Btrfs: Fix sparse endian warnings in struct-funcs.c
[deliverable/linux.git] / fs / btrfs / tree-log.c
CommitLineData
e02119d5
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include "ctree.h"
21#include "transaction.h"
22#include "disk-io.h"
23#include "locking.h"
24#include "print-tree.h"
25#include "compat.h"
b2950863 26#include "tree-log.h"
e02119d5
CM
27
28/* magic values for the inode_only field in btrfs_log_inode:
29 *
30 * LOG_INODE_ALL means to log everything
31 * LOG_INODE_EXISTS means to log just enough to recreate the inode
32 * during log replay
33 */
34#define LOG_INODE_ALL 0
35#define LOG_INODE_EXISTS 1
36
37/*
38 * stages for the tree walking. The first
39 * stage (0) is to only pin down the blocks we find
40 * the second stage (1) is to make sure that all the inodes
41 * we find in the log are created in the subvolume.
42 *
43 * The last stage is to deal with directories and links and extents
44 * and all the other fun semantics
45 */
46#define LOG_WALK_PIN_ONLY 0
47#define LOG_WALK_REPLAY_INODES 1
48#define LOG_WALK_REPLAY_ALL 2
49
50static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
51 struct btrfs_root *root, struct inode *inode,
52 int inode_only);
53
54/*
55 * tree logging is a special write ahead log used to make sure that
56 * fsyncs and O_SYNCs can happen without doing full tree commits.
57 *
58 * Full tree commits are expensive because they require commonly
59 * modified blocks to be recowed, creating many dirty pages in the
60 * extent tree an 4x-6x higher write load than ext3.
61 *
62 * Instead of doing a tree commit on every fsync, we use the
63 * key ranges and transaction ids to find items for a given file or directory
64 * that have changed in this transaction. Those items are copied into
65 * a special tree (one per subvolume root), that tree is written to disk
66 * and then the fsync is considered complete.
67 *
68 * After a crash, items are copied out of the log-tree back into the
69 * subvolume tree. Any file data extents found are recorded in the extent
70 * allocation tree, and the log-tree freed.
71 *
72 * The log tree is read three times, once to pin down all the extents it is
73 * using in ram and once, once to create all the inodes logged in the tree
74 * and once to do all the other items.
75 */
76
77/*
78 * btrfs_add_log_tree adds a new per-subvolume log tree into the
79 * tree of log tree roots. This must be called with a tree log transaction
80 * running (see start_log_trans).
81 */
b2950863 82static int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
83 struct btrfs_root *root)
84{
85 struct btrfs_key key;
86 struct btrfs_root_item root_item;
87 struct btrfs_inode_item *inode_item;
88 struct extent_buffer *leaf;
89 struct btrfs_root *new_root = root;
90 int ret;
91 u64 objectid = root->root_key.objectid;
92
31840ae1 93 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
e02119d5 94 BTRFS_TREE_LOG_OBJECTID,
31840ae1 95 trans->transid, 0, 0, 0);
e02119d5
CM
96 if (IS_ERR(leaf)) {
97 ret = PTR_ERR(leaf);
98 return ret;
99 }
100
101 btrfs_set_header_nritems(leaf, 0);
102 btrfs_set_header_level(leaf, 0);
103 btrfs_set_header_bytenr(leaf, leaf->start);
104 btrfs_set_header_generation(leaf, trans->transid);
105 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
106
107 write_extent_buffer(leaf, root->fs_info->fsid,
108 (unsigned long)btrfs_header_fsid(leaf),
109 BTRFS_FSID_SIZE);
110 btrfs_mark_buffer_dirty(leaf);
111
112 inode_item = &root_item.inode;
113 memset(inode_item, 0, sizeof(*inode_item));
114 inode_item->generation = cpu_to_le64(1);
115 inode_item->size = cpu_to_le64(3);
116 inode_item->nlink = cpu_to_le32(1);
a76a3cd4 117 inode_item->nbytes = cpu_to_le64(root->leafsize);
e02119d5
CM
118 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
119
120 btrfs_set_root_bytenr(&root_item, leaf->start);
84234f3a 121 btrfs_set_root_generation(&root_item, trans->transid);
e02119d5
CM
122 btrfs_set_root_level(&root_item, 0);
123 btrfs_set_root_refs(&root_item, 0);
124 btrfs_set_root_used(&root_item, 0);
125
126 memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
127 root_item.drop_level = 0;
128
129 btrfs_tree_unlock(leaf);
130 free_extent_buffer(leaf);
131 leaf = NULL;
132
133 btrfs_set_root_dirid(&root_item, 0);
134
135 key.objectid = BTRFS_TREE_LOG_OBJECTID;
136 key.offset = objectid;
137 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
138 ret = btrfs_insert_root(trans, root->fs_info->log_root_tree, &key,
139 &root_item);
140 if (ret)
141 goto fail;
142
143 new_root = btrfs_read_fs_root_no_radix(root->fs_info->log_root_tree,
144 &key);
145 BUG_ON(!new_root);
146
147 WARN_ON(root->log_root);
148 root->log_root = new_root;
149
150 /*
151 * log trees do not get reference counted because they go away
152 * before a real commit is actually done. They do store pointers
153 * to file data extents, and those reference counts still get
154 * updated (along with back refs to the log tree).
155 */
156 new_root->ref_cows = 0;
157 new_root->last_trans = trans->transid;
158fail:
159 return ret;
160}
161
162/*
163 * start a sub transaction and setup the log tree
164 * this increments the log tree writer count to make the people
165 * syncing the tree wait for us to finish
166 */
167static int start_log_trans(struct btrfs_trans_handle *trans,
168 struct btrfs_root *root)
169{
170 int ret;
171 mutex_lock(&root->fs_info->tree_log_mutex);
172 if (!root->fs_info->log_root_tree) {
173 ret = btrfs_init_log_root_tree(trans, root->fs_info);
174 BUG_ON(ret);
175 }
176 if (!root->log_root) {
177 ret = btrfs_add_log_tree(trans, root);
178 BUG_ON(ret);
179 }
180 atomic_inc(&root->fs_info->tree_log_writers);
181 root->fs_info->tree_log_batch++;
182 mutex_unlock(&root->fs_info->tree_log_mutex);
183 return 0;
184}
185
186/*
187 * returns 0 if there was a log transaction running and we were able
188 * to join, or returns -ENOENT if there were not transactions
189 * in progress
190 */
191static int join_running_log_trans(struct btrfs_root *root)
192{
193 int ret = -ENOENT;
194
195 smp_mb();
196 if (!root->log_root)
197 return -ENOENT;
198
199 mutex_lock(&root->fs_info->tree_log_mutex);
200 if (root->log_root) {
201 ret = 0;
202 atomic_inc(&root->fs_info->tree_log_writers);
203 root->fs_info->tree_log_batch++;
204 }
205 mutex_unlock(&root->fs_info->tree_log_mutex);
206 return ret;
207}
208
209/*
210 * indicate we're done making changes to the log tree
211 * and wake up anyone waiting to do a sync
212 */
213static int end_log_trans(struct btrfs_root *root)
214{
215 atomic_dec(&root->fs_info->tree_log_writers);
216 smp_mb();
217 if (waitqueue_active(&root->fs_info->tree_log_wait))
218 wake_up(&root->fs_info->tree_log_wait);
219 return 0;
220}
221
222
223/*
224 * the walk control struct is used to pass state down the chain when
225 * processing the log tree. The stage field tells us which part
226 * of the log tree processing we are currently doing. The others
227 * are state fields used for that specific part
228 */
229struct walk_control {
230 /* should we free the extent on disk when done? This is used
231 * at transaction commit time while freeing a log tree
232 */
233 int free;
234
235 /* should we write out the extent buffer? This is used
236 * while flushing the log tree to disk during a sync
237 */
238 int write;
239
240 /* should we wait for the extent buffer io to finish? Also used
241 * while flushing the log tree to disk for a sync
242 */
243 int wait;
244
245 /* pin only walk, we record which extents on disk belong to the
246 * log trees
247 */
248 int pin;
249
250 /* what stage of the replay code we're currently in */
251 int stage;
252
253 /* the root we are currently replaying */
254 struct btrfs_root *replay_dest;
255
256 /* the trans handle for the current replay */
257 struct btrfs_trans_handle *trans;
258
259 /* the function that gets used to process blocks we find in the
260 * tree. Note the extent_buffer might not be up to date when it is
261 * passed in, and it must be checked or read if you need the data
262 * inside it
263 */
264 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
265 struct walk_control *wc, u64 gen);
266};
267
268/*
269 * process_func used to pin down extents, write them or wait on them
270 */
271static int process_one_buffer(struct btrfs_root *log,
272 struct extent_buffer *eb,
273 struct walk_control *wc, u64 gen)
274{
275 if (wc->pin) {
25179201 276 mutex_lock(&log->fs_info->pinned_mutex);
e02119d5
CM
277 btrfs_update_pinned_extents(log->fs_info->extent_root,
278 eb->start, eb->len, 1);
25179201 279 mutex_unlock(&log->fs_info->pinned_mutex);
e02119d5
CM
280 }
281
282 if (btrfs_buffer_uptodate(eb, gen)) {
283 if (wc->write)
284 btrfs_write_tree_block(eb);
285 if (wc->wait)
286 btrfs_wait_tree_block_writeback(eb);
287 }
288 return 0;
289}
290
291/*
292 * Item overwrite used by replay and tree logging. eb, slot and key all refer
293 * to the src data we are copying out.
294 *
295 * root is the tree we are copying into, and path is a scratch
296 * path for use in this function (it should be released on entry and
297 * will be released on exit).
298 *
299 * If the key is already in the destination tree the existing item is
300 * overwritten. If the existing item isn't big enough, it is extended.
301 * If it is too large, it is truncated.
302 *
303 * If the key isn't in the destination yet, a new item is inserted.
304 */
305static noinline int overwrite_item(struct btrfs_trans_handle *trans,
306 struct btrfs_root *root,
307 struct btrfs_path *path,
308 struct extent_buffer *eb, int slot,
309 struct btrfs_key *key)
310{
311 int ret;
312 u32 item_size;
313 u64 saved_i_size = 0;
314 int save_old_i_size = 0;
315 unsigned long src_ptr;
316 unsigned long dst_ptr;
317 int overwrite_root = 0;
318
319 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
320 overwrite_root = 1;
321
322 item_size = btrfs_item_size_nr(eb, slot);
323 src_ptr = btrfs_item_ptr_offset(eb, slot);
324
325 /* look for the key in the destination tree */
326 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
327 if (ret == 0) {
328 char *src_copy;
329 char *dst_copy;
330 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
331 path->slots[0]);
332 if (dst_size != item_size)
333 goto insert;
334
335 if (item_size == 0) {
336 btrfs_release_path(root, path);
337 return 0;
338 }
339 dst_copy = kmalloc(item_size, GFP_NOFS);
340 src_copy = kmalloc(item_size, GFP_NOFS);
341
342 read_extent_buffer(eb, src_copy, src_ptr, item_size);
343
344 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
345 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
346 item_size);
347 ret = memcmp(dst_copy, src_copy, item_size);
348
349 kfree(dst_copy);
350 kfree(src_copy);
351 /*
352 * they have the same contents, just return, this saves
353 * us from cowing blocks in the destination tree and doing
354 * extra writes that may not have been done by a previous
355 * sync
356 */
357 if (ret == 0) {
358 btrfs_release_path(root, path);
359 return 0;
360 }
361
362 }
363insert:
364 btrfs_release_path(root, path);
365 /* try to insert the key into the destination tree */
366 ret = btrfs_insert_empty_item(trans, root, path,
367 key, item_size);
368
369 /* make sure any existing item is the correct size */
370 if (ret == -EEXIST) {
371 u32 found_size;
372 found_size = btrfs_item_size_nr(path->nodes[0],
373 path->slots[0]);
374 if (found_size > item_size) {
375 btrfs_truncate_item(trans, root, path, item_size, 1);
376 } else if (found_size < item_size) {
377 ret = btrfs_del_item(trans, root,
378 path);
379 BUG_ON(ret);
380
381 btrfs_release_path(root, path);
382 ret = btrfs_insert_empty_item(trans,
383 root, path, key, item_size);
384 BUG_ON(ret);
385 }
386 } else if (ret) {
387 BUG();
388 }
389 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
390 path->slots[0]);
391
392 /* don't overwrite an existing inode if the generation number
393 * was logged as zero. This is done when the tree logging code
394 * is just logging an inode to make sure it exists after recovery.
