Btrfs: fix the race between remove dev and alloc chunk
[deliverable/linux.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
593060d7 26#include <asm/div64.h>
4b4e25f2 27#include "compat.h"
0b86a832
CM
28#include "ctree.h"
29#include "extent_map.h"
30#include "disk-io.h"
31#include "transaction.h"
32#include "print-tree.h"
33#include "volumes.h"
8b712842 34#include "async-thread.h"
0b86a832 35
2b82032c
YZ
36static int init_first_rw_device(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct btrfs_device *device);
39static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
40
593060d7 41#define map_lookup_size(n) (sizeof(struct map_lookup) + \
cea9e445 42 (sizeof(struct btrfs_bio_stripe) * (n)))
593060d7 43
8a4b83cc
CM
44static DEFINE_MUTEX(uuid_mutex);
45static LIST_HEAD(fs_uuids);
46
a061fc8d
CM
47void btrfs_lock_volumes(void)
48{
49 mutex_lock(&uuid_mutex);
50}
51
52void btrfs_unlock_volumes(void)
53{
54 mutex_unlock(&uuid_mutex);
55}
56
7d9eb12c
CM
57static void lock_chunks(struct btrfs_root *root)
58{
7d9eb12c
CM
59 mutex_lock(&root->fs_info->chunk_mutex);
60}
61
62static void unlock_chunks(struct btrfs_root *root)
63{
7d9eb12c
CM
64 mutex_unlock(&root->fs_info->chunk_mutex);
65}
66
e4404d6e
YZ
67static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
68{
69 struct btrfs_device *device;
70 WARN_ON(fs_devices->opened);
71 while (!list_empty(&fs_devices->devices)) {
72 device = list_entry(fs_devices->devices.next,
73 struct btrfs_device, dev_list);
74 list_del(&device->dev_list);
75 kfree(device->name);
76 kfree(device);
77 }
78 kfree(fs_devices);
79}
80
8a4b83cc
CM
81int btrfs_cleanup_fs_uuids(void)
82{
83 struct btrfs_fs_devices *fs_devices;
8a4b83cc 84
2b82032c
YZ
85 while (!list_empty(&fs_uuids)) {
86 fs_devices = list_entry(fs_uuids.next,
87 struct btrfs_fs_devices, list);
88 list_del(&fs_devices->list);
e4404d6e 89 free_fs_devices(fs_devices);
8a4b83cc
CM
90 }
91 return 0;
92}
93
a1b32a59
CM
94static noinline struct btrfs_device *__find_device(struct list_head *head,
95 u64 devid, u8 *uuid)
8a4b83cc
CM
96{
97 struct btrfs_device *dev;
8a4b83cc 98
c6e30871 99 list_for_each_entry(dev, head, dev_list) {
a443755f 100 if (dev->devid == devid &&
8f18cf13 101 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 102 return dev;
a443755f 103 }
8a4b83cc
CM
104 }
105 return NULL;
106}
107
a1b32a59 108static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 109{
8a4b83cc
CM
110 struct btrfs_fs_devices *fs_devices;
111
c6e30871 112 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
113 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
114 return fs_devices;
115 }
116 return NULL;
117}
118
ffbd517d
CM
119static void requeue_list(struct btrfs_pending_bios *pending_bios,
120 struct bio *head, struct bio *tail)
121{
122
123 struct bio *old_head;
124
125 old_head = pending_bios->head;
126 pending_bios->head = head;
127 if (pending_bios->tail)
128 tail->bi_next = old_head;
129 else
130 pending_bios->tail = tail;
131}
132
8b712842
CM
133/*
134 * we try to collect pending bios for a device so we don't get a large
135 * number of procs sending bios down to the same device. This greatly
136 * improves the schedulers ability to collect and merge the bios.
137 *
138 * But, it also turns into a long list of bios to process and that is sure
139 * to eventually make the worker thread block. The solution here is to
140 * make some progress and then put this work struct back at the end of
141 * the list if the block device is congested. This way, multiple devices
142 * can make progress from a single worker thread.
143 */
d397712b 144static noinline int run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
145{
146 struct bio *pending;
147 struct backing_dev_info *bdi;
b64a2851 148 struct btrfs_fs_info *fs_info;
ffbd517d 149 struct btrfs_pending_bios *pending_bios;
8b712842
CM
150 struct bio *tail;
151 struct bio *cur;
152 int again = 0;
ffbd517d 153 unsigned long num_run;
d644d8a1 154 unsigned long batch_run = 0;
b64a2851 155 unsigned long limit;
b765ead5 156 unsigned long last_waited = 0;
d84275c9 157 int force_reg = 0;
211588ad
CM
158 struct blk_plug plug;
159
160 /*
161 * this function runs all the bios we've collected for
162 * a particular device. We don't want to wander off to
163 * another device without first sending all of these down.
164 * So, setup a plug here and finish it off before we return
165 */
166 blk_start_plug(&plug);
8b712842 167
bedf762b 168 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
169 fs_info = device->dev_root->fs_info;
170 limit = btrfs_async_submit_limit(fs_info);
171 limit = limit * 2 / 3;
172
8b712842
CM
173loop:
174 spin_lock(&device->io_lock);
175
a6837051 176loop_lock:
d84275c9 177 num_run = 0;
ffbd517d 178
8b712842
CM
179 /* take all the bios off the list at once and process them
180 * later on (without the lock held). But, remember the
181 * tail and other pointers so the bios can be properly reinserted
182 * into the list if we hit congestion
183 */
d84275c9 184 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 185 pending_bios = &device->pending_sync_bios;
d84275c9
CM
186 force_reg = 1;
187 } else {
ffbd517d 188 pending_bios = &device->pending_bios;
d84275c9
CM
189 force_reg = 0;
190 }
ffbd517d
CM
191
192 pending = pending_bios->head;
193 tail = pending_bios->tail;
8b712842 194 WARN_ON(pending && !tail);
8b712842
CM
195
196 /*
197 * if pending was null this time around, no bios need processing
198 * at all and we can stop. Otherwise it'll loop back up again
199 * and do an additional check so no bios are missed.
200 *
201 * device->running_pending is used to synchronize with the
202 * schedule_bio code.
203 */
ffbd517d
CM
204 if (device->pending_sync_bios.head == NULL &&
205 device->pending_bios.head == NULL) {
8b712842
CM
206 again = 0;
207 device->running_pending = 0;
ffbd517d
CM
208 } else {
209 again = 1;
210 device->running_pending = 1;
8b712842 211 }
ffbd517d
CM
212
213 pending_bios->head = NULL;
214 pending_bios->tail = NULL;
215
8b712842
CM
216 spin_unlock(&device->io_lock);
217
d397712b 218 while (pending) {
ffbd517d
CM
219
220 rmb();
d84275c9
CM
221 /* we want to work on both lists, but do more bios on the
222 * sync list than the regular list
223 */
224 if ((num_run > 32 &&
225 pending_bios != &device->pending_sync_bios &&
226 device->pending_sync_bios.head) ||
227 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
228 device->pending_bios.head)) {
ffbd517d
CM
229 spin_lock(&device->io_lock);
230 requeue_list(pending_bios, pending, tail);
231 goto loop_lock;
232 }
233
8b712842
CM
234 cur = pending;
235 pending = pending->bi_next;
236 cur->bi_next = NULL;
b64a2851
CM
237 atomic_dec(&fs_info->nr_async_bios);
238
239 if (atomic_read(&fs_info->nr_async_bios) < limit &&
240 waitqueue_active(&fs_info->async_submit_wait))
241 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
242
243 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 244
5ff7ba3a
CM
245 submit_bio(cur->bi_rw, cur);
246 num_run++;
247 batch_run++;
7eaceacc 248 if (need_resched())
ffbd517d 249 cond_resched();
8b712842
CM
250
251 /*
252 * we made progress, there is more work to do and the bdi
253 * is now congested. Back off and let other work structs
254 * run instead
255 */
57fd5a5f 256 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 257 fs_info->fs_devices->open_devices > 1) {
b765ead5 258 struct io_context *ioc;
8b712842 259
b765ead5
CM
260 ioc = current->io_context;
261
262 /*
263 * the main goal here is that we don't want to
264 * block if we're going to be able to submit
265 * more requests without blocking.
266 *
267 * This code does two great things, it pokes into
268 * the elevator code from a filesystem _and_
269 * it makes assumptions about how batching works.
270 */
271 if (ioc && ioc->nr_batch_requests > 0 &&
272 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
273 (last_waited == 0 ||
274 ioc->last_waited == last_waited)) {
275 /*
276 * we want to go through our batch of
277 * requests and stop. So, we copy out
278 * the ioc->last_waited time and test
279 * against it before looping
280 */
281 last_waited = ioc->last_waited;
7eaceacc 282 if (need_resched())
ffbd517d 283 cond_resched();
b765ead5
CM
284 continue;
285 }
8b712842 286 spin_lock(&device->io_lock);
ffbd517d 287 requeue_list(pending_bios, pending, tail);
a6837051 288 device->running_pending = 1;
8b712842
CM
289
290 spin_unlock(&device->io_lock);
291 btrfs_requeue_work(&device->work);
292 goto done;
293 }
294 }
ffbd517d 295
51684082
CM
296 cond_resched();
297 if (again)
298 goto loop;
299
300 spin_lock(&device->io_lock);
301 if (device->pending_bios.head || device->pending_sync_bios.head)
302 goto loop_lock;
303 spin_unlock(&device->io_lock);
304
8b712842 305done:
211588ad 306 blk_finish_plug(&plug);
8b712842
CM
307 return 0;
308}
309
b2950863 310static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
311{
312 struct btrfs_device *device;
313
314 device = container_of(work, struct btrfs_device, work);
315 run_scheduled_bios(device);
316}
317
a1b32a59 318static noinline int device_list_add(const char *path,
8a4b83cc
CM
319 struct btrfs_super_block *disk_super,
320 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
321{
322 struct btrfs_device *device;
323 struct btrfs_fs_devices *fs_devices;
324 u64 found_transid = btrfs_super_generation(disk_super);
3a0524dc 325 char *name;
8a4b83cc
CM
326
327 fs_devices = find_fsid(disk_super->fsid);
328 if (!fs_devices) {
515dc322 329 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
8a4b83cc
CM
330 if (!fs_devices)
331 return -ENOMEM;
332 INIT_LIST_HEAD(&fs_devices->devices);
b3075717 333 INIT_LIST_HEAD(&fs_devices->alloc_list);
8a4b83cc
CM
334 list_add(&fs_devices->list, &fs_uuids);
335 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
336 fs_devices->latest_devid = devid;
337 fs_devices->latest_trans = found_transid;
e5e9a520 338 mutex_init(&fs_devices->device_list_mutex);
8a4b83cc
CM
339 device = NULL;
340 } else {
a443755f
CM
341 device = __find_device(&fs_devices->devices, devid,
342 disk_super->dev_item.uuid);
8a4b83cc
CM
343 }
344 if (!device) {
2b82032c
YZ
345 if (fs_devices->opened)
346 return -EBUSY;
347
8a4b83cc
CM
348 device = kzalloc(sizeof(*device), GFP_NOFS);
349 if (!device) {
350 /* we can safely leave the fs_devices entry around */
351 return -ENOMEM;
352 }
353 device->devid = devid;
8b712842 354 device->work.func = pending_bios_fn;
a443755f
CM
355 memcpy(device->uuid, disk_super->dev_item.uuid,
356 BTRFS_UUID_SIZE);
b248a415 357 spin_lock_init(&device->io_lock);
8a4b83cc
CM
358 device->name = kstrdup(path, GFP_NOFS);
359 if (!device->name) {
360 kfree(device);
361 return -ENOMEM;
362 }
2b82032c 363 INIT_LIST_HEAD(&device->dev_alloc_list);
e5e9a520
CM
364
365 mutex_lock(&fs_devices->device_list_mutex);
8a4b83cc 366 list_add(&device->dev_list, &fs_devices->devices);
e5e9a520
CM
367 mutex_unlock(&fs_devices->device_list_mutex);
368
2b82032c 369 device->fs_devices = fs_devices;
8a4b83cc 370 fs_devices->num_devices++;
cd02dca5 371 } else if (!device->name || strcmp(device->name, path)) {
3a0524dc
TH
372 name = kstrdup(path, GFP_NOFS);
373 if (!name)
374 return -ENOMEM;
375 kfree(device->name);
376 device->name = name;
cd02dca5
CM
377 if (device->missing) {
378 fs_devices->missing_devices--;
379 device->missing = 0;
380 }
8a4b83cc
CM
381 }
382
383 if (found_transid > fs_devices->latest_trans) {
384 fs_devices->latest_devid = devid;
385 fs_devices->latest_trans = found_transid;
386 }
8a4b83cc
CM
387 *fs_devices_ret = fs_devices;
388 return 0;
389}
390
e4404d6e
YZ
391static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
392{
393 struct btrfs_fs_devices *fs_devices;
394 struct btrfs_device *device;
395 struct btrfs_device *orig_dev;
396
397 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
398 if (!fs_devices)
399 return ERR_PTR(-ENOMEM);
400
401 INIT_LIST_HEAD(&fs_devices->devices);
402 INIT_LIST_HEAD(&fs_devices->alloc_list);
403 INIT_LIST_HEAD(&fs_devices->list);
e5e9a520 404 mutex_init(&fs_devices->device_list_mutex);
e4404d6e
YZ
405 fs_devices->latest_devid = orig->latest_devid;
406 fs_devices->latest_trans = orig->latest_trans;
407 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
408
e5e9a520 409 mutex_lock(&orig->device_list_mutex);
e4404d6e
YZ
410 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
411 device = kzalloc(sizeof(*device), GFP_NOFS);
412 if (!device)
413 goto error;
414
415 device->name = kstrdup(orig_dev->name, GFP_NOFS);
fd2696f3
JL
416 if (!device->name) {
417 kfree(device);
e4404d6e 418 goto error;
fd2696f3 419 }
e4404d6e
YZ
420
421 device->devid = orig_dev->devid;
422 device->work.func = pending_bios_fn;
423 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
e4404d6e
YZ
424 spin_lock_init(&device->io_lock);
425 INIT_LIST_HEAD(&device->dev_list);
426 INIT_LIST_HEAD(&device->dev_alloc_list);
427
428 list_add(&device->dev_list, &fs_devices->devices);
429 device->fs_devices = fs_devices;
430 fs_devices->num_devices++;
431 }
e5e9a520 432 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
433 return fs_devices;
434error:
e5e9a520 435 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
436 free_fs_devices(fs_devices);
437 return ERR_PTR(-ENOMEM);
438}
439
dfe25020
CM
440int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
441{
c6e30871 442 struct btrfs_device *device, *next;
