/c
215 *
216 * When the child is processed, its move/rename is delayed until its
217 * parent is processed (as explained above), but all other operations
218 * like update utimes, chown, chgrp, etc, are performed and the paths
219 * that it uses for those operations must use the orphanized name of
220 * its parent (the directory we're going to rm later), so we need to
221 * memorize that name.
222 *
223 * Indexed by the inode number of the directory to be deleted.
224 */
225 struct rb_root orphan_dirs;
9f03740a
FDBM
226};
227
228struct pending_dir_move {
229 struct rb_node node;
230 struct list_head list;
231 u64 parent_ino;
232 u64 ino;
233 u64 gen;
234 struct list_head update_refs;
235};
236
237struct waiting_dir_move {
238 struct rb_node node;
239 u64 ino;
9dc44214
FM
240 /*
241 * There might be some directory that could not be removed because it
242 * was waiting for this directory inode to be moved first. Therefore
243 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
244 */
245 u64 rmdir_ino;
8b191a68 246 bool orphanized;
9dc44214
FM
247};
248
249struct orphan_dir_info {
250 struct rb_node node;
251 u64 ino;
252 u64 gen;
31db9f7c
AB
253};
254
255struct name_cache_entry {
256 struct list_head list;
7e0926fe
AB
257 /*
258 * radix_tree has only 32bit entries but we need to handle 64bit inums.
259 * We use the lower 32bit of the 64bit inum to store it in the tree. If
260 * more then one inum would fall into the same entry, we use radix_list
261 * to store the additional entries. radix_list is also used to store
262 * entries where two entries have the same inum but different
263 * generations.
264 */
265 struct list_head radix_list;
31db9f7c
AB
266 u64 ino;
267 u64 gen;
268 u64 parent_ino;
269 u64 parent_gen;
270 int ret;
271 int need_later_update;
272 int name_len;
273 char name[];
274};
275
9f03740a
FDBM
276static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
277
9dc44214
FM
278static struct waiting_dir_move *
279get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
280
281static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
282
16e7549f
JB
283static int need_send_hole(struct send_ctx *sctx)
284{
285 return (sctx->parent_root && !sctx->cur_inode_new &&
286 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
287 S_ISREG(sctx->cur_inode_mode));
288}
289
31db9f7c
AB
290static void fs_path_reset(struct fs_path *p)
291{
292 if (p->reversed) {
293 p->start = p->buf + p->buf_len - 1;
294 p->end = p->start;
295 *p->start = 0;
296 } else {
297 p->start = p->buf;
298 p->end = p->start;
299 *p->start = 0;
300 }
301}
302
924794c9 303static struct fs_path *fs_path_alloc(void)
31db9f7c
AB
304{
305 struct fs_path *p;
306
e780b0d1 307 p = kmalloc(sizeof(*p), GFP_KERNEL);
31db9f7c
AB
308 if (!p)
309 return NULL;
310 p->reversed = 0;
31db9f7c
AB
311 p->buf = p->inline_buf;
312 p->buf_len = FS_PATH_INLINE_SIZE;
313 fs_path_reset(p);
314 return p;
315}
316
924794c9 317static struct fs_path *fs_path_alloc_reversed(void)
31db9f7c
AB
318{
319 struct fs_path *p;
320
924794c9 321 p = fs_path_alloc();
31db9f7c
AB
322 if (!p)
323 return NULL;
324 p->reversed = 1;
325 fs_path_reset(p);
326 return p;
327}
328
924794c9 329static void fs_path_free(struct fs_path *p)
31db9f7c
AB
330{
331 if (!p)
332 return;
ace01050
DS
333 if (p->buf != p->inline_buf)
334 kfree(p->buf);
31db9f7c
AB
335 kfree(p);
336}
337
338static int fs_path_len(struct fs_path *p)
339{
340 return p->end - p->start;
341}
342
343static int fs_path_ensure_buf(struct fs_path *p, int len)
344{
345 char *tmp_buf;
346 int path_len;
347 int old_buf_len;
348
349 len++;
350
351 if (p->buf_len >= len)
352 return 0;
353
cfd4a535
CM
354 if (len > PATH_MAX) {
355 WARN_ON(1);
356 return -ENOMEM;
357 }
358
1b2782c8
DS
359 path_len = p->end - p->start;
360 old_buf_len = p->buf_len;
361
ace01050
DS
362 /*
363 * First time the inline_buf does not suffice
364 */
01a9a8a9 365 if (p->buf == p->inline_buf) {
e780b0d1 366 tmp_buf = kmalloc(len, GFP_KERNEL);
01a9a8a9
FM
367 if (tmp_buf)
368 memcpy(tmp_buf, p->buf, old_buf_len);
369 } else {
e780b0d1 370 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
01a9a8a9 371 }
9c9ca00b
DS
372 if (!tmp_buf)
373 return -ENOMEM;
374 p->buf = tmp_buf;
375 /*
376 * The real size of the buffer is bigger, this will let the fast path
377 * happen most of the time
378 */
379 p->buf_len = ksize(p->buf);
ace01050 380
31db9f7c
AB
381 if (p->reversed) {
382 tmp_buf = p->buf + old_buf_len - path_len - 1;
383 p->end = p->buf + p->buf_len - 1;
384 p->start = p->end - path_len;
385 memmove(p->start, tmp_buf, path_len + 1);
386 } else {
387 p->start = p->buf;
388 p->end = p->start + path_len;
389 }
390 return 0;
391}
392
b23ab57d
DS
393static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
394 char **prepared)
31db9f7c
AB
395{
396 int ret;
397 int new_len;
398
399 new_len = p->end - p->start + name_len;
400 if (p->start != p->end)
401 new_len++;
402 ret = fs_path_ensure_buf(p, new_len);
403 if (ret < 0)
404 goto out;
405
406 if (p->reversed) {
407 if (p->start != p->end)
408 *--p->start = '/';
409 p->start -= name_len;
b23ab57d 410 *prepared = p->start;
31db9f7c
AB
411 } else {
412 if (p->start != p->end)
413 *p->end++ = '/';
b23ab57d 414 *prepared = p->end;
31db9f7c
AB
415 p->end += name_len;
416 *p->end = 0;
417 }
418
419out:
420 return ret;
421}
422
423static int fs_path_add(struct fs_path *p, const char *name, int name_len)
424{
425 int ret;
b23ab57d 426 char *prepared;
31db9f7c 427
b23ab57d 428 ret = fs_path_prepare_for_add(p, name_len, &prepared);
31db9f7c
AB
429 if (ret < 0)
430 goto out;
b23ab57d 431 memcpy(prepared, name, name_len);
31db9f7c
AB
432
433out:
434 return ret;
435}
436
437static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
438{
439 int ret;
b23ab57d 440 char *prepared;
31db9f7c 441
b23ab57d 442 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
31db9f7c
AB
443 if (ret < 0)
444 goto out;
b23ab57d 445 memcpy(prepared, p2->start, p2->end - p2->start);
31db9f7c
AB
446
447out:
448 return ret;
449}
450
451static int fs_path_add_from_extent_buffer(struct fs_path *p,
452 struct extent_buffer *eb,
453 unsigned long off, int len)
454{
455 int ret;
b23ab57d 456 char *prepared;
31db9f7c 457
b23ab57d 458 ret = fs_path_prepare_for_add(p, len, &prepared);
31db9f7c
AB
459 if (ret < 0)
460 goto out;
461
b23ab57d 462 read_extent_buffer(eb, prepared, off, len);
31db9f7c
AB
463
464out:
465 return ret;
466}
467
31db9f7c
AB
468static int fs_path_copy(struct fs_path *p, struct fs_path *from)
469{
470 int ret;
471
472 p->reversed = from->reversed;
473 fs_path_reset(p);
474
475 ret = fs_path_add_path(p, from);
476
477 return ret;
478}
479
480
481static void fs_path_unreverse(struct fs_path *p)
482{
483 char *tmp;
484 int len;
485
486 if (!p->reversed)
487 return;
488
489 tmp = p->start;
490 len = p->end - p->start;
491 p->start = p->buf;
492 p->end = p->start + len;
493 memmove(p->start, tmp, len + 1);
494 p->reversed = 0;
495}
496
497static struct btrfs_path *alloc_path_for_send(void)
498{
499 struct btrfs_path *path;
500
501 path = btrfs_alloc_path();
502 if (!path)
503 return NULL;
504 path->search_commit_root = 1;
505 path->skip_locking = 1;
3f8a18cc 506 path->need_commit_sem = 1;
31db9f7c
AB
507 return path;
508}
509
48a3b636 510static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
31db9f7c
AB
511{
512 int ret;
513 mm_segment_t old_fs;
514 u32 pos = 0;
515
516 old_fs = get_fs();
517 set_fs(KERNEL_DS);
518
519 while (pos < len) {
d447d0da
FF
520 ret = vfs_write(filp, (__force const char __user *)buf + pos,
521 len - pos, off);
31db9f7c
AB
522 /* TODO handle that correctly */
523 /*if (ret == -ERESTARTSYS) {
524 continue;
525 }*/
526 if (ret < 0)
527 goto out;
528 if (ret == 0) {
529 ret = -EIO;
530 goto out;
531 }
532 pos += ret;
533 }
534
535 ret = 0;
536
537out:
538 set_fs(old_fs);
539 return ret;
540}
541
542static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
543{
544 struct btrfs_tlv_header *hdr;
545 int total_len = sizeof(*hdr) + len;
546 int left = sctx->send_max_size - sctx->send_size;
547
548 if (unlikely(left < total_len))
549 return -EOVERFLOW;
550
551 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
552 hdr->tlv_type = cpu_to_le16(attr);
553 hdr->tlv_len = cpu_to_le16(len);
554 memcpy(hdr + 1, data, len);
555 sctx->send_size += total_len;
556
557 return 0;
558}
559
95bc79d5
DS
560#define TLV_PUT_DEFINE_INT(bits) \
561 static int tlv_put_u##bits(struct send_ctx *sctx, \
562 u##bits attr, u##bits value) \
563 { \
564 __le##bits __tmp = cpu_to_le##bits(value); \
565 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
566 }
31db9f7c 567
95bc79d5 568TLV_PUT_DEFINE_INT(64)
31db9f7c
AB
569
570static int tlv_put_string(struct send_ctx *sctx, u16 attr,
571 const char *str, int len)
572{
573 if (len == -1)
574 len = strlen(str);
575 return tlv_put(sctx, attr, str, len);
576}
577
578static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
579 const u8 *uuid)
580{
581 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
582}
583
31db9f7c
AB
584static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
585 struct extent_buffer *eb,
586 struct btrfs_timespec *ts)
587{
588 struct btrfs_timespec bts;
589 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
590 return tlv_put(sctx, attr, &bts, sizeof(bts));
591}
592
593
594#define TLV_PUT(sctx, attrtype, attrlen, data) \
595 do { \
596 ret = tlv_put(sctx, attrtype, attrlen, data); \
597 if (ret < 0) \
598 goto tlv_put_failure; \
599 } while (0)
600
601#define TLV_PUT_INT(sctx, attrtype, bits, value) \
602 do { \
603 ret = tlv_put_u##bits(sctx, attrtype, value); \
604 if (ret < 0) \
605 goto tlv_put_failure; \
606 } while (0)
607
608#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
609#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
610#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
611#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
612#define TLV_PUT_STRING(sctx, attrtype, str, len) \
613 do { \
614 ret = tlv_put_string(sctx, attrtype, str, len); \
615 if (ret < 0) \
616 goto tlv_put_failure; \
617 } while (0)
618#define TLV_PUT_PATH(sctx, attrtype, p) \
619 do { \
620 ret = tlv_put_string(sctx, attrtype, p->start, \
621 p->end - p->start); \
622 if (ret < 0) \
623 goto tlv_put_failure; \
624 } while(0)
625#define TLV_PUT_UUID(sctx, attrtype, uuid) \
626 do { \
627 ret = tlv_put_uuid(sctx, attrtype, uuid); \
628 if (ret < 0) \
629 goto tlv_put_failure; \
630 } while (0)
31db9f7c
AB
631#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
632 do { \
633 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
634 if (ret < 0) \
635 goto tlv_put_failure; \
636 } while (0)
637
638static int send_header(struct send_ctx *sctx)
639{
640 struct btrfs_stream_header hdr;
641
642 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
643 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
644
1bcea355
AJ
645 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
646 &sctx->send_off);
31db9f7c
AB
647}
648
649/*
650 * For each command/item we want to send to userspace, we call this function.
651 */
652static int begin_cmd(struct send_ctx *sctx, int cmd)
653{
654 struct btrfs_cmd_header *hdr;
655
fae7f21c 656 if (WARN_ON(!sctx->send_buf))
31db9f7c 657 return -EINVAL;
31db9f7c
AB
658
659 BUG_ON(sctx->send_size);
660
661 sctx->send_size += sizeof(*hdr);
662 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
663 hdr->cmd = cpu_to_le16(cmd);
664
665 return 0;
666}
667
668static int send_cmd(struct send_ctx *sctx)
669{
670 int ret;
671 struct btrfs_cmd_header *hdr;
672 u32 crc;
673
674 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
675 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
676 hdr->crc = 0;
677
0b947aff 678 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
31db9f7c
AB
679 hdr->crc = cpu_to_le32(crc);
680
1bcea355
AJ
681 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
682 &sctx->send_off);
31db9f7c
AB
683
684 sctx->total_send_size += sctx->send_size;
685 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
686 sctx->send_size = 0;
687
688 return ret;
689}
690
691/*
692 * Sends a move instruction to user space
693 */
694static int send_rename(struct send_ctx *sctx,
695 struct fs_path *from, struct fs_path *to)
696{
697 int ret;
698
699verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
700
701 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
702 if (ret < 0)
703 goto out;
704
705 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
706 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
707
708 ret = send_cmd(sctx);
709
710tlv_put_failure:
711out:
712 return ret;
713}
714
715/*
716 * Sends a link instruction to user space
717 */
718static int send_link(struct send_ctx *sctx,
719 struct fs_path *path, struct fs_path *lnk)
720{
721 int ret;
722
723verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
724
725 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
726 if (ret < 0)
727 goto out;
728
729 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
730 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
731
732 ret = send_cmd(sctx);
733
734tlv_put_failure:
735out:
736 return ret;
737}
738
739/*
740 * Sends an unlink instruction to user space
741 */
742static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
743{
744 int ret;
745
746verbose_printk("btrfs: send_unlink %s\n", path->start);
747
748 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
749 if (ret < 0)
750 goto out;
751
752 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
753
754 ret = send_cmd(sctx);
755
756tlv_put_failure:
757out:
758 return ret;
759}
760
761/*
762 * Sends a rmdir instruction to user space
763 */
764static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
765{
766 int ret;
767
768verbose_printk("btrfs: send_rmdir %s\n", path->start);
769
770 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
771 if (ret < 0)
772 goto out;
773
774 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
775
776 ret = send_cmd(sctx);
777
778tlv_put_failure:
779out:
780 return ret;
781}
782
783/*
784 * Helper function to retrieve some fields from an inode item.
785 */
3f8a18cc
JB
786static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
787 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
788 u64 *gid, u64 *rdev)
31db9f7c
AB
789{
790 int ret;
791 struct btrfs_inode_item *ii;
792 struct btrfs_key key;
31db9f7c
AB
793
794 key.objectid = ino;
795 key.type = BTRFS_INODE_ITEM_KEY;
796 key.offset = 0;
797 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
31db9f7c 798 if (ret) {
3f8a18cc
JB
799 if (ret > 0)
800 ret = -ENOENT;
801 return ret;
31db9f7c
AB
802 }
803
804 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
805 struct btrfs_inode_item);
806 if (size)
807 *size = btrfs_inode_size(path->nodes[0], ii);
808 if (gen)
809 *gen = btrfs_inode_generation(path->nodes[0], ii);
810 if (mode)
811 *mode = btrfs_inode_mode(path->nodes[0], ii);
812 if (uid)
813 *uid = btrfs_inode_uid(path->nodes[0], ii);
814 if (gid)
815 *gid = btrfs_inode_gid(path->nodes[0], ii);
85a7b33b
AB
816 if (rdev)
817 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
31db9f7c 818
3f8a18cc
JB
819 return ret;
820}
821
822static int get_inode_info(struct btrfs_root *root,
823 u64 ino, u64 *size, u64 *gen,
824 u64 *mode, u64 *uid, u64 *gid,
825 u64 *rdev)
826{
827 struct btrfs_path *path;
828 int ret;
829
830 path = alloc_path_for_send();
831 if (!path)
832 return -ENOMEM;
833 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
834 rdev);
31db9f7c
AB
835 btrfs_free_path(path);
836 return ret;
837}
838
839typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
840 struct fs_path *p,
841 void *ctx);
842
843/*
96b5bd77
JS
844 * Helper function to iterate the entries in ONE btrfs_inode_ref or
845 * btrfs_inode_extref.
31db9f7c
AB
846 * The iterate callback may return a non zero value to stop iteration. This can
847 * be a negative value for error codes or 1 to simply stop it.
848 *
96b5bd77 849 * path must point to the INODE_REF or INODE_EXTREF when called.
31db9f7c 850 */
924794c9 851static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
31db9f7c
AB
852 struct btrfs_key *found_key, int resolve,
853 iterate_inode_ref_t iterate, void *ctx)
854{
96b5bd77 855 struct extent_buffer *eb = path->nodes[0];
31db9f7c
AB
856 struct btrfs_item *item;
857 struct btrfs_inode_ref *iref;
96b5bd77 858 struct btrfs_inode_extref *extref;
31db9f7c
AB
859 struct btrfs_path *tmp_path;
860 struct fs_path *p;
96b5bd77 861 u32 cur = 0;
31db9f7c 862 u32 total;
96b5bd77 863 int slot = path->slots[0];
31db9f7c
AB
864 u32 name_len;
865 char *start;
866 int ret = 0;
96b5bd77 867 int num = 0;
31db9f7c 868 int index;
96b5bd77
JS
869 u64 dir;
870 unsigned long name_off;
871 unsigned long elem_size;
872 unsigned long ptr;
31db9f7c 873
924794c9 874 p = fs_path_alloc_reversed();
31db9f7c
AB
875 if (!p)
876 return -ENOMEM;
877
878 tmp_path = alloc_path_for_send();
879 if (!tmp_path) {
924794c9 880 fs_path_free(p);
31db9f7c
AB
881 return -ENOMEM;
882 }
883
31db9f7c 884
96b5bd77
JS
885 if (found_key->type == BTRFS_INODE_REF_KEY) {
886 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
887 struct btrfs_inode_ref);
dd3cc16b 888 item = btrfs_item_nr(slot);
96b5bd77
JS
889 total = btrfs_item_size(eb, item);
890 elem_size = sizeof(*iref);
891 } else {
892 ptr = btrfs_item_ptr_offset(eb, slot);
893 total = btrfs_item_size_nr(eb, slot);
894 elem_size = sizeof(*extref);
895 }
896
31db9f7c
AB
897 while (cur < total) {
898 fs_path_reset(p);
899
96b5bd77
JS
900 if (found_key->type == BTRFS_INODE_REF_KEY) {
901 iref = (struct btrfs_inode_ref *)(ptr + cur);
902 name_len = btrfs_inode_ref_name_len(eb, iref);
903 name_off = (unsigned long)(iref + 1);
904 index = btrfs_inode_ref_index(eb, iref);
905 dir = found_key->offset;
906 } else {
907 extref = (struct btrfs_inode_extref *)(ptr + cur);
908 name_len = btrfs_inode_extref_name_len(eb, extref);
909 name_off = (unsigned long)&extref->name;
910 index = btrfs_inode_extref_index(eb, extref);
911 dir = btrfs_inode_extref_parent(eb, extref);
912 }
913
31db9f7c 914 if (resolve) {
96b5bd77
JS
915 start = btrfs_ref_to_path(root, tmp_path, name_len,
916 name_off, eb, dir,
917 p->buf, p->buf_len);
31db9f7c
AB
918 if (IS_ERR(start)) {
919 ret = PTR_ERR(start);
920 goto out;
921 }
922 if (start < p->buf) {
923 /* overflow , try again with larger buffer */
924 ret = fs_path_ensure_buf(p,
925 p->buf_len + p->buf - start);
926 if (ret < 0)
927 goto out;
96b5bd77
JS
928 start = btrfs_ref_to_path(root, tmp_path,
929 name_len, name_off,
930 eb, dir,
931 p->buf, p->buf_len);
31db9f7c
AB
932 if (IS_ERR(start)) {
933 ret = PTR_ERR(start);
934 goto out;
935 }
936 BUG_ON(start < p->buf);
937 }
938 p->start = start;
939 } else {
96b5bd77
JS
940 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
941 name_len);
31db9f7c
AB
942 if (ret < 0)
943 goto out;
944 }
945
96b5bd77
JS
946 cur += elem_size + name_len;
947 ret = iterate(num, dir, index, p, ctx);
31db9f7c
AB
948 if (ret)
949 goto out;
31db9f7c
AB
950 num++;
951 }
952
953out:
954 btrfs_free_path(tmp_path);
924794c9 955 fs_path_free(p);
31db9f7c
AB
956 return ret;
957}
958
959typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
960 const char *name, int name_len,
961 const char *data, int data_len,
962 u8 type, void *ctx);
963
964/*
965 * Helper function to iterate the entries in ONE btrfs_dir_item.
966 * The iterate callback may return a non zero value to stop iteration. This can
967 * be a negative value for error codes or 1 to simply stop it.
968 *
969 * path must point to the dir item when called.
970 */
924794c9 971static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
31db9f7c
AB
972 struct btrfs_key *found_key,
973 iterate_dir_item_t iterate, void *ctx)
974{
975 int ret = 0;
976 struct extent_buffer *eb;
977 struct btrfs_item *item;
978 struct btrfs_dir_item *di;
31db9f7c
AB
979 struct btrfs_key di_key;
980 char *buf = NULL;
7e3ae33e 981 int buf_len;
31db9f7c
AB
982 u32 name_len;
983 u32 data_len;
984 u32 cur;
985 u32 len;
986 u32 total;
987 int slot;
988 int num;
989 u8 type;
990
4395e0c4
FM
991 /*
992 * Start with a small buffer (1 page). If later we end up needing more
993 * space, which can happen for xattrs on a fs with a leaf size greater
994 * then the page size, attempt to increase the buffer. Typically xattr
995 * values are small.
996 */
997 buf_len = PATH_MAX;
e780b0d1 998 buf = kmalloc(buf_len, GFP_KERNEL);
31db9f7c
AB
999 if (!buf) {
1000 ret = -ENOMEM;
1001 goto out;
1002 }
1003
31db9f7c
AB
1004 eb = path->nodes[0];
1005 slot = path->slots[0];
dd3cc16b 1006 item = btrfs_item_nr(slot);
31db9f7c
AB
1007 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1008 cur = 0;
1009 len = 0;
1010 total = btrfs_item_size(eb, item);
1011
1012 num = 0;
1013 while (cur < total) {
1014 name_len = btrfs_dir_name_len(eb, di);
1015 data_len = btrfs_dir_data_len(eb, di);
1016 type = btrfs_dir_type(eb, di);
1017 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1018
7e3ae33e
FM
1019 if (type == BTRFS_FT_XATTR) {
1020 if (name_len > XATTR_NAME_MAX) {
1021 ret = -ENAMETOOLONG;
1022 goto out;
1023 }
4395e0c4 1024 if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) {
7e3ae33e
FM
1025 ret = -E2BIG;
1026 goto out;
1027 }
1028 } else {
1029 /*
1030 * Path too long
1031 */
4395e0c4 1032 if (name_len + data_len > PATH_MAX) {
7e3ae33e
FM
1033 ret = -ENAMETOOLONG;
1034 goto out;
1035 }
31db9f7c
AB
1036 }
1037
4395e0c4
FM
1038 if (name_len + data_len > buf_len) {
1039 buf_len = name_len + data_len;
1040 if (is_vmalloc_addr(buf)) {
1041 vfree(buf);
1042 buf = NULL;
1043 } else {
1044 char *tmp = krealloc(buf, buf_len,
e780b0d1 1045 GFP_KERNEL | __GFP_NOWARN);
4395e0c4
FM
1046
1047 if (!tmp)
1048 kfree(buf);
1049 buf = tmp;
1050 }
1051 if (!buf) {
1052 buf = vmalloc(buf_len);
1053 if (!buf) {
1054 ret = -ENOMEM;
1055 goto out;
1056 }
1057 }
1058 }
1059
31db9f7c
AB
1060 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1061 name_len + data_len);
1062
1063 len = sizeof(*di) + name_len + data_len;
1064 di = (struct btrfs_dir_item *)((char *)di + len);
1065 cur += len;
1066
1067 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1068 data_len, type, ctx);
1069 if (ret < 0)
1070 goto out;
1071 if (ret) {
1072 ret = 0;
1073 goto out;
1074 }
1075
1076 num++;
1077 }
1078
1079out:
4395e0c4 1080 kvfree(buf);
31db9f7c
AB
1081 return ret;
1082}
1083
1084static int __copy_first_ref(int num, u64 dir, int index,
1085 struct fs_path *p, void *ctx)
1086{
1087 int ret;
1088 struct fs_path *pt = ctx;
1089
1090 ret = fs_path_copy(pt, p);
1091 if (ret < 0)
1092 return ret;
1093
1094 /* we want the first only */
1095 return 1;
1096}
1097
1098/*
1099 * Retrieve the first path of an inode. If an inode has more then one
1100 * ref/hardlink, this is ignored.