395 *
396 * Also, don't overwrite i_size on directories during replay.
397 * log replay inserts and removes directory items based on the
398 * state of the tree found in the subvolume, and i_size is modified
399 * as it goes
400 */
401 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
402 struct btrfs_inode_item *src_item;
403 struct btrfs_inode_item *dst_item;
404
405 src_item = (struct btrfs_inode_item *)src_ptr;
406 dst_item = (struct btrfs_inode_item *)dst_ptr;
407
408 if (btrfs_inode_generation(eb, src_item) == 0)
409 goto no_copy;
410
411 if (overwrite_root &&
412 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
413 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
414 save_old_i_size = 1;
415 saved_i_size = btrfs_inode_size(path->nodes[0],
416 dst_item);
417 }
418 }
419
420 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
421 src_ptr, item_size);
422
423 if (save_old_i_size) {
424 struct btrfs_inode_item *dst_item;
425 dst_item = (struct btrfs_inode_item *)dst_ptr;
426 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
427 }
428
429 /* make sure the generation is filled in */
430 if (key->type == BTRFS_INODE_ITEM_KEY) {
431 struct btrfs_inode_item *dst_item;
432 dst_item = (struct btrfs_inode_item *)dst_ptr;
433 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
434 btrfs_set_inode_generation(path->nodes[0], dst_item,
435 trans->transid);
436 }
437 }
31840ae1
ZY
438
439 if (overwrite_root &&
440 key->type == BTRFS_EXTENT_DATA_KEY) {
441 int extent_type;
442 struct btrfs_file_extent_item *fi;
443
444 fi = (struct btrfs_file_extent_item *)dst_ptr;
445 extent_type = btrfs_file_extent_type(path->nodes[0], fi);
d899e052
YZ
446 if (extent_type == BTRFS_FILE_EXTENT_REG ||
447 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
31840ae1
ZY
448 struct btrfs_key ins;
449 ins.objectid = btrfs_file_extent_disk_bytenr(
450 path->nodes[0], fi);
451 ins.offset = btrfs_file_extent_disk_num_bytes(
452 path->nodes[0], fi);
453 ins.type = BTRFS_EXTENT_ITEM_KEY;
454
455 /*
456 * is this extent already allocated in the extent
457 * allocation tree? If so, just add a reference
458 */
459 ret = btrfs_lookup_extent(root, ins.objectid,
460 ins.offset);
461 if (ret == 0) {
462 ret = btrfs_inc_extent_ref(trans, root,
463 ins.objectid, ins.offset,
464 path->nodes[0]->start,
465 root->root_key.objectid,
3bb1a1bc 466 trans->transid, key->objectid);
31840ae1
ZY
467 } else {
468 /*
469 * insert the extent pointer in the extent
470 * allocation tree
471 */
472 ret = btrfs_alloc_logged_extent(trans, root,
473 path->nodes[0]->start,
474 root->root_key.objectid,
475 trans->transid, key->objectid,
3bb1a1bc 476 &ins);
31840ae1
ZY
477 BUG_ON(ret);
478 }
479 }
480 }
e02119d5
CM
481no_copy:
482 btrfs_mark_buffer_dirty(path->nodes[0]);
483 btrfs_release_path(root, path);
484 return 0;
485}
486
487/*
488 * simple helper to read an inode off the disk from a given root
489 * This can only be called for subvolume roots and not for the log
490 */
491static noinline struct inode *read_one_inode(struct btrfs_root *root,
492 u64 objectid)
493{
494 struct inode *inode;
495 inode = btrfs_iget_locked(root->fs_info->sb, objectid, root);
496 if (inode->i_state & I_NEW) {
497 BTRFS_I(inode)->root = root;
498 BTRFS_I(inode)->location.objectid = objectid;
499 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
500 BTRFS_I(inode)->location.offset = 0;
501 btrfs_read_locked_inode(inode);
502 unlock_new_inode(inode);
503
504 }
505 if (is_bad_inode(inode)) {
506 iput(inode);
507 inode = NULL;
508 }
509 return inode;
510}
511
512/* replays a single extent in 'eb' at 'slot' with 'key' into the
513 * subvolume 'root'. path is released on entry and should be released
514 * on exit.
515 *
516 * extents in the log tree have not been allocated out of the extent
517 * tree yet. So, this completes the allocation, taking a reference
518 * as required if the extent already exists or creating a new extent
519 * if it isn't in the extent allocation tree yet.
520 *
521 * The extent is inserted into the file, dropping any existing extents
522 * from the file that overlap the new one.
523 */
524static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
525 struct btrfs_root *root,
526 struct btrfs_path *path,
527 struct extent_buffer *eb, int slot,
528 struct btrfs_key *key)
529{
530 int found_type;
531 u64 mask = root->sectorsize - 1;
532 u64 extent_end;
533 u64 alloc_hint;
534 u64 start = key->offset;
535 struct btrfs_file_extent_item *item;
536 struct inode *inode = NULL;
537 unsigned long size;
538 int ret = 0;
539
540 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
541 found_type = btrfs_file_extent_type(eb, item);
542
d899e052
YZ
543 if (found_type == BTRFS_FILE_EXTENT_REG ||
544 found_type == BTRFS_FILE_EXTENT_PREALLOC)
e02119d5
CM
545 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
546 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818 547 size = btrfs_file_extent_inline_len(eb, item);
e02119d5
CM
548 extent_end = (start + size + mask) & ~mask;
549 } else {
550 ret = 0;
551 goto out;
552 }
553
554 inode = read_one_inode(root, key->objectid);
555 if (!inode) {
556 ret = -EIO;
557 goto out;
558 }
559
560 /*
561 * first check to see if we already have this extent in the
562 * file. This must be done before the btrfs_drop_extents run
563 * so we don't try to drop this extent.
564 */
565 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
566 start, 0);
567
d899e052
YZ
568 if (ret == 0 &&
569 (found_type == BTRFS_FILE_EXTENT_REG ||
570 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
571 struct btrfs_file_extent_item cmp1;
572 struct btrfs_file_extent_item cmp2;
573 struct btrfs_file_extent_item *existing;
574 struct extent_buffer *leaf;
575
576 leaf = path->nodes[0];
577 existing = btrfs_item_ptr(leaf, path->slots[0],
578 struct btrfs_file_extent_item);
579
580 read_extent_buffer(eb, &cmp1, (unsigned long)item,
581 sizeof(cmp1));
582 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
583 sizeof(cmp2));
584
585 /*
586 * we already have a pointer to this exact extent,
587 * we don't have to do anything
588 */
589 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
590 btrfs_release_path(root, path);
591 goto out;
592 }
593 }
594 btrfs_release_path(root, path);
595
596 /* drop any overlapping extents */
597 ret = btrfs_drop_extents(trans, root, inode,
598 start, extent_end, start, &alloc_hint);
599 BUG_ON(ret);
600
31840ae1
ZY
601 /* insert the extent */
602 ret = overwrite_item(trans, root, path, eb, slot, key);
e02119d5 603 BUG_ON(ret);
e02119d5 604
a76a3cd4
YZ
605 /* btrfs_drop_extents changes i_bytes & i_blocks, update it here */
606 inode_add_bytes(inode, extent_end - start);
e02119d5
CM
607 btrfs_update_inode(trans, root, inode);
608out:
609 if (inode)
610 iput(inode);
611 return ret;
612}
613
614/*
615 * when cleaning up conflicts between the directory names in the
616 * subvolume, directory names in the log and directory names in the
617 * inode back references, we may have to unlink inodes from directories.
618 *
619 * This is a helper function to do the unlink of a specific directory
620 * item
621 */
622static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
623 struct btrfs_root *root,
624 struct btrfs_path *path,
625 struct inode *dir,
626 struct btrfs_dir_item *di)
627{
628 struct inode *inode;
629 char *name;
630 int name_len;
631 struct extent_buffer *leaf;
632 struct btrfs_key location;
633 int ret;
634
635 leaf = path->nodes[0];
636
637 btrfs_dir_item_key_to_cpu(leaf, di, &location);
638 name_len = btrfs_dir_name_len(leaf, di);
639 name = kmalloc(name_len, GFP_NOFS);
640 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
641 btrfs_release_path(root, path);
642
643 inode = read_one_inode(root, location.objectid);
644 BUG_ON(!inode);
645
646 btrfs_inc_nlink(inode);
647 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
648 kfree(name);
649
650 iput(inode);
651 return ret;
652}
653
654/*
655 * helper function to see if a given name and sequence number found
656 * in an inode back reference are already in a directory and correctly
657 * point to this inode
658 */
659static noinline int inode_in_dir(struct btrfs_root *root,
660 struct btrfs_path *path,
661 u64 dirid, u64 objectid, u64 index,
662 const char *name, int name_len)
663{
664 struct btrfs_dir_item *di;
665 struct btrfs_key location;
666 int match = 0;
667
668 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
669 index, name, name_len, 0);
670 if (di && !IS_ERR(di)) {
671 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
672 if (location.objectid != objectid)
673 goto out;
674 } else
675 goto out;
676 btrfs_release_path(root, path);
677
678 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
679 if (di && !IS_ERR(di)) {
680 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
681 if (location.objectid != objectid)
682 goto out;
683 } else
684 goto out;
685 match = 1;
686out:
687 btrfs_release_path(root, path);
688 return match;
689}
690
691/*
692 * helper function to check a log tree for a named back reference in
693 * an inode. This is used to decide if a back reference that is
694 * found in the subvolume conflicts with what we find in the log.
695 *
696 * inode backreferences may have multiple refs in a single item,
697 * during replay we process one reference at a time, and we don't
698 * want to delete valid links to a file from the subvolume if that
699 * link is also in the log.
700 */
701static noinline int backref_in_log(struct btrfs_root *log,
702 struct btrfs_key *key,
703 char *name, int namelen)
704{
705 struct btrfs_path *path;
706 struct btrfs_inode_ref *ref;
707 unsigned long ptr;
708 unsigned long ptr_end;
709 unsigned long name_ptr;
710 int found_name_len;
711 int item_size;
712 int ret;
713 int match = 0;
714
715 path = btrfs_alloc_path();
716 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
717 if (ret != 0)
718 goto out;
719
720 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
721 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
722 ptr_end = ptr + item_size;
723 while (ptr < ptr_end) {
724 ref = (struct btrfs_inode_ref *)ptr;
725 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
726 if (found_name_len == namelen) {
727 name_ptr = (unsigned long)(ref + 1);
728 ret = memcmp_extent_buffer(path->nodes[0], name,
729 name_ptr, namelen);
730 if (ret == 0) {
731 match = 1;
732 goto out;
733 }
734 }
735 ptr = (unsigned long)(ref + 1) + found_name_len;
736 }
737out:
738 btrfs_free_path(path);
739 return match;
740}
741
742
743/*
744 * replay one inode back reference item found in the log tree.