dfe25020
CM
443
444 mutex_lock(&uuid_mutex);
445again:
e5e9a520 446 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 447 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2b82032c
YZ
448 if (device->in_fs_metadata)
449 continue;
450
451 if (device->bdev) {
d4d77629 452 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
453 device->bdev = NULL;
454 fs_devices->open_devices--;
455 }
456 if (device->writeable) {
457 list_del_init(&device->dev_alloc_list);
458 device->writeable = 0;
459 fs_devices->rw_devices--;
460 }
e4404d6e
YZ
461 list_del_init(&device->dev_list);
462 fs_devices->num_devices--;
463 kfree(device->name);
464 kfree(device);
dfe25020 465 }
e5e9a520 466 mutex_unlock(&fs_devices->device_list_mutex);
2b82032c
YZ
467
468 if (fs_devices->seed) {
469 fs_devices = fs_devices->seed;
2b82032c
YZ
470 goto again;
471 }
472
dfe25020
CM
473 mutex_unlock(&uuid_mutex);
474 return 0;
475}
a0af469b 476
2b82032c 477static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 478{
8a4b83cc 479 struct btrfs_device *device;
e4404d6e 480
2b82032c
YZ
481 if (--fs_devices->opened > 0)
482 return 0;
8a4b83cc 483
c9513edb 484 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 485 list_for_each_entry(device, &fs_devices->devices, dev_list) {
8a4b83cc 486 if (device->bdev) {
d4d77629 487 blkdev_put(device->bdev, device->mode);
a0af469b 488 fs_devices->open_devices--;
8a4b83cc 489 }
2b82032c
YZ
490 if (device->writeable) {
491 list_del_init(&device->dev_alloc_list);
492 fs_devices->rw_devices--;
493 }
494
8a4b83cc 495 device->bdev = NULL;
2b82032c 496 device->writeable = 0;
dfe25020 497 device->in_fs_metadata = 0;
8a4b83cc 498 }
c9513edb
XG
499 mutex_unlock(&fs_devices->device_list_mutex);
500
e4404d6e
YZ
501 WARN_ON(fs_devices->open_devices);
502 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
503 fs_devices->opened = 0;
504 fs_devices->seeding = 0;
2b82032c 505
8a4b83cc
CM
506 return 0;
507}
508
2b82032c
YZ
509int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
510{
e4404d6e 511 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
512 int ret;
513
514 mutex_lock(&uuid_mutex);
515 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
516 if (!fs_devices->opened) {
517 seed_devices = fs_devices->seed;
518 fs_devices->seed = NULL;
519 }
2b82032c 520 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
521
522 while (seed_devices) {
523 fs_devices = seed_devices;
524 seed_devices = fs_devices->seed;
525 __btrfs_close_devices(fs_devices);
526 free_fs_devices(fs_devices);
527 }
2b82032c
YZ
528 return ret;
529}
530
e4404d6e
YZ
531static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
532 fmode_t flags, void *holder)
8a4b83cc
CM
533{
534 struct block_device *bdev;
535 struct list_head *head = &fs_devices->devices;
8a4b83cc 536 struct btrfs_device *device;
a0af469b
CM
537 struct block_device *latest_bdev = NULL;
538 struct buffer_head *bh;
539 struct btrfs_super_block *disk_super;
540 u64 latest_devid = 0;
541 u64 latest_transid = 0;
a0af469b 542 u64 devid;
2b82032c 543 int seeding = 1;
a0af469b 544 int ret = 0;
8a4b83cc 545
d4d77629
TH
546 flags |= FMODE_EXCL;
547
c6e30871 548 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
549 if (device->bdev)
550 continue;
dfe25020
CM
551 if (!device->name)
552 continue;
553
d4d77629 554 bdev = blkdev_get_by_path(device->name, flags, holder);
8a4b83cc 555 if (IS_ERR(bdev)) {
d397712b 556 printk(KERN_INFO "open %s failed\n", device->name);
a0af469b 557 goto error;
8a4b83cc 558 }
a061fc8d 559 set_blocksize(bdev, 4096);
a0af469b 560
a512bbf8 561 bh = btrfs_read_dev_super(bdev);
20b45077
DY
562 if (!bh) {
563 ret = -EINVAL;
a0af469b 564 goto error_close;
20b45077 565 }
a0af469b
CM
566
567 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 568 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
569 if (devid != device->devid)
570 goto error_brelse;
571
2b82032c
YZ
572 if (memcmp(device->uuid, disk_super->dev_item.uuid,
573 BTRFS_UUID_SIZE))
574 goto error_brelse;
575
576 device->generation = btrfs_super_generation(disk_super);
577 if (!latest_transid || device->generation > latest_transid) {
a0af469b 578 latest_devid = devid;
2b82032c 579 latest_transid = device->generation;
a0af469b
CM
580 latest_bdev = bdev;
581 }
582
2b82032c
YZ
583 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
584 device->writeable = 0;
585 } else {
586 device->writeable = !bdev_read_only(bdev);
587 seeding = 0;
588 }
589
8a4b83cc 590 device->bdev = bdev;
dfe25020 591 device->in_fs_metadata = 0;
15916de8
CM
592 device->mode = flags;
593
c289811c
CM
594 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
595 fs_devices->rotating = 1;
596
a0af469b 597 fs_devices->open_devices++;
2b82032c
YZ
598 if (device->writeable) {
599 fs_devices->rw_devices++;
600 list_add(&device->dev_alloc_list,
601 &fs_devices->alloc_list);
602 }
4f6c9328 603 brelse(bh);
a0af469b 604 continue;
a061fc8d 605
a0af469b
CM
606error_brelse:
607 brelse(bh);
608error_close:
d4d77629 609 blkdev_put(bdev, flags);
a0af469b
CM
610error:
611 continue;
8a4b83cc 612 }
a0af469b
CM
613 if (fs_devices->open_devices == 0) {
614 ret = -EIO;
615 goto out;
616 }
2b82032c
YZ
617 fs_devices->seeding = seeding;
618 fs_devices->opened = 1;
a0af469b
CM
619 fs_devices->latest_bdev = latest_bdev;
620 fs_devices->latest_devid = latest_devid;
621 fs_devices->latest_trans = latest_transid;
2b82032c 622 fs_devices->total_rw_bytes = 0;
a0af469b 623out:
2b82032c
YZ
624 return ret;
625}
626
627int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 628 fmode_t flags, void *holder)
2b82032c
YZ
629{
630 int ret;
631
632 mutex_lock(&uuid_mutex);
633 if (fs_devices->opened) {
e4404d6e
YZ
634 fs_devices->opened++;
635 ret = 0;
2b82032c 636 } else {
15916de8 637 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 638 }
8a4b83cc 639 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
640 return ret;
641}
642
97288f2c 643int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
644 struct btrfs_fs_devices **fs_devices_ret)
645{
646 struct btrfs_super_block *disk_super;
647 struct block_device *bdev;
648 struct buffer_head *bh;
649 int ret;
650 u64 devid;
f2984462 651 u64 transid;
8a4b83cc
CM
652
653 mutex_lock(&uuid_mutex);
654
d4d77629
TH
655 flags |= FMODE_EXCL;
656 bdev = blkdev_get_by_path(path, flags, holder);
8a4b83cc
CM
657
658 if (IS_ERR(bdev)) {
8a4b83cc
CM
659 ret = PTR_ERR(bdev);
660 goto error;
661 }
662
663 ret = set_blocksize(bdev, 4096);
664 if (ret)
665 goto error_close;
a512bbf8 666 bh = btrfs_read_dev_super(bdev);
8a4b83cc 667 if (!bh) {
20b45077 668 ret = -EINVAL;
8a4b83cc
CM
669 goto error_close;
670 }
671 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 672 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 673 transid = btrfs_super_generation(disk_super);
7ae9c09d 674 if (disk_super->label[0])
d397712b 675 printk(KERN_INFO "device label %s ", disk_super->label);
7ae9c09d
CM
676 else {
677 /* FIXME, make a readl uuid parser */
d397712b 678 printk(KERN_INFO "device fsid %llx-%llx ",
7ae9c09d
CM
679 *(unsigned long long *)disk_super->fsid,
680 *(unsigned long long *)(disk_super->fsid + 8));
681 }
119e10cf 682 printk(KERN_CONT "devid %llu transid %llu %s\n",
d397712b 683 (unsigned long long)devid, (unsigned long long)transid, path);
8a4b83cc
CM
684 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
685
8a4b83cc
CM
686 brelse(bh);
687error_close:
d4d77629 688 blkdev_put(bdev, flags);
8a4b83cc
CM
689error:
690 mutex_unlock(&uuid_mutex);
691 return ret;
692}
0b86a832 693
6d07bcec
MX
694/* helper to account the used device space in the range */
695int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
696 u64 end, u64 *length)
697{
698 struct btrfs_key key;
699 struct btrfs_root *root = device->dev_root;
700 struct btrfs_dev_extent *dev_extent;
701 struct btrfs_path *path;
702 u64 extent_end;
703 int ret;
704 int slot;
705 struct extent_buffer *l;
706
707 *length = 0;
708
709 if (start >= device->total_bytes)
710 return 0;
711
712 path = btrfs_alloc_path();
713 if (!path)
714 return -ENOMEM;
715 path->reada = 2;
716
717 key.objectid = device->devid;
718 key.offset = start;
719 key.type = BTRFS_DEV_EXTENT_KEY;
720
721 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
722 if (ret < 0)
723 goto out;
724 if (ret > 0) {
725 ret = btrfs_previous_item(root, path, key.objectid, key.type);
726 if (ret < 0)
727 goto out;
728 }
729
730 while (1) {
731 l = path->nodes[0];
732 slot = path->slots[0];
733 if (slot >= btrfs_header_nritems(l)) {
734 ret = btrfs_next_leaf(root, path);
735 if (ret == 0)
736 continue;
737 if (ret < 0)
738 goto out;
739
740 break;
741 }
742 btrfs_item_key_to_cpu(l, &key, slot);
743
744 if (key.objectid < device->devid)
745 goto next;
746
747 if (key.objectid > device->devid)
748 break;
749
750 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
751 goto next;
752
753 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
754 extent_end = key.offset + btrfs_dev_extent_length(l,
755 dev_extent);
756 if (key.offset <= start && extent_end > end) {
757 *length = end - start + 1;
758 break;
759 } else if (key.offset <= start && extent_end > start)
760 *length += extent_end - start;
761 else if (key.offset > start && extent_end <= end)
762 *length += extent_end - key.offset;
763 else if (key.offset > start && key.offset <= end) {
764 *length += end - key.offset + 1;
765 break;
766 } else if (key.offset > end)
767 break;
768
769next:
770 path->slots[0]++;
771 }
772 ret = 0;
773out:
774 btrfs_free_path(path);
775 return ret;
776}
777
0b86a832 778/*
7bfc837d
MX
779 * find_free_dev_extent - find free space in the specified device
780 * @trans: transaction handler
781 * @device: the device which we search the free space in
782 * @num_bytes: the size of the free space that we need
783 * @start: store the start of the free space.
784 * @len: the size of the free space. that we find, or the size of the max
785 * free space if we don't find suitable free space
786 *
0b86a832
CM
787 * this uses a pretty simple search, the expectation is that it is
788 * called very infrequently and that a given device has a small number
789 * of extents
7bfc837d
MX
790 *
791 * @start is used to store the start of the free space if we find. But if we
792 * don't find suitable free space, it will be used to store the start position
793 * of the max free space.
794 *
795 * @len is used to store the size of the free space that we find.
796 * But if we don't find suitable free space, it is used to store the size of
797 * the max free space.
0b86a832 798 */
ba1bf481
JB
799int find_free_dev_extent(struct btrfs_trans_handle *trans,
800 struct btrfs_device *device, u64 num_bytes,
7bfc837d 801 u64 *start, u64 *len)
0b86a832
CM
802{
803 struct btrfs_key key;
804 struct btrfs_root *root = device->dev_root;
7bfc837d 805 struct btrfs_dev_extent *dev_extent;
2b82032c 806 struct btrfs_path *path;
7bfc837d
MX
807 u64 hole_size;
808 u64 max_hole_start;
809 u64 max_hole_size;
810 u64 extent_end;
811 u64 search_start;
0b86a832
CM
812 u64 search_end = device->total_bytes;
813 int ret;
7bfc837d 814 int slot;
0b86a832
CM
815 struct extent_buffer *l;
816
0b86a832
CM
817 /* FIXME use last free of some kind */
818
8a4b83cc
CM
819 /* we don't want to overwrite the superblock on the drive,
820 * so we make sure to start at an offset of at least 1MB
821 */
7bfc837d 822 search_start = 1024 * 1024;
8f18cf13 823
7bfc837d 824 if (root->fs_info->alloc_start + num_bytes <= search_end)
8f18cf13
CM
825 search_start = max(root->fs_info->alloc_start, search_start);
826
7bfc837d
MX
827 max_hole_start = search_start;
828 max_hole_size = 0;
829
830 if (search_start >= search_end) {
831 ret = -ENOSPC;
832 goto error;
833 }
834
835 path = btrfs_alloc_path();
836 if (!path) {
837 ret = -ENOMEM;
838 goto error;
839 }
840 path->reada = 2;
841
0b86a832
CM
842 key.objectid = device->devid;
843 key.offset = search_start;
844 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 845
0b86a832
CM
846 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
847 if (ret < 0)
7bfc837d 848 goto out;
1fcbac58
YZ
849 if (ret > 0) {
850 ret = btrfs_previous_item(root, path, key.objectid, key.type);
851 if (ret < 0)
7bfc837d 852 goto out;
1fcbac58 853 }
7bfc837d 854
0b86a832
CM
855 while (1) {
856 l = path->nodes[0];
857 slot = path->slots[0];
858 if (slot >= btrfs_header_nritems(l)) {
859 ret = btrfs_next_leaf(root, path);
860 if (ret == 0)
861 continue;
862 if (ret < 0)
7bfc837d
MX
863 goto out;
864
865 break;
0b86a832
CM
866 }
867 btrfs_item_key_to_cpu(l, &key, slot);
868
869 if (key.objectid < device->devid)
870 goto next;
871
872 if (key.objectid > device->devid)
7bfc837d 873 break;
0b86a832 874
7bfc837d
MX
875 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
876 goto next;
9779b72f 877
7bfc837d
MX
878 if (key.offset > search_start) {
879 hole_size = key.offset - search_start;
9779b72f 880
7bfc837d
MX
881 if (hole_size > max_hole_size) {
882 max_hole_start = search_start;
883 max_hole_size = hole_size;
884 }
9779b72f 885
7bfc837d
MX
886 /*
887 * If this free space is greater than which we need,
888 * it must be the max free space that we have found
889 * until now, so max_hole_start must point to the start
890 * of this free space and the length of this free space
891 * is stored in max_hole_size. Thus, we return
892 * max_hole_start and max_hole_size and go back to the
893 * caller.