1101 */
924794c9 1102static int get_inode_path(struct btrfs_root *root,
31db9f7c
AB
1103 u64 ino, struct fs_path *path)
1104{
1105 int ret;
1106 struct btrfs_key key, found_key;
1107 struct btrfs_path *p;
1108
1109 p = alloc_path_for_send();
1110 if (!p)
1111 return -ENOMEM;
1112
1113 fs_path_reset(path);
1114
1115 key.objectid = ino;
1116 key.type = BTRFS_INODE_REF_KEY;
1117 key.offset = 0;
1118
1119 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1120 if (ret < 0)
1121 goto out;
1122 if (ret) {
1123 ret = 1;
1124 goto out;
1125 }
1126 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1127 if (found_key.objectid != ino ||
96b5bd77
JS
1128 (found_key.type != BTRFS_INODE_REF_KEY &&
1129 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
31db9f7c
AB
1130 ret = -ENOENT;
1131 goto out;
1132 }
1133
924794c9
TI
1134 ret = iterate_inode_ref(root, p, &found_key, 1,
1135 __copy_first_ref, path);
31db9f7c
AB
1136 if (ret < 0)
1137 goto out;
1138 ret = 0;
1139
1140out:
1141 btrfs_free_path(p);
1142 return ret;
1143}
1144
1145struct backref_ctx {
1146 struct send_ctx *sctx;
1147
3f8a18cc 1148 struct btrfs_path *path;
31db9f7c
AB
1149 /* number of total found references */
1150 u64 found;
1151
1152 /*
1153 * used for clones found in send_root. clones found behind cur_objectid
1154 * and cur_offset are not considered as allowed clones.
1155 */
1156 u64 cur_objectid;
1157 u64 cur_offset;
1158
1159 /* may be truncated in case it's the last extent in a file */
1160 u64 extent_len;
1161
619d8c4e
FM
1162 /* data offset in the file extent item */
1163 u64 data_offset;
1164
31db9f7c 1165 /* Just to check for bugs in backref resolving */
ee849c04 1166 int found_itself;
31db9f7c
AB
1167};
1168
1169static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1170{
995e01b7 1171 u64 root = (u64)(uintptr_t)key;
31db9f7c
AB
1172 struct clone_root *cr = (struct clone_root *)elt;
1173
1174 if (root < cr->root->objectid)
1175 return -1;
1176 if (root > cr->root->objectid)
1177 return 1;
1178 return 0;
1179}
1180
1181static int __clone_root_cmp_sort(const void *e1, const void *e2)
1182{
1183 struct clone_root *cr1 = (struct clone_root *)e1;
1184 struct clone_root *cr2 = (struct clone_root *)e2;
1185
1186 if (cr1->root->objectid < cr2->root->objectid)
1187 return -1;
1188 if (cr1->root->objectid > cr2->root->objectid)
1189 return 1;
1190 return 0;
1191}
1192
1193/*
1194 * Called for every backref that is found for the current extent.
766702ef 1195 * Results are collected in sctx->clone_roots->ino/offset/found_refs
31db9f7c
AB
1196 */
1197static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1198{
1199 struct backref_ctx *bctx = ctx_;
1200 struct clone_root *found;
1201 int ret;
1202 u64 i_size;
1203
1204 /* First check if the root is in the list of accepted clone sources */
995e01b7 1205 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
31db9f7c
AB
1206 bctx->sctx->clone_roots_cnt,
1207 sizeof(struct clone_root),
1208 __clone_root_cmp_bsearch);
1209 if (!found)
1210 return 0;
1211
1212 if (found->root == bctx->sctx->send_root &&
1213 ino == bctx->cur_objectid &&
1214 offset == bctx->cur_offset) {
ee849c04 1215 bctx->found_itself = 1;
31db9f7c
AB
1216 }
1217
1218 /*
766702ef 1219 * There are inodes that have extents that lie behind its i_size. Don't
31db9f7c
AB
1220 * accept clones from these extents.
1221 */
3f8a18cc
JB
1222 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1223 NULL, NULL, NULL);
1224 btrfs_release_path(bctx->path);
31db9f7c
AB
1225 if (ret < 0)
1226 return ret;
1227
619d8c4e 1228 if (offset + bctx->data_offset + bctx->extent_len > i_size)
31db9f7c
AB
1229 return 0;
1230
1231 /*
1232 * Make sure we don't consider clones from send_root that are
1233 * behind the current inode/offset.
1234 */
1235 if (found->root == bctx->sctx->send_root) {
1236 /*
1237 * TODO for the moment we don't accept clones from the inode
1238 * that is currently send. We may change this when
1239 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1240 * file.
1241 */
1242 if (ino >= bctx->cur_objectid)
1243 return 0;
e938c8ad
AB
1244#if 0
1245 if (ino > bctx->cur_objectid)
1246 return 0;
1247 if (offset + bctx->extent_len > bctx->cur_offset)
31db9f7c 1248 return 0;
e938c8ad 1249#endif
31db9f7c
AB
1250 }
1251
1252 bctx->found++;
1253 found->found_refs++;
1254 if (ino < found->ino) {
1255 found->ino = ino;
1256 found->offset = offset;
1257 } else if (found->ino == ino) {
1258 /*
1259 * same extent found more then once in the same file.
1260 */
1261 if (found->offset > offset + bctx->extent_len)
1262 found->offset = offset;
1263 }
1264
1265 return 0;
1266}
1267
1268/*
766702ef
AB
1269 * Given an inode, offset and extent item, it finds a good clone for a clone
1270 * instruction. Returns -ENOENT when none could be found. The function makes
1271 * sure that the returned clone is usable at the point where sending is at the
1272 * moment. This means, that no clones are accepted which lie behind the current
1273 * inode+offset.
1274 *
31db9f7c
AB
1275 * path must point to the extent item when called.
1276 */
1277static int find_extent_clone(struct send_ctx *sctx,
1278 struct btrfs_path *path,
1279 u64 ino, u64 data_offset,
1280 u64 ino_size,
1281 struct clone_root **found)
1282{
1283 int ret;
1284 int extent_type;
1285 u64 logical;
74dd17fb 1286 u64 disk_byte;
31db9f7c
AB
1287 u64 num_bytes;
1288 u64 extent_item_pos;
69917e43 1289 u64 flags = 0;
31db9f7c
AB
1290 struct btrfs_file_extent_item *fi;
1291 struct extent_buffer *eb = path->nodes[0];
35075bb0 1292 struct backref_ctx *backref_ctx = NULL;
31db9f7c
AB
1293 struct clone_root *cur_clone_root;
1294 struct btrfs_key found_key;
1295 struct btrfs_path *tmp_path;
74dd17fb 1296 int compressed;
31db9f7c
AB
1297 u32 i;
1298
1299 tmp_path = alloc_path_for_send();
1300 if (!tmp_path)
1301 return -ENOMEM;
1302
3f8a18cc
JB
1303 /* We only use this path under the commit sem */
1304 tmp_path->need_commit_sem = 0;
1305
e780b0d1 1306 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
35075bb0
AB
1307 if (!backref_ctx) {
1308 ret = -ENOMEM;
1309 goto out;
1310 }
1311
3f8a18cc
JB
1312 backref_ctx->path = tmp_path;
1313
31db9f7c
AB
1314 if (data_offset >= ino_size) {
1315 /*
1316 * There may be extents that lie behind the file's size.
1317 * I at least had this in combination with snapshotting while
1318 * writing large files.
1319 */
1320 ret = 0;
1321 goto out;
1322 }
1323
1324 fi = btrfs_item_ptr(eb, path->slots[0],
1325 struct btrfs_file_extent_item);
1326 extent_type = btrfs_file_extent_type(eb, fi);
1327 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1328 ret = -ENOENT;
1329 goto out;
1330 }
74dd17fb 1331 compressed = btrfs_file_extent_compression(eb, fi);
31db9f7c
AB
1332
1333 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
74dd17fb
CM
1334 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1335 if (disk_byte == 0) {
31db9f7c
AB
1336 ret = -ENOENT;
1337 goto out;
1338 }
74dd17fb 1339 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
31db9f7c 1340
9e351cc8 1341 down_read(&sctx->send_root->fs_info->commit_root_sem);
69917e43
LB
1342 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1343 &found_key, &flags);
9e351cc8 1344 up_read(&sctx->send_root->fs_info->commit_root_sem);
31db9f7c
AB
1345 btrfs_release_path(tmp_path);
1346
1347 if (ret < 0)
1348 goto out;
69917e43 1349 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
31db9f7c
AB
1350 ret = -EIO;
1351 goto out;
1352 }
1353
1354 /*
1355 * Setup the clone roots.
1356 */
1357 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1358 cur_clone_root = sctx->clone_roots + i;
1359 cur_clone_root->ino = (u64)-1;
1360 cur_clone_root->offset = 0;
1361 cur_clone_root->found_refs = 0;
1362 }
1363
35075bb0
AB
1364 backref_ctx->sctx = sctx;
1365 backref_ctx->found = 0;
1366 backref_ctx->cur_objectid = ino;
1367 backref_ctx->cur_offset = data_offset;
1368 backref_ctx->found_itself = 0;
1369 backref_ctx->extent_len = num_bytes;
619d8c4e
FM
1370 /*
1371 * For non-compressed extents iterate_extent_inodes() gives us extent
1372 * offsets that already take into account the data offset, but not for
1373 * compressed extents, since the offset is logical and not relative to
1374 * the physical extent locations. We must take this into account to
1375 * avoid sending clone offsets that go beyond the source file's size,
1376 * which would result in the clone ioctl failing with -EINVAL on the
1377 * receiving end.
1378 */
1379 if (compressed == BTRFS_COMPRESS_NONE)
1380 backref_ctx->data_offset = 0;
1381 else
1382 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
31db9f7c
AB
1383
1384 /*
1385 * The last extent of a file may be too large due to page alignment.
1386 * We need to adjust extent_len in this case so that the checks in
1387 * __iterate_backrefs work.
1388 */
1389 if (data_offset + num_bytes >= ino_size)
35075bb0 1390 backref_ctx->extent_len = ino_size - data_offset;
31db9f7c
AB
1391
1392 /*
1393 * Now collect all backrefs.
1394 */
74dd17fb
CM
1395 if (compressed == BTRFS_COMPRESS_NONE)
1396 extent_item_pos = logical - found_key.objectid;
1397 else
1398 extent_item_pos = 0;
31db9f7c
AB
1399 ret = iterate_extent_inodes(sctx->send_root->fs_info,
1400 found_key.objectid, extent_item_pos, 1,
35075bb0 1401 __iterate_backrefs, backref_ctx);
74dd17fb 1402
31db9f7c
AB
1403 if (ret < 0)
1404 goto out;
1405
35075bb0 1406 if (!backref_ctx->found_itself) {
31db9f7c
AB
1407 /* found a bug in backref code? */
1408 ret = -EIO;
efe120a0 1409 btrfs_err(sctx->send_root->fs_info, "did not find backref in "
31db9f7c 1410 "send_root. inode=%llu, offset=%llu, "
351fd353 1411 "disk_byte=%llu found extent=%llu",
74dd17fb 1412 ino, data_offset, disk_byte, found_key.objectid);
31db9f7c
AB
1413 goto out;
1414 }
1415
1416verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1417 "ino=%llu, "
1418 "num_bytes=%llu, logical=%llu\n",
1419 data_offset, ino, num_bytes, logical);
1420
35075bb0 1421 if (!backref_ctx->found)
31db9f7c
AB
1422 verbose_printk("btrfs: no clones found\n");
1423
1424 cur_clone_root = NULL;
1425 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1426 if (sctx->clone_roots[i].found_refs) {
1427 if (!cur_clone_root)
1428 cur_clone_root = sctx->clone_roots + i;
1429 else if (sctx->clone_roots[i].root == sctx->send_root)
1430 /* prefer clones from send_root over others */
1431 cur_clone_root = sctx->clone_roots + i;
31db9f7c
AB
1432 }
1433
1434 }
1435
1436 if (cur_clone_root) {
1437 *found = cur_clone_root;
1438 ret = 0;
1439 } else {
1440 ret = -ENOENT;
1441 }
1442
1443out:
1444 btrfs_free_path(tmp_path);
35075bb0 1445 kfree(backref_ctx);
31db9f7c
AB
1446 return ret;
1447}
1448
924794c9 1449static int read_symlink(struct btrfs_root *root,
31db9f7c
AB
1450 u64 ino,
1451 struct fs_path *dest)
1452{
1453 int ret;
1454 struct btrfs_path *path;
1455 struct btrfs_key key;
1456 struct btrfs_file_extent_item *ei;
1457 u8 type;
1458 u8 compression;
1459 unsigned long off;
1460 int len;
1461
1462 path = alloc_path_for_send();
1463 if (!path)
1464 return -ENOMEM;
1465
1466 key.objectid = ino;
1467 key.type = BTRFS_EXTENT_DATA_KEY;
1468 key.offset = 0;
1469 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1470 if (ret < 0)
1471 goto out;
a879719b
FM
1472 if (ret) {
1473 /*
1474 * An empty symlink inode. Can happen in rare error paths when
1475 * creating a symlink (transaction committed before the inode
1476 * eviction handler removed the symlink inode items and a crash
1477 * happened in between or the subvol was snapshoted in between).
1478 * Print an informative message to dmesg/syslog so that the user
1479 * can delete the symlink.
1480 */
1481 btrfs_err(root->fs_info,
1482 "Found empty symlink inode %llu at root %llu",
1483 ino, root->root_key.objectid);
1484 ret = -EIO;
1485 goto out;
1486 }
31db9f7c
AB
1487
1488 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1489 struct btrfs_file_extent_item);
1490 type = btrfs_file_extent_type(path->nodes[0], ei);
1491 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1492 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1493 BUG_ON(compression);
1494
1495 off = btrfs_file_extent_inline_start(ei);
514ac8ad 1496 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
31db9f7c
AB
1497
1498 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
31db9f7c
AB
1499
1500out:
1501 btrfs_free_path(path);
1502 return ret;
1503}
1504
1505/*
1506 * Helper function to generate a file name that is unique in the root of
1507 * send_root and parent_root. This is used to generate names for orphan inodes.
1508 */
1509static int gen_unique_name(struct send_ctx *sctx,
1510 u64 ino, u64 gen,
1511 struct fs_path *dest)
1512{
1513 int ret = 0;
1514 struct btrfs_path *path;
1515 struct btrfs_dir_item *di;
1516 char tmp[64];
1517 int len;
1518 u64 idx = 0;
1519
1520 path = alloc_path_for_send();
1521 if (!path)
1522 return -ENOMEM;
1523
1524 while (1) {
f74b86d8 1525 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
31db9f7c 1526 ino, gen, idx);
64792f25 1527 ASSERT(len < sizeof(tmp));
31db9f7c
AB
1528
1529 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1530 path, BTRFS_FIRST_FREE_OBJECTID,
1531 tmp, strlen(tmp), 0);
1532 btrfs_release_path(path);
1533 if (IS_ERR(di)) {
1534 ret = PTR_ERR(di);
1535 goto out;
1536 }
1537 if (di) {
1538 /* not unique, try again */
1539 idx++;
1540 continue;
1541 }
1542
1543 if (!sctx->parent_root) {
1544 /* unique */
1545 ret = 0;
1546 break;
1547 }
1548
1549 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1550 path, BTRFS_FIRST_FREE_OBJECTID,
1551 tmp, strlen(tmp), 0);
1552 btrfs_release_path(path);
1553 if (IS_ERR(di)) {
1554 ret = PTR_ERR(di);
1555 goto out;
1556 }
1557 if (di) {
1558 /* not unique, try again */
1559 idx++;
1560 continue;
1561 }
1562 /* unique */
1563 break;
1564 }
1565
1566 ret = fs_path_add(dest, tmp, strlen(tmp));
1567
1568out:
1569 btrfs_free_path(path);
1570 return ret;
1571}
1572
1573enum inode_state {
1574 inode_state_no_change,
1575 inode_state_will_create,
1576 inode_state_did_create,
1577 inode_state_will_delete,
1578 inode_state_did_delete,
1579};
1580
1581static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1582{
1583 int ret;
1584 int left_ret;
1585 int right_ret;
1586 u64 left_gen;
1587 u64 right_gen;
1588
1589 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
85a7b33b 1590 NULL, NULL);
31db9f7c
AB
1591 if (ret < 0 && ret != -ENOENT)
1592 goto out;
1593 left_ret = ret;
1594
1595 if (!sctx->parent_root) {
1596 right_ret = -ENOENT;
1597 } else {
1598 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
85a7b33b 1599 NULL, NULL, NULL, NULL);
31db9f7c
AB
1600 if (ret < 0 && ret != -ENOENT)
1601 goto out;
1602 right_ret = ret;
1603 }
1604
1605 if (!left_ret && !right_ret) {
e938c8ad 1606 if (left_gen == gen && right_gen == gen) {
31db9f7c 1607 ret = inode_state_no_change;
e938c8ad 1608 } else if (left_gen == gen) {
31db9f7c
AB
1609 if (ino < sctx->send_progress)
1610 ret = inode_state_did_create;
1611 else
1612 ret = inode_state_will_create;
1613 } else if (right_gen == gen) {
1614 if (ino < sctx->send_progress)
1615 ret = inode_state_did_delete;
1616 else
1617 ret = inode_state_will_delete;
1618 } else {
1619 ret = -ENOENT;
1620 }
1621 } else if (!left_ret) {
1622 if (left_gen == gen) {
1623 if (ino < sctx->send_progress)
1624 ret = inode_state_did_create;
1625 else
1626 ret = inode_state_will_create;
1627 } else {
1628 ret = -ENOENT;
1629 }
1630 } else if (!right_ret) {
1631 if (right_gen == gen) {
1632 if (ino < sctx->send_progress)
1633 ret = inode_state_did_delete;
1634 else
1635 ret = inode_state_will_delete;
1636 } else {
1637 ret = -ENOENT;
1638 }
1639 } else {
1640 ret = -ENOENT;
1641 }
1642
1643out:
1644 return ret;
1645}
1646
1647static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1648{
1649 int ret;
1650
1651 ret = get_cur_inode_state(sctx, ino, gen);
1652 if (ret < 0)
1653 goto out;
1654
1655 if (ret == inode_state_no_change ||
1656 ret == inode_state_did_create ||
1657 ret == inode_state_will_delete)
1658 ret = 1;
1659 else
1660 ret = 0;
1661
1662out:
1663 return ret;
1664}
1665
1666/*
1667 * Helper function to lookup a dir item in a dir.
1668 */
1669static int lookup_dir_item_inode(struct btrfs_root *root,
1670 u64 dir, const char *name, int name_len,
1671 u64 *found_inode,
1672 u8 *found_type)
1673{
1674 int ret = 0;
1675 struct btrfs_dir_item *di;
1676 struct btrfs_key key;
1677 struct btrfs_path *path;
1678
1679 path = alloc_path_for_send();
1680 if (!path)
1681 return -ENOMEM;
1682
1683 di = btrfs_lookup_dir_item(NULL, root, path,
1684 dir, name, name_len, 0);
1685 if (!di) {
1686 ret = -ENOENT;
1687 goto out;
1688 }
1689 if (IS_ERR(di)) {
1690 ret = PTR_ERR(di);
1691 goto out;
1692 }
1693 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1af56070
FM
1694 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1695 ret = -ENOENT;
1696 goto out;
1697 }
31db9f7c
AB
1698 *found_inode = key.objectid;
1699 *found_type = btrfs_dir_type(path->nodes[0], di);
1700
1701out:
1702 btrfs_free_path(path);
1703 return ret;
1704}
1705
766702ef
AB
1706/*
1707 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1708 * generation of the parent dir and the name of the dir entry.
1709 */
924794c9 1710static int get_first_ref(struct btrfs_root *root, u64 ino,
31db9f7c
AB
1711 u64 *dir, u64 *dir_gen, struct fs_path *name)
1712{
1713 int ret;
1714 struct btrfs_key key;
1715 struct btrfs_key found_key;
1716 struct btrfs_path *path;
31db9f7c 1717 int len;
96b5bd77 1718 u64 parent_dir;
31db9f7c
AB
1719
1720 path = alloc_path_for_send();
1721 if (!path)
1722 return -ENOMEM;
1723
1724 key.objectid = ino;
1725 key.type = BTRFS_INODE_REF_KEY;
1726 key.offset = 0;
1727
1728 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1729 if (ret < 0)
1730 goto out;
1731 if (!ret)
1732 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1733 path->slots[0]);
96b5bd77
JS
1734 if (ret || found_key.objectid != ino ||
1735 (found_key.type != BTRFS_INODE_REF_KEY &&
1736 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
31db9f7c
AB
1737 ret = -ENOENT;
1738 goto out;
1739 }
1740
51a60253 1741 if (found_key.type == BTRFS_INODE_REF_KEY) {
96b5bd77
JS
1742 struct btrfs_inode_ref *iref;
1743 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1744 struct btrfs_inode_ref);
1745 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1746 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1747 (unsigned long)(iref + 1),
1748 len);
1749 parent_dir = found_key.offset;
1750 } else {
1751 struct btrfs_inode_extref *extref;
1752 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1753 struct btrfs_inode_extref);
1754 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1755 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1756 (unsigned long)&extref->name, len);
1757 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1758 }
31db9f7c
AB
1759 if (ret < 0)
1760 goto out;
1761 btrfs_release_path(path);
1762
b46ab97b
FM
1763 if (dir_gen) {
1764 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1765 NULL, NULL, NULL);
1766 if (ret < 0)
1767 goto out;
1768 }
31db9f7c 1769
96b5bd77 1770 *dir = parent_dir;
31db9f7c
AB
1771
1772out:
1773 btrfs_free_path(path);
1774 return ret;
1775}
1776
924794c9 1777static int is_first_ref(struct btrfs_root *root,
31db9f7c
AB
1778 u64 ino, u64 dir,
1779 const char *name, int name_len)
1780{
1781 int ret;
1782 struct fs_path *tmp_name;
1783 u64 tmp_dir;
31db9f7c 1784
924794c9 1785 tmp_name = fs_path_alloc();
31db9f7c
AB
1786 if (!tmp_name)
1787 return -ENOMEM;
1788
b46ab97b 1789 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
31db9f7c
AB
1790 if (ret < 0)
1791 goto out;
1792
b9291aff 1793 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
31db9f7c
AB
1794 ret = 0;
1795 goto out;
1796 }
1797
e938c8ad 1798 ret = !memcmp(tmp_name->start, name, name_len);
31db9f7c
AB
1799
1800out:
924794c9 1801 fs_path_free(tmp_name);
31db9f7c
AB
1802 return ret;
1803}
1804
766702ef
AB
1805/*
1806 * Used by process_recorded_refs to determine if a new ref would overwrite an
1807 * already existing ref. In case it detects an overwrite, it returns the
1808 * inode/gen in who_ino/who_gen.
1809 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1810 * to make sure later references to the overwritten inode are possible.
1811 * Orphanizing is however only required for the first ref of an inode.
1812 * process_recorded_refs does an additional is_first_ref check to see if
1813 * orphanizing is really required.
1814 */
31db9f7c
AB
1815static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1816 const char *name, int name_len,
1817 u64 *who_ino, u64 *who_gen)
1818{
1819 int ret = 0;
ebdad913 1820 u64 gen;
31db9f7c
AB
1821 u64 other_inode = 0;
1822 u8 other_type = 0;
1823
1824 if (!sctx->parent_root)
1825 goto out;
1826
1827 ret = is_inode_existent(sctx, dir, dir_gen);
1828 if (ret <= 0)
1829 goto out;
1830
ebdad913
JB
1831 /*
1832 * If we have a parent root we need to verify that the parent dir was
01327610 1833 * not deleted and then re-created, if it was then we have no overwrite
ebdad913
JB
1834 * and we can just unlink this entry.