745 * eb, slot and key refer to the buffer and key found in the log tree.
746 * root is the destination we are replaying into, and path is for temp
747 * use by this function. (it should be released on return).
748 */
749static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
750 struct btrfs_root *root,
751 struct btrfs_root *log,
752 struct btrfs_path *path,
753 struct extent_buffer *eb, int slot,
754 struct btrfs_key *key)
755{
756 struct inode *dir;
757 int ret;
758 struct btrfs_key location;
759 struct btrfs_inode_ref *ref;
760 struct btrfs_dir_item *di;
761 struct inode *inode;
762 char *name;
763 int namelen;
764 unsigned long ref_ptr;
765 unsigned long ref_end;
766
767 location.objectid = key->objectid;
768 location.type = BTRFS_INODE_ITEM_KEY;
769 location.offset = 0;
770
771 /*
772 * it is possible that we didn't log all the parent directories
773 * for a given inode. If we don't find the dir, just don't
774 * copy the back ref in. The link count fixup code will take
775 * care of the rest
776 */
777 dir = read_one_inode(root, key->offset);
778 if (!dir)
779 return -ENOENT;
780
781 inode = read_one_inode(root, key->objectid);
782 BUG_ON(!dir);
783
784 ref_ptr = btrfs_item_ptr_offset(eb, slot);
785 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
786
787again:
788 ref = (struct btrfs_inode_ref *)ref_ptr;
789
790 namelen = btrfs_inode_ref_name_len(eb, ref);
791 name = kmalloc(namelen, GFP_NOFS);
792 BUG_ON(!name);
793
794 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
795
796 /* if we already have a perfect match, we're done */
797 if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
798 btrfs_inode_ref_index(eb, ref),
799 name, namelen)) {
800 goto out;
801 }
802
803 /*
804 * look for a conflicting back reference in the metadata.
805 * if we find one we have to unlink that name of the file
806 * before we add our new link. Later on, we overwrite any
807 * existing back reference, and we don't want to create
808 * dangling pointers in the directory.
809 */
810conflict_again:
811 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
812 if (ret == 0) {
813 char *victim_name;
814 int victim_name_len;
815 struct btrfs_inode_ref *victim_ref;
816 unsigned long ptr;
817 unsigned long ptr_end;
818 struct extent_buffer *leaf = path->nodes[0];
819
820 /* are we trying to overwrite a back ref for the root directory
821 * if so, just jump out, we're done
822 */
823 if (key->objectid == key->offset)
824 goto out_nowrite;
825
826 /* check all the names in this back reference to see
827 * if they are in the log. if so, we allow them to stay
828 * otherwise they must be unlinked as a conflict
829 */
830 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
831 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
832 while(ptr < ptr_end) {
833 victim_ref = (struct btrfs_inode_ref *)ptr;
834 victim_name_len = btrfs_inode_ref_name_len(leaf,
835 victim_ref);
836 victim_name = kmalloc(victim_name_len, GFP_NOFS);
837 BUG_ON(!victim_name);
838
839 read_extent_buffer(leaf, victim_name,
840 (unsigned long)(victim_ref + 1),
841 victim_name_len);
842
843 if (!backref_in_log(log, key, victim_name,
844 victim_name_len)) {
845 btrfs_inc_nlink(inode);
846 btrfs_release_path(root, path);
847 ret = btrfs_unlink_inode(trans, root, dir,
848 inode, victim_name,
849 victim_name_len);
850 kfree(victim_name);
851 btrfs_release_path(root, path);
852 goto conflict_again;
853 }
854 kfree(victim_name);
855 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
856 }
857 BUG_ON(ret);
858 }
859 btrfs_release_path(root, path);
860
861 /* look for a conflicting sequence number */
862 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
863 btrfs_inode_ref_index(eb, ref),
864 name, namelen, 0);
865 if (di && !IS_ERR(di)) {
866 ret = drop_one_dir_item(trans, root, path, dir, di);
867 BUG_ON(ret);
868 }
869 btrfs_release_path(root, path);
870
871
872 /* look for a conflicting name */
873 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
874 name, namelen, 0);
875 if (di && !IS_ERR(di)) {
876 ret = drop_one_dir_item(trans, root, path, dir, di);
877 BUG_ON(ret);
878 }
879 btrfs_release_path(root, path);
880
881 /* insert our name */
882 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
883 btrfs_inode_ref_index(eb, ref));
884 BUG_ON(ret);
885
886 btrfs_update_inode(trans, root, inode);
887
888out:
889 ref_ptr = (unsigned long)(ref + 1) + namelen;
890 kfree(name);
891 if (ref_ptr < ref_end)
892 goto again;
893
894 /* finally write the back reference in the inode */
895 ret = overwrite_item(trans, root, path, eb, slot, key);
896 BUG_ON(ret);
897
898out_nowrite:
899 btrfs_release_path(root, path);
900 iput(dir);
901 iput(inode);
902 return 0;
903}
904
905/*
906 * replay one csum item from the log tree into the subvolume 'root'
907 * eb, slot and key all refer to the log tree
908 * path is for temp use by this function and should be released on return
909 *
910 * This copies the checksums out of the log tree and inserts them into
911 * the subvolume. Any existing checksums for this range in the file
912 * are overwritten, and new items are added where required.
913 *
914 * We keep this simple by reusing the btrfs_ordered_sum code from
915 * the data=ordered mode. This basically means making a copy
916 * of all the checksums in ram, which we have to do anyway for kmap
917 * rules.
918 *
919 * The copy is then sent down to btrfs_csum_file_blocks, which
920 * does all the hard work of finding existing items in the file
921 * or adding new ones.
922 */
923static noinline int replay_one_csum(struct btrfs_trans_handle *trans,
924 struct btrfs_root *root,
925 struct btrfs_path *path,
926 struct extent_buffer *eb, int slot,
927 struct btrfs_key *key)
928{
929 int ret;
930 u32 item_size = btrfs_item_size_nr(eb, slot);
931 u64 cur_offset;
607d432d
JB
932 u16 csum_size =
933 btrfs_super_csum_size(&root->fs_info->super_copy);
e02119d5
CM
934 unsigned long file_bytes;
935 struct btrfs_ordered_sum *sums;
936 struct btrfs_sector_sum *sector_sum;
937 struct inode *inode;
938 unsigned long ptr;
939
607d432d 940 file_bytes = (item_size / csum_size) * root->sectorsize;
e02119d5
CM
941 inode = read_one_inode(root, key->objectid);
942 if (!inode) {
943 return -EIO;
944 }
945
946 sums = kzalloc(btrfs_ordered_sum_size(root, file_bytes), GFP_NOFS);
947 if (!sums) {
948 iput(inode);
949 return -ENOMEM;
950 }
951
952 INIT_LIST_HEAD(&sums->list);
953 sums->len = file_bytes;
954 sums->file_offset = key->offset;
955
956 /*
957 * copy all the sums into the ordered sum struct
958 */
959 sector_sum = sums->sums;
960 cur_offset = key->offset;
961 ptr = btrfs_item_ptr_offset(eb, slot);
962 while(item_size > 0) {
963 sector_sum->offset = cur_offset;
607d432d 964 read_extent_buffer(eb, &sector_sum->sum, ptr, csum_size);
e02119d5 965 sector_sum++;
607d432d
JB
966 item_size -= csum_size;
967 ptr += csum_size;
e02119d5
CM
968 cur_offset += root->sectorsize;
969 }
970
971 /* let btrfs_csum_file_blocks add them into the file */
972 ret = btrfs_csum_file_blocks(trans, root, inode, sums);
973 BUG_ON(ret);
974 kfree(sums);
975 iput(inode);
976
977 return 0;
978}
979/*
980 * There are a few corners where the link count of the file can't
981 * be properly maintained during replay. So, instead of adding
982 * lots of complexity to the log code, we just scan the backrefs
983 * for any file that has been through replay.
984 *
985 * The scan will update the link count on the inode to reflect the
986 * number of back refs found. If it goes down to zero, the iput
987 * will free the inode.
988 */
989static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
990 struct btrfs_root *root,
991 struct inode *inode)
992{
993 struct btrfs_path *path;
994 int ret;
995 struct btrfs_key key;
996 u64 nlink = 0;
997 unsigned long ptr;
998 unsigned long ptr_end;
999 int name_len;
1000
1001 key.objectid = inode->i_ino;
1002 key.type = BTRFS_INODE_REF_KEY;
1003 key.offset = (u64)-1;
1004
1005 path = btrfs_alloc_path();
1006
1007 while(1) {
1008 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1009 if (ret < 0)
1010 break;
1011 if (ret > 0) {
1012 if (path->slots[0] == 0)
1013 break;
1014 path->slots[0]--;
1015 }
1016 btrfs_item_key_to_cpu(path->nodes[0], &key,
1017 path->slots[0]);
1018 if (key.objectid != inode->i_ino ||
1019 key.type != BTRFS_INODE_REF_KEY)
1020 break;
1021 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1022 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1023 path->slots[0]);
1024 while(ptr < ptr_end) {
1025 struct btrfs_inode_ref *ref;
1026
1027 ref = (struct btrfs_inode_ref *)ptr;
1028 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1029 ref);
1030 ptr = (unsigned long)(ref + 1) + name_len;
1031 nlink++;
1032 }
1033
1034 if (key.offset == 0)
1035 break;
1036 key.offset--;
1037 btrfs_release_path(root, path);
1038 }
1039 btrfs_free_path(path);
1040 if (nlink != inode->i_nlink) {
1041 inode->i_nlink = nlink;
1042 btrfs_update_inode(trans, root, inode);
1043 }
8d5bf1cb 1044 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5
CM
1045
1046 return 0;
1047}
1048
1049static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1050 struct btrfs_root *root,
1051 struct btrfs_path *path)
1052{
1053 int ret;
1054 struct btrfs_key key;
1055 struct inode *inode;
1056
1057 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1058 key.type = BTRFS_ORPHAN_ITEM_KEY;
1059 key.offset = (u64)-1;
1060 while(1) {
1061 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1062 if (ret < 0)
1063 break;
1064
1065 if (ret == 1) {
1066 if (path->slots[0] == 0)
1067 break;
1068 path->slots[0]--;
1069 }
1070
1071 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1072 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1073 key.type != BTRFS_ORPHAN_ITEM_KEY)
1074 break;
1075
1076 ret = btrfs_del_item(trans, root, path);
1077 BUG_ON(ret);
1078
1079 btrfs_release_path(root, path);
1080 inode = read_one_inode(root, key.offset);
1081 BUG_ON(!inode);
1082
1083 ret = fixup_inode_link_count(trans, root, inode);
1084 BUG_ON(ret);
1085
1086 iput(inode);
1087
1088 if (key.offset == 0)
1089 break;
1090 key.offset--;
1091 }
1092 btrfs_release_path(root, path);
1093 return 0;
1094}
1095
1096
1097/*
1098 * record a given inode in the fixup dir so we can check its link
1099 * count when replay is done. The link count is incremented here
1100 * so the inode won't go away until we check it
1101 */
1102static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1103 struct btrfs_root *root,
1104 struct btrfs_path *path,
1105 u64 objectid)
1106{
1107 struct btrfs_key key;
1108 int ret = 0;
1109 struct inode *inode;
1110
1111 inode = read_one_inode(root, objectid);
1112 BUG_ON(!inode);
1113
1114 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1115 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1116 key.offset = objectid;
1117
1118 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1119
1120 btrfs_release_path(root, path);
1121 if (ret == 0) {
1122 btrfs_inc_nlink(inode);
1123 btrfs_update_inode(trans, root, inode);
1124 } else if (ret == -EEXIST) {
1125 ret = 0;
1126 } else {
1127 BUG();
1128 }
1129 iput(inode);
1130
1131 return ret;
1132}
1133
1134/*
1135 * when replaying the log for a directory, we only insert names
1136 * for inodes that actually exist. This means an fsync on a directory
1137 * does not implicitly fsync all the new files in it
1138 */
1139static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1140 struct btrfs_root *root,
1141 struct btrfs_path *path,
1142 u64 dirid, u64 index,
1143 char *name, int name_len, u8 type,
1144 struct btrfs_key *location)
1145{
1146 struct inode *inode;
1147 struct inode *dir;
1148 int ret;
1149
1150 inode = read_one_inode(root, location->objectid);
1151 if (!inode)
1152 return -ENOENT;
1153
1154 dir = read_one_inode(root, dirid);
1155 if (!dir) {
1156 iput(inode);
1157 return -EIO;
1158 }
1159 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1160
1161 /* FIXME, put inode into FIXUP list */
1162
1163 iput(inode);
1164 iput(dir);
1165 return ret;
1166}
1167
1168/*
1169 * take a single entry in a log directory item and replay it into
1170 * the subvolume.