894 */
895 if (hole_size >= num_bytes) {
896 ret = 0;
897 goto out;
0b86a832
CM
898 }
899 }
0b86a832 900
0b86a832 901 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
902 extent_end = key.offset + btrfs_dev_extent_length(l,
903 dev_extent);
904 if (extent_end > search_start)
905 search_start = extent_end;
0b86a832
CM
906next:
907 path->slots[0]++;
908 cond_resched();
909 }
0b86a832 910
7bfc837d
MX
911 hole_size = search_end- search_start;
912 if (hole_size > max_hole_size) {
913 max_hole_start = search_start;
914 max_hole_size = hole_size;
0b86a832 915 }
0b86a832 916
7bfc837d
MX
917 /* See above. */
918 if (hole_size < num_bytes)
919 ret = -ENOSPC;
920 else
921 ret = 0;
922
923out:
2b82032c 924 btrfs_free_path(path);
7bfc837d
MX
925error:
926 *start = max_hole_start;
b2117a39 927 if (len)
7bfc837d 928 *len = max_hole_size;
0b86a832
CM
929 return ret;
930}
931
b2950863 932static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
933 struct btrfs_device *device,
934 u64 start)
935{
936 int ret;
937 struct btrfs_path *path;
938 struct btrfs_root *root = device->dev_root;
939 struct btrfs_key key;
a061fc8d
CM
940 struct btrfs_key found_key;
941 struct extent_buffer *leaf = NULL;
942 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
943
944 path = btrfs_alloc_path();
945 if (!path)
946 return -ENOMEM;
947
948 key.objectid = device->devid;
949 key.offset = start;
950 key.type = BTRFS_DEV_EXTENT_KEY;
951
952 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
953 if (ret > 0) {
954 ret = btrfs_previous_item(root, path, key.objectid,
955 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
956 if (ret)
957 goto out;
a061fc8d
CM
958 leaf = path->nodes[0];
959 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
960 extent = btrfs_item_ptr(leaf, path->slots[0],
961 struct btrfs_dev_extent);
962 BUG_ON(found_key.offset > start || found_key.offset +
963 btrfs_dev_extent_length(leaf, extent) < start);
a061fc8d
CM
964 } else if (ret == 0) {
965 leaf = path->nodes[0];
966 extent = btrfs_item_ptr(leaf, path->slots[0],
967 struct btrfs_dev_extent);
968 }
8f18cf13
CM
969 BUG_ON(ret);
970
dfe25020
CM
971 if (device->bytes_used > 0)
972 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
8f18cf13 973 ret = btrfs_del_item(trans, root, path);
8f18cf13 974
b0b802d7 975out:
8f18cf13
CM
976 btrfs_free_path(path);
977 return ret;
978}
979
2b82032c 980int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
0b86a832 981 struct btrfs_device *device,
e17cade2 982 u64 chunk_tree, u64 chunk_objectid,
2b82032c 983 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
984{
985 int ret;
986 struct btrfs_path *path;
987 struct btrfs_root *root = device->dev_root;
988 struct btrfs_dev_extent *extent;
989 struct extent_buffer *leaf;
990 struct btrfs_key key;
991
dfe25020 992 WARN_ON(!device->in_fs_metadata);
0b86a832
CM
993 path = btrfs_alloc_path();
994 if (!path)
995 return -ENOMEM;
996
0b86a832 997 key.objectid = device->devid;
2b82032c 998 key.offset = start;
0b86a832
CM
999 key.type = BTRFS_DEV_EXTENT_KEY;
1000 ret = btrfs_insert_empty_item(trans, root, path, &key,
1001 sizeof(*extent));
1002 BUG_ON(ret);
1003
1004 leaf = path->nodes[0];
1005 extent = btrfs_item_ptr(leaf, path->slots[0],
1006 struct btrfs_dev_extent);
e17cade2
CM
1007 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1008 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1009 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1010
1011 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1012 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1013 BTRFS_UUID_SIZE);
1014
0b86a832
CM
1015 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1016 btrfs_mark_buffer_dirty(leaf);
0b86a832
CM
1017 btrfs_free_path(path);
1018 return ret;
1019}
1020
a1b32a59
CM
1021static noinline int find_next_chunk(struct btrfs_root *root,
1022 u64 objectid, u64 *offset)
0b86a832
CM
1023{
1024 struct btrfs_path *path;
1025 int ret;
1026 struct btrfs_key key;
e17cade2 1027 struct btrfs_chunk *chunk;
0b86a832
CM
1028 struct btrfs_key found_key;
1029
1030 path = btrfs_alloc_path();
1031 BUG_ON(!path);
1032
e17cade2 1033 key.objectid = objectid;
0b86a832
CM
1034 key.offset = (u64)-1;
1035 key.type = BTRFS_CHUNK_ITEM_KEY;
1036
1037 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1038 if (ret < 0)
1039 goto error;
1040
1041 BUG_ON(ret == 0);
1042
1043 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1044 if (ret) {
e17cade2 1045 *offset = 0;
0b86a832
CM
1046 } else {
1047 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1048 path->slots[0]);
e17cade2
CM
1049 if (found_key.objectid != objectid)
1050 *offset = 0;
1051 else {
1052 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1053 struct btrfs_chunk);
1054 *offset = found_key.offset +
1055 btrfs_chunk_length(path->nodes[0], chunk);
1056 }
0b86a832
CM
1057 }
1058 ret = 0;
1059error:
1060 btrfs_free_path(path);
1061 return ret;
1062}
1063
2b82032c 1064static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
0b86a832
CM
1065{
1066 int ret;
1067 struct btrfs_key key;
1068 struct btrfs_key found_key;
2b82032c
YZ
1069 struct btrfs_path *path;
1070
1071 root = root->fs_info->chunk_root;
1072
1073 path = btrfs_alloc_path();
1074 if (!path)
1075 return -ENOMEM;
0b86a832
CM
1076
1077 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1078 key.type = BTRFS_DEV_ITEM_KEY;
1079 key.offset = (u64)-1;
1080
1081 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1082 if (ret < 0)
1083 goto error;
1084
1085 BUG_ON(ret == 0);
1086
1087 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1088 BTRFS_DEV_ITEM_KEY);
1089 if (ret) {
1090 *objectid = 1;
1091 } else {
1092 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1093 path->slots[0]);
1094 *objectid = found_key.offset + 1;
1095 }
1096 ret = 0;
1097error:
2b82032c 1098 btrfs_free_path(path);
0b86a832
CM
1099 return ret;
1100}
1101
1102/*
1103 * the device information is stored in the chunk root
1104 * the btrfs_device struct should be fully filled in
1105 */
1106int btrfs_add_device(struct btrfs_trans_handle *trans,
1107 struct btrfs_root *root,
1108 struct btrfs_device *device)
1109{
1110 int ret;
1111 struct btrfs_path *path;
1112 struct btrfs_dev_item *dev_item;
1113 struct extent_buffer *leaf;
1114 struct btrfs_key key;
1115 unsigned long ptr;
0b86a832
CM
1116
1117 root = root->fs_info->chunk_root;
1118
1119 path = btrfs_alloc_path();
1120 if (!path)
1121 return -ENOMEM;
1122
0b86a832
CM
1123 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1124 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1125 key.offset = device->devid;
0b86a832
CM
1126
1127 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1128 sizeof(*dev_item));
0b86a832
CM
1129 if (ret)
1130 goto out;
1131
1132 leaf = path->nodes[0];
1133 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1134
1135 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1136 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1137 btrfs_set_device_type(leaf, dev_item, device->type);
1138 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1139 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1140 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1141 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1142 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1143 btrfs_set_device_group(leaf, dev_item, 0);
1144 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1145 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1146 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1147
0b86a832 1148 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 1149 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2b82032c
YZ
1150 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1151 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1152 btrfs_mark_buffer_dirty(leaf);
0b86a832 1153
2b82032c 1154 ret = 0;
0b86a832
CM
1155out:
1156 btrfs_free_path(path);
1157 return ret;
1158}
8f18cf13 1159
a061fc8d
CM
1160static int btrfs_rm_dev_item(struct btrfs_root *root,
1161 struct btrfs_device *device)
1162{
1163 int ret;
1164 struct btrfs_path *path;
a061fc8d 1165 struct btrfs_key key;
a061fc8d
CM
1166 struct btrfs_trans_handle *trans;
1167
1168 root = root->fs_info->chunk_root;
1169
1170 path = btrfs_alloc_path();
1171 if (!path)
1172 return -ENOMEM;
1173
a22285a6 1174 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1175 if (IS_ERR(trans)) {
1176 btrfs_free_path(path);
1177 return PTR_ERR(trans);
1178 }
a061fc8d
CM
1179 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1180 key.type = BTRFS_DEV_ITEM_KEY;
1181 key.offset = device->devid;
7d9eb12c 1182 lock_chunks(root);
a061fc8d
CM
1183
1184 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1185 if (ret < 0)
1186 goto out;
1187
1188 if (ret > 0) {
1189 ret = -ENOENT;
1190 goto out;
1191 }
1192
1193 ret = btrfs_del_item(trans, root, path);
1194 if (ret)
1195 goto out;
a061fc8d
CM
1196out:
1197 btrfs_free_path(path);
7d9eb12c 1198 unlock_chunks(root);
a061fc8d
CM
1199 btrfs_commit_transaction(trans, root);
1200 return ret;
1201}
1202
1203int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1204{
1205 struct btrfs_device *device;
2b82032c 1206 struct btrfs_device *next_device;
a061fc8d 1207 struct block_device *bdev;
dfe25020 1208 struct buffer_head *bh = NULL;
a061fc8d
CM
1209 struct btrfs_super_block *disk_super;
1210 u64 all_avail;
1211 u64 devid;
2b82032c
YZ
1212 u64 num_devices;
1213 u8 *dev_uuid;
a061fc8d
CM
1214 int ret = 0;
1215
a061fc8d 1216 mutex_lock(&uuid_mutex);
7d9eb12c 1217 mutex_lock(&root->fs_info->volume_mutex);
a061fc8d
CM
1218
1219 all_avail = root->fs_info->avail_data_alloc_bits |
1220 root->fs_info->avail_system_alloc_bits |
1221 root->fs_info->avail_metadata_alloc_bits;
1222
1223 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
035fe03a 1224 root->fs_info->fs_devices->num_devices <= 4) {
d397712b
CM
1225 printk(KERN_ERR "btrfs: unable to go below four devices "
1226 "on raid10\n");
a061fc8d
CM
1227 ret = -EINVAL;
1228 goto out;
1229 }
1230
1231 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
035fe03a 1232 root->fs_info->fs_devices->num_devices <= 2) {
d397712b
CM
1233 printk(KERN_ERR "btrfs: unable to go below two "
1234 "devices on raid1\n");
a061fc8d
CM
1235 ret = -EINVAL;
1236 goto out;
1237 }
1238
dfe25020 1239 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1240 struct list_head *devices;
1241 struct btrfs_device *tmp;
a061fc8d 1242
dfe25020
CM
1243 device = NULL;
1244 devices = &root->fs_info->fs_devices->devices;
e5e9a520 1245 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 1246 list_for_each_entry(tmp, devices, dev_list) {
dfe25020
CM
1247 if (tmp->in_fs_metadata && !tmp->bdev) {
1248 device = tmp;
1249 break;
1250 }
1251 }
e5e9a520 1252 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
dfe25020
CM
1253 bdev = NULL;
1254 bh = NULL;
1255 disk_super = NULL;
1256 if (!device) {
d397712b
CM
1257 printk(KERN_ERR "btrfs: no missing devices found to "
1258 "remove\n");
dfe25020
CM
1259 goto out;
1260 }
dfe25020 1261 } else {
d4d77629
TH
1262 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1263 root->fs_info->bdev_holder);
dfe25020
CM
1264 if (IS_ERR(bdev)) {
1265 ret = PTR_ERR(bdev);
1266 goto out;
1267 }
a061fc8d 1268
2b82032c 1269 set_blocksize(bdev, 4096);
a512bbf8 1270 bh = btrfs_read_dev_super(bdev);
dfe25020 1271 if (!bh) {
20b45077 1272 ret = -EINVAL;
dfe25020
CM
1273 goto error_close;
1274 }
1275 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1276 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c
YZ
1277 dev_uuid = disk_super->dev_item.uuid;
1278 device = btrfs_find_device(root, devid, dev_uuid,
1279 disk_super->fsid);
dfe25020
CM
1280 if (!device) {
1281 ret = -ENOENT;
1282 goto error_brelse;
1283 }
2b82032c 1284 }
dfe25020 1285
2b82032c 1286 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
d397712b
CM
1287 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1288 "device\n");
2b82032c
YZ
1289 ret = -EINVAL;
1290 goto error_brelse;
1291 }
1292
1293 if (device->writeable) {
0c1daee0 1294 lock_chunks(root);
2b82032c 1295 list_del_init(&device->dev_alloc_list);
0c1daee0 1296 unlock_chunks(root);
2b82032c 1297 root->fs_info->fs_devices->rw_devices--;
dfe25020 1298 }
a061fc8d
CM
1299
1300 ret = btrfs_shrink_device(device, 0);
1301 if (ret)
9b3517e9 1302 goto error_undo;
a061fc8d 1303
a061fc8d
CM
1304 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1305 if (ret)
9b3517e9 1306 goto error_undo;
a061fc8d 1307
2b82032c 1308 device->in_fs_metadata = 0;
e5e9a520
CM
1309
1310 /*
1311 * the device list mutex makes sure that we don't change
1312 * the device list while someone else is writing out all
1313 * the device supers.
1314 */
1315 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e4404d6e 1316 list_del_init(&device->dev_list);
e5e9a520
CM
1317 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1318
e4404d6e 1319 device->fs_devices->num_devices--;
2b82032c 1320
cd02dca5
CM
1321 if (device->missing)
1322 root->fs_info->fs_devices->missing_devices--;
1323
2b82032c
YZ
1324 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1325 struct btrfs_device, dev_list);
1326 if (device->bdev == root->fs_info->sb->s_bdev)
1327 root->fs_info->sb->s_bdev = next_device->bdev;
1328 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1329 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1330
e4404d6e 1331 if (device->bdev) {
d4d77629 1332 blkdev_put(device->bdev, device->mode);
e4404d6e
YZ
1333 device->bdev = NULL;
1334 device->fs_devices->open_devices--;
1335 }
1336
2b82032c
YZ
1337 num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1338 btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1339
e4404d6e
YZ
1340 if (device->fs_devices->open_devices == 0) {
1341 struct btrfs_fs_devices *fs_devices;
1342 fs_devices = root->fs_info->fs_devices;
1343 while (fs_devices) {
1344 if (fs_devices->seed == device->fs_devices)
1345 break;
1346 fs_devices = fs_devices->seed;
2b82032c 1347 }
e4404d6e
YZ
1348 fs_devices->seed = device->fs_devices->seed;
1349 device->fs_devices->seed = NULL;
0c1daee0 1350 lock_chunks(root);
e4404d6e 1351 __btrfs_close_devices(device->fs_devices);
0c1daee0 1352 unlock_chunks(root);
e4404d6e 1353 free_fs_devices(device->fs_devices);
2b82032c
YZ
1354 }
1355
1356 /*
1357 * at this point, the device is zero sized. We want to
1358 * remove it from the devices list and zero out the old super
1359 */
1360 if (device->writeable) {
dfe25020
CM
1361 /* make sure this device isn't detected as part of
1362 * the FS anymore
1363 */
1364 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1365 set_buffer_dirty(bh);
1366 sync_dirty_buffer(bh);
dfe25020 1367 }
a061fc8d
CM
1368
1369 kfree(device->name);
1370 kfree(device);
1371 ret = 0;
a061fc8d
CM
1372
1373error_brelse:
1374 brelse(bh);
1375error_close:
dfe25020 1376 if (bdev)
e525fd89 1377 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d 1378out:
7d9eb12c 1379 mutex_unlock(&root->fs_info->volume_mutex);
a061fc8d 1380 mutex_unlock(&uuid_mutex);
a061fc8d 1381 return ret;
9b3517e9
ID
1382error_undo:
1383 if (device->writeable) {
0c1daee0 1384 lock_chunks(root);
9b3517e9
ID
1385 list_add(&device->dev_alloc_list,
1386 &root->fs_info->fs_devices->alloc_list);
0c1daee0 1387 unlock_chunks(root);
9b3517e9
ID
1388 root->fs_info->fs_devices->rw_devices++;
1389 }
1390 goto error_brelse;
a061fc8d
CM
1391}
1392
2b82032c
YZ
1393/*
1394 * does all the dirty work required for changing file system's UUID.
1395 */
1396static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1397 struct btrfs_root *root)
1398{
1399 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1400 struct btrfs_fs_devices *old_devices;
e4404d6e 1401 struct btrfs_fs_devices *seed_devices;
2b82032c
YZ
1402 struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1403 struct btrfs_device *device;
1404 u64 super_flags;
1405
1406 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1407 if (!fs_devices->seeding)
2b82032c
YZ
1408 return -EINVAL;
1409
e4404d6e
YZ
1410 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1411 if (!seed_devices)
2b82032c
YZ
1412 return -ENOMEM;
1413
e4404d6e
YZ
1414 old_devices = clone_fs_devices(fs_devices);
1415 if (IS_ERR(old_devices)) {
1416 kfree(seed_devices);
1417 return PTR_ERR(old_devices);
2b82032c 1418 }
e4404d6e 1419
2b82032c
YZ
1420 list_add(&old_devices->list, &fs_uuids);
1421
e4404d6e
YZ
1422 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1423 seed_devices->opened = 1;
1424 INIT_LIST_HEAD(&seed_devices->devices);
1425 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1426 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
1427
1428 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e4404d6e 1429 list_splice_init(&fs_devices->devices, &seed_devices->devices);
c9513edb
XG
1430 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1431
e4404d6e
YZ
1432 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1433 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1434 device->fs_devices = seed_devices;
1435 }
1436
2b82032c
YZ
1437 fs_devices->seeding = 0;
1438 fs_devices->num_devices = 0;
1439 fs_devices->open_devices = 0;
e4404d6e 1440 fs_devices->seed = seed_devices;
2b82032c
YZ
1441
1442 generate_random_uuid(fs_devices->fsid);
1443 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1444 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1445 super_flags = btrfs_super_flags(disk_super) &
1446 ~BTRFS_SUPER_FLAG_SEEDING;
1447 btrfs_set_super_flags(disk_super, super_flags);
1448
1449 return 0;
1450}
1451
1452/*
1453 * strore the expected generation for seed devices in device items.