1835 */
1836 if (sctx->parent_root) {
1837 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1838 NULL, NULL, NULL);
1839 if (ret < 0 && ret != -ENOENT)
1840 goto out;
1841 if (ret) {
1842 ret = 0;
1843 goto out;
1844 }
1845 if (gen != dir_gen)
1846 goto out;
1847 }
1848
31db9f7c
AB
1849 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1850 &other_inode, &other_type);
1851 if (ret < 0 && ret != -ENOENT)
1852 goto out;
1853 if (ret) {
1854 ret = 0;
1855 goto out;
1856 }
1857
766702ef
AB
1858 /*
1859 * Check if the overwritten ref was already processed. If yes, the ref
1860 * was already unlinked/moved, so we can safely assume that we will not
1861 * overwrite anything at this point in time.
1862 */
801bec36
RK
1863 if (other_inode > sctx->send_progress ||
1864 is_waiting_for_move(sctx, other_inode)) {
31db9f7c 1865 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
85a7b33b 1866 who_gen, NULL, NULL, NULL, NULL);
31db9f7c
AB
1867 if (ret < 0)
1868 goto out;
1869
1870 ret = 1;
1871 *who_ino = other_inode;
1872 } else {
1873 ret = 0;
1874 }
1875
1876out:
1877 return ret;
1878}
1879
766702ef
AB
1880/*
1881 * Checks if the ref was overwritten by an already processed inode. This is
1882 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1883 * thus the orphan name needs be used.
1884 * process_recorded_refs also uses it to avoid unlinking of refs that were
1885 * overwritten.
1886 */
31db9f7c
AB
1887static int did_overwrite_ref(struct send_ctx *sctx,
1888 u64 dir, u64 dir_gen,
1889 u64 ino, u64 ino_gen,
1890 const char *name, int name_len)
1891{
1892 int ret = 0;
1893 u64 gen;
1894 u64 ow_inode;
1895 u8 other_type;
1896
1897 if (!sctx->parent_root)
1898 goto out;
1899
1900 ret = is_inode_existent(sctx, dir, dir_gen);
1901 if (ret <= 0)
1902 goto out;
1903
1904 /* check if the ref was overwritten by another ref */
1905 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1906 &ow_inode, &other_type);
1907 if (ret < 0 && ret != -ENOENT)
1908 goto out;
1909 if (ret) {
1910 /* was never and will never be overwritten */
1911 ret = 0;
1912 goto out;
1913 }
1914
1915 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
85a7b33b 1916 NULL, NULL);
31db9f7c
AB
1917 if (ret < 0)
1918 goto out;
1919
1920 if (ow_inode == ino && gen == ino_gen) {
1921 ret = 0;
1922 goto out;
1923 }
1924
8b191a68
FM
1925 /*
1926 * We know that it is or will be overwritten. Check this now.
1927 * The current inode being processed might have been the one that caused
b786f16a
FM
1928 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1929 * the current inode being processed.
8b191a68 1930 */
b786f16a
FM
1931 if ((ow_inode < sctx->send_progress) ||
1932 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1933 gen == sctx->cur_inode_gen))
31db9f7c
AB
1934 ret = 1;
1935 else
1936 ret = 0;
1937
1938out:
1939 return ret;
1940}
1941
766702ef
AB
1942/*
1943 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1944 * that got overwritten. This is used by process_recorded_refs to determine
1945 * if it has to use the path as returned by get_cur_path or the orphan name.
1946 */
31db9f7c
AB
1947static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1948{
1949 int ret = 0;
1950 struct fs_path *name = NULL;
1951 u64 dir;
1952 u64 dir_gen;
1953
1954 if (!sctx->parent_root)
1955 goto out;
1956
924794c9 1957 name = fs_path_alloc();
31db9f7c
AB
1958 if (!name)
1959 return -ENOMEM;
1960
924794c9 1961 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
31db9f7c
AB
1962 if (ret < 0)
1963 goto out;
1964
1965 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1966 name->start, fs_path_len(name));
31db9f7c
AB
1967
1968out:
924794c9 1969 fs_path_free(name);
31db9f7c
AB
1970 return ret;
1971}
1972
766702ef
AB
1973/*
1974 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1975 * so we need to do some special handling in case we have clashes. This function
1976 * takes care of this with the help of name_cache_entry::radix_list.
5dc67d0b 1977 * In case of error, nce is kfreed.
766702ef 1978 */
31db9f7c
AB
1979static int name_cache_insert(struct send_ctx *sctx,
1980 struct name_cache_entry *nce)
1981{
1982 int ret = 0;
7e0926fe
AB
1983 struct list_head *nce_head;
1984
1985 nce_head = radix_tree_lookup(&sctx->name_cache,
1986 (unsigned long)nce->ino);
1987 if (!nce_head) {
e780b0d1 1988 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
cfa7a9cc
TI
1989 if (!nce_head) {
1990 kfree(nce);
31db9f7c 1991 return -ENOMEM;
cfa7a9cc 1992 }
7e0926fe 1993 INIT_LIST_HEAD(nce_head);
31db9f7c 1994
7e0926fe 1995 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
5dc67d0b
AB
1996 if (ret < 0) {
1997 kfree(nce_head);
1998 kfree(nce);
31db9f7c 1999 return ret;
5dc67d0b 2000 }
31db9f7c 2001 }
7e0926fe 2002 list_add_tail(&nce->radix_list, nce_head);
31db9f7c
AB
2003 list_add_tail(&nce->list, &sctx->name_cache_list);
2004 sctx->name_cache_size++;
2005
2006 return ret;
2007}
2008
2009static void name_cache_delete(struct send_ctx *sctx,
2010 struct name_cache_entry *nce)
2011{
7e0926fe 2012 struct list_head *nce_head;
31db9f7c 2013
7e0926fe
AB
2014 nce_head = radix_tree_lookup(&sctx->name_cache,
2015 (unsigned long)nce->ino);
57fb8910
DS
2016 if (!nce_head) {
2017 btrfs_err(sctx->send_root->fs_info,
2018 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2019 nce->ino, sctx->name_cache_size);
2020 }
31db9f7c 2021
7e0926fe 2022 list_del(&nce->radix_list);
31db9f7c 2023 list_del(&nce->list);
31db9f7c 2024 sctx->name_cache_size--;
7e0926fe 2025
57fb8910
DS
2026 /*
2027 * We may not get to the final release of nce_head if the lookup fails
2028 */
2029 if (nce_head && list_empty(nce_head)) {
7e0926fe
AB
2030 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2031 kfree(nce_head);
2032 }
31db9f7c
AB
2033}
2034
2035static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2036 u64 ino, u64 gen)
2037{
7e0926fe
AB
2038 struct list_head *nce_head;
2039 struct name_cache_entry *cur;
31db9f7c 2040
7e0926fe
AB
2041 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2042 if (!nce_head)
31db9f7c
AB
2043 return NULL;
2044
7e0926fe
AB
2045 list_for_each_entry(cur, nce_head, radix_list) {
2046 if (cur->ino == ino && cur->gen == gen)
2047 return cur;
2048 }
31db9f7c
AB
2049 return NULL;
2050}
2051
766702ef
AB
2052/*
2053 * Removes the entry from the list and adds it back to the end. This marks the
2054 * entry as recently used so that name_cache_clean_unused does not remove it.
2055 */
31db9f7c
AB
2056static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2057{
2058 list_del(&nce->list);
2059 list_add_tail(&nce->list, &sctx->name_cache_list);
2060}
2061
766702ef
AB
2062/*
2063 * Remove some entries from the beginning of name_cache_list.
2064 */
31db9f7c
AB
2065static void name_cache_clean_unused(struct send_ctx *sctx)
2066{
2067 struct name_cache_entry *nce;
2068
2069 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2070 return;
2071
2072 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2073 nce = list_entry(sctx->name_cache_list.next,
2074 struct name_cache_entry, list);
2075 name_cache_delete(sctx, nce);
2076 kfree(nce);
2077 }
2078}
2079
2080static void name_cache_free(struct send_ctx *sctx)
2081{
2082 struct name_cache_entry *nce;
31db9f7c 2083
e938c8ad
AB
2084 while (!list_empty(&sctx->name_cache_list)) {
2085 nce = list_entry(sctx->name_cache_list.next,
2086 struct name_cache_entry, list);
31db9f7c 2087 name_cache_delete(sctx, nce);
17589bd9 2088 kfree(nce);
31db9f7c
AB
2089 }
2090}
2091
766702ef
AB
2092/*
2093 * Used by get_cur_path for each ref up to the root.
2094 * Returns 0 if it succeeded.
2095 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2096 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2097 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2098 * Returns <0 in case of error.
2099 */
31db9f7c
AB
2100static int __get_cur_name_and_parent(struct send_ctx *sctx,
2101 u64 ino, u64 gen,
2102 u64 *parent_ino,
2103 u64 *parent_gen,
2104 struct fs_path *dest)
2105{
2106 int ret;
2107 int nce_ret;
31db9f7c
AB
2108 struct name_cache_entry *nce = NULL;
2109
766702ef
AB
2110 /*
2111 * First check if we already did a call to this function with the same
2112 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2113 * return the cached result.
2114 */
31db9f7c
AB
2115 nce = name_cache_search(sctx, ino, gen);
2116 if (nce) {
2117 if (ino < sctx->send_progress && nce->need_later_update) {
2118 name_cache_delete(sctx, nce);
2119 kfree(nce);
2120 nce = NULL;
2121 } else {
2122 name_cache_used(sctx, nce);
2123 *parent_ino = nce->parent_ino;
2124 *parent_gen = nce->parent_gen;
2125 ret = fs_path_add(dest, nce->name, nce->name_len);
2126 if (ret < 0)
2127 goto out;
2128 ret = nce->ret;
2129 goto out;
2130 }
2131 }
2132
766702ef
AB
2133 /*
2134 * If the inode is not existent yet, add the orphan name and return 1.
2135 * This should only happen for the parent dir that we determine in
2136 * __record_new_ref
2137 */
31db9f7c
AB
2138 ret = is_inode_existent(sctx, ino, gen);
2139 if (ret < 0)
2140 goto out;
2141
2142 if (!ret) {
2143 ret = gen_unique_name(sctx, ino, gen, dest);
2144 if (ret < 0)
2145 goto out;
2146 ret = 1;
2147 goto out_cache;
2148 }
2149
766702ef
AB
2150 /*
2151 * Depending on whether the inode was already processed or not, use
2152 * send_root or parent_root for ref lookup.
2153 */
bf0d1f44 2154 if (ino < sctx->send_progress)
924794c9
TI
2155 ret = get_first_ref(sctx->send_root, ino,
2156 parent_ino, parent_gen, dest);
31db9f7c 2157 else
924794c9
TI
2158 ret = get_first_ref(sctx->parent_root, ino,
2159 parent_ino, parent_gen, dest);
31db9f7c
AB
2160 if (ret < 0)
2161 goto out;
2162
766702ef
AB
2163 /*
2164 * Check if the ref was overwritten by an inode's ref that was processed
2165 * earlier. If yes, treat as orphan and return 1.
2166 */
31db9f7c
AB
2167 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2168 dest->start, dest->end - dest->start);
2169 if (ret < 0)
2170 goto out;
2171 if (ret) {
2172 fs_path_reset(dest);
2173 ret = gen_unique_name(sctx, ino, gen, dest);
2174 if (ret < 0)
2175 goto out;
2176 ret = 1;
2177 }
2178
2179out_cache:
766702ef
AB
2180 /*
2181 * Store the result of the lookup in the name cache.
2182 */
e780b0d1 2183 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
31db9f7c
AB
2184 if (!nce) {
2185 ret = -ENOMEM;
2186 goto out;
2187 }
2188
2189 nce->ino = ino;
2190 nce->gen = gen;
2191 nce->parent_ino = *parent_ino;
2192 nce->parent_gen = *parent_gen;
2193 nce->name_len = fs_path_len(dest);
2194 nce->ret = ret;
2195 strcpy(nce->name, dest->start);
31db9f7c
AB
2196
2197 if (ino < sctx->send_progress)
2198 nce->need_later_update = 0;
2199 else
2200 nce->need_later_update = 1;
2201
2202 nce_ret = name_cache_insert(sctx, nce);
2203 if (nce_ret < 0)
2204 ret = nce_ret;
2205 name_cache_clean_unused(sctx);
2206
2207out:
31db9f7c
AB
2208 return ret;
2209}
2210
2211/*
2212 * Magic happens here. This function returns the first ref to an inode as it
2213 * would look like while receiving the stream at this point in time.
2214 * We walk the path up to the root. For every inode in between, we check if it
2215 * was already processed/sent. If yes, we continue with the parent as found
2216 * in send_root. If not, we continue with the parent as found in parent_root.
2217 * If we encounter an inode that was deleted at this point in time, we use the
2218 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2219 * that were not created yet and overwritten inodes/refs.
2220 *
2221 * When do we have have orphan inodes:
2222 * 1. When an inode is freshly created and thus no valid refs are available yet
2223 * 2. When a directory lost all it's refs (deleted) but still has dir items
2224 * inside which were not processed yet (pending for move/delete). If anyone
2225 * tried to get the path to the dir items, it would get a path inside that
2226 * orphan directory.
2227 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2228 * of an unprocessed inode. If in that case the first ref would be
2229 * overwritten, the overwritten inode gets "orphanized". Later when we
2230 * process this overwritten inode, it is restored at a new place by moving
2231 * the orphan inode.
2232 *
2233 * sctx->send_progress tells this function at which point in time receiving
2234 * would be.
2235 */
2236static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2237 struct fs_path *dest)
2238{
2239 int ret = 0;
2240 struct fs_path *name = NULL;
2241 u64 parent_inode = 0;
2242 u64 parent_gen = 0;
2243 int stop = 0;
2244
924794c9 2245 name = fs_path_alloc();
31db9f7c
AB
2246 if (!name) {
2247 ret = -ENOMEM;
2248 goto out;
2249 }
2250
2251 dest->reversed = 1;
2252 fs_path_reset(dest);
2253
2254 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
8b191a68
FM
2255 struct waiting_dir_move *wdm;
2256
31db9f7c
AB
2257 fs_path_reset(name);
2258
9dc44214
FM
2259 if (is_waiting_for_rm(sctx, ino)) {
2260 ret = gen_unique_name(sctx, ino, gen, name);
2261 if (ret < 0)
2262 goto out;
2263 ret = fs_path_add_path(dest, name);
2264 break;
2265 }
2266
8b191a68
FM
2267 wdm = get_waiting_dir_move(sctx, ino);
2268 if (wdm && wdm->orphanized) {
2269 ret = gen_unique_name(sctx, ino, gen, name);
2270 stop = 1;
2271 } else if (wdm) {
bf0d1f44
FM
2272 ret = get_first_ref(sctx->parent_root, ino,
2273 &parent_inode, &parent_gen, name);
2274 } else {
2275 ret = __get_cur_name_and_parent(sctx, ino, gen,
2276 &parent_inode,
2277 &parent_gen, name);
2278 if (ret)
2279 stop = 1;
2280 }
2281
31db9f7c
AB
2282 if (ret < 0)
2283 goto out;
9f03740a 2284
31db9f7c
AB
2285 ret = fs_path_add_path(dest, name);
2286 if (ret < 0)
2287 goto out;
2288
2289 ino = parent_inode;
2290 gen = parent_gen;
2291 }
2292
2293out:
924794c9 2294 fs_path_free(name);
31db9f7c
AB
2295 if (!ret)
2296 fs_path_unreverse(dest);
2297 return ret;
2298}
2299
31db9f7c
AB
2300/*
2301 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2302 */
2303static int send_subvol_begin(struct send_ctx *sctx)
2304{
2305 int ret;
2306 struct btrfs_root *send_root = sctx->send_root;
2307 struct btrfs_root *parent_root = sctx->parent_root;
2308 struct btrfs_path *path;
2309 struct btrfs_key key;
2310 struct btrfs_root_ref *ref;
2311 struct extent_buffer *leaf;
2312 char *name = NULL;
2313 int namelen;
2314
ffcfaf81 2315 path = btrfs_alloc_path();
31db9f7c
AB
2316 if (!path)
2317 return -ENOMEM;
2318
e780b0d1 2319 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
31db9f7c
AB
2320 if (!name) {
2321 btrfs_free_path(path);
2322 return -ENOMEM;
2323 }
2324
2325 key.objectid = send_root->objectid;
2326 key.type = BTRFS_ROOT_BACKREF_KEY;
2327 key.offset = 0;
2328
2329 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2330 &key, path, 1, 0);
2331 if (ret < 0)
2332 goto out;
2333 if (ret) {
2334 ret = -ENOENT;
2335 goto out;
2336 }
2337
2338 leaf = path->nodes[0];
2339 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2340 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2341 key.objectid != send_root->objectid) {
2342 ret = -ENOENT;
2343 goto out;
2344 }
2345 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2346 namelen = btrfs_root_ref_name_len(leaf, ref);
2347 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2348 btrfs_release_path(path);
2349
31db9f7c
AB
2350 if (parent_root) {
2351 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2352 if (ret < 0)
2353 goto out;
2354 } else {
2355 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2356 if (ret < 0)
2357 goto out;
2358 }
2359
2360 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
b96b1db0
RR
2361
2362 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2363 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2364 sctx->send_root->root_item.received_uuid);
2365 else
2366 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2367 sctx->send_root->root_item.uuid);
2368
31db9f7c 2369 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
5a0f4e2c 2370 le64_to_cpu(sctx->send_root->root_item.ctransid));
31db9f7c 2371 if (parent_root) {
37b8d27d
JB
2372 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2373 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2374 parent_root->root_item.received_uuid);
2375 else
2376 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2377 parent_root->root_item.uuid);
31db9f7c 2378 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5a0f4e2c 2379 le64_to_cpu(sctx->parent_root->root_item.ctransid));
31db9f7c
AB
2380 }
2381
2382 ret = send_cmd(sctx);
2383
2384tlv_put_failure:
2385out:
2386 btrfs_free_path(path);
2387 kfree(name);
2388 return ret;
2389}
2390
2391static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2392{
2393 int ret = 0;
2394 struct fs_path *p;
2395
2396verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2397
924794c9 2398 p = fs_path_alloc();
31db9f7c
AB
2399 if (!p)
2400 return -ENOMEM;
2401
2402 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2403 if (ret < 0)
2404 goto out;
2405
2406 ret = get_cur_path(sctx, ino, gen, p);
2407 if (ret < 0)
2408 goto out;
2409 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2410 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2411
2412 ret = send_cmd(sctx);
2413
2414tlv_put_failure:
2415out:
924794c9 2416 fs_path_free(p);
31db9f7c
AB
2417 return ret;
2418}
2419
2420static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2421{
2422 int ret = 0;
2423 struct fs_path *p;
2424
2425verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2426
924794c9 2427 p = fs_path_alloc();
31db9f7c
AB
2428 if (!p)
2429 return -ENOMEM;
2430
2431 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2432 if (ret < 0)
2433 goto out;
2434
2435 ret = get_cur_path(sctx, ino, gen, p);
2436 if (ret < 0)
2437 goto out;
2438 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2439 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2440
2441 ret = send_cmd(sctx);
2442
2443tlv_put_failure:
2444out:
924794c9 2445 fs_path_free(p);
31db9f7c
AB
2446 return ret;
2447}
2448
2449static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2450{
2451 int ret = 0;
2452 struct fs_path *p;
2453
2454verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2455
924794c9 2456 p = fs_path_alloc();
31db9f7c
AB
2457 if (!p)
2458 return -ENOMEM;
2459
2460 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2461 if (ret < 0)
2462 goto out;
2463
2464 ret = get_cur_path(sctx, ino, gen, p);
2465 if (ret < 0)
2466 goto out;
2467 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2468 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2469 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2470
2471 ret = send_cmd(sctx);
2472
2473tlv_put_failure:
2474out:
924794c9 2475 fs_path_free(p);
31db9f7c
AB
2476 return ret;
2477}
2478
2479static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2480{
2481 int ret = 0;
2482 struct fs_path *p = NULL;
2483 struct btrfs_inode_item *ii;
2484 struct btrfs_path *path = NULL;
2485 struct extent_buffer *eb;
2486 struct btrfs_key key;
2487 int slot;
2488
2489verbose_printk("btrfs: send_utimes %llu\n", ino);
2490
924794c9 2491 p = fs_path_alloc();
31db9f7c
AB
2492 if (!p)
2493 return -ENOMEM;
2494
2495 path = alloc_path_for_send();
2496 if (!path) {
2497 ret = -ENOMEM;
2498 goto out;
2499 }
2500
2501 key.objectid = ino;
2502 key.type = BTRFS_INODE_ITEM_KEY;
2503 key.offset = 0;
2504 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
15b253ea
FM
2505 if (ret > 0)
2506 ret = -ENOENT;
31db9f7c
AB
2507 if (ret < 0)
2508 goto out;
2509
2510 eb = path->nodes[0];
2511 slot = path->slots[0];
2512 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2513
2514 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2515 if (ret < 0)
2516 goto out;
2517
2518 ret = get_cur_path(sctx, ino, gen, p);
2519 if (ret < 0)
2520 goto out;
2521 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
a937b979
DS
2522 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2523 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2524 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
766702ef 2525 /* TODO Add otime support when the otime patches get into upstream */
31db9f7c
AB
2526
2527 ret = send_cmd(sctx);
2528
2529tlv_put_failure:
2530out:
924794c9 2531 fs_path_free(p);
31db9f7c
AB
2532 btrfs_free_path(path);
2533 return ret;
2534}
2535
2536/*
2537 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2538 * a valid path yet because we did not process the refs yet. So, the inode
2539 * is created as orphan.
2540 */
1f4692da 2541static int send_create_inode(struct send_ctx *sctx, u64 ino)
31db9f7c
AB
2542{
2543 int ret = 0;
31db9f7c 2544 struct fs_path *p;
31db9f7c 2545 int cmd;
1f4692da 2546 u64 gen;
31db9f7c 2547 u64 mode;
1f4692da 2548 u64 rdev;
31db9f7c 2549
1f4692da 2550verbose_printk("btrfs: send_create_inode %llu\n", ino);
31db9f7c 2551
924794c9 2552 p = fs_path_alloc();
31db9f7c
AB
2553 if (!p)
2554 return -ENOMEM;
2555
644d1940
LB
2556 if (ino != sctx->cur_ino) {
2557 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2558 NULL, NULL, &rdev);
2559 if (ret < 0)
2560 goto out;
2561 } else {
2562 gen = sctx->cur_inode_gen;
2563 mode = sctx->cur_inode_mode;
2564 rdev = sctx->cur_inode_rdev;
2565 }
31db9f7c 2566
e938c8ad 2567 if (S_ISREG(mode)) {
31db9f7c 2568 cmd = BTRFS_SEND_C_MKFILE;
e938c8ad 2569 } else if (S_ISDIR(mode)) {
31db9f7c 2570 cmd = BTRFS_SEND_C_MKDIR;
e938c8ad 2571 } else if (S_ISLNK(mode)) {
31db9f7c 2572 cmd = BTRFS_SEND_C_SYMLINK;
e938c8ad 2573 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
31db9f7c 2574 cmd = BTRFS_SEND_C_MKNOD;
e938c8ad 2575 } else if (S_ISFIFO(mode)) {
31db9f7c 2576 cmd = BTRFS_SEND_C_MKFIFO;
e938c8ad 2577 } else if (S_ISSOCK(mode)) {
31db9f7c 2578 cmd = BTRFS_SEND_C_MKSOCK;
e938c8ad 2579 } else {
f14d104d 2580 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
31db9f7c
AB
2581 (int)(mode & S_IFMT));
2582 ret = -ENOTSUPP;
2583 goto out;
2584 }
2585
2586 ret = begin_cmd(sctx, cmd);
2587 if (ret < 0)
2588 goto out;
2589
1f4692da 2590 ret = gen_unique_name(sctx, ino, gen, p);
31db9f7c
AB
2591 if (ret < 0)
2592 goto out;
2593
2594 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
1f4692da 2595 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
31db9f7c
AB
2596
2597 if (S_ISLNK(mode)) {
2598 fs_path_reset(p);
924794c9 2599 ret = read_symlink(sctx->send_root, ino, p);
31db9f7c
AB
2600 if (ret < 0)
2601 goto out;
2602 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2603 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2604 S_ISFIFO(mode) || S_ISSOCK(mode)) {
d79e5043
AJ
2605 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2606 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
31db9f7c
AB
2607 }
2608
2609 ret = send_cmd(sctx);
2610 if (ret < 0)
2611 goto out;
2612
2613
2614tlv_put_failure:
2615out:
924794c9 2616 fs_path_free(p);
31db9f7c
AB
2617 return ret;
2618}
2619
1f4692da
AB
2620/*
2621 * We need some special handling for inodes that get processed before the parent
2622 * directory got created. See process_recorded_refs for details.