1171 *
1172 * if a conflicting item exists in the subdirectory already,
1173 * the inode it points to is unlinked and put into the link count
1174 * fix up tree.
1175 *
1176 * If a name from the log points to a file or directory that does
1177 * not exist in the FS, it is skipped. fsyncs on directories
1178 * do not force down inodes inside that directory, just changes to the
1179 * names or unlinks in a directory.
1180 */
1181static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1182 struct btrfs_root *root,
1183 struct btrfs_path *path,
1184 struct extent_buffer *eb,
1185 struct btrfs_dir_item *di,
1186 struct btrfs_key *key)
1187{
1188 char *name;
1189 int name_len;
1190 struct btrfs_dir_item *dst_di;
1191 struct btrfs_key found_key;
1192 struct btrfs_key log_key;
1193 struct inode *dir;
e02119d5 1194 u8 log_type;
4bef0848 1195 int exists;
e02119d5
CM
1196 int ret;
1197
1198 dir = read_one_inode(root, key->objectid);
1199 BUG_ON(!dir);
1200
1201 name_len = btrfs_dir_name_len(eb, di);
1202 name = kmalloc(name_len, GFP_NOFS);
1203 log_type = btrfs_dir_type(eb, di);
1204 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1205 name_len);
1206
1207 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1208 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1209 if (exists == 0)
1210 exists = 1;
1211 else
1212 exists = 0;
1213 btrfs_release_path(root, path);
1214
e02119d5
CM
1215 if (key->type == BTRFS_DIR_ITEM_KEY) {
1216 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1217 name, name_len, 1);
1218 }
1219 else if (key->type == BTRFS_DIR_INDEX_KEY) {
1220 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1221 key->objectid,
1222 key->offset, name,
1223 name_len, 1);
1224 } else {
1225 BUG();
1226 }
1227 if (!dst_di || IS_ERR(dst_di)) {
1228 /* we need a sequence number to insert, so we only
1229 * do inserts for the BTRFS_DIR_INDEX_KEY types
1230 */
1231 if (key->type != BTRFS_DIR_INDEX_KEY)
1232 goto out;
1233 goto insert;
1234 }
1235
1236 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1237 /* the existing item matches the logged item */
1238 if (found_key.objectid == log_key.objectid &&
1239 found_key.type == log_key.type &&
1240 found_key.offset == log_key.offset &&
1241 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1242 goto out;
1243 }
1244
1245 /*
1246 * don't drop the conflicting directory entry if the inode
1247 * for the new entry doesn't exist
1248 */
4bef0848 1249 if (!exists)
e02119d5
CM
1250 goto out;
1251
e02119d5
CM
1252 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1253 BUG_ON(ret);
1254
1255 if (key->type == BTRFS_DIR_INDEX_KEY)
1256 goto insert;
1257out:
1258 btrfs_release_path(root, path);
1259 kfree(name);
1260 iput(dir);
1261 return 0;
1262
1263insert:
1264 btrfs_release_path(root, path);
1265 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1266 name, name_len, log_type, &log_key);
1267
1268 if (ret && ret != -ENOENT)
1269 BUG();
1270 goto out;
1271}
1272
1273/*
1274 * find all the names in a directory item and reconcile them into
1275 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1276 * one name in a directory item, but the same code gets used for
1277 * both directory index types
1278 */
1279static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1280 struct btrfs_root *root,
1281 struct btrfs_path *path,
1282 struct extent_buffer *eb, int slot,
1283 struct btrfs_key *key)
1284{
1285 int ret;
1286 u32 item_size = btrfs_item_size_nr(eb, slot);
1287 struct btrfs_dir_item *di;
1288 int name_len;
1289 unsigned long ptr;
1290 unsigned long ptr_end;
1291
1292 ptr = btrfs_item_ptr_offset(eb, slot);
1293 ptr_end = ptr + item_size;
1294 while(ptr < ptr_end) {
1295 di = (struct btrfs_dir_item *)ptr;
1296 name_len = btrfs_dir_name_len(eb, di);
1297 ret = replay_one_name(trans, root, path, eb, di, key);
1298 BUG_ON(ret);
1299 ptr = (unsigned long)(di + 1);
1300 ptr += name_len;
1301 }
1302 return 0;
1303}
1304
1305/*
1306 * directory replay has two parts. There are the standard directory
1307 * items in the log copied from the subvolume, and range items
1308 * created in the log while the subvolume was logged.
1309 *
1310 * The range items tell us which parts of the key space the log
1311 * is authoritative for. During replay, if a key in the subvolume
1312 * directory is in a logged range item, but not actually in the log
1313 * that means it was deleted from the directory before the fsync
1314 * and should be removed.
1315 */
1316static noinline int find_dir_range(struct btrfs_root *root,
1317 struct btrfs_path *path,
1318 u64 dirid, int key_type,
1319 u64 *start_ret, u64 *end_ret)
1320{
1321 struct btrfs_key key;
1322 u64 found_end;
1323 struct btrfs_dir_log_item *item;
1324 int ret;
1325 int nritems;
1326
1327 if (*start_ret == (u64)-1)
1328 return 1;
1329
1330 key.objectid = dirid;
1331 key.type = key_type;
1332 key.offset = *start_ret;
1333
1334 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1335 if (ret < 0)
1336 goto out;
1337 if (ret > 0) {
1338 if (path->slots[0] == 0)
1339 goto out;
1340 path->slots[0]--;
1341 }
1342 if (ret != 0)
1343 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1344
1345 if (key.type != key_type || key.objectid != dirid) {
1346 ret = 1;
1347 goto next;
1348 }
1349 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1350 struct btrfs_dir_log_item);
1351 found_end = btrfs_dir_log_end(path->nodes[0], item);
1352
1353 if (*start_ret >= key.offset && *start_ret <= found_end) {
1354 ret = 0;
1355 *start_ret = key.offset;
1356 *end_ret = found_end;
1357 goto out;
1358 }
1359 ret = 1;
1360next:
1361 /* check the next slot in the tree to see if it is a valid item */
1362 nritems = btrfs_header_nritems(path->nodes[0]);
1363 if (path->slots[0] >= nritems) {
1364 ret = btrfs_next_leaf(root, path);
1365 if (ret)
1366 goto out;
1367 } else {
1368 path->slots[0]++;
1369 }
1370
1371 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1372
1373 if (key.type != key_type || key.objectid != dirid) {
1374 ret = 1;
1375 goto out;
1376 }
1377 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1378 struct btrfs_dir_log_item);
1379 found_end = btrfs_dir_log_end(path->nodes[0], item);
1380 *start_ret = key.offset;
1381 *end_ret = found_end;
1382 ret = 0;
1383out:
1384 btrfs_release_path(root, path);
1385 return ret;
1386}
1387
1388/*
1389 * this looks for a given directory item in the log. If the directory
1390 * item is not in the log, the item is removed and the inode it points
1391 * to is unlinked
1392 */
1393static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1394 struct btrfs_root *root,
1395 struct btrfs_root *log,
1396 struct btrfs_path *path,
1397 struct btrfs_path *log_path,
1398 struct inode *dir,
1399 struct btrfs_key *dir_key)
1400{
1401 int ret;
1402 struct extent_buffer *eb;
1403 int slot;
1404 u32 item_size;
1405 struct btrfs_dir_item *di;
1406 struct btrfs_dir_item *log_di;
1407 int name_len;
1408 unsigned long ptr;
1409 unsigned long ptr_end;
1410 char *name;
1411 struct inode *inode;
1412 struct btrfs_key location;
1413
1414again:
1415 eb = path->nodes[0];
1416 slot = path->slots[0];
1417 item_size = btrfs_item_size_nr(eb, slot);
1418 ptr = btrfs_item_ptr_offset(eb, slot);
1419 ptr_end = ptr + item_size;
1420 while(ptr < ptr_end) {
1421 di = (struct btrfs_dir_item *)ptr;
1422 name_len = btrfs_dir_name_len(eb, di);
1423 name = kmalloc(name_len, GFP_NOFS);
1424 if (!name) {
1425 ret = -ENOMEM;
1426 goto out;
1427 }
1428 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1429 name_len);
1430 log_di = NULL;
1431 if (dir_key->type == BTRFS_DIR_ITEM_KEY) {
1432 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1433 dir_key->objectid,
1434 name, name_len, 0);
1435 } else if (dir_key->type == BTRFS_DIR_INDEX_KEY) {
1436 log_di = btrfs_lookup_dir_index_item(trans, log,
1437 log_path,
1438 dir_key->objectid,
1439 dir_key->offset,
1440 name, name_len, 0);
1441 }
1442 if (!log_di || IS_ERR(log_di)) {
1443 btrfs_dir_item_key_to_cpu(eb, di, &location);
1444 btrfs_release_path(root, path);
1445 btrfs_release_path(log, log_path);
1446 inode = read_one_inode(root, location.objectid);
1447 BUG_ON(!inode);
1448
1449 ret = link_to_fixup_dir(trans, root,
1450 path, location.objectid);
1451 BUG_ON(ret);
1452 btrfs_inc_nlink(inode);
1453 ret = btrfs_unlink_inode(trans, root, dir, inode,
1454 name, name_len);
1455 BUG_ON(ret);
1456 kfree(name);
1457 iput(inode);
1458
1459 /* there might still be more names under this key
1460 * check and repeat if required
1461 */
1462 ret = btrfs_search_slot(NULL, root, dir_key, path,
1463 0, 0);
1464 if (ret == 0)
1465 goto again;
1466 ret = 0;
1467 goto out;
1468 }
1469 btrfs_release_path(log, log_path);
1470 kfree(name);
1471
1472 ptr = (unsigned long)(di + 1);
1473 ptr += name_len;
1474 }
1475 ret = 0;
1476out:
1477 btrfs_release_path(root, path);
1478 btrfs_release_path(log, log_path);
1479 return ret;
1480}
1481
1482/*
1483 * deletion replay happens before we copy any new directory items
1484 * out of the log or out of backreferences from inodes. It
1485 * scans the log to find ranges of keys that log is authoritative for,
1486 * and then scans the directory to find items in those ranges that are
1487 * not present in the log.
1488 *
1489 * Anything we don't find in the log is unlinked and removed from the
1490 * directory.