1454 */
1455static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1456 struct btrfs_root *root)
1457{
1458 struct btrfs_path *path;
1459 struct extent_buffer *leaf;
1460 struct btrfs_dev_item *dev_item;
1461 struct btrfs_device *device;
1462 struct btrfs_key key;
1463 u8 fs_uuid[BTRFS_UUID_SIZE];
1464 u8 dev_uuid[BTRFS_UUID_SIZE];
1465 u64 devid;
1466 int ret;
1467
1468 path = btrfs_alloc_path();
1469 if (!path)
1470 return -ENOMEM;
1471
1472 root = root->fs_info->chunk_root;
1473 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1474 key.offset = 0;
1475 key.type = BTRFS_DEV_ITEM_KEY;
1476
1477 while (1) {
1478 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1479 if (ret < 0)
1480 goto error;
1481
1482 leaf = path->nodes[0];
1483next_slot:
1484 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1485 ret = btrfs_next_leaf(root, path);
1486 if (ret > 0)
1487 break;
1488 if (ret < 0)
1489 goto error;
1490 leaf = path->nodes[0];
1491 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1492 btrfs_release_path(root, path);
1493 continue;
1494 }
1495
1496 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1497 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1498 key.type != BTRFS_DEV_ITEM_KEY)
1499 break;
1500
1501 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1502 struct btrfs_dev_item);
1503 devid = btrfs_device_id(leaf, dev_item);
1504 read_extent_buffer(leaf, dev_uuid,
1505 (unsigned long)btrfs_device_uuid(dev_item),
1506 BTRFS_UUID_SIZE);
1507 read_extent_buffer(leaf, fs_uuid,
1508 (unsigned long)btrfs_device_fsid(dev_item),
1509 BTRFS_UUID_SIZE);
1510 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1511 BUG_ON(!device);
1512
1513 if (device->fs_devices->seeding) {
1514 btrfs_set_device_generation(leaf, dev_item,
1515 device->generation);
1516 btrfs_mark_buffer_dirty(leaf);
1517 }
1518
1519 path->slots[0]++;
1520 goto next_slot;
1521 }
1522 ret = 0;
1523error:
1524 btrfs_free_path(path);
1525 return ret;
1526}
1527
788f20eb
CM
1528int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1529{
1530 struct btrfs_trans_handle *trans;
1531 struct btrfs_device *device;
1532 struct block_device *bdev;
788f20eb 1533 struct list_head *devices;
2b82032c 1534 struct super_block *sb = root->fs_info->sb;
788f20eb 1535 u64 total_bytes;
2b82032c 1536 int seeding_dev = 0;
788f20eb
CM
1537 int ret = 0;
1538
2b82032c
YZ
1539 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1540 return -EINVAL;
788f20eb 1541
d4d77629
TH
1542 bdev = blkdev_get_by_path(device_path, FMODE_EXCL,
1543 root->fs_info->bdev_holder);
7f59203a
JB
1544 if (IS_ERR(bdev))
1545 return PTR_ERR(bdev);
a2135011 1546
2b82032c
YZ
1547 if (root->fs_info->fs_devices->seeding) {
1548 seeding_dev = 1;
1549 down_write(&sb->s_umount);
1550 mutex_lock(&uuid_mutex);
1551 }
1552
8c8bee1d 1553 filemap_write_and_wait(bdev->bd_inode->i_mapping);
7d9eb12c 1554 mutex_lock(&root->fs_info->volume_mutex);
a2135011 1555
788f20eb 1556 devices = &root->fs_info->fs_devices->devices;
e5e9a520
CM
1557 /*
1558 * we have the volume lock, so we don't need the extra
1559 * device list mutex while reading the list here.
1560 */
c6e30871 1561 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
1562 if (device->bdev == bdev) {
1563 ret = -EEXIST;
2b82032c 1564 goto error;
788f20eb
CM
1565 }
1566 }
1567
1568 device = kzalloc(sizeof(*device), GFP_NOFS);
1569 if (!device) {
1570 /* we can safely leave the fs_devices entry around */
1571 ret = -ENOMEM;
2b82032c 1572 goto error;
788f20eb
CM
1573 }
1574
788f20eb
CM
1575 device->name = kstrdup(device_path, GFP_NOFS);
1576 if (!device->name) {
1577 kfree(device);
2b82032c
YZ
1578 ret = -ENOMEM;
1579 goto error;
788f20eb 1580 }
2b82032c
YZ
1581
1582 ret = find_next_devid(root, &device->devid);
1583 if (ret) {
67100f25 1584 kfree(device->name);
2b82032c
YZ
1585 kfree(device);
1586 goto error;
1587 }
1588
a22285a6 1589 trans = btrfs_start_transaction(root, 0);
98d5dc13 1590 if (IS_ERR(trans)) {
67100f25 1591 kfree(device->name);
98d5dc13
TI
1592 kfree(device);
1593 ret = PTR_ERR(trans);
1594 goto error;
1595 }
1596
2b82032c
YZ
1597 lock_chunks(root);
1598
2b82032c
YZ
1599 device->writeable = 1;
1600 device->work.func = pending_bios_fn;
1601 generate_random_uuid(device->uuid);
1602 spin_lock_init(&device->io_lock);
1603 device->generation = trans->transid;
788f20eb
CM
1604 device->io_width = root->sectorsize;
1605 device->io_align = root->sectorsize;
1606 device->sector_size = root->sectorsize;
1607 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 1608 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
1609 device->dev_root = root->fs_info->dev_root;
1610 device->bdev = bdev;
dfe25020 1611 device->in_fs_metadata = 1;
fb01aa85 1612 device->mode = FMODE_EXCL;
2b82032c 1613 set_blocksize(device->bdev, 4096);
788f20eb 1614
2b82032c
YZ
1615 if (seeding_dev) {
1616 sb->s_flags &= ~MS_RDONLY;
1617 ret = btrfs_prepare_sprout(trans, root);
1618 BUG_ON(ret);
1619 }
788f20eb 1620
2b82032c 1621 device->fs_devices = root->fs_info->fs_devices;
e5e9a520
CM
1622
1623 /*
1624 * we don't want write_supers to jump in here with our device
1625 * half setup
1626 */
1627 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2b82032c
YZ
1628 list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1629 list_add(&device->dev_alloc_list,
1630 &root->fs_info->fs_devices->alloc_list);
1631 root->fs_info->fs_devices->num_devices++;
1632 root->fs_info->fs_devices->open_devices++;
1633 root->fs_info->fs_devices->rw_devices++;
1634 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 1635
c289811c
CM
1636 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1637 root->fs_info->fs_devices->rotating = 1;
1638
788f20eb
CM
1639 total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1640 btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1641 total_bytes + device->total_bytes);
1642
1643 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1644 btrfs_set_super_num_devices(&root->fs_info->super_copy,
1645 total_bytes + 1);
e5e9a520 1646 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 1647
2b82032c
YZ
1648 if (seeding_dev) {
1649 ret = init_first_rw_device(trans, root, device);
1650 BUG_ON(ret);
1651 ret = btrfs_finish_sprout(trans, root);
1652 BUG_ON(ret);
1653 } else {
1654 ret = btrfs_add_device(trans, root, device);
1655 }
1656
913d952e
CM
1657 /*
1658 * we've got more storage, clear any full flags on the space
1659 * infos
1660 */
1661 btrfs_clear_space_info_full(root->fs_info);
1662
7d9eb12c 1663 unlock_chunks(root);
2b82032c 1664 btrfs_commit_transaction(trans, root);
a2135011 1665
2b82032c
YZ
1666 if (seeding_dev) {
1667 mutex_unlock(&uuid_mutex);
1668 up_write(&sb->s_umount);
788f20eb 1669
2b82032c
YZ
1670 ret = btrfs_relocate_sys_chunks(root);
1671 BUG_ON(ret);
1672 }
1673out:
1674 mutex_unlock(&root->fs_info->volume_mutex);
1675 return ret;
1676error:
e525fd89 1677 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
1678 if (seeding_dev) {
1679 mutex_unlock(&uuid_mutex);
1680 up_write(&sb->s_umount);
1681 }
788f20eb
CM
1682 goto out;
1683}
1684
d397712b
CM
1685static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1686 struct btrfs_device *device)
0b86a832
CM
1687{
1688 int ret;
1689 struct btrfs_path *path;
1690 struct btrfs_root *root;
1691 struct btrfs_dev_item *dev_item;
1692 struct extent_buffer *leaf;
1693 struct btrfs_key key;
1694
1695 root = device->dev_root->fs_info->chunk_root;
1696
1697 path = btrfs_alloc_path();
1698 if (!path)
1699 return -ENOMEM;
1700
1701 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1702 key.type = BTRFS_DEV_ITEM_KEY;
1703 key.offset = device->devid;
1704
1705 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1706 if (ret < 0)
1707 goto out;
1708
1709 if (ret > 0) {
1710 ret = -ENOENT;
1711 goto out;
1712 }
1713
1714 leaf = path->nodes[0];
1715 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1716
1717 btrfs_set_device_id(leaf, dev_item, device->devid);
1718 btrfs_set_device_type(leaf, dev_item, device->type);
1719 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1720 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1721 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 1722 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
1723 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1724 btrfs_mark_buffer_dirty(leaf);
1725
1726out:
1727 btrfs_free_path(path);
1728 return ret;
1729}
1730
7d9eb12c 1731static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
1732 struct btrfs_device *device, u64 new_size)
1733{
1734 struct btrfs_super_block *super_copy =
1735 &device->dev_root->fs_info->super_copy;
1736 u64 old_total = btrfs_super_total_bytes(super_copy);
1737 u64 diff = new_size - device->total_bytes;
1738
2b82032c
YZ
1739 if (!device->writeable)
1740 return -EACCES;
1741 if (new_size <= device->total_bytes)
1742 return -EINVAL;
1743
8f18cf13 1744 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
1745 device->fs_devices->total_rw_bytes += diff;
1746
1747 device->total_bytes = new_size;
9779b72f 1748 device->disk_total_bytes = new_size;
4184ea7f
CM
1749 btrfs_clear_space_info_full(device->dev_root->fs_info);
1750
8f18cf13
CM
1751 return btrfs_update_device(trans, device);
1752}
1753
7d9eb12c
CM
1754int btrfs_grow_device(struct btrfs_trans_handle *trans,
1755 struct btrfs_device *device, u64 new_size)
1756{
1757 int ret;
1758 lock_chunks(device->dev_root);
1759 ret = __btrfs_grow_device(trans, device, new_size);
1760 unlock_chunks(device->dev_root);
1761 return ret;
1762}
1763
8f18cf13
CM
1764static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1765 struct btrfs_root *root,
1766 u64 chunk_tree, u64 chunk_objectid,
1767 u64 chunk_offset)
1768{
1769 int ret;
1770 struct btrfs_path *path;
1771 struct btrfs_key key;
1772
1773 root = root->fs_info->chunk_root;
1774 path = btrfs_alloc_path();
1775 if (!path)
1776 return -ENOMEM;
1777
1778 key.objectid = chunk_objectid;
1779 key.offset = chunk_offset;
1780 key.type = BTRFS_CHUNK_ITEM_KEY;
1781
1782 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1783 BUG_ON(ret);
1784
1785 ret = btrfs_del_item(trans, root, path);
8f18cf13
CM
1786
1787 btrfs_free_path(path);
65a246c5 1788 return ret;
8f18cf13
CM
1789}
1790
b2950863 1791static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
1792 chunk_offset)
1793{
1794 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1795 struct btrfs_disk_key *disk_key;
1796 struct btrfs_chunk *chunk;
1797 u8 *ptr;
1798 int ret = 0;
1799 u32 num_stripes;
1800 u32 array_size;
1801 u32 len = 0;
1802 u32 cur;
1803 struct btrfs_key key;
1804
1805 array_size = btrfs_super_sys_array_size(super_copy);
1806
1807 ptr = super_copy->sys_chunk_array;
1808 cur = 0;
1809
1810 while (cur < array_size) {
1811 disk_key = (struct btrfs_disk_key *)ptr;
1812 btrfs_disk_key_to_cpu(&key, disk_key);
1813
1814 len = sizeof(*disk_key);
1815
1816 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1817 chunk = (struct btrfs_chunk *)(ptr + len);
1818 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1819 len += btrfs_chunk_item_size(num_stripes);
1820 } else {
1821 ret = -EIO;
1822 break;
1823 }
1824 if (key.objectid == chunk_objectid &&
1825 key.offset == chunk_offset) {
1826 memmove(ptr, ptr + len, array_size - (cur + len));
1827 array_size -= len;
1828 btrfs_set_super_sys_array_size(super_copy, array_size);
1829 } else {
1830 ptr += len;
1831 cur += len;
1832 }
1833 }
1834 return ret;
1835}
1836
b2950863 1837static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
1838 u64 chunk_tree, u64 chunk_objectid,
1839 u64 chunk_offset)
1840{
1841 struct extent_map_tree *em_tree;
1842 struct btrfs_root *extent_root;
1843 struct btrfs_trans_handle *trans;
1844 struct extent_map *em;
1845 struct map_lookup *map;
1846 int ret;
1847 int i;
1848
1849 root = root->fs_info->chunk_root;
1850 extent_root = root->fs_info->extent_root;
1851 em_tree = &root->fs_info->mapping_tree.map_tree;
1852
ba1bf481
JB
1853 ret = btrfs_can_relocate(extent_root, chunk_offset);
1854 if (ret)
1855 return -ENOSPC;
1856
8f18cf13 1857 /* step one, relocate all the extents inside this chunk */
1a40e23b 1858 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
a22285a6
YZ
1859 if (ret)
1860 return ret;
8f18cf13 1861
a22285a6 1862 trans = btrfs_start_transaction(root, 0);
98d5dc13 1863 BUG_ON(IS_ERR(trans));
8f18cf13 1864
7d9eb12c
CM
1865 lock_chunks(root);
1866
8f18cf13
CM
1867 /*
1868 * step two, delete the device extents and the
1869 * chunk tree entries
1870 */
890871be 1871 read_lock(&em_tree->lock);
8f18cf13 1872 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 1873 read_unlock(&em_tree->lock);
8f18cf13 1874
a061fc8d
CM
1875 BUG_ON(em->start > chunk_offset ||
1876 em->start + em->len < chunk_offset);
8f18cf13
CM
1877 map = (struct map_lookup *)em->bdev;
1878
1879 for (i = 0; i < map->num_stripes; i++) {
1880 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1881 map->stripes[i].physical);
1882 BUG_ON(ret);
a061fc8d 1883
dfe25020
CM
1884 if (map->stripes[i].dev) {
1885 ret = btrfs_update_device(trans, map->stripes[i].dev);
1886 BUG_ON(ret);
1887 }
8f18cf13
CM
1888 }
1889 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1890 chunk_offset);
1891
1892 BUG_ON(ret);
1893
1abe9b8a 1894 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
1895
8f18cf13
CM
1896 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1897 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1898 BUG_ON(ret);
8f18cf13
CM
1899 }
1900
2b82032c
YZ
1901 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1902 BUG_ON(ret);
1903
890871be 1904 write_lock(&em_tree->lock);
2b82032c 1905 remove_extent_mapping(em_tree, em);
890871be 1906 write_unlock(&em_tree->lock);
2b82032c
YZ
1907
1908 kfree(map);
1909 em->bdev = NULL;
1910
1911 /* once for the tree */
1912 free_extent_map(em);
1913 /* once for us */
1914 free_extent_map(em);
1915
1916 unlock_chunks(root);
1917 btrfs_end_transaction(trans, root);
1918 return 0;
1919}
1920
1921static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1922{
1923 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1924 struct btrfs_path *path;
1925 struct extent_buffer *leaf;
1926 struct btrfs_chunk *chunk;
1927 struct btrfs_key key;
1928 struct btrfs_key found_key;
1929 u64 chunk_tree = chunk_root->root_key.objectid;
1930 u64 chunk_type;
ba1bf481
JB
1931 bool retried = false;
1932 int failed = 0;
2b82032c
YZ
1933 int ret;
1934
1935 path = btrfs_alloc_path();
1936 if (!path)
1937 return -ENOMEM;
1938
ba1bf481 1939again:
2b82032c
YZ
1940 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1941 key.offset = (u64)-1;
1942 key.type = BTRFS_CHUNK_ITEM_KEY;
1943
1944 while (1) {
1945 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1946 if (ret < 0)
1947 goto error;
1948 BUG_ON(ret == 0);
1949
1950 ret = btrfs_previous_item(chunk_root, path, key.objectid,
1951 key.type);
1952 if (ret < 0)
1953 goto error;
1954 if (ret > 0)
1955 break;
1a40e23b 1956
2b82032c
YZ
1957 leaf = path->nodes[0];
1958 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 1959
2b82032c
YZ
1960 chunk = btrfs_item_ptr(leaf, path->slots[0],
1961 struct btrfs_chunk);
1962 chunk_type = btrfs_chunk_type(leaf, chunk);
1963 btrfs_release_path(chunk_root, path);
8f18cf13 1964
2b82032c
YZ
1965 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1966 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1967 found_key.objectid,
1968 found_key.offset);
ba1bf481
JB
1969 if (ret == -ENOSPC)
1970 failed++;
1971 else if (ret)
1972 BUG();
2b82032c 1973 }
8f18cf13 1974
2b82032c
YZ
1975 if (found_key.offset == 0)
1976 break;
1977 key.offset = found_key.offset - 1;
1978 }
1979 ret = 0;
ba1bf481
JB
1980 if (failed && !retried) {
1981 failed = 0;
1982 retried = true;
1983 goto again;
1984 } else if (failed && retried) {
1985 WARN_ON(1);
1986 ret = -ENOSPC;
1987 }
2b82032c
YZ
1988error:
1989 btrfs_free_path(path);
1990 return ret;
8f18cf13
CM
1991}
1992
ec44a35c
CM
1993static u64 div_factor(u64 num, int factor)
1994{
1995 if (factor == 10)
1996 return num;
1997 num *= factor;
1998 do_div(num, 10);
1999 return num;
2000}
2001
ec44a35c
CM
2002int btrfs_balance(struct btrfs_root *dev_root)
2003{
2004 int ret;
ec44a35c
CM
2005 struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
2006 struct btrfs_device *device;
2007 u64 old_size;
2008 u64 size_to_free;
2009 struct btrfs_path *path;
2010 struct btrfs_key key;
ec44a35c
CM
2011 struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
2012 struct btrfs_trans_handle *trans;
2013 struct btrfs_key found_key;
2014
2b82032c
YZ
2015 if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
2016 return -EROFS;
ec44a35c 2017
6f88a440
BH
2018 if (!capable(CAP_SYS_ADMIN))
2019 return -EPERM;
2020
7d9eb12c 2021 mutex_lock(&dev_root->fs_info->volume_mutex);
ec44a35c
CM
2022 dev_root = dev_root->fs_info->dev_root;
2023
ec44a35c 2024 /* step one make some room on all the devices */
c6e30871 2025 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
2026 old_size = device->total_bytes;
2027 size_to_free = div_factor(old_size, 1);
2028 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c
YZ
2029 if (!device->writeable ||
2030 device->total_bytes - device->bytes_used > size_to_free)
ec44a35c
CM
2031 continue;
2032
2033 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
2034 if (ret == -ENOSPC)
2035 break;
ec44a35c
CM
2036 BUG_ON(ret);
2037
a22285a6 2038 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 2039 BUG_ON(IS_ERR(trans));
ec44a35c
CM
2040
2041 ret = btrfs_grow_device(trans, device, old_size);
2042 BUG_ON(ret);
2043
2044 btrfs_end_transaction(trans, dev_root);
2045 }
2046
2047 /* step two, relocate all the chunks */
2048 path = btrfs_alloc_path();
2049 BUG_ON(!path);
2050
2051 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2052 key.offset = (u64)-1;
2053 key.type = BTRFS_CHUNK_ITEM_KEY;
2054
d397712b 2055 while (1) {
ec44a35c
CM
2056 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2057 if (ret < 0)
2058 goto error;
2059
2060 /*
2061 * this shouldn't happen, it means the last relocate
2062 * failed
2063 */
2064 if (ret == 0)
2065 break;
2066
2067 ret = btrfs_previous_item(chunk_root, path, 0,
2068 BTRFS_CHUNK_ITEM_KEY);
7d9eb12c 2069 if (ret)
ec44a35c 2070 break;
7d9eb12c 2071
ec44a35c
CM
2072 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2073 path->slots[0]);
2074 if (found_key.objectid != key.objectid)
2075 break;
7d9eb12c 2076
ec44a35c 2077 /* chunk zero is special */
ba1bf481 2078 if (found_key.offset == 0)
ec44a35c
CM
2079 break;
2080
7d9eb12c 2081 btrfs_release_path(chunk_root, path);
ec44a35c
CM
2082 ret = btrfs_relocate_chunk(chunk_root,
2083 chunk_root->root_key.objectid,
2084 found_key.objectid,
2085 found_key.offset);
ba1bf481
JB
2086 BUG_ON(ret && ret != -ENOSPC);
2087 key.offset = found_key.offset - 1;
ec44a35c
CM
2088 }
2089 ret = 0;
2090error:
2091 btrfs_free_path(path);
7d9eb12c 2092 mutex_unlock(&dev_root->fs_info->volume_mutex);
ec44a35c
CM
2093 return ret;
2094}
2095
8f18cf13
CM
2096/*
2097 * shrinking a device means finding all of the device extents past
2098 * the new size, and then following the back refs to the chunks.