2623 * This function does the check if we already created the dir out of order.
2624 */
2625static int did_create_dir(struct send_ctx *sctx, u64 dir)
2626{
2627 int ret = 0;
2628 struct btrfs_path *path = NULL;
2629 struct btrfs_key key;
2630 struct btrfs_key found_key;
2631 struct btrfs_key di_key;
2632 struct extent_buffer *eb;
2633 struct btrfs_dir_item *di;
2634 int slot;
2635
2636 path = alloc_path_for_send();
2637 if (!path) {
2638 ret = -ENOMEM;
2639 goto out;
2640 }
2641
2642 key.objectid = dir;
2643 key.type = BTRFS_DIR_INDEX_KEY;
2644 key.offset = 0;
dff6d0ad
FDBM
2645 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2646 if (ret < 0)
2647 goto out;
2648
1f4692da 2649 while (1) {
dff6d0ad
FDBM
2650 eb = path->nodes[0];
2651 slot = path->slots[0];
2652 if (slot >= btrfs_header_nritems(eb)) {
2653 ret = btrfs_next_leaf(sctx->send_root, path);
2654 if (ret < 0) {
2655 goto out;
2656 } else if (ret > 0) {
2657 ret = 0;
2658 break;
2659 }
2660 continue;
1f4692da 2661 }
dff6d0ad
FDBM
2662
2663 btrfs_item_key_to_cpu(eb, &found_key, slot);
2664 if (found_key.objectid != key.objectid ||
1f4692da
AB
2665 found_key.type != key.type) {
2666 ret = 0;
2667 goto out;
2668 }
2669
2670 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2671 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2672
a0525414
JB
2673 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2674 di_key.objectid < sctx->send_progress) {
1f4692da
AB
2675 ret = 1;
2676 goto out;
2677 }
2678
dff6d0ad 2679 path->slots[0]++;
1f4692da
AB
2680 }
2681
2682out:
2683 btrfs_free_path(path);
2684 return ret;
2685}
2686
2687/*
2688 * Only creates the inode if it is:
2689 * 1. Not a directory
2690 * 2. Or a directory which was not created already due to out of order
2691 * directories. See did_create_dir and process_recorded_refs for details.
2692 */
2693static int send_create_inode_if_needed(struct send_ctx *sctx)
2694{
2695 int ret;
2696
2697 if (S_ISDIR(sctx->cur_inode_mode)) {
2698 ret = did_create_dir(sctx, sctx->cur_ino);
2699 if (ret < 0)
2700 goto out;
2701 if (ret) {
2702 ret = 0;
2703 goto out;
2704 }
2705 }
2706
2707 ret = send_create_inode(sctx, sctx->cur_ino);
2708 if (ret < 0)
2709 goto out;
2710
2711out:
2712 return ret;
2713}
2714
31db9f7c
AB
2715struct recorded_ref {
2716 struct list_head list;
2717 char *dir_path;
2718 char *name;
2719 struct fs_path *full_path;
2720 u64 dir;
2721 u64 dir_gen;
2722 int dir_path_len;
2723 int name_len;
2724};
2725
2726/*
2727 * We need to process new refs before deleted refs, but compare_tree gives us
2728 * everything mixed. So we first record all refs and later process them.
2729 * This function is a helper to record one ref.
2730 */
a4d96d62 2731static int __record_ref(struct list_head *head, u64 dir,
31db9f7c
AB
2732 u64 dir_gen, struct fs_path *path)
2733{
2734 struct recorded_ref *ref;
31db9f7c 2735
e780b0d1 2736 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
31db9f7c
AB
2737 if (!ref)
2738 return -ENOMEM;
2739
2740 ref->dir = dir;
2741 ref->dir_gen = dir_gen;
2742 ref->full_path = path;
2743
ed84885d
AS
2744 ref->name = (char *)kbasename(ref->full_path->start);
2745 ref->name_len = ref->full_path->end - ref->name;
2746 ref->dir_path = ref->full_path->start;
2747 if (ref->name == ref->full_path->start)
31db9f7c 2748 ref->dir_path_len = 0;
ed84885d 2749 else
31db9f7c
AB
2750 ref->dir_path_len = ref->full_path->end -
2751 ref->full_path->start - 1 - ref->name_len;
31db9f7c
AB
2752
2753 list_add_tail(&ref->list, head);
2754 return 0;
2755}
2756
ba5e8f2e
JB
2757static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2758{
2759 struct recorded_ref *new;
2760
e780b0d1 2761 new = kmalloc(sizeof(*ref), GFP_KERNEL);
ba5e8f2e
JB
2762 if (!new)
2763 return -ENOMEM;
2764
2765 new->dir = ref->dir;
2766 new->dir_gen = ref->dir_gen;
2767 new->full_path = NULL;
2768 INIT_LIST_HEAD(&new->list);
2769 list_add_tail(&new->list, list);
2770 return 0;
2771}
2772
924794c9 2773static void __free_recorded_refs(struct list_head *head)
31db9f7c
AB
2774{
2775 struct recorded_ref *cur;
31db9f7c 2776
e938c8ad
AB
2777 while (!list_empty(head)) {
2778 cur = list_entry(head->next, struct recorded_ref, list);
924794c9 2779 fs_path_free(cur->full_path);
e938c8ad 2780 list_del(&cur->list);
31db9f7c
AB
2781 kfree(cur);
2782 }
31db9f7c
AB
2783}
2784
2785static void free_recorded_refs(struct send_ctx *sctx)
2786{
924794c9
TI
2787 __free_recorded_refs(&sctx->new_refs);
2788 __free_recorded_refs(&sctx->deleted_refs);
31db9f7c
AB
2789}
2790
2791/*
766702ef 2792 * Renames/moves a file/dir to its orphan name. Used when the first
31db9f7c
AB
2793 * ref of an unprocessed inode gets overwritten and for all non empty
2794 * directories.
2795 */
2796static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2797 struct fs_path *path)
2798{
2799 int ret;
2800 struct fs_path *orphan;
2801
924794c9 2802 orphan = fs_path_alloc();
31db9f7c
AB
2803 if (!orphan)
2804 return -ENOMEM;
2805
2806 ret = gen_unique_name(sctx, ino, gen, orphan);
2807 if (ret < 0)
2808 goto out;
2809
2810 ret = send_rename(sctx, path, orphan);
2811
2812out:
924794c9 2813 fs_path_free(orphan);
31db9f7c
AB
2814 return ret;
2815}
2816
9dc44214
FM
2817static struct orphan_dir_info *
2818add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2819{
2820 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2821 struct rb_node *parent = NULL;
2822 struct orphan_dir_info *entry, *odi;
2823
e780b0d1 2824 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
9dc44214
FM
2825 if (!odi)
2826 return ERR_PTR(-ENOMEM);
2827 odi->ino = dir_ino;
2828 odi->gen = 0;
2829
2830 while (*p) {
2831 parent = *p;
2832 entry = rb_entry(parent, struct orphan_dir_info, node);
2833 if (dir_ino < entry->ino) {
2834 p = &(*p)->rb_left;
2835 } else if (dir_ino > entry->ino) {
2836 p = &(*p)->rb_right;
2837 } else {
2838 kfree(odi);
2839 return entry;
2840 }
2841 }
2842
2843 rb_link_node(&odi->node, parent, p);
2844 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2845 return odi;
2846}
2847
2848static struct orphan_dir_info *
2849get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2850{
2851 struct rb_node *n = sctx->orphan_dirs.rb_node;
2852 struct orphan_dir_info *entry;
2853
2854 while (n) {
2855 entry = rb_entry(n, struct orphan_dir_info, node);
2856 if (dir_ino < entry->ino)
2857 n = n->rb_left;
2858 else if (dir_ino > entry->ino)
2859 n = n->rb_right;
2860 else
2861 return entry;
2862 }
2863 return NULL;
2864}
2865
2866static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2867{
2868 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2869
2870 return odi != NULL;
2871}
2872
2873static void free_orphan_dir_info(struct send_ctx *sctx,
2874 struct orphan_dir_info *odi)
2875{
2876 if (!odi)
2877 return;
2878 rb_erase(&odi->node, &sctx->orphan_dirs);
2879 kfree(odi);
2880}
2881
31db9f7c
AB
2882/*
2883 * Returns 1 if a directory can be removed at this point in time.
2884 * We check this by iterating all dir items and checking if the inode behind
2885 * the dir item was already processed.
2886 */
9dc44214
FM
2887static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2888 u64 send_progress)
31db9f7c
AB
2889{
2890 int ret = 0;
2891 struct btrfs_root *root = sctx->parent_root;
2892 struct btrfs_path *path;
2893 struct btrfs_key key;
2894 struct btrfs_key found_key;
2895 struct btrfs_key loc;
2896 struct btrfs_dir_item *di;
2897
6d85ed05
AB
2898 /*
2899 * Don't try to rmdir the top/root subvolume dir.
2900 */
2901 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2902 return 0;
2903
31db9f7c
AB
2904 path = alloc_path_for_send();
2905 if (!path)
2906 return -ENOMEM;
2907
2908 key.objectid = dir;
2909 key.type = BTRFS_DIR_INDEX_KEY;
2910 key.offset = 0;
dff6d0ad
FDBM
2911 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2912 if (ret < 0)
2913 goto out;
31db9f7c
AB
2914
2915 while (1) {
9dc44214
FM
2916 struct waiting_dir_move *dm;
2917
dff6d0ad
FDBM
2918 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2919 ret = btrfs_next_leaf(root, path);
2920 if (ret < 0)
2921 goto out;
2922 else if (ret > 0)
2923 break;
2924 continue;
31db9f7c 2925 }
dff6d0ad
FDBM
2926 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2927 path->slots[0]);
2928 if (found_key.objectid != key.objectid ||
2929 found_key.type != key.type)
31db9f7c 2930 break;
31db9f7c
AB
2931
2932 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2933 struct btrfs_dir_item);
2934 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2935
9dc44214
FM
2936 dm = get_waiting_dir_move(sctx, loc.objectid);
2937 if (dm) {
2938 struct orphan_dir_info *odi;
2939
2940 odi = add_orphan_dir_info(sctx, dir);
2941 if (IS_ERR(odi)) {
2942 ret = PTR_ERR(odi);
2943 goto out;
2944 }
2945 odi->gen = dir_gen;
2946 dm->rmdir_ino = dir;
2947 ret = 0;
2948 goto out;
2949 }
2950
31db9f7c 2951 if (loc.objectid > send_progress) {
443f9d26
RK
2952 struct orphan_dir_info *odi;
2953
2954 odi = get_orphan_dir_info(sctx, dir);
2955 free_orphan_dir_info(sctx, odi);
31db9f7c
AB
2956 ret = 0;
2957 goto out;
2958 }
2959
dff6d0ad 2960 path->slots[0]++;
31db9f7c
AB
2961 }
2962
2963 ret = 1;
2964
2965out:
2966 btrfs_free_path(path);
2967 return ret;
2968}
2969
9f03740a
FDBM
2970static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2971{
9dc44214 2972 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
9f03740a 2973
9dc44214 2974 return entry != NULL;
9f03740a
FDBM
2975}
2976
8b191a68 2977static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
9f03740a
FDBM
2978{
2979 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2980 struct rb_node *parent = NULL;
2981 struct waiting_dir_move *entry, *dm;
2982
e780b0d1 2983 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
9f03740a
FDBM
2984 if (!dm)
2985 return -ENOMEM;
2986 dm->ino = ino;
9dc44214 2987 dm->rmdir_ino = 0;
8b191a68 2988 dm->orphanized = orphanized;
9f03740a
FDBM
2989
2990 while (*p) {
2991 parent = *p;
2992 entry = rb_entry(parent, struct waiting_dir_move, node);
2993 if (ino < entry->ino) {
2994 p = &(*p)->rb_left;
2995 } else if (ino > entry->ino) {
2996 p = &(*p)->rb_right;
2997 } else {
2998 kfree(dm);
2999 return -EEXIST;
3000 }
3001 }
3002
3003 rb_link_node(&dm->node, parent, p);
3004 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3005 return 0;
3006}
3007
9dc44214
FM
3008static struct waiting_dir_move *
3009get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
9f03740a
FDBM
3010{
3011 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3012 struct waiting_dir_move *entry;
3013
3014 while (n) {
3015 entry = rb_entry(n, struct waiting_dir_move, node);
9dc44214 3016 if (ino < entry->ino)
9f03740a 3017 n = n->rb_left;
9dc44214 3018 else if (ino > entry->ino)
9f03740a 3019 n = n->rb_right;
9dc44214
FM
3020 else
3021 return entry;
9f03740a 3022 }
9dc44214
FM
3023 return NULL;
3024}
3025
3026static void free_waiting_dir_move(struct send_ctx *sctx,
3027 struct waiting_dir_move *dm)
3028{
3029 if (!dm)
3030 return;
3031 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3032 kfree(dm);
9f03740a
FDBM
3033}
3034
bfa7e1f8
FM
3035static int add_pending_dir_move(struct send_ctx *sctx,
3036 u64 ino,
3037 u64 ino_gen,
f959492f
FM
3038 u64 parent_ino,
3039 struct list_head *new_refs,
84471e24
FM
3040 struct list_head *deleted_refs,
3041 const bool is_orphan)
9f03740a
FDBM
3042{
3043 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3044 struct rb_node *parent = NULL;
73b802f4 3045 struct pending_dir_move *entry = NULL, *pm;
9f03740a
FDBM
3046 struct recorded_ref *cur;
3047 int exists = 0;
3048 int ret;
3049
e780b0d1 3050 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
9f03740a
FDBM
3051 if (!pm)
3052 return -ENOMEM;
3053 pm->parent_ino = parent_ino;
bfa7e1f8
FM
3054 pm->ino = ino;
3055 pm->gen = ino_gen;
9f03740a
FDBM
3056 INIT_LIST_HEAD(&pm->list);
3057 INIT_LIST_HEAD(&pm->update_refs);
3058 RB_CLEAR_NODE(&pm->node);
3059
3060 while (*p) {
3061 parent = *p;
3062 entry = rb_entry(parent, struct pending_dir_move, node);
3063 if (parent_ino < entry->parent_ino) {
3064 p = &(*p)->rb_left;
3065 } else if (parent_ino > entry->parent_ino) {
3066 p = &(*p)->rb_right;
3067 } else {
3068 exists = 1;
3069 break;
3070 }
3071 }
3072
f959492f 3073 list_for_each_entry(cur, deleted_refs, list) {
9f03740a
FDBM
3074 ret = dup_ref(cur, &pm->update_refs);
3075 if (ret < 0)
3076 goto out;
3077 }
f959492f 3078 list_for_each_entry(cur, new_refs, list) {
9f03740a
FDBM
3079 ret = dup_ref(cur, &pm->update_refs);
3080 if (ret < 0)
3081 goto out;
3082 }
3083
8b191a68 3084 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
9f03740a
FDBM
3085 if (ret)
3086 goto out;
3087
3088 if (exists) {
3089 list_add_tail(&pm->list, &entry->list);
3090 } else {
3091 rb_link_node(&pm->node, parent, p);
3092 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3093 }
3094 ret = 0;
3095out:
3096 if (ret) {
3097 __free_recorded_refs(&pm->update_refs);
3098 kfree(pm);
3099 }
3100 return ret;
3101}
3102
3103static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3104 u64 parent_ino)
3105{
3106 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3107 struct pending_dir_move *entry;
3108
3109 while (n) {
3110 entry = rb_entry(n, struct pending_dir_move, node);
3111 if (parent_ino < entry->parent_ino)
3112 n = n->rb_left;
3113 else if (parent_ino > entry->parent_ino)
3114 n = n->rb_right;
3115 else
3116 return entry;
3117 }
3118 return NULL;
3119}
3120
801bec36
RK
3121static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3122 u64 ino, u64 gen, u64 *ancestor_ino)
3123{
3124 int ret = 0;
3125 u64 parent_inode = 0;
3126 u64 parent_gen = 0;
3127 u64 start_ino = ino;
3128
3129 *ancestor_ino = 0;
3130 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3131 fs_path_reset(name);
3132
3133 if (is_waiting_for_rm(sctx, ino))
3134 break;
3135 if (is_waiting_for_move(sctx, ino)) {
3136 if (*ancestor_ino == 0)
3137 *ancestor_ino = ino;
3138 ret = get_first_ref(sctx->parent_root, ino,
3139 &parent_inode, &parent_gen, name);
3140 } else {
3141 ret = __get_cur_name_and_parent(sctx, ino, gen,
3142 &parent_inode,
3143 &parent_gen, name);
3144 if (ret > 0) {
3145 ret = 0;
3146 break;
3147 }
3148 }
3149 if (ret < 0)
3150 break;
3151 if (parent_inode == start_ino) {
3152 ret = 1;
3153 if (*ancestor_ino == 0)
3154 *ancestor_ino = ino;
3155 break;
3156 }
3157 ino = parent_inode;
3158 gen = parent_gen;
3159 }
3160 return ret;
3161}
3162
9f03740a
FDBM
3163static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3164{
3165 struct fs_path *from_path = NULL;
3166 struct fs_path *to_path = NULL;
2b863a13 3167 struct fs_path *name = NULL;
9f03740a
FDBM
3168 u64 orig_progress = sctx->send_progress;
3169 struct recorded_ref *cur;
2b863a13 3170 u64 parent_ino, parent_gen;
9dc44214
FM
3171 struct waiting_dir_move *dm = NULL;
3172 u64 rmdir_ino = 0;
801bec36
RK
3173 u64 ancestor;
3174 bool is_orphan;
9f03740a
FDBM
3175 int ret;
3176
2b863a13 3177 name = fs_path_alloc();
9f03740a 3178 from_path = fs_path_alloc();
2b863a13
FM
3179 if (!name || !from_path) {
3180 ret = -ENOMEM;
3181 goto out;
3182 }
9f03740a 3183
9dc44214
FM
3184 dm = get_waiting_dir_move(sctx, pm->ino);
3185 ASSERT(dm);
3186 rmdir_ino = dm->rmdir_ino;
801bec36 3187 is_orphan = dm->orphanized;
9dc44214 3188 free_waiting_dir_move(sctx, dm);
2b863a13 3189
801bec36 3190 if (is_orphan) {
84471e24
FM
3191 ret = gen_unique_name(sctx, pm->ino,
3192 pm->gen, from_path);
3193 } else {
3194 ret = get_first_ref(sctx->parent_root, pm->ino,
3195 &parent_ino, &parent_gen, name);
3196 if (ret < 0)
3197 goto out;
3198 ret = get_cur_path(sctx, parent_ino, parent_gen,
3199 from_path);
3200 if (ret < 0)
3201 goto out;
3202 ret = fs_path_add_path(from_path, name);
3203 }
c992ec94
FM
3204 if (ret < 0)
3205 goto out;
2b863a13 3206
f959492f 3207 sctx->send_progress = sctx->cur_ino + 1;
801bec36 3208 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
7969e77a
FM
3209 if (ret < 0)
3210 goto out;
801bec36
RK
3211 if (ret) {
3212 LIST_HEAD(deleted_refs);
3213 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3214 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3215 &pm->update_refs, &deleted_refs,
3216 is_orphan);
3217 if (ret < 0)
3218 goto out;
3219 if (rmdir_ino) {
3220 dm = get_waiting_dir_move(sctx, pm->ino);
3221 ASSERT(dm);
3222 dm->rmdir_ino = rmdir_ino;
3223 }
3224 goto out;
3225 }
c992ec94
FM
3226 fs_path_reset(name);
3227 to_path = name;
2b863a13 3228 name = NULL;
9f03740a
FDBM
3229 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3230 if (ret < 0)
3231 goto out;
3232
3233 ret = send_rename(sctx, from_path, to_path);
3234 if (ret < 0)
3235 goto out;
3236
9dc44214
FM
3237 if (rmdir_ino) {
3238 struct orphan_dir_info *odi;
3239
3240 odi = get_orphan_dir_info(sctx, rmdir_ino);
3241 if (!odi) {
3242 /* already deleted */
3243 goto finish;
3244 }
99ea42dd 3245 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino);
9dc44214
FM
3246 if (ret < 0)
3247 goto out;
3248 if (!ret)
3249 goto finish;
3250
3251 name = fs_path_alloc();
3252 if (!name) {
3253 ret = -ENOMEM;
3254 goto out;
3255 }
3256 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3257 if (ret < 0)
3258 goto out;
3259 ret = send_rmdir(sctx, name);
3260 if (ret < 0)
3261 goto out;
3262 free_orphan_dir_info(sctx, odi);
3263 }
3264
3265finish:
9f03740a
FDBM
3266 ret = send_utimes(sctx, pm->ino, pm->gen);
3267 if (ret < 0)
3268 goto out;
3269
3270 /*
3271 * After rename/move, need to update the utimes of both new parent(s)
3272 * and old parent(s).
3273 */
3274 list_for_each_entry(cur, &pm->update_refs, list) {
764433a1
RK
3275 /*
3276 * The parent inode might have been deleted in the send snapshot
3277 */
3278 ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3279 NULL, NULL, NULL, NULL, NULL);
3280 if (ret == -ENOENT) {
3281 ret = 0;
9dc44214 3282 continue;
764433a1
RK
3283 }
3284 if (ret < 0)
3285 goto out;
3286
9f03740a
FDBM
3287 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3288 if (ret < 0)
3289 goto out;
3290 }
3291
3292out:
2b863a13 3293 fs_path_free(name);
9f03740a
FDBM
3294 fs_path_free(from_path);
3295 fs_path_free(to_path);
3296 sctx->send_progress = orig_progress;
3297
3298 return ret;
3299}
3300
3301static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3302{
3303 if (!list_empty(&m->list))
3304 list_del(&m->list);
3305 if (!RB_EMPTY_NODE(&m->node))
3306 rb_erase(&m->node, &sctx->pending_dir_moves);
3307 __free_recorded_refs(&m->update_refs);
3308 kfree(m);
3309}
3310
3311static void tail_append_pending_moves(struct pending_dir_move *moves,
3312 struct list_head *stack)
3313{
3314 if (list_empty(&moves->list)) {
3315 list_add_tail(&moves->list, stack);
3316 } else {
3317 LIST_HEAD(list);
3318 list_splice_init(&moves->list, &list);
3319 list_add_tail(&moves->list, stack);
3320 list_splice_tail(&list, stack);
3321 }
3322}
3323
3324static int apply_children_dir_moves(struct send_ctx *sctx)
3325{
3326 struct pending_dir_move *pm;
3327 struct list_head stack;
3328 u64 parent_ino = sctx->cur_ino;
3329 int ret = 0;
3330
3331 pm = get_pending_dir_moves(sctx, parent_ino);
3332 if (!pm)
3333 return 0;
3334
3335 INIT_LIST_HEAD(&stack);
3336 tail_append_pending_moves(pm, &stack);
3337
3338 while (!list_empty(&stack)) {
3339 pm = list_first_entry(&stack, struct pending_dir_move, list);
3340 parent_ino = pm->ino;
3341 ret = apply_dir_move(sctx, pm);
3342 free_pending_move(sctx, pm);
3343 if (ret)
3344 goto out;
3345 pm = get_pending_dir_moves(sctx, parent_ino);
3346 if (pm)
3347 tail_append_pending_moves(pm, &stack);
3348 }
3349 return 0;
3350
3351out:
3352 while (!list_empty(&stack)) {
3353 pm = list_first_entry(&stack, struct pending_dir_move, list);
3354 free_pending_move(sctx, pm);
3355 }
3356 return ret;
3357}
3358
84471e24
FM
3359/*
3360 * We might need to delay a directory rename even when no ancestor directory
3361 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3362 * renamed. This happens when we rename a directory to the old name (the name
3363 * in the parent root) of some other unrelated directory that got its rename
3364 * delayed due to some ancestor with higher number that got renamed.