1491 */
1492static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1493 struct btrfs_root *root,
1494 struct btrfs_root *log,
1495 struct btrfs_path *path,
1496 u64 dirid)
1497{
1498 u64 range_start;
1499 u64 range_end;
1500 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1501 int ret = 0;
1502 struct btrfs_key dir_key;
1503 struct btrfs_key found_key;
1504 struct btrfs_path *log_path;
1505 struct inode *dir;
1506
1507 dir_key.objectid = dirid;
1508 dir_key.type = BTRFS_DIR_ITEM_KEY;
1509 log_path = btrfs_alloc_path();
1510 if (!log_path)
1511 return -ENOMEM;
1512
1513 dir = read_one_inode(root, dirid);
1514 /* it isn't an error if the inode isn't there, that can happen
1515 * because we replay the deletes before we copy in the inode item
1516 * from the log
1517 */
1518 if (!dir) {
1519 btrfs_free_path(log_path);
1520 return 0;
1521 }
1522again:
1523 range_start = 0;
1524 range_end = 0;
1525 while(1) {
1526 ret = find_dir_range(log, path, dirid, key_type,
1527 &range_start, &range_end);
1528 if (ret != 0)
1529 break;
1530
1531 dir_key.offset = range_start;
1532 while(1) {
1533 int nritems;
1534 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1535 0, 0);
1536 if (ret < 0)
1537 goto out;
1538
1539 nritems = btrfs_header_nritems(path->nodes[0]);
1540 if (path->slots[0] >= nritems) {
1541 ret = btrfs_next_leaf(root, path);
1542 if (ret)
1543 break;
1544 }
1545 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1546 path->slots[0]);
1547 if (found_key.objectid != dirid ||
1548 found_key.type != dir_key.type)
1549 goto next_type;
1550
1551 if (found_key.offset > range_end)
1552 break;
1553
1554 ret = check_item_in_log(trans, root, log, path,
1555 log_path, dir, &found_key);
1556 BUG_ON(ret);
1557 if (found_key.offset == (u64)-1)
1558 break;
1559 dir_key.offset = found_key.offset + 1;
1560 }
1561 btrfs_release_path(root, path);
1562 if (range_end == (u64)-1)
1563 break;
1564 range_start = range_end + 1;
1565 }
1566
1567next_type:
1568 ret = 0;
1569 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1570 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1571 dir_key.type = BTRFS_DIR_INDEX_KEY;
1572 btrfs_release_path(root, path);
1573 goto again;
1574 }
1575out:
1576 btrfs_release_path(root, path);
1577 btrfs_free_path(log_path);
1578 iput(dir);
1579 return ret;
1580}
1581
1582/*
1583 * the process_func used to replay items from the log tree. This
1584 * gets called in two different stages. The first stage just looks
1585 * for inodes and makes sure they are all copied into the subvolume.
1586 *
1587 * The second stage copies all the other item types from the log into
1588 * the subvolume. The two stage approach is slower, but gets rid of
1589 * lots of complexity around inodes referencing other inodes that exist
1590 * only in the log (references come from either directory items or inode
1591 * back refs).
1592 */
1593static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1594 struct walk_control *wc, u64 gen)
1595{
1596 int nritems;
1597 struct btrfs_path *path;
1598 struct btrfs_root *root = wc->replay_dest;
1599 struct btrfs_key key;
1600 u32 item_size;
1601 int level;
1602 int i;
1603 int ret;
1604
1605 btrfs_read_buffer(eb, gen);
1606
1607 level = btrfs_header_level(eb);
1608
1609 if (level != 0)
1610 return 0;
1611
1612 path = btrfs_alloc_path();
1613 BUG_ON(!path);
1614
1615 nritems = btrfs_header_nritems(eb);
1616 for (i = 0; i < nritems; i++) {
1617 btrfs_item_key_to_cpu(eb, &key, i);
1618 item_size = btrfs_item_size_nr(eb, i);
1619
1620 /* inode keys are done during the first stage */
1621 if (key.type == BTRFS_INODE_ITEM_KEY &&
1622 wc->stage == LOG_WALK_REPLAY_INODES) {
1623 struct inode *inode;
1624 struct btrfs_inode_item *inode_item;
1625 u32 mode;
1626
1627 inode_item = btrfs_item_ptr(eb, i,
1628 struct btrfs_inode_item);
1629 mode = btrfs_inode_mode(eb, inode_item);
1630 if (S_ISDIR(mode)) {
1631 ret = replay_dir_deletes(wc->trans,
1632 root, log, path, key.objectid);
1633 BUG_ON(ret);
1634 }
1635 ret = overwrite_item(wc->trans, root, path,
1636 eb, i, &key);
1637 BUG_ON(ret);
1638
1639 /* for regular files, truncate away
1640 * extents past the new EOF
1641 */
1642 if (S_ISREG(mode)) {
1643 inode = read_one_inode(root,
1644 key.objectid);
1645 BUG_ON(!inode);
1646
1647 ret = btrfs_truncate_inode_items(wc->trans,
1648 root, inode, inode->i_size,
1649 BTRFS_EXTENT_DATA_KEY);
1650 BUG_ON(ret);
1651 iput(inode);
1652 }
1653 ret = link_to_fixup_dir(wc->trans, root,
1654 path, key.objectid);
1655 BUG_ON(ret);
1656 }
1657 if (wc->stage < LOG_WALK_REPLAY_ALL)
1658 continue;
1659
1660 /* these keys are simply copied */
1661 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1662 ret = overwrite_item(wc->trans, root, path,
1663 eb, i, &key);
1664 BUG_ON(ret);
1665 } else if (key.type == BTRFS_INODE_REF_KEY) {
1666 ret = add_inode_ref(wc->trans, root, log, path,
1667 eb, i, &key);
1668 BUG_ON(ret && ret != -ENOENT);
1669 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1670 ret = replay_one_extent(wc->trans, root, path,
1671 eb, i, &key);
1672 BUG_ON(ret);
1673 } else if (key.type == BTRFS_CSUM_ITEM_KEY) {
1674 ret = replay_one_csum(wc->trans, root, path,
1675 eb, i, &key);
1676 BUG_ON(ret);
1677 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1678 key.type == BTRFS_DIR_INDEX_KEY) {
1679 ret = replay_one_dir_item(wc->trans, root, path,
1680 eb, i, &key);
1681 BUG_ON(ret);
1682 }
1683 }
1684 btrfs_free_path(path);
1685 return 0;
1686}
1687
1688static int noinline walk_down_log_tree(struct btrfs_trans_handle *trans,
1689 struct btrfs_root *root,
1690 struct btrfs_path *path, int *level,
1691 struct walk_control *wc)
1692{
1693 u64 root_owner;
1694 u64 root_gen;
1695 u64 bytenr;
1696 u64 ptr_gen;
1697 struct extent_buffer *next;
1698 struct extent_buffer *cur;
1699 struct extent_buffer *parent;
1700 u32 blocksize;
1701 int ret = 0;
1702
1703 WARN_ON(*level < 0);
1704 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1705
1706 while(*level > 0) {
1707 WARN_ON(*level < 0);
1708 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1709 cur = path->nodes[*level];
1710
1711 if (btrfs_header_level(cur) != *level)
1712 WARN_ON(1);
1713
1714 if (path->slots[*level] >=
1715 btrfs_header_nritems(cur))
1716 break;
1717
1718 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1719 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1720 blocksize = btrfs_level_size(root, *level - 1);
1721
1722 parent = path->nodes[*level];
1723 root_owner = btrfs_header_owner(parent);
1724 root_gen = btrfs_header_generation(parent);
1725
1726 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1727
1728 wc->process_func(root, next, wc, ptr_gen);
1729
1730 if (*level == 1) {
1731 path->slots[*level]++;
1732 if (wc->free) {
1733 btrfs_read_buffer(next, ptr_gen);
1734
1735 btrfs_tree_lock(next);
1736 clean_tree_block(trans, root, next);
1737 btrfs_wait_tree_block_writeback(next);
1738 btrfs_tree_unlock(next);
1739
1740 ret = btrfs_drop_leaf_ref(trans, root, next);
1741 BUG_ON(ret);
1742
1743 WARN_ON(root_owner !=
1744 BTRFS_TREE_LOG_OBJECTID);
d00aff00
CM
1745 ret = btrfs_free_reserved_extent(root,
1746 bytenr, blocksize);
e02119d5
CM
1747 BUG_ON(ret);
1748 }
1749 free_extent_buffer(next);
1750 continue;
1751 }
1752 btrfs_read_buffer(next, ptr_gen);
1753
1754 WARN_ON(*level <= 0);
1755 if (path->nodes[*level-1])
1756 free_extent_buffer(path->nodes[*level-1]);
1757 path->nodes[*level-1] = next;
1758 *level = btrfs_header_level(next);
1759 path->slots[*level] = 0;
1760 cond_resched();
1761 }
1762 WARN_ON(*level < 0);
1763 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1764
1765 if (path->nodes[*level] == root->node) {
1766 parent = path->nodes[*level];
1767 } else {
1768 parent = path->nodes[*level + 1];
1769 }
1770 bytenr = path->nodes[*level]->start;
1771
1772 blocksize = btrfs_level_size(root, *level);
1773 root_owner = btrfs_header_owner(parent);
1774 root_gen = btrfs_header_generation(parent);
1775
1776 wc->process_func(root, path->nodes[*level], wc,
1777 btrfs_header_generation(path->nodes[*level]));
1778
1779 if (wc->free) {
1780 next = path->nodes[*level];
1781 btrfs_tree_lock(next);
1782 clean_tree_block(trans, root, next);
1783 btrfs_wait_tree_block_writeback(next);
1784 btrfs_tree_unlock(next);
1785
1786 if (*level == 0) {
1787 ret = btrfs_drop_leaf_ref(trans, root, next);
1788 BUG_ON(ret);
1789 }
1790 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
d00aff00 1791 ret = btrfs_free_reserved_extent(root, bytenr, blocksize);
e02119d5
CM
1792 BUG_ON(ret);
1793 }
1794 free_extent_buffer(path->nodes[*level]);
1795 path->nodes[*level] = NULL;
1796 *level += 1;
1797
1798 cond_resched();
1799 return 0;
1800}
1801
1802static int noinline walk_up_log_tree(struct btrfs_trans_handle *trans,
1803 struct btrfs_root *root,
1804 struct btrfs_path *path, int *level,
1805 struct walk_control *wc)
1806{
1807 u64 root_owner;
1808 u64 root_gen;
1809 int i;
1810 int slot;
1811 int ret;
1812
1813 for(i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1814 slot = path->slots[i];
1815 if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
1816 struct extent_buffer *node;
1817 node = path->nodes[i];
1818 path->slots[i]++;
1819 *level = i;
1820 WARN_ON(*level == 0);
1821 return 0;
1822 } else {
31840ae1
ZY
1823 struct extent_buffer *parent;
1824 if (path->nodes[*level] == root->node)
1825 parent = path->nodes[*level];
1826 else
1827 parent = path->nodes[*level + 1];
1828
1829 root_owner = btrfs_header_owner(parent);
1830 root_gen = btrfs_header_generation(parent);
e02119d5
CM
1831 wc->process_func(root, path->nodes[*level], wc,
1832 btrfs_header_generation(path->nodes[*level]));
1833 if (wc->free) {
1834 struct extent_buffer *next;
1835
1836 next = path->nodes[*level];
1837
1838 btrfs_tree_lock(next);
1839 clean_tree_block(trans, root, next);
1840 btrfs_wait_tree_block_writeback(next);
1841 btrfs_tree_unlock(next);
1842
1843 if (*level == 0) {
1844 ret = btrfs_drop_leaf_ref(trans, root,
1845 next);
1846 BUG_ON(ret);
1847 }
1848
1849 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
d00aff00 1850 ret = btrfs_free_reserved_extent(root,
e02119d5 1851 path->nodes[*level]->start,
d00aff00 1852 path->nodes[*level]->len);
e02119d5
CM
1853 BUG_ON(ret);
1854 }
1855 free_extent_buffer(path->nodes[*level]);
1856 path->nodes[*level] = NULL;
1857 *level = i + 1;
1858 }
1859 }
1860 return 1;
1861}
1862
1863/*
1864 * drop the reference count on the tree rooted at 'snap'. This traverses
1865 * the tree freeing any blocks that have a ref count of zero after being
1866 * decremented.