2099 * The chunk relocation code actually frees the device extent
2100 */
2101int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2102{
2103 struct btrfs_trans_handle *trans;
2104 struct btrfs_root *root = device->dev_root;
2105 struct btrfs_dev_extent *dev_extent = NULL;
2106 struct btrfs_path *path;
2107 u64 length;
2108 u64 chunk_tree;
2109 u64 chunk_objectid;
2110 u64 chunk_offset;
2111 int ret;
2112 int slot;
ba1bf481
JB
2113 int failed = 0;
2114 bool retried = false;
8f18cf13
CM
2115 struct extent_buffer *l;
2116 struct btrfs_key key;
2117 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2118 u64 old_total = btrfs_super_total_bytes(super_copy);
ba1bf481 2119 u64 old_size = device->total_bytes;
8f18cf13
CM
2120 u64 diff = device->total_bytes - new_size;
2121
2b82032c
YZ
2122 if (new_size >= device->total_bytes)
2123 return -EINVAL;
8f18cf13
CM
2124
2125 path = btrfs_alloc_path();
2126 if (!path)
2127 return -ENOMEM;
2128
8f18cf13
CM
2129 path->reada = 2;
2130
7d9eb12c
CM
2131 lock_chunks(root);
2132
8f18cf13 2133 device->total_bytes = new_size;
2b82032c
YZ
2134 if (device->writeable)
2135 device->fs_devices->total_rw_bytes -= diff;
7d9eb12c 2136 unlock_chunks(root);
8f18cf13 2137
ba1bf481 2138again:
8f18cf13
CM
2139 key.objectid = device->devid;
2140 key.offset = (u64)-1;
2141 key.type = BTRFS_DEV_EXTENT_KEY;
2142
2143 while (1) {
2144 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2145 if (ret < 0)
2146 goto done;
2147
2148 ret = btrfs_previous_item(root, path, 0, key.type);
2149 if (ret < 0)
2150 goto done;
2151 if (ret) {
2152 ret = 0;
ba1bf481 2153 btrfs_release_path(root, path);
bf1fb512 2154 break;
8f18cf13
CM
2155 }
2156
2157 l = path->nodes[0];
2158 slot = path->slots[0];
2159 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2160
ba1bf481
JB
2161 if (key.objectid != device->devid) {
2162 btrfs_release_path(root, path);
bf1fb512 2163 break;
ba1bf481 2164 }
8f18cf13
CM
2165
2166 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2167 length = btrfs_dev_extent_length(l, dev_extent);
2168
ba1bf481
JB
2169 if (key.offset + length <= new_size) {
2170 btrfs_release_path(root, path);
d6397bae 2171 break;
ba1bf481 2172 }
8f18cf13
CM
2173
2174 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2175 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2176 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2177 btrfs_release_path(root, path);
2178
2179 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
2180 chunk_offset);
ba1bf481 2181 if (ret && ret != -ENOSPC)
8f18cf13 2182 goto done;
ba1bf481
JB
2183 if (ret == -ENOSPC)
2184 failed++;
2185 key.offset -= 1;
2186 }
2187
2188 if (failed && !retried) {
2189 failed = 0;
2190 retried = true;
2191 goto again;
2192 } else if (failed && retried) {
2193 ret = -ENOSPC;
2194 lock_chunks(root);
2195
2196 device->total_bytes = old_size;
2197 if (device->writeable)
2198 device->fs_devices->total_rw_bytes += diff;
2199 unlock_chunks(root);
2200 goto done;
8f18cf13
CM
2201 }
2202
d6397bae 2203 /* Shrinking succeeded, else we would be at "done". */
a22285a6 2204 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
2205 if (IS_ERR(trans)) {
2206 ret = PTR_ERR(trans);
2207 goto done;
2208 }
2209
d6397bae
CB
2210 lock_chunks(root);
2211
2212 device->disk_total_bytes = new_size;
2213 /* Now btrfs_update_device() will change the on-disk size. */
2214 ret = btrfs_update_device(trans, device);
2215 if (ret) {
2216 unlock_chunks(root);
2217 btrfs_end_transaction(trans, root);
2218 goto done;
2219 }
2220 WARN_ON(diff > old_total);
2221 btrfs_set_super_total_bytes(super_copy, old_total - diff);
2222 unlock_chunks(root);
2223 btrfs_end_transaction(trans, root);
8f18cf13
CM
2224done:
2225 btrfs_free_path(path);
2226 return ret;
2227}
2228
b2950863 2229static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
0b86a832
CM
2230 struct btrfs_root *root,
2231 struct btrfs_key *key,
2232 struct btrfs_chunk *chunk, int item_size)
2233{
2234 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2235 struct btrfs_disk_key disk_key;
2236 u32 array_size;
2237 u8 *ptr;
2238
2239 array_size = btrfs_super_sys_array_size(super_copy);
2240 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2241 return -EFBIG;
2242
2243 ptr = super_copy->sys_chunk_array + array_size;
2244 btrfs_cpu_key_to_disk(&disk_key, key);
2245 memcpy(ptr, &disk_key, sizeof(disk_key));
2246 ptr += sizeof(disk_key);
2247 memcpy(ptr, chunk, item_size);
2248 item_size += sizeof(disk_key);
2249 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2250 return 0;
2251}
2252
d397712b 2253static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
a1b32a59 2254 int num_stripes, int sub_stripes)
9b3f68b9
CM
2255{
2256 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
2257 return calc_size;
2258 else if (type & BTRFS_BLOCK_GROUP_RAID10)
2259 return calc_size * (num_stripes / sub_stripes);
2260 else
2261 return calc_size * num_stripes;
2262}
2263
b2117a39
MX
2264/* Used to sort the devices by max_avail(descending sort) */
2265int btrfs_cmp_device_free_bytes(const void *dev_info1, const void *dev_info2)
0b86a832 2266{
b2117a39
MX
2267 if (((struct btrfs_device_info *)dev_info1)->max_avail >
2268 ((struct btrfs_device_info *)dev_info2)->max_avail)
2269 return -1;
2270 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
2271 ((struct btrfs_device_info *)dev_info2)->max_avail)
2272 return 1;
2273 else
2274 return 0;
2275}
0b86a832 2276
b2117a39
MX
2277static int __btrfs_calc_nstripes(struct btrfs_fs_devices *fs_devices, u64 type,
2278 int *num_stripes, int *min_stripes,
2279 int *sub_stripes)
2280{
2281 *num_stripes = 1;
2282 *min_stripes = 1;
2283 *sub_stripes = 0;
593060d7 2284
a40a90a0 2285 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
b2117a39
MX
2286 *num_stripes = fs_devices->rw_devices;
2287 *min_stripes = 2;
a40a90a0
CM
2288 }
2289 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
b2117a39
MX
2290 *num_stripes = 2;
2291 *min_stripes = 2;
a40a90a0 2292 }
8790d502 2293 if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
f3eae7e8 2294 if (fs_devices->rw_devices < 2)
9b3f68b9 2295 return -ENOSPC;
b2117a39
MX
2296 *num_stripes = 2;
2297 *min_stripes = 2;
8790d502 2298 }
321aecc6 2299 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
b2117a39
MX
2300 *num_stripes = fs_devices->rw_devices;
2301 if (*num_stripes < 4)
321aecc6 2302 return -ENOSPC;
b2117a39
MX
2303 *num_stripes &= ~(u32)1;
2304 *sub_stripes = 2;
2305 *min_stripes = 4;
321aecc6 2306 }
9b3f68b9 2307
b2117a39
MX
2308 return 0;
2309}
2310
2311static u64 __btrfs_calc_stripe_size(struct btrfs_fs_devices *fs_devices,
2312 u64 proposed_size, u64 type,
2313 int num_stripes, int small_stripe)
2314{
2315 int min_stripe_size = 1 * 1024 * 1024;
2316 u64 calc_size = proposed_size;
2317 u64 max_chunk_size = calc_size;
2318 int ncopies = 1;
2319
2320 if (type & (BTRFS_BLOCK_GROUP_RAID1 |
2321 BTRFS_BLOCK_GROUP_DUP |
2322 BTRFS_BLOCK_GROUP_RAID10))
2323 ncopies = 2;
2324
9b3f68b9
CM
2325 if (type & BTRFS_BLOCK_GROUP_DATA) {
2326 max_chunk_size = 10 * calc_size;
a40a90a0 2327 min_stripe_size = 64 * 1024 * 1024;
9b3f68b9 2328 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
83d3c969 2329 max_chunk_size = 256 * 1024 * 1024;
a40a90a0
CM
2330 min_stripe_size = 32 * 1024 * 1024;
2331 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2332 calc_size = 8 * 1024 * 1024;
2333 max_chunk_size = calc_size * 2;
2334 min_stripe_size = 1 * 1024 * 1024;
9b3f68b9
CM
2335 }
2336
2b82032c
YZ
2337 /* we don't want a chunk larger than 10% of writeable space */
2338 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2339 max_chunk_size);
9b3f68b9 2340
1974a3b4
MX
2341 if (calc_size * num_stripes > max_chunk_size * ncopies) {
2342 calc_size = max_chunk_size * ncopies;
9b3f68b9 2343 do_div(calc_size, num_stripes);
b2117a39
MX
2344 do_div(calc_size, BTRFS_STRIPE_LEN);
2345 calc_size *= BTRFS_STRIPE_LEN;
9b3f68b9 2346 }
0cad8a11 2347
9b3f68b9 2348 /* we don't want tiny stripes */
b2117a39 2349 if (!small_stripe)
0cad8a11 2350 calc_size = max_t(u64, min_stripe_size, calc_size);
9b3f68b9 2351
9f680ce0 2352 /*
b2117a39 2353 * we're about to do_div by the BTRFS_STRIPE_LEN so lets make sure
9f680ce0
CM
2354 * we end up with something bigger than a stripe
2355 */
b2117a39
MX
2356 calc_size = max_t(u64, calc_size, BTRFS_STRIPE_LEN);
2357
2358 do_div(calc_size, BTRFS_STRIPE_LEN);
2359 calc_size *= BTRFS_STRIPE_LEN;
2360
2361 return calc_size;
2362}
2363
2364static struct map_lookup *__shrink_map_lookup_stripes(struct map_lookup *map,
2365 int num_stripes)
2366{
2367 struct map_lookup *new;
2368 size_t len = map_lookup_size(num_stripes);
2369
2370 BUG_ON(map->num_stripes < num_stripes);
2371
2372 if (map->num_stripes == num_stripes)
2373 return map;
2374
2375 new = kmalloc(len, GFP_NOFS);
2376 if (!new) {
2377 /* just change map->num_stripes */
2378 map->num_stripes = num_stripes;
2379 return map;
2380 }
2381
2382 memcpy(new, map, len);
2383 new->num_stripes = num_stripes;
2384 kfree(map);
2385 return new;
2386}
2387
2388/*
2389 * helper to allocate device space from btrfs_device_info, in which we stored
2390 * max free space information of every device. It is used when we can not
2391 * allocate chunks by default size.
2392 *
2393 * By this helper, we can allocate a new chunk as larger as possible.
2394 */
2395static int __btrfs_alloc_tiny_space(struct btrfs_trans_handle *trans,
2396 struct btrfs_fs_devices *fs_devices,
2397 struct btrfs_device_info *devices,
2398 int nr_device, u64 type,
2399 struct map_lookup **map_lookup,
2400 int min_stripes, u64 *stripe_size)
2401{
2402 int i, index, sort_again = 0;
2403 int min_devices = min_stripes;
2404 u64 max_avail, min_free;
2405 struct map_lookup *map = *map_lookup;
2406 int ret;
9f680ce0 2407
b2117a39
MX
2408 if (nr_device < min_stripes)
2409 return -ENOSPC;
2410
2411 btrfs_descending_sort_devices(devices, nr_device);
2412
2413 max_avail = devices[0].max_avail;
2414 if (!max_avail)
2415 return -ENOSPC;
2416
2417 for (i = 0; i < nr_device; i++) {
2418 /*
2419 * if dev_offset = 0, it means the free space of this device
2420 * is less than what we need, and we didn't search max avail
2421 * extent on this device, so do it now.