3365 *
3366 * Example:
3367 *
3368 * Parent snapshot:
3369 * . (ino 256)
3370 * |---- a/ (ino 257)
3371 * | |---- file (ino 260)
3372 * |
3373 * |---- b/ (ino 258)
3374 * |---- c/ (ino 259)
3375 *
3376 * Send snapshot:
3377 * . (ino 256)
3378 * |---- a/ (ino 258)
3379 * |---- x/ (ino 259)
3380 * |---- y/ (ino 257)
3381 * |----- file (ino 260)
3382 *
3383 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3384 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3385 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3386 * must issue is:
3387 *
3388 * 1 - rename 259 from 'c' to 'x'
3389 * 2 - rename 257 from 'a' to 'x/y'
3390 * 3 - rename 258 from 'b' to 'a'
3391 *
3392 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3393 * be done right away and < 0 on error.
3394 */
3395static int wait_for_dest_dir_move(struct send_ctx *sctx,
3396 struct recorded_ref *parent_ref,
3397 const bool is_orphan)
3398{
3399 struct btrfs_path *path;
3400 struct btrfs_key key;
3401 struct btrfs_key di_key;
3402 struct btrfs_dir_item *di;
3403 u64 left_gen;
3404 u64 right_gen;
3405 int ret = 0;
801bec36 3406 struct waiting_dir_move *wdm;
84471e24
FM
3407
3408 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3409 return 0;
3410
3411 path = alloc_path_for_send();
3412 if (!path)
3413 return -ENOMEM;
3414
3415 key.objectid = parent_ref->dir;
3416 key.type = BTRFS_DIR_ITEM_KEY;
3417 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3418
3419 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3420 if (ret < 0) {
3421 goto out;
3422 } else if (ret > 0) {
3423 ret = 0;
3424 goto out;
3425 }
3426
3427 di = btrfs_match_dir_item_name(sctx->parent_root, path,
3428 parent_ref->name, parent_ref->name_len);
3429 if (!di) {
3430 ret = 0;
3431 goto out;
3432 }
3433 /*
3434 * di_key.objectid has the number of the inode that has a dentry in the
3435 * parent directory with the same name that sctx->cur_ino is being
3436 * renamed to. We need to check if that inode is in the send root as
3437 * well and if it is currently marked as an inode with a pending rename,
3438 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3439 * that it happens after that other inode is renamed.
3440 */
3441 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3442 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3443 ret = 0;
3444 goto out;
3445 }
3446
3447 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3448 &left_gen, NULL, NULL, NULL, NULL);
3449 if (ret < 0)
3450 goto out;
3451 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3452 &right_gen, NULL, NULL, NULL, NULL);
3453 if (ret < 0) {
3454 if (ret == -ENOENT)
3455 ret = 0;
3456 goto out;
3457 }
3458
3459 /* Different inode, no need to delay the rename of sctx->cur_ino */
3460 if (right_gen != left_gen) {
3461 ret = 0;
3462 goto out;
3463 }
3464
801bec36
RK
3465 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3466 if (wdm && !wdm->orphanized) {
84471e24
FM
3467 ret = add_pending_dir_move(sctx,
3468 sctx->cur_ino,
3469 sctx->cur_inode_gen,
3470 di_key.objectid,
3471 &sctx->new_refs,
3472 &sctx->deleted_refs,
3473 is_orphan);
3474 if (!ret)
3475 ret = 1;
3476 }
3477out:
3478 btrfs_free_path(path);
3479 return ret;
3480}
3481
80aa6027
FM
3482/*
3483 * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3484 * Return 1 if true, 0 if false and < 0 on error.
3485 */
3486static int is_ancestor(struct btrfs_root *root,
3487 const u64 ino1,
3488 const u64 ino1_gen,
3489 const u64 ino2,
3490 struct fs_path *fs_path)
3491{
3492 u64 ino = ino2;
3493
3494 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3495 int ret;
3496 u64 parent;
3497 u64 parent_gen;
3498
3499 fs_path_reset(fs_path);
3500 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3501 if (ret < 0) {
3502 if (ret == -ENOENT && ino == ino2)
3503 ret = 0;
3504 return ret;
3505 }
3506 if (parent == ino1)
3507 return parent_gen == ino1_gen ? 1 : 0;
3508 ino = parent;
3509 }
3510 return 0;
3511}
3512
9f03740a 3513static int wait_for_parent_move(struct send_ctx *sctx,
8b191a68
FM
3514 struct recorded_ref *parent_ref,
3515 const bool is_orphan)
9f03740a 3516{
f959492f 3517 int ret = 0;
9f03740a
FDBM
3518 u64 ino = parent_ref->dir;
3519 u64 parent_ino_before, parent_ino_after;
9f03740a
FDBM
3520 struct fs_path *path_before = NULL;
3521 struct fs_path *path_after = NULL;
3522 int len1, len2;
9f03740a
FDBM
3523
3524 path_after = fs_path_alloc();
f959492f
FM
3525 path_before = fs_path_alloc();
3526 if (!path_after || !path_before) {
9f03740a
FDBM
3527 ret = -ENOMEM;
3528 goto out;
3529 }
3530
bfa7e1f8 3531 /*
f959492f
FM
3532 * Our current directory inode may not yet be renamed/moved because some
3533 * ancestor (immediate or not) has to be renamed/moved first. So find if
3534 * such ancestor exists and make sure our own rename/move happens after
80aa6027
FM
3535 * that ancestor is processed to avoid path build infinite loops (done
3536 * at get_cur_path()).
bfa7e1f8 3537 */
f959492f
FM
3538 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3539 if (is_waiting_for_move(sctx, ino)) {
80aa6027
FM
3540 /*
3541 * If the current inode is an ancestor of ino in the
3542 * parent root, we need to delay the rename of the
3543 * current inode, otherwise don't delayed the rename
3544 * because we can end up with a circular dependency
3545 * of renames, resulting in some directories never
3546 * getting the respective rename operations issued in
3547 * the send stream or getting into infinite path build
3548 * loops.
3549 */
3550 ret = is_ancestor(sctx->parent_root,
3551 sctx->cur_ino, sctx->cur_inode_gen,
3552 ino, path_before);
4122ea64
FM
3553 if (ret)
3554 break;
f959492f 3555 }
bfa7e1f8
FM
3556
3557 fs_path_reset(path_before);
3558 fs_path_reset(path_after);
3559
3560 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
f959492f 3561 NULL, path_after);
bfa7e1f8
FM
3562 if (ret < 0)
3563 goto out;
3564 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3565 NULL, path_before);
f959492f 3566 if (ret < 0 && ret != -ENOENT) {
bfa7e1f8 3567 goto out;
f959492f 3568 } else if (ret == -ENOENT) {
bf8e8ca6 3569 ret = 0;
f959492f 3570 break;
bfa7e1f8
FM
3571 }
3572
3573 len1 = fs_path_len(path_before);
3574 len2 = fs_path_len(path_after);
f959492f
FM
3575 if (ino > sctx->cur_ino &&
3576 (parent_ino_before != parent_ino_after || len1 != len2 ||
3577 memcmp(path_before->start, path_after->start, len1))) {
bfa7e1f8 3578 ret = 1;
f959492f 3579 break;
bfa7e1f8 3580 }
bfa7e1f8 3581 ino = parent_ino_after;
bfa7e1f8
FM
3582 }
3583
9f03740a
FDBM
3584out:
3585 fs_path_free(path_before);
3586 fs_path_free(path_after);
3587
f959492f
FM
3588 if (ret == 1) {
3589 ret = add_pending_dir_move(sctx,
3590 sctx->cur_ino,
3591 sctx->cur_inode_gen,
3592 ino,
3593 &sctx->new_refs,
84471e24 3594 &sctx->deleted_refs,
8b191a68 3595 is_orphan);
f959492f
FM
3596 if (!ret)
3597 ret = 1;
3598 }
3599
9f03740a
FDBM
3600 return ret;
3601}
3602
31db9f7c
AB
3603/*
3604 * This does all the move/link/unlink/rmdir magic.
3605 */
9f03740a 3606static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
31db9f7c
AB
3607{
3608 int ret = 0;
3609 struct recorded_ref *cur;
1f4692da 3610 struct recorded_ref *cur2;
ba5e8f2e 3611 struct list_head check_dirs;
31db9f7c 3612 struct fs_path *valid_path = NULL;
b24baf69 3613 u64 ow_inode = 0;
31db9f7c
AB
3614 u64 ow_gen;
3615 int did_overwrite = 0;
3616 int is_orphan = 0;
29d6d30f 3617 u64 last_dir_ino_rm = 0;
84471e24 3618 bool can_rename = true;
31db9f7c
AB
3619
3620verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3621
6d85ed05
AB
3622 /*
3623 * This should never happen as the root dir always has the same ref
3624 * which is always '..'
3625 */
3626 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
ba5e8f2e 3627 INIT_LIST_HEAD(&check_dirs);
6d85ed05 3628
924794c9 3629 valid_path = fs_path_alloc();
31db9f7c
AB
3630 if (!valid_path) {
3631 ret = -ENOMEM;
3632 goto out;
3633 }
3634
31db9f7c
AB
3635 /*
3636 * First, check if the first ref of the current inode was overwritten
3637 * before. If yes, we know that the current inode was already orphanized
3638 * and thus use the orphan name. If not, we can use get_cur_path to
3639 * get the path of the first ref as it would like while receiving at
3640 * this point in time.
3641 * New inodes are always orphan at the beginning, so force to use the
3642 * orphan name in this case.
3643 * The first ref is stored in valid_path and will be updated if it
3644 * gets moved around.
3645 */
3646 if (!sctx->cur_inode_new) {
3647 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3648 sctx->cur_inode_gen);
3649 if (ret < 0)
3650 goto out;
3651 if (ret)
3652 did_overwrite = 1;
3653 }
3654 if (sctx->cur_inode_new || did_overwrite) {
3655 ret = gen_unique_name(sctx, sctx->cur_ino,
3656 sctx->cur_inode_gen, valid_path);
3657 if (ret < 0)
3658 goto out;
3659 is_orphan = 1;
3660 } else {
3661 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3662 valid_path);
3663 if (ret < 0)
3664 goto out;
3665 }
3666
3667 list_for_each_entry(cur, &sctx->new_refs, list) {
1f4692da
AB
3668 /*
3669 * We may have refs where the parent directory does not exist
3670 * yet. This happens if the parent directories inum is higher
3671 * the the current inum. To handle this case, we create the
3672 * parent directory out of order. But we need to check if this
3673 * did already happen before due to other refs in the same dir.
3674 */
3675 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3676 if (ret < 0)
3677 goto out;
3678 if (ret == inode_state_will_create) {
3679 ret = 0;
3680 /*
3681 * First check if any of the current inodes refs did
3682 * already create the dir.
3683 */
3684 list_for_each_entry(cur2, &sctx->new_refs, list) {
3685 if (cur == cur2)
3686 break;
3687 if (cur2->dir == cur->dir) {
3688 ret = 1;
3689 break;
3690 }
3691 }
3692
3693 /*
3694 * If that did not happen, check if a previous inode
3695 * did already create the dir.
3696 */
3697 if (!ret)
3698 ret = did_create_dir(sctx, cur->dir);
3699 if (ret < 0)
3700 goto out;
3701 if (!ret) {
3702 ret = send_create_inode(sctx, cur->dir);
3703 if (ret < 0)
3704 goto out;
3705 }
3706 }
3707
31db9f7c
AB
3708 /*
3709 * Check if this new ref would overwrite the first ref of
3710 * another unprocessed inode. If yes, orphanize the
3711 * overwritten inode. If we find an overwritten ref that is
3712 * not the first ref, simply unlink it.
3713 */
3714 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3715 cur->name, cur->name_len,
3716 &ow_inode, &ow_gen);
3717 if (ret < 0)
3718 goto out;
3719 if (ret) {
924794c9
TI
3720 ret = is_first_ref(sctx->parent_root,
3721 ow_inode, cur->dir, cur->name,
3722 cur->name_len);
31db9f7c
AB
3723 if (ret < 0)
3724 goto out;
3725 if (ret) {
8996a48c 3726 struct name_cache_entry *nce;
801bec36 3727 struct waiting_dir_move *wdm;
8996a48c 3728
31db9f7c
AB
3729 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3730 cur->full_path);
3731 if (ret < 0)
3732 goto out;
801bec36
RK
3733
3734 /*
3735 * If ow_inode has its rename operation delayed
3736 * make sure that its orphanized name is used in
3737 * the source path when performing its rename
3738 * operation.
3739 */
3740 if (is_waiting_for_move(sctx, ow_inode)) {
3741 wdm = get_waiting_dir_move(sctx,
3742 ow_inode);
3743 ASSERT(wdm);
3744 wdm->orphanized = true;
3745 }
3746
8996a48c
FM
3747 /*
3748 * Make sure we clear our orphanized inode's
3749 * name from the name cache. This is because the
3750 * inode ow_inode might be an ancestor of some
3751 * other inode that will be orphanized as well
3752 * later and has an inode number greater than
3753 * sctx->send_progress. We need to prevent
3754 * future name lookups from using the old name
3755 * and get instead the orphan name.
3756 */
3757 nce = name_cache_search(sctx, ow_inode, ow_gen);
3758 if (nce) {
3759 name_cache_delete(sctx, nce);
3760 kfree(nce);
3761 }
801bec36
RK
3762
3763 /*
3764 * ow_inode might currently be an ancestor of
3765 * cur_ino, therefore compute valid_path (the
3766 * current path of cur_ino) again because it
3767 * might contain the pre-orphanization name of
3768 * ow_inode, which is no longer valid.
3769 */
3770 fs_path_reset(valid_path);
3771 ret = get_cur_path(sctx, sctx->cur_ino,
3772 sctx->cur_inode_gen, valid_path);
3773 if (ret < 0)
3774 goto out;
31db9f7c
AB
3775 } else {
3776 ret = send_unlink(sctx, cur->full_path);
3777 if (ret < 0)
3778 goto out;
3779 }
3780 }
3781
84471e24
FM
3782 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3783 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3784 if (ret < 0)
3785 goto out;
3786 if (ret == 1) {
3787 can_rename = false;
3788 *pending_move = 1;
3789 }
3790 }
3791
8b191a68
FM
3792 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3793 can_rename) {
3794 ret = wait_for_parent_move(sctx, cur, is_orphan);
3795 if (ret < 0)
3796 goto out;
3797 if (ret == 1) {
3798 can_rename = false;
3799 *pending_move = 1;
3800 }
3801 }
3802
31db9f7c
AB
3803 /*
3804 * link/move the ref to the new place. If we have an orphan
3805 * inode, move it and update valid_path. If not, link or move
3806 * it depending on the inode mode.
3807 */
84471e24 3808 if (is_orphan && can_rename) {
31db9f7c
AB
3809 ret = send_rename(sctx, valid_path, cur->full_path);
3810 if (ret < 0)
3811 goto out;
3812 is_orphan = 0;
3813 ret = fs_path_copy(valid_path, cur->full_path);
3814 if (ret < 0)
3815 goto out;
84471e24 3816 } else if (can_rename) {
31db9f7c
AB
3817 if (S_ISDIR(sctx->cur_inode_mode)) {
3818 /*
3819 * Dirs can't be linked, so move it. For moved
3820 * dirs, we always have one new and one deleted
3821 * ref. The deleted ref is ignored later.
3822 */
8b191a68
FM
3823 ret = send_rename(sctx, valid_path,
3824 cur->full_path);
3825 if (!ret)
3826 ret = fs_path_copy(valid_path,
3827 cur->full_path);
31db9f7c
AB
3828 if (ret < 0)
3829 goto out;
3830 } else {
3831 ret = send_link(sctx, cur->full_path,
3832 valid_path);
3833 if (ret < 0)
3834 goto out;
3835 }
3836 }
ba5e8f2e 3837 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
3838 if (ret < 0)
3839 goto out;
3840 }
3841
3842 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3843 /*
3844 * Check if we can already rmdir the directory. If not,
3845 * orphanize it. For every dir item inside that gets deleted
3846 * later, we do this check again and rmdir it then if possible.
3847 * See the use of check_dirs for more details.
3848 */
9dc44214
FM
3849 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3850 sctx->cur_ino);
31db9f7c
AB
3851 if (ret < 0)
3852 goto out;
3853 if (ret) {
3854 ret = send_rmdir(sctx, valid_path);
3855 if (ret < 0)
3856 goto out;
3857 } else if (!is_orphan) {
3858 ret = orphanize_inode(sctx, sctx->cur_ino,
3859 sctx->cur_inode_gen, valid_path);
3860 if (ret < 0)
3861 goto out;
3862 is_orphan = 1;
3863 }
3864
3865 list_for_each_entry(cur, &sctx->deleted_refs, list) {
ba5e8f2e 3866 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
3867 if (ret < 0)
3868 goto out;
3869 }
ccf1626b
AB
3870 } else if (S_ISDIR(sctx->cur_inode_mode) &&
3871 !list_empty(&sctx->deleted_refs)) {
3872 /*
3873 * We have a moved dir. Add the old parent to check_dirs
3874 */
3875 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3876 list);
ba5e8f2e 3877 ret = dup_ref(cur, &check_dirs);
ccf1626b
AB
3878 if (ret < 0)
3879 goto out;
31db9f7c
AB
3880 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
3881 /*
3882 * We have a non dir inode. Go through all deleted refs and
3883 * unlink them if they were not already overwritten by other
3884 * inodes.
3885 */
3886 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3887 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3888 sctx->cur_ino, sctx->cur_inode_gen,
3889 cur->name, cur->name_len);
3890 if (ret < 0)
3891 goto out;
3892 if (!ret) {
1f4692da
AB
3893 ret = send_unlink(sctx, cur->full_path);
3894 if (ret < 0)
3895 goto out;
31db9f7c 3896 }
ba5e8f2e 3897 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
3898 if (ret < 0)
3899 goto out;
3900 }
31db9f7c
AB
3901 /*
3902 * If the inode is still orphan, unlink the orphan. This may
3903 * happen when a previous inode did overwrite the first ref
3904 * of this inode and no new refs were added for the current
766702ef
AB
3905 * inode. Unlinking does not mean that the inode is deleted in
3906 * all cases. There may still be links to this inode in other
3907 * places.
31db9f7c 3908 */
1f4692da 3909 if (is_orphan) {
31db9f7c
AB
3910 ret = send_unlink(sctx, valid_path);
3911 if (ret < 0)
3912 goto out;
3913 }
3914 }
3915
3916 /*
3917 * We did collect all parent dirs where cur_inode was once located. We
3918 * now go through all these dirs and check if they are pending for
3919 * deletion and if it's finally possible to perform the rmdir now.
3920 * We also update the inode stats of the parent dirs here.
3921 */
ba5e8f2e 3922 list_for_each_entry(cur, &check_dirs, list) {
766702ef
AB
3923 /*
3924 * In case we had refs into dirs that were not processed yet,
3925 * we don't need to do the utime and rmdir logic for these dirs.
3926 * The dir will be processed later.
3927 */
ba5e8f2e 3928 if (cur->dir > sctx->cur_ino)
31db9f7c
AB
3929 continue;
3930
ba5e8f2e 3931 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
31db9f7c
AB
3932 if (ret < 0)
3933 goto out;
3934
3935 if (ret == inode_state_did_create ||
3936 ret == inode_state_no_change) {
3937 /* TODO delayed utimes */
ba5e8f2e 3938 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
31db9f7c
AB
3939 if (ret < 0)
3940 goto out;
29d6d30f
FM
3941 } else if (ret == inode_state_did_delete &&
3942 cur->dir != last_dir_ino_rm) {
9dc44214
FM
3943 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3944 sctx->cur_ino);
31db9f7c
AB
3945 if (ret < 0)
3946 goto out;
3947 if (ret) {
ba5e8f2e
JB
3948 ret = get_cur_path(sctx, cur->dir,
3949 cur->dir_gen, valid_path);
31db9f7c
AB
3950 if (ret < 0)
3951 goto out;
3952 ret = send_rmdir(sctx, valid_path);
3953 if (ret < 0)
3954 goto out;
29d6d30f 3955 last_dir_ino_rm = cur->dir;
31db9f7c
AB
3956 }
3957 }
3958 }
3959
31db9f7c
AB
3960 ret = 0;
3961
3962out:
ba5e8f2e 3963 __free_recorded_refs(&check_dirs);
31db9f7c 3964 free_recorded_refs(sctx);
924794c9 3965 fs_path_free(valid_path);
31db9f7c
AB
3966 return ret;
3967}
3968
a4d96d62
LB
3969static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
3970 struct fs_path *name, void *ctx, struct list_head *refs)
31db9f7c
AB
3971{
3972 int ret = 0;
3973 struct send_ctx *sctx = ctx;
3974 struct fs_path *p;
3975 u64 gen;
3976
924794c9 3977 p = fs_path_alloc();
31db9f7c
AB
3978 if (!p)
3979 return -ENOMEM;
3980
a4d96d62 3981 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
85a7b33b 3982 NULL, NULL);
31db9f7c
AB
3983 if (ret < 0)
3984 goto out;
3985
31db9f7c
AB
3986 ret = get_cur_path(sctx, dir, gen, p);
3987 if (ret < 0)
3988 goto out;
3989 ret = fs_path_add_path(p, name);
3990 if (ret < 0)
3991 goto out;
3992
a4d96d62 3993 ret = __record_ref(refs, dir, gen, p);
31db9f7c
AB
3994
3995out:
3996 if (ret)
924794c9 3997 fs_path_free(p);
31db9f7c
AB
3998 return ret;
3999}
4000
a4d96d62
LB
4001static int __record_new_ref(int num, u64 dir, int index,
4002 struct fs_path *name,
4003 void *ctx)
4004{
4005 struct send_ctx *sctx = ctx;
4006 return record_ref(sctx->send_root, num, dir, index, name,
4007 ctx, &sctx->new_refs);
4008}
4009
4010
31db9f7c
AB
4011static int __record_deleted_ref(int num, u64 dir, int index,
4012 struct fs_path *name,
4013 void *ctx)
4014{
31db9f7c 4015 struct send_ctx *sctx = ctx;
a4d96d62
LB
4016 return record_ref(sctx->parent_root, num, dir, index, name,
4017 ctx, &sctx->deleted_refs);
31db9f7c
AB
4018}
4019
4020static int record_new_ref(struct send_ctx *sctx)
4021{
4022 int ret;
4023
924794c9
TI
4024 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4025 sctx->cmp_key, 0, __record_new_ref, sctx);
31db9f7c
AB
4026 if (ret < 0)
4027 goto out;
4028 ret = 0;
4029
4030out:
4031 return ret;
4032}
4033
4034static int record_deleted_ref(struct send_ctx *sctx)
4035{
4036 int ret;
4037
924794c9
TI
4038 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4039 sctx->cmp_key, 0, __record_deleted_ref, sctx);
31db9f7c
AB
4040 if (ret < 0)
4041 goto out;
4042 ret = 0;
4043
4044out:
4045 return ret;
4046}
4047
4048struct find_ref_ctx {
4049 u64 dir;
ba5e8f2e
JB
4050 u64 dir_gen;
4051 struct btrfs_root *root;
31db9f7c
AB
4052 struct fs_path *name;
4053 int found_idx;
4054};
4055
4056static int __find_iref(int num, u64 dir, int index,
4057 struct fs_path *name,
4058 void *ctx_)
4059{
4060 struct find_ref_ctx *ctx = ctx_;
ba5e8f2e
JB
4061 u64 dir_gen;
4062 int ret;
31db9f7c
AB
4063
4064 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4065 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
ba5e8f2e
JB
4066 /*
4067 * To avoid doing extra lookups we'll only do this if everything
4068 * else matches.