1867 */
1868static int walk_log_tree(struct btrfs_trans_handle *trans,
1869 struct btrfs_root *log, struct walk_control *wc)
1870{
1871 int ret = 0;
1872 int wret;
1873 int level;
1874 struct btrfs_path *path;
1875 int i;
1876 int orig_level;
1877
1878 path = btrfs_alloc_path();
1879 BUG_ON(!path);
1880
1881 level = btrfs_header_level(log->node);
1882 orig_level = level;
1883 path->nodes[level] = log->node;
1884 extent_buffer_get(log->node);
1885 path->slots[level] = 0;
1886
1887 while(1) {
1888 wret = walk_down_log_tree(trans, log, path, &level, wc);
1889 if (wret > 0)
1890 break;
1891 if (wret < 0)
1892 ret = wret;
1893
1894 wret = walk_up_log_tree(trans, log, path, &level, wc);
1895 if (wret > 0)
1896 break;
1897 if (wret < 0)
1898 ret = wret;
1899 }
1900
1901 /* was the root node processed? if not, catch it here */
1902 if (path->nodes[orig_level]) {
1903 wc->process_func(log, path->nodes[orig_level], wc,
1904 btrfs_header_generation(path->nodes[orig_level]));
1905 if (wc->free) {
1906 struct extent_buffer *next;
1907
1908 next = path->nodes[orig_level];
1909
1910 btrfs_tree_lock(next);
1911 clean_tree_block(trans, log, next);
1912 btrfs_wait_tree_block_writeback(next);
1913 btrfs_tree_unlock(next);
1914
1915 if (orig_level == 0) {
1916 ret = btrfs_drop_leaf_ref(trans, log,
1917 next);
1918 BUG_ON(ret);
1919 }
1920 WARN_ON(log->root_key.objectid !=
1921 BTRFS_TREE_LOG_OBJECTID);
d00aff00
CM
1922 ret = btrfs_free_reserved_extent(log, next->start,
1923 next->len);
e02119d5
CM
1924 BUG_ON(ret);
1925 }
1926 }
1927
1928 for (i = 0; i <= orig_level; i++) {
1929 if (path->nodes[i]) {
1930 free_extent_buffer(path->nodes[i]);
1931 path->nodes[i] = NULL;
1932 }
1933 }
1934 btrfs_free_path(path);
1935 if (wc->free)
1936 free_extent_buffer(log->node);
1937 return ret;
1938}
1939
b2950863 1940static int wait_log_commit(struct btrfs_root *log)
e02119d5
CM
1941{
1942 DEFINE_WAIT(wait);
1943 u64 transid = log->fs_info->tree_log_transid;
1944
1945 do {
1946 prepare_to_wait(&log->fs_info->tree_log_wait, &wait,
1947 TASK_UNINTERRUPTIBLE);
1948 mutex_unlock(&log->fs_info->tree_log_mutex);
1949 if (atomic_read(&log->fs_info->tree_log_commit))
1950 schedule();
1951 finish_wait(&log->fs_info->tree_log_wait, &wait);
1952 mutex_lock(&log->fs_info->tree_log_mutex);
1953 } while(transid == log->fs_info->tree_log_transid &&
1954 atomic_read(&log->fs_info->tree_log_commit));
1955 return 0;
1956}
1957
1958/*
1959 * btrfs_sync_log does sends a given tree log down to the disk and
1960 * updates the super blocks to record it. When this call is done,
1961 * you know that any inodes previously logged are safely on disk
1962 */
1963int btrfs_sync_log(struct btrfs_trans_handle *trans,
1964 struct btrfs_root *root)
1965{
1966 int ret;
1967 unsigned long batch;
1968 struct btrfs_root *log = root->log_root;
e02119d5
CM
1969
1970 mutex_lock(&log->fs_info->tree_log_mutex);
1971 if (atomic_read(&log->fs_info->tree_log_commit)) {
1972 wait_log_commit(log);
1973 goto out;
1974 }
1975 atomic_set(&log->fs_info->tree_log_commit, 1);
1976
1977 while(1) {
49eb7e46 1978 batch = log->fs_info->tree_log_batch;
e02119d5
CM
1979 mutex_unlock(&log->fs_info->tree_log_mutex);
1980 schedule_timeout_uninterruptible(1);
1981 mutex_lock(&log->fs_info->tree_log_mutex);
e02119d5
CM
1982
1983 while(atomic_read(&log->fs_info->tree_log_writers)) {
1984 DEFINE_WAIT(wait);
1985 prepare_to_wait(&log->fs_info->tree_log_wait, &wait,
1986 TASK_UNINTERRUPTIBLE);
e02119d5
CM
1987 mutex_unlock(&log->fs_info->tree_log_mutex);
1988 if (atomic_read(&log->fs_info->tree_log_writers))
1989 schedule();
1990 mutex_lock(&log->fs_info->tree_log_mutex);
1991 finish_wait(&log->fs_info->tree_log_wait, &wait);
1992 }
1993 if (batch == log->fs_info->tree_log_batch)
1994 break;
1995 }
e02119d5 1996
d0c803c4 1997 ret = btrfs_write_and_wait_marked_extents(log, &log->dirty_log_pages);
e02119d5 1998 BUG_ON(ret);
d0c803c4
CM
1999 ret = btrfs_write_and_wait_marked_extents(root->fs_info->log_root_tree,
2000 &root->fs_info->log_root_tree->dirty_log_pages);
e02119d5
CM
2001 BUG_ON(ret);
2002
2003 btrfs_set_super_log_root(&root->fs_info->super_for_commit,
2004 log->fs_info->log_root_tree->node->start);
2005 btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
2006 btrfs_header_level(log->fs_info->log_root_tree->node));
2007
2008 write_ctree_super(trans, log->fs_info->tree_root);
2009 log->fs_info->tree_log_transid++;
2010 log->fs_info->tree_log_batch = 0;
2011 atomic_set(&log->fs_info->tree_log_commit, 0);
2012 smp_mb();
2013 if (waitqueue_active(&log->fs_info->tree_log_wait))
2014 wake_up(&log->fs_info->tree_log_wait);
2015out:
2016 mutex_unlock(&log->fs_info->tree_log_mutex);
2017 return 0;
2018
2019}
2020
3a5f1d45 2021/* * free all the extents used by the tree log. This should be called
e02119d5
CM
2022 * at commit time of the full transaction
2023 */
2024int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2025{
2026 int ret;
2027 struct btrfs_root *log;
2028 struct key;
d0c803c4
CM
2029 u64 start;
2030 u64 end;
e02119d5
CM
2031 struct walk_control wc = {
2032 .free = 1,
2033 .process_func = process_one_buffer
2034 };
2035
2036 if (!root->log_root)
2037 return 0;
2038
2039 log = root->log_root;
2040 ret = walk_log_tree(trans, log, &wc);
2041 BUG_ON(ret);
2042
d0c803c4
CM
2043 while(1) {
2044 ret = find_first_extent_bit(&log->dirty_log_pages,
2045 0, &start, &end, EXTENT_DIRTY);
2046 if (ret)
2047 break;
2048
2049 clear_extent_dirty(&log->dirty_log_pages,
2050 start, end, GFP_NOFS);
2051 }
2052
e02119d5
CM
2053 log = root->log_root;
2054 ret = btrfs_del_root(trans, root->fs_info->log_root_tree,
2055 &log->root_key);
2056 BUG_ON(ret);
2057 root->log_root = NULL;
2058 kfree(root->log_root);
2059 return 0;
2060}
2061
2062/*
2063 * helper function to update the item for a given subvolumes log root
2064 * in the tree of log roots
2065 */
2066static int update_log_root(struct btrfs_trans_handle *trans,
2067 struct btrfs_root *log)
2068{
2069 u64 bytenr = btrfs_root_bytenr(&log->root_item);
2070 int ret;
2071
2072 if (log->node->start == bytenr)
2073 return 0;
2074
2075 btrfs_set_root_bytenr(&log->root_item, log->node->start);
84234f3a 2076 btrfs_set_root_generation(&log->root_item, trans->transid);
e02119d5
CM
2077 btrfs_set_root_level(&log->root_item, btrfs_header_level(log->node));
2078 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2079 &log->root_key, &log->root_item);
2080 BUG_ON(ret);
2081 return ret;
2082}
2083
2084/*
2085 * If both a file and directory are logged, and unlinks or renames are
2086 * mixed in, we have a few interesting corners:
2087 *
2088 * create file X in dir Y
2089 * link file X to X.link in dir Y
2090 * fsync file X
2091 * unlink file X but leave X.link
2092 * fsync dir Y
2093 *
2094 * After a crash we would expect only X.link to exist. But file X
2095 * didn't get fsync'd again so the log has back refs for X and X.link.
2096 *
2097 * We solve this by removing directory entries and inode backrefs from the
2098 * log when a file that was logged in the current transaction is
2099 * unlinked. Any later fsync will include the updated log entries, and
2100 * we'll be able to reconstruct the proper directory items from backrefs.
2101 *
2102 * This optimizations allows us to avoid relogging the entire inode
2103 * or the entire directory.
2104 */
2105int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2106 struct btrfs_root *root,
2107 const char *name, int name_len,
2108 struct inode *dir, u64 index)
2109{
2110 struct btrfs_root *log;
2111 struct btrfs_dir_item *di;
2112 struct btrfs_path *path;
2113 int ret;
2114 int bytes_del = 0;
2115
3a5f1d45
CM
2116 if (BTRFS_I(dir)->logged_trans < trans->transid)
2117 return 0;
2118
e02119d5
CM
2119 ret = join_running_log_trans(root);
2120 if (ret)
2121 return 0;
2122
2123 mutex_lock(&BTRFS_I(dir)->log_mutex);
2124
2125 log = root->log_root;
2126 path = btrfs_alloc_path();
2127 di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2128 name, name_len, -1);
2129 if (di && !IS_ERR(di)) {
2130 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2131 bytes_del += name_len;
2132 BUG_ON(ret);
2133 }
2134 btrfs_release_path(log, path);
2135 di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2136 index, name, name_len, -1);
2137 if (di && !IS_ERR(di)) {
2138 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2139 bytes_del += name_len;
2140 BUG_ON(ret);
2141 }
2142
2143 /* update the directory size in the log to reflect the names
2144 * we have removed
2145 */
2146 if (bytes_del) {
2147 struct btrfs_key key;
2148
2149 key.objectid = dir->i_ino;
2150 key.offset = 0;
2151 key.type = BTRFS_INODE_ITEM_KEY;
2152 btrfs_release_path(log, path);
2153
2154 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2155 if (ret == 0) {
2156 struct btrfs_inode_item *item;
2157 u64 i_size;
2158
2159 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2160 struct btrfs_inode_item);
2161 i_size = btrfs_inode_size(path->nodes[0], item);
2162 if (i_size > bytes_del)
2163 i_size -= bytes_del;
2164 else
2165 i_size = 0;
2166 btrfs_set_inode_size(path->nodes[0], item, i_size);
2167 btrfs_mark_buffer_dirty(path->nodes[0]);
2168 } else
2169 ret = 0;
2170 btrfs_release_path(log, path);
2171 }
2172
2173 btrfs_free_path(path);
2174 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2175 end_log_trans(root);
2176
2177 return 0;
2178}
2179
2180/* see comments for btrfs_del_dir_entries_in_log */
2181int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2182 struct btrfs_root *root,
2183 const char *name, int name_len,
2184 struct inode *inode, u64 dirid)
2185{
2186 struct btrfs_root *log;
2187 u64 index;
2188 int ret;
2189
3a5f1d45
CM
2190 if (BTRFS_I(inode)->logged_trans < trans->transid)
2191 return 0;
2192
e02119d5
CM
2193 ret = join_running_log_trans(root);
2194 if (ret)
2195 return 0;
2196 log = root->log_root;
2197 mutex_lock(&BTRFS_I(inode)->log_mutex);
2198
2199 ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2200 dirid, &index);
2201 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2202 end_log_trans(root);
2203
e02119d5
CM
2204 return ret;
2205}
2206
2207/*
2208 * creates a range item in the log for 'dirid'. first_offset and
2209 * last_offset tell us which parts of the key space the log should
2210 * be considered authoritative for.