2422 */
2423 if (!devices[i].dev_offset) {
2424 ret = find_free_dev_extent(trans, devices[i].dev,
2425 max_avail,
2426 &devices[i].dev_offset,
2427 &devices[i].max_avail);
2428 if (ret != 0 && ret != -ENOSPC)
2429 return ret;
2430 sort_again = 1;
2431 }
2432 }
2433
2434 /* we update the max avail free extent of each devices, sort again */
2435 if (sort_again)
2436 btrfs_descending_sort_devices(devices, nr_device);
2437
2438 if (type & BTRFS_BLOCK_GROUP_DUP)
2439 min_devices = 1;
2440
2441 if (!devices[min_devices - 1].max_avail)
2442 return -ENOSPC;
2443
2444 max_avail = devices[min_devices - 1].max_avail;
2445 if (type & BTRFS_BLOCK_GROUP_DUP)
2446 do_div(max_avail, 2);
2447
2448 max_avail = __btrfs_calc_stripe_size(fs_devices, max_avail, type,
2449 min_stripes, 1);
2450 if (type & BTRFS_BLOCK_GROUP_DUP)
2451 min_free = max_avail * 2;
2452 else
2453 min_free = max_avail;
2454
2455 if (min_free > devices[min_devices - 1].max_avail)
2456 return -ENOSPC;
2457
2458 map = __shrink_map_lookup_stripes(map, min_stripes);
2459 *stripe_size = max_avail;
2460
2461 index = 0;
2462 for (i = 0; i < min_stripes; i++) {
2463 map->stripes[i].dev = devices[index].dev;
2464 map->stripes[i].physical = devices[index].dev_offset;
2465 if (type & BTRFS_BLOCK_GROUP_DUP) {
2466 i++;
2467 map->stripes[i].dev = devices[index].dev;
2468 map->stripes[i].physical = devices[index].dev_offset +
2469 max_avail;
2470 }
2471 index++;
2472 }
2473 *map_lookup = map;
9f680ce0 2474
b2117a39
MX
2475 return 0;
2476}
2477
2478static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2479 struct btrfs_root *extent_root,
2480 struct map_lookup **map_ret,
2481 u64 *num_bytes, u64 *stripe_size,
2482 u64 start, u64 type)
2483{
2484 struct btrfs_fs_info *info = extent_root->fs_info;
2485 struct btrfs_device *device = NULL;
2486 struct btrfs_fs_devices *fs_devices = info->fs_devices;
2487 struct list_head *cur;
2488 struct map_lookup *map;
2489 struct extent_map_tree *em_tree;
2490 struct extent_map *em;
2491 struct btrfs_device_info *devices_info;
2492 struct list_head private_devs;
2493 u64 calc_size = 1024 * 1024 * 1024;
2494 u64 min_free;
2495 u64 avail;
2496 u64 dev_offset;
2497 int num_stripes;
2498 int min_stripes;
2499 int sub_stripes;
2500 int min_devices; /* the min number of devices we need */
2501 int i;
2502 int ret;
2503 int index;
2504
2505 if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2506 (type & BTRFS_BLOCK_GROUP_DUP)) {
2507 WARN_ON(1);
2508 type &= ~BTRFS_BLOCK_GROUP_DUP;
2509 }
2510 if (list_empty(&fs_devices->alloc_list))
2511 return -ENOSPC;
2512
2513 ret = __btrfs_calc_nstripes(fs_devices, type, &num_stripes,
2514 &min_stripes, &sub_stripes);
2515 if (ret)
2516 return ret;
2517
2518 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
2519 GFP_NOFS);
2520 if (!devices_info)
2521 return -ENOMEM;
2522
2523 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2524 if (!map) {
2525 ret = -ENOMEM;
2526 goto error;
2527 }
2528 map->num_stripes = num_stripes;
9b3f68b9 2529
2b82032c 2530 cur = fs_devices->alloc_list.next;
6324fbf3 2531 index = 0;
b2117a39 2532 i = 0;
611f0e00 2533
b2117a39
MX
2534 calc_size = __btrfs_calc_stripe_size(fs_devices, calc_size, type,
2535 num_stripes, 0);
2536
2537 if (type & BTRFS_BLOCK_GROUP_DUP) {
611f0e00 2538 min_free = calc_size * 2;
b2117a39
MX
2539 min_devices = 1;
2540 } else {
9b3f68b9 2541 min_free = calc_size;
b2117a39
MX
2542 min_devices = min_stripes;
2543 }
ad5bd91e 2544
2b82032c 2545 INIT_LIST_HEAD(&private_devs);
d397712b 2546 while (index < num_stripes) {
b3075717 2547 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2b82032c 2548 BUG_ON(!device->writeable);
dfe25020
CM
2549 if (device->total_bytes > device->bytes_used)
2550 avail = device->total_bytes - device->bytes_used;
2551 else
2552 avail = 0;
6324fbf3 2553 cur = cur->next;
8f18cf13 2554
dfe25020 2555 if (device->in_fs_metadata && avail >= min_free) {
b2117a39
MX
2556 ret = find_free_dev_extent(trans, device, min_free,
2557 &devices_info[i].dev_offset,
2558 &devices_info[i].max_avail);
8f18cf13
CM
2559 if (ret == 0) {
2560 list_move_tail(&device->dev_alloc_list,
2561 &private_devs);
2b82032c 2562 map->stripes[index].dev = device;
b2117a39
MX
2563 map->stripes[index].physical =
2564 devices_info[i].dev_offset;
611f0e00 2565 index++;
2b82032c
YZ
2566 if (type & BTRFS_BLOCK_GROUP_DUP) {
2567 map->stripes[index].dev = device;
2568 map->stripes[index].physical =
b2117a39
MX
2569 devices_info[i].dev_offset +
2570 calc_size;
8f18cf13 2571 index++;
2b82032c 2572 }
b2117a39
MX
2573 } else if (ret != -ENOSPC)
2574 goto error;
2575
2576 devices_info[i].dev = device;
2577 i++;
2578 } else if (device->in_fs_metadata &&
2579 avail >= BTRFS_STRIPE_LEN) {
2580 devices_info[i].dev = device;
2581 devices_info[i].max_avail = avail;
2582 i++;
2583 }
2584
2b82032c 2585 if (cur == &fs_devices->alloc_list)
6324fbf3
CM
2586 break;
2587 }
b2117a39 2588
2b82032c 2589 list_splice(&private_devs, &fs_devices->alloc_list);
6324fbf3 2590 if (index < num_stripes) {
a40a90a0
CM
2591 if (index >= min_stripes) {
2592 num_stripes = index;
2593 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2594 num_stripes /= sub_stripes;
2595 num_stripes *= sub_stripes;
2596 }
b2117a39
MX
2597
2598 map = __shrink_map_lookup_stripes(map, num_stripes);
2599 } else if (i >= min_devices) {
2600 ret = __btrfs_alloc_tiny_space(trans, fs_devices,
2601 devices_info, i, type,
2602 &map, min_stripes,
2603 &calc_size);
2604 if (ret)
2605 goto error;
2606 } else {
2607 ret = -ENOSPC;
2608 goto error;
6324fbf3 2609 }
6324fbf3 2610 }
2b82032c 2611 map->sector_size = extent_root->sectorsize;
b2117a39
MX
2612 map->stripe_len = BTRFS_STRIPE_LEN;
2613 map->io_align = BTRFS_STRIPE_LEN;
2614 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 2615 map->type = type;
2b82032c 2616 map->sub_stripes = sub_stripes;
0b86a832 2617
2b82032c
YZ
2618 *map_ret = map;
2619 *stripe_size = calc_size;
2620 *num_bytes = chunk_bytes_by_type(type, calc_size,
b2117a39 2621 map->num_stripes, sub_stripes);
0b86a832 2622
1abe9b8a 2623 trace_btrfs_chunk_alloc(info->chunk_root, map, start, *num_bytes);
2624
2b82032c
YZ
2625 em = alloc_extent_map(GFP_NOFS);
2626 if (!em) {
b2117a39
MX
2627 ret = -ENOMEM;
2628 goto error;
593060d7 2629 }
2b82032c
YZ
2630 em->bdev = (struct block_device *)map;
2631 em->start = start;
2632 em->len = *num_bytes;
2633 em->block_start = 0;
2634 em->block_len = em->len;
593060d7 2635
2b82032c 2636 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 2637 write_lock(&em_tree->lock);
2b82032c 2638 ret = add_extent_mapping(em_tree, em);
890871be 2639 write_unlock(&em_tree->lock);
2b82032c
YZ
2640 BUG_ON(ret);
2641 free_extent_map(em);
0b86a832 2642
2b82032c
YZ
2643 ret = btrfs_make_block_group(trans, extent_root, 0, type,
2644 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2645 start, *num_bytes);
2646 BUG_ON(ret);
611f0e00 2647
2b82032c
YZ
2648 index = 0;
2649 while (index < map->num_stripes) {
2650 device = map->stripes[index].dev;
2651 dev_offset = map->stripes[index].physical;
0b86a832
CM
2652
2653 ret = btrfs_alloc_dev_extent(trans, device,
2b82032c
YZ
2654 info->chunk_root->root_key.objectid,
2655 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2656 start, dev_offset, calc_size);
0b86a832 2657 BUG_ON(ret);
2b82032c
YZ
2658 index++;
2659 }
2660
b2117a39 2661 kfree(devices_info);
2b82032c 2662 return 0;
b2117a39
MX
2663
2664error:
2665 kfree(map);
2666 kfree(devices_info);
2667 return ret;
2b82032c
YZ
2668}
2669
2670static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2671 struct btrfs_root *extent_root,
2672 struct map_lookup *map, u64 chunk_offset,
2673 u64 chunk_size, u64 stripe_size)
2674{
2675 u64 dev_offset;
2676 struct btrfs_key key;
2677 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2678 struct btrfs_device *device;
2679 struct btrfs_chunk *chunk;
2680 struct btrfs_stripe *stripe;
2681 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2682 int index = 0;
2683 int ret;
2684
2685 chunk = kzalloc(item_size, GFP_NOFS);
2686 if (!chunk)
2687 return -ENOMEM;
2688
2689 index = 0;
2690 while (index < map->num_stripes) {
2691 device = map->stripes[index].dev;
2692 device->bytes_used += stripe_size;
0b86a832
CM
2693 ret = btrfs_update_device(trans, device);
2694 BUG_ON(ret);
2b82032c
YZ
2695 index++;
2696 }
2697
2698 index = 0;
2699 stripe = &chunk->stripe;
2700 while (index < map->num_stripes) {
2701 device = map->stripes[index].dev;
2702 dev_offset = map->stripes[index].physical;
0b86a832 2703
e17cade2
CM
2704 btrfs_set_stack_stripe_devid(stripe, device->devid);
2705 btrfs_set_stack_stripe_offset(stripe, dev_offset);
2706 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 2707 stripe++;
0b86a832
CM
2708 index++;
2709 }
2710
2b82032c 2711 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 2712 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
2713 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2714 btrfs_set_stack_chunk_type(chunk, map->type);
2715 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2716 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2717 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 2718 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 2719 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 2720
2b82032c
YZ
2721 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2722 key.type = BTRFS_CHUNK_ITEM_KEY;
2723 key.offset = chunk_offset;
0b86a832 2724
2b82032c
YZ
2725 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2726 BUG_ON(ret);
0b86a832 2727
2b82032c
YZ
2728 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2729 ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2730 item_size);
8f18cf13
CM
2731 BUG_ON(ret);
2732 }
1abe9b8a 2733
0b86a832 2734 kfree(chunk);
2b82032c
YZ
2735 return 0;
2736}
0b86a832 2737
2b82032c
YZ
2738/*
2739 * Chunk allocation falls into two parts. The first part does works
2740 * that make the new allocated chunk useable, but not do any operation
2741 * that modifies the chunk tree. The second part does the works that
2742 * require modifying the chunk tree. This division is important for the
2743 * bootstrap process of adding storage to a seed btrfs.
2744 */
2745int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2746 struct btrfs_root *extent_root, u64 type)
2747{
2748 u64 chunk_offset;
2749 u64 chunk_size;
2750 u64 stripe_size;
2751 struct map_lookup *map;
2752 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2753 int ret;
2754
2755 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2756 &chunk_offset);
2757 if (ret)
2758 return ret;
2759
2760 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2761 &stripe_size, chunk_offset, type);
2762 if (ret)
2763 return ret;
2764
2765 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2766 chunk_size, stripe_size);
2767 BUG_ON(ret);
2768 return 0;
2769}
2770
d397712b 2771static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
2772 struct btrfs_root *root,
2773 struct btrfs_device *device)
2774{
2775 u64 chunk_offset;
2776 u64 sys_chunk_offset;
2777 u64 chunk_size;
2778 u64 sys_chunk_size;
2779 u64 stripe_size;
2780 u64 sys_stripe_size;
2781 u64 alloc_profile;
2782 struct map_lookup *map;
2783 struct map_lookup *sys_map;
2784 struct btrfs_fs_info *fs_info = root->fs_info;
2785 struct btrfs_root *extent_root = fs_info->extent_root;
2786 int ret;
2787
2788 ret = find_next_chunk(fs_info->chunk_root,
2789 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2790 BUG_ON(ret);
2791
2792 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2793 (fs_info->metadata_alloc_profile &
2794 fs_info->avail_metadata_alloc_bits);
2795 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2796
2797 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2798 &stripe_size, chunk_offset, alloc_profile);
2799 BUG_ON(ret);
2800
2801 sys_chunk_offset = chunk_offset + chunk_size;
2802
2803 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2804 (fs_info->system_alloc_profile &
2805 fs_info->avail_system_alloc_bits);
2806 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2807
2808 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2809 &sys_chunk_size, &sys_stripe_size,
2810 sys_chunk_offset, alloc_profile);
2811 BUG_ON(ret);
2812
2813 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2814 BUG_ON(ret);
2815
2816 /*
2817 * Modifying chunk tree needs allocating new blocks from both
2818 * system block group and metadata block group. So we only can
2819 * do operations require modifying the chunk tree after both
2820 * block groups were created.