4069 */
4070 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4071 NULL, NULL, NULL);
4072 if (ret)
4073 return ret;
4074 if (dir_gen != ctx->dir_gen)
4075 return 0;
31db9f7c
AB
4076 ctx->found_idx = num;
4077 return 1;
4078 }
4079 return 0;
4080}
4081
924794c9 4082static int find_iref(struct btrfs_root *root,
31db9f7c
AB
4083 struct btrfs_path *path,
4084 struct btrfs_key *key,
ba5e8f2e 4085 u64 dir, u64 dir_gen, struct fs_path *name)
31db9f7c
AB
4086{
4087 int ret;
4088 struct find_ref_ctx ctx;
4089
4090 ctx.dir = dir;
4091 ctx.name = name;
ba5e8f2e 4092 ctx.dir_gen = dir_gen;
31db9f7c 4093 ctx.found_idx = -1;
ba5e8f2e 4094 ctx.root = root;
31db9f7c 4095
924794c9 4096 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
31db9f7c
AB
4097 if (ret < 0)
4098 return ret;
4099
4100 if (ctx.found_idx == -1)
4101 return -ENOENT;
4102
4103 return ctx.found_idx;
4104}
4105
4106static int __record_changed_new_ref(int num, u64 dir, int index,
4107 struct fs_path *name,
4108 void *ctx)
4109{
ba5e8f2e 4110 u64 dir_gen;
31db9f7c
AB
4111 int ret;
4112 struct send_ctx *sctx = ctx;
4113
ba5e8f2e
JB
4114 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4115 NULL, NULL, NULL);
4116 if (ret)
4117 return ret;
4118
924794c9 4119 ret = find_iref(sctx->parent_root, sctx->right_path,
ba5e8f2e 4120 sctx->cmp_key, dir, dir_gen, name);
31db9f7c
AB
4121 if (ret == -ENOENT)
4122 ret = __record_new_ref(num, dir, index, name, sctx);
4123 else if (ret > 0)
4124 ret = 0;
4125
4126 return ret;
4127}
4128
4129static int __record_changed_deleted_ref(int num, u64 dir, int index,
4130 struct fs_path *name,
4131 void *ctx)
4132{
ba5e8f2e 4133 u64 dir_gen;
31db9f7c
AB
4134 int ret;
4135 struct send_ctx *sctx = ctx;
4136
ba5e8f2e
JB
4137 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4138 NULL, NULL, NULL);
4139 if (ret)
4140 return ret;
4141
924794c9 4142 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
ba5e8f2e 4143 dir, dir_gen, name);
31db9f7c
AB
4144 if (ret == -ENOENT)
4145 ret = __record_deleted_ref(num, dir, index, name, sctx);
4146 else if (ret > 0)
4147 ret = 0;
4148
4149 return ret;
4150}
4151
4152static int record_changed_ref(struct send_ctx *sctx)
4153{
4154 int ret = 0;
4155
924794c9 4156 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
31db9f7c
AB
4157 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4158 if (ret < 0)
4159 goto out;
924794c9 4160 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
31db9f7c
AB
4161 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4162 if (ret < 0)
4163 goto out;
4164 ret = 0;
4165
4166out:
4167 return ret;
4168}
4169
4170/*
4171 * Record and process all refs at once. Needed when an inode changes the
4172 * generation number, which means that it was deleted and recreated.
4173 */
4174static int process_all_refs(struct send_ctx *sctx,
4175 enum btrfs_compare_tree_result cmd)
4176{
4177 int ret;
4178 struct btrfs_root *root;
4179 struct btrfs_path *path;
4180 struct btrfs_key key;
4181 struct btrfs_key found_key;
4182 struct extent_buffer *eb;
4183 int slot;
4184 iterate_inode_ref_t cb;
9f03740a 4185 int pending_move = 0;
31db9f7c
AB
4186
4187 path = alloc_path_for_send();
4188 if (!path)
4189 return -ENOMEM;
4190
4191 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4192 root = sctx->send_root;
4193 cb = __record_new_ref;
4194 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4195 root = sctx->parent_root;
4196 cb = __record_deleted_ref;
4197 } else {
4d1a63b2
DS
4198 btrfs_err(sctx->send_root->fs_info,
4199 "Wrong command %d in process_all_refs", cmd);
4200 ret = -EINVAL;
4201 goto out;
31db9f7c
AB
4202 }
4203
4204 key.objectid = sctx->cmp_key->objectid;
4205 key.type = BTRFS_INODE_REF_KEY;
4206 key.offset = 0;
dff6d0ad
FDBM
4207 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4208 if (ret < 0)
4209 goto out;
31db9f7c 4210
dff6d0ad 4211 while (1) {
31db9f7c
AB
4212 eb = path->nodes[0];
4213 slot = path->slots[0];
dff6d0ad
FDBM
4214 if (slot >= btrfs_header_nritems(eb)) {
4215 ret = btrfs_next_leaf(root, path);
4216 if (ret < 0)
4217 goto out;
4218 else if (ret > 0)
4219 break;
4220 continue;
4221 }
4222
31db9f7c
AB
4223 btrfs_item_key_to_cpu(eb, &found_key, slot);
4224
4225 if (found_key.objectid != key.objectid ||
96b5bd77
JS
4226 (found_key.type != BTRFS_INODE_REF_KEY &&
4227 found_key.type != BTRFS_INODE_EXTREF_KEY))
31db9f7c 4228 break;
31db9f7c 4229
924794c9 4230 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
31db9f7c
AB
4231 if (ret < 0)
4232 goto out;
4233
dff6d0ad 4234 path->slots[0]++;
31db9f7c 4235 }
e938c8ad 4236 btrfs_release_path(path);
31db9f7c 4237
9f03740a
FDBM
4238 ret = process_recorded_refs(sctx, &pending_move);
4239 /* Only applicable to an incremental send. */
4240 ASSERT(pending_move == 0);
31db9f7c
AB
4241
4242out:
4243 btrfs_free_path(path);
4244 return ret;
4245}
4246
4247static int send_set_xattr(struct send_ctx *sctx,
4248 struct fs_path *path,
4249 const char *name, int name_len,
4250 const char *data, int data_len)
4251{
4252 int ret = 0;
4253
4254 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4255 if (ret < 0)
4256 goto out;
4257
4258 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4259 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4260 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4261
4262 ret = send_cmd(sctx);
4263
4264tlv_put_failure:
4265out:
4266 return ret;
4267}
4268
4269static int send_remove_xattr(struct send_ctx *sctx,
4270 struct fs_path *path,
4271 const char *name, int name_len)
4272{
4273 int ret = 0;
4274
4275 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4276 if (ret < 0)
4277 goto out;
4278
4279 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4280 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4281
4282 ret = send_cmd(sctx);
4283
4284tlv_put_failure:
4285out:
4286 return ret;
4287}
4288
4289static int __process_new_xattr(int num, struct btrfs_key *di_key,
4290 const char *name, int name_len,
4291 const char *data, int data_len,
4292 u8 type, void *ctx)
4293{
4294 int ret;
4295 struct send_ctx *sctx = ctx;
4296 struct fs_path *p;
4297 posix_acl_xattr_header dummy_acl;
4298
924794c9 4299 p = fs_path_alloc();
31db9f7c
AB
4300 if (!p)
4301 return -ENOMEM;
4302
4303 /*
01327610 4304 * This hack is needed because empty acls are stored as zero byte
31db9f7c 4305 * data in xattrs. Problem with that is, that receiving these zero byte
01327610 4306 * acls will fail later. To fix this, we send a dummy acl list that
31db9f7c
AB
4307 * only contains the version number and no entries.
4308 */
4309 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4310 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4311 if (data_len == 0) {
4312 dummy_acl.a_version =
4313 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4314 data = (char *)&dummy_acl;
4315 data_len = sizeof(dummy_acl);
4316 }
4317 }
4318
4319 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4320 if (ret < 0)
4321 goto out;
4322
4323 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4324
4325out:
924794c9 4326 fs_path_free(p);
31db9f7c
AB
4327 return ret;
4328}
4329
4330static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4331 const char *name, int name_len,
4332 const char *data, int data_len,
4333 u8 type, void *ctx)
4334{
4335 int ret;
4336 struct send_ctx *sctx = ctx;
4337 struct fs_path *p;
4338
924794c9 4339 p = fs_path_alloc();
31db9f7c
AB
4340 if (!p)
4341 return -ENOMEM;
4342
4343 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4344 if (ret < 0)
4345 goto out;
4346
4347 ret = send_remove_xattr(sctx, p, name, name_len);
4348
4349out:
924794c9 4350 fs_path_free(p);
31db9f7c
AB
4351 return ret;
4352}
4353
4354static int process_new_xattr(struct send_ctx *sctx)
4355{
4356 int ret = 0;
4357
924794c9
TI
4358 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4359 sctx->cmp_key, __process_new_xattr, sctx);
31db9f7c
AB
4360
4361 return ret;
4362}
4363
4364static int process_deleted_xattr(struct send_ctx *sctx)
4365{
4366 int ret;
4367
924794c9
TI
4368 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4369 sctx->cmp_key, __process_deleted_xattr, sctx);
31db9f7c
AB
4370
4371 return ret;
4372}
4373
4374struct find_xattr_ctx {
4375 const char *name;
4376 int name_len;
4377 int found_idx;
4378 char *found_data;
4379 int found_data_len;
4380};
4381
4382static int __find_xattr(int num, struct btrfs_key *di_key,
4383 const char *name, int name_len,
4384 const char *data, int data_len,
4385 u8 type, void *vctx)
4386{
4387 struct find_xattr_ctx *ctx = vctx;
4388
4389 if (name_len == ctx->name_len &&
4390 strncmp(name, ctx->name, name_len) == 0) {
4391 ctx->found_idx = num;
4392 ctx->found_data_len = data_len;
e780b0d1 4393 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
31db9f7c
AB
4394 if (!ctx->found_data)
4395 return -ENOMEM;
31db9f7c
AB
4396 return 1;
4397 }
4398 return 0;
4399}
4400
924794c9 4401static int find_xattr(struct btrfs_root *root,
31db9f7c
AB
4402 struct btrfs_path *path,
4403 struct btrfs_key *key,
4404 const char *name, int name_len,
4405 char **data, int *data_len)
4406{
4407 int ret;
4408 struct find_xattr_ctx ctx;
4409
4410 ctx.name = name;
4411 ctx.name_len = name_len;
4412 ctx.found_idx = -1;
4413 ctx.found_data = NULL;
4414 ctx.found_data_len = 0;
4415
924794c9 4416 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
31db9f7c
AB
4417 if (ret < 0)
4418 return ret;
4419
4420 if (ctx.found_idx == -1)
4421 return -ENOENT;
4422 if (data) {
4423 *data = ctx.found_data;
4424 *data_len = ctx.found_data_len;
4425 } else {
4426 kfree(ctx.found_data);
4427 }
4428 return ctx.found_idx;
4429}
4430
4431
4432static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4433 const char *name, int name_len,
4434 const char *data, int data_len,
4435 u8 type, void *ctx)
4436{
4437 int ret;
4438 struct send_ctx *sctx = ctx;
4439 char *found_data = NULL;
4440 int found_data_len = 0;
31db9f7c 4441
924794c9
TI
4442 ret = find_xattr(sctx->parent_root, sctx->right_path,
4443 sctx->cmp_key, name, name_len, &found_data,
4444 &found_data_len);
31db9f7c
AB
4445 if (ret == -ENOENT) {
4446 ret = __process_new_xattr(num, di_key, name, name_len, data,
4447 data_len, type, ctx);
4448 } else if (ret >= 0) {
4449 if (data_len != found_data_len ||
4450 memcmp(data, found_data, data_len)) {
4451 ret = __process_new_xattr(num, di_key, name, name_len,
4452 data, data_len, type, ctx);
4453 } else {
4454 ret = 0;
4455 }
4456 }
4457
4458 kfree(found_data);
31db9f7c
AB
4459 return ret;
4460}
4461
4462static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4463 const char *name, int name_len,
4464 const char *data, int data_len,
4465 u8 type, void *ctx)
4466{
4467 int ret;
4468 struct send_ctx *sctx = ctx;
4469
924794c9
TI
4470 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4471 name, name_len, NULL, NULL);
31db9f7c
AB
4472 if (ret == -ENOENT)
4473 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4474 data_len, type, ctx);
4475 else if (ret >= 0)
4476 ret = 0;
4477
4478 return ret;
4479}
4480
4481static int process_changed_xattr(struct send_ctx *sctx)
4482{
4483 int ret = 0;
4484
924794c9 4485 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
31db9f7c
AB
4486 sctx->cmp_key, __process_changed_new_xattr, sctx);
4487 if (ret < 0)
4488 goto out;
924794c9 4489 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
31db9f7c
AB
4490 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4491
4492out:
4493 return ret;
4494}
4495
4496static int process_all_new_xattrs(struct send_ctx *sctx)
4497{
4498 int ret;
4499 struct btrfs_root *root;
4500 struct btrfs_path *path;
4501 struct btrfs_key key;
4502 struct btrfs_key found_key;
4503 struct extent_buffer *eb;
4504 int slot;
4505
4506 path = alloc_path_for_send();
4507 if (!path)
4508 return -ENOMEM;
4509
4510 root = sctx->send_root;
4511
4512 key.objectid = sctx->cmp_key->objectid;
4513 key.type = BTRFS_XATTR_ITEM_KEY;
4514 key.offset = 0;
dff6d0ad
FDBM
4515 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4516 if (ret < 0)
4517 goto out;
31db9f7c 4518
dff6d0ad 4519 while (1) {
31db9f7c
AB
4520 eb = path->nodes[0];
4521 slot = path->slots[0];
dff6d0ad
FDBM
4522 if (slot >= btrfs_header_nritems(eb)) {
4523 ret = btrfs_next_leaf(root, path);
4524 if (ret < 0) {
4525 goto out;
4526 } else if (ret > 0) {
4527 ret = 0;
4528 break;
4529 }
4530 continue;
4531 }
31db9f7c 4532
dff6d0ad 4533 btrfs_item_key_to_cpu(eb, &found_key, slot);
31db9f7c
AB
4534 if (found_key.objectid != key.objectid ||
4535 found_key.type != key.type) {
4536 ret = 0;
4537 goto out;
4538 }
4539
924794c9
TI
4540 ret = iterate_dir_item(root, path, &found_key,
4541 __process_new_xattr, sctx);
31db9f7c
AB
4542 if (ret < 0)
4543 goto out;
4544
dff6d0ad 4545 path->slots[0]++;
31db9f7c
AB
4546 }
4547
4548out:
4549 btrfs_free_path(path);
4550 return ret;
4551}
4552
ed259095
JB
4553static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4554{
4555 struct btrfs_root *root = sctx->send_root;
4556 struct btrfs_fs_info *fs_info = root->fs_info;
4557 struct inode *inode;
4558 struct page *page;
4559 char *addr;
4560 struct btrfs_key key;
09cbfeaf 4561 pgoff_t index = offset >> PAGE_SHIFT;
ed259095 4562 pgoff_t last_index;
09cbfeaf 4563 unsigned pg_offset = offset & ~PAGE_MASK;
ed259095
JB
4564 ssize_t ret = 0;
4565
4566 key.objectid = sctx->cur_ino;
4567 key.type = BTRFS_INODE_ITEM_KEY;
4568 key.offset = 0;
4569
4570 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4571 if (IS_ERR(inode))
4572 return PTR_ERR(inode);
4573
4574 if (offset + len > i_size_read(inode)) {
4575 if (offset > i_size_read(inode))
4576 len = 0;
4577 else
4578 len = offset - i_size_read(inode);
4579 }
4580 if (len == 0)
4581 goto out;
4582
09cbfeaf 4583 last_index = (offset + len - 1) >> PAGE_SHIFT;
2131bcd3
LB
4584
4585 /* initial readahead */
4586 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4587 file_ra_state_init(&sctx->ra, inode->i_mapping);
4588 btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4589 last_index - index + 1);
4590
ed259095
JB
4591 while (index <= last_index) {
4592 unsigned cur_len = min_t(unsigned, len,
09cbfeaf 4593 PAGE_SIZE - pg_offset);
e780b0d1 4594 page = find_or_create_page(inode->i_mapping, index, GFP_KERNEL);
ed259095
JB
4595 if (!page) {
4596 ret = -ENOMEM;
4597 break;
4598 }
4599
4600 if (!PageUptodate(page)) {
4601 btrfs_readpage(NULL, page);
4602 lock_page(page);
4603 if (!PageUptodate(page)) {
4604 unlock_page(page);
09cbfeaf 4605 put_page(page);
ed259095
JB
4606 ret = -EIO;
4607 break;
4608 }
4609 }
4610
4611 addr = kmap(page);
4612 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4613 kunmap(page);
4614 unlock_page(page);
09cbfeaf 4615 put_page(page);
ed259095
JB
4616 index++;
4617 pg_offset = 0;
4618 len -= cur_len;
4619 ret += cur_len;
4620 }
4621out:
4622 iput(inode);
4623 return ret;
4624}
4625
31db9f7c
AB
4626/*
4627 * Read some bytes from the current inode/file and send a write command to
4628 * user space.
4629 */
4630static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4631{
4632 int ret = 0;
4633 struct fs_path *p;
ed259095 4634 ssize_t num_read = 0;
31db9f7c 4635
924794c9 4636 p = fs_path_alloc();
31db9f7c
AB
4637 if (!p)
4638 return -ENOMEM;
4639
31db9f7c
AB
4640verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4641
ed259095
JB
4642 num_read = fill_read_buf(sctx, offset, len);
4643 if (num_read <= 0) {
4644 if (num_read < 0)
4645 ret = num_read;
31db9f7c 4646 goto out;
ed259095 4647 }
31db9f7c
AB
4648
4649 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4650 if (ret < 0)
4651 goto out;
4652
4653 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4654 if (ret < 0)
4655 goto out;
4656
4657 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4658 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
e938c8ad 4659 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
31db9f7c
AB
4660
4661 ret = send_cmd(sctx);
4662
4663tlv_put_failure:
4664out:
924794c9 4665 fs_path_free(p);
31db9f7c
AB
4666 if (ret < 0)
4667 return ret;
e938c8ad 4668 return num_read;
31db9f7c
AB
4669}
4670
4671/*
4672 * Send a clone command to user space.
4673 */
4674static int send_clone(struct send_ctx *sctx,
4675 u64 offset, u32 len,
4676 struct clone_root *clone_root)
4677{
4678 int ret = 0;
31db9f7c
AB
4679 struct fs_path *p;
4680 u64 gen;
4681
4682verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4683 "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4684 clone_root->root->objectid, clone_root->ino,
4685 clone_root->offset);
4686
924794c9 4687 p = fs_path_alloc();
31db9f7c
AB
4688 if (!p)
4689 return -ENOMEM;
4690
4691 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4692 if (ret < 0)
4693 goto out;
4694
4695 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4696 if (ret < 0)
4697 goto out;
4698
4699 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4700 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4701 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4702
e938c8ad 4703 if (clone_root->root == sctx->send_root) {
31db9f7c 4704 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
85a7b33b 4705 &gen, NULL, NULL, NULL, NULL);
31db9f7c
AB
4706 if (ret < 0)
4707 goto out;
4708 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4709 } else {
924794c9 4710 ret = get_inode_path(clone_root->root, clone_root->ino, p);
31db9f7c
AB
4711 }
4712 if (ret < 0)
4713 goto out;
4714
37b8d27d
JB
4715 /*
4716 * If the parent we're using has a received_uuid set then use that as
4717 * our clone source as that is what we will look for when doing a
4718 * receive.
4719 *
4720 * This covers the case that we create a snapshot off of a received
4721 * subvolume and then use that as the parent and try to receive on a
4722 * different host.
4723 */
4724 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4725 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4726 clone_root->root->root_item.received_uuid);
4727 else
4728 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4729 clone_root->root->root_item.uuid);
31db9f7c 4730 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5a0f4e2c 4731 le64_to_cpu(clone_root->root->root_item.ctransid));
31db9f7c
AB
4732 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4733 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4734 clone_root->offset);
4735
4736 ret = send_cmd(sctx);
4737
4738tlv_put_failure:
4739out:
924794c9 4740 fs_path_free(p);
31db9f7c
AB
4741 return ret;
4742}
4743
cb95e7bf
MF
4744/*
4745 * Send an update extent command to user space.
4746 */
4747static int send_update_extent(struct send_ctx *sctx,
4748 u64 offset, u32 len)
4749{
4750 int ret = 0;
4751 struct fs_path *p;
4752
924794c9 4753 p = fs_path_alloc();
cb95e7bf
MF
4754 if (!p)
4755 return -ENOMEM;
4756
4757 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4758 if (ret < 0)
4759 goto out;
4760
4761 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4762 if (ret < 0)
4763 goto out;
4764
4765 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4766 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4767 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4768
4769 ret = send_cmd(sctx);
4770
4771tlv_put_failure:
4772out:
924794c9 4773 fs_path_free(p);
cb95e7bf
MF
4774 return ret;
4775}
4776
16e7549f
JB
4777static int send_hole(struct send_ctx *sctx, u64 end)
4778{
4779 struct fs_path *p = NULL;
4780 u64 offset = sctx->cur_inode_last_extent;
4781 u64 len;
4782 int ret = 0;
4783
4784 p = fs_path_alloc();
4785 if (!p)
4786 return -ENOMEM;
c715e155
FM
4787 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4788 if (ret < 0)
4789 goto tlv_put_failure;
16e7549f
JB
4790 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4791 while (offset < end) {
4792 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4793
4794 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
16e7549f
JB
4795 if (ret < 0)
4796 break;
4797 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4798 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4799 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4800 ret = send_cmd(sctx);
4801 if (ret < 0)
4802 break;
4803 offset += len;
4804 }
4805tlv_put_failure:
4806 fs_path_free(p);
4807 return ret;
4808}
4809
d906d49f
FM
4810static int send_extent_data(struct send_ctx *sctx,
4811 const u64 offset,
4812 const u64 len)
4813{
4814 u64 sent = 0;
4815
4816 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4817 return send_update_extent(sctx, offset, len);
4818
4819 while (sent < len) {
4820 u64 size = len - sent;
4821 int ret;
4822
4823 if (size > BTRFS_SEND_READ_SIZE)
4824 size = BTRFS_SEND_READ_SIZE;
4825 ret = send_write(sctx, offset + sent, size);
4826 if (ret < 0)
4827 return ret;
4828 if (!ret)
4829 break;
4830 sent += ret;
4831 }
4832 return 0;
4833}
4834
4835static int clone_range(struct send_ctx *sctx,
4836 struct clone_root *clone_root,
4837 const u64 disk_byte,
4838 u64 data_offset,
4839 u64 offset,
4840 u64 len)
4841{
4842 struct btrfs_path *path;
4843 struct btrfs_key key;
4844 int ret;
4845
4846 path = alloc_path_for_send();
4847 if (!path)
4848 return -ENOMEM;
4849
4850 /*
4851 * We can't send a clone operation for the entire range if we find
4852 * extent items in the respective range in the source file that
4853 * refer to different extents or if we find holes.
4854 * So check for that and do a mix of clone and regular write/copy
4855 * operations if needed.
4856 *
4857 * Example:
4858 *
4859 * mkfs.btrfs -f /dev/sda
4860 * mount /dev/sda /mnt
4861 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
4862 * cp --reflink=always /mnt/foo /mnt/bar
4863 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
4864 * btrfs subvolume snapshot -r /mnt /mnt/snap
4865 *
4866 * If when we send the snapshot and we are processing file bar (which
4867 * has a higher inode number than foo) we blindly send a clone operation
4868 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
4869 * a file bar that matches the content of file foo - iow, doesn't match
4870 * the content from bar in the original filesystem.
4871 */
4872 key.objectid = clone_root->ino;
4873 key.type = BTRFS_EXTENT_DATA_KEY;
4874 key.offset = clone_root->offset;
4875 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
4876 if (ret < 0)
4877 goto out;
4878 if (ret > 0 && path->slots[0] > 0) {
4879 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4880 if (key.objectid == clone_root->ino &&
4881 key.type == BTRFS_EXTENT_DATA_KEY)
4882 path->slots[0]--;
4883 }
4884
4885 while (true) {
4886 struct extent_buffer *leaf = path->nodes[0];
4887 int slot = path->slots[0];
4888 struct btrfs_file_extent_item *ei;
4889 u8 type;
4890 u64 ext_len;
4891 u64 clone_len;
4892
4893 if (slot >= btrfs_header_nritems(leaf)) {
4894 ret = btrfs_next_leaf(clone_root->root, path);
4895 if (ret < 0)
4896 goto out;
4897 else if (ret > 0)
4898 break;
4899 continue;
4900 }
4901
4902 btrfs_item_key_to_cpu(leaf, &key, slot);
4903
4904 /*
4905 * We might have an implicit trailing hole (NO_HOLES feature
4906 * enabled). We deal with it after leaving this loop.