2211 */
2212static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2213 struct btrfs_root *log,
2214 struct btrfs_path *path,
2215 int key_type, u64 dirid,
2216 u64 first_offset, u64 last_offset)
2217{
2218 int ret;
2219 struct btrfs_key key;
2220 struct btrfs_dir_log_item *item;
2221
2222 key.objectid = dirid;
2223 key.offset = first_offset;
2224 if (key_type == BTRFS_DIR_ITEM_KEY)
2225 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2226 else
2227 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2228 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2229 BUG_ON(ret);
2230
2231 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2232 struct btrfs_dir_log_item);
2233 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2234 btrfs_mark_buffer_dirty(path->nodes[0]);
2235 btrfs_release_path(log, path);
2236 return 0;
2237}
2238
2239/*
2240 * log all the items included in the current transaction for a given
2241 * directory. This also creates the range items in the log tree required
2242 * to replay anything deleted before the fsync
2243 */
2244static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2245 struct btrfs_root *root, struct inode *inode,
2246 struct btrfs_path *path,
2247 struct btrfs_path *dst_path, int key_type,
2248 u64 min_offset, u64 *last_offset_ret)
2249{
2250 struct btrfs_key min_key;
2251 struct btrfs_key max_key;
2252 struct btrfs_root *log = root->log_root;
2253 struct extent_buffer *src;
2254 int ret;
2255 int i;
2256 int nritems;
2257 u64 first_offset = min_offset;
2258 u64 last_offset = (u64)-1;
2259
2260 log = root->log_root;
2261 max_key.objectid = inode->i_ino;
2262 max_key.offset = (u64)-1;
2263 max_key.type = key_type;
2264
2265 min_key.objectid = inode->i_ino;
2266 min_key.type = key_type;
2267 min_key.offset = min_offset;
2268
2269 path->keep_locks = 1;
2270
2271 ret = btrfs_search_forward(root, &min_key, &max_key,
2272 path, 0, trans->transid);
2273
2274 /*
2275 * we didn't find anything from this transaction, see if there
2276 * is anything at all
2277 */
2278 if (ret != 0 || min_key.objectid != inode->i_ino ||
2279 min_key.type != key_type) {
2280 min_key.objectid = inode->i_ino;
2281 min_key.type = key_type;
2282 min_key.offset = (u64)-1;
2283 btrfs_release_path(root, path);
2284 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2285 if (ret < 0) {
2286 btrfs_release_path(root, path);
2287 return ret;
2288 }
2289 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2290
2291 /* if ret == 0 there are items for this type,
2292 * create a range to tell us the last key of this type.
2293 * otherwise, there are no items in this directory after
2294 * *min_offset, and we create a range to indicate that.
2295 */
2296 if (ret == 0) {
2297 struct btrfs_key tmp;
2298 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2299 path->slots[0]);
2300 if (key_type == tmp.type) {
2301 first_offset = max(min_offset, tmp.offset) + 1;
2302 }
2303 }
2304 goto done;
2305 }
2306
2307 /* go backward to find any previous key */
2308 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2309 if (ret == 0) {
2310 struct btrfs_key tmp;
2311 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2312 if (key_type == tmp.type) {
2313 first_offset = tmp.offset;
2314 ret = overwrite_item(trans, log, dst_path,
2315 path->nodes[0], path->slots[0],
2316 &tmp);
2317 }
2318 }
2319 btrfs_release_path(root, path);
2320
2321 /* find the first key from this transaction again */
2322 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2323 if (ret != 0) {
2324 WARN_ON(1);
2325 goto done;
2326 }
2327
2328 /*
2329 * we have a block from this transaction, log every item in it
2330 * from our directory
2331 */
2332 while(1) {
2333 struct btrfs_key tmp;
2334 src = path->nodes[0];
2335 nritems = btrfs_header_nritems(src);
2336 for (i = path->slots[0]; i < nritems; i++) {
2337 btrfs_item_key_to_cpu(src, &min_key, i);
2338
2339 if (min_key.objectid != inode->i_ino ||
2340 min_key.type != key_type)
2341 goto done;
2342 ret = overwrite_item(trans, log, dst_path, src, i,
2343 &min_key);
2344 BUG_ON(ret);
2345 }
2346 path->slots[0] = nritems;
2347
2348 /*
2349 * look ahead to the next item and see if it is also
2350 * from this directory and from this transaction
2351 */
2352 ret = btrfs_next_leaf(root, path);
2353 if (ret == 1) {
2354 last_offset = (u64)-1;
2355 goto done;
2356 }
2357 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2358 if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2359 last_offset = (u64)-1;
2360 goto done;
2361 }
2362 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2363 ret = overwrite_item(trans, log, dst_path,
2364 path->nodes[0], path->slots[0],
2365 &tmp);
2366
2367 BUG_ON(ret);
2368 last_offset = tmp.offset;
2369 goto done;
2370 }
2371 }
2372done:
2373 *last_offset_ret = last_offset;
2374 btrfs_release_path(root, path);
2375 btrfs_release_path(log, dst_path);
2376
2377 /* insert the log range keys to indicate where the log is valid */
2378 ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino,
2379 first_offset, last_offset);
2380 BUG_ON(ret);
2381 return 0;
2382}
2383
2384/*
2385 * logging directories is very similar to logging inodes, We find all the items
2386 * from the current transaction and write them to the log.
2387 *
2388 * The recovery code scans the directory in the subvolume, and if it finds a
2389 * key in the range logged that is not present in the log tree, then it means
2390 * that dir entry was unlinked during the transaction.
2391 *
2392 * In order for that scan to work, we must include one key smaller than
2393 * the smallest logged by this transaction and one key larger than the largest
2394 * key logged by this transaction.
2395 */
2396static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2397 struct btrfs_root *root, struct inode *inode,
2398 struct btrfs_path *path,
2399 struct btrfs_path *dst_path)
2400{
2401 u64 min_key;
2402 u64 max_key;
2403 int ret;
2404 int key_type = BTRFS_DIR_ITEM_KEY;
2405
2406again:
2407 min_key = 0;
2408 max_key = 0;
2409 while(1) {
2410 ret = log_dir_items(trans, root, inode, path,
2411 dst_path, key_type, min_key,
2412 &max_key);
2413 BUG_ON(ret);
2414 if (max_key == (u64)-1)
2415 break;
2416 min_key = max_key + 1;
2417 }
2418
2419 if (key_type == BTRFS_DIR_ITEM_KEY) {
2420 key_type = BTRFS_DIR_INDEX_KEY;
2421 goto again;
2422 }
2423 return 0;
2424}
2425
2426/*
2427 * a helper function to drop items from the log before we relog an
2428 * inode. max_key_type indicates the highest item type to remove.
2429 * This cannot be run for file data extents because it does not
2430 * free the extents they point to.
2431 */
2432static int drop_objectid_items(struct btrfs_trans_handle *trans,
2433 struct btrfs_root *log,
2434 struct btrfs_path *path,
2435 u64 objectid, int max_key_type)
2436{
2437 int ret;
2438 struct btrfs_key key;
2439 struct btrfs_key found_key;
2440
2441 key.objectid = objectid;
2442 key.type = max_key_type;
2443 key.offset = (u64)-1;
2444
2445 while(1) {
2446 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2447
2448 if (ret != 1)
2449 break;
2450
2451 if (path->slots[0] == 0)
2452 break;
2453
2454 path->slots[0]--;
2455 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2456 path->slots[0]);
2457
2458 if (found_key.objectid != objectid)
2459 break;
2460
2461 ret = btrfs_del_item(trans, log, path);
2462 BUG_ON(ret);
2463 btrfs_release_path(log, path);
2464 }
2465 btrfs_release_path(log, path);
2466 return 0;
2467}
2468
31ff1cd2
CM
2469static noinline int copy_items(struct btrfs_trans_handle *trans,
2470 struct btrfs_root *log,
2471 struct btrfs_path *dst_path,
2472 struct extent_buffer *src,
2473 int start_slot, int nr, int inode_only)
2474{
2475 unsigned long src_offset;
2476 unsigned long dst_offset;
2477 struct btrfs_file_extent_item *extent;
2478 struct btrfs_inode_item *inode_item;
2479 int ret;
2480 struct btrfs_key *ins_keys;
2481 u32 *ins_sizes;
2482 char *ins_data;
2483 int i;
2484
2485 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2486 nr * sizeof(u32), GFP_NOFS);
2487 ins_sizes = (u32 *)ins_data;
2488 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2489
2490 for (i = 0; i < nr; i++) {
2491 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2492 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2493 }
2494 ret = btrfs_insert_empty_items(trans, log, dst_path,
2495 ins_keys, ins_sizes, nr);
2496 BUG_ON(ret);
2497
2498 for (i = 0; i < nr; i++) {
2499 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2500 dst_path->slots[0]);
2501
2502 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2503
2504 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2505 src_offset, ins_sizes[i]);
2506
2507 if (inode_only == LOG_INODE_EXISTS &&
2508 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2509 inode_item = btrfs_item_ptr(dst_path->nodes[0],
2510 dst_path->slots[0],
2511 struct btrfs_inode_item);
2512 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2513
2514 /* set the generation to zero so the recover code
2515 * can tell the difference between an logging
2516 * just to say 'this inode exists' and a logging
2517 * to say 'update this inode with these values'
2518 */
2519 btrfs_set_inode_generation(dst_path->nodes[0],
2520 inode_item, 0);
2521 }
2522 /* take a reference on file data extents so that truncates
2523 * or deletes of this inode don't have to relog the inode
2524 * again
2525 */
2526 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2527 int found_type;
2528 extent = btrfs_item_ptr(src, start_slot + i,
2529 struct btrfs_file_extent_item);
2530
2531 found_type = btrfs_file_extent_type(src, extent);
d899e052
YZ
2532 if (found_type == BTRFS_FILE_EXTENT_REG ||
2533 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
31ff1cd2
CM
2534 u64 ds = btrfs_file_extent_disk_bytenr(src,
2535 extent);
2536 u64 dl = btrfs_file_extent_disk_num_bytes(src,
2537 extent);
2538 /* ds == 0 is a hole */
2539 if (ds != 0) {
2540 ret = btrfs_inc_extent_ref(trans, log,
2541 ds, dl,
31840ae1 2542 dst_path->nodes[0]->start,
31ff1cd2 2543 BTRFS_TREE_LOG_OBJECTID,
31840ae1 2544 trans->transid,
3bb1a1bc 2545 ins_keys[i].objectid);
31ff1cd2
CM
2546 BUG_ON(ret);
2547 }
2548 }
2549 }
2550 dst_path->slots[0]++;
2551 }
2552
2553 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2554 btrfs_release_path(log, dst_path);
2555 kfree(ins_data);
2556 return 0;
2557}
2558
e02119d5
CM
2559/* log a single inode in the tree log.
2560 * At least one parent directory for this inode must exist in the tree
2561 * or be logged already.