2821 */
2822 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2823 chunk_size, stripe_size);
2824 BUG_ON(ret);
2825
2826 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2827 sys_chunk_offset, sys_chunk_size,
2828 sys_stripe_size);
b248a415 2829 BUG_ON(ret);
2b82032c
YZ
2830 return 0;
2831}
2832
2833int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2834{
2835 struct extent_map *em;
2836 struct map_lookup *map;
2837 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2838 int readonly = 0;
2839 int i;
2840
890871be 2841 read_lock(&map_tree->map_tree.lock);
2b82032c 2842 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 2843 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
2844 if (!em)
2845 return 1;
2846
f48b9075
JB
2847 if (btrfs_test_opt(root, DEGRADED)) {
2848 free_extent_map(em);
2849 return 0;
2850 }
2851
2b82032c
YZ
2852 map = (struct map_lookup *)em->bdev;
2853 for (i = 0; i < map->num_stripes; i++) {
2854 if (!map->stripes[i].dev->writeable) {
2855 readonly = 1;
2856 break;
2857 }
2858 }
0b86a832 2859 free_extent_map(em);
2b82032c 2860 return readonly;
0b86a832
CM
2861}
2862
2863void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2864{
2865 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2866}
2867
2868void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2869{
2870 struct extent_map *em;
2871
d397712b 2872 while (1) {
890871be 2873 write_lock(&tree->map_tree.lock);
0b86a832
CM
2874 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2875 if (em)
2876 remove_extent_mapping(&tree->map_tree, em);
890871be 2877 write_unlock(&tree->map_tree.lock);
0b86a832
CM
2878 if (!em)
2879 break;
2880 kfree(em->bdev);
2881 /* once for us */
2882 free_extent_map(em);
2883 /* once for the tree */
2884 free_extent_map(em);
2885 }
2886}
2887
f188591e
CM
2888int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2889{
2890 struct extent_map *em;
2891 struct map_lookup *map;
2892 struct extent_map_tree *em_tree = &map_tree->map_tree;
2893 int ret;
2894
890871be 2895 read_lock(&em_tree->lock);
f188591e 2896 em = lookup_extent_mapping(em_tree, logical, len);
890871be 2897 read_unlock(&em_tree->lock);
f188591e
CM
2898 BUG_ON(!em);
2899
2900 BUG_ON(em->start > logical || em->start + em->len < logical);
2901 map = (struct map_lookup *)em->bdev;
2902 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2903 ret = map->num_stripes;
321aecc6
CM
2904 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2905 ret = map->sub_stripes;
f188591e
CM
2906 else
2907 ret = 1;
2908 free_extent_map(em);
f188591e
CM
2909 return ret;
2910}
2911
dfe25020
CM
2912static int find_live_mirror(struct map_lookup *map, int first, int num,
2913 int optimal)
2914{
2915 int i;
2916 if (map->stripes[optimal].dev->bdev)
2917 return optimal;
2918 for (i = first; i < first + num; i++) {
2919 if (map->stripes[i].dev->bdev)
2920 return i;
2921 }
2922 /* we couldn't find one that doesn't fail. Just return something
2923 * and the io error handling code will clean up eventually
2924 */
2925 return optimal;
2926}
2927
f2d8d74d
CM
2928static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2929 u64 logical, u64 *length,
2930 struct btrfs_multi_bio **multi_ret,
7eaceacc 2931 int mirror_num)
0b86a832
CM
2932{
2933 struct extent_map *em;
2934 struct map_lookup *map;
2935 struct extent_map_tree *em_tree = &map_tree->map_tree;
2936 u64 offset;
593060d7 2937 u64 stripe_offset;
fce3bb9a 2938 u64 stripe_end_offset;
593060d7 2939 u64 stripe_nr;
fce3bb9a
LD
2940 u64 stripe_nr_orig;
2941 u64 stripe_nr_end;
cea9e445 2942 int stripes_allocated = 8;
321aecc6 2943 int stripes_required = 1;
593060d7 2944 int stripe_index;
cea9e445 2945 int i;
f2d8d74d 2946 int num_stripes;
a236aed1 2947 int max_errors = 0;
cea9e445 2948 struct btrfs_multi_bio *multi = NULL;
0b86a832 2949
fce3bb9a 2950 if (multi_ret && !(rw & (REQ_WRITE | REQ_DISCARD)))
cea9e445 2951 stripes_allocated = 1;
cea9e445
CM
2952again:
2953 if (multi_ret) {
2954 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2955 GFP_NOFS);
2956 if (!multi)
2957 return -ENOMEM;
a236aed1
CM
2958
2959 atomic_set(&multi->error, 0);
cea9e445 2960 }
0b86a832 2961
890871be 2962 read_lock(&em_tree->lock);
0b86a832 2963 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 2964 read_unlock(&em_tree->lock);
f2d8d74d 2965
3b951516 2966 if (!em) {
d397712b
CM
2967 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2968 (unsigned long long)logical,
2969 (unsigned long long)*length);
f2d8d74d 2970 BUG();
3b951516 2971 }
0b86a832
CM
2972
2973 BUG_ON(em->start > logical || em->start + em->len < logical);
2974 map = (struct map_lookup *)em->bdev;
2975 offset = logical - em->start;
593060d7 2976
f188591e
CM
2977 if (mirror_num > map->num_stripes)
2978 mirror_num = 0;
2979
cea9e445 2980 /* if our multi bio struct is too small, back off and try again */
7b6d91da 2981 if (rw & REQ_WRITE) {
321aecc6
CM
2982 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
2983 BTRFS_BLOCK_GROUP_DUP)) {
2984 stripes_required = map->num_stripes;
a236aed1 2985 max_errors = 1;
321aecc6
CM
2986 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2987 stripes_required = map->sub_stripes;
a236aed1 2988 max_errors = 1;
321aecc6
CM
2989 }
2990 }
fce3bb9a
LD
2991 if (rw & REQ_DISCARD) {
2992 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2993 BTRFS_BLOCK_GROUP_RAID1 |
2994 BTRFS_BLOCK_GROUP_DUP |
2995 BTRFS_BLOCK_GROUP_RAID10)) {
2996 stripes_required = map->num_stripes;
2997 }
2998 }
2999 if (multi_ret && (rw & (REQ_WRITE | REQ_DISCARD)) &&
321aecc6 3000 stripes_allocated < stripes_required) {
cea9e445 3001 stripes_allocated = map->num_stripes;
cea9e445
CM
3002 free_extent_map(em);
3003 kfree(multi);
3004 goto again;
3005 }
593060d7
CM
3006 stripe_nr = offset;
3007 /*
3008 * stripe_nr counts the total number of stripes we have to stride
3009 * to get to this block
3010 */
3011 do_div(stripe_nr, map->stripe_len);
3012
3013 stripe_offset = stripe_nr * map->stripe_len;
3014 BUG_ON(offset < stripe_offset);
3015
3016 /* stripe_offset is the offset of this block in its stripe*/
3017 stripe_offset = offset - stripe_offset;
3018
fce3bb9a
LD
3019 if (rw & REQ_DISCARD)
3020 *length = min_t(u64, em->len - offset, *length);
3021 else if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3022 BTRFS_BLOCK_GROUP_RAID1 |
3023 BTRFS_BLOCK_GROUP_RAID10 |
3024 BTRFS_BLOCK_GROUP_DUP)) {
cea9e445
CM
3025 /* we limit the length of each bio to what fits in a stripe */
3026 *length = min_t(u64, em->len - offset,
fce3bb9a 3027 map->stripe_len - stripe_offset);
cea9e445
CM
3028 } else {
3029 *length = em->len - offset;
3030 }
f2d8d74d 3031
7eaceacc 3032 if (!multi_ret)
cea9e445
CM
3033 goto out;
3034
f2d8d74d 3035 num_stripes = 1;
cea9e445 3036 stripe_index = 0;
fce3bb9a
LD
3037 stripe_nr_orig = stripe_nr;
3038 stripe_nr_end = (offset + *length + map->stripe_len - 1) &
3039 (~(map->stripe_len - 1));
3040 do_div(stripe_nr_end, map->stripe_len);
3041 stripe_end_offset = stripe_nr_end * map->stripe_len -
3042 (offset + *length);
3043 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3044 if (rw & REQ_DISCARD)
3045 num_stripes = min_t(u64, map->num_stripes,
3046 stripe_nr_end - stripe_nr_orig);
3047 stripe_index = do_div(stripe_nr, map->num_stripes);
3048 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
212a17ab 3049 if (rw & (REQ_WRITE | REQ_DISCARD))
f2d8d74d 3050 num_stripes = map->num_stripes;
2fff734f 3051 else if (mirror_num)
f188591e 3052 stripe_index = mirror_num - 1;
dfe25020
CM
3053 else {
3054 stripe_index = find_live_mirror(map, 0,
3055 map->num_stripes,
3056 current->pid % map->num_stripes);
3057 }
2fff734f 3058
611f0e00 3059 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
fce3bb9a 3060 if (rw & (REQ_WRITE | REQ_DISCARD))
f2d8d74d 3061 num_stripes = map->num_stripes;
f188591e
CM
3062 else if (mirror_num)
3063 stripe_index = mirror_num - 1;
2fff734f 3064
321aecc6
CM
3065 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3066 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
3067
3068 stripe_index = do_div(stripe_nr, factor);
3069 stripe_index *= map->sub_stripes;
3070
7eaceacc 3071 if (rw & REQ_WRITE)
f2d8d74d 3072 num_stripes = map->sub_stripes;
fce3bb9a
LD
3073 else if (rw & REQ_DISCARD)
3074 num_stripes = min_t(u64, map->sub_stripes *
3075 (stripe_nr_end - stripe_nr_orig),
3076 map->num_stripes);
321aecc6
CM
3077 else if (mirror_num)
3078 stripe_index += mirror_num - 1;
dfe25020
CM
3079 else {
3080 stripe_index = find_live_mirror(map, stripe_index,
3081 map->sub_stripes, stripe_index +
3082 current->pid % map->sub_stripes);
3083 }
8790d502
CM
3084 } else {
3085 /*
3086 * after this do_div call, stripe_nr is the number of stripes
3087 * on this device we have to walk to find the data, and
3088 * stripe_index is the number of our device in the stripe array
3089 */
3090 stripe_index = do_div(stripe_nr, map->num_stripes);
3091 }
593060d7 3092 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 3093
fce3bb9a
LD
3094 if (rw & REQ_DISCARD) {
3095 for (i = 0; i < num_stripes; i++) {
f2d8d74d
CM
3096 multi->stripes[i].physical =
3097 map->stripes[stripe_index].physical +
3098 stripe_offset + stripe_nr * map->stripe_len;
3099 multi->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a
LD
3100
3101 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3102 u64 stripes;
d9d04879 3103 u32 last_stripe = 0;
fce3bb9a
LD
3104 int j;
3105
d9d04879
CM
3106 div_u64_rem(stripe_nr_end - 1,
3107 map->num_stripes,
3108 &last_stripe);
3109
fce3bb9a 3110 for (j = 0; j < map->num_stripes; j++) {
d9d04879
CM
3111 u32 test;
3112
3113 div_u64_rem(stripe_nr_end - 1 - j,
3114 map->num_stripes, &test);
3115 if (test == stripe_index)
fce3bb9a
LD
3116 break;
3117 }
3118 stripes = stripe_nr_end - 1 - j;
3119 do_div(stripes, map->num_stripes);
3120 multi->stripes[i].length = map->stripe_len *
3121 (stripes - stripe_nr + 1);
3122
3123 if (i == 0) {
3124 multi->stripes[i].length -=
3125 stripe_offset;
3126 stripe_offset = 0;
3127 }
3128 if (stripe_index == last_stripe)
3129 multi->stripes[i].length -=
3130 stripe_end_offset;
3131 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3132 u64 stripes;
3133 int j;
3134 int factor = map->num_stripes /
3135 map->sub_stripes;
d9d04879
CM
3136 u32 last_stripe = 0;
3137
3138 div_u64_rem(stripe_nr_end - 1,
3139 factor, &last_stripe);
fce3bb9a
LD
3140 last_stripe *= map->sub_stripes;
3141
3142 for (j = 0; j < factor; j++) {
d9d04879
CM
3143 u32 test;
3144
3145 div_u64_rem(stripe_nr_end - 1 - j,
3146 factor, &test);
3147
3148 if (test ==
fce3bb9a
LD
3149 stripe_index / map->sub_stripes)
3150 break;
3151 }
3152 stripes = stripe_nr_end - 1 - j;
3153 do_div(stripes, factor);
3154 multi->stripes[i].length = map->stripe_len *
3155 (stripes - stripe_nr + 1);
3156
3157 if (i < map->sub_stripes) {
3158 multi->stripes[i].length -=
3159 stripe_offset;
3160 if (i == map->sub_stripes - 1)
3161 stripe_offset = 0;
3162 }
3163 if (stripe_index >= last_stripe &&
3164 stripe_index <= (last_stripe +
3165 map->sub_stripes - 1)) {
3166 multi->stripes[i].length -=
3167 stripe_end_offset;
3168 }
3169 } else
3170 multi->stripes[i].length = *length;
3171
3172 stripe_index++;
3173 if (stripe_index == map->num_stripes) {
3174 /* This could only happen for RAID0/10 */
3175 stripe_index = 0;
3176 stripe_nr++;
3177 }
3178 }
3179 } else {
3180 for (i = 0; i < num_stripes; i++) {
212a17ab
LT
3181 multi->stripes[i].physical =
3182 map->stripes[stripe_index].physical +
3183 stripe_offset +
3184 stripe_nr * map->stripe_len;
3185 multi->stripes[i].dev =
3186 map->stripes[stripe_index].dev;
fce3bb9a 3187 stripe_index++;
f2d8d74d 3188 }
593060d7 3189 }
f2d8d74d
CM
3190 if (multi_ret) {
3191 *multi_ret = multi;
3192 multi->num_stripes = num_stripes;
a236aed1 3193 multi->max_errors = max_errors;
f2d8d74d 3194 }
cea9e445 3195out:
0b86a832 3196 free_extent_map(em);
0b86a832
CM
3197 return 0;
3198}
3199
f2d8d74d
CM
3200int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3201 u64 logical, u64 *length,
3202 struct btrfs_multi_bio **multi_ret, int mirror_num)
3203{
3204 return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
7eaceacc 3205 mirror_num);
f2d8d74d
CM
3206}
3207
a512bbf8
YZ
3208int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3209 u64 chunk_start, u64 physical, u64 devid,
3210 u64 **logical, int *naddrs, int *stripe_len)
3211{
3212 struct extent_map_tree *em_tree = &map_tree->map_tree;
3213 struct extent_map *em;
3214 struct map_lookup *map;
3215 u64 *buf;
3216 u64 bytenr;
3217 u64 length;
3218 u64 stripe_nr;
3219 int i, j, nr = 0;
3220
890871be 3221 read_lock(&em_tree->lock);
a512bbf8 3222 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 3223 read_unlock(&em_tree->lock);
a512bbf8
YZ
3224
3225 BUG_ON(!em || em->start != chunk_start);
3226 map = (struct map_lookup *)em->bdev;
3227
3228 length = em->len;
3229 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3230 do_div(length, map->num_stripes / map->sub_stripes);
3231 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3232 do_div(length, map->num_stripes);
3233
3234 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
3235 BUG_ON(!buf);
3236
3237 for (i = 0; i < map->num_stripes; i++) {
3238 if (devid && map->stripes[i].dev->devid != devid)
3239 continue;
3240 if (map->stripes[i].physical > physical ||
3241 map->stripes[i].physical + length <= physical)
3242 continue;
3243
3244 stripe_nr = physical - map->stripes[i].physical;
3245 do_div(stripe_nr, map->stripe_len);
3246
3247 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3248 stripe_nr = stripe_nr * map->num_stripes + i;
3249 do_div(stripe_nr, map->sub_stripes);
3250 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3251 stripe_nr = stripe_nr * map->num_stripes + i;
3252 }
3253 bytenr = chunk_start + stripe_nr * map->stripe_len;
934d375b 3254 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
3255 for (j = 0; j < nr; j++) {
3256 if (buf[j] == bytenr)
3257 break;
3258 }
934d375b
CM
3259 if (j == nr) {
3260 WARN_ON(nr >= map->num_stripes);
a512bbf8 3261 buf[nr++] = bytenr;
934d375b 3262 }
a512bbf8
YZ
3263 }
3264
a512bbf8
YZ
3265 *logical = buf;
3266 *naddrs = nr;
3267 *stripe_len = map->stripe_len;
3268
3269 free_extent_map(em);
3270 return 0;
f2d8d74d
CM
3271}
3272
8790d502 3273static void end_bio_multi_stripe(struct bio *bio, int err)
8790d502 3274{
cea9e445 3275 struct btrfs_multi_bio *multi = bio->bi_private;
7d2b4daa 3276 int is_orig_bio = 0;
8790d502 3277
8790d502 3278 if (err)
a236aed1 3279 atomic_inc(&multi->error);
8790d502 3280
7d2b4daa
CM
3281 if (bio == multi->orig_bio)
3282 is_orig_bio = 1;
3283
cea9e445 3284 if (atomic_dec_and_test(&multi->stripes_pending)) {
7d2b4daa
CM
3285 if (!is_orig_bio) {
3286 bio_put(bio);
3287 bio = multi->orig_bio;
3288 }
8790d502
CM
3289 bio->bi_private = multi->private;
3290 bio->bi_end_io = multi->end_io;
a236aed1
CM
3291 /* only send an error to the higher layers if it is
3292 * beyond the tolerance of the multi-bio
3293 */
1259ab75 3294 if (atomic_read(&multi->error) > multi->max_errors) {
a236aed1 3295 err = -EIO;
1259ab75
CM
3296 } else if (err) {
3297 /*
3298 * this bio is actually up to date, we didn't
3299 * go over the max number of errors
3300 */
3301 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 3302 err = 0;
1259ab75 3303 }
8790d502
CM
3304 kfree(multi);
3305
3306 bio_endio(bio, err);
7d2b4daa 3307 } else if (!is_orig_bio) {
8790d502
CM
3308 bio_put(bio);
3309 }
8790d502
CM
3310}
3311
8b712842
CM
3312struct async_sched {
3313 struct bio *bio;
3314 int rw;
3315 struct btrfs_fs_info *info;
3316 struct btrfs_work work;
3317};
3318
3319/*
3320 * see run_scheduled_bios for a description of why bios are collected for
3321 * async submit.
3322 *
3323 * This will add one bio to the pending list for a device and make sure
3324 * the work struct is scheduled.