4907 */
4908 if (key.objectid != clone_root->ino ||
4909 key.type != BTRFS_EXTENT_DATA_KEY)
4910 break;
4911
4912 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4913 type = btrfs_file_extent_type(leaf, ei);
4914 if (type == BTRFS_FILE_EXTENT_INLINE) {
4915 ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
09cbfeaf 4916 ext_len = PAGE_ALIGN(ext_len);
d906d49f
FM
4917 } else {
4918 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
4919 }
4920
4921 if (key.offset + ext_len <= clone_root->offset)
4922 goto next;
4923
4924 if (key.offset > clone_root->offset) {
4925 /* Implicit hole, NO_HOLES feature enabled. */
4926 u64 hole_len = key.offset - clone_root->offset;
4927
4928 if (hole_len > len)
4929 hole_len = len;
4930 ret = send_extent_data(sctx, offset, hole_len);
4931 if (ret < 0)
4932 goto out;
4933
4934 len -= hole_len;
4935 if (len == 0)
4936 break;
4937 offset += hole_len;
4938 clone_root->offset += hole_len;
4939 data_offset += hole_len;
4940 }
4941
4942 if (key.offset >= clone_root->offset + len)
4943 break;
4944
4945 clone_len = min_t(u64, ext_len, len);
4946
4947 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
4948 btrfs_file_extent_offset(leaf, ei) == data_offset)
4949 ret = send_clone(sctx, offset, clone_len, clone_root);
4950 else
4951 ret = send_extent_data(sctx, offset, clone_len);
4952
4953 if (ret < 0)
4954 goto out;
4955
4956 len -= clone_len;
4957 if (len == 0)
4958 break;
4959 offset += clone_len;
4960 clone_root->offset += clone_len;
4961 data_offset += clone_len;
4962next:
4963 path->slots[0]++;
4964 }
4965
4966 if (len > 0)
4967 ret = send_extent_data(sctx, offset, len);
4968 else
4969 ret = 0;
4970out:
4971 btrfs_free_path(path);
4972 return ret;
4973}
4974
31db9f7c
AB
4975static int send_write_or_clone(struct send_ctx *sctx,
4976 struct btrfs_path *path,
4977 struct btrfs_key *key,
4978 struct clone_root *clone_root)
4979{
4980 int ret = 0;
4981 struct btrfs_file_extent_item *ei;
4982 u64 offset = key->offset;
31db9f7c 4983 u64 len;
31db9f7c 4984 u8 type;
28e5dd8f 4985 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
31db9f7c
AB
4986
4987 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4988 struct btrfs_file_extent_item);
4989 type = btrfs_file_extent_type(path->nodes[0], ei);
74dd17fb 4990 if (type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
4991 len = btrfs_file_extent_inline_len(path->nodes[0],
4992 path->slots[0], ei);
74dd17fb
CM
4993 /*
4994 * it is possible the inline item won't cover the whole page,
4995 * but there may be items after this page. Make
4996 * sure to send the whole thing
4997 */
09cbfeaf 4998 len = PAGE_ALIGN(len);
74dd17fb 4999 } else {
31db9f7c 5000 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
74dd17fb 5001 }
31db9f7c
AB
5002
5003 if (offset + len > sctx->cur_inode_size)
5004 len = sctx->cur_inode_size - offset;
5005 if (len == 0) {
5006 ret = 0;
5007 goto out;
5008 }
5009
28e5dd8f 5010 if (clone_root && IS_ALIGNED(offset + len, bs)) {
d906d49f
FM
5011 u64 disk_byte;
5012 u64 data_offset;
5013
5014 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5015 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5016 ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5017 offset, len);
cb95e7bf 5018 } else {
d906d49f 5019 ret = send_extent_data(sctx, offset, len);
31db9f7c 5020 }
31db9f7c
AB
5021out:
5022 return ret;
5023}
5024
5025static int is_extent_unchanged(struct send_ctx *sctx,
5026 struct btrfs_path *left_path,
5027 struct btrfs_key *ekey)
5028{
5029 int ret = 0;
5030 struct btrfs_key key;
5031 struct btrfs_path *path = NULL;
5032 struct extent_buffer *eb;
5033 int slot;
5034 struct btrfs_key found_key;
5035 struct btrfs_file_extent_item *ei;
5036 u64 left_disknr;
5037 u64 right_disknr;
5038 u64 left_offset;
5039 u64 right_offset;
5040 u64 left_offset_fixed;
5041 u64 left_len;
5042 u64 right_len;
74dd17fb
CM
5043 u64 left_gen;
5044 u64 right_gen;
31db9f7c
AB
5045 u8 left_type;
5046 u8 right_type;
5047
5048 path = alloc_path_for_send();
5049 if (!path)
5050 return -ENOMEM;
5051
5052 eb = left_path->nodes[0];
5053 slot = left_path->slots[0];
31db9f7c
AB
5054 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5055 left_type = btrfs_file_extent_type(eb, ei);
31db9f7c
AB
5056
5057 if (left_type != BTRFS_FILE_EXTENT_REG) {
5058 ret = 0;
5059 goto out;
5060 }
74dd17fb
CM
5061 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5062 left_len = btrfs_file_extent_num_bytes(eb, ei);
5063 left_offset = btrfs_file_extent_offset(eb, ei);
5064 left_gen = btrfs_file_extent_generation(eb, ei);
31db9f7c
AB
5065
5066 /*
5067 * Following comments will refer to these graphics. L is the left
5068 * extents which we are checking at the moment. 1-8 are the right
5069 * extents that we iterate.
5070 *
5071 * |-----L-----|
5072 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5073 *
5074 * |-----L-----|
5075 * |--1--|-2b-|...(same as above)
5076 *
5077 * Alternative situation. Happens on files where extents got split.
5078 * |-----L-----|
5079 * |-----------7-----------|-6-|
5080 *
5081 * Alternative situation. Happens on files which got larger.
5082 * |-----L-----|
5083 * |-8-|
5084 * Nothing follows after 8.
5085 */
5086
5087 key.objectid = ekey->objectid;
5088 key.type = BTRFS_EXTENT_DATA_KEY;
5089 key.offset = ekey->offset;
5090 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5091 if (ret < 0)
5092 goto out;
5093 if (ret) {
5094 ret = 0;
5095 goto out;
5096 }
5097
5098 /*
5099 * Handle special case where the right side has no extents at all.
5100 */
5101 eb = path->nodes[0];
5102 slot = path->slots[0];
5103 btrfs_item_key_to_cpu(eb, &found_key, slot);
5104 if (found_key.objectid != key.objectid ||
5105 found_key.type != key.type) {
57cfd462
JB
5106 /* If we're a hole then just pretend nothing changed */
5107 ret = (left_disknr) ? 0 : 1;
31db9f7c
AB
5108 goto out;
5109 }
5110
5111 /*
5112 * We're now on 2a, 2b or 7.
5113 */
5114 key = found_key;
5115 while (key.offset < ekey->offset + left_len) {
5116 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5117 right_type = btrfs_file_extent_type(eb, ei);
31db9f7c
AB
5118 if (right_type != BTRFS_FILE_EXTENT_REG) {
5119 ret = 0;
5120 goto out;
5121 }
5122
007d31f7
JB
5123 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5124 right_len = btrfs_file_extent_num_bytes(eb, ei);
5125 right_offset = btrfs_file_extent_offset(eb, ei);
5126 right_gen = btrfs_file_extent_generation(eb, ei);
5127
31db9f7c
AB
5128 /*
5129 * Are we at extent 8? If yes, we know the extent is changed.
5130 * This may only happen on the first iteration.
5131 */
d8347fa4 5132 if (found_key.offset + right_len <= ekey->offset) {
57cfd462
JB
5133 /* If we're a hole just pretend nothing changed */
5134 ret = (left_disknr) ? 0 : 1;
31db9f7c
AB
5135 goto out;
5136 }
5137
5138 left_offset_fixed = left_offset;
5139 if (key.offset < ekey->offset) {
5140 /* Fix the right offset for 2a and 7. */
5141 right_offset += ekey->offset - key.offset;
5142 } else {
5143 /* Fix the left offset for all behind 2a and 2b */
5144 left_offset_fixed += key.offset - ekey->offset;
5145 }
5146
5147 /*
5148 * Check if we have the same extent.
5149 */
3954096d 5150 if (left_disknr != right_disknr ||
74dd17fb
CM
5151 left_offset_fixed != right_offset ||
5152 left_gen != right_gen) {
31db9f7c
AB
5153 ret = 0;
5154 goto out;
5155 }
5156
5157 /*
5158 * Go to the next extent.
5159 */
5160 ret = btrfs_next_item(sctx->parent_root, path);
5161 if (ret < 0)
5162 goto out;
5163 if (!ret) {
5164 eb = path->nodes[0];
5165 slot = path->slots[0];
5166 btrfs_item_key_to_cpu(eb, &found_key, slot);
5167 }
5168 if (ret || found_key.objectid != key.objectid ||
5169 found_key.type != key.type) {
5170 key.offset += right_len;
5171 break;
adaa4b8e
JS
5172 }
5173 if (found_key.offset != key.offset + right_len) {
5174 ret = 0;
5175 goto out;
31db9f7c
AB
5176 }
5177 key = found_key;
5178 }
5179
5180 /*
5181 * We're now behind the left extent (treat as unchanged) or at the end
5182 * of the right side (treat as changed).
5183 */
5184 if (key.offset >= ekey->offset + left_len)
5185 ret = 1;
5186 else
5187 ret = 0;
5188
5189
5190out:
5191 btrfs_free_path(path);
5192 return ret;
5193}
5194
16e7549f
JB
5195static int get_last_extent(struct send_ctx *sctx, u64 offset)
5196{
5197 struct btrfs_path *path;
5198 struct btrfs_root *root = sctx->send_root;
5199 struct btrfs_file_extent_item *fi;
5200 struct btrfs_key key;
5201 u64 extent_end;
5202 u8 type;
5203 int ret;
5204
5205 path = alloc_path_for_send();
5206 if (!path)
5207 return -ENOMEM;
5208
5209 sctx->cur_inode_last_extent = 0;
5210
5211 key.objectid = sctx->cur_ino;
5212 key.type = BTRFS_EXTENT_DATA_KEY;
5213 key.offset = offset;
5214 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5215 if (ret < 0)
5216 goto out;
5217 ret = 0;
5218 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5219 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5220 goto out;
5221
5222 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5223 struct btrfs_file_extent_item);
5224 type = btrfs_file_extent_type(path->nodes[0], fi);
5225 if (type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
5226 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5227 path->slots[0], fi);
16e7549f
JB
5228 extent_end = ALIGN(key.offset + size,
5229 sctx->send_root->sectorsize);
5230 } else {
5231 extent_end = key.offset +
5232 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5233 }
5234 sctx->cur_inode_last_extent = extent_end;
5235out:
5236 btrfs_free_path(path);
5237 return ret;
5238}
5239
5240static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5241 struct btrfs_key *key)
5242{
5243 struct btrfs_file_extent_item *fi;
5244 u64 extent_end;
5245 u8 type;
5246 int ret = 0;
5247
5248 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5249 return 0;
5250
5251 if (sctx->cur_inode_last_extent == (u64)-1) {
5252 ret = get_last_extent(sctx, key->offset - 1);
5253 if (ret)
5254 return ret;
5255 }
5256
5257 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5258 struct btrfs_file_extent_item);
5259 type = btrfs_file_extent_type(path->nodes[0], fi);
5260 if (type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
5261 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5262 path->slots[0], fi);
16e7549f
JB
5263 extent_end = ALIGN(key->offset + size,
5264 sctx->send_root->sectorsize);
5265 } else {
5266 extent_end = key->offset +
5267 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5268 }
bf54f412
FDBM
5269
5270 if (path->slots[0] == 0 &&
5271 sctx->cur_inode_last_extent < key->offset) {
5272 /*
5273 * We might have skipped entire leafs that contained only
5274 * file extent items for our current inode. These leafs have
5275 * a generation number smaller (older) than the one in the
5276 * current leaf and the leaf our last extent came from, and
5277 * are located between these 2 leafs.
5278 */
5279 ret = get_last_extent(sctx, key->offset - 1);
5280 if (ret)
5281 return ret;
5282 }
5283
16e7549f
JB
5284 if (sctx->cur_inode_last_extent < key->offset)
5285 ret = send_hole(sctx, key->offset);
5286 sctx->cur_inode_last_extent = extent_end;
5287 return ret;
5288}
5289
31db9f7c
AB
5290static int process_extent(struct send_ctx *sctx,
5291 struct btrfs_path *path,
5292 struct btrfs_key *key)
5293{
31db9f7c 5294 struct clone_root *found_clone = NULL;
57cfd462 5295 int ret = 0;
31db9f7c
AB
5296
5297 if (S_ISLNK(sctx->cur_inode_mode))
5298 return 0;
5299
5300 if (sctx->parent_root && !sctx->cur_inode_new) {
5301 ret = is_extent_unchanged(sctx, path, key);
5302 if (ret < 0)
5303 goto out;
5304 if (ret) {
5305 ret = 0;
16e7549f 5306 goto out_hole;
31db9f7c 5307 }
57cfd462
JB
5308 } else {
5309 struct btrfs_file_extent_item *ei;
5310 u8 type;
5311
5312 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5313 struct btrfs_file_extent_item);
5314 type = btrfs_file_extent_type(path->nodes[0], ei);
5315 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5316 type == BTRFS_FILE_EXTENT_REG) {
5317 /*
5318 * The send spec does not have a prealloc command yet,
5319 * so just leave a hole for prealloc'ed extents until
5320 * we have enough commands queued up to justify rev'ing
5321 * the send spec.
5322 */
5323 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5324 ret = 0;
5325 goto out;
5326 }
5327
5328 /* Have a hole, just skip it. */
5329 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5330 ret = 0;
5331 goto out;
5332 }
5333 }
31db9f7c
AB
5334 }
5335
5336 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5337 sctx->cur_inode_size, &found_clone);
5338 if (ret != -ENOENT && ret < 0)
5339 goto out;
5340
5341 ret = send_write_or_clone(sctx, path, key, found_clone);
16e7549f
JB
5342 if (ret)
5343 goto out;
5344out_hole:
5345 ret = maybe_send_hole(sctx, path, key);
31db9f7c
AB
5346out:
5347 return ret;
5348}
5349
5350static int process_all_extents(struct send_ctx *sctx)
5351{
5352 int ret;
5353 struct btrfs_root *root;
5354 struct btrfs_path *path;
5355 struct btrfs_key key;
5356 struct btrfs_key found_key;
5357 struct extent_buffer *eb;
5358 int slot;
5359
5360 root = sctx->send_root;
5361 path = alloc_path_for_send();
5362 if (!path)
5363 return -ENOMEM;
5364
5365 key.objectid = sctx->cmp_key->objectid;
5366 key.type = BTRFS_EXTENT_DATA_KEY;
5367 key.offset = 0;
7fdd29d0
FDBM
5368 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5369 if (ret < 0)
5370 goto out;
31db9f7c 5371
7fdd29d0 5372 while (1) {
31db9f7c
AB
5373 eb = path->nodes[0];
5374 slot = path->slots[0];
7fdd29d0
FDBM
5375
5376 if (slot >= btrfs_header_nritems(eb)) {
5377 ret = btrfs_next_leaf(root, path);
5378 if (ret < 0) {
5379 goto out;
5380 } else if (ret > 0) {
5381 ret = 0;
5382 break;
5383 }
5384 continue;
5385 }
5386
31db9f7c
AB
5387 btrfs_item_key_to_cpu(eb, &found_key, slot);
5388
5389 if (found_key.objectid != key.objectid ||
5390 found_key.type != key.type) {
5391 ret = 0;
5392 goto out;
5393 }
5394
5395 ret = process_extent(sctx, path, &found_key);
5396 if (ret < 0)
5397 goto out;
5398
7fdd29d0 5399 path->slots[0]++;
31db9f7c
AB
5400 }
5401
5402out:
5403 btrfs_free_path(path);
5404 return ret;
5405}
5406
9f03740a
FDBM
5407static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5408 int *pending_move,
5409 int *refs_processed)
31db9f7c
AB
5410{
5411 int ret = 0;
5412
5413 if (sctx->cur_ino == 0)
5414 goto out;
5415 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
96b5bd77 5416 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
31db9f7c
AB
5417 goto out;
5418 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5419 goto out;
5420
9f03740a 5421 ret = process_recorded_refs(sctx, pending_move);
e479d9bb
AB
5422 if (ret < 0)
5423 goto out;
5424
9f03740a 5425 *refs_processed = 1;
31db9f7c
AB
5426out:
5427 return ret;
5428}
5429
5430static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5431{
5432 int ret = 0;
5433 u64 left_mode;
5434 u64 left_uid;
5435 u64 left_gid;
5436 u64 right_mode;
5437 u64 right_uid;
5438 u64 right_gid;
5439 int need_chmod = 0;
5440 int need_chown = 0;
9f03740a
FDBM
5441 int pending_move = 0;
5442 int refs_processed = 0;
31db9f7c 5443
9f03740a
FDBM
5444 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5445 &refs_processed);
31db9f7c
AB
5446 if (ret < 0)
5447 goto out;
5448
9f03740a
FDBM
5449 /*
5450 * We have processed the refs and thus need to advance send_progress.
5451 * Now, calls to get_cur_xxx will take the updated refs of the current
5452 * inode into account.
5453 *
5454 * On the other hand, if our current inode is a directory and couldn't
5455 * be moved/renamed because its parent was renamed/moved too and it has
5456 * a higher inode number, we can only move/rename our current inode
5457 * after we moved/renamed its parent. Therefore in this case operate on
5458 * the old path (pre move/rename) of our current inode, and the
5459 * move/rename will be performed later.
5460 */
5461 if (refs_processed && !pending_move)
5462 sctx->send_progress = sctx->cur_ino + 1;
5463
31db9f7c
AB
5464 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5465 goto out;
5466 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5467 goto out;
5468
5469 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
85a7b33b 5470 &left_mode, &left_uid, &left_gid, NULL);
31db9f7c
AB
5471 if (ret < 0)
5472 goto out;
5473
e2d044fe
AL
5474 if (!sctx->parent_root || sctx->cur_inode_new) {
5475 need_chown = 1;
5476 if (!S_ISLNK(sctx->cur_inode_mode))
31db9f7c 5477 need_chmod = 1;
e2d044fe
AL
5478 } else {
5479 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5480 NULL, NULL, &right_mode, &right_uid,
5481 &right_gid, NULL);
5482 if (ret < 0)
5483 goto out;
31db9f7c 5484
e2d044fe
AL
5485 if (left_uid != right_uid || left_gid != right_gid)
5486 need_chown = 1;
5487 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5488 need_chmod = 1;
31db9f7c
AB
5489 }
5490
5491 if (S_ISREG(sctx->cur_inode_mode)) {
16e7549f 5492 if (need_send_hole(sctx)) {
766b5e5a
FM
5493 if (sctx->cur_inode_last_extent == (u64)-1 ||
5494 sctx->cur_inode_last_extent <
5495 sctx->cur_inode_size) {
16e7549f
JB
5496 ret = get_last_extent(sctx, (u64)-1);
5497 if (ret)
5498 goto out;
5499 }
5500 if (sctx->cur_inode_last_extent <
5501 sctx->cur_inode_size) {
5502 ret = send_hole(sctx, sctx->cur_inode_size);
5503 if (ret)
5504 goto out;
5505 }
5506 }
31db9f7c
AB
5507 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5508 sctx->cur_inode_size);
5509 if (ret < 0)
5510 goto out;
5511 }
5512
5513 if (need_chown) {
5514 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5515 left_uid, left_gid);
5516 if (ret < 0)
5517 goto out;
5518 }
5519 if (need_chmod) {
5520 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5521 left_mode);
5522 if (ret < 0)
5523 goto out;
5524 }
5525
5526 /*
9f03740a
FDBM
5527 * If other directory inodes depended on our current directory
5528 * inode's move/rename, now do their move/rename operations.
31db9f7c 5529 */
9f03740a
FDBM
5530 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5531 ret = apply_children_dir_moves(sctx);
5532 if (ret)
5533 goto out;
fcbd2154
FM
5534 /*
5535 * Need to send that every time, no matter if it actually
5536 * changed between the two trees as we have done changes to
5537 * the inode before. If our inode is a directory and it's
5538 * waiting to be moved/renamed, we will send its utimes when
5539 * it's moved/renamed, therefore we don't need to do it here.
5540 */
5541 sctx->send_progress = sctx->cur_ino + 1;
5542 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5543 if (ret < 0)
5544 goto out;
9f03740a
FDBM
5545 }
5546
31db9f7c
AB
5547out:
5548 return ret;
5549}
5550
5551static int changed_inode(struct send_ctx *sctx,
5552 enum btrfs_compare_tree_result result)
5553{
5554 int ret = 0;
5555 struct btrfs_key *key = sctx->cmp_key;
5556 struct btrfs_inode_item *left_ii = NULL;
5557 struct btrfs_inode_item *right_ii = NULL;
5558 u64 left_gen = 0;
5559 u64 right_gen = 0;
5560
31db9f7c
AB
5561 sctx->cur_ino = key->objectid;
5562 sctx->cur_inode_new_gen = 0;
16e7549f 5563 sctx->cur_inode_last_extent = (u64)-1;
e479d9bb
AB
5564
5565 /*
5566 * Set send_progress to current inode. This will tell all get_cur_xxx
5567 * functions that the current inode's refs are not updated yet. Later,
5568 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5569 */
31db9f7c
AB
5570 sctx->send_progress = sctx->cur_ino;
5571
5572 if (result == BTRFS_COMPARE_TREE_NEW ||
5573 result == BTRFS_COMPARE_TREE_CHANGED) {
5574 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5575 sctx->left_path->slots[0],
5576 struct btrfs_inode_item);
5577 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5578 left_ii);
5579 } else {
5580 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5581 sctx->right_path->slots[0],
5582 struct btrfs_inode_item);
5583 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5584 right_ii);
5585 }
5586 if (result == BTRFS_COMPARE_TREE_CHANGED) {
5587 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5588 sctx->right_path->slots[0],
5589 struct btrfs_inode_item);
5590
5591 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5592 right_ii);
6d85ed05
AB
5593
5594 /*
5595 * The cur_ino = root dir case is special here. We can't treat
5596 * the inode as deleted+reused because it would generate a
5597 * stream that tries to delete/mkdir the root dir.
5598 */
5599 if (left_gen != right_gen &&
5600 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
31db9f7c
AB
5601 sctx->cur_inode_new_gen = 1;
5602 }
5603
5604 if (result == BTRFS_COMPARE_TREE_NEW) {
5605 sctx->cur_inode_gen = left_gen;
5606 sctx->cur_inode_new = 1;
5607 sctx->cur_inode_deleted = 0;
5608 sctx->cur_inode_size = btrfs_inode_size(
5609 sctx->left_path->nodes[0], left_ii);
5610 sctx->cur_inode_mode = btrfs_inode_mode(
5611 sctx->left_path->nodes[0], left_ii);
644d1940
LB
5612 sctx->cur_inode_rdev = btrfs_inode_rdev(
5613 sctx->left_path->nodes[0], left_ii);
31db9f7c 5614 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
1f4692da 5615 ret = send_create_inode_if_needed(sctx);
31db9f7c
AB
5616 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
5617 sctx->cur_inode_gen = right_gen;
5618 sctx->cur_inode_new = 0;
5619 sctx->cur_inode_deleted = 1;
5620 sctx->cur_inode_size = btrfs_inode_size(
5621 sctx->right_path->nodes[0], right_ii);
5622 sctx->cur_inode_mode = btrfs_inode_mode(
5623 sctx->right_path->nodes[0], right_ii);
5624 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
766702ef
AB
5625 /*
5626 * We need to do some special handling in case the inode was
5627 * reported as changed with a changed generation number. This
5628 * means that the original inode was deleted and new inode
5629 * reused the same inum. So we have to treat the old inode as
5630 * deleted and the new one as new.
5631 */
31db9f7c 5632 if (sctx->cur_inode_new_gen) {
766702ef
AB
5633 /*
5634 * First, process the inode as if it was deleted.
5635 */
31db9f7c
AB
5636 sctx->cur_inode_gen = right_gen;
5637 sctx->cur_inode_new = 0;
5638 sctx->cur_inode_deleted = 1;
5639 sctx->cur_inode_size = btrfs_inode_size(
5640 sctx->right_path->nodes[0], right_ii);
5641 sctx->cur_inode_mode = btrfs_inode_mode(
5642 sctx->right_path->nodes[0], right_ii);
5643 ret = process_all_refs(sctx,
5644 BTRFS_COMPARE_TREE_DELETED);
5645 if (ret < 0)
5646 goto out;
5647
766702ef
AB
5648 /*
5649 * Now process the inode as if it was new.
5650 */
31db9f7c
AB
5651 sctx->cur_inode_gen = left_gen;
5652 sctx->cur_inode_new = 1;
5653 sctx->cur_inode_deleted = 0;
5654 sctx->cur_inode_size = btrfs_inode_size(
5655 sctx->left_path->nodes[0], left_ii);
5656 sctx->cur_inode_mode = btrfs_inode_mode(
5657 sctx->left_path->nodes[0], left_ii);
644d1940
LB
5658 sctx->cur_inode_rdev = btrfs_inode_rdev(
5659 sctx->left_path->nodes[0], left_ii);
1f4692da 5660 ret = send_create_inode_if_needed(sctx);
31db9f7c
AB
5661 if (ret < 0)
5662 goto out;
5663
5664 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5665 if (ret < 0)
5666 goto out;
e479d9bb
AB
5667 /*
5668 * Advance send_progress now as we did not get into
5669 * process_recorded_refs_if_needed in the new_gen case.