2562 *
2563 * Any items from this inode changed by the current transaction are copied
2564 * to the log tree. An extra reference is taken on any extents in this
2565 * file, allowing us to avoid a whole pile of corner cases around logging
2566 * blocks that have been removed from the tree.
2567 *
2568 * See LOG_INODE_ALL and related defines for a description of what inode_only
2569 * does.
2570 *
2571 * This handles both files and directories.
2572 */
2573static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
2574 struct btrfs_root *root, struct inode *inode,
2575 int inode_only)
2576{
2577 struct btrfs_path *path;
2578 struct btrfs_path *dst_path;
2579 struct btrfs_key min_key;
2580 struct btrfs_key max_key;
2581 struct btrfs_root *log = root->log_root;
31ff1cd2 2582 struct extent_buffer *src = NULL;
e02119d5
CM
2583 u32 size;
2584 int ret;
3a5f1d45 2585 int nritems;
31ff1cd2
CM
2586 int ins_start_slot = 0;
2587 int ins_nr;
e02119d5
CM
2588
2589 log = root->log_root;
2590
2591 path = btrfs_alloc_path();
2592 dst_path = btrfs_alloc_path();
2593
2594 min_key.objectid = inode->i_ino;
2595 min_key.type = BTRFS_INODE_ITEM_KEY;
2596 min_key.offset = 0;
2597
2598 max_key.objectid = inode->i_ino;
2599 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2600 max_key.type = BTRFS_XATTR_ITEM_KEY;
2601 else
2602 max_key.type = (u8)-1;
2603 max_key.offset = (u64)-1;
2604
2605 /*
2606 * if this inode has already been logged and we're in inode_only
2607 * mode, we don't want to delete the things that have already
2608 * been written to the log.
2609 *
2610 * But, if the inode has been through an inode_only log,
2611 * the logged_trans field is not set. This allows us to catch
2612 * any new names for this inode in the backrefs by logging it
2613 * again
2614 */
2615 if (inode_only == LOG_INODE_EXISTS &&
2616 BTRFS_I(inode)->logged_trans == trans->transid) {
2617 btrfs_free_path(path);
2618 btrfs_free_path(dst_path);
2619 goto out;
2620 }
2621 mutex_lock(&BTRFS_I(inode)->log_mutex);
2622
2623 /*
2624 * a brute force approach to making sure we get the most uptodate
2625 * copies of everything.
2626 */
2627 if (S_ISDIR(inode->i_mode)) {
2628 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2629
2630 if (inode_only == LOG_INODE_EXISTS)
2631 max_key_type = BTRFS_XATTR_ITEM_KEY;
2632 ret = drop_objectid_items(trans, log, path,
2633 inode->i_ino, max_key_type);
2634 } else {
2635 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2636 }
2637 BUG_ON(ret);
2638 path->keep_locks = 1;
2639
2640 while(1) {
31ff1cd2 2641 ins_nr = 0;
e02119d5
CM
2642 ret = btrfs_search_forward(root, &min_key, &max_key,
2643 path, 0, trans->transid);
2644 if (ret != 0)
2645 break;
3a5f1d45 2646again:
31ff1cd2 2647 /* note, ins_nr might be > 0 here, cleanup outside the loop */
e02119d5
CM
2648 if (min_key.objectid != inode->i_ino)
2649 break;
2650 if (min_key.type > max_key.type)
2651 break;
31ff1cd2 2652
e02119d5
CM
2653 src = path->nodes[0];
2654 size = btrfs_item_size_nr(src, path->slots[0]);
31ff1cd2
CM
2655 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2656 ins_nr++;
2657 goto next_slot;
2658 } else if (!ins_nr) {
2659 ins_start_slot = path->slots[0];
2660 ins_nr = 1;
2661 goto next_slot;
e02119d5
CM
2662 }
2663
31ff1cd2
CM
2664 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2665 ins_nr, inode_only);
2666 BUG_ON(ret);
2667 ins_nr = 1;
2668 ins_start_slot = path->slots[0];
2669next_slot:
e02119d5 2670
3a5f1d45
CM
2671 nritems = btrfs_header_nritems(path->nodes[0]);
2672 path->slots[0]++;
2673 if (path->slots[0] < nritems) {
2674 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2675 path->slots[0]);
2676 goto again;
2677 }
31ff1cd2
CM
2678 if (ins_nr) {
2679 ret = copy_items(trans, log, dst_path, src,
2680 ins_start_slot,
2681 ins_nr, inode_only);
2682 BUG_ON(ret);
2683 ins_nr = 0;
2684 }
3a5f1d45
CM
2685 btrfs_release_path(root, path);
2686
e02119d5
CM
2687 if (min_key.offset < (u64)-1)
2688 min_key.offset++;
2689 else if (min_key.type < (u8)-1)
2690 min_key.type++;
2691 else if (min_key.objectid < (u64)-1)
2692 min_key.objectid++;
2693 else
2694 break;
2695 }
31ff1cd2
CM
2696 if (ins_nr) {
2697 ret = copy_items(trans, log, dst_path, src,
2698 ins_start_slot,
2699 ins_nr, inode_only);
2700 BUG_ON(ret);
2701 ins_nr = 0;
2702 }
2703 WARN_ON(ins_nr);
9623f9a3 2704 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
e02119d5
CM
2705 btrfs_release_path(root, path);
2706 btrfs_release_path(log, dst_path);
49eb7e46 2707 BTRFS_I(inode)->log_dirty_trans = 0;
e02119d5
CM
2708 ret = log_directory_changes(trans, root, inode, path, dst_path);
2709 BUG_ON(ret);
2710 }
3a5f1d45 2711 BTRFS_I(inode)->logged_trans = trans->transid;
e02119d5
CM
2712 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2713
2714 btrfs_free_path(path);
2715 btrfs_free_path(dst_path);
2716
2717 mutex_lock(&root->fs_info->tree_log_mutex);
2718 ret = update_log_root(trans, log);
2719 BUG_ON(ret);
2720 mutex_unlock(&root->fs_info->tree_log_mutex);
2721out:
2722 return 0;
2723}
2724
2725int btrfs_log_inode(struct btrfs_trans_handle *trans,
2726 struct btrfs_root *root, struct inode *inode,
2727 int inode_only)
2728{
2729 int ret;
2730
2731 start_log_trans(trans, root);
2732 ret = __btrfs_log_inode(trans, root, inode, inode_only);
2733 end_log_trans(root);
2734 return ret;
2735}
2736
2737/*
2738 * helper function around btrfs_log_inode to make sure newly created
2739 * parent directories also end up in the log. A minimal inode and backref
2740 * only logging is done of any parent directories that are older than
2741 * the last committed transaction
2742 */
2743int btrfs_log_dentry(struct btrfs_trans_handle *trans,
2744 struct btrfs_root *root, struct dentry *dentry)
2745{
2746 int inode_only = LOG_INODE_ALL;
2747 struct super_block *sb;
2748 int ret;
2749
2750 start_log_trans(trans, root);
2751 sb = dentry->d_inode->i_sb;
2752 while(1) {
2753 ret = __btrfs_log_inode(trans, root, dentry->d_inode,
2754 inode_only);
2755 BUG_ON(ret);
2756 inode_only = LOG_INODE_EXISTS;
2757
2758 dentry = dentry->d_parent;
2759 if (!dentry || !dentry->d_inode || sb != dentry->d_inode->i_sb)
2760 break;
2761
2762 if (BTRFS_I(dentry->d_inode)->generation <=
2763 root->fs_info->last_trans_committed)
2764 break;
2765 }
2766 end_log_trans(root);
2767 return 0;
2768}
2769
2770/*
2771 * it is not safe to log dentry if the chunk root has added new
2772 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
2773 * If this returns 1, you must commit the transaction to safely get your
2774 * data on disk.
2775 */
2776int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
2777 struct btrfs_root *root, struct dentry *dentry)
2778{
2779 u64 gen;
2780 gen = root->fs_info->last_trans_new_blockgroup;
2781 if (gen > root->fs_info->last_trans_committed)
2782 return 1;
2783 else
2784 return btrfs_log_dentry(trans, root, dentry);
2785}
2786
2787/*
2788 * should be called during mount to recover any replay any log trees
2789 * from the FS
2790 */
2791int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
2792{
2793 int ret;
2794 struct btrfs_path *path;
2795 struct btrfs_trans_handle *trans;
2796 struct btrfs_key key;
2797 struct btrfs_key found_key;
2798 struct btrfs_key tmp_key;
2799 struct btrfs_root *log;
2800 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
8d5bf1cb 2801 u64 highest_inode;
e02119d5
CM
2802 struct walk_control wc = {
2803 .process_func = process_one_buffer,
2804 .stage = 0,
2805 };
2806
2807 fs_info->log_root_recovering = 1;
2808 path = btrfs_alloc_path();
2809 BUG_ON(!path);
2810
2811 trans = btrfs_start_transaction(fs_info->tree_root, 1);
2812
2813 wc.trans = trans;
2814 wc.pin = 1;
2815
2816 walk_log_tree(trans, log_root_tree, &wc);
2817
2818again:
2819 key.objectid = BTRFS_TREE_LOG_OBJECTID;
2820 key.offset = (u64)-1;
2821 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
2822
2823 while(1) {
2824 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
2825 if (ret < 0)
2826 break;
2827 if (ret > 0) {
2828 if (path->slots[0] == 0)
2829 break;
2830 path->slots[0]--;
2831 }
2832 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2833 path->slots[0]);
2834 btrfs_release_path(log_root_tree, path);
2835 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
2836 break;
2837
2838 log = btrfs_read_fs_root_no_radix(log_root_tree,
2839 &found_key);
2840 BUG_ON(!log);
2841
2842
2843 tmp_key.objectid = found_key.offset;
2844 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
2845 tmp_key.offset = (u64)-1;
2846
2847 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
2848
2849 BUG_ON(!wc.replay_dest);
2850
2851 btrfs_record_root_in_trans(wc.replay_dest);
2852 ret = walk_log_tree(trans, log, &wc);
2853 BUG_ON(ret);
2854
2855 if (wc.stage == LOG_WALK_REPLAY_ALL) {
2856 ret = fixup_inode_link_counts(trans, wc.replay_dest,
2857 path);
2858 BUG_ON(ret);
2859 }
8d5bf1cb
CM
2860 ret = btrfs_find_highest_inode(wc.replay_dest, &highest_inode);
2861 if (ret == 0) {
2862 wc.replay_dest->highest_inode = highest_inode;
2863 wc.replay_dest->last_inode_alloc = highest_inode;
2864 }
e02119d5
CM
2865
2866 key.offset = found_key.offset - 1;
2867 free_extent_buffer(log->node);
2868 kfree(log);
2869
2870 if (found_key.offset == 0)
2871 break;
2872 }
2873 btrfs_release_path(log_root_tree, path);
2874
2875 /* step one is to pin it all, step two is to replay just inodes */
2876 if (wc.pin) {
2877 wc.pin = 0;
2878 wc.process_func = replay_one_buffer;
2879 wc.stage = LOG_WALK_REPLAY_INODES;
2880 goto again;
2881 }
2882 /* step three is to replay everything */
2883 if (wc.stage < LOG_WALK_REPLAY_ALL) {
2884 wc.stage++;
2885 goto again;
2886 }
2887
2888 btrfs_free_path(path);
2889
2890 free_extent_buffer(log_root_tree->node);
2891 log_root_tree->log_root = NULL;
2892 fs_info->log_root_recovering = 0;
2893
2894 /* step 4: commit the transaction, which also unpins the blocks */
2895 btrfs_commit_transaction(trans, fs_info->tree_root);
2896
2897 kfree(log_root_tree);
2898 return 0;
2899}
This page took 0.175973 seconds and 5 git commands to generate.