3325 */
d397712b 3326static noinline int schedule_bio(struct btrfs_root *root,
a1b32a59
CM
3327 struct btrfs_device *device,
3328 int rw, struct bio *bio)
8b712842
CM
3329{
3330 int should_queue = 1;
ffbd517d 3331 struct btrfs_pending_bios *pending_bios;
8b712842
CM
3332
3333 /* don't bother with additional async steps for reads, right now */
7b6d91da 3334 if (!(rw & REQ_WRITE)) {
492bb6de 3335 bio_get(bio);
8b712842 3336 submit_bio(rw, bio);
492bb6de 3337 bio_put(bio);
8b712842
CM
3338 return 0;
3339 }
3340
3341 /*
0986fe9e 3342 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
3343 * higher layers. Otherwise, the async bio makes it appear we have
3344 * made progress against dirty pages when we've really just put it
3345 * on a queue for later
3346 */
0986fe9e 3347 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 3348 WARN_ON(bio->bi_next);
8b712842
CM
3349 bio->bi_next = NULL;
3350 bio->bi_rw |= rw;
3351
3352 spin_lock(&device->io_lock);
7b6d91da 3353 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
3354 pending_bios = &device->pending_sync_bios;
3355 else
3356 pending_bios = &device->pending_bios;
8b712842 3357
ffbd517d
CM
3358 if (pending_bios->tail)
3359 pending_bios->tail->bi_next = bio;
8b712842 3360
ffbd517d
CM
3361 pending_bios->tail = bio;
3362 if (!pending_bios->head)
3363 pending_bios->head = bio;
8b712842
CM
3364 if (device->running_pending)
3365 should_queue = 0;
3366
3367 spin_unlock(&device->io_lock);
3368
3369 if (should_queue)
1cc127b5
CM
3370 btrfs_queue_worker(&root->fs_info->submit_workers,
3371 &device->work);
8b712842
CM
3372 return 0;
3373}
3374
f188591e 3375int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 3376 int mirror_num, int async_submit)
0b86a832
CM
3377{
3378 struct btrfs_mapping_tree *map_tree;
3379 struct btrfs_device *dev;
8790d502 3380 struct bio *first_bio = bio;
a62b9401 3381 u64 logical = (u64)bio->bi_sector << 9;
0b86a832
CM
3382 u64 length = 0;
3383 u64 map_length;
cea9e445 3384 struct btrfs_multi_bio *multi = NULL;
0b86a832 3385 int ret;
8790d502
CM
3386 int dev_nr = 0;
3387 int total_devs = 1;
0b86a832 3388
f2d8d74d 3389 length = bio->bi_size;
0b86a832
CM
3390 map_tree = &root->fs_info->mapping_tree;
3391 map_length = length;
cea9e445 3392
f188591e
CM
3393 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
3394 mirror_num);
cea9e445
CM
3395 BUG_ON(ret);
3396
3397 total_devs = multi->num_stripes;
3398 if (map_length < length) {
d397712b
CM
3399 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
3400 "len %llu\n", (unsigned long long)logical,
3401 (unsigned long long)length,
3402 (unsigned long long)map_length);
cea9e445
CM
3403 BUG();
3404 }
3405 multi->end_io = first_bio->bi_end_io;
3406 multi->private = first_bio->bi_private;
7d2b4daa 3407 multi->orig_bio = first_bio;
cea9e445
CM
3408 atomic_set(&multi->stripes_pending, multi->num_stripes);
3409
d397712b 3410 while (dev_nr < total_devs) {
8790d502 3411 if (total_devs > 1) {
8790d502
CM
3412 if (dev_nr < total_devs - 1) {
3413 bio = bio_clone(first_bio, GFP_NOFS);
3414 BUG_ON(!bio);
3415 } else {
3416 bio = first_bio;
3417 }
3418 bio->bi_private = multi;
3419 bio->bi_end_io = end_bio_multi_stripe;
3420 }
cea9e445
CM
3421 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
3422 dev = multi->stripes[dev_nr].dev;
18e503d6 3423 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
dfe25020 3424 bio->bi_bdev = dev->bdev;
8b712842
CM
3425 if (async_submit)
3426 schedule_bio(root, dev, rw, bio);
3427 else
3428 submit_bio(rw, bio);
dfe25020
CM
3429 } else {
3430 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
3431 bio->bi_sector = logical >> 9;
dfe25020 3432 bio_endio(bio, -EIO);
dfe25020 3433 }
8790d502
CM
3434 dev_nr++;
3435 }
cea9e445
CM
3436 if (total_devs == 1)
3437 kfree(multi);
0b86a832
CM
3438 return 0;
3439}
3440
a443755f 3441struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2b82032c 3442 u8 *uuid, u8 *fsid)
0b86a832 3443{
2b82032c
YZ
3444 struct btrfs_device *device;
3445 struct btrfs_fs_devices *cur_devices;
3446
3447 cur_devices = root->fs_info->fs_devices;
3448 while (cur_devices) {
3449 if (!fsid ||
3450 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3451 device = __find_device(&cur_devices->devices,
3452 devid, uuid);
3453 if (device)
3454 return device;
3455 }
3456 cur_devices = cur_devices->seed;
3457 }
3458 return NULL;
0b86a832
CM
3459}
3460
dfe25020
CM
3461static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
3462 u64 devid, u8 *dev_uuid)
3463{
3464 struct btrfs_device *device;
3465 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
3466
3467 device = kzalloc(sizeof(*device), GFP_NOFS);
7cbd8a83 3468 if (!device)
3469 return NULL;
dfe25020
CM
3470 list_add(&device->dev_list,
3471 &fs_devices->devices);
dfe25020
CM
3472 device->dev_root = root->fs_info->dev_root;
3473 device->devid = devid;
8b712842 3474 device->work.func = pending_bios_fn;
e4404d6e 3475 device->fs_devices = fs_devices;
cd02dca5 3476 device->missing = 1;
dfe25020 3477 fs_devices->num_devices++;
cd02dca5 3478 fs_devices->missing_devices++;
dfe25020 3479 spin_lock_init(&device->io_lock);
d20f7043 3480 INIT_LIST_HEAD(&device->dev_alloc_list);
dfe25020
CM
3481 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
3482 return device;
3483}
3484
0b86a832
CM
3485static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
3486 struct extent_buffer *leaf,
3487 struct btrfs_chunk *chunk)
3488{
3489 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3490 struct map_lookup *map;
3491 struct extent_map *em;
3492 u64 logical;
3493 u64 length;
3494 u64 devid;
a443755f 3495 u8 uuid[BTRFS_UUID_SIZE];
593060d7 3496 int num_stripes;
0b86a832 3497 int ret;
593060d7 3498 int i;
0b86a832 3499
e17cade2
CM
3500 logical = key->offset;
3501 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 3502
890871be 3503 read_lock(&map_tree->map_tree.lock);
0b86a832 3504 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 3505 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
3506
3507 /* already mapped? */
3508 if (em && em->start <= logical && em->start + em->len > logical) {
3509 free_extent_map(em);
0b86a832
CM
3510 return 0;
3511 } else if (em) {
3512 free_extent_map(em);
3513 }
0b86a832 3514
0b86a832
CM
3515 em = alloc_extent_map(GFP_NOFS);
3516 if (!em)
3517 return -ENOMEM;
593060d7
CM
3518 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3519 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
3520 if (!map) {
3521 free_extent_map(em);
3522 return -ENOMEM;
3523 }
3524
3525 em->bdev = (struct block_device *)map;
3526 em->start = logical;
3527 em->len = length;
3528 em->block_start = 0;
c8b97818 3529 em->block_len = em->len;
0b86a832 3530
593060d7
CM
3531 map->num_stripes = num_stripes;
3532 map->io_width = btrfs_chunk_io_width(leaf, chunk);
3533 map->io_align = btrfs_chunk_io_align(leaf, chunk);
3534 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3535 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3536 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 3537 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
3538 for (i = 0; i < num_stripes; i++) {
3539 map->stripes[i].physical =
3540 btrfs_stripe_offset_nr(leaf, chunk, i);
3541 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
3542 read_extent_buffer(leaf, uuid, (unsigned long)
3543 btrfs_stripe_dev_uuid_nr(chunk, i),
3544 BTRFS_UUID_SIZE);
2b82032c
YZ
3545 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3546 NULL);
dfe25020 3547 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
3548 kfree(map);
3549 free_extent_map(em);
3550 return -EIO;
3551 }
dfe25020
CM
3552 if (!map->stripes[i].dev) {
3553 map->stripes[i].dev =
3554 add_missing_dev(root, devid, uuid);
3555 if (!map->stripes[i].dev) {
3556 kfree(map);
3557 free_extent_map(em);
3558 return -EIO;
3559 }
3560 }
3561 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
3562 }
3563
890871be 3564 write_lock(&map_tree->map_tree.lock);
0b86a832 3565 ret = add_extent_mapping(&map_tree->map_tree, em);
890871be 3566 write_unlock(&map_tree->map_tree.lock);
b248a415 3567 BUG_ON(ret);
0b86a832
CM
3568 free_extent_map(em);
3569
3570 return 0;
3571}
3572
3573static int fill_device_from_item(struct extent_buffer *leaf,
3574 struct btrfs_dev_item *dev_item,
3575 struct btrfs_device *device)
3576{
3577 unsigned long ptr;
0b86a832
CM
3578
3579 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
3580 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3581 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
3582 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3583 device->type = btrfs_device_type(leaf, dev_item);
3584 device->io_align = btrfs_device_io_align(leaf, dev_item);
3585 device->io_width = btrfs_device_io_width(leaf, dev_item);
3586 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
0b86a832
CM
3587
3588 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 3589 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832 3590
0b86a832
CM
3591 return 0;
3592}
3593
2b82032c
YZ
3594static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3595{
3596 struct btrfs_fs_devices *fs_devices;
3597 int ret;
3598
3599 mutex_lock(&uuid_mutex);
3600
3601 fs_devices = root->fs_info->fs_devices->seed;
3602 while (fs_devices) {
3603 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3604 ret = 0;
3605 goto out;
3606 }
3607 fs_devices = fs_devices->seed;
3608 }
3609
3610 fs_devices = find_fsid(fsid);
3611 if (!fs_devices) {
3612 ret = -ENOENT;
3613 goto out;
3614 }
e4404d6e
YZ
3615
3616 fs_devices = clone_fs_devices(fs_devices);
3617 if (IS_ERR(fs_devices)) {
3618 ret = PTR_ERR(fs_devices);
2b82032c
YZ
3619 goto out;
3620 }
3621
97288f2c 3622 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 3623 root->fs_info->bdev_holder);
2b82032c
YZ
3624 if (ret)
3625 goto out;
3626
3627 if (!fs_devices->seeding) {
3628 __btrfs_close_devices(fs_devices);
e4404d6e 3629 free_fs_devices(fs_devices);
2b82032c
YZ
3630 ret = -EINVAL;
3631 goto out;
3632 }
3633
3634 fs_devices->seed = root->fs_info->fs_devices->seed;
3635 root->fs_info->fs_devices->seed = fs_devices;
2b82032c
YZ
3636out:
3637 mutex_unlock(&uuid_mutex);
3638 return ret;
3639}
3640
0d81ba5d 3641static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
3642 struct extent_buffer *leaf,
3643 struct btrfs_dev_item *dev_item)
3644{
3645 struct btrfs_device *device;
3646 u64 devid;
3647 int ret;
2b82032c 3648 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
3649 u8 dev_uuid[BTRFS_UUID_SIZE];
3650
0b86a832 3651 devid = btrfs_device_id(leaf, dev_item);
a443755f
CM
3652 read_extent_buffer(leaf, dev_uuid,
3653 (unsigned long)btrfs_device_uuid(dev_item),
3654 BTRFS_UUID_SIZE);
2b82032c
YZ
3655 read_extent_buffer(leaf, fs_uuid,
3656 (unsigned long)btrfs_device_fsid(dev_item),
3657 BTRFS_UUID_SIZE);
3658
3659 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3660 ret = open_seed_devices(root, fs_uuid);
e4404d6e 3661 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 3662 return ret;
2b82032c
YZ
3663 }
3664
3665 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3666 if (!device || !device->bdev) {
e4404d6e 3667 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
3668 return -EIO;
3669
3670 if (!device) {
d397712b
CM
3671 printk(KERN_WARNING "warning devid %llu missing\n",
3672 (unsigned long long)devid);
2b82032c
YZ
3673 device = add_missing_dev(root, devid, dev_uuid);
3674 if (!device)
3675 return -ENOMEM;
cd02dca5
CM
3676 } else if (!device->missing) {
3677 /*
3678 * this happens when a device that was properly setup
3679 * in the device info lists suddenly goes bad.
3680 * device->bdev is NULL, and so we have to set
3681 * device->missing to one here
3682 */
3683 root->fs_info->fs_devices->missing_devices++;
3684 device->missing = 1;
2b82032c
YZ
3685 }
3686 }
3687
3688 if (device->fs_devices != root->fs_info->fs_devices) {
3689 BUG_ON(device->writeable);
3690 if (device->generation !=
3691 btrfs_device_generation(leaf, dev_item))
3692 return -EINVAL;
6324fbf3 3693 }
0b86a832
CM
3694
3695 fill_device_from_item(leaf, dev_item, device);
3696 device->dev_root = root->fs_info->dev_root;
dfe25020 3697 device->in_fs_metadata = 1;
2b82032c
YZ
3698 if (device->writeable)
3699 device->fs_devices->total_rw_bytes += device->total_bytes;
0b86a832 3700 ret = 0;
0b86a832
CM
3701 return ret;
3702}
3703
0d81ba5d
CM
3704int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
3705{
3706 struct btrfs_dev_item *dev_item;
3707
3708 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
3709 dev_item);
3710 return read_one_dev(root, buf, dev_item);
3711}
3712
e4404d6e 3713int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832
CM
3714{
3715 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
a061fc8d 3716 struct extent_buffer *sb;
0b86a832 3717 struct btrfs_disk_key *disk_key;
0b86a832 3718 struct btrfs_chunk *chunk;
84eed90f
CM
3719 u8 *ptr;
3720 unsigned long sb_ptr;
3721 int ret = 0;
0b86a832
CM
3722 u32 num_stripes;
3723 u32 array_size;
3724 u32 len = 0;
0b86a832 3725 u32 cur;
84eed90f 3726 struct btrfs_key key;
0b86a832 3727
e4404d6e 3728 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
3729 BTRFS_SUPER_INFO_SIZE);
3730 if (!sb)
3731 return -ENOMEM;
3732 btrfs_set_buffer_uptodate(sb);
4008c04a
CM
3733 btrfs_set_buffer_lockdep_class(sb, 0);
3734
a061fc8d 3735 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
3736 array_size = btrfs_super_sys_array_size(super_copy);
3737
0b86a832
CM
3738 ptr = super_copy->sys_chunk_array;
3739 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3740 cur = 0;
3741
3742 while (cur < array_size) {
3743 disk_key = (struct btrfs_disk_key *)ptr;
3744 btrfs_disk_key_to_cpu(&key, disk_key);
3745
a061fc8d 3746 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
3747 sb_ptr += len;
3748 cur += len;
3749
0d81ba5d 3750 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 3751 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 3752 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
3753 if (ret)
3754 break;
0b86a832
CM
3755 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3756 len = btrfs_chunk_item_size(num_stripes);
3757 } else {
84eed90f
CM
3758 ret = -EIO;
3759 break;
0b86a832
CM
3760 }
3761 ptr += len;
3762 sb_ptr += len;
3763 cur += len;
3764 }
a061fc8d 3765 free_extent_buffer(sb);
84eed90f 3766 return ret;
0b86a832
CM
3767}
3768
3769int btrfs_read_chunk_tree(struct btrfs_root *root)
3770{
3771 struct btrfs_path *path;
3772 struct extent_buffer *leaf;
3773 struct btrfs_key key;
3774 struct btrfs_key found_key;
3775 int ret;
3776 int slot;
3777
3778 root = root->fs_info->chunk_root;
3779
3780 path = btrfs_alloc_path();
3781 if (!path)
3782 return -ENOMEM;
3783
3784 /* first we search for all of the device items, and then we
3785 * read in all of the chunk items. This way we can create chunk
3786 * mappings that reference all of the devices that are afound
3787 */
3788 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3789 key.offset = 0;
3790 key.type = 0;
3791again:
3792 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
3793 if (ret < 0)
3794 goto error;
d397712b 3795 while (1) {
0b86a832
CM
3796 leaf = path->nodes[0];
3797 slot = path->slots[0];
3798 if (slot >= btrfs_header_nritems(leaf)) {
3799 ret = btrfs_next_leaf(root, path);
3800 if (ret == 0)
3801 continue;
3802 if (ret < 0)
3803 goto error;
3804 break;
3805 }
3806 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3807 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3808 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3809 break;
3810 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3811 struct btrfs_dev_item *dev_item;
3812 dev_item = btrfs_item_ptr(leaf, slot,
3813 struct btrfs_dev_item);
0d81ba5d 3814 ret = read_one_dev(root, leaf, dev_item);
2b82032c
YZ
3815 if (ret)
3816 goto error;
0b86a832
CM
3817 }
3818 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3819 struct btrfs_chunk *chunk;
3820 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3821 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
3822 if (ret)
3823 goto error;
0b86a832
CM
3824 }
3825 path->slots[0]++;
3826 }
3827 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3828 key.objectid = 0;
3829 btrfs_release_path(root, path);
3830 goto again;
3831 }
0b86a832
CM
3832 ret = 0;
3833error:
2b82032c 3834 btrfs_free_path(path);
0b86a832
CM
3835 return ret;
3836}
This page took 0.353131 seconds and 5 git commands to generate.