5670 */
5671 sctx->send_progress = sctx->cur_ino + 1;
766702ef
AB
5672
5673 /*
5674 * Now process all extents and xattrs of the inode as if
5675 * they were all new.
5676 */
31db9f7c
AB
5677 ret = process_all_extents(sctx);
5678 if (ret < 0)
5679 goto out;
5680 ret = process_all_new_xattrs(sctx);
5681 if (ret < 0)
5682 goto out;
5683 } else {
5684 sctx->cur_inode_gen = left_gen;
5685 sctx->cur_inode_new = 0;
5686 sctx->cur_inode_new_gen = 0;
5687 sctx->cur_inode_deleted = 0;
5688 sctx->cur_inode_size = btrfs_inode_size(
5689 sctx->left_path->nodes[0], left_ii);
5690 sctx->cur_inode_mode = btrfs_inode_mode(
5691 sctx->left_path->nodes[0], left_ii);
5692 }
5693 }
5694
5695out:
5696 return ret;
5697}
5698
766702ef
AB
5699/*
5700 * We have to process new refs before deleted refs, but compare_trees gives us
5701 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5702 * first and later process them in process_recorded_refs.
5703 * For the cur_inode_new_gen case, we skip recording completely because
5704 * changed_inode did already initiate processing of refs. The reason for this is
5705 * that in this case, compare_tree actually compares the refs of 2 different
5706 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5707 * refs of the right tree as deleted and all refs of the left tree as new.
5708 */
31db9f7c
AB
5709static int changed_ref(struct send_ctx *sctx,
5710 enum btrfs_compare_tree_result result)
5711{
5712 int ret = 0;
5713
5714 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5715
5716 if (!sctx->cur_inode_new_gen &&
5717 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5718 if (result == BTRFS_COMPARE_TREE_NEW)
5719 ret = record_new_ref(sctx);
5720 else if (result == BTRFS_COMPARE_TREE_DELETED)
5721 ret = record_deleted_ref(sctx);
5722 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5723 ret = record_changed_ref(sctx);
5724 }
5725
5726 return ret;
5727}
5728
766702ef
AB
5729/*
5730 * Process new/deleted/changed xattrs. We skip processing in the
5731 * cur_inode_new_gen case because changed_inode did already initiate processing
5732 * of xattrs. The reason is the same as in changed_ref
5733 */
31db9f7c
AB
5734static int changed_xattr(struct send_ctx *sctx,
5735 enum btrfs_compare_tree_result result)
5736{
5737 int ret = 0;
5738
5739 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5740
5741 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5742 if (result == BTRFS_COMPARE_TREE_NEW)
5743 ret = process_new_xattr(sctx);
5744 else if (result == BTRFS_COMPARE_TREE_DELETED)
5745 ret = process_deleted_xattr(sctx);
5746 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5747 ret = process_changed_xattr(sctx);
5748 }
5749
5750 return ret;
5751}
5752
766702ef
AB
5753/*
5754 * Process new/deleted/changed extents. We skip processing in the
5755 * cur_inode_new_gen case because changed_inode did already initiate processing
5756 * of extents. The reason is the same as in changed_ref
5757 */
31db9f7c
AB
5758static int changed_extent(struct send_ctx *sctx,
5759 enum btrfs_compare_tree_result result)
5760{
5761 int ret = 0;
5762
5763 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5764
5765 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5766 if (result != BTRFS_COMPARE_TREE_DELETED)
5767 ret = process_extent(sctx, sctx->left_path,
5768 sctx->cmp_key);
5769 }
5770
5771 return ret;
5772}
5773
ba5e8f2e
JB
5774static int dir_changed(struct send_ctx *sctx, u64 dir)
5775{
5776 u64 orig_gen, new_gen;
5777 int ret;
5778
5779 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5780 NULL, NULL);
5781 if (ret)
5782 return ret;
5783
5784 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5785 NULL, NULL, NULL);
5786 if (ret)
5787 return ret;
5788
5789 return (orig_gen != new_gen) ? 1 : 0;
5790}
5791
5792static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5793 struct btrfs_key *key)
5794{
5795 struct btrfs_inode_extref *extref;
5796 struct extent_buffer *leaf;
5797 u64 dirid = 0, last_dirid = 0;
5798 unsigned long ptr;
5799 u32 item_size;
5800 u32 cur_offset = 0;
5801 int ref_name_len;
5802 int ret = 0;
5803
5804 /* Easy case, just check this one dirid */
5805 if (key->type == BTRFS_INODE_REF_KEY) {
5806 dirid = key->offset;
5807
5808 ret = dir_changed(sctx, dirid);
5809 goto out;
5810 }
5811
5812 leaf = path->nodes[0];
5813 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5814 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5815 while (cur_offset < item_size) {
5816 extref = (struct btrfs_inode_extref *)(ptr +
5817 cur_offset);
5818 dirid = btrfs_inode_extref_parent(leaf, extref);
5819 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5820 cur_offset += ref_name_len + sizeof(*extref);
5821 if (dirid == last_dirid)
5822 continue;
5823 ret = dir_changed(sctx, dirid);
5824 if (ret)
5825 break;
5826 last_dirid = dirid;
5827 }
5828out:
5829 return ret;
5830}
5831
766702ef
AB
5832/*
5833 * Updates compare related fields in sctx and simply forwards to the actual
5834 * changed_xxx functions.
5835 */
31db9f7c
AB
5836static int changed_cb(struct btrfs_root *left_root,
5837 struct btrfs_root *right_root,
5838 struct btrfs_path *left_path,
5839 struct btrfs_path *right_path,
5840 struct btrfs_key *key,
5841 enum btrfs_compare_tree_result result,
5842 void *ctx)
5843{
5844 int ret = 0;
5845 struct send_ctx *sctx = ctx;
5846
ba5e8f2e 5847 if (result == BTRFS_COMPARE_TREE_SAME) {
16e7549f
JB
5848 if (key->type == BTRFS_INODE_REF_KEY ||
5849 key->type == BTRFS_INODE_EXTREF_KEY) {
5850 ret = compare_refs(sctx, left_path, key);
5851 if (!ret)
5852 return 0;
5853 if (ret < 0)
5854 return ret;
5855 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5856 return maybe_send_hole(sctx, left_path, key);
5857 } else {
ba5e8f2e 5858 return 0;
16e7549f 5859 }
ba5e8f2e
JB
5860 result = BTRFS_COMPARE_TREE_CHANGED;
5861 ret = 0;
5862 }
5863
31db9f7c
AB
5864 sctx->left_path = left_path;
5865 sctx->right_path = right_path;
5866 sctx->cmp_key = key;
5867
5868 ret = finish_inode_if_needed(sctx, 0);
5869 if (ret < 0)
5870 goto out;
5871
2981e225
AB
5872 /* Ignore non-FS objects */
5873 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5874 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5875 goto out;
5876
31db9f7c
AB
5877 if (key->type == BTRFS_INODE_ITEM_KEY)
5878 ret = changed_inode(sctx, result);
96b5bd77
JS
5879 else if (key->type == BTRFS_INODE_REF_KEY ||
5880 key->type == BTRFS_INODE_EXTREF_KEY)
31db9f7c
AB
5881 ret = changed_ref(sctx, result);
5882 else if (key->type == BTRFS_XATTR_ITEM_KEY)
5883 ret = changed_xattr(sctx, result);
5884 else if (key->type == BTRFS_EXTENT_DATA_KEY)
5885 ret = changed_extent(sctx, result);
5886
5887out:
5888 return ret;
5889}
5890
5891static int full_send_tree(struct send_ctx *sctx)
5892{
5893 int ret;
31db9f7c
AB
5894 struct btrfs_root *send_root = sctx->send_root;
5895 struct btrfs_key key;
5896 struct btrfs_key found_key;
5897 struct btrfs_path *path;
5898 struct extent_buffer *eb;
5899 int slot;
31db9f7c
AB
5900
5901 path = alloc_path_for_send();
5902 if (!path)
5903 return -ENOMEM;
5904
31db9f7c
AB
5905 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5906 key.type = BTRFS_INODE_ITEM_KEY;
5907 key.offset = 0;
5908
31db9f7c
AB
5909 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5910 if (ret < 0)
5911 goto out;
5912 if (ret)
5913 goto out_finish;
5914
5915 while (1) {
31db9f7c
AB
5916 eb = path->nodes[0];
5917 slot = path->slots[0];
5918 btrfs_item_key_to_cpu(eb, &found_key, slot);
5919
5920 ret = changed_cb(send_root, NULL, path, NULL,
5921 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5922 if (ret < 0)
5923 goto out;
5924
5925 key.objectid = found_key.objectid;
5926 key.type = found_key.type;
5927 key.offset = found_key.offset + 1;
5928
5929 ret = btrfs_next_item(send_root, path);
5930 if (ret < 0)
5931 goto out;
5932 if (ret) {
5933 ret = 0;
5934 break;
5935 }
5936 }
5937
5938out_finish:
5939 ret = finish_inode_if_needed(sctx, 1);
5940
5941out:
5942 btrfs_free_path(path);
31db9f7c
AB
5943 return ret;
5944}
5945
5946static int send_subvol(struct send_ctx *sctx)
5947{
5948 int ret;
5949
c2c71324
SB
5950 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5951 ret = send_header(sctx);
5952 if (ret < 0)
5953 goto out;
5954 }
31db9f7c
AB
5955
5956 ret = send_subvol_begin(sctx);
5957 if (ret < 0)
5958 goto out;
5959
5960 if (sctx->parent_root) {
5961 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5962 changed_cb, sctx);
5963 if (ret < 0)
5964 goto out;
5965 ret = finish_inode_if_needed(sctx, 1);
5966 if (ret < 0)
5967 goto out;
5968 } else {
5969 ret = full_send_tree(sctx);
5970 if (ret < 0)
5971 goto out;
5972 }
5973
5974out:
31db9f7c
AB
5975 free_recorded_refs(sctx);
5976 return ret;
5977}
5978
e5fa8f86
FM
5979/*
5980 * If orphan cleanup did remove any orphans from a root, it means the tree
5981 * was modified and therefore the commit root is not the same as the current
5982 * root anymore. This is a problem, because send uses the commit root and
5983 * therefore can see inode items that don't exist in the current root anymore,
5984 * and for example make calls to btrfs_iget, which will do tree lookups based
5985 * on the current root and not on the commit root. Those lookups will fail,
5986 * returning a -ESTALE error, and making send fail with that error. So make
5987 * sure a send does not see any orphans we have just removed, and that it will
5988 * see the same inodes regardless of whether a transaction commit happened
5989 * before it started (meaning that the commit root will be the same as the
5990 * current root) or not.
5991 */
5992static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
5993{
5994 int i;
5995 struct btrfs_trans_handle *trans = NULL;
5996
5997again:
5998 if (sctx->parent_root &&
5999 sctx->parent_root->node != sctx->parent_root->commit_root)
6000 goto commit_trans;
6001
6002 for (i = 0; i < sctx->clone_roots_cnt; i++)
6003 if (sctx->clone_roots[i].root->node !=
6004 sctx->clone_roots[i].root->commit_root)
6005 goto commit_trans;
6006
6007 if (trans)
6008 return btrfs_end_transaction(trans, sctx->send_root);
6009
6010 return 0;
6011
6012commit_trans:
6013 /* Use any root, all fs roots will get their commit roots updated. */
6014 if (!trans) {
6015 trans = btrfs_join_transaction(sctx->send_root);
6016 if (IS_ERR(trans))
6017 return PTR_ERR(trans);
6018 goto again;
6019 }
6020
6021 return btrfs_commit_transaction(trans, sctx->send_root);
6022}
6023
66ef7d65
DS
6024static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6025{
6026 spin_lock(&root->root_item_lock);
6027 root->send_in_progress--;
6028 /*
6029 * Not much left to do, we don't know why it's unbalanced and
6030 * can't blindly reset it to 0.
6031 */
6032 if (root->send_in_progress < 0)
6033 btrfs_err(root->fs_info,
351fd353 6034 "send_in_progres unbalanced %d root %llu",
66ef7d65
DS
6035 root->send_in_progress, root->root_key.objectid);
6036 spin_unlock(&root->root_item_lock);
6037}
6038
31db9f7c
AB
6039long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
6040{
6041 int ret = 0;
6042 struct btrfs_root *send_root;
6043 struct btrfs_root *clone_root;
6044 struct btrfs_fs_info *fs_info;
6045 struct btrfs_ioctl_send_args *arg = NULL;
6046 struct btrfs_key key;
31db9f7c
AB
6047 struct send_ctx *sctx = NULL;
6048 u32 i;
6049 u64 *clone_sources_tmp = NULL;
2c686537 6050 int clone_sources_to_rollback = 0;
e55d1153 6051 unsigned alloc_size;
896c14f9 6052 int sort_clone_roots = 0;
18f687d5 6053 int index;
31db9f7c
AB
6054
6055 if (!capable(CAP_SYS_ADMIN))
6056 return -EPERM;
6057
496ad9aa 6058 send_root = BTRFS_I(file_inode(mnt_file))->root;
31db9f7c
AB
6059 fs_info = send_root->fs_info;
6060
2c686537
DS
6061 /*
6062 * The subvolume must remain read-only during send, protect against
521e0546 6063 * making it RW. This also protects against deletion.
2c686537
DS
6064 */
6065 spin_lock(&send_root->root_item_lock);
6066 send_root->send_in_progress++;
6067 spin_unlock(&send_root->root_item_lock);
6068
139f807a
JB
6069 /*
6070 * This is done when we lookup the root, it should already be complete
6071 * by the time we get here.
6072 */
6073 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6074
2c686537
DS
6075 /*
6076 * Userspace tools do the checks and warn the user if it's
6077 * not RO.
6078 */
6079 if (!btrfs_root_readonly(send_root)) {
6080 ret = -EPERM;
6081 goto out;
6082 }
6083
31db9f7c
AB
6084 arg = memdup_user(arg_, sizeof(*arg));
6085 if (IS_ERR(arg)) {
6086 ret = PTR_ERR(arg);
6087 arg = NULL;
6088 goto out;
6089 }
6090
f5ecec3c
DC
6091 if (arg->clone_sources_count >
6092 ULLONG_MAX / sizeof(*arg->clone_sources)) {
6093 ret = -EINVAL;
6094 goto out;
6095 }
6096
31db9f7c 6097 if (!access_ok(VERIFY_READ, arg->clone_sources,
700ff4f0
DC
6098 sizeof(*arg->clone_sources) *
6099 arg->clone_sources_count)) {
31db9f7c
AB
6100 ret = -EFAULT;
6101 goto out;
6102 }
6103
c2c71324 6104 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
cb95e7bf
MF
6105 ret = -EINVAL;
6106 goto out;
6107 }
6108
e780b0d1 6109 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
31db9f7c
AB
6110 if (!sctx) {
6111 ret = -ENOMEM;
6112 goto out;
6113 }
6114
6115 INIT_LIST_HEAD(&sctx->new_refs);
6116 INIT_LIST_HEAD(&sctx->deleted_refs);
e780b0d1 6117 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
31db9f7c
AB
6118 INIT_LIST_HEAD(&sctx->name_cache_list);
6119
cb95e7bf
MF
6120 sctx->flags = arg->flags;
6121
31db9f7c 6122 sctx->send_filp = fget(arg->send_fd);
ecc7ada7
TI
6123 if (!sctx->send_filp) {
6124 ret = -EBADF;
31db9f7c
AB
6125 goto out;
6126 }
6127
31db9f7c 6128 sctx->send_root = send_root;
521e0546
DS
6129 /*
6130 * Unlikely but possible, if the subvolume is marked for deletion but
6131 * is slow to remove the directory entry, send can still be started
6132 */
6133 if (btrfs_root_dead(sctx->send_root)) {
6134 ret = -EPERM;
6135 goto out;
6136 }
6137
31db9f7c
AB
6138 sctx->clone_roots_cnt = arg->clone_sources_count;
6139
6140 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6ff48ce0 6141 sctx->send_buf = kmalloc(sctx->send_max_size, GFP_KERNEL | __GFP_NOWARN);
31db9f7c 6142 if (!sctx->send_buf) {
6ff48ce0
DS
6143 sctx->send_buf = vmalloc(sctx->send_max_size);
6144 if (!sctx->send_buf) {
6145 ret = -ENOMEM;
6146 goto out;
6147 }
31db9f7c
AB
6148 }
6149
eb5b75fe 6150 sctx->read_buf = kmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL | __GFP_NOWARN);
31db9f7c 6151 if (!sctx->read_buf) {
eb5b75fe
DS
6152 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
6153 if (!sctx->read_buf) {
6154 ret = -ENOMEM;
6155 goto out;
6156 }
31db9f7c
AB
6157 }
6158
9f03740a
FDBM
6159 sctx->pending_dir_moves = RB_ROOT;
6160 sctx->waiting_dir_moves = RB_ROOT;
9dc44214 6161 sctx->orphan_dirs = RB_ROOT;
9f03740a 6162
e55d1153
DS
6163 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6164
c03d01f3 6165 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN);
31db9f7c 6166 if (!sctx->clone_roots) {
c03d01f3
DS
6167 sctx->clone_roots = vzalloc(alloc_size);
6168 if (!sctx->clone_roots) {
6169 ret = -ENOMEM;
6170 goto out;
6171 }
31db9f7c
AB
6172 }
6173
e55d1153
DS
6174 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6175
31db9f7c 6176 if (arg->clone_sources_count) {
2f91306a 6177 clone_sources_tmp = kmalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN);
31db9f7c 6178 if (!clone_sources_tmp) {
2f91306a
DS
6179 clone_sources_tmp = vmalloc(alloc_size);
6180 if (!clone_sources_tmp) {
6181 ret = -ENOMEM;
6182 goto out;
6183 }
31db9f7c
AB
6184 }
6185
6186 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
e55d1153 6187 alloc_size);
31db9f7c
AB
6188 if (ret) {
6189 ret = -EFAULT;
6190 goto out;
6191 }
6192
6193 for (i = 0; i < arg->clone_sources_count; i++) {
6194 key.objectid = clone_sources_tmp[i];
6195 key.type = BTRFS_ROOT_ITEM_KEY;
6196 key.offset = (u64)-1;
18f687d5
WS
6197
6198 index = srcu_read_lock(&fs_info->subvol_srcu);
6199
31db9f7c 6200 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
31db9f7c 6201 if (IS_ERR(clone_root)) {
18f687d5 6202 srcu_read_unlock(&fs_info->subvol_srcu, index);
31db9f7c
AB
6203 ret = PTR_ERR(clone_root);
6204 goto out;
6205 }
2c686537 6206 spin_lock(&clone_root->root_item_lock);
5cc2b17e
FM
6207 if (!btrfs_root_readonly(clone_root) ||
6208 btrfs_root_dead(clone_root)) {
2c686537 6209 spin_unlock(&clone_root->root_item_lock);
18f687d5 6210 srcu_read_unlock(&fs_info->subvol_srcu, index);
2c686537
DS
6211 ret = -EPERM;
6212 goto out;
6213 }
2f1f465a 6214 clone_root->send_in_progress++;
2c686537 6215 spin_unlock(&clone_root->root_item_lock);
18f687d5
WS
6216 srcu_read_unlock(&fs_info->subvol_srcu, index);
6217
31db9f7c 6218 sctx->clone_roots[i].root = clone_root;
2f1f465a 6219 clone_sources_to_rollback = i + 1;
31db9f7c 6220 }
2f91306a 6221 kvfree(clone_sources_tmp);
31db9f7c
AB
6222 clone_sources_tmp = NULL;
6223 }
6224
6225 if (arg->parent_root) {
6226 key.objectid = arg->parent_root;
6227 key.type = BTRFS_ROOT_ITEM_KEY;
6228 key.offset = (u64)-1;
18f687d5
WS
6229
6230 index = srcu_read_lock(&fs_info->subvol_srcu);
6231
31db9f7c 6232 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
b1b19596 6233 if (IS_ERR(sctx->parent_root)) {
18f687d5 6234 srcu_read_unlock(&fs_info->subvol_srcu, index);
b1b19596 6235 ret = PTR_ERR(sctx->parent_root);
31db9f7c
AB
6236 goto out;
6237 }
18f687d5 6238
2c686537
DS
6239 spin_lock(&sctx->parent_root->root_item_lock);
6240 sctx->parent_root->send_in_progress++;
521e0546
DS
6241 if (!btrfs_root_readonly(sctx->parent_root) ||
6242 btrfs_root_dead(sctx->parent_root)) {
2c686537 6243 spin_unlock(&sctx->parent_root->root_item_lock);
18f687d5 6244 srcu_read_unlock(&fs_info->subvol_srcu, index);
2c686537
DS
6245 ret = -EPERM;
6246 goto out;
6247 }
6248 spin_unlock(&sctx->parent_root->root_item_lock);
18f687d5
WS
6249
6250 srcu_read_unlock(&fs_info->subvol_srcu, index);
31db9f7c
AB
6251 }
6252
6253 /*
6254 * Clones from send_root are allowed, but only if the clone source
6255 * is behind the current send position. This is checked while searching
6256 * for possible clone sources.
6257 */
6258 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6259
6260 /* We do a bsearch later */
6261 sort(sctx->clone_roots, sctx->clone_roots_cnt,
6262 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6263 NULL);
896c14f9 6264 sort_clone_roots = 1;
31db9f7c 6265
e5fa8f86
FM
6266 ret = ensure_commit_roots_uptodate(sctx);
6267 if (ret)
6268 goto out;
6269
2755a0de 6270 current->journal_info = BTRFS_SEND_TRANS_STUB;
31db9f7c 6271 ret = send_subvol(sctx);
a26e8c9f 6272 current->journal_info = NULL;
31db9f7c
AB
6273 if (ret < 0)
6274 goto out;
6275
c2c71324
SB
6276 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6277 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6278 if (ret < 0)
6279 goto out;
6280 ret = send_cmd(sctx);
6281 if (ret < 0)
6282 goto out;
6283 }
31db9f7c
AB
6284
6285out:
9f03740a
FDBM
6286 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6287 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6288 struct rb_node *n;
6289 struct pending_dir_move *pm;
6290
6291 n = rb_first(&sctx->pending_dir_moves);
6292 pm = rb_entry(n, struct pending_dir_move, node);
6293 while (!list_empty(&pm->list)) {
6294 struct pending_dir_move *pm2;
6295
6296 pm2 = list_first_entry(&pm->list,
6297 struct pending_dir_move, list);
6298 free_pending_move(sctx, pm2);
6299 }
6300 free_pending_move(sctx, pm);
6301 }
6302
6303 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6304 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6305 struct rb_node *n;
6306 struct waiting_dir_move *dm;
6307
6308 n = rb_first(&sctx->waiting_dir_moves);
6309 dm = rb_entry(n, struct waiting_dir_move, node);
6310 rb_erase(&dm->node, &sctx->waiting_dir_moves);
6311 kfree(dm);
6312 }
6313
9dc44214
FM
6314 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6315 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6316 struct rb_node *n;
6317 struct orphan_dir_info *odi;
6318
6319 n = rb_first(&sctx->orphan_dirs);
6320 odi = rb_entry(n, struct orphan_dir_info, node);
6321 free_orphan_dir_info(sctx, odi);
6322 }
6323
896c14f9
WS
6324 if (sort_clone_roots) {
6325 for (i = 0; i < sctx->clone_roots_cnt; i++)
6326 btrfs_root_dec_send_in_progress(
6327 sctx->clone_roots[i].root);
6328 } else {
6329 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6330 btrfs_root_dec_send_in_progress(
6331 sctx->clone_roots[i].root);
6332
6333 btrfs_root_dec_send_in_progress(send_root);
6334 }
66ef7d65
DS
6335 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6336 btrfs_root_dec_send_in_progress(sctx->parent_root);
2c686537 6337
31db9f7c 6338 kfree(arg);
2f91306a 6339 kvfree(clone_sources_tmp);
31db9f7c
AB
6340
6341 if (sctx) {
6342 if (sctx->send_filp)
6343 fput(sctx->send_filp);
6344
c03d01f3 6345 kvfree(sctx->clone_roots);
6ff48ce0 6346 kvfree(sctx->send_buf);
eb5b75fe 6347 kvfree(sctx->read_buf);
31db9f7c
AB
6348
6349 name_cache_free(sctx);
6350
6351 kfree(sctx);
6352 }
6353
6354 return ret;
6355}
This page took 0.466671 seconds and 5 git commands to generate.